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(Survey Paper)

Abstract—Data lakes are becoming increasingly prevalent for
Big Data management and data analytics. In contrast to tradi-
tional ‘schema-on-write’ approaches such as data warehouses, data
lakes are repositories storing raw data in its original formats and
providing a common access interface. Despite the strong interest
raised from both academia and industry, there is a large body of
ambiguity regarding the definition, functions and available tech-
nologies for data lakes. A complete, coherent picture of data lake
challenges and solutions is still missing. This survey reviews the
development, architectures, and systems of data lakes. We provide
a comprehensive overview of research questions for designing and
building data lakes. We classify the existing approaches and systems
based on their provided functions for data lakes, which makes this
survey a useful technical reference for designing, implementing and
deploying data lakes. We hope that the thorough comparison of
existing solutions and the discussion of open research challenges
in this survey will motivate the future development of data lake
research and practice.

Index Terms—Data discovery, data lake, metadata management.

I. INTRODUCTION

B IG data has undoubtedly become one of the most important
challenges in database research. Unprecedented volume,

large variety, and high velocity of data impede their collection,
storage, and processing; especially the variety of data still poses
a daunting challenge with many open issues [2]. Web-based
business transactions, sensor networks, real-time streaming, so-
cial media, and scientific research generate a large amount of
(semi-)structured and unstructured data, often stored in separate
information silos. Combining and integrating the information
across these silos is critical for reaching valuable insights.

Traditional schema-on-write approaches, like the extract,
transform, load (ETL) process of data warehouses [77], are
inefficient for such data management requirements. This has
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drawn the interest of many developers and researchers to NoSQL
data management systems. NoSQL systems provide data man-
agement features tailored to high amounts of schema-less data,
which enables a schema-on-read manner of data handling, i.e.,
the structure of data is not required for storing but only when fur-
ther analyzing and processing the data. Open-source platforms,
such as Hadoop [132] with higher-level languages (e.g., Pig
and Hive), and NoSQL databases (e.g., MongoDB and Neo4j),
have gained popularity. Although the current market share is still
dominated by relational database systems, a one-size-fits-all Big
Data system is unlikely to solve all the challenges related to data
management today.

To address this gap, data lakes (DLs) have been proposed.
In essence, a data lake is a flexible, scalable data storage and
management system, which ingests and stores raw data from
heterogeneous sources in their original format, and provides
maintenance, query processing and data analytics in an on-
the-fly manner, with the help of rich metadata [116], [138],
[142], [143]. Data lakes are proposed to store and manage
data in many real-life use cases: Internet of things (IoT) and
smart city [99], manufacturing [112], medicine [42], [55], [114],
mobility service (e.g., Uber) [50], biology [23], smart grids [20],
[103], air quality control [145], flights data [96], disease control,
labor markets and products [13].

A. Survey Goal and Related Work

In the past decade, various solutions and systems have been
proposed to address the research challenges of data lakes. How-
ever, while ‘data lake’ is a current buzzword with a lot of hype
surrounding it, there is a lot of ambiguity about its exact defi-
nition and functions. Moreover, most recent data lake proposals
only target a specific research problem or certain types of source
data. A coherent, complete picture of data lake problems and
solutions is still missing.

In this survey, we provide a thorough explanation of the data
lake concept, its development, more importantly, a categoriza-
tion and review of existing data lake solutions. The survey also
aims at helping researchers and developers to build or customize
a data lake, and discover open questions and future research
directions about data lakes. Earlier efforts in structuring the data
lake field only provide a limited view of a subset of research
problems regarding data lakes. Moreover, none of these works
touch on the details of future data lake challenges such as
supporting machine learning in data lakes.

Several earlier works [78], [98], [115] propose possible re-
search topics that should be studied with respect to data lakes
without reviewing existing data lake systems. These works are
orthogonal to our goals in this survey. Instead of merely listing
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TABLE I
CLASSIFICATION OF DATA LAKE SOLUTIONS BASED ON FUNCTIONS

potential research questions, our focus is to make a technical
comparison of the existing systems for data lakes.

In a recent tutorial, Nargesian et al. [105] cover seven func-
tions of data lakes. They have briefly discussed existing data lake
solutions, together with technologies and systems potentially
useful for data lakes1. In contrast to this tutorial, our survey
provides a more holistic introduction to data lakes and discusses
the required functions of data lakes in more detail (cf. Fig. 2 and
Table I for our functional view of data lakes).

Couto et al. [29] compare different data lake definitions and
list common open-source tools used in data lake architectures.
In [147], Zagan et al. review the architectures of seven specific
data lake systems. In a data lake architecture proposal [122],
Ravat and Zhao propose classification criteria for metadata
categories and data governance in data lakes. Giebler et al. [58]

1https://rjmillerlab.github.io/data-lake-tutorial-slides/

discuss some additional aspects of data lake architecture, data
storage, data modeling, metadata management and data gover-
nance. Each of these works only provides a partial list of data
lake functions. In this survey, we give a more comprehensive
view of the current data lake landscape and have a more in-depth
discussion regarding research challenges and solutions of data
lakes.

In [126] Sawadogo et al. compare different data lake defini-
tions, architectures, metadata types, metadata models, and meta-
data management components (e.g., semantic enrichment). They
provide a high-level guide for conceptual design of data lakes.
However, their discussion regarding functions to implement for
a data lake system is very brief and limited to summarizing the
open-source technologies and tools used in existing data lakes,
e.g., Apache Spark, Drill, and Pig. A similar survey [25] also
only focuses on the aspects of data lake architecture, metadata
management, and open-source technologies. In this survey, we

https://rjmillerlab.github.io/data-lake-tutorial-slides/
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cover a wider range of topics on data lakes beyond architecture
and metadata management. We also show how to navigate from a
conceptual architecture to system functions. We propose a more
fine-grained categorization of existing systems for data lakes and
provide a more detailed comparison of systems in each category.
For each data lake function, we also cover the state-of-the-art
systems not mentioned in [25], [126].

B. Contributions and Outline

Our main contributions are summarized as follows:
� We review the more than ten-year development of the

data lake concept and implementations, and discuss future
directions.

� We clarify the workflow and functions for building a data
lake through a fine-grained architecture.

� We provide a three-level classification of existing studies
about data lakes according to their provided functions.
We analyze each class of research problems in depth and
compare the existing data lake approaches.

Scope of the Survey. In this survey, we focus on systems that
explicitly claim to be a data lake (e.g., personal data lake [143]),
or provide partial functions of a data lake (e.g., the data discovery
system Aurum [48]). It is beyond the scope of one survey article
to list all possible research topics and all potential solutions for
data lake systems. Some research topics mentioned in this survey
have been intensively studied in the database community, e.g.,
data integration, data cleaning, and data discovery. There are
dedicated surveys on these topics, while in this survey we only
introduce and compare systems tackling these problems within a
data lake. For these topics, we will explain the lake-specific prob-
lem settings. For instance, consider the data integration problem
(Section VI-C), which is to resolve heterogeneous schemata or
entity values. In a data lake, for data integration we often assume
more levels of heterogeneity among the data sources. Finally, for
system comparison, we mainly cover implemented systems that
resolve research problems of data lakes, rather than high-level
DL system proposals or commercial DL products. We made this
choice because such high-level proposals often lack details for
meaningful comparison, and do not always reflect the feasibility
of actual system implementation. For a more industrial point of
view, we point the reader to papers like [59], [73], [125].

Outline. As illustrated in Fig. 1, the survey has four parts.
The first part covers the fundamentals of data lakes, including
the introduction (Section I) and the origin and development
(Section II). Then we discuss the common aspects that almost
every data lake designer needs to consider: the system architec-
ture (Section III) and data storage (Section IV). In particular,
we introduce the criteria of classifying data lake solutions in
Section III-B. In the third part, we categorize existing data lake
solutions by their functional tiers: ingestion (Section V), main-
tenance (Section VI), and exploration (Section VII). Finally, we
discuss research challenges and future directions in Section VIII
and conclude the survey in Section IX.

How to Use This Survey. We organize the survey in the
structure of Fig. 1, such that it is self-contained and presented
in a natural flow. We first explain high-level concepts and ar-
chitecture, before discussing data storage options and functions.
A data lake expert interested in a particular research problem,

Fig. 1. Survey outline.

can directly go to Sections V, VI, and VII. Discussions on
challenging new directions are in Section VIII.

II. A BRIEF HISTORY OF DATA LAKES

As of this writing, the concept of data lakes is about a decade
old and has significantly evolved in this period. We summarize
this evolution in three stages.

A. 2010-2013: Beginnings

The concept of data lake was first coined in the industry. In
2010, it was first proposed by Pentaho CTO James Dixon, as
a solution that handles raw data from one source and supports
diverse user requirements [37]. This was seen in sharp contrast to
data warehouses or data marts for which the structure and usage
of the data must be predefined and fixed, while rigorous data
extraction, transformation, and cleaning are necessary before
entering data. By storing raw data in the original format, data
lakes could avoid or delay this expensive standard preprocessing.

In 2013, Pivot proposed an architecture for a business data
lake [19], which ingests multiple data sources in three ab-
stract tiers: (1) an ingestion tier takes data in real-time/micro-
batch/batch, (2) an insight tier analyzes data in real-time or inter-
active time and derives insights, and (3) an action tier that links
insights with the existing applications; additional tiers monitor
and manage the data. Pivot also suggested using Hadoop [132]
as the storage system of a data lake, and applying its existing
products to realize the previous tiers. However, not many details
were given w.r.t. the actual implementation of a data lake.

B. 2014-2015: Criticisms and Further Development

In 2014, Gartner raised several criticisms about data
lakes [54]. The main one was that ingesting disparate data
might easily turn the data lake into an unusable “data swamp”,
unless there are metadata management and data governance.
In particular, after ingestion, the semantics and data quality of
the raw data are unknown, while the origin (provenance) of
individual datasets and possible connections among them are
missing. Indeed missing this information hinders user interac-
tion with the data lake. In addition, Gartner pointed out that the
existing data lake solutions did not provide a good answer on
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how oversight of data security and privacy should be conducted.
These crucial criticisms had a significant influence on many
data lakes studies in the following years, which we discuss in
Sections V and VI. In response, Dixon revisited the general
concept [38] and emphasized that a data lake should also be
equipped with metadata and governance, so that even with data
in its raw form, a data lake could enable ad-hoc data analytics.

As more DL proposals started to emerge, they brought
new requirements, solutions, and challenges. They signif-
icantly augmented the possible functions of a data lake,
e.g., heterogeneous data, schema-on-read, metadata extrac-
tion/enrichment/management, applied Artificial Intelligence,
and Crowdsourcing. PwC defined a data lake as a repository
of structured, semi-structured, and unstructured data in hetero-
geneous formats [138], originating from the business transac-
tions, sensors, or mobile/cloud-based applications. With Hadoop
in the center, a new requirement is that a data lake should
provide a low-cost data storage that is easy to access, yet in
a schema-on-read manner, i.e., the data and metadata (e.g.,
semantics) can grow over time. The postulation is that a data lake
actively extracts metadata from the raw data and stores it; then,
it discovers patterns in the raw data. Moreover, users provide
additional descriptive information of datasets (e.g., semantic an-
notations, domain-specific knowledge, and attribute linkages).
The dynamic interaction between the data lake and users should
thus continuously improve the quality and value of data.

Other proposals addressed new possibilities such as Artificial
Intelligence (AI) and Crowdsourcing to facilitate data integra-
tion, access, and quality improvement in data lakes [108]. For
example, AI helps with extracting features of data, generating
tags with descriptive metadata, finding related datasets, discov-
ering possible structures from schema-less data, and avoiding
data redundancy. Crowdsourcing can help with collectively tag-
ging semantic knowledge about the data, and linking possible
relationships among datasets.

With a special focus on security information and event man-
agement, In [97] Marty discussed how to properly store and
access the data. The importance of metadata management is
emphasized in [143] with an architecture to parse, store, and
query diversely structured personal data. Another proposal [46]
emphasized the importance of Human-in-the-loop, e.g., data
scientists govern the data in data lakes.

C. 2016-present: Prosperity and Diversity

Since 2016 the realization of data lakes in industry and re-
search has been booming. There are proposals about data lake
architectures [74], [92], [131], [134], concept, components and
challenges [98], [101], [115].

Many IT companies offer commercial tools for building
data lakes, e.g., GOODS [68] from Google, Azure Data
Lake [120] from Microsoft, AWS Lake2 from AMAZON, Vora
from SAP [130], IBM and Cloudera3, Oracle4, and Snowflake5.
Delta Lake6 from Databricks is an open-source project that offers
a storage tier compatible with Spark7 APIs.

2https://aws.amazon.com/lake-formation/
3https://www.ibm.com/analytics/data-lake
4https://www.oracle.com/data-lakehouse/
5https://www.snowflake.com/data-lake/
6https://delta.io/
7https://spark.apache.org/

Meanwhile, data lake related research problems are raising
massive attention associated with the implementation of DL pro-
totypes. A large range of challenges are discussed, such as meta-
data management [61], data quality [47], data provenance [140],
metadata enrichment [9], [64], dataset organization [5], [154],
modeling [57], [107], [117], data integration [62], [65] and
related dataset discovery [14], [15], [48], [151], [154]. Such
systems, targeting specific research challenges of data lakes,
are also our main focus in this survey. We address them in
Sections IV, V, and VII.

III. DATA LAKE ARCHITECTURE AND PROPOSED

CATEGORIZATION CRITERIA

The architecture of a data lake describes the structure and
components of the system, indicating how to store, organize and
use the data. A recent survey [126] elaborated on the categoriza-
tion of existing data lake architectures, while a methodology for
designing data lake architecture is discussed in [56]. In existing
data lake architecture proposals, there are mainly two high-level
data lake philosophies, pond and zone architectures. Rather than
repeating similar content as in [56], [126], we briefly review
pond and zone architectures in Section III-A. We mainly focus
on presenting an integrative, function-oriented architecture and
classification criteria for data lake studies in Section III-B.
Additionally, we discuss the different kinds of data lake users in
Section III-C.

A. Pond and Zone Architectures

The pond architecture [74] partitions ingested data by their
status and usage. In specific, ingested data is first stored in the
raw data pond, then transformed and moved to the analog data
pond, application data pond, or textual data pond if possible.
Associated processes are created to prepare the data for fu-
ture analytical processing. Later on, valuable data is secured
long-term in an archival data pond. For instance, analog data
generated by an automated device is moved to the analog data
pond followed by data reduction to a feasible data volume. In
contrast, the zone architecture [26], [111], [122], [131], [156],
separates the life cycle of each dataset into different stages.
For instance, there could be individual zones for loading data
and checking data quality, storing raw data, storing cleaned and
validated data, discovering and exploring the data, or using the
data for business/research analysis.

B. Proposed Architecture and Categorization Criteria

High-level architectural philosophies, such as pond or zone
architecture, often lack technical details about functions, which
hampers modular and reusable implementations. Therefore, we
propose an architecture based on our previous works [61],
[78], as in Fig. 2. This architecture can also be seen as an
abstraction of earlier tier-based data lake proposals [44], [131],
[140]. Notably, here we define specific functions in each tier,
which are not covered in these proposals. The goal of propos-
ing such an architecture is two-fold. First, it clarifies the nec-
essary functions in the whole workflow of a data lake, and
provides a more comprehensive view compared to earlier DL

https://aws.amazon.com/lake-formation/
https://www.ibm.com/analytics/data-lake
https://www.oracle.com/data-lakehouse/
https://www.snowflake.com/data-lake/
https://delta.io/
https://spark.apache.org/
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Fig. 2. Proposed architecture for data lake solution categorization.

architecture proposals. Second, it enables a fine-grained catego-
rization and in-depth comparison of existing systems for each
function.

Proposed Architecture. The data lake architecture in Fig. 2
provides a three-tier function-oriented linkage between data
lake users, and a storage tier encompassing potentially mul-
tiple different technologies. In Section IV we review storage
strategies applied in existing data lake solutions, which could
be on-premise or cloud, single or multiple data storage systems,
relational or NoSQL databases.

The architecture divides functions of the whole workflow into
three tiers, according to when the functions are needed. There
are certain functions during or right after data is ingested, which
are in the ingestion tier. The ingestion tier is responsible for
importing data from heterogeneous sources into the data lake
system. The main challenges are about extracting and modeling
metadata (Section V).

Functions in the middle (i.e., the maintenance tier) are for
general management and organization of ingested datasets,
which can also be considered as the preparation for querying. To
prepare ingested raw data for querying or analytics, a data lake
needs a set of operations in the maintenance tier to organize,
discover, or integrate datasets (Section VI).

Some functions are triggered by user queries or applications
of a data lake, as shown on the right side of Fig. 2, i.e., the
exploration tier. These functions mainly contribute to allowing
users to access the data lake. We observe two manners of
exploring in existing works: query-driven data discovery and
heterogeneous data querying, which we discuss in Section VII.
They also form the basis for external application tiers on top of
these three tiers, e.g., for visualization [99] or machine learning.

Three-Level Classification Criteria. As one of our main con-
tributions, here we explain our classification criteria applied in
this survey, which is based on our proposed data lake architecture
in Fig. 2. Many existing research works focus on one specific

function inside a data lake. Thus, we classify them by their
functions in the architecture in Fig. 2. Table I shows such a
categorization: we first group the existing systems by the tier
and then the exact provided function. Of course, some systems
provide more than one function. For instance, some data dis-
covery systems in Table I also have components for metadata
extraction and querying. We will give a detailed explanation of
each functional criterion in Sections V, VI, and VII. For some
extensively studied functions, e.g., metadata modeling, related
dataset discovery, we further categorize the systems based on
their methods. As emphasized in Section I, in this survey we
mainly compare existing systems developed for data lakes. The
11 functions in Table I are summarized based on existing data
lake related studies. For more potentially useful functions in a
data lake architecture, yet not studied, see [115]. In summary,
we follow a three-level categorization of existing data lake
solutions: tiers (when the function is needed), functions (what
the function is), and methods (how the function is achieved).

Lake-Specific Research Perspectives. Some functions in
Table I are challenges almost every data management system
with heterogeneous data needs to face, e.g., related dataset
discovery, metadata extraction and enrichment, data cleaning,
and data provenance. However, as discussed in Section I, data
lakes require a novel, flexible manner of data management,
which also leads to new research challenges. By ingesting the
raw data as it is, we cannot simply refer to an existing schema.
Instead, we need to actively discover related datasets partially
at ingestion time, but mostly during maintenance or even at
querying time. Therefore, we discuss related dataset discovery
methods from both maintenance (Section VI-B) and exploration
(Section VII-A) perspectives. Moreover, a data lake often needs
to ingest a large volume of data, possibly also at a high velocity or
even as continuous data streams, which cannot be stored in full in
the data lake. Not all metadata can be extracted at ingestion time
(Section V-A), but we need to continue enrichment during later
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phases as well (Section VI-D). For similar reasons, we assign the
continuous activities of data cleaning (Section VI-E) and data
provenance (Section VI-G) in the maintenance tier.

C. Data Lake Users

As shown in Fig. 2, the complete picture of a data lake also
includes human users. Users often interact with a data lake in
different roles. According to [26], a business data lake scenario
typically includes: (1) data scientists and business analysts
who build and apply analytics models over the data lake, (2)
information curators who define new data sources, organize and
maintain the metadata in the catalog of existing data sources, (3)
the governance, risk, and compliance team who ensures that the
organizational regulations and business policies are followed
(e.g., an auditor), and (4) the operations team that maintains the
data lake (e.g., data quality analysts, integration developers).
Such users can help improve enriching the semantics of data
lakes over time, by adding metadata tags and linkage informa-
tion based on conceptual models or standard vocabularies with
respect to ontologies, such as schema.org [78], [138]. Moreover,
it is not an easy task to design a data lake that has effective
control of data security over diverse users and heterogeneous
data stores in data lakes. CoreDB [9], [10] creates different
users or roles for access control, and enables authentication and
data encryption. A few tools are mentioned in [29] for system
authentication, authorization, and data encryption based on the
Hadoop platform, e.g., Apache Ranger8.

In this survey, our focus is to conduct a technical comparison
of systems, instead of human-system interaction. In the follow-
ing, we do not emphasize these different kinds of users and
generally call them data lake users.

IV. STORAGE

An important aspect of a data lake’s architecture is the storage
tier, which specifies the technology used for storing data. In what
follows, we show that some approaches rely on the common
relational or NoSQL databases while others have developed new
storage systems, or combinations (polystores); the upper part of
Fig. 2 depicts such diverse choices, which could be operated
on-premise or in the cloud. We classify the existing data storage
solutions for data lakes by how the ingested data is stored in the
lake: as files (Section IV-A), in a single database (Section IV-B),
or using polystores (Section IV-C). We also briefly mention
industrial solutions that build data lakes on cloud platforms
(Section IV-D).

A. File-Based Storage Systems

The Hadoop Distributed File System (HDFS) is one of
the most frequently mentioned data storage systems for data
lakes [13], [19], [138]. HDFS supports a wide range of files [60].
Besides text (e.g., CSV, XML, JSON) and binary files (e.g.,
images), it supports certain formats for data compression, e.g.,
Snappy9, Gzip10. It also allows columnar storage formats such as

8https://ranger.apache.org/
9https://github.com/google/snappy
10https://www.gzip.org/

Parquet11 and row-based storage format Avro12 that enable easy
schema management. As one of the most common data storage
options for data lake, file systems such as Hadoop are widely
used in practice. In this survey, we list a few representative
systems as follows.

Hadoop alone usually does not fulfill the goals of a data lake.
Microsoft’s Azure data lake store [120] offers a hierarchical,
multi-tier file-based storage system13. It applies Azure Blob
storage, which is a cloud storage solution optimized for large
unstructured object data. It also supports HDFS and the Hadoop
ecosystem, e.g., Spark, Sqoop14. Azure also has an indexing
subsystem Hyperspace [1]. Another system built upon HDFS
is CLAMS [47]. CLAMS is a prototype system that stores
the ingested dataset in HDFS, and allows users to register the
datasets for constraint discovery and data cleaning for data lakes.

B. Single Data Store

Some DL systems aim at specific types of data and employ
a single database system at their storage tier. As an example,
the personal data lake [143] applies a graph-based data model
(i.e., property graphs), and stores data in Neo4j. The proposed
data lake has a special focus on user data. Such data is usually
relatively small in size compared to business scenarios, but
imposes higher requirements regarding data privacy. Heteroge-
neous personal data fragments generated from user-web interac-
tion (structured, semi-structured, unstructured) are serialized to
specifically defined JSON objects. These are flattened to Neo4j
graph structures with extensible metadata management in the
data lake, categorizing for kinds of data: raw data, metadata,
additional semantics, and the data fragment identifiers.

Potential Techniques. Going further, multi-model databases
support multiple data models and formats in a single database
(for a survey, cf. [88]). However, before choosing a multi-model
database in a data lake, one should also check the underlying
storage strategy, i.e., native storage support for different data
models or merely different interfaces to the same storage strat-
egy. If not, polystores should be considered, as discussed next.

C. Polystore Systems

Polystore (or multistore) systems provide an integrated access
to a hybrid of multiple data stores for heterogeneous data. By
definition, a data lake supports heterogeneous data in raw format,
e.g., for zone architectures [156]. Thus, polystores are a feasible
choice when a data lake is diverse.

Constance [61], [65] applies polystores, and stores the di-
verse raw data according to its original format: relational
(e.g., MySQL), document-based (e.g., MongoDB), and graph
databases (e.g., Neo4j). For instance, a JSON file will be stored
in MongoDB. If an input dataset cannot be directly stored in
a relational or NoSQL store, or considering, e.g., scalability
for distributed computing, data can also be stored in HDFS.
An example would be a data source producing streams of large
binary image files, which requires parallel data compression. If

11https://parquet.apache.org/
12https://avro.apache.org/
13The latest system is known as Azure Data Lake Storage Gen2.
14https://sqoop.apache.org/

https://ranger.apache.org/
https://github.com/google/snappy
https://www.gzip.org/
https://parquet.apache.org/
https://avro.apache.org/
https://sqoop.apache.org/
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these defaults seem inadequate, users can specify the data store
via the user interface.

Google Dataset Search (GOODS) [67], [68] supports het-
erogeneous data storage used in Google’s key-value stores
Bigtable [22], file systems, and Spanner [28] (see also Sec-
tion IV-D).

Another data lake service allowing raw data stored in both
relational and NoSQL is CoreDB [9], [10]. To store diverse
data from web applications, besides relational databases (e.g.,
MySQL, PostgreSQL, Oracle), it supports multiple NoSQL
systems, i.e., MongoDB, HBase15, and HIVE. JSON is used
as a unified format to represent entities.

Juneau [151] supports data science tasks in data lakes. It
mainly focuses on tabular data or nested data that can be easily
unnested into relations. Besides data processed by the notebook
kernel, Juneau also handles (Jupyter, JupyterLab, Apache Zep-
pelin, or RStudio) notebooks, workflows in a notebook, and cells
that constitute a workflow. Moreover, it needs to generate and
store the relationships of these data objects as graphs. Thus,
it applies both a relational database (PostgreSQL) and a graph
database (Neo4j).

Potential Techniques. Since 2015, the study of polystores
has been booming with regard to systems (e.g., Polybase [69],
BigDAWG [41]) and open-source tools (e.g., Drill16, Spark) –
see [141] for a survey. Although they are not claimed as data
lakes, they are potentially useful techniques to be part of a data
lake architecture. In Section VII-B we continue with how to
query a polystore.

D. Cloud Data Lakes

Recently, it is becoming a common practice to build large-
scale commercial data lakes on cloud infrastructure [144], [148],
[152]. Cloud-based storage choices include single-cloud, multi-
cloud and a hybrid of cloud and on-premise platforms [148].
Several major cloud database vendors are promoting server-less
data analytics and native cloud platform for building data lakes,
most prominently Amazon Web Services (AWS)17, Azure Data
Lake Store18, Google Cloud Platform (GCP)19, Alibaba Cloud20,
and the Data Cloud from Snowflake21. Cloud platforms have
several prominent advantages for data lakes. In a cloud data lake,
one can scale storage space and computation power dynamically,
and in many cases, the prices of resources are more economical
than on-premises. Moreover, major cloud vendors provide many
additional analytics tools in their product portfolio, e.g., AI
services and data visualization tools, which make it convenient
for developing different applications on top of data lakes. There
are proposals [1], [144] on building indexing structures for cloud
data lakes. Nevertheless, relying on a cloud platform also implies
risks and challenges in some aspects such as data security, data
provenance, and fault tolerance.

15https://hbase.apache.org/
16https://drill.apache.org/
17https://aws.amazon.com/big-data/datalakes-and-analytics/
18https://azure.microsoft.com/en-us/solutions/data-lake/
19https://cloud.google.com/solutions/build-a-data-lake-on-gcp
20https://www.alibabacloud.com/product/data-lake-analytics
21https://www.snowflake.com/workloads/data-lake/

E. Summary and Discussion

Choosing the right data storage system is one of the most
important parts of architecting a data lake. A data lake designer
needs to factor in not only the raw data itself, but also how the
data will be used. We have shown that the choices are diverse:
file systems or databases (relational or NoSQL), single or hybrid
systems, on-premise or cloud, etc. The specific choice of storage
strategy often shapes the required functions, which we introduce
next.

V. INGESTION

During the ingestion phase, a data lake loads raw data. Without
any additional information or insights, i.e., metadata, a data
lake is hardly usable as the structure and semantics of the data
are not known; this could potentially turn the data lake into
a ‘data swamp’. Therefore, it is crucial to acquire as much
metadata as possible from the data sources. There are different
types of metadata: schemata which preserve the structure of the
dataset, semantic metadata, constraints, and other descriptive
information, etc. During or shortly after data ingestion, exist-
ing solutions mainly extract metadata from the input datasets
and model them. Thus, in this section, we focus on metadata
extraction (Section V-A) and modeling (Section V-B).

A. Metadata Extraction

Metadata extraction is the process of discovering metadata
information of a dataset. Often, structural metadata is extracted
in the first place, but also semantical information and relation-
ships to other datasets. In a data lake, metadata extraction is
essential for accessing datasets in a later phase. In Section VI-D,
we further address extracting hidden metadata such as functional
dependencies. Given semi-structured or unstructured data, ex-
isting approaches [53], [61], [117] extract primarily structural
metadata, while the one in [136] extracts metadata related to
content and context.

The Generic and Extensible Metadata Management System
(GEMMS) for data lakes [117] is a framework for extracting
metadata from heterogeneous sources, which is then stored in
an extensible metamodel. Since the data sources and schemata
may change over time, it is important that the data lake has
a flexible and extensible manner of metadata extraction. For
each input file, GEMMS first detects its format, then initiates
a corresponding parser to obtain the structural metadata (e.g.,
trees, tables, and graphs) and metadata properties (e.g., header
information implying the content of the file). A tree structure
inference algorithm is implemented for structural metadata ex-
traction, which iterates semi-structured data in a breadth-first
manner, and detects the tree structure. A follow-up work, Con-
stance [61], can also extract structural metadata, i.e., schemata
from semi-structured files such as XML and JSON.

DATAMARAN [53] provides a three-step algorithmic ap-
proach to extract structures from semi-structured log files. The
records of its input log files, span multiple lines, with record
types and boundaries. It first generates candidate structure
templates, which use regular expressions [135] to express the
record structure while allowing minor variations. The structure
templates are stored in hash-tables, and only the ones satisfying

https://hbase.apache.org/
https://drill.apache.org/
https://aws.amazon.com/big-data/datalakes-and-analytics/
https://azure.microsoft.com/en-us/solutions/data-lake/
https://cloud.google.com/solutions/build-a-data-lake-on-gcp
https://www.alibabacloud.com/product/data-lake-analytics
https://www.snowflake.com/workloads/data-lake/
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a coverage threshold assumption are kept. Next, redundant struc-
ture templates are pruned based on a specially designed score
function, and finally further optimized using two refinement
techniques over the pruned structure templates. The process
of DATAMARAN does not require human supervision and
provides a high extraction accuracy compared to existing works.
In the experiments, the authors crawled 100 datasets with large
log files from GitHub to mimic a real data lake.

Skluma [136] extracts metadata regarding content and context
from scientific data files. The types of input files are diverse,
e.g., JSON, CSV, unstructured texts, and images. It first finds
the name, path, size, and extension of the files; then it infers file
types and adds specific extractors accordingly to process tabular
data, free texts or null values, etc. With the growing importance
of Research Data Management for replicability in scientific
studies, we expect such approaches to grow significantly over
the following years.

B. Metadata Modeling

Metadata modeling answers the question of how to structure
and organize the metadata. Notably, it is a necessary step to make
the content of a data lake findable, accessible, interoperable,
and reusable (FAIR Principles [146]). The majority of proposed
models are either logic-based or graph-structured. Here we
categorize the existing solutions based on the types of metadata
models: generic models, data vault, and graph-based models.

1) Generic Metadata Models: The logic-based metadata
model of GEMMS [117] has different model elements and
allows the separation of metadata containing information about
the content, semantics, and structure. It captures the general
metadata properties in the form of key-value pairs, as well as
structural metadata as trees and matrices to assist querying.
Moreover, domain-specific ontology terms can be attached to
metadata elements as semantic metadata. In [64], this metadata
model is extended for representing individual schemata for
relational tables, JSON, and labeled property graphs of Neo4j.

Another generic metadata model is HANDLE [43]. It has three
abstract entities: data, metadata, and property. HANDLE enables
flexibility with fine-grained levels, and it adapts the zone archi-
tecture mentioned in Section III-A. The elements of the GEMMS
model can also be mapped to HANDLE. Finally, HANDLE can
be used for linked data and can be implemented in Neo4j.

2) Data Vault: For structured or semi-structured data in
typical business scenarios, a promising conceptual modeling
environment is data vault [57], [107]. It has three main types of
elements: hubs representing business concepts, links indicating
the many-to-many relationships among hubs, and satellites with
descriptive properties of hubs and links [86], [87]. Nogueira
et al. [107] show how their conceptual model based on data
vault can be transformed into relational and document-oriented
logical models, and further to physical models (PostgreSQL
and MongoDB, respectively). Giebler et al. [57] have reported
their experience with applying data vaults for data lakes in
the domains of manufacturing, finance, and customer service.
They also pointed out practical obstacles, such as inconsistencies
among data sources.

3) Graph-Based Metadata Models: Adapting ideas about
knowledge graphs from the linked data and Semantic Web

communities, several network- or hypergraph-based metamod-
els have been proposed for data lakes. In the business context,
Diamantini et al. [34], [35], [36] propose a network-based meta-
data model, focusing on business names, data field descriptions,
and rules, in addition to data formats and schemata. It creates a
graph-based representation with XML/JSON nodes and labeled
arcs indicating their relationship. Nodes can be merged based on
lexical and string similarities, and linked to semantic knowledge
(e.g., from DBpedia). The authors suggest extracting thematic
views of interest to the business, similar to data marts in data
warehouses. In [36] the proposed model can support unstruc-
tured data, besides (semi-)structured ones.

To efficiently discover relevant datasets from massive data
sources, Aurum [48] devises an enterprise knowledge graph
(EKG) to capture and query relationships among datasets. An
EKG is a hypergraph with three elements: nodes, weighted
edges, and hyperedges. Nodes represent dataset attributes, which
are connected by edges when there is a relationship among them;
hyperedges represent different granularities among arbitrary
numbers of nodes, e.g., connecting attributes and tables. Aurum
builds the EKG, maintains it upon data changes and allows users
to query it with a graph query language based on discovery
primitives.

Sawadogoet et al. [127] emphasize six evolution-oriented
features of metadata management: semantic enrichment, data
indexing, link generation and conservation (discover hidden
similarities or integrate existing links among datasets), data
polymorphism (preserve multiple transformed forms of the same
dataset), data versioning, and usage tracking. Taking these fea-
tures into consideration, their metadata model encompasses the
notions of hypergraph, nested graph, and attributed graph. In
terms of content, it can describe attributes, objects, datasets,
historical versions, (similarity or parent-child) relationships,
logs, and indexes.

4) Summary and Discussion: Metadata extraction and se-
mantically rich modeling of metadata are crucial issues for the
ingestion phase of a data lake. The data vault model has been de-
veloped for more structured environments like data warehouses
and does not seem to fully fit the requirements for unstructured
data and flexibility in data lakes. Early lake-specific approaches
like GEMMS aimed at structured metamodels (i.e., formally
expressed as a UML class diagram), carefully designed to cover
all the information possibly relevant for metadata management
in a data lake. These approaches also have their limitations in
flexibility: the metadata model might be easily extensible, but
the management of the metadata (i.e., its storage, user interfaces
for creation and manipulation, etc.) is much more challenging.
Recent graph-based models are more promising for flexibility
if the graph-based storage systems are applied for the manage-
ment of metadata. Furthermore, as the linking of information in
organizations and knowledge graphs become more important,
graph-based metamodels are a better fit for these techniques.

VI. MAINTENANCE

After ingesting heterogeneous raw data from diverse sources,
a data lake is a vast collection of unrelated data, for which we
have limited information. To make the data usable, the data lake
needs to further process and maintain the raw data, e.g., find
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more metadata, discover hidden relationships, and perform data
integration, transformation or cleaning if necessary. As shown
in Fig. 2, in this section we categorize the maintenance-related
functions into seven groups and discuss the corresponding data
lake solutions.

A. Dataset Organization

The dataset organization problem studies how to structure and
navigate the massive heterogeneous datasets in data lakes. Exist-
ing solutions for this problem, define new structures to group and
organize datasets for better understanding and accessing a data
lake. We categorize them based on their underlying technologies
to construct the structure for a data lake: catalogs, classification
models, and directed acyclic graphs. Although the following
systems provide means to organize a data lake, their exact
goals differ. For example, KAYAK [90], [91] and Juneau [151]
facilitate data science applications, while DS-Prox [3], [4], [5]
is a pre-filtering step of schema matching [118].

1) Catalog-Based Organization: GOODS [67], [68] allows
datasets to be created, stored, and modified first, before con-
ducting metadata collection. For each dataset, it collects various
metadata and adds it as one entry in the GOODS catalog,
which is stored in Bigtable. To organize, profile and search
datasets (e.g., cluster different versions of the same dataset),
the metadata is classified into six categories, including basic,
content-based, provenance, user-supplied, team, project, and
temporal metadata. This categorization of metadata is closely re-
lated to Google’s specific information retrieval requirements. If
a data lake developer applies similar catalog-based organization
strategy, she should be encouraged to customize the metadata
catalog to her own needs.

2) Classification Model Based Organization: DS-Prox [5]
and a later version DS-kNN [3] consider the dataset organization
problem as a classification problem. In specific, DS-kNN incre-
mentally adds every dataset into a new or existing category by
applying k-nearest-neighbour (k-NN) search. Before the step
of classification, DS-kNN first conducts data preparation by
feature extraction. For each attribute, depending on whether its
values are continuous or discrete, DS-kNN extracts statistical or
distribution-based features respectively, e.g., average numeric
mean, or the average number of values. Such data-based features
are added to each dataset, together with other features based on
extracted metadata, e.g., the number of attributes, and types of
each attribute. Using these features, DS-kNN computes dataset
similarity by employing Levenshtein distance [95]. Next, given
a new dataset, the proposed classification-based algorithm re-
turns top-k neighbors (classified datasets), from which DS-kNN
chooses the most frequently appeared category, then assigns the
current dataset to this category. If none of the existing datasets
are found, the new dataset is assigned to a new category. Finally,
the datasets in the lake can be visualized as a graph: each node
is a dataset, and edges between two nodes are labeled with the
similarity of the two datasets. A later work [4] uses supervised
ensemble models to obtain the similarity values between dataset
pairs.

3) DAG-Based Organization: In what follows, we introduce
the dataset organization solutions that apply directed acyclic
graphs (DAGs). Although they all apply DAGs to organize and

navigate a data lake, the exact functions and the definitions of
DAGs differ, as listed in Table II.

KAYAK [90], [91] aims to support data science pipelines
in data lakes, and it organizes the dataset relationships and
operations. It defines a data lake as a collection of datasets,
and manages the operations on the datasets, which are the basic
blocks of data preparation pipelines. Data preparation refers to
the processing of raw data, so that it can be used in downstream
tasks, e.g., analytics. KAYAK first defines atomic tasks such
as basic profiling and dataset joinability computation. Then
a sequence of such atomic tasks further builds up a specific
operation for data preparation, referred to as a primitive, e.g.,
insert a dataset. Table II shows two different usages and def-
initions of DAGs in KAYAK, pipeline and task dependency.
To represent data preparation pipelines, it uses a DAG with
primitives as nodes and their dependencies (based on execution
order) as edges. To manage dependencies among tasks and
execute the atomic tasks of a primitive in parallel, KAYAK
defines the second type of DAG for task dependency as shown
in Table II. Here each node represents an atomic task, and the
directed edges indicate the execution order of two tasks. Such
a DAG helps to identify which tasks can be parallelized during
execution.

Nargesian et al. [104] define the data lake organization prob-
lem as discovering the optimal structure to effectively find the
desired dataset in a data lake. Such a structure for navigating
data lakes is referred to as an organization:
� As listed in Table II, a DAG-based organization in [104],

has sets of attributes as nodes. The leaf nodes are attributes
of input tables, while non-leaf nodes have a topic label that
summarizes the set of attributes or topics represented by its
child nodes. The edges represent containment relationships
between the set of attributes represented by the nodes.

� To measure semantic similarities among attributes, at-
tribute values are associated with n-dimensional represen-
tations [106], which enable the use of cosine similarity.
The process of navigation is formalized as a Markov model,
where the states are the nodes (i.e., sets of attributes) and
transitions are the edges, i.e., future states depend only
on the current state, not on all the historical states. Thus,
given a query asking about a topic (e.g., searching keyword
is food), the transition probability depends only on the
current node in the DAG and the similarities between its
child nodes and the given topic. The proposed algorithms
in [104] try to find the organization structure that achieves
the maximum probability for all the attributes of tables to
be found.

A more recent system RONIN [110], combines navigation
using the above DAG-based structure [104], with metadata
keyword search and joinable dataset search in a data lake.

In Section IV-C we have mentioned that Juneau [151] handles
computational notebooks, workflows, and cells, from which it
builds graphs for data management. A workflow graph is a
directed bipartite graph with two types of nodes: data object
nodes which represent input/output files or formatted text cells,
and computational module nodes representing code cells in a
Jupyter notebook. If the data object is the input or output of the
computational module, there is a directed edge connecting their
nodes. Moreover, as shown in Table II, Juneau also has a DAG for
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TABLE II
COMPARISON OF DAG-BASED DATASET ORGANIZATION APPROACHES IN SECTION VI-A3

managing the relationships of variables in notebooks, referred to
as variable dependency graphs. In a variable dependency graph,
nodes represent the variables, and the labeled, directed edges
indicate that one variable is computed using another variable
through a function. Via subgraph isomorphism, Juneau is able to
discover tables sharing similar workflows of notebooks (similar
sequences/patterns of variables and functions).

4) Summary and Discussion: In this subsection, we have
discussed various methods on organizing datasets. Yet, each
of these methods comes with its own use cases, merits and
limitations.

In particular, while GOODS [67], [68] presents an innovative
way to build a dataset metadata catalog, it is heavily tailored
to datasets and practices used to produce them in Google;
the majority of metadata crawled is connected to standardized
processes used inside the company to create, maintain and
store datasets. Methods based on classification models, like
DS-Prox [5] and DS-kNN [3], are ideal when the goal is to group
datasets sharing some kind of relatedness. Yet, there are types
of relatedness among datasets that might not be covered by such
simple metadata based on data instances, e.g., semantics-aware
dataset unionability [106].

Finally, DAG-based organization methods vary consider-
ably in terms of functionality. KAYAK [90], [91] computes
inter-dataset metadata regarding only equi-joins among tabular
datasets. Moreover, Nargesian et al. [104] and RONIN [110]
focus on organizing attributes as DAGs to maximize the prob-
ability of users finding relevant tables with respect to their
needs. Importantly, this organization is based on containment
similarities among the attributes, which means that fuzzy-kind
similarities are not supported. On the other hand, Juneau [151]
exploits workbook metadata, which presents a promising signal
of inter-dataset similarity.

B. Related Dataset Discovery

In data lakes, the process of related dataset discovery, also
referred to as data discovery, tries to find a subset of relevant
datasets that are similar or complementary to a given dataset in
a certain way, e.g., with similar attribute names or overlapping
instance values. Since a data lake stores and manages a large
number of datasets, it is neither realistic nor necessary to query
or integrate all of them. Therefore, it can be more beneficial
to first discover datasets that are useful for a specific purpose.
Moreover, the relatedness discovered among datasets is also a
valuable and essential type of metadata for exploring a data lake
and preventing a data swamp, e.g., for enabling entity resolution
or resolving inconsistency across datasets.

As shown in Table III, we present the solutions that address
the related dataset discovery problem in data lakes. The systems
in this group mainly handle tabular data, or hierarchical data that
can be transformed into tabular data (not necessarily relational
data, i.e., some may even violate the first normal form). We cate-
gorize these systems primarily based on the types of relatedness
they use: joinable tables [14], [15], [48], [154] (Section VI-B1),
tables related for data science tasks [75], [150], [151]
(Section VI-B2), and tables with semantic relationships [40],
[121] (Section VI-B3). The fourth group of approaches fo-
cuses on the scalability issue during the discovery process [12]
(Section VI-B4). However, note that solutions belonging to one
category might also be applicable to other cases: joinable tables
can be used for data science, and semantically related tables
could also be joinable, etc.

1) Discovery of Joinable Datasets: Aurum [48] enables the
discovery of joinable datasets by building a hypergraph (i.e.,
EKG) which stores information on how columns of different
tabular datasets might be related. To construct it, Aurum first
profiles each table column by adding signatures, i.e., information
extracted from column values such as cardinality, data distribu-
tion, and a representation of data values (i.e., MinHash). Then, it
indexes these signatures using locality-sensitive hashing (LSH).

When two columns have their signatures indexed into the
same bucket after hashing, an edge is created between corre-
sponding nodes, and their similarity score is stored as the edge
weight. Aurum also detects primary-foreign key relationships
between columns by first inferring approximate key attributes. A
highlight of Aurum is its efficiency of computing set similarities.
More specifically, given the total number n of attributes of all
datasets, instead of conducting an all-pair comparison of O(n2)
complexity, it profiles columns with signatures and stores them
in an LSH-index; then, by using approximate nearest neighbor
search, it reduces to linear complexity. When changes occur in
the data, Aurum does not re-read it from scratch. Only if the
difference compared to the original values is above a threshold,
it updates column signatures and the hypergraph.

Brackenbury et al. [15] provide a high-level data lake pro-
posal, which shares a similar idea to Aurum, in terms of using
multiple criteria to measure dataset similarities. The difference
is that when the algorithms alone cannot provide reliable sug-
gestions, it also includes humans in the loop. To find joinable
datasets, it measures the similarity of files (e.g., HTML tables),
and considers approximate matches in terms of data values,
schemata and descriptive metadata (the source of data, infor-
mation added by users, etc.). For measuring the similarity of
the files and clustering them, it computes the Jaccard similarity
between file paths using MinHash and LSH.
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TABLE III
COMPARISON OF RELATED DATASET DISCOVERY APPROACHES IN DATA LAKES

JOSIE [154] handles data lakes with tabular data, e.g., a
corpus of web tables. It addresses two challenges with regard
to applying existing overlap set similarity search solutions in
data lakes: i) a data lake may contain a large number of tables;
hence the number of columns and distinct values could also be
large, and ii) it could be difficult for a human user to directly
give an appropriate threshold value θ for the intersection value.
Thus, an exact top-k overlap set similarity search approach is
proposed in [154], which enables i) scaling to large sets (with
size over 1 K and maximum size in the millions) and ii) returning
top-k results without the need of human-defined threshold value
θ.

Given a table T in the data lake, and one specific column
C from T , JOSIE can return tables in the data lake that could
be joined with T on C. The task is formalized as the problem
of overlap set similarity, which considers the table columns as
sets, and the same tuple values as the set intersection. Each
table in the output contains a column that has an overlap with
C, and the intersection value is larger than a given threshold
θ. Then naturally, the problem of joinable table discovery is
transformed into the problem of finding the exact top-k overlap
set similarity search. The measurement used in JOSIE is the
intersection size of the sets, also referred to as overlap similarity.
For returning top-k sets JOSIE has applied inverted indexes,
which map between the sets and their distinct values and make
JOSIE scalable with a large number of tables. JOSIE employs
a cost model to eliminate unqualified candidates effectively.
Such a method makes the performance robust to different data
distributions.

D3L [14] also incorporates multiple criteria to decide whether
a dataset is relevant to another. In particular, it regards five
signals of dataset similarity: i) attribute name similarity, ii)
instance value overlaps between columns, iii) embedding sim-
ilarity of columns, iv) format similarity of instance values,
and v) distribution similarity of numerical attributes. Therefore,
given table attributes, D3L first transforms schemata and data
instances to intermediate representations of q-grams, TF/IDF
tokens, regular expressions, word-embeddings [79], and the
Kolmogorov-Smirnov statistic [27]. Based on these five features,
D3L transforms the problem of finding the relatedness between
tables to the calculation of weighted euclidean distance in a
5-dimensional space. In doing so, the weight of each feature (i.e.,
feature coefficients) indicates its significance for the combined
distance. To tune the feature weights, D3L trains a binary
classifier over a training dataset with relatedness ground truth,
and applies the coefficients of the trained model as the weight of
features for distance calculation. Similar to Aurum, D3L builds
LSH to index the features and maps them to the distance space,
where two items are considered to be similar if they are hashed
into the same bucket. An interesting finding is that using LSH
to discover joining paths leads to accurate discovery of more
related tables (and attributes).

2) Discovery of Task-Specific Datasets for Data Science:
Juneau [75], [150], [151] provides searching over related tables
from a different perspective. It extends computational notebooks
(e.g., Jupyter) and supports common data science tasks, such as
finding additional data for training or validation, and feature
engineering. When users specify the desired target table, the



12582 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

system can automatically return a ranked list of tables, which
might be relevant to the given table. Specifically, as shown in
Table III, Juneau extends the notion of “relatedness” with the
following signals.

1) In addition to the instance value overlap and similar at-
tribute names, it considers pairwise matched attributes
that share similar domains, and matched candidate key
pairs. The proposed similarity metrics are based on Jaccard
similarity; sketches and LSH-based approximation [49],
[155] are mentioned as alternatives for scalability.

2) To augment user queries, it may suggest data instances or
attributes in the candidate tables, which do not exist in the
target table.

3) Based on the variable dependency graphs (Section VI-A),
it defines the provenance similarity of two tables based on
the graph similarity of their variables. This measurement
aims to help connect variables and tables via user-defined
workflow operations. This allows finding new tables that
are related to the current table via workflows.

4) Juneau also identifies similar tables with regard to descrip-
tive metadata (e.g., information about the data science
task), and the number of null values (e.g., fill missing
values in a data cleaning task).

For a specific data science task, Juneau picks a subset of
relatedness features and computes similarities based on them.
For instance, when searching tables for a data cleaning task,
it considers the instance value overlap, schema overlap, prove-
nance similarity, and null value differences.

3) Discovery of Semantically Related Datasets: PEX-
ESO [40] tackles the problem of finding semantically joinable
tables when considering only textual attributes. Towards this
direction, it transforms textual values into high-dimensional
vectors, and computes their vector similarities. For efficient
similarity computation among such representation vectors, it
utilizes an inverted index, and a hierarchical grid which is used
for partitioning the space.

The Relational Natural Language Inference Model (RN-
LIM) [121] is a framework that transforms related attribute dis-
covery to unsupervised natural language inference [89], which
determines whether a hypothesis can be inferred from the given
premise texts. Contrary to other data discovery systems, it fo-
cuses on specifying semantic relationships between the tables.
That is, given a pair of attributes, RNLIM optimizes a neural
network for labeling their relatedness. More specifically, RN-
LIM considers four signals and separates them into two groups:
table and attribute names, attribute data types and attribute
value domains. For each such group, it uses multiple matching
methods. For instance, to perform the domain match between
numerical attributes, it uses the Kolmogorov-Smirnov statistic,
which is similar to D3L [14]. Using pre-trained language repre-
sentation models from BERT [33], RNLIM generates similarity-
preserving representations from these two groups of signals,
which enable the training of a classification model.

4) Scalable Related Dataset Discovery: Data Lake Naviga-
tor (DLN) [12] has a different focus compared to the aforemen-
tioned data discovery systems, which often require processing of
all the available data, and hence hinder scalability. DLN tackles
the problem of handling large-volume data at the enterprise
level, e.g., a data lake with petabytes or even exabytes of data.

Consider a data lake with stream data. DLN discovers related
columns in the streams with respect to a given column. The core
solution of DLN is building random-forest classification models.
In specific, DLN considers textual and numerical attributes, and
extracts two types of features from them: metadata features,
including attribute names and uniqueness, and data-based fea-
tures. Accordingly, it builds two classifiers. The first classifier
uses only metadata features. The second classifier is an ensemble
model, which only uses metadata features for numeric attributes,
and both metadata features and data features for textual at-
tributes. Notably, for learning classification models DLN needs
labeled samples. In essence, it labels the attribute-pairs in the
JOIN clauses of queries as positive samples (related columns),
whereas it samples negative examples of attribute pairs that never
appear in any JOIN clause (non-related columns).

5) Summary and Discussion: Related dataset discovery is a
well-researched topic with respect to data lakes. Yet, among
all the different methods that have been proposed, one can
identify a standard procedure that they follow: the first step
is to define and extract relatedness signals from tables w.r.t.
data (e.g., value overlaps, data distribution patterns), schemata
(e.g., attribute names, key constraints), semantics, and descrip-
tive metadata. The next step is to compute multi-dimensional
similarities between attributes (e.g., based on Jaccard similarity
or cosine similarity), and aggregate them to an overall similarity
between tabular datasets. The LSH index and its extensions (e.g.,
LSH Forest [8]) are often used to index and map feature values
to boost performance or increase the accuracy of relatedness.
Another important part of data discovery is querying the data
lake, which is discussed in Section VII-A.

Nonetheless, we also find that data discovery solutions may
differ in their focus. Aurum is fast and robust against data value
changes and offers a graph-based structure, whereas JOSIE
shows high performance. D3L improves the accuracy of dis-
covered related tables by employing multiple similarity signals.
Juneau emphasizes workflows for multiple data science tasks.
To obtain semantic relatedness, PEXESO uses high-dimension
vectors, while RNLIM relies on BERT. DLN addresses the
challenge of related dataset discovery for exabyte-scale data
lakes. Therefore, as shown in Table III, their individual re-
latedness criteria, similarity measures, and applied techniques
vary significantly. Recent system demonstration proposals also
indicate the possibilities of applying knowledge graphs [72]
and example-based interaction [123] for data discovery in data
lakes.

Data discovery has been intensively studied beyond the scope
of data lakes. We refer the reader to recent tutorials [105] and
surveys [149] for exploring more potential solutions for data
discovery in data lakes. It is our firm belief that data discovery
solutions for data lakes will continue being introduced, due to
the value and insights they bring to businesses and organizations.

C. Data Integration

Data integration (DI) studies the problem of combining multi-
ple heterogeneous data sources and providing unified data access
for users [39]. Given a large scale of sources in a data lake,
users might need to first discover a subset of relevant datasets,
before resolving the heterogeneities of sources with regard to
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data models and schemata. Thus, in some literature [100], the
related dataset discovery (cf. Section VI-B) is also considered
as part of data integration. Here we consider the fundamental
data integration steps including schema matching [118], schema
mapping [45], entity linkage [16], query reformulation [66], etc.

Few data lake proposals provide an end-to-end data integra-
tion pipeline. Constance [61] uses the generic metadata model
for extracted schemata of relational, JSON documents and graph
data (see Section V-B1). For data integration Constance first
performs schema matching, which finds semantically related
attributes. Users can select a subset of data sources and schema
elements via the user interface, and the system generates an inte-
grated schema for partial integration. Next, Constance generates
schema mappings, which preserve the relationships between
the source schemata and integrated schema [63]. With schema
mappings Constance performs query rewriting and data trans-
formation in a polystore-based setting [65]. It rewrites the input
user query (against the integrated schema) to subqueries (against
source schemata), executes the generated subqueries in the query
languages of each data store (e.g., MySQL, MongoDB, Neo4j),
and retrieves the subquery results. For the final integrated results
it further resolves the data type and value conflicts while merging
the subquery results. It also pushes down selection predicates to
the data sources to optimize query execution and reduce the
amount of data to be loaded.

ALITE [82] deals with the problem of integrating related tables
in data lakes that have been obtained from dataset discovery tasks
(Section VI-B). Particularly, the method gathers results from
top-k unionable and joinable queries on datasets and applies
holistic schema matching. To do so, it leverages embeddings
on language models, namely distributed vector representations
with the following property: datasets that are similar to each
other are embedded close in the dimensional space (based on
the distributional hypothesis [71]). Specifically, ALITE embeds
columns by using state-of-the-art techniques such as TURL [32],
and then applies hierarchical clustering in order to obtain sets of
columns that are related. Finally, based on the aligned columns,
it computes the Full Disjunction (FD) [52] among discovered
datasets in an optimized way.

D. Metadata Enrichment

In this survey, we refer to metadata enrichment as the process
of creating implicit metadata from raw data in the data lake,
which often requires intensive computation or human effort.
Notably, in Section V-A we have discussed systems extracting
embedded metadata. Here we discuss the necessity to compute
and extract “more hidden” information from the data, which
helps to better understand and explore datasets in the data lake.
Such a process is time-costly, and sometimes impossible or
unnecessary to be conducted during data ingestion. The metadata
discussed in this section is more relevant to the functions in the
maintenance tier. For example, the semantic metadata enriched
by CoreDB can be used for data provenance. The semantic
information of domains extracted by D4 and DomainNet could
be used to improve the process of related dataset discovery.
Structural metadata discovered by Constance can be used for
data cleaning, while descriptive metadata enriched by GOODS
can be used for dataset organization and data provenance.

Next, we discuss systems fulfilling such a goal here, catego-
rizing them based on the types of metadata that they discover:
semantic, structural, or descriptive metadata.

1) Semantic Metadata Enrichment: CoreDB [9], [10] is a
data lake service that aims at extracting insights from raw data. It
first extracts essential information representative of the original
raw data, referred to as features, e.g., keywords and named
entities. Then it provides services that add synonyms and stems
to such features, while it connects them to open knowledge bases
such as Google Knowledge Graph22, Wikidata23. CoreDB also
annotates and groups the data sources in the data lake.
D4 [109] tackles the problem of semantic type detection,

also known as domain discovery. That is, given a set of input
tables,D4 discovers their semantic domains and represents each
domain with a set of terms. For instance, if there are several
color-related attributes, e.g., vehicle_color, building_color,
cloth_color, then one of the output domains of D4 is color, and
it is represented by terms {red, white, black, green, . . . }. The
complete list of the terms of a domain, may come from multiple
attributes, while an attribute may contain terms for several
different domains. D4 applies a data-driven approach, i.e., it
processes all the data in the given set of datasets. Additionally,
the approaches applied inD4 allow it to cope with a large number
of tables and attributes, and ambiguous terms (e.g., Apple can
be a type of fruit or a brand name).

DomainNet [85] tackles a similar problem as D4. It also
discovers hidden semantics, and handles the ambiguity and
incompleteness in data values. For instance, when the value
Apple appears in multiple tables of a data lake, DomainNet
tries to find out if it represents the semantics of one domain
(fruit or brand), or both. As an approach developed for data
lakes, it assumes that a priori knowledge about datasets could be
missing, like the types of entities in a table. Its proposed approach
includes building a network graph using data values and attribute
names, followed by applying community detection over such a
network.

2) Structural Metadata Enrichment: Constance [64] en-
riches the metadata in the data lake by discovering relaxed
functional dependencies (RFD) [21]. The relaxed functional
dependencies are relaxed in the sense that they do not apply to all
tuples of a relation, or that similar attribute values are also con-
sidered to be matched. Such dependencies provide insights that
specific attributes functionally depend on some other attributes
in a loose manner, which apply to the ingested datasets even
though they have a certain percentage of inconsistent tuples.

3) Descriptive Metadata Enrichment: In order to obtain
metadata that describes dataset origin, ownership, and its pos-
sible usage, it is often beneficial to keep human experts in the
loop. Google’s data lake GOODS [67], [68] stores metadata of its
datasets in the catalog, and it applies crowdsourcing for metadata
enrichment. For instance, it allows adding descriptive metadata
of datasets, marking datasets worth additional security attention,
such that people from different teams of the organization (e.g.,
data owners, auditors, users) can exchange and communicate
about the information of the datasets.

22https://developers.google.com/knowledge-graph/
23https://www.wikidata.org/wiki/Wikidata:Main_Page
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E. Data Cleaning

Data cleaning is the process of discovering and fixing data
quality problems. The data quality problems may reside in one or
multiple sources, at the schema level or the instance level [119].
For example, a dataset may have missing values, misspellings
and redundancies in its instances. When we talk about data
cleaning in data lakes, we refer to dealing with data quality
issues residing in the ingested raw data. Given the volume and
variety of the data in a lake, it is ideal that the data cleaning
approach can work with heterogeneous raw data, and reduce
human effort. Thus, there are certain proposals about how to
obtain hidden “rules” from the data in the data lakes, and then
use them to improve the data quality. We divide the systems in
this group based on the methods applied: constraint inference or
validation rule inference.

1) Data Cleaning by Constraint Inference: CLAMS [47]
uses conditional denial constraints to detect the potentially
erroneous data. Given the RDF triples, a conditional denial
constraint specifies a set of negation conditions about the tuples.
The proposed approach automatically detects such constraints
by discovering possible schemata from RDF data, and cor-
responding constraints. It examines the triples violating the
obtained constraints and uses them to build a hypergraph, which
indicates the number of constraints violated by each triple. Then,
it accordingly ranks the RDF triples and asks the user to validate
whether such a candidate dirty triple should be removed.

Constance [64] also uses discovered dependencies for data
cleaning, whereas it applies relaxed functional dependencies.
These dependencies are especially useful in cases where the
source data has lower quality with inconsistencies and incorrect
values. By using relaxed functional dependencies, Constance
identifies the data objects violating the detected dependencies,
which could be potentially erroneous data.

2) Data Cleaning by Validation Rule Inference: In [137],
Song et al. have tackled a specific data cleaning problem, i.e.,
data validation. In a large enterprise data lake with terabytes of
data, the data may change with time. The data validation rules
indicate whether the changes are significant enough, and will
affect the downstream applications. The approach in [137] tries
to automatically derive such rules from the machine-generated,
string-valued data, rather than inferred by human experts. In
principle, it formulates the rule inference problem as an opti-
mization problem, which balances between false-positive-rate
minimization and quality issue preserving.

F. Schema Evolution

Schema evolution requires handling the changes of schemata
and integrity constraints [31]. In data lakes, the possible chal-
lenges of schema evolution could be the heterogeneity of the
schemata and the frequency of the changes. While data ware-
houses have a relational schema that is usually not updated
very often, data lakes are more agile systems in which data and
metadata can be updated very frequently.

Klettke et al. [83] address the problem of how to construct the
whole evolving history of schemata given data stored in NoSQL
databases, e.g., JSON stored in MongoDB. Instead of table
schemata in relational databases, they consider the structure
of persisted objects in NoSQL databases, referred to as entity

types. The proposed approach first extracts each entity type
from loaded datasets, with assigned timestamps that indicate
its residing time interval. Then from different structure versions
of the entity types, it detects the possible operations between
two consecutive versions. In the case of multiple alternative
operations, users will make the final validation. In addition,
to detect certain schema changes, it is often useful to detect
integrity constraints, e.g., inclusion dependencies. The assump-
tion in [83] is that in NoSQL databases often schemata are “less”
normalized, which leads to the inclusion dependencies involving
multiple attributes rather than a single attribute as in relational
databases. In [83] an algorithm is proposed to detect such k-ary
inclusion dependencies.

G. Data Provenance

Data provenance (also known as data lineage) refers to meta
information of data records, which indicates their origin, usage,
status in the life cycle, etc. The provenance information can be
seen as a special type of metadata, which tells how a dataset
is obtained from original sources and helps to make proper
access to datasets [133]. Such information could be extracted
during data ingestion, and later enriched during maintenance or
exploration, possibly with human input.

In [142], a governance tool from IBM is presented, which
can manage the requests for ingesting new data sources or using
already ingested datasets in a data lake. Suriarachchi et al. [140]
propose an abstract architecture that provides integrated prove-
nance (information of activities) given multiple data processing
and analytics systems (e.g., Hadoop, Storm24, and Spark), as
these systems populate provenance events in different standards
and apply various storage manners. They also study a use case,
in which data from Twitter is collected and processed (e.g., count
hashtags, aggregate data by each category) by Apache Flume25,
Hadoop jobs, and Spark jobs.

GOODS [67], [68], CoreDB [9], [10], and Juneau [75], [150],
[151] all preserve the provenance information as graphs. As
mentioned in Section VI-A1, GOODS stores provenance in-
formation in its metadata catalog, as one of the six metadata
groups. It builds provenance graphs and visualizes them to users,
such that users can keep track of the usage and transformation
of the data. It exports the provenance metadata in the catalog
as subject-predicate-object triples into a graph-based system,
then generates the provenance graphs for visualization and path-
based querying. CoreDB uses the descriptive, administrative and
temporal metadata to build DAG-based provenance graphs [11],
which helps answer questions such as who queried a specific
entity. Juneau [151] generates graphs with variables as nodes,
and connects two variable nodes in the same function. Given
a variable v in the notebook, one can find all other variables
affecting v via some functions, and the relationships between
these variables and v.

VII. EXPLORATION

It is important that useful information can be retrieved from
data lakes. However, this is often a challenging task due to

24https://storm.apache.org/
25https://flume.apache.org/
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the large number of ingested sources, and the heterogeneity
of data. A user may have knowledge of one or a few data
sources, but rarely, if not never, all the datasets. Thus, the
existing solutions mainly solve the querying problem in data
lakes in the following two directions: explore the data lakes
based on the relatedness of datasets (Section VII-A), or pro-
vide a unified query interface for heterogeneous data sources
(Section VII-B).

A. Query-Driven Data Discovery

Query-driven data discovery [100] refers to searching a data
lake based on the measured relatedness (e.g., joinable) among
datasets as introduced in Section VI-B. With input queries spec-
ifying a given dataset (usually tabular data), the system returns
the top-k most related datasets.

Exploration Input/Output. There are three ways of explo-
ration. We denote the set of datasets in a data lake as S.

1) Given the user-specified table T and a column c of T , the
system returns top-k tables that are most related to T , e.g.,
JOSIE [154].

2) Given a table T , the system returns top-k tables (referred
to as Sk) that contain relevant attributes for populating T ,
e.g., D3L [14]. In addition, if a table Si is not in the top-k
result set (i.e., Si ∈ (S− Sk)), yet it can be joined with
some table(s) in Sk and improve the attribute coverage of
T , D3L also includes Si in the result.

3) Given the user-specified table T and the search type τ
for external applications (e.g., a data science task), the
system returns top-k tables that are most relevant to T
based on the relatedness measurements associated to τ ,
e.g., Juneau [151].

Notably, in this group of studies, the challenge of exploring
datasets is a search problem rather than a query reformulation
problem in data integration. It can also be seen as a step prior to
data integration or data science tasks [14], [151].

Querying Methods and Indexing. Given an input query table,
the systems in Table III often rely on similarity estimation using
indexes (e.g., aforementioned LSH indexes, inverted indexes).
They rank candidate tables, and include the top-k tables in the
result. In addition, Aurum [48] applies a graph index to accel-
erate expensive queries containing discovery path queries for
searching its hypergraphs. In its primitive-based query language,
an Aurum user can compose queries to search schemata or data
values with keywords to find specific columns, tables, or paths.
Users can specify criteria and obtain ranked querying results
in a flexible manner, i.e., they can obtain the ranking results of
different criteria without re-running the query. In Juneau [151],
a query is a cell output table picked by the user. The user also
chooses the type of the search, e.g., find tables for data cleaning.
Then Juneau uses the corresponding relatedness measurements
to perform the top-k search. It speeds up the search with strate-
gies such as indexing columns profiled in the same domain or
tables connected by workflow steps, and pruning tables under a
threshold of schema-level overlap.

Remarks on Future Directions. Data lake exploration could
benefit greatly by taking into account recent results on web
table exploration [18], [84], [113], data wrangling [51], [142], or
external applications upon the data lake. With the existing works

mainly focusing on evaluating the accuracy of similarity compu-
tation, or the performance (query processing time), deep analysis
and further improvement on the accuracy and completeness of
the top-k result set are still rare. Finally, the existing solutions
in this group mostly study tabular data. In what follows, we
discuss the data lakes that explore datasets with diverse data
models.

B. Heterogeneous Data Querying

In this survey, by querying heterogeneous data, we indicate
the systems providing a unified querying interface to access
heterogeneously structured data. Next, we introduce studies that
tackle such a research problem.

Constance [61], [65] provides an incremental manner for users
to explore the data lake. Via the user interface, a user can first
browse the existing data sources, including their description,
statistics, and schema; then she can write a query (SQL or
JSONiq26) for a single dataset. She can also make a keyword
search over the schemata or the data. Alternatively, with certain
knowledge of the datasets, which can be developed through the
previous exploration processes, she can choose to integrate and
query a subset of datasets as introduced in Section VI-C. In
addition, users can transform data in the data lake to their desired
structure and format. The information retrieval requirements of
external applications are supported via RESTful APIs [55].

CoreDB [9], [10] provides users with a unified interface, i.e.,
through a REST API for querying data or performing Create,
Read, Update and Delete (CRUD) operations. It applies Elas-
ticsearch27 for the underlying full-text search, SQL queries for
relational database systems, and SPARQL queries for knowl-
edge graphs.

Ontario [44], [80] and Squerall [94] both enable a federated
query processing over a semantic data lake and apply SPARQL
to query the heterogeneous data lake. Ontario supports hetero-
geneous data, e.g., RDF (stored in Virtuoso28), local JSON files,
TSV files (in HDFS), XML files (in MySQL). It profiles each
dataset with its metadata and additional information, e.g., the
types of the source, or the web API for querying this type of
source. For instance, for TSV files stored in HDFS, it provides
Spark-based services which translate the SPARQL queries to
SQL. Given an input SPARQL query, Ontario first decomposes
the query. Then it uses the profiles to generate subqueries for
each dataset with a set of proposed rules. Using metadata, it also
tries to generate optimized query plans. In [124], the general
guidance of query optimization on top of Ontario is proposed.
Similar to Ontario, Squerall also supports querying diverse
data sources, including files (i.e., CSV, Parquet) and relational
(i.e., MySQL) and NoSQL databases (i.e., Cassandra, Mon-
goDB). The schemata of the sources are mapped to a mediator,
which consists of high-level ontologies. Given SPARQL queries
against the mediator, relevant data entities are retrieved from
data sources, which are joined and transformed to form the final
query results. Squerall enables distributed query processing and

26https://www.jsoniq.org/
27https://www.elastic.co/
28https://virtuoso.openlinksw.com/
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is implemented with two versions with different data connectors:
Spark and Presto29.

VIII. CHALLENGES AND FUTURE DIRECTIONS

We have addressed specific technical aspects of managing
data lakes so far. Next, we discuss the challenges of apply-
ing data lakes in broad technological application domains in
Section VIII-A, and two main future research directions of data
lakes in Sections VIII-B and VIII-C.

A. Data Lakes in Digital Business Transformation

The organizational perspective is gaining relevance and places
new requirements on future data lakes. Many large traditional
firms, often incumbent market leaders in their (non-IT) business,
pursue a digital transformation strategy in order to be able
to compete with purely digital newcomers more effectively.
In this context, the classical model of using internal IT de-
partments or external software houses via service contracts is
increasingly abolished in favor of integrative product-oriented
teams in which developers, domain experts, sales and purchase
representatives closely work together in an agile manner within
a longer-term business roadmap and architecture. Moreover,
the digitization process involves frequent mergers, acquisitions,
and re-organizations of the business. In many cases, traditional
data and systems integration methods, together with different
organizational philosophies, have led to the failure of such
processes, in some cases costing billions of dollars.

Executives have begun to perceive the idea of data lakes as a
design pattern to deal with this organizational volatility. In this
pattern, the data lake (at its core a store of mildly cleaned raw
data) serves as a mediating element between the evolving set of
internal and external transaction and monitoring streams, and the
equally evolving set of business analytics and decision support
tasks of the above-mentioned teams. In the ideal case, integrating
a new company would simply mean adding their raw data to the
lake, and using methods discussed in our survey to link them up
to the existing data lake content. Existing analytics solutions
could automatically include the new data, and new business
teams could use analytics toolkits plus specialist expertise for
their current challenges, without waiting for resources in the
IT department. In this way, executives are trying to convert
the IT provisioning from a cost and reimbursement factor to
a continuously value-creating investment [102].

Achieving such a setting can be mission-critical for many
organizations in traditional businesses. However, its realization
is by no means trivial, both on the organizational and on the
technical side. The following technical challenges concern both
the input side and the analytics side of the data lake pattern.

First, nowadays, data is largely consumed by machine learn-
ing and data science applications everywhere. However, existing
data lakes lack matured functions to meet such a requirement.
Second, the lack of traditional analytical data management such
as transaction management, indexing, and caching, makes data
lakes less adequate for complex analytical workloads in the
industry. Tackling these limitations, we discuss the exciting new
challenges next.

29https://prestodb.io/

B. Data Lakes Meet Machine Learning

Recent advances of DBML [93], [128], [153], i.e., in-database
machine learning or applying machine learning for data manage-
ment, mainly consider a relational database instead of data lakes.
Below we focus on the lake-specific challenges.

Training Data Heterogeneity. The systems and methods cov-
ered in this survey mainly support tabular data, JSON/XML,
graphs, and texts. However, ML training data may also include
other common types such as images, audio, and videos. The
challenge of data multi-modality is non-trivial, and stretches
beyond simply utilizing technologies such as multimedia
databases [139] and polystores. The key question is how to
design abstractions for heterogeneous data in data lakes. With the
rapid development of ML models, e.g., BERT [33], GPT-3 [17],
possible abstractions for multi-modal data are embeddings [30].
Such new options invoke more challenges. How to design the
data abstraction to represent and connect multi-modal training
data? How to design the data representation for a specific func-
tion in Table I, e.g., related dataset discovery, data integration?
Moreover, ML models , in particular, deep neural networks
require intensive tensor-based computations such as matrix mul-
tiplication. With the recent advances in hardware, e.g., Tensor
Processing Unit (TPU), and tensor runtimes such as ONNX30, it
is an interesting direction to explore tensor-based intermediate
representations (IRs) of data lakes, w.r.t. both data management
and machine learning operations. It leads to more questions,
e.g., how to redesign data lake architectures based on such new
intermediate representation possibilities?

In-Lake Machine Learning. Following the research line of
in-database machine learning [128], one of the most exciting
challenges is to support machine learning training and inference
in data lakes. First, the existing in-database machine learning
studies mainly focus on structured data, i.e., relational tables.
It is a rich area regarding how to extend these in-DB ML
problems (e.g., factorization through joins [24], [129]) over
heterogeneous, schema-less data in a data lake. Second, new
APIs and systems are needed to connect existing data lakes
with ML platforms such as MLflow31, Amazon SageMaker32,
AzureML33, or model zoos (repositories of pre-trained models)
such as HuggingFace34, Tensorflow Hub35, and PyTorch Hub36.
A more ambitious design alternative is a tighter integration of
data lakes and machine learning, i.e., ML-aware data lakes,
which are built upon the requirements of downstream ML ap-
plications, and bring more optimization opportunities. We need
new data lakes providing functions such as preparing, labeling,
and cleaning the raw, heterogeneous data for downstream ML
applications. To build ML-aware data lakes, it also calls for novel
data lake architecture, storage, and function redesign. These
considerations lead to the following research questions. How
to discover related datasets to augment the existing training
dataset and improve ML model accuracy and fairness? How
to effectively clean the raw, heterogeneous datasets in data lakes

30https://onnxruntime.ai/
31https://mlflow.org/
32https://aws.amazon.com/sagemaker/
33https://azure.microsoft.com/en-us/products/machine-learning
34https://huggingface.co/
35https://www.tensorflow.org/
36https://pytorch.org/hub/
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to improve the effectiveness of ML models? How to combine
and optimize the whole pipeline of data management and ML
life cycle in data lakes?

ML Workflow Optimization. Towards designing ML-aware
data lakes, one of the main goals is to improve ML models
in terms of effectiveness (e.g., model accuracy) and efficiency
(e.g., training time). Besides the functional and system-level
redesign, another possibility is to utilize the metadata. One of
the most intensively studied DBML problems is optimizing
ML workflows and programs over relational databases; surveys
like [93], [153] have elaborated on such studies. For instance,
by utilizing the primary key-foreign key relationships and join
dependencies [24], or functional dependencies [81], the runtime
of model training can be significantly reduced. However, one
of the key differences between data lakes from databases is the
lack of metadata. Instead of predefined join dependencies or
FDs, in a data lake we might need to discover the joinability
between datasets (SectionVI-B1) or relaxed functional depen-
dencies (Section VI-D2), which are probabilistic. Thus, one of
the open challenges of optimizing ML operations in data lakes,
is to utilize such fuzzy, discovered metadata about data.

ML-Driven Metadata Management. Besides the metadata of
data, we need to cover also the metadata of ML models. The life
cycle of an ML model contains multiple steps, including model
training, hyperparameter tuning, debugging, deployment, etc.
Accordingly, we need new metadata extraction, modeling, and
enrichment methods for the relevant metadata about the ML life
circle and the datasets involved in each step, which also calls for
new data provenance methods.

C. Advanced Analytics and Transaction Management

Another future direction is to bring well-studied database and
data warehouse functions, such as transaction management and
query optimization, into data lakes for business intelligence.
Towards this direction, the new paradigm of Lakehouse [6], [7],
[70], [76] has emerged. Earlier, a common industrial practice
was to apply data lakes (e.g., Amazon S3, GCP) as a cheap stor-
age of large-scale raw data, before the datasets are selected and
transformed for data warehouses (e.g., Snowflake, BigQuery).
The overhead and complexity of maintaining two systems,
a data lake and a data warehouse, have led to Lakehouses,
e.g., Delta lake [6], Apache Hudi37, and Apache Iceberg38. A
Lakehouse inherits data lakes’ role for storing large-scale raw
data, i.e., supporting open formats such as Parquet and ORC
over cloud storage, and data warehouses’ analytics capabilities,
e.g., transaction management, indexing, caching, and metadata
management [6].

Following the path of Lakehouse development, many chal-
lenges emerge regarding transaction management, storage, in-
dexing, metadata management, and machine learning. How to
design cloud-native storage for read-write workloads with low-
latency transaction guarantees? How to design auxiliary struc-
tures such as indexes over open data formats for efficient query
processing? Moreover, recent Lakehouses provide open inter-
faces for ML workloads to query the data [76], or tensor-based
IR for deep learning models [70]. A deeper integration between

37https://hudi.apache.org/
38https://iceberg.apache.org/

Lakehouses and ML, similar to the discussion in Section VIII-B,
will bring more optimization opportunities, which calls for more
research effort.

IX. CONCLUSION AND OUTLOOK

In the first decade of their existence, data lakes have been
receiving increasing interest from both academia and industry.
In this survey, we have looked back at the origin and development
of data lakes in the past decade. Besides offering a fine-grained
data lake architecture and discussing storage systems, we have
provided a comprehensive review of existing data lake methods
based on their specific functions. We have used a three-level
categorization, which facilitates a deep analysis of the corre-
sponding research questions. To bring forth new challenges, we
have also discussed potential technologies and future directions.

Without any doubt, the research, engineering, and application
challenges are there, waiting for novel data lakes to be developed
together with cutting-edge technologies of machine learning and
cloud computing. Some well-studied research problems (e.g.,
data integration, data cleaning, schema evolution) need new
perspectives and methods to address the specific characteristics
of data lakes. The concept of data lakes is complex and still
evolving, not limited to the problems addressed in this survey.
We foresee the explosive development of data lake applications
in the coming years. The golden age of data lakes is yet to come.
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