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Abstract

Although there are many promising applications of a learning curve in machine
learning, such as model selection, we still know very little about what factors influence
their behaviours. The aim is to study the impact of the inherent characteristics of the
datasets on the learning shapes, which are noise, discretized input and dimensionality.
We trained two classifiers with a panoply of datasets for the investigation to see how the
learning curve behaves under different circumstances. Firstly, we found that the shapes
of the curves varied with different levels of noise injected into the original datasets.
Secondly, using the equal width interval binning technique to discretize continuous
features did not make the classifiers learn exponentially but caused the learning curves
to behave unpredictably; thus, it does not transform the continuous problem into the
easier class of problems mentioned in [1]. Finally, the more dimension we reduced using
the PCA technique, the learning curve showed strange behaviours.

1 Introduction
A learning curve is a tool for plotting a machine learning model’s generalization performance
against incremental subsets of training data. In practice, investigating the empirical learning
curves of different machine learning models for various problems could give insights into the
needed training data, thus improving model selection and reducing computation complexity.
Indeed, numerous amounts of research have been conducted to generally model the shape
of the learning curves, [1, 2, 3]. While some studies find the power-law models [2] often give
good fit, others show evidence for exponential [1] and log models [3]. Recently, Bousquet et
al. [4] claim that there are three main behaviours of learning curves for the optimal learners:
exponential, power-law, and slow convergent. However, In an attempt to review the general
shapes of the curves for classification problems, Viering and Loog find that no flawless study
can conclude the universal shape of the learning curve.[5].

Decades of work on learning curve has revealed many interesting properties regarding
the universal forms of the well-behaved learning curves [6], and perhaps more importantly,
contributed to accelerating the machine learning field by the intelligent use of data. However,
there are strange learning curves that we still do not fully understand. While different
researchers show different views on the shapes of learning curves, several theorists agree that
dimensionality and sample size cannot be decoupled in evaluating the learner’s generalization
performance [7, 8, 9]. Noise is another factor that can significantly impact the learning
process. Real-world data usually contains noise that hinders the learner from detecting the
data’s underlying pattern, thus degrading its performance [10]. From the standpoint of
computational complexity, there might be a difference in learners’ behaviours regarding the
input types, binary or continuous [1]. In this paper, we will conduct an empirical study to
answer the question:

"How do the inherent factors related to the datasets such as noise, types of numerical
input, and dimensionality influence the shapes of the learning curves?"

2 Related work
In this section, we will explore some of the literature that is relevant to our study. First,
we will discuss two papers to investigate the use of artificial noise to test the robustness of
various basic supervised machine learning models for classification problems. Second, we
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will look at two papers that compared models’ generalization performances under discrete
and continuous input settings. Third, we will discuss the papers examining the relationship
between dimensionality and the training set size. Finally, we will discuss the paper that
tries to point out the curves’ general forms.

Closely related works examined how sensitive the learners are to injected noise [11,
12]. Four different supervised classifiers: Decision Tree (DT), Naive Bayes, Support Vector
Machine, and Logistic Regression were trained on various datasets which are injected varying
level (0% to 50%) of mislabeled noise [11]. This work reported the average accuracies of
10 times experimenting with each of the 18 datasets from WEKA. While in the extreme
(50% noise), Naive Bayes is the most resilient model; the Decision Tree performs best on
average when the degree of noise is reduced quickly, followed by Support Vector Machine and
Logistic Regression. [12] is the more extensive work, which evaluated 11 different models
on three real-life and four artificial problems. The noise level was the same as [11], but
they considered both the normally distributed feature noise and mislabelled noise. Using
RMSE as a performance metric, they found the Decision Table and Linear Regression are
less sensitive to noise.

Cohn and Tesauro [1] trained the neural network on four N-dimensional classification
tasks by two linearly separable and high-order functions. This research aimed to see if
average generalization performance might outperform the worst-case bounds derived from
formal learning theory by using the Vapnik-Chervonekis dimension. In this work, the exper-
iment curves of two problems with strict binary inputs behave exponentially. In contrast,
the other real-valued inputs problems have the average curves’ error close to the worst-case
theoretical bound. Interestingly, They raised a hypothesis concerning the existence of the
class of problems in the same Vapnik-Chervonekis dimension that is easier than the others.
This hypothesis motivates us to examine whether we can transform a problem with con-
tinuous features into an easier one using the discretization technique so that the classifier
can learn exponentially. Dougherty el at. [13] found that using multiple discretization tech-
niques did not significantly degrade the performance of a model. Naive Bayes even showed
improvements and outperformed C4.5 algorithms in discretized version.

Real-world data can have thousands or millions of features per instance, and considering
all these features is unnecessarily computational expensiveness. As a result, it is harder to
find optimal solutions. Dimensionality reduction techniques such as Principal Component
Analysis (PCA) may reduce noise and extraneous features, resulting in improved perfor-
mance, but in most cases, it will speed up training. This is because it leads to information
loss, and there will be a trade-off between the model’s performance and computational com-
plexity [10]. In general, the higher the dimensionality, the more complex the problem is. As
statistical theories show the relationship between dimensions and sample, [11] claimed that
dimension is also an essential factor for studying learning curve behaviours, thus suggesting
using both learning curves and feature curves to gain further insights.

The work [6] studied the shape of the curves and pointed out three properties: monotonic-
ity, convexity and peaking. These properties are essential when considering extrapolation
techniques. Conventionally, we assume that the error rates will decrease when the amount
of training data increases. If that is the case, we say the learning curves are well-behaved;
otherwise, we call them strange curves. While monotonicity and convexity are useful for
identifying well-behaved curves, the peaking phenomenon is the indicator for strange curves.
The degree of monotonicity is identified by measuring the highest negative step between any
two anchor points of the learning curve. The convexity can be computed similarly with
three anchor points. Peaking, on the other hand, showed improvement at the beginning but
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then got worse later.
Although not all the works mentioned above directly study learning curves, they motivate

us to come up with ideas to examine how learning curves behave in classification tasks under
real-world data or modified data.

3 Methodology
In our study, we consider the learning curves plotting method that most uses data. Next,
three methods used for Noise, Discretization and Dimensionality will be described in detail.

3.1 Learning curve generating
We decided to implement our learning curves because using the Scikit-learn implementation’s
learning curve used Kfold cross-validation, which results in wasting data when the size of
the training set and k is small [13]. To overcome this drawback, we implemented the Kfold
cross-validation with stratification. The splits k can be varied but preferably be high, as we
want to avoid overfitting and reduce as much as bias possible. Next, for each fold, we obtain
the size of the training set, also defined as anchor size, as a geometric sequence. Particularly,
the anchor size at i index will be determined by the function si = ⌈2 7+i

2 ⌉ [6], the rest of the
data is merged to the validation set for testing to avoid wasting data. Another property of
the training subset is strictly increasing, and the training subset Si ⊂ Si+1. To simulate
the real-world scenario in which learners’ performance is evaluated on unseen data, we only
apply data preprocessing and tuning on each anchor. Finally, the empirical learning curve
is obtained by averaging out over k curves.

3.2 Noise model
As mentioned in section 2, there are several kinds of noise. However, we only consider
attribute noise in our experiments as attribute noise in the dataset usually increases the
model’s complexity, thus probably degrading the learning process. In order to increase the
dispersion level of the datasets, we created a noise model, which is added to the original
datasets at hand. For all the datasets, we assume the following:

1. The variables of the dataset are either uniformly distributed or normally distributed.

2. Noise is also uniformly or normally distributed and independent of the dataset.

For the example pair (xi, yi) in the dataset L has N instances and D features: where xi

is the ith example in design matrix X ∈ RN×D, and yi is the label of the ith example in
X. if the noise level n > 0 then the example (x

′

i, y
′

i) will replace (xi, yi) in the matrix X.
The new example can be calculated as follows:

x
′

ij = xij + nσxjzj if n > 0 (1)

Where:

• xij is the entry of the feature j of the instance i in the original dataset which is
substituted by x

′

ij ,
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• n ≥ 0 is level of noise,

• σxj is the standard deviation of feature j

• zj is random variables which zj ∼ N (µ, σ2) for normally distributed noise and zj
∼ U (a, b) for uniformly distributed noise.

3.3 Discretization
To examine the learning curves’ behaviours with different input bases: discrete and con-
tinuous features. Instead of using different problems, we consider the equal width interval
binning technique for discretizing continuous feature spaces. This technique is usually used
for getting categorical values from continuous ones. Then for each continuous feature, xj ,
the observable values will be sorted, and the minimum value and the maximum value are
used to partition the space of the features into k equally sized bins, where k is the parameters
provided by users. The new space of the feature is discretized and only contains k values
starting from the range (min - ϵ, min + min+max

k ] up to (min + (k−1)(min+max)
k , max].

3.4 Dimensionality
To study the impact of dimensionality on the learning curves, the dimension reduction
technique PCA is used to form new versions with different features. With these new datasets,
two classifiers are trained and produce learning curves. These curves are then compared with
the original curves to investigate any shape changes.

4 Experimental setup
In this section, the details of our experimental setup will be specified. The source code is
written in Python with the utilization of Scikit-learn library for training machine learning
models, and OpenML is the platform for data retrieving.

There are more than 20 classification algorithms from the Scikit-learn library, which
can be categorized as linear classifiers or non-linear classifiers. In this initial work, we
only considered one from each category, such as Linear Support Vector Machine (SVC)
and Decision Tree Classifiers (DTC). For all three experiments, we used Kfold cross-
validation with k = 25 to avoid overfitting. The performance metric was the normal er-
ror as it is easy to measure and understand. The error can be calculated as the formula:
1− True Positive + True Negative

TruePositive+TrueNegative+FalsePositive+FalseNegative . Preprocessing data was applied to
each anchor to simulate real-world settings. The attributes with missing values were prepro-
cessed by using mode and mean for categorical and numerical features, respectively. Then
the standard scaler was utilized, as LinearSVC tend to perform better with it [10]. The hy-
perparameters’ distribution used for tuning LinearSVC was C = [0.1, 0.5, 1.0, 5.0, 10.0] and
DT was {max_depth : [10, None], criterion : [”gini”, ”entropy”]}. For the Discretization
experiments, the number of bins k used was 10. the Table 1 below gives information on
the datasets used in the experiments. For convenience, we will refer to the dataset using its
name and openmlid onward. The dataset yeast (181) and diabetes (42608) were used for
both Noise and Discretization experiments since they have reasonable sizes (1484 and 768
instances, respectively) and they only contain continuous features. The rest five datasets
were for Dimensionality experiments. Particularly, the fri_c0_1000_5 (799) was used for
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experimenting with PCA, and the other four represent the same problem (1000 instances)
but have different numbers of features (5, 10, 25, 50 features).

OpenML ID Name Nominal Attributes Numeric Attributes Number of Instances

181 yeast 0 8 1484
799 fri_c0_1000_5 0 5 1000
866 fri_c2_1000_50 0 50 1000
903 fri_c2_1000_25 0 25 1000
912 fri_c2_1000_5 0 5 1000
913 fri_c2_1000_10 0 10 1000
42608 diabetes 0 8 768

Table 1: Datasets used for all experiments

5 Results
This section shows the results of experiments with Noise, Discretization, and Dimension-
ality. First, the process of each experiment is described, and then we will discuss some
key observations. The visualization used for displaying the results is learning curve plots.
Furthermore, the standard errors of 25 curves at each anchor point are also included in the
plots.

5.1 Can feature noise influence curve’s behaviour?
Three experiments on two datasets were conducted to examine the impact of feature noise
on learning curve behaviour. First, the normally distributed noise was injected into the
original datasets. Moreover, the other two experiments are for the uniformly distributed
noise. All experiments used the same levels of noise n in the formula (1) section 3.2, which
is varied from 0% (no noise) to 200% (very noisy). The level of noise n multiplied by the
standard deviation of original datasets, which are then injected into the original ones to
generate new noisy datasets.
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5.1.1 Normally distributed noise

(a) Learner: DecisionTree, dataset: yeast (b) Learner: Linear SVC, dataset: yeast

(c) Learner: DecisionTree, dataset: diabetes (d) Learner: LinearSVC, dataset: diabetes

Figure 1: Learning Curve comparisons of DecisionTree and LinearSVC on 2 datasets: yeast
(top 2 figures), and diabetes (bottom 2 figures). These plots compare the learning curve
of the original dataset with the learning curves of normal distributed noise datasets. The
degrees of noise increase from N (0, (10%σX)2) to N (0, (200%σX)2).

Figure 1 above shows various learning curves of 2 learners on two datasets (yeast and dia-
betes). As we can see, all learning curves seem not well-behaved. The first observation is
that the noisy learning curves stay above the original curve for most of the anchor points
in both learners. The higher the degree of noise, the higher the error difference between
the noisy and zero-noise curves. Secondly, regarding the shape of the curves, they are not
monotonically decreasing because there is some increase in errors at some anchor points.
Additionally, the original curve learns faster from the beginning to the anchor size of 363
(top two figures) and when the anchor size increases. When the noise level is too high
(above 50%), the error increases quickly, and the curve shows some strange patterns. No-
tably, the noisy curves of both learners have many peaks at different anchors. Some curves
seem monotonically decreasing from the certain anchor point (100% curves of Figures 1a,
1c, 1d). Crossing behaviour is another observation; for example, the learners perform better
at 20% noise at some anchor points than the lower noise levels.
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5.1.2 Uniformly distributed noise with

Non-negative bounds

(a) Learner: DecisionTree, dataset: yeast (b) Learner: LinearSVC, dataset: yeast

(c) Learner: DecisionTree, dataset: diabetes (d) Learner: LinearSVC, dataset: diabetes

Figure 2: Learning Curve comparisons of DecisionTree and LinearSVC on 2 datasets: yeast
(top 2 figures), and diabetes (bottom 2 figures). These plots compare the learning curve of
the original dataset with the learning curves of uniformly distributed noise datasets. The
degree of noise increase from U(0, 10%σX) to U(0, 200%σX)

The critical observation we can make from the results in Figure 2 is that the curves are not
well-behaved and monotonic, as they have peaks at some anchor points. In addition, some
noisy curves cross each other and the zero-noise curves. The 20% noise curve outperformed
the original curve at the highest anchor point (2a and 2b).
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Negative min and positive max

(a) Learner: DecisionTree, dataset: yeast (b) Learner: LinearSVC, dataset: yeast

(c) Learner: DecisionTree, dataset: diabetes (d) Learner: LinearSVC, dataset: diabetes

Figure 3: Learning Curve comparisons of DecisionTree and LinearSVC on 2 datasets: yeast
(top 2 figures), and diabetes (bottom 2 figures). These plots compare the learning curve of
the original dataset with the learning curves of uniformly distributed noise datasets. The
degrees of noise increase from U(−10%σX , 10%σX) to U(−200%σX , 200%σX)

Figure 3 shows the results of the similar experiments in Figure 2, but different kinds of
bounds for uniform distribution. For negative lower and positive upper bounds, both learners
again show significant degradation in performance when the noise level is pretty high, and
all the curves show no indicator of monotonicity.

5.2 Can discretized curves behave exponentially?
In order to check whether the learning curves of discrete value feature datasets have any
differences in shapes compared with continuous value features. We trained two learners
on two datasets that only contain continuous features. The number of discretized features
varied and depended on different datasets.
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(a) Learner: DecisionTree, dataset: yeast (b) Learner: LinearSVC, dataset: yeast

(c) Learner: DecisionTree, dataset: diabetes (d) Learner: LinearSVC, dataset: diabetes

Figure 4: Learning curves comparisons between datasets with different numbers of dis-
cretized features. The number of bins used in the experiments is 10, and the numbers of
discretized features increases from 0 to m-1, with m is the numbers of continuous features

(a) Learner: DecisionTree, dataset: 181 (b) Learner: LinearSVC, dataset: 181

Figure 5: The log transformation of Learning curves comparisons of the dataset yeast (181)
with different numbers of discretized features. This plot is used to investigate whether the
curves’ shapes are exponential

Figure 4 above shows some interesting results. There are two key observations we can
make in these experiments. The bottom two figures represent the curves of the problem
(dataset diabetes) considered easy. In this experiment, both learners show no problem with
any number of discretized features. However, with the slightly more complex problem,
as we can see, the more features we discretize, the more likely their shapes varied. Even
with small discretized features (less than 7), the learning curves are not well-behaved, as
at some anchor points, the error increases. When the number of discretized features is
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high (7 discretized features), both DecisionTree and LinearSVC’s curves clearly show zigzag
patterns with multiple peaks. The log scale learning curves in Figure 5 also demonstrate
the same behaviours as the unscaled ones.

5.3 Does low dimensionality lead to a strange curve?
To study how the dimensionality of the dataset influence the shapes of the learning curves.
There are two experiments with 5 datasets: fri_c0_1000_5 (799), fri_c2_1000_50 (866),
fri_c2_1000_25 (903), fri_c2_1000_5 (912), fri_c2_1000_10 (913). The experiment with
dataset fri_c0_1000_5 is to check how PCA techniques affect the learning curves by pro-
gressively reducing the dimensions of the original datasets. Furthermore, the experiment
with the other four datasets is from the same problem with the same number of instances
but different numbers of features.

(a) Learner: DecisionTree, dataset: 799 (b) Learner: LinearSVC, dataset: 799

Figure 6: Learning curves comparisons between dataset fri_c0_1000_5 with its variants.
These modified dataset are generated by using PCA dimension reduction techinque

From Figure 6 above, we can see that both learners’ performance drastically drops when
reducing too many dimensions. As a result, the curves of low dimensionality datasets (less
than four dimensions) stay above the high dimensionality ones. Furthermore, the curves of
lower dimensions cross each other; similarly, high dimensionality curves (greater than three
dimensions) also have crossing behaviours. Both LinearSVC and DecisionTree’s curves are
not well-behaved and monotonic. However, they seem to converge to some error when the
anchor increases.
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(a) Learner: DecisionTree, dataset: 912, 913, 903,
866

(b) Learner: LinearSVC, dataset: 912, 913, 903,
866

Figure 7: Learning Curve’s comparison between the different datasets of the same problem.
These datasets are only different in numbers of features

In this experiment (Figure 7), we can see that only DecisionTree’s curve of the dataset
fri_c2_1000_5 (912) seems well-behaved and monotonically decreasing. The other curves
are not monotonic as they have many peaks. Notably, The gradients of fri_c2_1000_5
(912) learning curves go down very quickly when the anchor size increases. Besides, crossing
behaviours also happened with the curves of datasets: fri_c2_1000_5 (913), fri_c2_1000_5
(903), and fri_c2_1000_5 (866).

6 Discussion, limitation and future recommendation
In this section, we first discuss the general findings of the experiments and give a justification
for the results. Following that, there will be some reflections on the study’s limitations and
how further research is done to help the future study.

6.1 General findings
The first important finding is that the learning curves of DecisionTree and LinearSVC have
unwell-behaved shapes under different noise levels. Moreover, the more noise added to the
datasets, the higher the error increase and the stranger the learning curve behaves. This
could be explained by the way we design our noise experiments. Not Surprisingly, all kinds
of noise distribution make the learning curves not well-behaved and monotonic. Whereas
under low noise levels (below 100%), crossing behaviours happened at some anchor points
because the random noise, dependent on standard deviation σX , might, by chance, distort
the original datasets such that the instances of classes are separable easily. Under the high
noise level (above 50%), the original datasets were distorted so that the feature space of
many instances of different classes overlapped. Consequently, DecisionTree and LinearSVC,
which utilizes feature space separation for classifying, have trouble making the decision.

The second finding is that the learning curves of discretized feature datasets created
by equal width interval binning do not behave exponentially. The log transformation can
verify this in Figure 5. If the discretized curves’ shapes have exponential law properties,
then the error log on the y-axis and the training size on the x-axis will be the straight line,
as they have a linear relationship. However, this is not the case, as the log transformation
learning curves still show strange shapes with a zigzag pattern. This could imply that these
modified datasets do not belong to the class of problems proposed by [1]. In fact, under our
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experiments, the more discretized features we have, the shape of the curve starts to behave
unpredictably. This is because combining too many values associated with many different
classes by using binning causes classification information loss; thus, it is difficult for learners
to make predictions.

The final finding regarding dimensionality is that an ideal number of features always
exist such that the curves behave exponentially. The results are in line with what is found
in [5]. Additionally, dimension reduction techniques like PCA cause the learning curves to
behave unpredictably, leading to strange curves. This is because it is harder to preserve the
variance of the original dataset with a low number of principal components. Therefore, the
lower number of principal components, the stranger the learning curves behave.

6.2 Limitations and future recommendations
The assumptions regarding the distribution of noise and datasets are not necessarily accu-
rate. Furthermore, we only consider feature noise with specific noise degrees. These open
up ideas for experiments with higher noise levels or different combinations of feature noise,
outliers noise or mislabelled noise to see how significantly the noisy curves deviate from the
original curves.

Discretization experiments only utilized the simplest discretizing technique, and the num-
ber of bins is quite arbitrary. Hence, experimenting with more k and figuring out the best
way to choose k could lead to more insights into why such learning behaviours happened.
Furthermore, to verify whether discretization can transform one class of problem (difficult
one) into the class of problem (easy one) that [1] proposed, we should experiment with more
advance discretization techniques described in [13]

Dimensionality experiments inherently have limitations of PCA techniques. Future work
should consider these drawbacks by using different techniques to reduce the dimension of the
datasets. Another thing worth noticing is applying feature selection and feature engineering
techniques to investigate the influence of dimensionality on learning curve shape.

7 Conclusions
In summary, we showed an empirical comparison of the original learning curves with the
learning curves on the modified datasets, which are noisy datasets, discretized datasets and
datasets transformed with PCA. First, we found that with the experimented noise level,
the noisy learning curves seem not well-behaved, and their shape tends to vary under dif-
ferent noise levels. However, the results may differ with datasets, different types of noise,
and different noise levels. Second, under discretization settings, we also show that equal
width interval binning could prevent the learners from achieving effective classification due
to the information loss caused by this simple technique. As a result, learning curves of dis-
cretized problems generated by binning techniques do not behave exponentially; thus, these
problems cannot be in the class of problems in [1] proposed. Finally, the learning curves
start to strangely behave if we try to reduce as many dimensions with PCA. This indicates
that dimension reduction techniques like PCA should be used with care and suggests other
techniques can be utilized to study the effect of dimensionality on learning curves. Study
learning curves’ behaviours on the datasets, which are only different in the number of fea-
tures, also indicate that there should be an ideal dimension at any anchor point such that
the error rate decreases the most.
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8 Responsible Research
In this section, we will reflect on the reproducibility of our experiments and the scientific
integrity of our report. While computation plays a vital role in the scientific community,
the credibility gap between experiments’ details and verification results is getting larger.
Therefore, the reproducibility of our experiments should be one of our priorities. To reflect
on this aspect, we will follow Yale Law School’s six recommendations [14]. The first recom-
mendation is that the source code should be public. The source code of our experiments is
hosted on Github and can be found and accessed via this link. We did not expect our code
to change, so we did not follow the version recommendation. Regarding the computer envi-
ronment, all experiments ran locally on HP ZBook Studio x360 G5 with an i7-8750H CPU
@ 2.2GHz, which installed Windows 11 Education 64-bit. The software required for running
the code can also be found in the yaml file in the Github repository. MIT license was used
for reusing purposes; in other words, anyone can use and adapt our code to any experiment.
Next, anyone can find and access our paper via TUDelft repository, which also follows the
fifth recommendation. The last recommendation was resolved as the code was written in
Python and used one of the most popular frameworks, which can be seen as readable code
for the future. The next essential aspect of Responsible research is scientific integrity. The
code and data are provided to avoid any misconduct pitfalls. Moreover, any modification
of data was communicated in section 3, which helped increase the transparency. The work
not originally thought by ourselves was referred to, and limitations were also reflected in the
Discussion section.
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