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Extracting low signal-to-noise ratio events with the Hough transform from

sparse array data

Gil Averbuch’, Jelle D. Assink?, Pieter S. M. Smets’, and Laslo G. Evers®

ABSTRACT

Low-frequency acoustic, i.e., infrasound, waves are measured
by sparse arrays of microbarometers. Recorded data are processed
by automatic detection algorithms based on array-processing
techniques such as time-domain beam forming and f-k analysis.
These algorithms use a signal-to-noise ratio (S/N) value as a de-
tection criterion. In the case of high background noise or in the
presence of multiple coinciding signals, the event’s S/N decreases
and can be missed by automatic processing. In seismology,
detecting low-S/N events with geophone arrays is a well-known
problem. Whether it is in global earthquake monitoring or reser-
voir microseismic activity characterization, detecting low-S/N

events is needed to better understand the sources or the medium
of propagation. We use an image-processing technique as a post-
processing step in the automatic detection of low S/N events. In
particular, we consider the use of the Hough transform (HT) tech-
nique to detect straight lines in beam-forming results, i.e., a back
azimuth (BA) time series. The presence of such lines, due to sim-
ilar BA values, can be indicative of a low-S/N event. A statistical
framework is developed for the HT parameterization, which in-
cludes defining a threshold value for detection as well as evalu-
ating the false alarm rate. The method is tested on synthetic data
and five years of recorded infrasound from glaciers. It is shown
that the automatic detection capability is increased by detecting
low-S/N events while keeping a low false-alarm rate.

INTRODUCTION

Sensor arrays are used in many branches of geophysics for the
detection of coherent energy. The use of arrays aids in the improve-
ment of signal-to-noise ratio (S/N) and permits estimation of the
wavefront parameters by the use of beam forming (Rost, 2002).
The beam-forming process combined with a correlation detector,
e.g., Fisher statistics, provides three important values: (1) S/N;
(2) back azimuth (BA), the wavefront’s horizontal angle of arrival;
and (3) apparent velocity (AV), the horizontal projection of the veloc-
ity vector. This can be related to the vertical incidence angle of the
wave (Melton and Bailey, 1957; Shumway, 1971; Olson, 2004).

Infrasound refers to low-frequency sound waves, ranging be-
tween 0.01 and 20 Hz that propagate in the atmosphere. It is mea-
sured by microbarometer arrays that are sensitive to air-pressure
fluctuations ranging from mPa up to tens of pascals. Pressure
variations due to incoherent wind noise are reduced by the use of

microbarometer arrays. Infrasound is primarily a monitoring tech-
nique for the verification of the comprehensive nuclear-test-ban
treaty (CTBT). Other common sources include, for example, explo-
sions, earthquakes, volcano eruptions, calving glaciers, and sonic
booms (Evers, 2008; Le Pichon et al., 2010). Long-range infra-
sound propagation is affected by wind and temperature variations
between the earth’s surface and the lower thermosphere (Drob et al.,
2003). Consequently, infrasound recordings can be used as a pas-
sive remote-sensing technique to estimate wind and temperature
conditions in a range of altitudes at which such measurements are
rare (Assink et al., 2013; Smets et al., 2016).

In seismology, sensor arrays of different sizes, in terms of aper-
ture and number of elements, are used. Globally, seismic sensors are
used to detect earthquakes and explosions (Gibbons and Ringdal,
2006, 2012). On a regional scale, sensor arrays can assist in the
analysis of body and surfaces waves (Harmon et al., 2008; Vidal
et al., 2011; Panea et al., 2014). On a local scale, arrays are used
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in exploration seismology to detect microseismic activity in a res-
ervoir or a mine (Potvin and Hudyma, 2001; Chambers et al., 2010;
Boué et al., 2013).

One of the shared challenges in seismological and infrasound
studies is the detection of low-S/N events due to weak or interfering
sources or high background noise levels. For example, body waves
can be masked by surface waves or high background noise. To de-
tect low-magnitude seismic events, stacking of correlation traces
within the co-array is used to increase the signal’s S/N before cor-
relating it with the recordings of other arrays (Gibbons and Ringdal,
2006). In ambient noise interferometry, beam-forming methods are
used to distinguish between time segments with either surface or
body waves. The detection of low-amplitude body waves proves
to be difficult because body-wave amplitudes decay faster (For-
ghani and Snieder, 2010; Draganov et al., 2013). Furthermore, mi-
croseismic source localization can be accomplished by using
surface arrays (Williams-Stroud et al., 2010; Verdon et al., 2017).
The monitoring of microseismic events in the reservoirs and mines
is used to provide information on hydraulic fracturing, changes in
the local stress field, imaging, and for seismic hazard analysis
(Chambers et al., 2010; Maxwell et al., 2010). The detection of such
events can be difficult in cases in which background noise levels are
high due to anthropogenic activity, leading to misleading results
(Ge, 2005; Warpinski, 2009). Therefore, low-S/N event detection
is desirable.

In the detection of low-S/N signals, it is essential to estimate the
probability of missed events and false alarms as can be significant in
such conditions. The statistical framework of Fisher statistics has
been used to estimate these probabilities from F-distributions
(Evers, 2008), under the assumption that noise is uncorrelated.
A detection is defined by setting a threshold to the Fisher ratio.
The Fisher ratio F and the single channel S/N are related by
F=N-S/N?+1, where N is the number of recording instru-
ments. Although false alarms can be attributed to the Fisher detector
statistics, missed events can be attributed to low S/N values. Analy-
sis of noise over infrasound arrays shows that noise can be corre-
lated (Arrowsmith et al., 2008). Consequently, noise may obtain a
higher F. In addition, concurrent signals can also appear as inco-
herent noise to the signal of interest and thereby reduce the S/N
values. For operational purposes, the threshold for automatic detec-
tors is a S/N equal or greater than one (Le Pichon et al., 2009). This
threshold will be used in the remainder of this study.

To reduce the missed events rate, by detecting events with S/N
below one, a new approach based on the work of Brown et al.
(2008) is proposed. In contrast to incoherent noise, for which the
BA and the AV values appear to be random, coherent infrasound is
characterized by coherent BA and AV values as a function of time.
These characteristics can be recognized even when noise levels are
high. The Hough transform (HT) is an image-processing technique
for detecting shapes such as straight lines, circles, and ellipses in a
pixilated data set (Nixon, 2008; Lezama et al., 2015). This tech-
nique has applications in graphical element recognition, statistical
shapes analysis, detection of grids, geophysics, geology, archaeol-
ogy, and remote sensing (Duda and Hart, 1972; Song and Lyu,
2005; Hall et al., 2006; Lezama et al., 2015).

Thus, low-S/N infrasound events can be detected by identifying
straight lines in the resolved BA (Brown et al., 2008). The key is to
define a threshold for detection of a line within a given window
length. In the work of Brown et al. (2008), two threshold levels

are used. The first is based on the relation between the potentially
detected signal duration and its S/N, whereas the second iteratively
requires the signal length, F, and S/N to be larger than a varying
threshold values. Brown et al. (2008) show that signals with a mini-
mum duration of 84 s and S/N larger than 0.5 are detectable with
false-alarm rate of one per day.

Hitherto, an arbitrary threshold number has been used to deter-
mine whether an infrasound signal is present or not. In this paper, a
new method, based on the binomial distribution and noise investi-
gation, is introduced to define suitable settings for the HT. These
settings can be optimized for specific signal lengths. The method
is tested on the synthetic and real data sets to investigate its perfor-
mance at low S/Ns. Similar methods have been used to reduce missed
events in time-range radar observations. Elazar (1995) shows
that the binomial distribution can be used to determine the expected
HT false-alarm rate applied to such data sets. For an event to be
detected, it must pass the S/N threshold and the HT threshold, which
is based on known optimal parameters (Carlson et al., 1994; Ela-
zar, 1995).

The remainder of this paper is organized as follows: It starts with
describing the Fisher detector, which is used as the primary data
processing tool. In the following two sections, the principles of
detecting straight lines using the HT and the method of setting
the HT settings are discussed. Thereafter, the HT is applied on both
synthetic and real data. Finally, results are discussed and sum-
marized.

BEAM FORMING USING FISHER STATISTICS

Infrasonic events are recorded by microbarometer arrays. The re-
cordings are processed using beam-forming techniques that provide
us with the signal S/N, BA, and AV. The Fisher detector is used to
evaluate each beam using a delay-and-sum approach. Beam form-
ing is carried out over a grid of slowness (reciprocal of velocity)
vectors, assuming a plane-wave signal model. For every vector, F
is calculated. F is defined as the ratio of the variation between re-
cordings to the variation within a recording. The null hypothesis
that of no coherent signal is present is accepted in the case that F
is unity. A detection is made for higher F values, which follows
from Fisher statistics (Melton and Bailey, 1957; Olson, 2004). As
mentioned, infrasonic noise distributions do not strictly follow the
theoretical distribution and incoherent noise may be associated with
higher F' than unity.

The Fisher ratio can be written as

2 2
vy S (S =4 (S0 S
_1) T N 2 1 \N~T N 2
=1 Zn:l Xnr — ﬁzr:l Zn:l Xnt
(D

where T is the number of samples, N is the number of the sensors,
and x,, represents the sample value for a specific sensor n and time
sample 7. The F-ratio is calculated for all vectors in the slowness
grid. The maximum F-value corresponds to the slowness vector,
which describes the wavefront of the (most powerful) signal in
the time-segment of analysis. The BA and AV can be determined
from this slowness vector.
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The Fisher detector is applied to time segments from continuous
recordings and changes of the wavefield with regard to S/N, BA,
and AV, are evaluated over time. To detect a possible event, consecu-
tive, self-similar values in BA are identified. Because AV values are
more variable (see Figure 2 in Evers and Haak, 2005) and can vary
due to different propagation paths, only the BA results are used here
as an input to the HT.

DETECTING STRAIGHT LINES

The human brain is “wired” in a way that special neuron groups
are responsible for recognizing geometrical patterns. Some of these
neurons groups are especially sensitive to straight lines with hori-
zontal and vertical orientations (Furmanski and Engel, 2000). How-
ever, straight lines can be masked by other geometric dotted shapes
or obscured by randomly distributed points, making them difficult
for the human eye to detect. In the case of complex images, a digital
computer detector, such as the HT is useful.

Considering a data set with N, points, the HT maps each pair
of points (x;,¥;). (x;,y;)i#j i.j=1...N, onto a new domain
defined by the slope between the points 7z and the intercept
with the axis origin y (in the original domain). The new domain
is defined as

H=yi+ X, 2
xj—xi

The number of collinear points in the original data set will be
given by the number of the identical parameter pairs in the new
domain; that is, if pairs of points have the same slope and intercept,
they lie on the same line.

Due to the resemblance of the HT with the well-known z-p trans-
form (also known as slant stack), let us distinguish between the two.
The goal of the z-p transform is to apply a plane-wave decompo-
sition to the recorded data. It is realized by first applying a linear
moveout correction to the traces and then summing their ampli-
tudes. Applying it to a range of slowness parameters will provide
a slant-stack gather. It contains the relevant slowness and dip param-
eters of the original data (Yilmaz, 2001). On the contrary, the HT is
applied to beam-forming results (pixilated data instead of traces)
and counts how many pairs of BA results have the same slope-in-
tercept parameters.

A unique characteristic of an infrasound event is that the BA val-
ues are self similar in time. Using the HT as a postprocessing tool
for detecting horizontal lines will enhance the detection of events.
This is useful for events with low S/N that do not pass the S/N de-
tection threshold, and therefore are missed.

A significant difference between detecting straight lines in a
“regular” image compared with beam-forming results is that in
the latter, time plays an important role. Because infrasound events
occur in a finite time interval, this characteristic should be taken into
account. Therefore, the Hough window (HW) is introduced, which
is a sliding window that runs over the beam-forming results. Within
an HW, a possible HT detection may occur (Figure 1).

SETTING THE THRESHOLD USING THE
BINOMIAL DISTRIBUTION AND NOISE ANALYSIS

The HT is applied to results obtained using the beam-forming
method discussed in the “Beam forming using Fisher statistics”
section, without setting a threshold on the S/N. Therefore, all BA
values are used as input data points for the HT, irrespective of their
S/N. This process is divided into three steps. The first step is to define
the minimum signal length to be detected. The number k will be set to
the number of data points (Fisher detector results) that correspond to
this length. Because long-duration signals can be constructed from
short ones, this choice does not prevent us from detecting such
long-duration signals.

For low-S/N signals, it is possible that some of the estimated BA
values deviate from their true value. Therefore, the detection per-
formance of the HT may be limited by only considering k consecu-
tive aligned points. By allowing for k aligned points in a n points
data set (n > k), the signal data points do not have to be in consecu-
tive order to be detected by the HT.

The second step is to specify the number n, which is the size of
the HW. The HW size is necessarily smaller than the size of the data
set. When only incoherent noise is present, the results will be ran-
domly distributed over the BA range. The probability of noise to
have a specific azimuth p,,inum 1S

1
Pazimuth = (q)max — (I)min)/Aq) s

“)

where @, ., and ®_;, bound the BA range with a step size of AD. A
binomial distribution is used to estimate the probability P, to get k
aligned points out of n HW points in the BA results. In the case that
no coherent signal is present, the probability is

Back azimuth

______________________________

Figure 1. The HW as a sliding window over the beam-forming re-
sults. The black dots are due to incoherent noise, and they are there-
fore randomly distributed. The red dots result from a coherent signal
with a constant BA.

002 1 1 1 1 1 1 1 1 1 1 1 1
——HW=10
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T T
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Aligned points

Figure 2. The probability of detecting k aligned points out of an n
point HW in the presence of incoherent noise. The blue, green, red,
black, and orange curves correspond to 10, 15, 20, 30, and 50 points
HW, respectively.
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n
Pr(k7 n, pazimulh) = (k)Pﬁzimmh(l - pazimuth)n_k‘ (5)

Figure 2 shows the probability of getting k aligned points from a
certain BA in a HW containing n points. Choosing settings (k, n)
with a low probability P, reduces the false-alarm rate.

The third step is the estimation of the false-alarm rate. To do so, a
data set consisting of incoherent noise is constructed. Applying the
HT with the desired settings on this noise data set will provide us
with an estimation of the false alarm rate.

SYNTHETIC DATA

The method is tested on synthetic data sets to conduct a con-
trolled experiment. The results are used to evaluate the method
and to fine-tune the HT parameters. The first data set consists of
incoherent noise and is used to evaluate the false alarm rate. The
second and third data sets contain a long signal and a repetitive im-
pulsive source, with different signal amplitudes. Random noise is
added to each of the recordings and its amplitudes determine the
S/N of the events. This way, the detection capability of low-S/N
events is evaluated.

The synthetic data sets are constructed with a sampling rate of
20 Hz for an eight-element microbarometer array with the station
coordinates of array I118DK, which is part of the International Mon-
itoring System (IMS) for the CTBT (Figure 3). The first data set
contains 24 h of random noise with a uniform distribution. The syn-
thetic data are band-pass filtered between 1 and 5 Hz. The Fisher
detector settings are time bin 25.6 s, 50% overlap, AV range of
250-450 m/s with 5 m/s interval, and BA range of 0°-360° with
a 2° interval. These settings are used throughout this paper.

80°

70° g

-80° -60° —40° -20°

Figure 3. Map of Greenland showing the location of I18DK (black
star). The array layout is shown at the top right.

Figure 4 shows the Fisher detector results for the noise data set.
As expected, S/N values are very low and the BA values are ran-
domly distributed within the analysis domain. The HT detection
rate is high for low threshold values and large HW sizes and de-
creases as detection conditions become more strict, i.e., high thresh-
old values and small HW sizes (Figure 5).

05 bl 14

S/N

350
300 4
250
200
150
100 ¢
50 e,

0 7R 8 A oo

0123456 7 8 9101112131415161718 192021222324

Back azimuth (°)

SR LN

450

400

350

300

Apparent velocity (m/s)

012345678 9101112131415161718 192021222324
Time (h)

Figure 4. Fisher detector results from processing 24 h of synthetic
noise. The frames from top to bottom show S/N, BA, and AV as a
function of time.

Detections
0 10 20 30 40 50 60 70 80 90 100

Threshold

40 & Hough windo
20 ugh window

Figure 5. False-alarm rate as a function of HW and threshold. The
HT detector is applied to the Fisher results of the synthetic noise.
The false-alarm rate is higher if the threshold is lower and the HW is
larger.
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The calculated probabilities reveal a different behavior than the
expected probabilities from the binomial distribution. With the
given threshold value and HW size, the probability does not corre-
spond to the theoretical value. We interpret this deviation to be re-
lated to the processing of a finite sample of points within a HW, in
contrast to a larger population, for which the binomial statistic

part of the signal. In total, the HT detected 54 data points that are
related to the signal.

After increasing the noise levels (column B, Figure 7), the signal
S/N values are lower than 0.5. Thus, the entire signal would have
been missed. Due to the high noise levels, BA values skew and there-
fore less points are aligned. Consequently, a lower HT detection rate

would hold better. Furthermore, the synthetics
undergo filtering and array processing, which
is sensitive to the array configuration affecting
its response (Evers, 2008). This means that the
input for the HT is a subset of the entire data dis-
tribution. Therefore, the number of possible BA
values is lower and the probability higher. The dis-
tribution of the cumulative BA values for one day
of synthetic data is presented in Figure 6b. A chi-
square fitting is used to find the best associated
probability for p,inum- Figure 6a shows the HT
calculated detection probability (blue dots) and
theoretical probabilities (black lines) of the bino-
mial distribution for 10 p,imum Values. The best fit
provides a mean value of p,,inun = 0.0105 (with
significance of 0.024). This means that the BA
values are distributed over approximately 100
possible values instead of 180 values that were
estimated theoretically.

The HT’s threshold and HW values were set to
10 and 14, respectively. This threshold is equiva-
lent to 128 s, which corresponds to a typical time
scale of regional signals. Testing these settings on
the noise data set provides zero false alarms (Fig-
ure 4). The use of these values may lead to missed
events for signals shorter than the characteristic
time scale. Those can still be retrieved by setting
a lower threshold value and accepting a higher
false alarm rate.

Geophysical signal durations can vary from a
fraction of a second to minutes and hours depend-
ing on the type of source and the propagation path
(Evers and Haak, 2005; Evers et al., 2007). There-
fore, two synthetic data sets are tested. The first
data set is a continuous wave with a finite dura-
tion. The second data set consists of repetitive,
impulsive signals. Both synthetic signals have a
spectral content of 1-5 Hz, with a center fre-
quency of 2.5 Hz and a BA of 90° relative to the
center of the array.

The first synthetic signal consists of 1000 s of
samples with 700 s of coherent signal. It simulates
a quasi-continuous, nonmoving source (calving
glaciers or volcanic eruption). Column A in
Figure 7 shows the beam-forming and HT results
for the high-S/N signal. Most of the signal has S/N
values higher than one. As stated earlier, the
threshold for automatic detectors is an S/N equal
or greater than one, which means that the signal
will be detected. At 750 s (the tail of the signal),
S/N values decrease. This part of the signal would
have been missed by an automatic detector.
Nevertheless, the HT also picks up the low-S/N

a) 0.02 ! ! ! ! ! ! 1 b)100 ! ! ! ! ! ! ! !
= .
= [}
% o
8 0.014 = g 50 B
S z
o

0.00 T T T T 0 T T T T T T T T

0O 20 40 60 80 100 120 140 160 0 40 80 120 160 200 240 280 320 360

Hough window Back azimuth (°)

Figure 6. (a) The calculated detection probability from a synthetic noise data set. The
blue dots represent the HT detection probability for 24 h of analyzed noise, as calculated
from data. The HT threshold value is 5, and HW values range from 8 to 160. The black
curves represent the theoretical probabilities of the binomial distribution for 10 pinun
values between 0.009 and 0.0135. The best fit is found for p imun = 0.0105. (b) Dis-
tribution of cumulative BA values for one day of synthetic noise. The nonuniform
distribution is consistent with our interpretation that the processed data is a subset of
the original data.
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Figure 7. A synthetic long-duration signal with different S/N values. Columns A and B
show a high- and a low-S/N signal, respectively. The frames from top to bottom show S/N,
BA, and AV as a function of time. The blue and red dots are the Fisher and HT detector
results, respectively. For the high-S/N signal, the HT detected 54 data points. The HT
detected 44 data points for the low-S/N signal. Due to its low S/N, this signal would have
been missed by an automatic detection algorithm that only uses S/N as a threshold.
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is obtained. The 44 data points were detected by the HT (81.5% of the
high-S/N signal).

A second synthetic signal simulates a repetitive impulsive source.
From a seismic prospecting point of view, active seismic areas in res-
ervoirs and mines can act as a repetitive microseismic sources. In
mining, when microseismic activity exceed a certain threshold, the
mine (or part of it) will be closed for safety reasons (Potvin and
Hudyma, 2001). Figure 8 shows 10 repetitive impulsive signals with
high and low S/Ns. The time interval between the signals is 20 s.
Column A shows the beam-forming and HT detection of the
high-S/N signals. The HT detects 16 data points. Column B shows
the results for the low-S/N signal. Because all the signal data points
(200400 s) have S/N values approximately 0.5, the signal would
have been missed. The HT detects 12 related data points, which is
75% of the high-S/N signal.

Averbuch et al.

INFRASOUND RECORDINGS FROM GREENLAND

The new method was tested on real data from five years of
continuous recordings at IMS infrasound array 118DK, Greenland
(Figure 3). The array is surrounded by land- and sea-terminating
glaciers that act as active infrasound sources due to calving and gla-
cial run-off. Simultaneous arriving signals from different glaciers
cause a decrease in the S/N values because one source acts as noise
to another. Therefore, analyzing 118DK’s infrasound data set elu-
cidates the merit of using the HT.

To evaluate the false-alarm rate, an incoherent noise data set
was constructed from one year (2010) of recordings. This data set
is created by randomly attributing recordings from one array element
to another array element. Doing so, coherent events are no longer
extracted by the Fisher detector because phase differences over the

array elements are randomly mixed (Brown et al.,
2008).

a) ; | | | b) The distribution of the BA for one day of
£ ““ ‘ t ““ constructed noise (Figure 9b) reveals a similar
FE behavior to that found for the synthetic noise.
E ’ [ ” [ [ [ [ [ [ The calculated and theoretical detection probabil-
1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ities are presented in Figure 9a. The best fit is
| | | | | | | | | | found for p,imun = 0.011 (with a significance of
25 4 S e .. - B 0.061). Figure 10 shows the Fisher detector and

- ?g ] o : ] i HT results.
B 1.0 - - Figure 11 shows the HT detection rate as a
g:g'.....l.......l . FSTETOSION § _.._ function of threshold and HW for 10 days of
noise data. The detection rate has similar behav-
C g0 — . — T ' ' ' : - ior to the one calculated from the synthetic data
E ggg 1 < N A . y . o (Figure 5). A threshold value of 10 and a 14 data
N 150 . e 4 ° .. :, - points HW were used as the HT settings. The ex-
3 199 " secsossseseseseset I R pected false alarm rate is 576 data points per year.
i 0 ! ! ! T ! ! ! ! ! There are approximately 6750 data points per

é 450 I I I I Ly — I - I I I I day.
> 400, R : R o Table 1 summarizes results of analyzing five
R RIS e " " I years of infrasound data. The second column
Z 80+ " - - et e et T T e ek bresents the number of automatic detections by
§ 250 T T T T T T T T T T considering an S/N threshold value greater than
< 100 200 T 300 400 500 100200 800 400 500 one. The column Hg/n.; shows the HT detec-
ime (s) Time (s)

Figure 8. As Figure 7, for repetitive, impulsive signals with different S/N values. For the
high-S/N signal, the HT detected 16 data points. The HT detected 12 data points for the

low-S/N signal.

tions of data points with S/N values lower than
one. Most of the HT detections have S/N values
lower than one (column 3). This column repre-
sents the number of missed events in case of
not using the HT. A low number of HT detections
with S/N values larger than one (see column 4 of

Table 1) can be the result of interfering signals
from the glaciers surrounding the array. Their
presence is causing the Fisher detector to switch
between sources because the Fisher detector re-
turns the event parameters of the dominant signal
in each time bin. Instead of providing a continuous
detection from the same BA, it provides pseudo
short-duration signals from different sources.
These are too short to be detected by the HT with
its current settings.

Figure 12 shows that the BA of the HT detec-
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Figure 9. As Figure 6, for the noise data set constructed using measurements at [18DK.

tions coincides with the directions of nine gla-
ciers surrounding the array. The glaciers have
been identified using Google Earth. During the
summer months from August to October, the
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infrasound activity is at its highest due to calving and glacial run-
off. AV values lower than 300 m/s can be considered to be non-
physical. Such values can be explained by the larger uncertainties
in the slowness vector estimation for low-S/N signals.
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Figure 10. Noise data Fisher analysis and HT results. The frames
from top to bottom show S/N, BA, and AV as a function of time. The
blue and red dots correspond to the Fisher detector results and HT
detections, respectively. The HT detects 576 data points.
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Figure 11. False-detection rates as a function of HW and threshold.
The HT detector was applied to 10 days of Fisher detector results of
the noise data set. Because the threshold is lower and the HW is
larger, the false-alarm rate is higher, as can also be seen in Figure 5.

Table 1. Fg/y>1: number of Fisher detections with S/N > 1.
Hg/n<i: HT detections with S/N < 1. Hg/n»;: HT detections
with S/N > 1.

Year Fs/ns1 Hg/ne Hg/nsi
2010 27,139 126,362 13,859
2011 34,667 143,709 25,751
2012 39,554 209,760 29,808
2013 10,096 56,224 3383
2014 41,049 149,715 33,168
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Figure 12. The 2010 Fisher analysis and HT results. The frames
from top to bottom show S/N, BA, and AV as a function of time.
Fisher detections with S/N > 1 and HT detections are represented
by the blue and red points, respectively.

CONCLUSION

Automatic detection algorithms for infrasonic signals are based
on an S/N threshold value, and are prone to miss events with S/N
values lower than the set threshold value. In this paper, the problem
of detecting coherent but low-S/N signals is addressed, to reduce
the number of missed events. A statistical framework to tune the
parameters in an automatic detection system based on the HT is
introduced. This methodology allows for defining suitable settings
for the HT by analyzing incoherent noise and assessing the expected
false-alarm rate. Even though the method was implemented for
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infrasonic signals, it can be adapted to seismic array analysis, using
any beam-forming procedure.

Results from the synthetic and real data show the benefit of using
the HT in a postprocessing step. Assessing the expected false-alarm
rate for synthetic noise allows us to define HT settings with less than
one false alarm per day. In addition, these same settings provide
correct detections of very low S/N events. The detection capabilities
of repetitive impulsive signals are highly dependent on the time in-
tervals between each event, the sampling rate, and the HT settings.
In specific cases, the Fisher detector and the HT settings can be
optimized for better detection performance, i.e., for monitoring mi-
croseismic activity.

Testing the same HT settings on Greenland’s noise data provided
576 false alarms per year. For five years of real data, the same settings
provided, on average, four times more detections than the S/N-based
detector. Obviously, the glaciers are not the only infrasound sources.
There are many more natural and anthropogenic signals that can
register as sources. Thus, there are also detections that do not asso-
ciate with glaciers. Some of the detections south of the array could be
associated with the movement and breaking of sea ice.

The relatively low number of high-S/N detections could be attrib-
uted to the existence of simultaneous sources. These cause the BA
values of the high-F detections to switch back and forth instead of
“locking” to a stable direction. The threshold value determines the
minimum signal length that can be detected. As the desired signal
gets shorter in time, the threshold value gets lower and the expected
false alarm rate gets higher even when using a more strict detection
criterion (small HW). The expected low false alarm rate combined
with the alignment of the HT detections with the known directions
of the glaciers illustrates the benefit of the proposed technique.

Recalling the need to detect low-S/N events in various fields of
seismology, the proposed method can increase their detection. For
body-wave interferometry, detecting more time segments that con-
tain low-S/N body waves arrivals can provide a better illumination
of the array. Although containing low-S/N events, it will improve the
interferometry results. Furthermore, the HT can help detect active
microseismic sources in mines and reservoirs. Assuming that one
can determine a characteristic time length for microseismic events,
it is possible to calculate a corresponding number of data points from
the beam-forming stage (the number of data points can vary accord-
ing to the array-processing settings) and therefore, using the HT, can
evaluate the number of microseismic events for a time period.

Although using the HT decreased the number of missed events,
there are still other active sources that are missed. As a default, the
Fisher detector picks only the highest S/N event per time bin. In the
described case study, we are aware that there are multiple active
sources, but only one is being detected. Future work will focus on
the application of this method to a version of the Fisher detection
algorithm that can process multiple sources.
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