
Measuring Task Complexity in
Human Computation Systems

Master’s Thesis

Friso Cornelis Albertus Abcouwer

Measuring Task Complexity in
Human Computation Systems

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE
TRACK INFORMATION ARCHITECTURE

by

Friso Cornelis Albertus Abcouwer
born in Leiderdorp, the Netherlands

Web Information Systems
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

http://wis.ewi.tudelft.nl

c© 2015 Friso Cornelis Albertus Abcouwer.

Measuring Task Complexity in
Human Computation Systems

Author: Friso Cornelis Albertus Abcouwer
Student id: 4019873
Email: f.c.a.abcouwer@student.tudelft.nl

Abstract

Human computation platforms offer requesters the possibility to outsource
human intelligence tasks or HITs to large amounts of workers around the world.
Researching the various aspects of HIT design has the potential to improve the
human computation experience for both requesters and workers. This thesis
researches the relationship between quantitative aspects of HITs and their per-
ceived complexity. Specifically, we consider three categories of task attributes:
Metadata, Content and Visual. In order to measure these attributes, we con-
structed a real-time human computation market crawler that we used to gather
HIT data and reinstantiate HITs from the largest human computation market,
Amazon Mechanical Turk, and a task attribute analysis pipeline to obtain task
attribute measurements from the market data. We present an analysis of the vari-
ous task attributes, and perform an experiment predicting HIT throughput based
on task attribute and market data. Our analysis shows that market statistics, task
batch size and semantic content features can be used to predict throughput. We
also conduct an initial exploration into measuring subjective HIT complexity as
perceived by workers. Based on our analysis and experimental results, we iden-
tify three key points of advice for human computation task designers.

Thesis Committee:

Chair: Prof. dr. ir. G.J. Houben, Faculty EEMCS, TUDelft
University Supervisor: Dr. A. Bozzon, Faculty EEMCS, TUDelft
Committee Member: Dr. M.A. Larson, Faculty EEMCS, TUDelft

Preface

This report is the final result of my Master’s thesis project, marking the end of my
time as a Computer Science student at Delft University of Technology after six amaz-
ing years. While the project had its ups and downs and was challenging from start to
finish, I am proud of what I was able to achieve. Before I leave university for the ‘real
world’, I would like to use this opportunity to thank several people.

To start with, I would like to thank Alessandro Bozzon, my supervisor during this
project, whose guidance and feedback always pointed me in the right direction (even
when I did not realize it right away) and motivated me to always think just one step
further. I would also like to thank Geert-Jan Houben and Martha Larson, the other
two members of my thesis committee, for their efforts and feedback. I also thank my
mother and Max de Groot for proofreading early drafts of my thesis. A special thank
you goes out to Jie Yang, whose support, insight and unfailing willingness to provide
help when I needed it were incredibly useful.

Apart from the people I worked with during my thesis project, I would like to
thank all of the friends I have made over the course of my university career. I feel truly
privileged for having been able to experience and learn so much and meet so many
wonderful people in the past six years.
Finally, I would like to thank my parents for supporting me in everything I do and
always believing in me.

Friso Abcouwer
Delft, the Netherlands

October 21, 2015

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Introduction . 1
1.2 Research Objectives . 2
1.3 Contributions . 3
1.4 Thesis Outline . 4

2 Background and Related Work 5
2.1 Introduction to Human Computation 5
2.2 Crowdsourcing on Amazon Mechanical Turk 7
2.3 Aspects of Task Design . 11
2.4 Measuring Task Complexity . 15

3 Automation of Task Complexity Analysis 19
3.1 Attribute Selection . 19
3.2 Attribute Evaluation . 31

4 Technical Means of Task Complexity Analysis 33
4.1 Extended MTurk Tracker . 33
4.2 Task Attribute Analysis Pipeline . 40

5 Evaluation of Results 43
5.1 Overview of Data . 43
5.2 Task Attribute Analysis . 45
5.3 Throughput Prediction . 52
5.4 Subjective Task Complexity . 60
5.5 Task Design Guidelines . 63

6 Conclusions and Future Work 65

v

CONTENTS CONTENTS

6.1 Conclusions . 65
6.2 Discussion/Reflection . 66
6.3 Future Work . 67

Bibliography 69

A Glossary 75

vi

List of Figures

2.1 AMT Worker Interface. 10

3.1 Visual Decompositions of a HIT. 29

4.1 Architecture of Original Tracker . 34
4.2 Architecture of Extended Tracker . 36
4.3 Restored HIT: Image Annotation. 37
4.4 Restored HIT: Transcription Checking. 38
4.5 Task Attribute Analysis Pipeline - Overview of Data Sources 40
4.6 Task Attribute Analysis Pipeline - Attribute Calculation Process 41

5.1 Task Attribute Correlation Matrix . 46
5.2 Title Length Distribution . 48
5.3 Description Length Distribution . 48
5.4 Distributions of Several HIT Content Attributes 49
5.5 Distribution of Visual Attributes . 51
5.6 Comparison Between Different Amounts of Visual Areas 53
5.7 Throughput Prediction . 54
5.8 Throughput Prediction Results - Dataset A 55
5.9 Throughput Prediction Results - Dataset B 57
5.10 NASA-TLX Mean Scores . 62
5.11 NASA-TLX Mean Weights . 62

vii

Chapter 1

Introduction

1.1 Introduction

In recent years, exponential increases in easily available computing power have en-
abled computer systems to complete tasks that used to be considered impossible or
would have taken days, months or even years to complete. This increase in compu-
tation speed, however, has not led to computers being able to perform complex tasks
such as those involving subjective judgements or natural language processing. While
progress is being made in finding fully automated solutions for a lot of these types
of challenges, for a very large amount of problems, state of the art automated solu-
tions do not come close to providing a solution that can rival the performance of an
average human working on the same task. However, work done by humans is usually
significantly more costly and time-consuming, and the quality of the results can also
be unpredictable.

A compromise in solving this dilemma can be found in the field of human compu-
tation. By outsourcing those tasks that can be completed more easily by one or more
humans than by itself, an automated system can offer solutions to problems it would
normally not be able to solve on its own, while still offering advantages inherent to an
automated system like reliability, speed and low cost. We will refer to tasks completed
by humans on such platforms as Human Intelligence Tasks, or HITs for short. There
are many different types of human computation or crowdsourcing platforms, which we
will elaborate on in more detail in Chapter 2.

Due to the incorporation of human elements as a part system functionality, design-
ing a human computation platform is extremely challenging: not only do designers
have to create a system that performs as it is required, but they have to manage the
expectations and requirements of all parties involved on both sides of the market as
well. To illustrate, we consider the market dynamics of Amazon Mechanical Turk.
At one end, there are the requesters, who want their tasks to be completed as quickly
and cheaply as possible with a result of the highest possible quality. Apart from in-
vesting in their task design, managing budgets and results and communicating with
and rewarding their workers, requesters constantly have to be wary of malicious work-
ers who input bogus answers to quickly earn money. At the other end, there are the
workers, whose position as ‘cogs in the machine’ raises significant ethical concerns.
For instance, many workers are dependent on the income they make from working on

1

1.2 Research Objectives Introduction

MTurk to support themselves. Workers are also often treated unfairly by requesters,
for example by having work rejected without being given a reason (and thus not re-
ceiving a reward for that work), and they do not enjoy employment protections that
apply to ‘regular’ workers [34]. Some have gone as far as to say that using MTurk is
‘exploitative’ [19].

The situation described above exemplifies some important issues that need to be
dealt with in order to advance the field of human computation. In short, the motivation
for this thesis is the goal of progressing towards an ideal human computation platform
that is fair and open towards workers while allowing requesters to maximize their re-
sults. There is certainly a lot of room for improvement until this type of platform
becomes a reality. This thesis aims to help the human computation community take
a step into that direction by investigating the way HITs are designed and presented
to workers: it is our view that the way a HIT is constructed influences workers’ mo-
tivation to take on the work, their performance during the HIT and their satisfaction
afterward, all of which, when correctly managed, can improve the outcomes of crowd-
sourcing for both requesters and workers. The specific aspect of the crowdsourcing
process this thesis focuses on is task complexity, which we will define as follows in
Chapter 2:

The complexity of a HIT can be approximated by the sum of the complexity of its
objectively measurable attributes, as perceived by its workers.

Our approach to evaluating HIT attributes is by linking them to throughput, which
we argue can be a proxy for complexity, and by investigating the various attributes
are interrelated. Our specific scope for this thesis is on the requester side of human
computation. We wish to learn how we can use complexity as a means to improve the
human computation experience for requesters. As a proxy for task complexity, we will
investigate task throughput, and perform experiments to predict throughput based on
task attributes. This should lead to insights allowing task requesters to design tasks
with higher throughput than before. In the remainder of this chapter we will explain
our methodology for measuring task complexity by linking this goal to our research
objectives and how each one is represented in the thesis.

1.2 Research Objectives

Our research objectives can be summarized in the forms of research questions, to be
answered based on the results of our work.

RQ1 How can we measure the complexity of a human computation task?

There are many different aspects by which a HIT can be evaluated. For example, one
can look at the phrasing of instructions, the content, complexity and structure of the
code that makes up the HIT page, the presence or absence of certain ‘gold standard’
design aspects, or how the worker perceives the complexity of the task. By studying
historical data from MTurk, we will try to find which, if any, of the many attributes
of a task can be indicative of complexity. In Chapter 2, we present a background on
human computation and task complexity, as well as related work researching human

2

Introduction 1.3 Contributions

intelligence task design. In Chapter 3, we identify key task attributes that we consider
possible contributors to task complexity, and in Chapter 4, we describe two systems
we constructed to support the measurement of HIT complexity.

RQ2 What are the effects of the complexity of a HIT on its throughput?

We are interested in identifying what effects the various factors that contribute to a
task’s complexity have on workers, specifically the job performance of workers. In
Chapter 3, we argue that the throughput of a HIT can be used as a proxy for task
complexity, and in Chapter 5, we evaluate historical data from Amazon Mechanical
Turk to attempt to find a relationship between task complexity and throughput.

RQ3 Can we predict the complexity of a human computation task based on its at-
tributes?

Finding a way to predict complexity can tell us more about the relationship between
factors that contribute to a task’s complexity and the task itself. Furthermore, if we can
identify some attributes that correlate with how complex a task is, it might be possible
to construct some method to apply this knowledge, leading to RQ4. In Chapter 5, we
present an experiment predicting HIT throughput based on task attribute data.

RQ4 How can the concept of task complexity be used to support human computation
task design?

If we find some way to measure task complexity and have an idea of its effects, we can
offer recommendations that task designers can incorporate to improve their results. In
Chapter 5, we identify several key recommendations for HIT designers based on our
results.

1.3 Contributions

To answer our research questions, we first need to gather HIT data and measure HIT
attributes. Then, we wish to analyze HIT content to find a possible link between task
attributes and objective HIT complexity. Finally, we wish to predict HIT throughput.
Additionally, using gathered HIT data, we can reinstantiate HITs and measure subjec-
tive HIT complexity. Based on these steps, we identify the scientific contributions of
this work as follows:

1. HIT Crawling Platform: We constructed a real-time human computation mar-
ket tracker for the largest human computation market, Amazon Mechanical Turk.
This system, based on the existing MTurk Tracker platform, crawls the MTurk
market in real time and has additional features for storing the content of HITs.
This allows for HITs to be restored to be performed again at a later point in time
with a greater degree of accuracy than was possible in the past, which opens
up an avenue of research opportunities. The architecture of this platform is de-
scribed in Chapter 3, and we identify possible future uses for it in Chapter 6.

3

1.4 Thesis Outline Introduction

2. Analysis of HIT Content: Based on literature, we define three categories of
attributes for human intelligence tasks: Metadata, Content and Visual. Then, us-
ing historical market data from the largest human computation platform, Ama-
zon Mechanical Turk, we perform a study to try and find relationships between
the quantitative properties of HITs and task throughput, which we argue can be
used as a proxy for task complexity. Based on this study, we identify how task
attributes can be used to measure task complexity and link this to possible new
‘best practices’ in HIT creation. This analysis is provided in Chapter 5 and our
conclusions can be found in Chapter 6.

3. Throughput Prediction: Using the results from our study, we re-enact the
throughput prediction experiment by Difallah et al. [11] to investigate if the
attributes we identified can be used to predict throughput. We describe this ex-
periment in Chapter 5.

4. Reinstantiated Human Intelligence Task Dataset: Having tracked and stored
a large amount of HITs from the AMT market, we manually filtered and curated
this data, constructing a dataset of 62 diverse tasks, all from different requesters,
that have been completely reinstantiated. We used this dataset in an initial ex-
periment to measure subjective task complexity, which is presented in Chapter
5. In Chapter 6, we discuss the potential of further research using reinstantiated
HITs.

1.4 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 introduces the scientific
background of this thesis and discusses related work. Specifically, it will introduce the
concepts of crowdsourcing and human computation as well as the context of our study,
Amazon Mechanical Turk. Then, we will examine previous research into the various
aspects of HIT design and task complexity. Chapter 3 describes our methodology: we
outline the task attributes we chose to incorporate in our study and our motivations
for each one. We also describe our method for evaluating complexity and motivate
our decision to use HIT throughput as an approximation of complexity. Chapter 4
describes the technical means we used to achieve our results. First, we describe the
MTurk Tracker platform and our extensions to it, giving an overview of how the data
was retrieved and formatted. Then, we explain our HIT attribute analysis pipeline,
which we used to retrieve attribute measurements from the data. Chapter 5 describes
our results: we elaborate on what we learned from studying the obtained data, and
evaluate experimental results for throughput prediction on two distinct datasets. We
describe an initial experiment to measure subjective complexity, and offer guidelines
to human computation task designers based on our results. Finally, in Chapter 6, we
will conclude our work by summarizing the insights we gained from the study and
identifying possible directions for future research.

4

Chapter 2

Background and Related Work

In this chapter, previous work in the area of human computation will be introduced to
provide the scientific context for our research and to clearly define important concepts
based on literature. First, we will give an introduction to the field of human computa-
tion, specifically its history and its existing applications. Then, we give an overview
of previous research into Mechanical Turk focused on both the requester and worker
sides of the crowdsourcing process. Finally, we present an overview of previous re-
search into various aspects of task design and based on this motivate our decision to
focus on a single aspect: task complexity.

2.1 Introduction to Human Computation

2.1.1 Human Computation

An overview of the history of human computation is given by Quinn and Bederson’s
2011 survey [50]. The term ’human computation’ was used as early as the 19th century,
but current research, including this thesis, is focused on the modern usage of the term.
Quinn and Bederson refer to the following definition given by Von Ahn in 2005 [59]: “
...a paradigm for utilizing human processing power to solve problems that computers
cannot yet solve”. Von Ahn, along with co-author Law [41], later defined human
computation as being computation, which is defined as “ the process of mapping of
some input representation to some output representation using an explicit, finite set
of instructions”, carried out by a human. Combining Von Ahn and Law’s definitions
with Quinn and Bederson’s own observations, we propose the following definition to
be considered for the purposes of this thesis:

Human Computation is the utilization by a computation system or process of human
processing power to perform its function.

We also use Law and Von Ahn’s definition of human computation systems: “intel-
ligent systems that organize humans to carry out the process of computation - whether
it be performing the basic operations (or units of computation), taking charge of the
control process itself (e.g., decide what operations to execute next or when to halt the
program), or even synthesizing the program itself (e.g., by creating new operations and
specifying how they are ordered).”

5

2.1 Introduction to Human Computation Background and Related Work

2.1.2 Crowdsourcing

One of the most popular applications of the human computation paradigm has been its
use in crowdsourcing. The term crowdsourcing was coined by Jeff Howe in a 2006
Wired article [28]. He defines it on his website as follows: “Crowdsourcing is the act
of taking a job traditionally performed by a designated agent (usually an employee)
and outsourcing it to an undefined, generally large group of people in the form of an
open call.”1.

In 2012, Estellés-Arolas and González-Ladrón-de-Guevara proposed a more ex-
tensive definition based on a literature survey into the various defining characteristics
of the crowdsourcing process. Their definition was as follows:

“Crowdsourcing is a type of participative online activity in which an individual,
an institution, a non-profit organization, or company proposes to a group of individ-
uals of varying knowledge, heterogeneity, and number, via a flexible open call, the
voluntary undertaking of a task. The undertaking of the task, of variable complexity
and modularity, and in which the crowd should participate bringing their work, money,
knowledge and/or experience, always entails mutual benefit. The user will receive the
satisfaction of a given type of need, be it economic, social recognition, self-esteem, or
the development of individual skills, while the crowdsourcer will obtain and utilize to
their advantage that what the user has brought to the venture, whose form will depend
on the type of activity undertaken.” [17]

In addition to being more detailed than Howe’s original definition, this definition
also notably adds the requirement that the process take place online - crowdsourcing
is, according to the authors, necessarily a “participative distributed online process”.
While an ‘offline’ form of crowdsourcing might be conceivable, Estellés-Arolas and
González-Ladrón-de-Guevara found that none of the work they surveyed made men-
tion of this and that some authors argue that the web provides the technological basis
required to perform crowdsourcing. For these reasons, this thesis will also only con-
sider online crowdsourcing.

Hosseini et al. [27] identify four main pillars of crowdsourcing: the crowdsourcer,
the crowd, the crowdsourced task and the crowdsourcing platform. Because of the
varying perspectives on the concept of crowdsourcing from different fields, they argue
that coming up with a common definition for crowdsourcing might be unfeasible. For
our own purposes, however, we do require a single definition of crowdsourcing in
order to define the context of our research in an unambiguous way. Based on the
works cited above, we propose the following definition of crowdsourcing to be used in
the remainder of this thesis:

Crowdsourcing is the act in which the crowdsourcing party solicits, through an open
online call, the completion of a certain task from a crowd of individual workers in
exchange for a reward.

We then define a crowdsourcing system or crowdsourcing platform as an online
system that facilitates the operation and administration of the crowdsourcing process.

1http://crowdsourcing.typepad.com/

6

Background and Related Work 2.2 Crowdsourcing on Amazon Mechanical Turk

2.1.3 Integrating Crowdsourcing and Human Computation

Crowdsourcing platforms are an example of the human computation paradigm being
used to facilitate the crowdsourcing process. These platforms are computation systems
that allow crowdsourcers to place an open call asking a crowd of workers to complete
certain tasks.

As Quinn and Bederson put it, “The intersection of crowdsourcing with human
computation ... represents applications that could reasonably be considered as re-
placements for either traditional human roles or computer roles.” In his Master’s
thesis, Debarshi Basak gives an overview of the different types of human computation
systems available online [3]. He cites Doan et al. [13], who give an overview of a
large amount of modern online crowdsourcing systems, making a distinction between
crowdsourcing systems that require explicit or implicit worker participation. Examples
of systems with implicit participation are games with a purpose like the ESP game [60]
or reCAPTCHA [61], both introduced by Von Ahn, and examples of systems with ex-
plicit worker participation are Amazon Mechanical Turk and Crowdflower2. Basak
also notes the distinction made by Hirth et al. [26] regarding platforms specialized in
a certain kind of task, like DuoLingo3, and non-specialized generalistic platforms like
MTurk. In addition to the platforms mentioned above, there are a great deal of other
interesting applications of crowdsourcing that are beyond the scope of this thesis, such
as citizen science [47], medical applications [15], and many more. For further reading,
we recommend Yuen et al. [65] and Kittur et al. [39] and their cited works.

2.2 Crowdsourcing on Amazon Mechanical Turk

This thesis focuses on the most popular crowdsourcing platform, Amazon Mechanical
Turk or MTurk4. On this platform, requesters post tasks they want to be completed as
HITs (Human Intelligence Tasks), to be performed by workers, also known as turkers.
MTurk is the largest crowdsourcing platform, and has grown significantly over the past
few years. The reason this work focuses on MTurk is that it is an ideal candidate for
research into human computation - we identify three main advantages of studying this
platform below.

The first advantage of using MTurk is the size of the platform. In the period be-
tween January 2009 and April 2010, Ipeirotis [30] tracked a total of slightly over 6.7
million HITs (Human Intelligence Tasks), with a total reward value of $529,259. A
more recent study by Difallah et al [11] using the same tool as the earlier work by
Ipeirotis, MTurk Tracker, to track the MTurk market from 2009 to 2014, measured an
average of 300K HITs available on the market at any given time, with an average of
10K new HITs arriving every hour. In addition, the available reward for work as well
as the amount of active requesters at any time had also increased steadily since 2009.
Such a large platform means there are large amounts of data to be collected for many
different types of research.

2http://www.crowdflower.com/
3https://www.duolingo.com/
4https://www.mturk.com/

7

2.2 Crowdsourcing on Amazon Mechanical Turk Background and Related Work

The second advantage of MTurk is the diversity of the platform, both in terms of
the work and the workers. Using a classification of crowd work into six different task
types by Gadiraju et al. [20], Difallah et al. showed that from 2009 until 2014, all of
these types were represented, though naturally, not all were equally popular. There
have been several publications researching the demographics of workers on MTurk,
such as those by Ipeirotis [31] and Ross et al. [55], which show that on average, turk-
ers are made up almost equally of men and women, turkers are of varying ages, and
turkers are diverse in socio-economic factors like education, income and marital status
as well as geographical origin, though a majority of workers are either from the United
States or India.

The third main advantage of MTurk is that it has already been widely studied by
researchers from many disciplines. Apart from being a popular research object for
human computation researchers, MTurk has both been used as a tool and an object
of research in fields such as human-computer interaction [38], social sciences [5], and
many more. This means there is a wide body of work based on MTurk that can be used
to inspire as well as support new research.

On MTurk, requesters offer work to be completed by workers in the form of
HITs (Human Intelligence Tasks). We will consider each of these three dimensions of
the platform in turn.

2.2.1 MTurk Requesters

To construct HITs, requesters can use templates provided by the MTurk platform on
the website or through an assortment of tools provided by Amazon5. Alternatively,
requesters can host external content as part of their HIT, allowing them to outsource
HITs to websites like SurveyMonkey6 or host their HIT on a web page of their own.
This means that requesters using MTurk can ask workers to perform virtually any
task that can be completed on a computer. Additionally, using MTurk is cheap, the
worker population is very diverse and using MTurk to obtain data is not necessarily
less reliable than using other, traditional methods [5] [49] [9].

The above does not mean that using MTurk is without its challenges, of course.
These include the following:

• Administration: MTurk offers requesters a minimal crowdsourcing infrastruc-
ture, but the details of implementation are (understandably) left up to the re-
quester. Due to this level of freedom, the requester has to consider many com-
plicated issues, such as how much to pay workers, when to decide not to pay
workers, or how to design a task interface, should the basic templates offered by
MTurk not be adequate for the task the requester wishes to crowdsource. While
there are requester communities online offering some idea on how to organize
these things, there are few ‘golden rules’ when it comes to issues like wage set-
ting or task design, leaving requesters having to find out a lot for themselves - a
costly and time-consuming process.

5https://requester.mturk.com/developer
6https://www.surveymonkey.com/

8

Background and Related Work 2.2 Crowdsourcing on Amazon Mechanical Turk

• Worker Quality: Because verifying the answers provided by workers is dif-
ficult, some workers try to take advantage of this by knowingly providing in-
correct or incomplete answers to earn money more quickly. These workers are
known as spammers. The challenge of quality control in crowdsourcing systems
- trying to weed out spammers and low-quality workers while trying to obtain
high-quality results at an acceptable cost - has been a popular topic of research
over the past years, as described by, among others, Ipeirotis et al. [33], Difallah
et al. [12] and Allahbakhsh et al [1].

• Worker Motivation & Retention: At one end of the worker spectrum, there
are low-quality workers and spammers. At the other end of the spectrum, there
are workers who consistently provide high-quality results. Ideally, requesters
would like their worker population to consist of as many workers that are known
to perform well as possible. This means that workers have to be attracted to
a task first, motivated to do as much work as possible, and again motivated to
come back at a later time when the requester has more work available. In the next
subsection, we will discuss workers’ perspectives on performing crowd work.

2.2.2 MTurk Workers

Workers can select which HITs to take on from a publicly available list on the MTurk
homepage, though some of these HITs carry certain limitations: they might be re-
stricted to workers that have a certain percentage of approved past work or workers
that live in a certain country. A screenshot of the worker interface for finding HITs
to work on is shown in Figure 2.1. In addition to this, some HITs are only intended
for workers with certain qualifications that can be given out either by individual re-
questers or by Amazon. Overall, however, a typical worker who has a good record of
their work being approved has a wide array of tasks available for them to complete at
any time, meaning requesters have to make an effort to attract as many reliable workers
as possible to their tasks.

Kauffmann, Schulze and Veit [37] provide an overview of worker motivation, di-
viding it into extrinsic and intrinsic motivation. Extrinsic motivation can be further
divided into immediate payoffs (“earn money”), delayed payoffs (“improve skills”),
and social motivation (e.g. a friend asks for your help), and intrinsic motivation can
be divided into enjoyment-based (“creative outlet/fun”) and community-based (“build
a network of friends”) motivation. While they found that the motivation for an im-
mediate payoff was the driving factor, it was certainly not the only relevant one. This
sentiment was echoed by, among others, Chandler and Kapelner, who noted a task’s
perceived meaningfulness seemed to have an effect on motivation to participate as
well as the quantity and quality of output [10]. Rogstadius et al. [53] examined vari-
ous types of extrinsic and intrinsic motivation, noting that increasing extrinsic reward
might not always have a wholly positive effect on worker motivation: it might attract
more workers, but will not significantly increase the quality of the work.

9

2.2 Crowdsourcing on Amazon Mechanical Turk Background and Related Work

Figure 2.1: AMT Worker Interface.

Apart from motivation, workers also have other concerns, several of which are out-
lined by Irani et al [34]. For example, some workers feel that their work is sometimes
rejected unfairly or arbitrarily, that they are sometimes not paid enough or on time,
and that employers and Amazon do not respond to their concerns. This encourages
Irani et al to introduce Turkopticon7, a tool that workers can use to score requesters’
reliability. The complaints registered by Irani et al. can also be found when browsing
online worker communities like Turker Nation8, MTurk Forum9 and certain subred-
dits10. Besides low pay, unfair treatment and unclear communication by requesters
consistently come forward as the most important issues affecting workers.

2.2.3 MTurk HITs

Taking into account the motivations of and challenges faced by both requesters and
workers, we turn our attention to the medium through which they interact: the HIT.

Requesters want to design HITs in a way that attracts high-quality workers and
makes it easy to detect low-quality answers and spammers. Workers want to work
on clearly defined tasks with unambiguous criteria for evaluation and payment, and
feel like they are being treated fairly. Several tools exist to help requesters build
better HITs: these include psiTurk11, which is focused on behavioural research, and
Turkit [43]. There are also many blogs online that offer requesters advice. However,

7https://turkopticon.ucsd.edu/
8http://turkernation.com/
9http://www.mturkforum.com/

10http://www.reddit.com/r/mturk
11https://psiturk.org/

10

Background and Related Work 2.3 Aspects of Task Design

current best practices in MTurk task design seem to be based mostly on personal ex-
perience and general consensus, rather than concrete evidence of efficacy.

We believe that proper task design can have a massive impact on the crowdsourcing
process. In the next section, we will elaborate on several aspects of task design that
have already been subject to research, and identify a gap in the research so far linking
back to our original research questions.

2.3 Aspects of Task Design

In this section, we will summarize briefly previous work into different aspects of task
design. First, we will describe several previously researched task features, after which
we summarize the works we investigated. Then, we will identify research opportuni-
ties based on this previous work.

2.3.1 Common Features

Since there are many different variables involved in task design that might influence
the outcome of an experiment, a common approach is to keep a large amount of these
variables constant and compare situations in which only a single or a few variables
are different. For the purposes of categorizing existing work, we will consider the
following dimensions:

• Single-Session or Multi-Session Whether or not the experiment is carried out in
a single session (workers participate once) or multiple sessions (workers partic-
ipate, then return at a later time to do more work, measuring worker retention).

• Task Type Variation - Whether or not the type of task workers performed was
varied in the experiments. For example: workers are put in groups A and B:
those in group A perform an annotation task, and workers in group B review
work by other workers in addition to performing the annotation task themselves.
We do not consider things like including demographical surveys or control ques-
tions to be variation in this sense.

• Task Platform Variation - Whether or not different workers performed their
tasks in different contexts. We define a crowdsourcing platform as the medium
for a crowdsourcing transaction such as a crowdsourcing platform like Mechan-
ical Turk, a citizen science website or a mobile app.

• Task Difficulty Variation - Whether or not the cognitive difficulty of the task
was varied among groups of workers. This does not include similar cases, such
as one in which all workers perform the same task, which increases in difficulty
as time passes.

• Motivational Strategies - Whether or not non-financial motivational strategies
were used to engage workers. This includes strategies like gamification of the
task or feedback on quality of work or rank.

• Pay Amount Variation - Whether or not the monetary reward for the experi-
ment was varied among groups of workers.

11

2.3 Aspects of Task Design Background and Related Work

• Pay Structure Variation - Whether or not the structure of pay was varied among
groups of workers, for example paying some workers for time spent working
while paying other workers for every task they complete.

• Other Incentives - Whether or not non-financial incentives were used as a form
of payment. Examples could include access to a certain service or virtual items
in a video game. This does not include experiments in which workers were
volunteers and thus did not directly receive any tangible reward.

Table 2.1 shows an overview of the work discussed in the next subsection, categorized
according to these features.

2.3.2 Previous Work

Table 2.1: Overview of Task Design-Related Research

Authors Year Single or
Multi-
Session

Task
Type

Task
Plat-
form

Task
Diffi-
culty

Motivational
Strategies

Pay
Amount

Pay
Struc-
ture

Other
Incen-
tives

Mason, Watts 2010 S x x x
Barankay 2011 M x
Rogstadius et al. 2011 S x x
Shaw et al. 2011 S x x x
Eickhoff et al. 2012 S x x (x)
Dow et al. 2012 S x x
Lee et al. 2013 M x
Goncalves et al. 2013 S x x x x
Huang, Fu 2013 S x
Chandler, Kapelner 2013 S x
Mao et al. 2013 S x x
Yu et al. 2014 M x x x x
Tomasic et al. 2014 M x x
Ipeirotis, Gabrilovich 2014 S x x x x

Mason and Watts [45] tested the effect of financial incentives on worker perfor-
mance. Their first experiment asked workers to sort pictures of moving traffic in tem-
poral order, and there were 3 levels each of pay rate and task difficulty. Their second
experiment involved workers solving a word puzzle and being paid either per word or
per entire puzzle. Task difficulty and pay structure and amount were thus varied, while
task type, context and motivational strategies were constant.

Barankay [2] explored the effects of telling workers how their performance ranks
compared to others. First, he posted two tasks on MTurk, with one indicating workers
who perform it will receive feedback. Second, he invited the workers from the first
stage to perform more work, while randomly including feedback on the first task in
the invitation sent to half of the participants. Finally, he asked workers to complete a
survey. Barankay only varied motivational strategies - all of our other variables were
constant throughout his experiments.

12

Background and Related Work 2.3 Aspects of Task Design

Rogstadius et al. [53] performed a 2x3 experiment where workers were paid dif-
ferent amounts and told they were working for a non-profit or for-profit requester. The
task involved identifying malaria cells in an image. Task type, context, difficulty and
context as well as pay structure were constant, while motivational strategies and pay
amount were not.

Shaw et al. [56] tested a wide variety of social and financial strategies to improve
worker performance. The task consisted of answering several qualitative questions
about the design of a website. The researchers used different social motivational strate-
gies and varied pay structure and amount.

Eickhoff et al. [16] also compared the gamified version of a task to its standard
counterpart. Workers were asked to vote on the relevance between two topics, with
some workers performing it as a traditional HIT and others playing an annotation
game. The type of task was thus different in these two conditions, while difficulty
and context were the same. Pay structure was constant, but the amount was not: work-
ers in the gamified task were paid less, with the authors specifically noting the fun
from playing the game to be a part of the reward the workers received.

Dow et al. [14] investigated whether personalized feedback helps workers perse-
vere and produce better results. Workers were asked to write reviews for one product
each in 6 of 20 categories. Then, they received no feedback, and were then only able
to edit their review after they had filled out a self-reflection, or had received feed-
back from an external expert before being given the option to edit their reviews. The
researchers varied motivational strategies (different types of feedback) and task type
(self-evaluation), while task difficulty and context as well as pay amount and structure
were constant.

Lee et al. [42] investigated the effect of different types of performance feedback
and gamification on crowdsourced worker engagement. The context for the exper-
iment was a platform at IBM where users are asked to identify if Twitter accounts
belong to a certain IBM employee. In a 2x3 experiment, they showed workers their
own achievements, the contributions by the community, or a combination of the two,
and each of these modes was carried out in two ways: gamified and non-gamified.
This way, the researchers varied different motivational strategies while keeping all of
the other variables we are interested in constant.

Goncalves et al. [21] placed a public display at a university, offering passers-by a
task that was also performed by workers on MTurk. The workers performed the same
malaria image annotation task used by Rogstadius et al. This work varied pay amount
(volunteers versus different rates for turkers), motivational strategies (different types
of motivating text), task difficulty and task context (public display versus crowdsourc-
ing platform), while keeping pay structure and the type of task constant.

Huang and Fu [29] investigated the effects of social transparency on worker per-
formance. Workers were asked to count the amount of nouns in a list of 30 words, and
worked either individually, competitively against another worker, or as a team with

13

2.3 Aspects of Task Design Background and Related Work

another worker. In the final two cases, workers were either anonymous or their de-
mographic information was disclosed to the other worker. Keeping every other aspect
constant, Huang and Fu tested different motivational strategies based on teamwork and
social transparency.

Chandler and Kapelner [10] tested motivational factors of workers on Mechanical
Turk by constructing several testing scenarios with differing levels of expected moti-
vational value. The task was to identify objects of interest in an image: some workers
were told only this, while others were told they were labeling cancerous cells to assist
medical researchers. With this testing set-up, Chandler and Kapelner only varied mo-
tivational strategies.

Mao et al. [44] compared the performance of volunteers using the Galaxy Zoo
citizen science project to the performance of turkers rewarded according to one of
three different, non-performance contingent payment schemes. Varying the payment
schemes also included a difference in pay amount (different schemes lead to different
average hourly wages). Task type, difficulty, context (since the volunteer data was a
baseline, not part of the experiment) and motivational strategies were not varied.

Yu et al. [64] wanted to improve worker engagement and output quality. They
measured engagement by the return rate, defined as the percentage of workers that,
when invited, returned to perform more work for the researchers after having worked
for them before. The task consisted of summarizing portions of scientific papers: qual-
ity was assessed by experts at first, and also by crowd workers in later experiments.
The researchers tried out three types of motivational strategies: social, learning and
financial. In addition, they tested the effects of these strategies not only separately but
also investigated the effects of using more than one strategy at once. Task difficulty
and context were constant, but across their three experiments they varied pay amount
and structure (financial strategies), motivational strategies (social and learning), and
the type of task (part of the learning strategy involved giving feedback to others).

Tomasic et al. [57] wanted to motivate workers to contribute data to a participatory
sensing system, the system being an application that tracked arrival information for
public transit services based on location traces supplied by users. The workers were
the users of the application, and they were not paid in money: instead, some workers
were requested to supply trace data, and other workers were denied access to the app’s
functionalities if they did not contribute enough data. This experiment varied motiva-
tional strategies and provided non-financial incentives, while task type, difficulty and
context as well as payment were constant.

Finally, Ipeirotis and Gabrilovich [32] tried to compare the performance and en-
gagement of paid and volunteer workers. Their paid workers were recruited from
Mechanical Turk or oDesk, while the volunteers were recruited through online ad-
vertising. The task involved answering trivia questions about various subjects. Task
difficulty and the type of task were constant, and pay amount (volunteers versus paid),
pay structure (difference between MTurk and oDesk), motivational strategies (vari-
ous types of feedback) and task context (crowdsourcing platform versus quiz website)
were varied.

14

Background and Related Work 2.4 Measuring Task Complexity

Considering the existing work, it seems most research into task design employs
motivational strategies or variations in pay with the goal to improve worker motivation
and result quality. There is a little investigation into task difficulty, but we feel that
previous research into task difficulty misses a crucial attribute of a task: its presen-
tation. In other words, the actual code making up the web page that the task takes
place on. We identify a gap in the literature concerning the full complexity of human
intelligence tasks: in addition to aspects of task design involving reward structures and
motivational strategies, research into HIT design should incorporate a wider variety of
measures for complexity. In the next section, we give our definition of complexity and
the various dimensions we will explore in this thesis.

2.4 Measuring Task Complexity

2.4.1 Introduction

For several weeks, we observed how many tasks posted on MTurk were externally
hosted, and thus were custom-made. We identified these tasks by the presence of an
ExternalQuestion iframe on the HIT page, and observed daily percentages between
sixty-five and eighty percent of externally hosted HITs. Based on our measurements,
we estimate that on average over two thirds of HITs available at a given moment are
externally hosted. We believe this is mainly due to the presence of a small amount
of requesters who each post a large amount of tasks for which they have developed a
custom interface. These HITs typically involve tasks that are not suited to the standard
template MTurk offers, such as audio or video transcription.

Since such a large amount of HITs involves a custom-made interface, we believe
it might be worthwhile to investigate how the structure and cognitive complexity of
such HITs relates to the challenges outlined in the previous sections, such as worker
motivation and retention, gold standards for task design, spammer detection and more.
This might lead to insights about the complexity of HITs. Campbell [7] presents a
framework for objectively looking at task complexity, stating that “Any objective task
characteristic that implies an increase in information load, information diversity, or
rate of information change can be considered a contributor to complexity.” We will
apply this proposed framework to the case of HITs on MTurk, and define the concept
behind measuring the complexity of a HIT for the purposes of our research as follows:

The complexity of a HIT can be approximated by the sum of the complexity of its
objectively measurable attributes, as perceived by its workers.

HITs certainly also have subjective characteristics. For example, a worker might
find a task easier if they have prior experience with a similar task. While this is cer-
tainly worth investigating, this thesis will focus on the objectively measurable charac-
teristics of tasks. In this section, we will first look at the background of task complexity
based on Campbell’s survey [7]. Then, we will look at related work that investigated
web page complexity specifically.

15

2.4 Measuring Task Complexity Background and Related Work

2.4.2 Task Complexity

Campbell [7] describes that in the various fields that investigate task complexity, “Com-
plexity is treated as: (a) primarily a psychological experience, (b) an interaction be-
tween task and person characteristics, and (c) a function of objective task character-
istics.” Researchers typically approach task complexity from one of these three view-
points, and the task characteristics used to measure complexity differ for each view-
point. Viewing complexity as a psychological experience focuses on the perception
of the worker of the task: characteristics like the challenge, arousal and stimulation
generated by the task are considered. When complexity is viewed as a task-person
interaction, the mental state and history of the person are important: characteristics
like the experience, interest and attention span of a worker play an important role in
addition to the difficulty of the task itself. Finally, viewing complexity as a function
of objective task characteristics implies metrics that relate more directly to the way
the task is presented: how high is the information load generated? Are there multiple
paths to arrive at the desired end-state, and how clearly are they presented?

We consider the third viewpoint - task complexity as a function of objective task
characteristics - to be the most relevant to this thesis. An important notion, forwarded
by Campbell and Gingrich [8] among others, is that complex tasks place a high cog-
nitive demand on the individual: a task can have inherent characteristics that make it
more complex which do not depend on the individual completing the task. For this
reason, we are interested in relating HIT complexity in some way to concepts like
cognitive load and information load.

2.4.3 Web Page Complexity

One of the most important contributors to the perceived complexity of a task is the way
it is presented - in the case of HITs, as a web page. Therefore, existing ways to analyze
the complexity of web pages could prove useful in trying to define the complexity of a
HIT.

Several attempts have already been made to attempt to categorize web page com-
plexity. In 2001, Ivory et al. [36] analyzed a large amount of websites and defined
several page-level metrics to predict whether human judges would rate the design of
the websites as good or bad. They summarize their metrics as follows: the metrics
“concern page composition (e.g., word count, link count, graphic count), page for-
matting (e.g., emphasized text, text positioning, and text clusters), and overall page
characteristics (e.g., page size and download speed).” The metrics were chosen based
on an earlier study by the same researchers in which they were linked with effective
design and usability [35].

In 2007, Nadkarni and Gupta [48] proposed that perceived website complexity
(PWC) is central to understanding how the way information is presented to website
users affects their experience. Based on a review of web design literature, they defined
thirteen objective complexity measures in addition to a large amount of subjective met-
rics based on the user experience, measured through surveys. The objective measures
included the visual characteristics of a page (percentage of white space, amount of
graphics, color count), the information presented (word count, different types of pre-

16

Background and Related Work 2.4 Measuring Task Complexity

sentation forms), and the interrelations a page shows with other resources (links to
other pages, amount other webpages configuring a certain page).

In 2011, Butkiewicz et al. [6] identified a set of metrics to characterize website
complexity. Some metrics were based on content (number and types of objects, bytes
downloaded), while others were based on what the researchers term service complex-
ity. These metrics included the amount of servers involved in presenting a website and
the amount of content fetched from somewhere other than the origin of the page.

Apart from these efforts to define web page complexity, there has also been some
focus on the visual complexity of web pages. Harper et al. [23] specifically note it as
being an implicit measure of cognitive load, their reasoning being that “by understand-
ing a user’s visual perception of Web page complexity, we can understand the cognitive
effort required for interaction with that page.” They performed a study asking human
judges to compare web pages, and eventually sorted the pages into three categories:
simple, neutral and complex web pages. Simple pages tended to contain information
about a single subject, and feature small amounts of items like tables, boxes and lists
in their layout. As pages grew more complex, they tended to be longer and have larger
numbers of images, links, tables and menus. In short: simple pages feature less di-
verse, shorter content and simple colors, while complex pages are long, have a lot of
design elements, and have a high intensity and variety of fonts and colors.

In 2013, Harper et al. [22] constructed an algorithm that identifies areas of a web
page that are highly complex by dividing a page into ‘chunks’ of block-level elements.
The algorithm showed a correlation of 86% with user judgements of complexity. Their
results supported their findings from their previous work, in that they seemed to indi-
cate once again that more structural elements imply a more (visually) complex web
page.

Finally, also in 2013, Reinecke et al. [52] constructed models to measure perceived
visual complexity and colorfulness of websites. They argue that visual complexity is
an important factor in users’ first impressions of a website, which they evaluated by
comparing the predictions by their computational models with ratings given by online
human judges. The main metrics used fell into the categories of color (closeness to
W3C color, average pixel value in the HSV color space), space-based decomposition
(amount of text groups, text area and non-text area) and quadtree decomposition (sub-
dividing an image into blocks that are more homogeneous than the image itself, then
analyzing those blocks).

Apart from the different metrics and approaches used, the message is the same:
many objectively measurable characteristics of a task or web page can influence com-
plexity. We believe we can draw on this existing work to investigate the complexity of
HITs, which are tasks that take place on web pages. In the next chapters, we will de-
scribe the approach we used to analyse HIT complexity and the results of our research.

17

Chapter 3

Automation of Task Complexity
Analysis

In this chapter, we will describe our approach towards measuring task attributes and
task complexity. First, we describe the task attributes we selected for evaluation and
our reasoning for selecting them. Second, we describe the process by which we ob-
tained measurements for each of these attributes from the data. Finally, we describe
the design of the human intelligence task we used to obtain complexity judgements
from human workers.

3.1 Attribute Selection

3.1.1 Introduction

Using data gathered from tracking the MTurk HIT market, we can select a number
of task attributes that we consider to have potential in proving a link between task
attributes and task complexity. These attributes can include ones that are measured by
the tracker and can be used in the evaluation without further effort, and they can also
include attributes extracted from market data after it is stored, or more specifically from
the HTML content of HITs. In the following subsection, we outline the set of attributes
we chose to evaluate based on logic, experience and literature. We considered which
task attributes to evaluate based on the following requirements:

1. The attribute should be unambiguous and objectively measurable. Based on
its description, it should be clear how an attribute could be extracted from MTurk
market data.

2. The attribute should be related to task complexity in some way. As defined by
Campbell, increased complexity implies “an increase in information load, in-
formation diversity, or rate of information”. This relationship should be present
for every attribute we select, based on existing literature and logic.

In general, we focused on quantitative attributes over qualitative ones. The at-
tributes we consider tend to be more concrete than abstract and are straightforward to
measure. However, we also include several semantic features that are slightly higher-
level than the others, such as term frequency of unigrams in HIT content and text topic

19

3.1 Attribute Selection Automation of Task Complexity Analysis

features. We also considered including more abstract attributes such as page navigabil-
ity or task difficulty, but due to the time required to correctly implement measurement
of such attributes we opted to focus on the set of attributes presented in this section. In
Chapter 6, we will reflect on our selection and identify possibilities for future research
in task attribute.

The attributes we consider are divided into three categories. The first category,
Metadata, consists of attributes that are unrelated to the content of a HIT group, but
are instead made up of task metadata like the required qualifications or the HIT de-
scription. These are the attributes that are shown in the MTurk interface to workers
before they start work on a HIT. We believe that attributes like the reward or allotted
time to complete a task might be able to provide an indication of the level of complex-
ity of that task. In this category, we consider attributes that were also used by Difallah
et al [11].

The second category, Content Attributes, contains attributes that relate to the
HTML content of the HIT group, or in other words, the actual body of the task. We
believe that attributes like the amount of external content used on a HTML page might
serve as indicators for page complexity, and that we can use traditional measures of
website complexity in measuring HIT complexity, as HITs are presented to and inter-
acted with by the user in the same way as a commercial website. In this category, we
consider website complexity measures suggested by Ivory et al [36] and Butkiewicz et
al [6]. Additionally, work in the domain of community question-answering systems,
by among others Ravi et al. [51] and Yang et al. [62], suggests that task topic could
be indicative of the quality of task specification. How well a task is formulated might
influence workers’ perception of a task, and therefore could be indicative of its com-
plexity. For these reasons, we also consider a small set of semantic features, focusing
on the use of keywords, words in task content, and the topic(s) of the text.

The third category, Visual Attributes, focuses on attributes that relate to the visual
complexity of a page. We believe that measures like the amount of visual areas or the
colorfulness of a page might help indicate when a HIT is complex because of its visual
layout. In this category, we consider visual complexity measures used by Reinecke et
al [52].

For each selected attribute, we give its name, describe it, explain our rationale for
selecting this attribute, and formulate a hypothesis about the nature of the attribute in
relation to our research. Table 3.1 provides an overview of the attributes and for each
one lists a short description and the related work which inspired us to incorporate it
in our own research. Metadata attributes were collected directly from the MTurk in-
terface, Content attributes were extracted from web pages, and Visual attributes were
extracted by using code provided by Reinecke et al. Examples of a quadtree-based and
space-based decomposition of a single HIT are shown in Figure 3.1. These decompo-
sitions were used in measuring attributes A22, A23 and A24.

20

Automation of Task Complexity Analysis 3.1 Attribute Selection

Attribute Description Related Work
A1: Reward The reward for completing the task in cents. Difallah, Fari-

dani
A2: Time Allotted The time allotted to a worker in which they should

complete a task, in seconds.
Difallah

A3: Location Whether or not workers are required to have a cer-
tain geographical location.

Difallah

A4: Master Whether or not workers are required to have a Mas-
ter qualification.

Difallah

A5: Total Approved The minimum amount of approved tasks workers
are required to have.

Difallah

A6: Approval Rate The minimal percentage of approved tasks workers
are required to have.

Difallah

A7: Title Length Length of the HIT title. Difallah
A8: Description Length Length of the description string in the HIT preview

box.
Difallah, Camp-
bell

A9: Amount of Keywords Amount of keyword strings in the HIT preview box. Difallah
A10: HITs Available Amount of HITs available for this HIT group Difallah
A11: Link Count The amount of links in the body text. Ivory
A12: Word Count The amount of words in the body text. Ivory
A13: Image Count The amount of images on the page. Ivory,

Butkiewicz
A14: Body Text Percentage Percentage of words that are body rather than dis-

play text (i.e., headers).
Ivory

A15: Emphasized Body Text Per-
centage

Percentage of words that are emphasized rather than
plain text.

Ivory

A16: Amount of Stylesheet Files The amount of stylesheet files included in the page. Butkiewicz
A17: Amount of Script Files The amount of script files included in <script> tags

on the page.
Butkiewicz

A18: Amount of Input Elements The amount of input elements (e.g. text fields, but-
tons..) on the page.

Campbell

A19: Keywords Binary features of keywords provided by the re-
quester.

Yang, Ravi

A20: Unigrams TF-IDF features of single words used in task title
and content.

Yang, Ravi

A21: Topics LDA topic model features of the unigrams found in
task title and content.

Yang, Ravi

A22: Amount of Text Groups Amount of horizontal groups of text characters.
Each group may represent a word, a sentence, or
a paragraph.

Reinecke

A23: Amount of Image Areas Amount of image areas. Several adjacent images
are counted as one image area.

Reinecke

A24: Amount of Visual Areas
(leaves in quadtree)

The amount of visual areas obtained by recursively
dividing a task presentation into regions until a re-
gion has no visual space.

Reinecke, Zheng

A25: W3C Colors Percentage of pixels that are close to one of the 16
colors defined by the W3C.

Reinecke,
Rosenholtz

A26-H: Hue, A26-S: Saturation,
A26-V: Value

The average HSV value of pixels. Reinecke

A27: Yendrikhovskij Colorfulness Colorfulness as defined by Yendrikhovskij. Yendrikhovskij,
Reinecke

A28: Hasler Colorfulness Colorfulness as defined by Hasler. Hasler, Reinecke

Table 3.1: Overview of Task Attributes

21

3.1 Attribute Selection Automation of Task Complexity Analysis

3.1.2 Description of Measured Task Attributes

Metadata Attributes

Attribute A1: Reward

Description: The reward for completing the task in cents.

Rationale: Faradani et al [18] note that requesters commonly set the rewards
for their HITs based on rules of thumb. One of the most prominent of these
rules of thumb is selecting an hourly wage that is considered fair, estimating
the required time to complete a task, and setting the reward based on that. This
rule can be found on many blog posts online 1. Faradani et al also note a trade-
off between reward and completion time. Additionally, Difallah et al. used
the reward attribute in their predictions of throughput. We believe that more
complex tasks can often be expected to take longer to complete than tasks with
a lower complexity, and if this is the case, their rewards should also be greater.

Hypothesis H1: The complexity of a task affects the size of its reward.

Attribute A2: Time Allotted

Description: The time allotted to a worker in which they should complete a
task, in seconds.

Rationale: This attribute was already used by Difallah et al to predict through-
put. Building on the rationale for attribute A1, a requester that expects a task to
take longer will set a higher time allotted value. Therefore, we hypothesize that
more complex tasks will have more time allotted to complete them.

Hypothesis H2: The complexity of a task affects its allotted completion time.

Attribute A3: Location

Description: Whether or not workers are required to have a certain geographical
location.

Rationale: Location requirements are typically used to restrict a HIT to US-
based workers. US-based workers are expected to perform better on tasks, even
those that do not rely mainly on command of the English language. This attribute
was also used by Difallah et al.

Hypothesis H3: The complexity of a task affects whether or not the task requires
a certain worker location.

1http://neerajkumar.org/writings/mturk/, Question 3

22

Automation of Task Complexity Analysis 3.1 Attribute Selection

Attribute A4: Master

Description: Whether or not workers are required to have a Master qualifica-
tion.

Rationale: Master workers are given this qualification by Amazon when they
consistently perform well in certain task categories. Requesters can then restrict
their tasks to master workers (at a premium), from whom they can expect higher
quality results. This is possibly because they feel the task would be too complex
for non-master workers. This attribute was also considered by Difallah et al.

Hypothesis H4: The complexity of a task affects whether or not the task requires
a certain worker location.

Attribute A5: Total Approved

Description: The minimum amount of approved tasks workers are required to
have.

Rationale: Similar to attribute A4 and used by Difallah et al., requesters expect
workers with a higher amount of approved tasks to have more experience and
thus perform better on HITs.

Hypothesis H5: The complexity of a task affects the minimum amount of ap-
proved tasks workers are required to have.

Attribute A6: Approval Rate

Description: The minimal percentage of approved tasks workers are required
to have.

Rationale: Similar to A4 and A5 and also considered by Difallah et al., if a
worker has a high percentage of approved tasks, they are expected to deliver
high quality results.

Hypothesis H6: The complexity of a task affects the minimum percentage of
approved tasks workers are required to have.

Attribute A7: Title Length

Description: The length of the title string shown in the HIT preview box.

Rationale: Also used by Difallah et al, the title is a short summary of the task. A
more complex task might be more difficult for requesters to summarize, which
would lead to longer titles for more complex tasks.

Hypothesis H7: The complexity of a task affects the length of its title.

23

3.1 Attribute Selection Automation of Task Complexity Analysis

Attribute A8: Description Length

Description: The length of the description string in the HIT preview box.

Rationale: Considering Campbell’s definition, description length is one of the
first task attributes the worker sees that could contribute to complexity. An
overly long description might be indicative of a task that is perceived as com-
plex, and also in itself contribute to the perception of a task as complex.

Hypothesis H8: The complexity of a task affects its description length.

Attribute A9: Amount of Keywords

Description: The amount of keyword strings in the HIT preview box.

Rationale: Similar to the reasoning behind including attributes A7 and A8, an
increased amount of keywords might imply a larger cognitive load associated
with a task: as a task gets more complex, requesters would need to include more
keywords to summarize its content.

Hypothesis H9: The complexity of a task affects the amount of keywords in its
preview.

Attribute A10: HITs Available

Description: Amount of HITs available for this HIT group.

Rationale: When Difallah et al. attempted to predict HIT batch throughput,
they identified the amount of available HITs as having a significant impact on
the prediction score. We include it to see if our data supports their findings. If
it is the case that tasks with larger batches are more attractive to workers, re-
questers could consider offering larger batches of complex tasks or mixing tasks
of various complexity into a single batch to achieve a faster average completion
time.

Hypothesis H10: The amount of HITs available in a batch correlates with the
throughput of that batch.

24

Automation of Task Complexity Analysis 3.1 Attribute Selection

Content Attributes

Attribute A11: Link Count

Description: The amount of links in the body text.

Rationale: This metric was proposed by Ivory et al in their study on empirical
web page design metrics. A higher amount of links to external pages implies that
the information the worker needs might not all be on the current page, meaning
they will have to navigate to other pages and put in more effort to complete their
task. Even if the links are not directly relevant to the task (such as a ’contact us’
button), they increase the cognitive load by adding yet another element to the
page.

Hypothesis H11: The complexity of a task affects the amount of links used in its
content.

Attribute A12: Word Count

Description: The word count of the text of the page.

Rationale: This metric was proposed by Ivory et al in their study on empirical
web page design metrics. A higher word count implies a greater information
load, meaning the worker has to put in more effort to understand and complete
their task.

Hypothesis H12: The complexity of a task affects the word count in its content.

Attribute A13: Amount of Images

Description: The amount of images on the page.

Rationale: Following Campbell’s framework, including more images on a page
should contribute to the cognitive complexity experienced by the user. This
metric was also proposed by Ivory et al in their study on empirical web page
design metrics, and Butkiewicz et al. argue the amount of objects on a page
and their MIME types can contribute to complexity. We expect that images
included in HIT content will in nearly all cases be relevant to the task at hand. In
addition, reliably distinguishing non-relevant from relevant images would most
likely require going through our entire dataset manually. Thus, for both logical
and practical reasons, we consider the amount of images as a whole and do not
distinguish between different kinds of images in this case.

Hypothesis H13: The complexity of a task affects the amount of images used in
its content.

25

3.1 Attribute Selection Automation of Task Complexity Analysis

Attribute A14: Body Text Percentage

Description: Percentage of words in text that are body rather than display text
(i.e., headers).

Rationale: This metric was proposed by Ivory et al in their study on empirical
web page design metrics. A higher percentage of body text indicates relatively
less guidance on the page for the worker to make sense of the task and relatively
more text on the page to read, possibly leading to higher complexity.

Hypothesis H14: The complexity of a task affects the percentage of body text
relative to display text in its content.

Attribute A15: Emphasized Body Text Percentage

Description: Percentage of words in text that are emphasized.

Rationale: This metric was proposed by Ivory et al in their study on empiri-
cal web page design metrics. Similarly to A13, a higher emphasized body text
percentage implies the page designer has put in effort to manage the user expe-
rience. Though a very large body text percentage is most likely indicative of bad
design (such as an entire page of text being bolded), we expect that typically
emphasized body text should have a slightly diminishing effect on complexity.

Hypothesis H15: The complexity of a task affects the percentage of emphasized
body text in its content.

Attribute A16: Amount of Stylesheet Files

Description: The amount of stylesheet files included in the page.

Rationale: A stylesheet is used to improve the presentation of a website. On
the one hand, when done properly this might reduce the cognitive complexity by
streamlining the user experience. On the other hand, it might increase cognitive
load, as argued by Butkiewicz et al.

Hypothesis H16: The HTML content of tasks that are more complex will contain
more stylesheet files.

Attribute A17: Amount of Script Files

Description: The amount of script files included in <script> tags on the page.

Rationale: Scripts are used to provide enhanced functionality. In Butkiewicz
et al’s research, over half of the pages they investigated fetched more than six
JavaScript files. Following their reasoning, increasing the amount of JavaScript
linked to by a page might be an indicator for increased complexity.

26

Automation of Task Complexity Analysis 3.1 Attribute Selection

Hypothesis H17: The complexity of a task affects the amount of script files used
in its content.

Attribute A18: Amount of Input Elements.

Description: Amount of HTML form input elements on the page, including
<input>, <textarea>, <select> and <button>.

Rationale: Following Campbell’s framework, including more input elements
on a page should contribute to the cognitive complexity experienced by the user.

Hypothesis H18: The complexity of a task affects the amount of input elements
used in its content.

Attribute A19: Keywords

Description: Binary features of keywords provided by the requester.

Rationale: We might be able to see a difference in task complexity between
tasks based on semantic features. One way of trying to find a difference in task
types could be through task keywords, which in most cases should be indicative
of a task’s content. For example, we might be able to find that complex tasks
tend to feature certain keywords more or less often.

Hypothesis H19: The complexity of a task affects the keywords used in its de-
scription.

Attribute A20: Unigrams

Description: TF-IDF features of single words used in task title and content

Rationale: Ravi et al. [51] used unigram features to predict the quality of a
question. Similarly, we might be able to use unigrams to predict the complexity
of HITs. We can use tf-idf (term frequency - inverse document frequency) to
identify the ‘most important’ unigrams in specific HITs, using our entire set of
HITs as a corpus on which to base the measurement. While specific unigram
frequency may not be as indicative of the semantics of a task as a single key-
word (because keywords are fewer in number and more specific), we consider
all unigrams of a task as a whole. By doing this, we might find that specific
terms are linked to task throughput.

Hypothesis H20: The complexity of a task affects the frequency of unigrams
used in its title and content.

27

3.1 Attribute Selection Automation of Task Complexity Analysis

Attribute A21: Topics

Description: LDA topic model features of the unigrams found in task title and
content.

Rationale: Ravi et al. not only used unigrams, but also LDA [4] topic models
to predict question quality. In a sense, topics are a more compressed version
of unigrams, because it extracts the most important concepts from the unigrams
relative to the entire corpus.

Hypothesis H21: The complexity of a task affects the topic weight of the topics
found in its title and content.

Visual Attributes

Attribute A22: Amount of Text Groups

Description: Amount of horizontal groups of text characters. Each group may
represent a word, a sentence, or a paragraph.

Rationale: A larger amount of text groups implies that the visual complexity of
a page will be higher, as users will have to divide their attention among the text
groups.

Hypothesis H22: The complexity of a task affects the amount of text groups in
its user interface.

Attribute A23: Amount of Image Areas

Description: Amount of image areas on the page. Several adjacent images are
counted as one image area.

Rationale: Similar to the rationale for attribute A19, a higher amount of image
areas should increase cognitive load on the user, and thus increase the task’s
visual complexity.

Hypothesis H23: The complexity of a task affects the amount of image areas in
its user interface.

Attribute A24: Amount of Visual Areas (leaves in quadtree)

Description: The amount of visual areas obtained by recursively dividing a task
presentation into regions until a region has no visual space.

28

Automation of Task Complexity Analysis 3.1 Attribute Selection

Figure 3.1: Visual Decompositions of a HIT.
Above: quadtree-based decomposition. Below: space-based decomposition.

Rationale: Reinecke et al. refer to work by Zheng et al. [66] that indicated
that the higher the amount of leaves in the quadtree (which we refer to as visual
areas) was, the more likely websites were to be judged by users as complicated
and unprofessional - or in other words, more visually complex. Reinecke et al.’s
own observations did not confirm this connection to be as strong as in the work
by Zheng et al., but they do state it partially contributes to visual complexity.

Hypothesis H24: The complexity of a task affects the amount of visual areas in
its user interface.

Attribute A25: W3C Colors

Description: Percentage of pixels that are close to one of the 16 colors defined
by the W3C.

Rationale: Reinecke et al consider various metrics of colorfulness, this being
one of them. They refer to work by Rosenholtz et al. [54], who define visual
clutter as being an important contributing factor to visual complexity, and con-
sider that metrics such as a largely colorful interface or a high color variability
can increase the perceived sense of clutter.

29

3.1 Attribute Selection Automation of Task Complexity Analysis

Hypothesis H25: The complexity of a task affects the percentage of pixels in its
user interface that is close to a W3C color.

Attribute A26-H, A26-S, A26-V: Hue, Saturation, Value

Description: The average HSV value of pixels, each considered separately.

Rationale: As stated by Reinecke et al., color can cause a sense of clutter but
also influence features such as the perceived trustworthiness of a page. For this
reason, we consider that the average values of the different color dimensions of
a page - hue, saturation and value - might be indicative of visual complexity.

Hypothesis H26: The complexity of a task affects the average hue, saturation
and value of the colors used in its user interface.

Attribute A27: Yendrikhovskij Colorfulness

Description: Colorfulness as defined by Yendrikhovskij [63]: ‘The sum of the
average saturation value and its standard deviation where the saturation is com-
puted as chroma divided by lightness in the CIELab color space’.

Rationale: Though Reinecke et al overestimated the effect of bright colors on
perceived colorfulness visual complexity in their model, their analysis shows a
slightly positive correlation between Yendrikhovskij’s colorfulness metric and
visual complexity.

Hypothesis H27: The complexity of a task affects the Yendrikhovskij colorful-
ness of its user interface.

Attribute A28: Hasler Colorfulness

Description: Colorfulness as defined by Hasler [25]: ‘The weighted sum of the
trigonometric length of the standard deviation in ab space and the distance of
the center of gravity in ab space to the neutral axis’.

Rationale: Similar to the rationale for attribute A24, we include this metric as
a different method of measuring colorfulness.

Hypothesis H28: The complexity of a task affects the Hasler colorfulness of its
user interface.

30

Automation of Task Complexity Analysis 3.2 Attribute Evaluation

3.2 Attribute Evaluation

Having defined a set of task attributes to investigate, we will require a method of evalu-
ating their relationship to task complexity. We recall our definition of task complexity
from Chapter 2:
The complexity of a HIT can be approximated by the sum of the complexity of its
objectively measurable attributes, as perceived by its workers.

To measure complexity, we will need two things: a complexity measure to ap-
proximate complexity, and the technical means to collect and evaluate data on its
objectively measurable attributes.

3.2.1 Approximating Complexity

Deciding on a complexity measure is not straightforward. Is it something that can be
objectively measured, or is it a purely subjective concept? Again, we follow Camp-
bell’s [7] framework and attempt to find a measure of complexity that is a function of
objective task characteristics. With this in mind, we consider two examples of previous
research linking the complexity of human intelligence tasks with their completion time.

In 2011, Rogstadius et al. [53] performed an assessment of different types of moti-
vation and how these affected workers. They asked MTurk workers to identify malaria
parasites and count regular blood cells in an image. They defined complexity as being
a function of the amounts of blood cells and parasites: the more there were of each,
the higher the complexity of the task. Comparing different motivational factors, such
as the task being presented as coming from a for-profit or non-profit organization and
varying the pay amount, they found that for all of these conditions the amount of time
spent to complete a task increased and the accuracy of workers’ answers decreased as
the complexity of the task increased. However, for the highest complexity levels, the
amount of time spent on the task decreased sharply, showing a demotivational effect
when a task is unrealistically difficult.

In 2013, Goncalves et al. [21] performed a similar experiment, this time using
public displays as the task presentation medium. Passersby had the option to interact
with the display - if they did, it would present them with the blood cell categorization
task. Workers whose instructions were not constructed to improve motivation spent
less time on tasks than workers whose instructions did follow a motivational approach,
but across all motivational conditions the trend of higher task complexity correlating
with higher completion time and lower accuracy was visible.

In 2015, Difallah et al. [11] performed an experiment using several months of
market data from Mechanical Turk. Based on a set of metadata attributes and market
information, they aimed to predict how many HITs in a ‘batch’ (what we call a HIT-
group) would be completed in the next hour, using market data and metadata attributes
from the batch itself. They showed that several attributes (such as HITs available)
could be used to effectively predict throughput for larger batches.

Based on this previous work, we propose task throughput be used as an approxi-
mation of a task’s complexity for the purposes of our research. Our reasons for this

31

3.2 Attribute Evaluation Automation of Task Complexity Analysis

are that it is objectively measurable and that the relation between the two has been
observed in the previous research cited above.

3.2.2 Obtaining Task Attribute Measurements

Having decided on an objectively measurable attribute that can serve as an approxi-
mation of HIT complexity, we consider the technical means required to automate the
analysis of HIT complexity. To perform this analysis, we need the following:

• A dataset of MTurk market data. Gathering HIT data from the largest online
human computation platform should offer a sufficient quantitative as well as
qualitative basis for research.

• Tools to extract attribute measurements from MTurk data. Given the raw
market data, we should be able to input it into a pipeline that turns it into a rich
dataset containing measurements for all of the attributes we identified.

We were able to work with the dataset used by Difallah et al., which was gra-
ciously provided by Gianluca Demartini. However, though the dataset offered a very
large amount of data, the content of the HITs in the dataset was not stored completely:
the HTML content was stored, but without external resources like script files or im-
ages, and with common stop words removed. This meant that, had we wanted to rein-
stantiate these tasks to measure visual attributes, they would most likely not resemble
the original HITs at all due to the missing content. Measurements for some content
attributes would also not be completely accurate due to the large amount of missing
words.

In order to research all three categories of task attributes, this meant we needed
to build our own solution to obtain HIT data from the Mechanical Turk market and
measure HIT attributes. We could then use both the dataset used by Difallah et al.,
which has the advantages of containing a large amount of data and already having
been used in a throughput prediction experiment, and our own dataset, which would
offer a more complete set of features to analyze. In the next chapter, we will outline
the architecture of the systems we constructed to gather our own dataset and measure
the attributes of the stored tasks to make them suitable for analysis.

32

Chapter 4

Technical Means of Task
Complexity Analysis

In this chapter, we discuss the technical means through which enabled us to carry
out our analysis of task complexity. First, we discuss the tool we used to track HITs,
MTurk Tracker. We describe its basic functionalities and outline the additions we made
to its data retrieval process to be able to retrieve all of the data we required. After that,
we discuss the structure of the pipeline we used to build a task feature dataset.

4.1 Extended MTurk Tracker

4.1.1 Introduction

MTurk Tracker [30] is an application created by Panos Ipeirotis in order to track the
behavior of the MTurk HIT market. Its first iteration was created as a Python project
in 2009, and it was used for several years to crawl the list of “HITs Available” on
MTurk once per hour, storing data about the available HITs and their requesters. In
early 2014, the project was re-imagined as a Java-based web application using the
Google App Engine 1 architecture, which is still in use on the MTurk Tracker website
today 2. This GAE version of MTurk Tracker is the system we have extended for the
purposes of this study. In the next two subsections, we will describe the architecture
and functionalities of MTurk Tracker as well as of our own extensions, and describe
in detail the data our application collected from MTurk. For clarity, we will refer to
the version of the application created by Panos Ipeirotis as the ‘original tracker’ (OT),
and to our own version as the ‘extended tracker’ (ET). In instances where we do not
specify whether something applies to the OT or the ET, the reader should assume that
it applies to both the original and the extended tracker.

4.1.2 System Overview

MTurk Tracker consists of five main components, which we term the Frontend Views,
the API, the Tracking Servlets, Scheduling and the Datastore. We will describe each
component’s functionalities briefly.

1https://cloud.google.com/appengine/
2www.mturk-tracker.com

33

4.1 Extended MTurk Tracker Technical Means of Task Complexity Analysis

• Frontend Views: This component presents the data collected by the application
to the user. These views include items such as charts showing how many HITs
are posted and completed over time, or a list of top requesters by amount of
HITs posted and total reward offered.

• API: The API 3 allows for external access of (some of) the data stored in the
datastore, either through the browser or by sending HTTP GET requests.

• Tracking Servlets: A cluster of web servlets that are responsible from retrieving
data from MTurk and storing the information in the datastore. The tracking
servlets pull newly posted HITs, track the completion times for HITs that are
already being tracked, and compute overall market and requester statistics.

• Scheduling: Utilities for scheduling the activation of the tracking servlets. The
frequency of tracking for each of the servlets is defined in a cron file, and the
scheduling classes manage task queues for the pulling and tracking of HITs and
the computation of statistics.

• Datastore: MTurk Tracker uses the Google App Engine datastore, which is a
schemaless NoSQL datastore. The tracking servlets store the data they retrieve
in the datastore, and the datastore can then serve this data to the API and Fron-
tend Views.

Figure 4.1 presents an overview of the architecture of the original tracker.

Original Tracker

Frontend
Views

SchedulingAPI

Tracking
Servlets

Datastore

External Internal

Storage

Mechanical
Turk

Tracker Component

External Component
or Service

Relationship

Figure 4.1: Architecture of Original Tracker

3https://apis-explorer.appspot.com/apis-explorer/?base=https://crowd-power.
appspot.com/_ah/api#p/mturk/v1/

34

Technical Means of Task Complexity Analysis 4.1 Extended MTurk Tracker

The original implementation already provides several key functionalities needed
to obtain data we could use for our own research. However, there were a few key
concerns that motivated us to extend the tracker rather than use the original.

• Due to the way the original tracker implemented API requests, it was not possi-
ble to retrieve the full contents of the datastore using its API. This was a factor in
our decision to collect our own dataset, rather than retrieve data from the original
tracker.

• While the original tracker stored HTML content of HITs, it stored the content
with commonly occurring words removed and without storing additional con-
tent like CSS, JavaScript and image files. Since we were interested in restoring
previously posted HITs as accurately as possible, we would need to add this
functionality ourselves.

Figure 4.2 shows the additions we made to the system. The code of the original tracker
was changed to allow it to send HTTP requests to our external server, reflected in the
Request Tools component and the changes in the Tracking Servlets component, de-
noted by an asterisk. The Tracking Servlets component was also modified to call
this component when new HITs are inserted into the datastore. The content extraction
server hosted separately from the tracker, which we shall call the content retriever, fea-
tures the Servlets and Extractor components. The Servlets component accepts HTTP
POST requests, and the Extractor component allows for the automated extraction and
storage of content from HTML pages. The external libraries that were used to develop
the additional functionality include Apache Tomcat 7 for web app architecture, JSoup
for HTML document processing, and several Apache Commons libraries for various
purposes including file operations and text validation. For project management, qual-
ity assurance and testing, the following tools were used: Apache Maven, Cobertura,
PMD, FindBugs, CheckStyle, JUnit, Mockito and PowerMock.

The main additions to the tracking process by the extended tracker can be summarized
as follows:

1. After the tracker stores a new HIT group in the datastore, the tracker sends the
groupID and original URL of the HIT group to the content retriever via a HTTP
POST request.

2. The content retriever retrieves the web page found at the URL and stores it
locally, renaming it to {groupID}.htm(l).

3. The content retriever identifies any CSS, JavaScript and images included in the
page.

4. The content retriever downloads the identified content and stores it in the same
folder as the retrieved page.

5. The content retriever changes all links to external content in the retrieved page
so that they point to the content stored in its own folder.

35

4.1 Extended MTurk Tracker Technical Means of Task Complexity Analysis

Extended Tracker

Frontend
Views

Scheduling

API

Tracking
Servlets*

Datastore

External Internal

Storage

Mechanical
Turk

Tracker Component

External Component
or Service

Relationship

Request
Tools Servlets Extractor

Content Retriever

Figure 4.2: Architecture of Extended Tracker

6. The restored HIT can now be viewed directly, identifiable by its groupID.

Because of these additions, it is possible to view tracked HITs in a restored state
that includes their original style, script and image files. The process is not perfect:
retrieving external resources might fail, or the page might still not render correctly due
to formatting issues in the substitution. However, we did not encounter any serious
issues in working with restored HITs and are of the opinion that HITs restored using
the extended tracker will always provide a representation of the original HIT that is at
least as accurate as a representation constructed using data from the original tracker,
and in most cases will outperform the latter when evaluating how similar the restored
HIT is to the original HIT.

Figures 4.4 and 4.3 show comparisons between HITs as stored by the original
tracker and as restored by our extended tracker. In Figure 4.4, the differences are
relatively subtle. While the original tracker provides a reasonable restored HIT, the
extended tracker restores the interface more accurately, showing more of the originally
intended functionality and layout. In Figure 4.3, the difference is much more notice-
able: the original tracker did not preserve the intended layout or functionality at all,
while the extended tracker provides a very accurate depiction of the original HIT. In
addition to the immediately visible improvements to the interface, our tracker also has
the advantage of storing images and script files locally: this means it will not be a
problem if these files are no longer available from the original source when a HIT is
restored.

36

Technical Means of Task Complexity Analysis 4.1 Extended MTurk Tracker

Figure 4.3: Restored HIT: Image Annotation.
Original tracker version above, extended tracker version below.

37

4.1 Extended MTurk Tracker Technical Means of Task Complexity Analysis

Figure 4.4: Restored HIT: Transcription Checking.
Original tracker version on the left, extended tracker version on the right.

4.1.3 Stored Data

Table 4.1 shows the structure of the data that is stored as implemented in the original
tracker. The datastore is not relational, but the ID/Name field serves to identify entries
in the HITgroup, HITinstance and HITcontent tables as belonging to a single HIT
group, the requesterID field in HITgroup corresponds to the ID/Name in HITrequester,
and the requesterName field links HITrequester and TopRequester. Initially, there were
two fields that did not function as intended in the original tracker: both projects in
TopRequester and qualifications in HITgroup did not collect any data during our trial
runs. We believe this is due to projects no longer being supported by MTurk and
thus not being retrievable, and the code for retrieving and storing qualifications simply
containing bugs. Eventually, the original tracker was updated to fix the storing of
qualifications. We incorporated these changes into the extended tracker as well, and as
far as we are aware storing qualifications functioned correctly during data collection.

We tracked the MTurk market using our extended tracker from August 3rd, 2015
at 10:00AM through midday on August 11th, 2015. This means we had more than a
week of market data. Overall, we tracked and stored metadata for 5487 HITgroups.
For all but 81 of these HITgroups, we were also able to store the HTML content.
The combined storage required for the HITgroup content was 6.2GB uncompressed
and 1.7GB compressed in a ZIP archive. Our tracking frequency was the same as
Ipeirotis’ [30] - we tracked new and existing HITs every 15 minutes. We believe that
this was an adequate interval, as the data gathered by Ipeirotis suggested that HIT
groups typically have a completion time between several hours to several days.

38

Technical Means of Task Complexity Analysis 4.1 Extended MTurk Tracker

Table Name Fields Description

ArrivalCompletions - Ag-
gregates data from Mar-
ketStatistics to provide
market statistics for cer-
tain periods of time

ID/Name Identifier
from Timestamp of start of the measurement interval
to Timestamp of end of the measurement interval
hitGroupsArrived Amount of newly posted HITgroups in interval

hitGroupsAvailableUI Amount of available HITgroups in interval as visible on MTurk dash-
board

hitGroupsCompleted Amount of completed HITgroups in interval
hitsArrived Amount of newly posted HITs in interval
hitsAvailableUI Amount of available HITs in interval
hitsCompleted Amount of completed HITs in interval as visible on MTurk dashboard
length Length of the time interval in minutes
rewardsArrived Amount of rewards added in the interval in cents
rewardsCompleted Amount of rewards for completed tasks in interval in cents

MarketStatistics - Market
statistics at certain points
in time.

hitGroupsAvailable Amount of available HITgroups for given timestamp
hitsAvailable Amount of available HITs for given timestamp
timestamp Timestamp of measurement

HITgroup - Represents a
group of HITinstances.

ID/Name Identifier, matches HIT group ID on MTurk website
active Whether or not the HITgroup is currently active
description Short description of the task given by the requester
expirationDate Timestamp for the time at which the HITgroup will automatically expire

firstSeen Timestamp for the first time this HITgroup was found to be active by
the tracker

keywords Keywords for the task given by the requester

lastSeen
Timestamp for the most recent time this HITgroup was found to be ac-
tive by the tracker

qualifications Qualifications required to complete the task - in quotes, separated by
commas

requesterId Requester identifier, matches requester ID on MTurk website
reward Reward listed in the task description
timeAllotted Time allotted to complete the task in seconds
title Title of the HITgroup in task description

HITinstance - represents
a single HIT instance at
a single point in time.
HITinstances are part of
HITgroups and can con-
tain one or more HITs.

ID/Name
Identifier, made up of a unique HITinstance identifier appended to the
groupId

groupId groupID of the HITgroup this instance belongs to
hitsAvailable Amount of HITs in this instance available for completion

hitsDiff
Difference in hitsAvailable since last time this was tracked. Positive
if this is the first measurement of this HITinstance, zero or negative
otherwise

rewardDiff
Difference in rewards available since last time this was tracked. Positive
if this is the first measurement of this HITinstance, zero or negative
otherwise

rewardsAvailable Remaining reward available for completing HITs in this batch
timestamp Timestamp for this measurement

HITcontent - represents
the HTML content of a
HIT

ID/Name Identifier, matches HIT group ID on MTurk website

content HTML content of the HITgroup, or null if HIT is not externally hosted
or content could not be retrieved.

url
Original URL at which the HITcontent was hosted. Null if HIT was not
externally hosted.

HITrequester - repre-
sents a party offering
HITs

ID/Name Requester identifier, matches requester ID on MTurk website
lastActivity Timestamp for last detected activity
requesterName Requester name as displayed to workers

TopRequester - measures
requester statistics for
each day

ID/Name
Identifier, made up of requesterId appended to the Unix epoch times-
tamp for the relevant day

hits HITs posted by the requester that day
projects Unused field (always 0)
requesterId Requester identifier, matches requester ID on MTurk website
requesterName Requester name as displayed to workers
reward Total reward provided by requester that day
timestamp Timestamp for the date

Table 4.1: Tables and Fields in MTurk Tracker Datastore

39

4.2 Task Attribute Analysis Pipeline Technical Means of Task Complexity Analysis

4.2 Task Attribute Analysis Pipeline

4.2.1 Data Sources

In order to process the market data gathered by the extended tracker, we constructed a
pipeline for automatically measuring attributes. We refer to this pipeline as the HIT-
Processor. Figure 4.5 provides an overview of how data is gathered from different
sources and presented to the HITProcessor. This process can be summarized as fol-
lows. The CSV parsing and writing referred to in this section was performed using
the opencsv 4 package for Java. This subsection specifically discusses processing the
data gathered from our own tracker - we made minimal adjustments to also process the
dataset used by Difallah et al., which was provided as an SQL database. The attribute
calculation process described in the next subsection is identical for both types of data.

HITProcessor

Datastore
Migrator

Extended
Tracker

Content
Retriever

System Component

Data

Relationship

Stored
Content

Tracker
Data

Dump

Screen-
shots

Task
Features

HIT IDs

Figure 4.5: Task Attribute Analysis Pipeline - Overview of Data Sources

1. The Extended Tracker tracks HITs and stores HIT metadata. It sends requests
to the Content Retriever, which downloads and stores HIT content files.

2. The data stored on the tracker is exported as a Tracker Data Dump in CSV
format using the Datastore Migrator.

3. The Restored Content is archived and downloaded from the Content Retriever.

4. Screenshots are made of HITs from the Restored Content and stored locally.

5. The Tracker Data Dump, Stored Content and Screenshots are provided to the
HITProcessor as input.

6. Using the data, the HITProcessor generates a Task Features CSV file containing
task attribute measurements for the HITs listed in the provided HIT IDs file.

4http://opencsv.sourceforge.net/

40

Technical Means of Task Complexity Analysis 4.2 Task Attribute Analysis Pipeline

After the task features CSV has been generated, it can be used for analysis. In
order to generate this file, the HITProcessor goes through four distinct phases. We
describe each phase and how the features in each category are calculated below.

4.2.2 Attribute Calculation

In this section, we describe the process of attribute calculation for a single HIT group
as performed by the HITProcessor.

Input Data Calculate
Throughput

HIT
Attribute

Data

Extract
Visual

Features

Extract
Content
Features

Extract
Metadata

Figure 4.6: Task Attribute Analysis Pipeline - Attribute Calculation Process

Given the input data described in the previous subsection, the first phase of the pro-
cess is Metadata Extraction. From the HITgroup table found in the data dump from
the tracker, the system reads metadata attributes A1 through A9. These are available
either directly from the data (reward) or require some effort to retrieve. For example,
qualifications attributes A3, A4, A5 and A6 are generated by searching the qualifica-
tions string for each given qualification type.

The second phase of the process is Content Feature Extraction. By processing
the stored HTML page with jsoup 5, content attributes A11 through A21 are measured
and stored.

The third phase of the process is Visual Content Extraction. In this phase, we use
the tools developed by Reinecke et al. [52] for their own work. In short, this functions
as follows:

1. The HITProcessor locates the screenshot corresponding to the ID of the current
HIT.

2. The screenshot is decomposed into visual ‘Blocks’ in a tree structure, and these
are represented using an XML file.

3. The XML file is analyzed to calculate features A22, A23 and A24.

4. The color distribution of the screenshot is analyzed to calculate features A25
through A28.

For a more detailed explanation of the feature calculation, we refer to the paper by
Reinecke et al. and their website 6, which provides the source code for calculating the

5http://jsoup.org/
6http://iis.seas.harvard.edu/resources/aesthetics-chi13/

41

4.2 Task Attribute Analysis Pipeline Technical Means of Task Complexity Analysis

visual features.

The fourth phase of the process is Throughput Calculation. Using the HITin-
stance and ArrivalCompletions tables from the tracker data, we calculate attribute A10,
hits available. Our measure for throughput is given for a HITgroup H at a point in time
t.

throughput = hitsCompleted(H, [t −1, t))

That is, the throughput for HITgroup H at time t is the amount of HITs completed be-
tween time t −1 until (but not including) time t. Though we tracked HIT completions
every fifteen minutes, we aggregated this data to calculate throughput per hour, so that
our data would be as similar to the dataset used by Difallah et al. as possible. Thus, for
every HITgroup, the tracker could output its attribute features (which are the same at
every timestamp) and its features that changed over time (HITs available, HITs com-
pleted, rewards paid out, et cetera).

Initially, we also experimented with a different definition for the throughput of a
HITgroup:

throughput =
amount o f completed HIT s

HIT group uptime

Using this calculation, we can estimate the average completion time per HIT of a
HITgroup within the time it was available to workers. This is what we used as an
approximation of complexity, as described in the previous chapter. Unfortunately,
the initial results of throughput prediction experiments using this definition were not
promising: the prediction was very inaccurate and skewed greatly by a small amount
of HITgroups that had much larger batches than most other HITgroups in the test set.
Even with these HITs removed, however, the results still left a lot to be desired, and
therefore we decided to use only the first definition of throughput given above - the
one also used by Difallah et al.

42

Chapter 5

Evaluation of Results

In this chapter, we evaluate the data we obtained in several ways. First, we provide
general observations on the data. Then, we analyze the distributions and relationships
of the various attributes identified in Chapter 3. Second, we discuss our re-enactment
of the throughput prediction experiment performed by Difallah et al. incorporating
our own task attribute features. Third, we present an experiment to measure subjective
complexity using a set of reinstantiated tasks. Finally, we summarize our findings in
the form of a set of recommendations for human computation task designers.

5.1 Overview of Data

We tracked the Mechanical Turk market using our extended tracker between August
3rd and 11th, 2015. In this time, we tracked a total of 8,280 HITgroups representing
562.165 HITs being posted on the market. Our sample contained 5,487 HITgroups,
or approximately 66 percent of all HITgroups. Keeping in mind there might have
been temporary outages on the part of our tracker or the MTurk website, or other
issues might have occurred during tracking, this figure seems to match with our earlier
estimation that slightly over two-thirds of the market consists of externally hosted
(and thus ‘trackable’) HITgroups. In our sample, we observe nearly 90 percent of the
HITgroups were uploaded by one of only three requesters, as shown in Table 5.1.

Requester HITgroups Percentage

SpeechPad 2953 53.82%
Bunny Inc 1118 20.38%
CastingWords 842 15.35%
Others 574 10.46%

Table 5.1: Distribution of Requesters by amount of HITgroups

SpeechPad and CastingWords offer transcription HITs, while Bunny Inc. offers
audio annotation HITs. These ‘corporate’ requesters dominate the market with thou-
sands of HITs, while the other 154 requesters posted only 574 HITgroups all together.
Difallah et al. also noted that transcription and audio annotation tasks were among the
fastest growing market segment in their dataset. We also note that HITs by a single

43

5.1 Overview of Data Evaluation of Results

requester typically have the same objective and interface. Analyzing visual features
for the entire market would therefore skew the results massively in favor of the top
three requesters, whose HITs always use the same layout. In addition to this, many
of the HITs posted by smaller requesters are unsuitable for reinstantiation, and if we
cannot restore a HIT accurately, we cannot accurately analyze its visual attributes, ei-
ther. There are several reasons why a HITgroup might not be suitable for visual feature
analysis:

• Missing Content: The HIT included content the tracker was unable to store,
but is necessary to accurately reinstantiate the HIT. This could include a Flash
browser game or other types of server-side resources.

• Not a HIT: The actual HIT is password-protected to allow only certain work-
ers to complete it, or is simply a link to another website where the actual HIT
(typically a survey) is performed.

• Cannot Instantiate: Either the requester uploaded a HIT that does not function
properly, or our system did not store it correctly. For 81 out of 5,487 HITgroups
(1.4%), the tracker did not download any content at all. Other HITs in this
category might only show a blank screen or contain severe bugs that make re-
construction impossible, either due to an error on the part of the requester or due
to incomplete storage.

In order to obtain a dataset that would represent a diverse sample of actual HITs
workers would be able to complete, we manually investigated restored HITs uploaded
by all 157 requesters. In the end, this resulted in a dataset of 76 HITgroups, each from a
different requester, that we considered reinstantiable and representative of actual HITs.
While we could have included all HITs uploaded by these requesters, we observed that
requesters typically upload HITgroups that are nearly identical, and thus included only
a single HITgroup per requester to ensure our sampling of HITgroups was as diverse
as possible. We took screenshots of these tasks to be used for visual feature analysis.

Task Type Count Percentage

Survey (SU) 4 5.26%
Verification and Validation (VV) 2 2.63%
Interpretation and Analysis (IA) 23 30.26%
Content Creation (CC) 25 32.89%
Information Finding (IF) 14 18.42%
Content Access (CA) 4 5.26%
Other 4 5.26%

Table 5.2: Distribution of Task Types in Filtered Dataset

We also analyzed the task types of the selected HITgroups, following the classifi-
cation used by Gadiraju et al. [20] that was also used by Difallah et al. The results can
be seen in Table 5.2: all task types are represented, though some are more numerous
than others. The three task types that our dataset contains most - IA, CC and IF - were

44

Evaluation of Results 5.2 Task Attribute Analysis

also the most popular HIT types in the dataset used by Difallah et al, along with SU.
We attribute this difference to the fact that surveys are commonly posted as a ‘redi-
rect’ HIT: users complete a survey on an external site, and return to MTurk to fill out
a completion code and receive their payment. This meant that these types of HITs did
not qualify for our dataset, as we could not reinstantiate them.

5.2 Task Attribute Analysis

In this section, we will discuss our findings with regards to the different types of at-
tributes. We discuss them divided into the three categories we defined in Chapter 3:
Metadata, Content and Visual. We specifically look at our filtered dataset to ensure a
diverse sample: if we were to perform this analysis for a large dataset without filtering,
the numbers would most likely be skewed by the large amounts of near identical HITs
from the small amount of top requesters. Figure 5.1 shows a correlation matrix for
the tracked attributes in the one-week dataset, to illustrate the correlations between the
various attributes. It does not include the semantic attributes or throughput, as these
are multidimensional and as such do not lend themselves to being plotted in such a
way. The table shows the level of correlation between pairs of attributes: a light to
dark blue square indicates an increasingly negative correlation, while an orange to red
square indicates an increasingly positive correlation. We will refer back to this table
in the next subsections when we discuss the attributes.

5.2.1 Metadata Attributes

First, we consider Metadata attributes.
Rewards offered varied between $0.00 and $8.00. Not considering the single $8

outlier, the average reward was $0.19. The average time allotted to complete a HIT was
slightly under 2 hours - requesters typically allot much more time than a HIT actually
takes to complete.

As for qualifications, 10 (13%) required the worker to have a certain geographical
location, only 1 (1.3%) required a Master qualification, 3 (3.9%) required a minimum
amount of approved HITs, and 11 (14,5%) required a minimum approval rate, varying
between 50% and 98%. We note a slight correlation between the different qualifica-
tion types (apart from Master) - it appears that when a requester adds qualifications
to a task, they tend to add more than one. Especially the correlation between total
approved and approval rate is clearly present: when requesters require a minimum
amount of approved HITs, they tend to also require a certain success ratio for those
HITs, and vice versa. The virtually nonexistent use of Master qualifications is interest-
ing: perhaps requesters feel the additional fee required to hire Master workers is not
worth it. Adding qualifications to a HIT implies making a trade-off between speed and
quality: by limiting the amount of eligible workers, the work will not be completed as
quickly, but workers with better qualifications can be expected to perform better. We
observe that in most cases, requesters choose speed over quality - this might also be
due to the fact that requesters believe the quality delivered by non-qualified workers
is not significantly lower than those by qualified ones, or they might already be taking
their own quality control measures such as including honeypot questions or manually

45

5.2 Task Attribute Analysis Evaluation of Results

Figure 5.1: Task Attribute Correlation Matrix

46

Evaluation of Results 5.2 Task Attribute Analysis

checking responses.

The distributions for title and description length in Figures 5.2 and 5.3 look very
similar. It seems task creators realise there is a ‘sweet spot’ when it comes to describ-
ing your task: in these cases, that spot is between 30 and 40 characters for a title and
between 30 and 60 characters for a description. We observe that the actual description
of a task is usually already done in the title, with the description typically not adding
a lot of information: for example, the HIT with title “Transcribe Field Text (Hand-
writing or Machine Print) ” has the following description: “The task is to review the
handwritten or printed text on the image and transcribe it

sic

content.” Since many requesters follow this pattern, it makes sense that the average
description length is only slightly higher than the average title length.

5.2.2 Content Attributes

Next, we consider the Content attributes. Figure 5.4 shows the distributions for the
amounts of links, words, images, CSS files, JS files and input elements on HIT web-
pages.

Starting with link count, we observe pages often contain a lot of hyperlinks. This
is partly due to a difference in the way external HITs are stored: some are entirely their
own website, while others are captured with a part of the MTurk interface surrounding
them. This interface still contains a lot of links. We believe that if these links were not
included in the link count, the average would be much lower. We also observe a posi-
tive correlation between link count and image count. This is due to images sometimes
being used as links: for example, a custom button might be an image that doubles as a
link to the next page.

Word count is also interesting: while there are outliers, most HITs have a rather low
word count. This makes sense, as requesters would want to make their instructions as
straightforward as possible. Word count shows positive correlations with image, CSS,
script and input counts, as can be seen in Figure 5.1. We explain this by noting that
more functionality and content in a HIT will typically require more text: if the HIT has
a custom user interface, indicated by a high amount of script and stylesheet files, we
can expect it to require more instructions than a very basic HIT without scripts. Ad-
ditional images might require explanations per image as well, and more input counts
automatically lead to more words because every input element needs a value, which
contributes directly to the word count.

As for scripting, we observe that most HITs (49 out of 76) use a single CSS file,
and a similar amount (47 out of 76) use six JS files. The most commonly used li-
braries include Bootstrap, jQuery and Node.js. The subset of HITs stored within the
MTurk interface likely increases the average amount of scripts in this case as well. In
the correlation matrix, we observe a strong correlation between stylesheet and script
count, which is no big surprise. Stylesheets and scripts go hand in hand in web design:
when a requester wants a HIT with specific functionalities, higher numbers of both

47

5.2 Task Attribute Analysis Evaluation of Results

Figure 5.2: Title Length Distribution

Figure 5.3: Description Length Distribution

48

Evaluation of Results 5.2 Task Attribute Analysis

Figure 5.4: Distributions of Several HIT Content Attributes

49

5.2 Task Attribute Analysis Evaluation of Results

stylesheets and scripts will be required to implement more desired features.

Regarding input count, we observe that HITs typically have between 30 and 45
input elements, and sometimes even many more. This is due to the fact that forms
are the main tool used by requesters to obtain data from workers, and are also used
for various purposes. For example, a HIT might consist of a demographic survey, an
image annotation task and a small questionnaire on the quality of the HIT, all three of
which can be expected to use HTML input elements to collect information.

Finally, we have no notable observations regarding the body text percentage and
emphasized body text attributes. The body text percentage attribute was invariably
close to or equal to 100 percent, making it impossible to meaningfully distinguish
between different entries. In addition, the emphasized body text attribute showed no
meaningful correlations.

5.2.3 Visual Attributes

Finally, we look at the Visual attributes, which we only measured in our own dataset.
As we observed when discussing the content features, the presence of the MTurk in-
terface in some HITgroups changes the results of the attribute measurements due to
the added content. We believe there are two possible ways to view this: the MTurk
wrapper can be viewed as a part of the HIT, or not. The argument for including the
MTurk wrapper is that since we are interested in visual complexity, we should include
all visual aspects of a page in the measurement, even those not directly relating to the
task. The argument for omitting the MTurk interface would be that it does not relate
to the task itself, which in these cases usually has a very simple layout. Thus, omitting
the MTurk interface might allow the measurements to reflect the complexity of the
task itself more accurately. In our own research, we adopted the first position, but we
also conducted measurements on our dataset with the MTurk interface omitted from
the relevant HIT groups to check if there were any noticeable differences.

Because a large part of the page was removed from a large amount of HITs, the
values for several attributes (both in the Content and Visual categories) were different.
However, both the distributions of and correlations between the changed attributes did
not show any unexpected results. As for the distributions, it is to be expected that when
a part of the page is removed, values like the amount of visual areas or the amount of
images on the page decrease. This naturally caused a shift in several attribute distri-
butions, but we did not observe any other effects. Additionally, the lower values on
average means that the relative difference between attribute values becomes larger for
these attributes. This could possibly lead to more pronounced correlations between at-
tributes, which we also observed in a few cases. However, this change was invariably
very small, and as such we do not consider these cases significant.

Going back to the full dataset without the omission of the MTurk interface, Fig-
ure 5.5 shows the distributions for several visual attributes. The amount of text groups
was distributed relatively uniformly between 7 and 218 with a spike in the range be-
tween 100 and 125, and correlated positively with the link count, image count, input

50

Evaluation of Results 5.2 Task Attribute Analysis

Figure 5.5: Distribution of Visual Attributes
51

5.3 Throughput Prediction Evaluation of Results

count and the percentage of body text. It seems likely that when text is ‘interrupted’
by images, links, input elements and headers, it is visually split into distinct groups.
Moving on, the amount of image areas correlated slightly with Yendrikhovskij color-
fulness, but did not correlate with the amount of images. In fact, the amount of image
areas is typically smaller than the amount of images for a given HITgroup. Perhaps
this is due to the fact that the distribution of images on pages (spread out or cluttered)
varies too much between HITs for there to be a correlation between image count and
visual image areas, since several images next to each other are considered to be a sin-
gle image area.

For the amount of visual areas, we observe weak positive correlations with word
count and input count and a strong correlation with image count. This leads to the hy-
pothesis that as a HIT grows in size, it becomes more visually complex. To illustrate,
Figure 5.6 shows the HITgroup from our sample with the highest amount of visual
areas (over 5,000) and a HITgroup with a small amount of visual areas (fewer than
200). The layout of the HIT with few visual areas is very simple, while the larger HIT
is much more visually complex. While a HIT in which more questions are asked will
necessarily be larger than one with few questions, requesters should consider how they
present each question visually to minimize the risk of information overload.

Regarding colorfulness, we see clear relationships between the average HSV val-
ues of a page and Hasler Colorfulness. Though this tells us more about the way
Hasler Colorfulness is computed, it does not imply insights about HIT colorfulness.
Yendrikhovskij colorfulness does not show any noteworthy correlations with other at-
tributes, either. Based on our own observations of the dataset, we note that HITs do not
tend to be colorful. While some HITs include images, most HITs we evaluated con-
sisted of mostly black text against a white background with a few grey input elements.
While this is not a negative attribute, per se, it does mean that assessing HITs according
to visual attributes, especially color-related attributes, will most likely require further
refinement beyond what we have done in this work.

5.3 Throughput Prediction

5.3.1 Setup

In our own throughput prediction experiment, we attempted to follow the setup used by
Difallah et al as closely as possible. From their dataset, we took hourly observations of
the MTurk market from June to October 2014, and uniformly sampled 50 test points to
be evaluated. For our own dataset, we used observations of every suitable hour in our
time range of one week, suitable timeframes being hours in which HITs in our dataset
were being completed. The construction of the training and test sets for the prediction
algorithm is depicted in Figure 5.7. The goal is to predict throughput for any HITgroup
active at time T . Throughput is defined as the amount of HITs in that group that will
be completed in the hour following time T - this data is marked as the ‘test set’ in the
image. We built a training set for the prediction using samples from all HITs on the
market for the time range [T − δ,T). Difallah et al. found the best results for δ = 4,

52

Evaluation of Results 5.3 Throughput Prediction

Figure 5.6: Comparison Between Different Amounts of Visual Areas
The upper HIT contains a small amount of visual areas,
while the lower HIT contains a very large amount of visual areas.

53

5.3 Throughput Prediction Evaluation of Results

Figure 5.7: Throughput Prediction

which we also used. The training set thus consists of the market data for the four hours
preceding time T . A single data entry for the algorithm has several dimensions:

• Market Data: The market data for the given hour: amounts of HITs and rewards
posted and completed on MTurk. These attributes differ per hour.

• HIT Metadata Attributes: Metadata attributes A1 through A9 for the HIT.
These attributes do not change over time.

• HIT Content Attributes: Content attributes A11 through A21 for the HIT.
These attributes do not change over time.

• HIT Throughput: The throughput (amount of HITs completed) of the given
HITgroup in the given hour. This value differs per hour.

Because the dataset by Difallah et al. was not collected using our extended tracker, we
could not gather visual features, and thus they were only included in the part of the
experiment using our own data. We will refer to the dataset we collected ourselves as
Dataset A, and the dataset used by Difallah et al. as Dataset B.

5.3.2 Results - Dataset A

Table 5.3 shows the mean absolute error from various prediction models. A lower
number indicates a better performance out of the model: it means that generally, its
predictions were closer to the actual value. We used the following prediction models:
Linear Regression, Ridge Regression, Lasso and Random Forest. Linear Regression
performed horribly, Ridge Regression and the Lasso method performed reasonably
well, and Random Forest performed the best by far out of all four. A graphical rep-
resentation of the predicted versus actual throughput of the Random Forest model is
shown in Figure 5.8.

54

Evaluation of Results 5.3 Throughput Prediction

Model Mean Absolute Error

Linear Regression 3.43371548565e+13
Ridge Regression 13.4852059674
Lasso 13.365243909
Random Forest 1.47431034483

Table 5.3: Throughput Prediction Performance - Dataset A
Mean Absolute Error for various prediction models.

The mean throughput value was 38.8275862069±101.612624442.

Figure 5.8: Throughput Prediction Results - Dataset A
Predicted versus actual throughput using a Random Forest model.

Based on these results, we conclude the Random Forest model performs very well
in predicting throughput, and that just like in the experiment by Difallah et al., the
prediction works better for larger batches. Table 5.4 shows the contribution scores for
the top 25 attributes that contributed most to the prediction, sorted by absolute score.
A positive score indicates a positive correlation between the attribute and throughput,
and a negative score indicates a negative correlation.

We make several observations based on these results:

• Market movement has the most influence. Attributes from market data are the
most important indicators for task throughput. The amount of initial hits is by
far the most significant attribute, just as it was for Difallah et al. Additionally,
statistics that indicate how many HITs are available on the market (hitsCom-
pleted, rewardsArrived, hitsAvailableUI) correlate positively with throughput,

55

5.3 Throughput Prediction Evaluation of Results

Attribute Contribution Score

initialHits 59.48951914
unigram_shot 29.74892506
totalApproved 24.07984961
unigram_content 14.16681725
hitsCompleted 12.69597995
rewardsArrived 10.30126474
unigram_chinese 9.266171157
rewardsCompleted -4.746358056
unigram_blocked 4.176982292
unigram_htm 3.039773852
unigram_ny -2.996503414
unigram_violence -2.661005612
hitsAvailableUI 2.591188684
unigram_case 2.455054234
unigram_click -2.429056986
unigram_related -2.18584631
unigram_reflects 1.833589004
hitGroupsArrived 1.638162625
unigram_play -1.402751178
unigram_http 1.359896428
approvalRate 1.324680862
unigram_requires -1.269983169
unigram_easy -1.219236677
unigram_64 -1.206663617
hitGroupsCompleted 1.061824622

Table 5.4: Top Contributors to Prediction Score - Dataset A

while rewardsCompleted shows a negative correlation: when more rewards are
being handed out, the overall market size will decrease and, accordingly, so will
the availability of labour.

• Semantic features improve prediction quality. Though we do not see content
or visual features among the top contributors, semantic features, specifically un-
igrams, have a big impact. For some, the relationship between the unigram and
the task type is clear, such as unigram_chinese. Also interesting are the negative
correlations: workers are apparently less interested in HITs that are presented as
easy (unigram_easy), that might contain offensive content (unigram_violence)
or that are presented as a game (unigram_play).

• Qualifications attract workers. The totalApproved attribute, along with the
approvalRate attribute it correlates with, is also an indicator of high throughput.
We expect that workers who qualify for common qualifications (such as needing
a certain approval rate) will prefer to do tasks requiring these qualifications, as
they tend to pay better.

56

Evaluation of Results 5.3 Throughput Prediction

5.3.3 Results - Dataset B

The throughput prediction experiment was also performed on the dataset used by Di-
fallah et al. This dataset consists of MTurk market data collected from 2009 through
2014. This dataset contains metadata for all tasks and market statistics, and (slightly
truncated) HTML content for slightly over half of the tasks, but not all. The dataset
Difallah et al. used for throughput prediction in their own paper, which we also use,
was a subset of this 5-year dataset. It consisted of data collected from June to October
2014. This is approximately a year before our own measurements, and in our other
observations we already confirmed that data such as market statistics and task type
distribution in our own data corresponded with observations in recent work by (among
others) Difallah et al. Thus, as the two datasets represent similar information from
the same market and no significant (for our purposes) changes occurred on the market
between 2014 and 2015, we believe the two datasets are similar enough that we can
compare them in this experiment. In other words: we can make the assumption that
both datasets came from the same market, and were collected under the same market
conditions.

Pr
ed

ic
te

d
Th

ro
ug

hp
ut

0.01

1.00

100.00

10000.00

Real Throughput
1 10 100 1000 10000

Figure 5.9: Throughput Prediction Results - Dataset B
Predicted versus actual throughput of the 5-month dataset, using metadata and semantic features.

Table 5.5 and Figure 5.9 show the results of our throughput prediction experiment
on the five month dataset. Like Difallah et al., we used 50 evenly spaced time points
in this interval, generating training and test data as described above. An important
difference in our method for selecting data points was that we adhered to our goal of
maximizing task diversity from the previous experiment. For every time point, we only
used at most one HITgroup per task type per requester. This was made possible by
the fact that the dataset was annotated with task type by Difallah et al. An example: if
a requester posted two surveys in a given hour, only one would be incorporated in the

57

5.3 Throughput Prediction Evaluation of Results

Feature
Set

Regression Model
Linear Lasso Random Forest

Metadata 18.35 18.11 17.45
Dynamic 20.31 18.95 20.47
Semantic 576.44 16.86 20.53
Semantic LDA 18.92 17.88 19.75

Table 5.5: Throughput Prediction Performance - Dataset B
Mean Absolute Error of throughput prediction using different feature sets and

regression models. The mean throughput value was 33.93±67.17.

experiment, but if they posted two survey and two Content Access tasks, one HITgroup
of each category would be included for a total of two tasks by that requester. We be-
lieve this significantly reduces the effect dominant requesters have on the experiment,
and will come back to this when we discuss the results. In order to better examine the
contribution of various types of attributes to prediction, we split up the prediction into
an analysis of four different attribute groups. These were the following:

• Metadata: metadata features such as reward and time allotted.

• Dynamic: market dynamics features such as rewards available or amounts of
HITs completed in the past hour.

• Semantic: semantic features such as keywords and unigrams in the text.

• Semantic LDA: semantic features modeled as a set of topics by Latent Dirich-
let allocation (LDA) [4]. In other words, a method of reducing the very large
amount of single semantic features to a smaller set of ’combined’ features.

We observe that the mean absolute error for the experiment on the large dataset
is relatively large compared to the average throughput value. Unfortunately, because
Difallah et al. did not report their own results, we cannot directly compare our own
results to theirs. We do note that their observation that the prediction works better for
larger batches holds in our case, as well - this can be clearly seen in Figure 5.9. We
also note that the mean absolute error values for each of the four considered feature
sets are not very different. The experiment performed by Difallah et al. considered
metadata and dynamic attributes, while our own experiment added the semantic and
semantic LDA categories, which perform at the same level as the other two categories.
We believe this shows the potential of using semantic features in throughput predic-
tion, which we expected based on the experiment on Dataset A.

Table 5.6 shows the top 25 task attributes by absolute contribution to throughput
prediction, corresponding to the prediction in Figure 5.9. These results are different
both from the results we obtained for Dataset A, and the results obtained by Difallah et
al. We see that the keywords ’tagging’ and ’fast’ are by far the most important features
in this prediction. We believe this is due to a combination of these terms simply being
popular among workers searching for new work. Furthermore, the popularity of the

58

Evaluation of Results 5.3 Throughput Prediction

Attribute Contribution Score

keyword_tagging 108.4550737
keyword_fast 48.51691111
master qualification 21.62420036
keyword_ocr -16.11195402
keyword_images 16.01048183
keyword_science -15.29876699
location_us -11.49538065
keyword_categorize -8.211989903
keyword_categorization 6.75918132
keyword_data 5.490539861
keyword_mining 2.504987235
keyword_transcription -2.102191942
no. of links -1.730408269
title length -1.629177075
no. of external links 1.404026731
keyword_object 1.295085654
keyword_instances 1.250865916
reward -1.08954962
body text percentage 0.186764769
no. of images 0.099471103
keyword_objects 0.079962673
keyword_contour 0.061641002
no. of keywords -0.02792923
HITs available 0.021000566

Table 5.6: Top Contributors to Prediction Score - Dataset B

’tagging’ keyword is likely due to the fact that a tagging task typically has a large batch
size, as it usually requires workers to tag large amounts of items.

There are several other interesting insights that can be gleaned from these results.
Firstly, this might be an insight into worker preferences: from this data, we might hy-
pothesise that workers are not attracted to character recognition and transcription tasks
(keyword_ocr, keyword_transcription), while they are interested in HITs dealing with
image annotation (keyword_images). Of course, these results are only a first indication
of possible preferences, and additional research would be required before any conclu-
sions can be drawn.

Another observation is that keywords have replaced unigrams as being important
semantic features compared to Dataset A. This makes sense, as unigrams will grow
much more diverse as the amount of HITs studied increases, while the set of keywords
can be expected to grow far less quickly, and a given keyword can be expected to oc-
cur more often in different HITs than a given unigram as the dataset increases in size.
Other semantic features, such as body text percentage and the amounts of links and

59

5.4 Subjective Task Complexity Evaluation of Results

images on a page have also become more important compared to other features.

Metadata attributes also play a large role in the prediction: the master qualifica-
tion seems to have a positive relationship with throughput, while restricting workers to
only US-based ones decreases throughput. We already theorized that the master qual-
ification seems to motivate and attract master workers effectively, and it is no surprise
that reducing the amount of workers eligible to complete a task by half of all workers
means that a task is not completed as quickly on average.

Finally, we observe that in this prediction, market statistics play a very small
role. While our results for Dataset A and the experiment by Difallah et al. showed
they played a very big role, the top 25 contributors for Dataset B only contain the
HITs_available attribute. Several other attributes such as hitsCompleted, hitsArrived,
diffHits and timeAllotted also contributed to the prediction, but only very slightly (ab-
solute value <0.002). On the one hand, this could imply semantic features are effective
at throughput prediction to the point where they play a bigger role than market dynam-
ics. On the other hand, we did not measure attribute contribution in exactly the same
way as Difallah et al. Their approach was to sample 1,000 test points and only use
those points with an R-squared score >0, which included only 327 of the sampled
points. For our own observation, we used all selected test points. It is possible that
if we also only included test points with ’good’ prediction scores, the HITs_available
attribute would once again become more important. Additionally, as we noted before,
we used an approach that maximized HITgroup diversity, rather than sample from the
total amount of available tasks. Large requesters typically post batches of similar size,
and these batches also make up the vast majority of the market. Workers also have
previous experience with large requesters more frequently, which makes them either
more or less likely to complete work by those requesters depending on previous expe-
rience or ratings on e.g. TurkOpticon. For these reasons, specific amounts of initial
HITs could be indicators that a HITgroup was posted by a certain large requester, and
thus has a certain expected throughput, which will have an increasingly stable value
as the requester posts more HITs over time. Due to the domination of the market by
a small amount of large requesters who post batches of similar size, a throughput pre-
diction algorithm might perform very well on this vast majority of batches and thus
use the amount of HITs available to detect them, while a batch of similar size posted
by a different requester might not get the same results.

5.4 Subjective Task Complexity

Apart from approaching complexity as something that is objectively measurable, we
also performed an initial experiment to measure the subjective complexity of a small
set of reinstantiated HITs. Out of the 76 HITs we were able to visually reinstantiate,
we were able to fully restore functionality for a set of 61. For those we were not able
to restore completely, there were several reasons. In most cases, either we did not have
enough original data (images to accurately reinstantiate the HIT fully, or the HIT con-
tained functionality that we were not able to reproduce based on simply viewing the
visually restored HIT.

60

Evaluation of Results 5.4 Subjective Task Complexity

These 61 reinstantiated tasks were posted on CrowdFlower along with a question-
naire intended to gather a complexity measurement. The questionnaire was based on
the NASA-TLX (NASA Task Load Index) [24], which is ”a multi-dimensional rating
procedure that provides an overall workload score based on a weighted average of rat-
ings on six subscales: Mental Demands, Physical Demands, Temporal Demands, Own
Performance, Effort and Frustration.” It has been applied, modified and evaluated in
a variety of contexts since its inception in 1988, and was more recently also applied in
contexts related to our own, such as information retrieval [58] and to assess subjective
judgement difficulty for sentiment analysis tasks on MTurk [46].

The workers completed the HIT as follows:

1. Worker is shown an introduction page explaining they were to complete a task
and answer questions about how they perceived the task’s complexity.

2. Worker completes a reinstantiated task. We collect the data they input as part
of the task as well as data on their behaviour by tracking mouse clicks and key
strokes.

3. Worker completes the NASA-TLX questionnaire. First, the worker rates the
task on each of the subscale categories mentioned above, and then weights the
importance of each factor. This is done by presenting the worker with pairs of
subscale categories (e.g. mental demand versus physical demand) and asking
them which was more important to their experience of workload.

Each reinstantiated task was completed by 15 distinct workers. We instituted a spam-
mer detection method by repeating 3 out of the 15 pairwise comparisons in the weight-
ing part of the questionnaire at the end: lower-quality workers can be expected to give
less consistent answers when questions are repeated, and workers that take a very long
or short time to complete the survey were also considered less trustworthy. These two
measures together resulted in 15.6% of responses being discarded due to incorrectly
answered control questions, and 5.8% due to taking too long or too short, for a com-
bined 21.4%.

The mean complexity score for the 61 tasks was 63.78±11.56. The mean scores
per complexity factor are shown in Figure 5.10, while the mean values for the weights
assigned to each factor are shown in Figure 5.11. We observe that the Mental and
Effort categories usually score and are weighted highly, the Performance category is
weighted highly, and both score and weight are low for the Physical and Frustration
categories. The scores for the Mental and Physical categories are in line with our ex-
pectations, as performing crowdsourcing tasks is primarily a mental task. The low
average scores in the Performance and Frustration categories imply workers were gen-
erally satisfied with the task and their own performance.

Based on the obtained complexity scores for these 61 tasks, we performed a (Pear-
son’s r) correlation analysis to attempt to find a correlation between our objective task
attributes and the subjective complexity scores. For the non-semantic features, this did

61

5.4 Subjective Task Complexity Evaluation of Results

Figure 5.10: NASA-TLX Mean Scores
Mean scores assigned to each complexity category for the 61 reinstantiated tasks.

Figure 5.11: NASA-TLX Mean Weights
Mean weights assigned to each complexity category for the 61 reinstantiated tasks.

Attribute r Attribute r

reward 0.27586 emphTextPct -0.26907
totalApproved 0.13426 inputCount -0.19136
wordCount 0.12330 initialHits -0.17166

Table 5.7: Subjective Complexity Task Attribute Correlation

62

Evaluation of Results 5.5 Task Design Guidelines

not allow us to find strong connections. The top 3 positive and negative correlations
are shown in Table 5.7. We see a slightly positive correlation between subjective com-
plexity and reward - it is to be expected that requesters will offer more money for tasks
they consider to be more complex. We also see a slightly negative correlation with
the percentage of emphasized text on a page: if a HIT page is easier to read because
it is more structured, it will be easier to understand, but this will not have a dramatic
effect on performing the task itself. None of the visual features showed any significant
correlation with subjective complexity.

We also investigated correlations with keywords and unigrams, and found a small
amount (16 unigrams, 7 keywords) that had a slightly stronger correlation with subjec-
tive complexity than any non-semantic attributes (absolute value of r between 0.28 and
0.36). However, because these are still not very strong correlations, and due to the fact
that in a dataset of only 61 tasks there will only be a very small amount of measure-
ments for a given unigram or keyword, we do not consider these results significant.
If this experiment were to be repeated on a larger dataset, we expect performing this
analysis again would deliver more reliable results, both for semantic and non-semantic
attributes.

5.5 Task Design Guidelines

Based on the analysis of the data and the throughput prediction and subjective com-
plexity experiments, we propose three task design guidelines for requesters. We con-
sider tasks to be less complex when their throughput is higher, and will base our rec-
ommendations on the goal of presenting tasks that workers will not perceive as overly
complex, with the goal of allowing them to complete those tasks more quickly.

1. Watch the Market: Apart from features inherent to a task itself, HIT through-
put is highly dependent on the state of the market. If a lot of HITs are being
posted, it will attract workers to the market, and depending on the time of day or
day of the week, there will usually be more workers available to complete HITs.
Planning the posting of HITs around busy times should improve the speed with
which requesters can get results. Additionally, workers prefer to work on large
batches of tasks, so requesters should post large amounts of HITs at once if pos-
sible to improve the throughput of their tasks. While we found in our experiment
on Dataset B that statistics do not necessarily contribute to throughput predic-
tion alongside other attributes, existing literature (by Difallah et al. [11], but also
by Ipeirotis [30] and Kosara et al [40]) implies that market activity varies based
on the time of day and day of the week, and that it is an important factor in task
completion rate.

2. Use MTurk Features to Your Advantage: We observed that qualifications are
not commonly used, but that they can help improve throughput by serving as a
way to attract the most experienced or skilled workers to a task. We also noted
that the title and description of HITs are typically used interchangeably, with
the description repeating the title in most cases rather than including additional
information. Some HITs use very few keywords or none at all, while our results

63

5.5 Task Design Guidelines Evaluation of Results

show that tasks with certain semantic features, such as certain keywords, are
more likely to have higher throughput.

3. Keep Your HIT Simple: In our content analysis, we observed that there are
values for the amounts of images, script files, word count and other content
attributes that can be considered typical. We recommend that HIT designers
examine the MTurk market and build their own HITs to resemble what workers
are used to: the size, structure and content of a typical HIT should provide a
good baseline on which to construct new ones. The subjective analysis also
showed that tasks with a high word count or a large amount of links on the page
tend to be experienced as more complex by workers.

64

Chapter 6

Conclusions and Future Work

In this chapter, we conclude the thesis by first summarizing and reflecting on our work,
and finally looking forward. First, we summarize the most significant observations
based on our results by linking them to our research questions. We reflect on our pro-
cess and results, and finally single out directions for future work building on our own.

6.1 Conclusions

RQ1 How can we measure the complexity of a human computation task?

In Chapter 2, we described Campbell’s framework for measuring complexity. We
defined the complexity of a human computation task as follows:

The complexity of a HIT can be approximated by the sum of the complexity of its
objectively measurable attributes, as perceived by its workers.

Based on this definition, we singled out three categories of task attributes that
might contribute to task complexity. These were: Metadata, the attributes of a task
relating to the way it is posted on a human computation platform; Content Attributes,
attributes relating to the HTML content and semantic features of a HIT, and Visual
Attributes, attributes relating to the visual complexity of a page. In order to measure
these attributes, we constructed a real-time human computation market data tracker to
gather market data from Amazon Mechanical Turk, and an attribute analysis pipeline to
process this data and obtain measurements for task attributes. As an objective measure
of complexity, we considered task throughput, the idea behind this being that since
tasks that are less complex can be completed more quickly, batches of less complex
tasks will have a higher throughput.

RQ2 What are the effects of the complexity of a HIT on its throughput?

We found that there are several categories of task attributes that affect throughput.
These included market attributes, metadata attributes such as qualifications, and se-
mantic attributes of task content. Non-semantic content features and visual complex-
ity features did not seem to contribute significantly to the complexity of a HIT. The

65

6.2 Discussion/Reflection Conclusions and Future Work

link between HIT complexity and throughput deserves further research, which we will
discuss in the last section of this chapter.

RQ3 Can we predict the complexity of a human computation task based on its at-
tributes?

Using task attributes and market statistics, it is possible to predict the throughput of
a HIT group reasonably accurately, and we consider throughput to be an acceptable
approximation of complexity. Looking at the attributes with the greatest negative cor-
relation with throughput, we note that these are semantic features indicating the type
of HIT to be completed. Workers tend to shy away from HITs that are presented as
being easy and fun, either because they are looking for a more straightforward task
or because they expect these words were used to make difficult tasks more attrac-
tive. Looking at the greatest correlation with subjective complexity, we observe that a
higher reward correlates slightly with increased complexity, and a higher percentage of
emphasized body text on the HIT page correlates slightly with decreased complexity.

RQ4 How can the concept of task complexity be used to support human computation
task design?

Based on our analysis of the data from the tracker and the results of the throughput
experiment, along with our personal observations of the various HITs stored by our
tracker, we formulated three pieces of advice for human computation task designers.
Firstly, the state of the market is an important contributor to how quickly tasks will be
completed, and should thus be kept in mind when posting human computation tasks.
Secondly, platform features such as the option to accompany human computation
tasks with descriptions, keywords, and requiring worker qualifications should not be
overlooked, as they are an important way of communicating the content of a task to
possibly interested workers. Thirdly, HIT designers should attempt to create simple
tasks: by looking at the way the various content elements of a typical HIT are put
together, designers can create tasks that are more accessible to workers and thus easier
to complete.

6.2 Discussion/Reflection

In this section, we will reflect on our process and results, identifying some key points
worth reflecting on.

Firstly, we used task throughput as an objective approximation of task complexity.
Given that there was some existing literature supporting the relationship between task
complexity and completion time, and that we could not find existing work providing a
different way to measure complexity objectively, we decided on the definition used in
this thesis. While it allowed us to perform the throughput prediction experiment suc-
cessfully, it would have been interesting to also include a subjective or direct measure
of complexity to be able to draw more conclusions from the relationship between task
attributes and complexity.

66

Conclusions and Future Work 6.3 Future Work

Secondly, our tracker could have used additional features. Though the extended
tracker already tracks much more content, it does not store Flash content, audio, or
video, to name some options. Additionally, the method of extracting data was rather
basic, causing the tracker to be unable to store data that was not stored in a straight-
forward way. For example, several HITs we tracked used a JSON file to keep track of
several image files to be evaluated by the worker. Since our tracker did not store this
JSON file, it could not store the images used in the task either, as they were not directly
linked to in the HTML file. Overall, the tracker does what it is supposed to do: it stores
HIT content including stylesheets, scripts and images, which was our goal at the start.
We believe that we have built it in such a way that it should not be difficult to extend
it to track and store additional content types, though this may require more significant
amounts of storage space for the additional content than the current implementation.

Finally, we used a relatively small dataset for most of our analysis. Due to the de-
velopment time required to implement the tracker and analysis pipeline, and the costs
and time involved in crawling data from Mechanical Turk, we only crawled one week
of data. We had also underestimated the amount of HITs that would be reinstantiable
before we started crawling: at the outset, we did not expect such a small percentage
of stored data would actually be usable. While more data with a higher diversity of
requesters would have undoubtedly improved our analysis, we feel that the dataset we
constructed in the end was usable because of its high diversity in the types of HITs
from different requesters that were represented.

6.3 Future Work

We have already alluded to possible directions for future work in the rest of this thesis.
In this section, we identify two main opportunities for future research based on the
work presented in this thesis: task reinstantiation and task attribute analysis.

Firstly, we believe reinstantiation of HITs made possible by the tracker we cre-
ated offers many possibilities for research. By crawling market data in this way, re-
searchers will be able to collect a diverse set of human computation tasks to be used
for a variety of purposes. One direction we suggest is to use these restored HITs to
measure the subjective complexity of tasks: simply ask workers to perform a reinstan-
tiated task, and ask them about their opinions of the task. We already presented our
experiment using a modified version of the NASA-TLX questionnaire in Chapter 5, but
due to the time limitations of this project we were not able to investigate this in-depth.
We believe that the initial results are promising enough to warrant future research, and
we have already created a set of reinstantiated tasks that could be used to support this
research. In the future, it may be possible to obtain a measure of subjective task com-
plexity, which can then be compared to the attribute measurements generated by the
task attribute analysis pipeline. We believe such a process could lead to insights that
could help improve task design.

Secondly, we consider task attribute analysis to have more potential beyond the

67

6.3 Future Work Conclusions and Future Work

results presented in this thesis. As stated earlier, we used a diverse but small dataset
for most of our analysis. Gathering more data and repeating the same analysis over
a larger, more diverse set of HITs should lead to more insights on the relationships
between various types of task attributes and task complexity and task throughput. In
particular, we consider semantic and visual attributes to have potential for further re-
search. We consider the semantic features relevant because they showed promise in
our experiments, and the visual features because we expect there is more potential we
did not tap in our own work. Our reason for this is that we believe the dataset we
collected for this work did not lend itself to visual complexity analysis very well. A
more refined implementation of HIT reinstantiation and larger datasets, combined with
both objective and subjective measures for task complexity, might lead to important in-
sights in human computation task design and possibly human computation in general.
We express our hope that this work might be a first step in this direction.

68

Bibliography

[1] Mohammad Allahbakhsh, Boualem Benatallah, Aleksandar Ignjatovic,
Hamid Reza Motahari-Nezhad, Elisa Bertino, and Schahram Dustdar. Qual-
ity control in crowdsourcing systems: Issues and directions. IEEE Internet
Computing, (2):76–81, 2013.

[2] Iwan Barankay. Rankings and social tournaments: Evidence from a crowd-
sourcing experiment. In Wharton School of Business, University of Pennsylvania
Working Paper. 2011.

[3] Debarshi Basak. Task recommendation in human computation. Master’s thesis,
TU Delft, the Netherlands, 2014.

[4] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
the Journal of machine Learning research, 3:993–1022, 2003.

[5] Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. Amazon’s mechan-
ical turk a new source of inexpensive, yet high-quality, data? Perspectives on
psychological science, 6(1):3–5, 2011.

[6] Michael Butkiewicz, Harsha V Madhyastha, and Vyas Sekar. Understanding
website complexity: measurements, metrics, and implications. In Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement conference,
pages 313–328. ACM, 2011.

[7] Donald J Campbell. Task complexity: A review and analysis. Academy of man-
agement review, 13(1):40–52, 1988.

[8] Donald J Campbell and Karl F Gingrich. The interactive effects of task complex-
ity and participation on task performance: A field experiment. Organizational
Behavior and Human Decision Processes, 38(2):162–180, 1986.

[9] Krista Casler, Lydia Bickel, and Elizabeth Hackett. Separate but equal? a com-
parison of participants and data gathered via amazon’s mturk, social media, and
face-to-face behavioral testing. Computers in Human Behavior, 29(6):2156–
2160, 2013.

69

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Dana Chandler and Adam Kapelner. Breaking monotony with meaning: Motiva-
tion in crowdsourcing markets. Journal of Economic Behavior & Organization,
90:123–133, 2013.

[11] Djellel Eddine Difallah, Michele Catasta, Gianluca Demartini, Panagiotis G
Ipeirotis, and Philippe Cudré-Mauroux. The dynamics of micro-task crowd-
sourcing: The case of amazon mturk. In Proceedings of the 24th International
Conference on World Wide Web, pages 238–247. International World Wide Web
Conferences Steering Committee, 2015.

[12] Djellel Eddine Difallah, Gianluca Demartini, and Philippe Cudré-Mauroux. Me-
chanical cheat: Spamming schemes and adversarial techniques on crowdsourcing
platforms. In CrowdSearch, pages 26–30, 2012.

[13] Anhai Doan, Raghu Ramakrishnan, and Alon Y Halevy. Crowdsourcing systems
on the world-wide web. Communications of the ACM, 54(4):86–96, 2011.

[14] Steven Dow, Anand Kulkarni, Scott Klemmer, and Björn Hartmann. Shepherding
the crowd yields better work. In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, pages 1013–1022. ACM, 2012.

[15] Carsten Eickhoff. Crowd-powered experts: Helping surgeons interpret breast
cancer images. In Proceedings of the First International Workshop on Gamifica-
tion for Information Retrieval, pages 53–56. ACM, 2014.

[16] Carsten Eickhoff, Christopher G Harris, Arjen P de Vries, and Padmini Srini-
vasan. Quality through flow and immersion: gamifying crowdsourced relevance
assessments. In Proceedings of the 35th international ACM SIGIR conference on
Research and development in information retrieval, pages 871–880. ACM, 2012.

[17] Enrique Estellés-Arolas and Fernando González-Ladrón-de Guevara. Towards an
integrated crowdsourcing definition. Journal of Information science, 38(2):189–
200, 2012.

[18] Siamak Faradani, Björn Hartmann, and Panagiotis G Ipeirotis. What’s the right
price? pricing tasks for finishing on time. Human computation, 11, 2011.

[19] Karën Fort, Gilles Adda, and K Bretonnel Cohen. Amazon mechanical turk:
Gold mine or coal mine? Computational Linguistics, 37(2):413–420, 2011.

[20] Ujwal Gadiraju, Ricardo Kawase, and Stefan Dietze. A taxonomy of microtasks
on the web. In Proceedings of the 25th ACM conference on Hypertext and social
media, pages 218–223. ACM, 2014.

[21] Jorge Goncalves, Denzil Ferreira, Simo Hosio, Yong Liu, Jakob Rogstadius,
Hannu Kukka, and Vassilis Kostakos. Crowdsourcing on the spot: altruistic use
of public displays, feasibility, performance, and behaviours. In Proceedings of
the 2013 ACM international joint conference on Pervasive and ubiquitous com-
puting, pages 753–762. ACM, 2013.

70

BIBLIOGRAPHY BIBLIOGRAPHY

[22] Simon Harper, Caroline Jay, Eleni Michailidou, and Huangmao Quan. Analysing
the visual complexity of web pages using document structure. Behaviour & In-
formation Technology, 32(5):491–502, 2013.

[23] Simon Harper, Eleni Michailidou, and Robert Stevens. Toward a definition of
visual complexity as an implicit measure of cognitive load. ACM Transactions
on Applied Perception (TAP), 6(2):10, 2009.

[24] Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load
index): Results of empirical and theoretical research. Advances in psychology,
52:139–183, 1988.

[25] David Hasler and Sabine E Suesstrunk. Measuring colorfulness in natural im-
ages. In Electronic Imaging 2003, pages 87–95. International Society for Optics
and Photonics, 2003.

[26] Matthias Hirth, Tobias Hoßfeld, and Phuoc Tran-Gia. Anatomy of a crowdsourc-
ing platform-using the example of microworkers. com. In Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS), 2011 Fifth International
Conference on, pages 322–329. IEEE, 2011.

[27] Mahmood Hosseini, Keith Phalp, James Taylor, and Raian Ali. The four pillars
of crowdsourcing: A reference model. In Research Challenges in Information
Science (RCIS), 2014 IEEE Eighth International Conference on, pages 1–12.
IEEE, 2014.

[28] Jeff Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.

[29] Shih-Wen Huang and Wai-Tat Fu. Don’t hide in the crowd!: increasing social
transparency between peer workers improves crowdsourcing outcomes. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 621–630. ACM, 2013.

[30] Panagiotis G Ipeirotis. Analyzing the amazon mechanical turk marketplace.
XRDS: Crossroads, The ACM Magazine for Students, 17(2):16–21, 2010.

[31] Panagiotis G Ipeirotis. Demographics of mechanical turk. 2010.

[32] Panagiotis G Ipeirotis and Evgeniy Gabrilovich. Quizz: Targeted crowdsourc-
ing with a billion (potential) users. In Proceedings of the 23rd international
conference on World wide web, pages 143–154. International World Wide Web
Conferences Steering Committee, 2014.

[33] Panagiotis G Ipeirotis, Foster Provost, and Jing Wang. Quality management on
amazon mechanical turk. In Proceedings of the ACM SIGKDD workshop on
human computation, pages 64–67. ACM, 2010.

[34] Lilly C Irani and M Silberman. Turkopticon: Interrupting worker invisibility in
amazon mechanical turk. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 611–620. ACM, 2013.

71

BIBLIOGRAPHY BIBLIOGRAPHY

[35] Melody Y Ivory, Rashmi R Sinha, and Marti A Hearst. Preliminary findings
on quantitative measures for distinguishing highly rated information-centric web
pages. In Proceedings of the Sixth Conference on Human Factors & the Web,
2000.

[36] Melody Y Ivory, Rashmi R Sinha, and Marti A Hearst. Empirically validated
web page design metrics. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 53–60. ACM, 2001.

[37] Nicolas Kaufmann, Thimo Schulze, and Daniel Veit. More than fun and money.
worker motivation in crowdsourcing-a study on mechanical turk. In AMCIS,
volume 11, pages 1–11, 2011.

[38] Aniket Kittur, Ed H Chi, and Bongwon Suh. Crowdsourcing user studies with
mechanical turk. In Proceedings of the SIGCHI conference on human factors in
computing systems, pages 453–456. ACM, 2008.

[39] Aniket Kittur, Jeffrey V Nickerson, Michael Bernstein, Elizabeth Gerber, Aaron
Shaw, John Zimmerman, Matt Lease, and John Horton. The future of crowd
work. In Proceedings of the 2013 conference on Computer supported cooperative
work, pages 1301–1318. ACM, 2013.

[40] Robert Kosara and Caroline Ziemkiewicz. Do mechanical turks dream of square
pie charts? In Proceedings of the 3rd BELIV’10 Workshop: BEyond time and
errors: novel evaLuation methods for Information Visualization, pages 63–70.
ACM, 2010.

[41] Edith Law and Luis von Ahn. Human computation. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, 5(3):1–121, 2011.

[42] Tak Yeon Lee, Casey Dugan, Werner Geyer, Tristan Ratchford, Jamie C Ras-
mussen, N Sadat Shami, and Stela Lupushor. Experiments on motivational feed-
back for crowdsourced workers. In ICWSM, 2013.

[43] Greg Little, Lydia B Chilton, Max Goldman, and Robert C Miller. Turkit: tools
for iterative tasks on mechanical turk. In Proceedings of the ACM SIGKDD
workshop on human computation, pages 29–30. ACM, 2009.

[44] Andrew Mao, Ece Kamar, Yiling Chen, Eric Horvitz, Megan E Schwamb, Chris J
Lintott, and Arfon M Smith. Volunteering versus work for pay: Incentives and
tradeoffs in crowdsourcing. In First AAAI Conference on Human Computation
and Crowdsourcing, 2013.

[45] Winter Mason and Duncan J Watts. Financial incentives and the performance of
crowds. ACM SigKDD Explorations Newsletter, 11(2):100–108, 2010.

[46] Tanushree Mitra, CJ Hutto, and Eric Gilbert. Comparing person-and process-
centric strategies for obtaining quality data on amazon mechanical turk. In Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, pages 1345–1354. ACM, 2015.

72

BIBLIOGRAPHY BIBLIOGRAPHY

[47] Gabriel Mugar, Carsten Østerlund, Katie DeVries Hassman, Kevin Crowston,
and Corey Brian Jackson. Planet hunters and seafloor explorers: legitimate pe-
ripheral participation through practice proxies in online citizen science. In Pro-
ceedings of the 17th ACM conference on Computer supported cooperative work
& social computing, pages 109–119. ACM, 2014.

[48] Sucheta Nadkarni and Reetika Gupta. A task-based model of perceived website
complexity. Mis Quarterly, pages 501–524, 2007.

[49] Gabriele Paolacci, Jesse Chandler, and Panagiotis G Ipeirotis. Running experi-
ments on amazon mechanical turk. Judgment and Decision making, 5(5):411–
419, 2010.

[50] Alexander J Quinn and Benjamin B Bederson. Human computation: a survey
and taxonomy of a growing field. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1403–1412. ACM, 2011.

[51] Sujith Ravi, Bo Pang, Vibhor Rastogi, and Ravi Kumar. Great question! question
quality in community q&a. In Eighth International AAAI Conference on Weblogs
and Social Media, 2014.

[52] Katharina Reinecke, Tom Yeh, Luke Miratrix, Rahmatri Mardiko, Yuechen Zhao,
Jenny Liu, and Krzysztof Z Gajos. Predicting users’ first impressions of website
aesthetics with a quantification of perceived visual complexity and colorfulness.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 2049–2058. ACM, 2013.

[53] Jakob Rogstadius, Vassilis Kostakos, Aniket Kittur, Boris Smus, Jim Laredo,
and Maja Vukovic. An assessment of intrinsic and extrinsic motivation on task
performance in crowdsourcing markets. In ICWSM, 2011.

[54] Ruth Rosenholtz, Yuanzhen Li, and Lisa Nakano. Measuring visual clutter. Jour-
nal of vision, 7(2):17, 2007.

[55] Joel Ross, Lilly Irani, M Silberman, Andrew Zaldivar, and Bill Tomlinson. Who
are the crowdworkers?: shifting demographics in mechanical turk. In CHI’10
Extended Abstracts on Human Factors in Computing Systems, pages 2863–2872.
ACM, 2010.

[56] Aaron D Shaw, John J Horton, and Daniel L Chen. Designing incentives for
inexpert human raters. In Proceedings of the ACM 2011 conference on Computer
supported cooperative work, pages 275–284. ACM, 2011.

[57] Anthony Tomasic, John Zimmerman, Aaron Steinfeld, and Yun Huang. Moti-
vating contribution in a participatory sensing system via quid-pro-quo. In Pro-
ceedings of the 17th ACM conference on Computer supported cooperative work
& social computing, pages 979–988. ACM, 2014.

[58] Robert Villa and Martin Halvey. Is relevance hard work?: evaluating the effort
of making relevant assessments. In Proceedings of the 36th international ACM

73

BIBLIOGRAPHY BIBLIOGRAPHY

SIGIR conference on Research and development in information retrieval, pages
765–768. ACM, 2013.

[59] Luis von Ahn. Human computation. 2005.

[60] Luis Von Ahn and Laura Dabbish. Labeling images with a computer game. In
Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 319–326. ACM, 2004.

[61] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel
Blum. recaptcha: Human-based character recognition via web security measures.
Science, 321(5895):1465–1468, 2008.

[62] Jie Yang, Claudia Hauff, Alessandro Bozzon, and Geert-Jan Houben. Asking the
right question in collaborative q&a systems. In Proceedings of the 25th ACM
conference on Hypertext and social media, pages 179–189. ACM, 2014.

[63] SN Yendrikhovskij, FJJ Blommaert, and H De Ridder. Optimizing color repro-
duction of natural images. In Color and Imaging Conference, volume 1998,
pages 140–145. Society for Imaging Science and Technology, 1998.

[64] Lixiu Yu, Paul André, Aniket Kittur, and Robert Kraut. A comparison of social,
learning, and financial strategies on crowd engagement and output quality. In
Proceedings of the 17th ACM conference on Computer supported cooperative
work & social computing, pages 967–978. ACM, 2014.

[65] Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. A survey of crowdsourc-
ing systems. In Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third
Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third
International Conference on, pages 766–773. IEEE, 2011.

[66] Xianjun Sam Zheng, Ishani Chakraborty, James Jeng-Weei Lin, and Robert
Rauschenberger. Correlating low-level image statistics with users-rapid aesthetic
and affective judgments of web pages. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1–10. ACM, 2009.

74

Appendix A

Glossary

This appendix provides an overview of frequently used terms and abbreviations.

Crowdsourcing: the act in which the crowdsourcing party solicits, through an open
online call, the completion of a certain task from a crowd of individual workers
in exchange for a reward.

Crowdsourcing System / Platform: an online system that facilitates the operation
and administration of the crowdsourcing process.

HIT: Human Intelligence Task. A task posted on MTurk by requesters to be per-
formed by workers.

Human Computation: the utilization by a computation system or process of human
processing power to perform its function.

Human Computation System: an intelligent system that organizes humans to carry
out the process of computation.

MTurk: Amazon Mechanical Turk, an online crowdsourcing platform.

Requester: A party offering work on a crowdsourcing platform.

Spammer: A malicious worker who purposely submits incorrect or incomplete an-
swers to earn more money.

Worker: A person working to complete tasks in a human computation system, usually
in exchange for a reward.

75

