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Abstract
This paper presents a non-intrusive subdomain POD-TPWL (SD POD-TPWL) for reservoir history matching through
integrating domain decomposition (DD), proper orthogonal decomposition (POD), radial basis function (RBF) interpolation,
and the trajectory piecewise linearization (TPWL). It is an efficient approach for model reduction and linearization of
general non-linear time-dependent dynamical systems without accessing to the legacy source code. In the subdomain POD-
TPWL algorithm, firstly, a sequence of snapshots over the entire computational domain is saved and then partitioned
into subdomains. From the local sequence of snapshots over each subdomain, a number of local basis vectors is formed
using POD, and then the RBF interpolation is used to estimate the derivative matrices for each subdomain. Finally, those
derivative matrices are substituted into a POD-TPWL algorithm to form a reduced-order linear model in each subdomain.
This reduced-order linear model makes the implementation of the adjoint easy and results in an efficient adjoint-based
parameter estimation procedure. Comparisons with the classic finite-difference-based history matching show that our
proposed subdomain POD-TPWL approach is obtaining comparable results. The number of full-order model simulations
required is roughly 2–3 times the number of uncertain parameters. Using different background parameter realizations, our
approach efficiently generates an ensemble of calibrated models without additional full-order model simulations.

Keywords Data assimilation · Reduced-order modeling · Model linearization · Domain decomposition

Abbreviations
POD Proper orthogonal decomposition
PCA Principal component analysis
RBF Radial basis function
TPWL Trajectory piecewise linearizaton
DD Domain decomposition
FOM Full-order model

1 Introduction

History matching is the process of calibrating uncertain
reservoir model parameters such as gridblock permeabili-
ties, porosities, faults multipliers and facies distributions,
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through minimization of a cost function that quantifies the
misfit between simulated and observed data (typically well
data such as oil or water rates or bottom-hole pressure,
but possibly also 4D seismic data). If the gradient of the
cost function with respect to parameters can be computed
using the adjoint of the reservoir model, history matching
problems can be efficiently solved using a gradient-based
minimization algorithm [11]. In general, significant effort is
required to obtain and maintain a correct implementation of
the adjoint model for complex nonlinear simulation models.
Such implementations are generally intrusive, that is, they
require access to the model code, which may not always be
possible.

Many efforts have been taken to make the implemen-
tation of the adjoint model more feasible. One way is to
replace the original complex model with a surrogate that the
construction of the adjoint model becomes easier. Courtier
et al. [12] proposed an incremental approach by replacing
a high-resolution nonlinear model with an approximated
linear model. Liu et al. [27, 28] developed an ensemble-
based four-dimensional variational (4DEnVar) data assim-
ilation scheme where the approximated linear model is
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constructed using an ensemble of model forecasts. Recently,
to extend the ensemble-based tangent linear model (TLM)
to more realistic applications, Frolov and Bishop et al. [5,
14] incorporated a local ensemble tangent linear model
(LETLM) into 4D-Var scheme. The LETLM has the abil-
ity to capture localized physical features of dynamic models
with relatively small ensemble size. However, it will
become intractable for high-dimensional systems. Proper
Orthogonal Decomposition (POD), a model order reduction
method, is a possible approach to decrease the dimension-
ality of the original model. The POD approach has been
applied to various disciplines, including reservoir model
simulations [21, 30], and has in some cases shown signifi-
cant speed up [7] .

The combination of model linearization and model
reduction techniques has the potential to further ease the
implementation of adjoint models for high-dimensional
complex dynamic systems. Vermeulen and Heemink [40]
combined a non-intrusive perturbation-based linearization
method and POD to build a reduced-order linear approxi-
mation of the original high-dimensional non-linear model.
The adjoint of this reduced-order linear model can be easily
constructed and therefore the minimization of the objec-
tive function can be handled efficiently. Altaf et al. [1] and
Kaleta et al. [24] applied this method to a coastal engineer-
ing and reservoir history matching problem, respectively.

Alternatively, the Trajectory Piecewise Linearization
(TPWL) can be classified as a model-intrusive linearization
method. In TPWL, a number of full-order “training” runs
is first simulated, and then a linear model is generated
through first-order expansion around the “closest” training
trajectories. In reservoir engineering, Cardoso et al. [8] were
the first to integrate POD and TPWL methods and applied
this strategy to oil production optimization. He et al. applied
the POD-TPWL method to both reservoir history matching
and production optimization [18, 20]. These studies
suggested that POD-TPWL has the potential to significantly
reduce the runtime for subsurface flow problems [19, 37].
A drawback, however, is that the POD-TPWL method
requires access to derivative matrices used internally by the
numerical solver and therefore cannot be used with most
commercial simulators [20, 39]. And while non-intrusive
reduced-order linear model construction is possible [1,
24, 40], the required derivative information is estimated
using a global perturbation-based finite difference method,
which needs a large number of full-order simulations
and is therefore computationally demanding. Furthermore,
the global perturbation also hinders the extension of this
method to large-scale reservoir history matching which
requires retaining many POD patterns [24]. In order to avoid
model intrusion and numerous full-order simulations, we
propose to incorporate domain decomposition (DD) and
radial basis function (RBF) interpolation into POD-TPWL

to develop a new non-intrusive subdomain POD-TPWL
algorithm.

RBF interpolation is mainly used to construct surrogate
models [23] and has been applied for example to
reservoir engineering and fluid dynamics [25, 42,
43]. Recently, Bruyelle et al. [6] applied the neural
network-based RBF to obtain the first-order and second-
order derivative information of a reservoir model and
estimate the gradients and Hessian matrix for reservoir
production optimization. The accuracy of RBF-based
gradient approximation is determined by the sampling
strategies of the interpolation data [6]. For high-dimensional
problems, the classical global RBF interpolation algorithm
requires a large number of interpolation data to capture
the flow dynamic as much as possible [10]. Moreover,
the global RBF algorithm can cause some spurious long-
distance correlations, which implies the possibilities to
avoid some redundant interpolation data. This motivates us
to develop a subdomain RBF interpolation technique for
reservoir models where the domain decomposition (DD)
technique potentially allows us to apply the methodology
to large-scale problems. Different local RBF interpolation
schemes are considered based on the details of local flow
dynamics in each subdomain. The domain decomposition
technique first introduced in the work of Przemieniecki
[35] has been applied to various fields [4]. Lucia et al.
[29] first introduced the DD method to model-order
reduction for accurately tracking a moving strong shock
wave. Subsequently, the DD method has also been applied
to non-linear model reduction problems [2, 3, 9].

This paper presents a new non-intrusive subdomain
POD-TPWL algorithm for subsurface flow. The key idea
behind this subdomain POD-TPWL is to integrate the DD
method and RBF interpolation into a model linearization
procedure based on POD-TPWL. The LETLM also enables
us construct a tangent linear model with relatively small
ensemble size. The key point of LETLM is to identify
the influence area which is very similar to the purpose
of domain decomposition described here. However, this
LETLM needs to sequentially construct the TLM piecewise
for each state variable, in this study, we construct the
reduced-order linear model (TLM) piecewise for each
subdomain instead of each state variable. After constructing
the reduced-order linear model using the subdomain POD-
TPWL algorithm, because of the linearity in the reduced-
order subspace, the implementation of adjoint model
is easy, and thus, it is convenient to incorporate this
reduced-order linear model into a gradient-based reservoir
history matching procedure. The runtime speedup and the
accuracy of the new history matching algorithm have been
assessed.

This paper is organized as follows. The history matching
problem and the classical adjoint-based solution approach
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are described in Section 2. Section 3 contains the
mathematical background of the traditional POD-TPWL.
Section 4 gives the mathematical descriptions of domain
decomposition (DD) and radial basis function (RBF)
interpolation, which are used to develop the non-intrusive
subdomain POD-TPWL algorithm. In addition, a workflow
for combining subdomain POD-TPWL with an adjoint-
based history matching algorithm is described. Section 5
discusses and evaluates an application of the new history
matching workflow to two numerical “twin” experiments
involving synthetic reservoir models. Finally, Section 6
summarizes our contribution and discusses future work.

2 Problem description

A single simulation step of a discretized two-phase oil-water
reservoir system is described as follows,

xn+1 = fn+1(xn, β, un+1), n = 0, · · ·, N − 1 (1)

where, fn+1: R2Ng→R2Ng represents the nonlinear time-
dependent model evolution, xn+1∈R2Ng represents the state
vector (pressure and saturation in every gridblock), Ng is
the total number of gridblocks, n and n + 1 indicate the
timesteps, N denotes the total number of simulation steps,
and β denotes the vector of uncertain parameters, which
is the spatial permeability field in our case. un+1 denotes
the vector of well controls, e.g., bottom-hole pressure
and injection or production rate. For the history matching
problem, these well controls have been predefined. To
simplify the notation, we will intentionally omit the well
control terms. For more details about the discretization of
the governing equations, see e.g., [34].

The relationship between simulated data ym+1, state
vector xm+1, uncertain parameters β and well controls un+1

is described by a nonlinear operator hm+1: R2Ng→RNd ,
which, in our case, represents the well model (for
seismic data another model would be needed). Nd is the
number of measurements at each timestep. The simulated
measurements are therefore described by

ym+1 = hm+1(xm+1, β, um+1), m = 0, · · ·, N0 − 1 (2)

where N0 is the number of timesteps at which measurements
are taken.

The history matching process calibrates the uncertain
parameters by minimizing a cost function defined as a sum
of weighted squared differences between observed and
modeled measurements (data). Additional incorporation of
prior information into the cost function as a regularization
term can further constrain theminimizationprocedureandmake

the history matching problem well-posed [33]. Eventually,
the cost function is described by the sum of two terms.

J (x1, · · ·, xn, · · ·, xN, β)= 1

2
(β − βp)T Rp

−1(β − βp)

+1

2

N0∑

m=1

(dm
o −hm(xm, β))T Rm

−1(dm
o −hm(xm, β)) (3)

where dm
o represents the vector of observed data at timestepm.

In validation experiments, dm
o is generated by adding

some noise, e.g., rm, to the data ym
t simulated with

a “truth” model. We will assume here that rm is
a time-dependent vector of observation errors at time
level m, which is uncorrelated over time, and satisfies
the Gaussian distribution G(0,Rm) where Rm is the
observation error covariance matrix at the timestep m. βp

represents the prior parameter vector, and Rp represents
the error covariance matrix of the prior parameters, which
characterizes the uncertainty in the prior model. A gradient-
based optimization algorithm can be used to determine
a parameter set that is not too far away from the prior
information, while minimizing the misfit between the
observed and simulated data.

Thekey stepof agradient-based minimization algorithm is
to determine the gradient of the cost function with respect to
the parameters. In the adjoint approach, a modified function
Ĵ is obtained by adjoining the model equation Eq. 1 to J

Ĵ (x1, · · ·, xn, · · ·, xN ,β) = J (x1, · · ·, xn, · · ·, xN ,β)

+
N∑

n=1

[λn]T [xn − fn(xn−1,β)] (4)

And then, the gradient of the cost function is formulated
after introducing the adjoint model as follows (more details
about the mathematical derivation can be found in [22]),

[dJ

dβ
]T = Rp

−1(β − βp) −
N∑

n=1

[λn]T ∂fn

∂β

−
N0∑

m=1

[
∂hm(xm, β)

∂β

]T

Rm
−1(dm

o − hm(xm, β)) (5)

where the adjoint model in terms of the Lagrange
multipliers λn is given by

λn =
[

∂fn+1

∂xn

]
λn+1 +

[
∂hn(xn, β)

∂xn

]T

Rn
−1(dn

o − hn(xn, β)) (6)

for n = N, · · · 1 with an ending condition λN+1 =
0. This adjoint approach has a high computational
efficiency because just one forward simulation and one
backward simulation are required to compute the gradient,
independent on the size of the variable vector. It should
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be pointed out that four derivative terms, e.g., ∂hm(xm,β)
∂β

,
∂hn(xn,β)

∂xn , ∂fn
∂β

and ∂fn+1

∂xn , are required in the adjoint method.
We will give detailed descriptions of how to efficiently
obtain these four terms using our proposed subdomain
POD-TPWL algorithm in the following sections.

3 POD-TPWL algorithm

In the TPWL scheme, one or more full-order “training”
runs using a set of perturbed parameters are simulated first.
The states and the derivative information at each time step
from these runs are used to construct the TPWL surrogate.
Given the state xn and parameters β, the state xn+1 is
approximated as a first-order expansion around the training
solution (xn+1

tr , xn
tr , β tr ) as follows,

xn+1≈xn+1
tr + En+1(xn − xn

tr ) + Gn+1(β − β tr ) (7)

where

En+1 = ∂fn+1

∂xn
tr

, Gn+1 = ∂fn+1

∂β tr

(8)

The training solution (xn+1
tr , xn

tr , β tr ) is chosen to be as
“close” as possible to the state xn. A detailed description of
a criterion for closeness can be found in [17]. The matrices
En+1 ∈ R2Ng×2Ng and Gn+1 ∈ R2Ng×Ng represent the
derivative of the dynamic model as Eq. 1 at timestep n+1
with respect to states xn

tr and parameters β tr respectively.
Equation 7 is, however, still in a high-dimensional space,
e.g, xn+1 ∈ R2Ng , and β ∈ RNg , which motivates the
development of the POD-TPWL algorithm [17].

POD provides as means to project the high-dimensional
states into an optimal lower-dimensional subspace. The
basis of this subspace is obtained by performing a
Singular Value Decomposition (SVD) of a snapshot matrix
containing the solution states at selected time steps
(snapshots) computed from training simulations. The state
vector x can then be represented in terms of the product of
a coefficient vector ψ and a matrix of basis vectors �

x = �ψ (9)

Let �p and �s represent separate matrices of basis vectors
for pressure and saturation respectively. In general, there is
no need to contain all columns of the left singular matrix
in �p and �s and a reduced state vector representations
are obtained by selecting only the first columns according
to an energy criterion; see, e.g., [17]. To normalize the
reduced state vector, the columns of �p are determined by
multiplying the left singular matrix Up with the singular
value matrix �p (and similarly for saturation), i.e.,

�p = Up�p, �s = Us�s (10)

These two matrix are then assembled into a single basis
matrix � as follows:

x = �ψ =
[

�p 0
0 �s

]
ψ =

[
�p 0
0 �s

] [
ψp

ψ s

]
(11)

In this paper, we also use Karhunen-Loeve expansion
(KLE) or principal component analysis (PCA) to param-
eterize the parameter space. KLE reduces the dimension
of the parameter vector by projecting the high-dimensional
parameter into an optimal lower-dimensional subspace [15].
The basis of this subspace is obtained by performing an
eigenvalue decomposition of the prior parameter covari-
ance matrix Rp. If this covariance matrix is not accessible,
the basis can alternatively be obtained from an SVD of a
matrix holding an ensemble of prior parameter realizations
with ensemble mean βb = βp. Including normalization of
the reduced parameter vector, a random parameter vector
sample β is generated as follows,

β = βb + �βξ , with �β = Uβ�β (12)

where �β denotes the matrix of parameter basis vectors,Uβ

and �β are the matrix of left singular vectors and singular
value matrix respectively, and ξ denotes a vector with
independent Gaussian random variables with zeros mean
and unit variance. A reduced parameter space representation
is obtained by selecting only the first several columns of�β .
The number of retained columns for basis matrix (denoted
as lp and ls for pressure and saturation, lβ for parameter,
respectively) is determined through an energy criterion [17].
We take �p as an example. We first compute the total
energy Et , which is defined as Et = ∑L

i=1 ν2i , where νi

denotes the i-th diagonal element of singular value matrix
�p. The energy associated with the first lp singular vectors

is given by Elp = ∑lp
i=1 νi

2. Then, the smallest lp is
determined such that Elpexceeds a specific fraction of Et ,
e.g., 95%. The same procedure is applied to determine ls
and lβ .

Substituting Eqs. 11 and 12 into Eq. 7, we obtain the
following POD-TPWL formula,

ψn+1≈ψn+1
tr + En+1

ψ (ψn − ψn
tr ) + Gn+1

ξ
(ξ − ξ tr ) (13)

En+1
ψ = �T ∂fn+1

∂xn
tr

�, Gn+1
ξ

= �T ∂fn+1

∂β tr

�β (14)

Similarly, the well model Eq. 2 is also linearized around
a close training solution (ψn+1

tr , ξ tr ) in the reduced space as
follows,

ym+1≈ym+1
tr +Am+1

ψ (ψm+1−ψm+1
tr )+Bm+1

ξ
(ξ −ξ tr ) (15)
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Am+1
ψ = ∂hm+1

∂xm+1
tr

�, Bm+1
ξ

= ∂hm+1

∂β tr

�β (16)

Equations 13 and 15 represent the POD-TPWL system
for reservoir model and well model in the reduced-
order space, respectively. In general, the traditional POD-
TPWL method modifies the source code to output all
derivative matrices [17]. In this paper, radial basis function
interpolation is used to approximately estimate these
derivative matrices. These derivative matrices then are
substituted into POD-TPWL algorithm to form a subdomain
reduced-order linear model.

4 Adjoint-based history matching using
subdomain reduced-order linear model

This section describes the mathematical background of
domain decomposition (DD), and radial basis function
(RBF) interpolation, which are used to construct a non-
intrusive subdomain reduced-order linear model. And then
a procedure to incorporate this reduced-order linear model
into an adjoint-based history matching is given in the last
subsection.

4.1 Domain decompositionmethod

We denote a 2D or 3D computational domain as �. The
entire domain � is assumed to be decomposed into S non-
overlapping subdomains �d , d ∈ {1, 2, · · ·, S} (such that
� = ⋃S

d=1 �d and �i ∩ �j = 0 for i �= j ). Each
subdomain has local unknowns, e.g., local pressure and
saturation variables. In each subdomain �d , the generated
snapshots within that subdomain are used to construct a set
of local POD basis functions φd and the corresponding POD
coefficients ψd,n+1 at the timestep n+1 as described in the
previous section. The dynamic model Eq. 1 is replaced by an
interpolation model relating neighboring subdomain POD
coefficients at the current and previous time step.

ψd,n+1 = £d,n+1(ψd,n, ψ sd,n+1, ξ) (17)

Similarly, the dynamic well model Eq. 2 is replaced by a
second interpolation model expressed in terms of the local
subdomain POD coefficient ψd,m+1 and ξ

yd,m+1 = �
d,n+1

(
ψd,m+1, ξ

)
(18)

where, vector ψd,n denotes the set of POD coefficients at
the time level n for the subdomain �d , ψ sd,n+1 denotes the
set of POD coefficients at time level n+1 for the surrounding
subdomains �sd . In a 2-D case, the number of surrounding
subdomains associated to subdomain�d is between 2 and 4.
Figure 1 shows a maximum of four surrounding subdomains
connected with the subdomain �5, three surrounding

subdomains connected with the subdomain�2, �4, �6, �8,
and two surrounding subdomains connected with the
subdomain �1, �3, �7, �9.

We propose to use RBF interpolation to obtain the
derivative matrices that are required by the POD-TPWL.
In addition, domain decomposition has the abilities to
efficiently capture localized physical features [10] and
therefore has the potential to improve the derivative
estimation by local low-dimensional RBF interpolation
which will be described in the next subsections.

4.2 Radial basis function interpolation

RBF interpolation can be classified as a data-driven interpo-
lation method [23, 25, 42]. High-dimensional interpolation
needs a large number of data to obtain a satisfactory accu-
racy, a phenomenon often referred to as the “curse of dimen-
sionality”. To remedy this difficulty, DD approximates the
global domain by the sum of the local subdomains, and
therefore can be applied to form a locally low-dimensional
RBF interpolation.

For subdomain�d , let £d,n+1(ψd,n, ψ sd,n+1, ξ) denote a
RBF interpolation function for the POD coefficient ψd,n+1

at the time level n+1. The RBF interpolation function is a
linear combination of M radial basis functions in the form
of,

£d,n+1(ψd,n, ψ sd,n+1, ξ) =

and

M∑

j=1

ω
d,n+1
j × θ(||(ψd,n, ψ sd,n+1, ξ)

−(ψ
d,n
j , ψ

sd,n+1
j , ξ j )||) (19)

where, ωd,n+1 is a weighting coefficient vector of size
M. ||(ψd,n, ψ sd,n+1, ξ) − (ψ

d,n
j , ψ

sd,n+1
j , ξ j )|| is a scalar

distance using L2 norm. θ is a set of specific radial basis
functions.

The specific coefficient ω
d,n+1
j is determined so as to

ensure that the interpolation function values £d,n+1 at the
training data points (ψ

d,n
j , ψ

sd,n+1
j , ξ j ), match the given

data ψ
d,n+1
j exactly. This can be expressed by,

Dd,n+1ωd,n+1 = Zd,n+1 (20)

where

Dd,n+1 =
⎡

⎣
θ(ln+1(1, 1)) ... θ(ln+1(1, M))

. θ(ln+1(i, j) .
θ(ln+1(M, 1)) ... θ(ln+1(M, M))

⎤

⎦

ln+1(i, j) = ||(ψd,n
i , ψ

sd,n+1
i , ξ i ) − (ψ

d,n
j , ψ

sd,n+1
j , ξ j )||,

i = 1, · · ·, M; j = 1, · · ·, M (21)
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Fig. 1 Illustration of domain
decomposition in a 2-D case

ωd,n+1 = [ωd,n+1
1 , ω

d,n+1
2 , · · ·, ωd,n+1

M ]T (22)

Zd,n+1 = [ψd,n+1
1 , ψ

d,n+1
2 , · · ·, ψd,n+1

M ]T (23)

The weighting coefficients are determined by solving
the linear system Eq. 20. We chose Multi-Quadratic RBF
in our case. l represents a Euclidean distance. ε denotes
the shape parameters, which can be optimized using
greedy algorithm [43]. Clearly, a Multi-Quadratic RBF
monotonically decreases with Euclidean distance. Multi-
Quadratic RBF is local and is the msot commonly used
across several applications. Other type of RBF θ can be
chosen with more specific purpose [41]. A list of well-
known RBF are provided in Table 1.

After the construction of RBF interpolation, we can
analytically estimate the derivative at the “closest” training
data point, e.g., (ψ

d,n
i , ψ

sd,n+1
i , ξ i ), by differentiating the

RBF as follows,

∂£d,n+1

∂ξ
|ξ=ξ i

=
M∑

j=1

ω
d,n+1
j ×

∂θ(||(ψd,n, ψ sd,n+1, ξ) − (ψ
d,n
j , ψ

sd,n+1
j , ξ j )||)

∂ξ
|ξ=ξ i

(24)

∂£d,n+1

∂ψ sd,n+1
|
ψsd,n+1=ψ

sd,n+1
i

=
M∑

j=1

ω
d,n+1
j ×

∂θ(||(ψd,n, ψ sd,n+1, ξ) − (ψ
d,n
j , ψ

sd,n+1
j , ξ j )||)

∂ψ sd,n+1
|
ψsd,n+1=ψ

sd,n+1
i

(25)

∂£d,n+1

∂ψd,n
|
ψd,n=ψ

d,n
i

=
M∑

j=1

ω
d,n+1
j ×

∂θ(||(ψd,n, ψ sd,n+1, ξ) − (ψ
d,n
j , ψ

sd,n+1
j , ξ j )||)

∂ψd,n
|
ψd,n=ψ

d,n
i

(26)

Similarly, the approximation Eq. 18 also can be
constructed using RBF interpolation method as follows,

yd,m+1 ≈ �
d .n+1(ψd,m+1, ξ)

=
M∑

j=1

ε
d,m+1
j × θ(‖(ψd,m+1, ξ) − (ψ

d,m+1
j , ξ j )‖) (27)

The derivative at the training data by differentiating the
RBF function Eq. 17 with respect to (ψ

d,m+1
i , ξ i ) can be

given by

∂�d,n+1

∂ξ
|ξ=ξ i

=
M∑

j=1

ε
d,m+1
j ×

∂θ(‖(ψd,m+1, ξ) − (ψ
d,m+1
j , ξ j )‖)

∂ξ
|ξ=ξ i

(28)

∂�d,n+1

∂ψd,m+1
|
ψd,m+1=ψ

d,m+1
i

=
M∑

j=1

ε
d,m+1
j ×

∂θ(‖(ψd,m+1, ξ) − (ψ
d,m+1
j , ξ j )‖)

∂ξ
|
ψd,m+1=ψ

d,m+1
i

(29)

where εd,m+1 is a weighting coefficient vector of size
M (number of training data sets), and these matrices are
reconstructed for each time step correspondingly.

Table 1 Some well-known radial basis functions

Functions Definition

Gaussian θ(l) = e−( l
ε
)2

Linear Spline θ(l) = l

Multi-Quadratic θ(l) = √
l2 + ε2

Inverse Caddric θ(l) = 1
l2+ε2

Cubic Spline θ(l) = l3

Thin Plate Spline θ(l) = l2logl

Inverse Multistory θ(l) = 1√
l2+ε2
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4.3 Subdomain POD-TPWL algorithm

By considering the dynamic interaction between neighbor-
ing subdomains as in Eq. 17, the coefficients ψd,n+1 for the
subdomain �d can be obtained as follows,

ψd,n+1 ≈ ψ
d,n+1
tr + Ed,n+1

ψ tr
(ψd,n − ψ

d,n
tr )

+Esd,n+1
ψ tr

(ψ sd,n+1 − ψ
sd,n+1
tr ) + Gn+1

ξ tr
(ξ − ξ tr ) (30)

Coupling domain decomposition and radial basis func-
tion interpolation, the derivative matrices required by POD-
TPWL for the subdomain �d are estimated as follows

Ed,n+1
ψ tr

≈ ∂£d,n+1

∂ψd,n
|
ψd,n=ψ

d,n
tr

Esd,n+1
ψ tr

≈ ∂£d,n+1

∂ψ sd,n+1
|
ψsd,n+1=ψ

sd,n+1
tr

Gn+1
ξ

≈ ∂£d,n+1

∂ξ
|ξ=ξ tr

(31)

where subindex tr refers to the nearest training point
determined in terms of of vector (ψd,n, ψ sd,n+1, ξ).

Similarly, substituting Eq. 27-Eq. 28 into Eq. 15, the
simulated measurements yd,m+1 of the subdomain �d are
reformulated as

yd,m+1 ≈ yd,m+1
tr +Ad,m+1

ψ tr
(ψd,m+1−ψ

d,m+1
tr )+Bm+1

ξ tr
(ξ−ξ tr ) (32)

Ad,m+1
ψ ≈ ∂�d,m+1

∂ψd,m+1
|
ψd,m+1=ψ

d,m+1
tr

, Bm+1
ξ tr

≈ ∂�d,m+1

∂ξ
|ξ=ξ tr

(33)

The implementation of POD-TPWL is local in each
subdomain, which has the potential to capture features
dominated by local dynamics better than global approxi-
mations. Therefore, we could refer to the subdomain POD-
TPWL algorithm. The subdomain POD-TPWL consists of
an offline stage and an online stage. (1) During the offline
stage, we construct a set of local RBF and estimate the
derivative information for each subdomain. Firstly, the solu-
tions of the full-order model are saved as a sequence of
snapshots over the whole computational domain and then
partitioned into subdomains. From the local sequence of

snapshots over each subdomain, a number of local basis vec-
tors is formed using POD. Unlike the traditional practices in
which RBF is used to construct a set of surrogates for each
subdomain, we use RBF to estimate the derivative matri-
ces for each subdomain. Finally, those estimated derivative
matrices are substituted into POD-TPWL algorithm to form
a reduced-order linear model in each subdomain. (2) The
online stage consists of the time evolution of the dynamic
state of the reduced model by iterative implementation and
solution of the subdomain POD-TPWL equations. Refer-
ring to Eq. 30, we represent the dynamic interactions among
neighboring subdomains using an implicit formula. the
variables of one subdomain at current time level can be
linearized around the variables of this subdomain at previ-
ous timestep and variables of neighboring subdomains at
current timestep, which have not been determined. Thus,
additional iterations are required. The non-adjacent subdo-
mains almost have no direct dynamic interactions, this kind
of subdomain POD-TPWL algorithm can be easily paral-
lelized. Referring to Fig. 1, subdomains�1, �3, �5, �7, �9

have no direct interactions, and therefore the subdomain
POD-TPWL algorithm can be simultaneously implemented
in these five subdomains. This is similar for the subdomains
�2, �4, �6, �8. This parallelization for subdomain POD-
TPWL is known as block red-black ordering [13, 16]. The
k-th iterative description of Eq. 29 is as follows.

ψ
d,n+1
k ≈ ψ

d,n+1
tr + Ed,n+1

ψ tr
(ψd,n − ψ

d,n
tr )

+Esd,n+1
ψ tr

(ψ
sd,n+1
k−1 − ψ

sd,n+1
tr ) + Gn+1

ξ tr
(ξ − ξ tr ) (34)

The iteration for subdomain POD-TPWL is very cheap,
thus, we do not limit the maximum number of iterations.
The iteration will be stopped when no further changes in the
estimate of state, .e.g., pressure and saturation occur,

|ψk+1 − ψk|
max{|ψk+1|, 1} < ηψ (35)

Nonetheless, the parallelization is not explored in this paper
and is left as a future area of research.

Fig. 2 The illustration of the
reconstruction method of
subdomain POD-TPWL
algorithm



Comput Geosci

Fig. 3 The illustration of
adjoint-based history matching
using subdomain POD-TPWL
algorithm. The purple box
represents the inner loop in
which the model-reduced cost
function as Eq. 36 is minimized.
The left arrow represents the
outer-loop in which the
reduced-order linear model is
updated

4.4 Sampling strategy

In our proposed subdomain POD-TPWL algorithm, train-
ing points are required for both RBF interpolation
and to construct the POD basis. For POD, the snap-
shot matrix generated from the training simulations

should accurately characterize the dynamic behavior of
the system. The training simulations used to construct
the RBF interpolation model should allow for accu-
rate computation of derivative matrices. The procedure
for choosing these training points will be described
here.
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Fig. 4 The well placement in the 2-D reservoir model for case 1

Sampling strategy for POD. A small initial set of model
parameter vectors is sampled and used as input for full-
order model (FOM) simulations from which a snapshot
matrix is constructed. The singular value spectrum is
computed for this initial set of samples. The number of
samples is then increased one at a time, i.e., adding one
FOM simulation, and the SVD is recomputed, until no
significant changes are observed in the singular value
spectrum.

Sampling strategy for RBF. The accuracy of the RBF
interpolation will be reduced if too few data points are
chosen, while the computational cost increases with the

Table 2 Experiment settings using MRST for case 1

Description Value

Dimensions 50 × 50 ×1

Grid cell size 20 × 20 × 10

Number of wells 8 producers, 1 injector

Fluid density 1014 kg/m3, 859 kg/m3

Fluid viscosity 0.4 mP·s, 2 mP·s
Initial pressure 30 MPa

Initial saturation So=0.80, Sw=0.20

Connate water saturation Swc=0.20

Residual oil saturation Sor=0.20

Corey exponent, oil 4.0

Corey exponent, water 4.0

Injection rate 200m3/d

BHP 25MPa

History production time 5 year

Prediction time 10 year

Timestep 0.1 year

Measurement timestep 0.2 year
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(a) ’True’ model in original full-order space
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(b) Projected ’true’ model in reduced-order
subspace

Fig. 5 Comparison of the “true” reservoir model in full-order space
and in reduced-order space for Case 1

number of data points, which will be prohibitive if too
many points are chosen. To limit the number of FOM
simulations used to construct the interpolation model for
the POD coefficients, we use 2-sided perturbation of each
coefficient ξj resulting in 2 × lβ + 1 points. In some
experiments, we add additional points by simultaneous
random sampling of perturbations 
ξ . An alternative
could be use to use Smolyak sparse grid sampling [36].

4.5 Adjoint-based history matching algorithm

After constructing the linear reduced-order model using the
proposed subdomain POD-TPWL methodology, it can be
used within an adjoint-based history matching workflow.

The cost function evaluated using the reduced-order
linear model is given by reformulating Eq. 3 as follows,

j (ξ) = 1

2
(βb + �βξ − βp)T Rp

−1(βb + �βξ − βp)

+ 1

2

S∑

d=1

N0∑

m=1

[dd,m
o − yd,m

tr − Ad,m
ψ tr

(ψd,m − ψ
d,m
tr ) − Bm

ξ tr
(ξ − ξ tr )]T

Rm
−1[dd,m

o − yd,m
tr − Ad,m

ψ tr
(ψd,m − ψ

d,m
tr ) − Bm

ξ tr
(ξ − ξ tr )] (36)
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Fig. 6 Examples of realizations
of the log-permeability field
generated from PCA
coefficients sampled randomly
from the set {-1, 1} for Case 1

realization 1

10 20 30 40 50

10

20

30

40

50 2

3

4

5

6

7
realization 2

10 20 30 40 50

10

20

30

40

50 2

3

4

5

6

7

realization 3

10 20 30 40 50

10

20

30

40

50 2

3

4

5

6

7
realization 4

10 20 30 40 50

10

20

30

40

50 2

3

4

5

6

7

After augmenting this cost function with the model
equation Eq. 29, the gradient with respect to the model
parameters is obtained as

[dj

dξ
]T = (φβ)T Rp

−1(βb + φβξ − βp)

−
S∑

d=1

N0∑

m=1

[Bm
ξ tr

]T Rm
−1[dd,m

o − yd,m
tr − Ad,m

ψ tr
(ψd,m − ψ

d,m
tr )

−Bm
ξ tr

(ξ − ξ tr )] −
S∑

d=1

N∑

n=1

[Gn
ξ tr

]T λd,n (37)

where λd,n is obtained as the solution of the adjoint model
for the subdomain �d as follows

[I − (Ed,n
ψ tr

)T ]λd,n =
S∑

d=1

[Ad,n
ψ tr

]T Rn
−1[dd,n

o − yd,n
tr

−Ad,n
ψ tr

(ψd,n − ψ
d,n
tr ) − Bn

ξ tr
(ξ − ξ tr )] + [Esd,n

ψ tr
]T λd,n+1 (38)

The minimization of the cost function Eq. 36 is performed
using a steepest descent algorithm [32] and is stopped when
either one of the following stopping criteria is satisfied

– No further changes in the cost function

|j (ξ k+1) − j (ξ k)|
max{|j (ξ k+1)|, 1} < ηj (39)

– No further changes in the estimate of parameters,

|ξ k+1 − ξ k|
max{|ξ k+1|, 1} < ηξ (40)

– The maximum number of iterations has been reached.
i.e

k <= Nmax (41)

where ηj and ηξ are predefined error constraints and Nmax

is the maximum number of iterations.
As mentioned in [24], the solution of the reduced and

linearized minimization problem based on Eq. 36 is not
necessarily the solution of the original problem based on
Eq. 3. Therefore, an additional stopping criterion should be
introduced for the original model as follows [38],

NdN0 − 2
√
2NdN0 � 2J (βk) � NdN0 + 2

√
2NdN0 (42)

Table 3 Experiment design of
error quantification for case 1 Domain decomposition Projection energy Testing interval training interval

3×3 90% [−0.1,0.1] [−0.1,0.1]

4×4 95% [−0.2,0.2] [−0.5,0.5]

5×5 99% [−0.3,0.3] [−1,1]
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Fig. 7 Average subdomain POD-TPWL errors for test case as a function of domain decomposition, projection energy, testing interval and training
interval for case 1. Results are for TPWL models constructed using 37 training simulations

where, N0 is the number of timesteps where the measure-
ments are taken, Nd is the number of measurements at each
timestep, βk represents the updated parameters vector at the
k-th outer-loop. J is the cost function computed as Eq. 3.

If the objective function does not meet the stopping
criterion as Eq. 42, then additional outer-loops are required
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Fig. 8 Illustration of the applied domain decomposition for Case 1

to reconstruct new reduced-order linear models using the
updated parameters, and the aforementioned iterative inner-
loop is performed again.

Table 4 Summary of the number of reduced variables for the global
domain and after domain decomposition for case 1 (Note:s refers to
saturation, p refers to pressure)

Domain Decomposition Global Domain

SD β s p β s p

1

18

14 7

18 72 36

2 13 6

3 12 5

4 13 4

5 16 7

6 14 6

7 13 5

8 15 6

9 12 5

Total 18 122 51 18 72 36
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Fig. 9 Measured quantities for case 1. Blue solid line: reference model
(truth), black dashed line: noisy data

Our proposed non-intrusive subdomain POD-TPWL has
computational advantages over the traditional construction
of reduced-order linear models using perturbation-based
finite-difference method proposed in [24], especially

when the reduced-order linear model is required to
be reconstructed for each outer-loop. Instead of re-
perturbing the parameter and state variables one by one
to approximate the derivative matrices as proposed in
[24], which would require (lp+ls+lβ+1) FOM simulations,
our algorithm runs only one additional FOM simulation
using updated parameters. The updated parameters and
simulated snapshots are added into the previous group of
sampling interpolation points and corresponding snapshots.
The derivative matrices for the updated parameters are
approximated based on the updated group of interpolation
points and snapshots. The overall workflow has been
summarized conceptually in Fig. 2. The individual steps of
the history matching algorithm described in this section are
summarized in the flow chart presented in Fig. 3.

5 Numerical experiments and discussion

In this section, two numerical experiments are presented
that aim to demonstrate and evaluate our proposed adjoint-
based history matching algorithm. The first experiment is
based on a small 2D synthetic model containing 9 wells.
The second experiment uses a reservoir model with 13
wells based on the SAIGUP benchmark case [31]. In our
numerical experiments, MRST, a free open-source software
for reservoir modeling and simulation [26], is used to run
the FOM simulations.

5.1 Case 1 - 2D reservoir with 9 wells

5.1.1 Description of model settings

A 2D heterogeneous oil-water reservoir is considered with
two-phase imcompressible flow dynamics. The reservoir
contains 8 producers and 1 injector, which are labeled
as P1 to P8, and I1 respectively, see Fig. 4. Detailed
information about the reservoir geometry, rock properties,
fluid properties, and well controls is summarized in Table 2.

5.1.2 Reduced model construction

We generate an ensemble of 1000 Gaussian-distributed
realizations of log-permeability. We also assume that the
generated log-permeability fields are not conditioned to
the permeability values at the well locations. The log-
permeability fields and the corresponding porosity fields are
described by the following statistics:

σβ = 5 (43)

Cβ(xi1,j1; yi2,j2] = σ 2
βe

−
[( |xi1−xi2|

χx

)2+
( |yi1−yi2|

χy

)2]

(44)
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Fig. 10 True, initial and updated
log-permeability fields using SD
POD-TPWL, GD POD-TPWL,
and the FD method for case 1
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χx

Lx

= 0.2,
χy

Ly

= 0.2 (45)

φ = 0.25

(
eβ

200

)0.1

(46)

Here, σβ is the standard deviation of log-permeability
β; Cβ is the covariance of β; xi1,j1=(xi1, yj1) denotes the
coordinates of a grid block; χx (or χy) is the correlation
length in x (or y) direction; and Lx (or Ly) is the
domain length in x (or y) direction. The background log-
permeability βb is taken as the average of the 1000
realizations. One of the realizations was considered to be
the truth, and is illustrated in Fig. 5a. The permeability
field was parameterized using KL-expansion and about 95%
energy is maintained, resulting in 18 permeability patterns
with lβ = 18 corresponding independent PCA coefficients,
which are used in the workflow as a low-dimensional
representation of the 2500 grid block permeability values.

Figure 5b shows the projection of the “true” permeability
field in this low-dimensional subspace which shows that the
truth can be almost perfectly reconstructed in this subspace.
Four realizations for log-permeability field generated are
additionally shown in Fig. 6.

After having reduced the parameter space, the next step
is to reduce the reservoir model. The first step is to generate
a set of training runs from which snapshots will be taken.
Since the required number of training runs is not known
a priori we follow the following procedure: (1) generate a
sample PCA coefficient vector by sampling from the set
{−1, 1}, (2) run a full-order model simulation with these
parameters, (3) extract snapshots and form the snapshot
matrix, (4) compute the singular value decomposition of the
snapshot matrix (5) repeat steps (1) to 4) until changes in the
singular values are insignificant. For Case 1, this produced
a set of 15 training runs and 240 snapshots for pressure and
saturation each.
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Fig. 11 Cost function value decrease using a finite-difference method,
and b subdomain POD-TPWL for case 1. OL-i means the i-th outer-
loop

5.1.3 Error quantifications

The performance of the subdomain POD-TPWL model
can be investigated by comparing the errors relative to
FOM simulation for quantities of interest. Here, errors
are quantified in terms of the mismatch of the fluid
rate, water-cut and primal variables, i.e., pressure and
saturation between the FOM solution dFOM and subdomain
POD-TPWL simulations dROM . For example, the average
fluid rate error Ef r or the average water-cut error Ewct is
calculated as

Ef r or Ewct = 1

NNd

N∑

i=1

Nd∑

j=1

|(di,j
FOM − di,j

ROM)|
di,j

FOM

(47)

where d represents the fluid rate or water-cut. Similarly,
the pressure error Ep and saturation error Es are formulated
as

Ep or Es = 1

NNd

N∑

i=1

Nd∑

j=1

|(xi,j
FOM − xi,j

ROM)|
xi,j
FOM

(48)

where x represents the saturation or pressure in each
gridblock at each timestep.
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Fig. 12 Forecasts of the liquid rate and water-cut for case 1 from the
initial model (green line), the reference model (blue line), and the
model updated using the SD POD-TPWL (red line). Measured data are
indicate by open circles

In our case, the initial 37 sampling points are selected
as described in subsection of sampling strategy, where
the j-th element ξ

j
i of the i-th PCA coefficient vector

ξ j is perturbed sequentially in 2 opposite directions
(positive and negative) by a specific amplitude perturbation

 ξ

j
i . These 37 sampling points are used to build

a subdomain reduced-order linear model. Four factors,
e.g., domain decomposition, projection energy, testing
interval and training interval, are considered to analyze
the sensitivity of model errors. The experiment settings
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Table 5 Comparison between SD POD-TPWL and FD method for
case 1

− Iterations FOM J (ξ) ×104 eobs eβ

Initial model − − 1.69 28.38 2.28

SD POD-TPWL 103 55 0.0160 3.35 0.68

FD 52 988 0.0153 3.28 0.72

“True” model − − 0.0068 2.12 0

are shown in Table 3. We specify the stopping criterion
ηψ = 10−3.

The detailed information about the error quantification
can be found in our Supplementary file, the main results
are summarized here. Figure 7 shows the error in fluid rate,
water-cut, pressure and saturation as a function of the four
factors. A relatively small subdomain size of 3 x 3 cells pro-
duced the most accurate results for this case. Accuracy is
also improved by increasing the energy threshold and retain-
ing more POD patterns, albeit at an increased computational
cost. Retaining 95% of the total energy during projection
produces an acceptable accuracy in this case. Increas-
ing the testing interval, which represents the maximum
discrepancy between test model and linearized training
model, severely deteriorates the reduced model accuracy,
with the best results obtained with the [–0.1, 0.1] interval.
an appropriate iteration step-length for the history match-
ing process should be set as 0.1 based on our numerical
experiments.

In terms of computational effort, the runtime for a
single FOM simulation for this case was about 2 s on
a machine with i5-4690 Intel CPUs (4 cores, 3.5GHz)
and 24 GB memory using Matlab-R2015a. The subdomain
POD-TPWL models, in contrast, required less than 0.2
s. However, the construction of subdomain POD-TPWL
requires simulating 52 training models, POD, derivative
estimation using RBF, plus additional overhead, which
severely increases the cost. Therefore, it would not make

sense to construct the subdomain POD-TPWL model unless
it is to be used for a large number of simulations.
Because many simulations are required in history matching
applications, the subdomain POD-TPWL model should
be applicable in this context. The use of subdomain
POD-TPWL in conjunction with an adjoint-based data
assimilation procedure is presented in the following
parts.

5.1.4 History matching procedure

Based on the error sensitivity analysis presented above,
we divide the entire domain into 9 (3 × 3) rectangle
subdomains as illustrated in Fig. 8. The choice of
subdomains is fairly arbitrary at this point since we have
no formal algorithm to determine the best number and
design of the subdomains. The previously collected global
snapshots for pressures and saturations are divided into local
snapshots. For each subdomain, two separate eigenvalue
problems for pressure and saturation are solved using
POD. The number of reduced parameters and state patterns
for each subdomain and for the global domain are listed
in Table 4 where specific projection energy, e.g., 95%
and 95%, are preserved for the pressure and saturation
respectively in each subdomain.

The history period is 5 years during which observations
are taken from 8 producers and 1 injector every second
simulation time step (nearly 73 days) resulting in 25 time
instances. Noisy observations are generated from the model
with the “true” permeability field and include bottom-hole
pressures (BHP) in the injector and fluid rates and water-
cut (WCT) in the producers. As a result, we have 200 fluid
rates and 200 WCT values measured in the producers and
25 bottom-hole pressures measured in the injector, which
gives in total 425 measurement data. Normal distributed
independent measurement noise with a standard deviation
equal to 5% of the “true” data value, was added to all
observations. The generated measurements are shown in
Fig. 9.

Table 6 The number of
interpolation variables in each
subdomain and global domain
for case 1. �d is the d-th
subdomain

Domain decomposition Global domain

1 75=21(�1)+19(�2)+17(�4)+18

126 =72 +36+18

2 98=21(�1)+19(�2)+17(�3)+23(�5)+18

3 74=19(�2)+17(�3)+20(�6)+18

4 97=21(�1)+17(�4)+23(�5)+18(�7)+18

5 118=19(�2)+17(�4)+23(�5)+20(�6)+21(�8)+18

6 95=17(�3)+23(�5)+20(�6)+17(�9)+18

7 74=17(�4)+18(�7)+21(�8)+18

8 97=23(�5)+18(�7)+21(�8)+17(�9)+18

9 76=20(�6)+21(�8)+17(�9)+18
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Fig. 13 Water saturation and
pressure fields from the
full-order model and from SD
POD-TPWL and GD
POD-TPWL based models for
case 1
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(a) Full-order model

(b) Domain decomposition

(c) Global domain

To analyze the results, we define two error measures
based on data misfits eobs and parameter misfits eβ as
follows,

eobs =

√√√√
∑No

i=1

∑Nd

j=1(d
i,j
obs − di,j

upt )
2

NoNd

(49)

eβ =

√√√√
∑Ng

i=1(β
i
true − βi

upt )
2

Ng

(50)

where, di,j
obs and di,j

upt represent the measurements and

simulated data using the updated model respectively; βi
true

and βi
upt denote the grid block log-permeability from the

“true” model and updated model respectively.
Figures 10, 11, and 12 and Table 5 show the results

of the first numerical experiments, including the updated
log-permeability field, the value of cost function at

each iteration and the mismatch between observed data
and predictions. To demonstrate the performance of our
proposed methodology, we compared the results with those
of finite-difference (FD)-based history matching algorithm
without domain decomposition and model order reduction.
The total computational cost of any minimization problem

Table 7 Comparison between SD POD-TPWL and GD POD-TPWL
for case 1

− FOM J (ξ) ×104 eobs eβ

Initial model − 1.69 28.38 2.28

SD POD-TPWL 55 0.0160 3.35 0.68

GD POD-TPWL 73 0.0140 3.21 0.61

FD 988 0.0153 3.28 0.72

“True” model − 0.0068 2.12 0
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Fig. 14 Ensemble of 20 updated
log-permeability fields for case 1
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strongly depends on the number of parameters. In our work,
for a fair comparison, we use the same parameterization to
reduce the number of parameters and implement FD based
history matching in this reduced-order parameter subspace.
The cost function for FD based history matching can be
defined as follows,

J (ξ) = 1

2
(βb + φβξ − βp)T Rp

−1(βb + φβξ − βp)

+1

2

N0∑

m=1

(dm
o − hm(xm, ξ))T Rm

−1(dm
o − hm(xm, ξ)) (51)

The FD method is used to compute the numerical
gradient of the cost function as Eq. 51 with respect to 18
PCA coefficients. A FD gradient is determined by one-sided

perturbation of each of the 18 PCA coefficients. Thus, 19
full-order model (FOM) simulations are required for each
iteration step. The stopping criteria are set ηj = 10−4,
ηξ = 10−3, and Nmax=30. As can be seen from Fig. 11
and Table 5, the model-reduced approach needs 55 FOM
simulations, among them, 15 FOM simulations are used to
collect the snapshots and 37 FOM simulations are used to
construct the initial reduced-order linear model in the first
outer-loop. The remaining 3 FOM simulations are used to
reconstruct three new reduced-order linear models in the
next three outer-loops and to calculate the cost function
as Eq. 3 in the original space. Figure 10 shows the true,
initial, and final estimates of log-permeability field. In this
case, the main geological structures of the the “true” model
can be reconstructed with both methods. However, the
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Fig. 15 Ensemble of fluid rate and water-cut prediction for case 1.
The gray lines represent the predictions from the 20 prior permeability
realizations, while the red lines represent the predictions from the
corresponding 20 posterior permeability realizations calibrated using
our method. The circles represent the noisy data

parameter estimates obtained with proposed methodology
more accurately reproduce the true amplitudes than those
obtained with FOM-based history matching. From Fig. 12
and Table 5, we can both qualitatively and quantitatively
observe that the history matching process results in an
improved prediction in all of the eight production wells.
Figure 12 illustrates the data match of fluid rate and water-
cut up to year 5 and an additional 5-year prediction until
year 10 for all 8 producers. The prediction based on the
initial model is far from that of the true model. After history
matching, the predictions from the updated model match
the observations very well. Also, the prediction of water
breakthrough time is improved for all of the production

wells, also for wells that show water breakthrough only after
the history period.

One of the key issues for the subdomain POD-
TPWL is the implementation of the domain decomposition
technique. Our proposed subdomain POD-TPWL (SD
POD-TPWL) can be easily generalized to the global
domain POD-TPWL (GD POD-TPWL). The differences
between SD POD-TPWL and GD POD-TPWL are (a)
model order reduction in global domain versus reduction
in each subdomain separately and (b) derivative estimation
using RBF interpolation in the global domain versus
interpolation for each subdomain. As shown in Table 4,
the total dimension of the reduced-order linear model is
18+122+51=191 for domain decomposition and 18+72+36
=126 for the global domain. Table 6 shows the total
number of the reduced variables in each subdomain and
in the global domain. While the total sum of the reduced
variables in each subdomain is larger than that of the
global domain, the number of reduced variables in each
individual subdomain is relatively small. Furthermore, these
local reduced variables have the surprisingly abilities to
accurately capture the flow dynamics, as suggested by
Fig. 13. Figure 13 shows the distribution of pressure and
saturation at the final time. In this case, the reconstructions
of the saturation and pressure field using a small number
of patterns in each subdomain are comparable with those
of the global domain. In addition, as shown in Table 7,
both GD POD-TPWL and SD POD-TPWL can converge
to satisfactory results. The SD POD-TPWL needs 55 FOM
simulations, while the GD POD-TPWL algorithm requires
73 FOM simulations (15 FOM simulations are run to collect
the snapshots, 55 FOM simulations are used to construct
the initial reduced-order linear model in the first outer-
loop, and the remaining 3 FOM simulations are used to
reconstruct the reduced-order linear models in the following
three outer-loops). Therefore, compared to the global
RBF interpolation, the proposed local RBF interpolation
technique requires only a small number of reduced variables
per subdomain and is much more computationally efficient.
If the dimension of the underlying model would be much
larger, the GD POD-TPWL would result in a reduced-order
linear model with a higher dimension and therefore more
interpolation points would be required in the RBF scheme.
In the SD POD-TPWL algorithm this problem is avoided
since for large-scale problems the dimension of the reduced-
order linear model for the subdomain does not increase
significantly, we only need to activate more subdomains.

For Case 1, history matching results using GD POD-
TPWL are slightly better than those from the subdomain
POD-TPWL, especially for the high-permeable zone, e.g.,
the red area in Fig. 10. The water-front of the waterflooding
process propagates forward quickly (as the blue area in
Fig. 13) and therefore there are strong dynamic interactions
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Fig. 16 Error analysis in terms
of measurement and
permeability misfits for the 20
solutions for case 1
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within this area. Our chosen domain decomposition may
artificially cut off this inherent dynamic interaction between
the east-south corner and the west-north corner. A flow-
informed domain decomposition technique may therefore
be required to identify the relevant dynamic interactions,
especially for strongly heterogeneous reservoir models such
as those based on strongly contrasting facies distributions or
channels.

Solutions in our previous numerical experiments do not
enable us to quantify the uncertainty of the permeability
field and the predictions. In general random maximum
likelihood (RML) procedure [33] enables the assessment of
the uncertainty by generating multiple “samples” from the
posterior distribution. Each of these samples is a history
matched realization, which also honors the data. Traditional
4D-Var or gradient-based history matching method obtains
only one specific solution. Additional solutions are obtained
by repeatedly implementing the minimization process,
but has a very highly computational cost. The RML
procedure can be efficiently implemented using our
proposed reduced-order history matching algorithm. When
different background parameters are chosen to construct
the reduced-order linear models, several valid solutions are
obtained based on acceptable data misfits. In this case, we

choose 20 different background parameter sets to repeatedly
implement our proposed adjoint-based reservoir history
matching process.

Once the reduced model has been constructed the history
matching can be efficiently repeated for different initial
(background) models. Figure 14 shows an ensemble of
the posterior realizations (updated log-permeability field)
using 20 different background parameters sets. The main
geological features, e.g., the high permeable area, are partly
reconstructed in all of these 20 cases. Figures 15 and 16
show an ensemble of forecasts and the corresponding data
misfits respectively using these 20 different initial and
posterior models. Almost all of these 20 calibrated models
produce improved predictions of the fluid rate and WCT
for all eight producers that are generally consistent with
the data. Thus, all of these 20 updated log-permeability
fields can be regarded as acceptable solutions of the history
matching problem. The spread of the predictions from the
posterior realizations is significantly decreased relative to
the predictions from the prior realizations. In the course
of uncertainty quantification, we randomly choose these
20 background parameter sets from the prerun 52 FOM
simulations which is used to construct the reduced-order
linear in the first outer-loop. In addition, the analysis of

Fig. 17 The 3-D view of the
well placement for case 2
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Table 8 Experiment settings using MRST for case 2

Description Value

Dimension 40×120×1

Number of wells 6 producers, 7 injectors

Constant porosity 0.2

Fluid density 1014 kg/m3, 859 kg/m3

Fluid viscosity 0.4 mP·s, 2 mP·s
Initial pressure 30 MPa

Initial saturation So=0.80, Sw=0.20

Connate water saturation Swc=0.20

Residual oil saturation Sor=0.20

Corey exponent, oil 4.0

Corey exponent, water 4.0

Injection rate 250m3/d

BHP 25MPa

History production time 10 year

Prediction time 15 year

Timestep 0.1 year

Measurement timestep 0.2 year

the ensemble spreading enables us not to implement the
additional outer-loops for updating the reduce-order linear
model. This means there is no need to run additional FOM
simulations for the outer-loops, which makes our method
very efficient. Finally, in order to obtain these 20 solutions,
the RML procedure totally requires 52 FOM simulations,
including 15 FOM simulations for collecting snapshots,
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(a) ’True’ model in original full-order space
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(b) Projected ’true’ model in reduced-order subspace

Fig. 18 The comparison of the “true” reservoir model in full-order
space and reduced-order space for case 2
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Fig. 19 Realizations of log-permeability field generated in the interval
{-1, 1} for case 2

37 FOM simulations for the initial construction of the
reduced-order linear model and no additional outer-loop.

5.2 Case 2 - 2D benchmarkmodel with 13 wells

5.2.1 Description of model settings

In the second numerical experiment, the SAIGUP model
[31] is used to test our proposed adjoint-based history
matching approach. The first layer containing a total of
3895 active and 905 inactive grid cells is chosen for our
test case. The realistic geological properties, e.g., faults, are
preserved. The reservoir model describes an oil–water two-
phase flow system with six producers and seven injectors,
which are labeled from P1 to P6, and I1 to I7, see Fig. 17.
Some detailed information about reservoir geometry, rock
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Fig. 20 The 2-D view of
domain decomposition in the
“true” model for case 2
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properties, fluid properties, and well controls are shown in
Table 8.

5.2.2 Description of reducedmodel procedure

Similarly, as Eqs. 43– 46, we generate an ensemble of
1000 Gaussian-distributed realizations of log-permeability.
One of these realizations was considered to be the truth,
as Fig. 18a. To efficiently implement our methodology
in this much more realistic case, the log-permeability
field was parameterized using a KL-expansion described
above and about 90% energy is maintained, resulting in
44 permeability patterns to represent the uncertainty in all
3895 active grid cells. Figure 18b represents the “true”
permeability field projected onto the subspace spanned by
these lβ=44 PCA coefficients. Most parts of the properties
of the original “true” model is reconstructed in the reduced-
order parameter subspace, while parts of properties are
lost, e.g., the high-permeable area around the producer
P2. Four realizations for log-permeability field generated
from random coefficients sampled from the set {-1, 1} are
illustrated in Fig. 19.

Experiments showed that the changes in singular value
spectrum of the snapshot matrix are insignificant when the
snapshots at every timestep are selected from 20 or more
FOM simulations. These 20 FOM are also sampled from
the interval {-1, 1} to effectively preserve the dynamic
behavior. Finally, we collect 2000 snapshots for pressures
and saturations separately. Comparing to the previous
synthetic model, the existence of the faults and strong
heterogeneity makes the flow dynamic of SAIGUP more
complicated. The error quantification for subdomain POD-
TPWL is also implemented and we obtain some consistent
results with the Case 1; thus, the detailed implementation
of error quantification is not described here. To effectively
capture the local physical features, we divide the whole
model domain into 40 subdomains (4 subdomains in x
direction times 10 subdomains in y direction) as in Fig. 20.
The inactive grids are intentionally considered to convert
the original irregular model into a rectangle reservoir model,
and subsequently this regular model can be conveniently

decomposed into subdomains. In addition, to increase the
efficiency, we do not construct the reduced-order linear
model in the subdomain if the number of active grids is
less than 5. For each subdomain, two eigenvalue problems
separately for pressure and saturation are solved using POD.
Both decompositions preserve 90% of the energy, and the
number of reduced variables for each subdomain is shown
in Fig. 21.

The history period is 10 years during which observations
are taken from these 13 wells every 0.2 years, resulting
in 300 fluid rates and 300 WCT values measured in the
producers and 350 bottom-hole pressures measured in the
injectors, which give in total 950 data points. The generated
measurements for producing wells are shown in Fig. 22.

5.2.3 History matching results

The accuracy of RBF interpolation depends on the
interpolation points, and the number of interpolation points
depends on the number of interpolation variables. In the
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Fig. 21 The number of reduced pressure and saturation variables in
each subdomain for case 2
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Fig. 22 Example of synthetic
measurements for case 2: green
line-initial model, blue
line-reference model, dot
line-noisy data
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previous synthetic model (retaining 18 PCA coefficients),
the number of sampling points using the simple two-
sides perturbation strategy is sufficient to represent the
interval {-1, 1}. However, in this case, retaining 44 PCA
coefficients forces us to sample much more interpolation
points. We also compare the results with those of the FD

based history matching algorithm, which is implemented
in the reduced-order parameter subspace spanned by the
44 log-permeability patterns. The one-side FD method is
used to compute the numerical gradient of cost function
as Eq. 51 with respect to 44 PCA coefficients. Thus, 45
FOM simulations are required for each iteration step. The
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(a) ’True’ Permeability
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(b) Initial Permeability
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(c) Updated Permeability using
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(d) Updated Permeability using via continuing iterations
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(e) Updated Permeability using          
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(f) Updated Permeability using
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Fig. 23 The updated permeability under different number of sampling points for case 2. The stopping criteria for (c), (e), (f) and (g) is ηj = 10−4,
ηξ = 10−3, Nmax=50, while The stopping criteria for (d) is ηj = 10−5, ηξ = 10−4, Nmax=50

stopping criteria are set to ηj = 10−4, ηξ = 10−3, Nmax=50
in this case.

Figures 23 and 24 and Table 9 show the updated log-
permeability field using different numbers of sampling
points. In our case, the sampling strategy is that the first 2 ×
lβ sampling points are selected from the set {-1,1} through
perturbing each PCA coefficient sequentially in 2 opposite
directions (positive and negative), and then the remaining
sampling points are chosen randomly within the interval [-
1, 1]. During the minimization procedure, a small iteration
step is used to ensure a decreasing cost function when we
use a small number of sampling points, e.g., 2 × lβ , which
leads to a less accurate approximate gradient.

Figure 24 shows that using 2 × lβ sampling points
leads to relatively slow convergence. In our predefined
stopping criteria, totally 221 iteration steps with five outer-
loops are required. Figure 23 illustrates that the “true”
log-permeability field is approximately calibrated when
increasing the number of sampling points, e.g., 3× lβ and
even 4 × lβ in our case. It is easily recognized that using
small number of sampling points leads to bad quality of
approximate gradients derived from the subdomain reduced
adjoint model, which will deteriorate the minimization
procedure. We continue the iteration process when using
2 × lβ sampling points, to investigate whether there are
potentials to obtain comparable results with that of FD
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Fig. 24 Comparison of the cost function value using different number
of sampling points for case 2. The extended dash line represents the
cost function using a new stopping criterion ηj = 10−5, ηξ = 10−4,
Nmax=50

method. As Fig. 24, the vertical blue dash line represents
the starting point using new stopping criterion, and the dash
line represents the corresponding cost function of the new
iteration process. Another 122 iteration steps and 2 outer-
loops are required to reach convergence. In contrast to the
old stopping criterion, the final cost function is decreased
by 4.9% in this case. We should note that these additional
122 iteration steps just require 2 new FOM simulations for
the two outer-loops. This property makes our methodology
significantly attractive because much more iteration steps do
not explosively increase the FOM simulations. Comparison
between Fig. 23c, d also shows that the log-permeability
filed has slight improvement when continuing the iteration
process. Comparison between Fig. 23f, g demonstrates that
our model-reduced approach obtains comparable updated
log-permeability field with the FD method using 4 × lβ
sampling points, e.g., 199 FOM simulations, and among
them, 20 FOM simulations are run to collect the snapshots,
176 FOM simulations are used to construct the initial
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Fig. 25 Realizations of the log-permeability field generated in the
interval {-0.1, 0.1} for case 2

reduced-order linear model in the first outer-loop, the
remaining 3 FOM simulations are used to reconstruct the
reduced-order linear models in the next three outer-loops

Table 9 Comparison between
SD POD-TPWL and FD
method using different number
of sampling points for case 2

− Iterations FOM J (ξ) ×105 eobs eβ

Initial model − − 1.1417 73.5892 0.7078

SD POD-TPWL1 ×2 221 113 0.2117 18.1208 0.7837

SD POD-TPWL2 ×2 343 115 0.1998 16.3524 0.7797

SD POD-TPWL×3 194 155 0.1931 14.8523 0.5017

SD POD-TPWL×4 189 199 0.1892 11.0852 0.4182

FD 78 3510 0.1935 11.2532 0.3925

“True” model − − 0.1777 9.2531 0

SD POD-TPWL1 ×2 means the stopping criteria ηj = 10−4, ηξ = 10−3, Nmax=50, while SD POD-TPWL2

×2 means the stopping criteria ηj = 10−5, ηξ = 10−4, Nmax=50
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(a) ’True’ Permeability
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(b) Initial Permeability
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(c) Updated Permeability using new method
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(d) Updated Permeability using finite-difference method

Fig. 26 Comparison of the initial, “true” and updated log-permeability
using interval {-0.1, 0.1} for case 2

and calculate the cost function as Eq. 3 in original space,
while the FD method requires 3510 FOM simulations.

Alternatively, we limit the sampling points within a rela-
tive small interval {-0.1, 0.1} so that only a small number of
sampling points, e.g., two-side perturbations (2×44+1=89),
is required to efficiently construct a subdomain reduced-
order linear model. Four realizations for log-permeability
field generated from this small interval {-0.1, 0.1} are illus-
trated in Fig. 25. Figures 26, 27, and 28 and Table 10
show the results of these numerical experiments, including
the updated log-permeability field, iterative value of cost

Iteration Step
0 50 100 150 200 250

lo
g(

J)

× 10 4

2

4

6

8

10

12

SD POD-TPWL
FD
Reference

Fig. 27 Cost function value of SD POD-TPWL and FD method using
interval {-0.1, 0.1} for case 2

function and the mismatch between observed data and pre-
dictions. As Fig. 28 and Table 10, both SD POD-TPWL and
FD method are able to converge to a satisfactory minimum
cost function value. FD method has relatively high con-
vergence ratio over our SD POD-TPWL, e.g., 78 and 195
iteration steps with 4 outer-loops separately, and also yields
slightly more accurate updated log-permeability. However,
our model-reduced approach only needs 112 FOM simula-
tions, while the FDmethod requires 3510 FOM simulations.
Both PCA-based parameterization and POD-based model
reduction introduce some inherent approximation errors into
this minimization procedure; therefore, the SD POD-TPWL
and the FD method in this case generally do not decrease
the cost function to the reference value illustrated as the
bold red line. In addition, POD-based model reduction also
makes our method theoretically less accurate than that of
the FD method, which is demonstrated as the black line and
blue line in the Fig. 26.

There is a trade-off between the number of sampling
points and the parameter interval. On the one hand, a large
parameter interval generally has high possibilities to include
the parameter space containing the “true” model; thus, the
“true” solution is likely to be found while needs to use
a large number of sampling points. On the other hand,
we also can choose a small number of sampling points
within a small interval. Although there is a larger possibility
that the “true” solution is not contained in this interval,
a valid solution (based on an acceptable data mismatch)
can most likely be found using a relatively small number
of sampling points. Therefore, it is highly significant to
choose reasonable parameter interval in practice. If we have
poor prior information for the “true” model, a relative large
parameter interval is preferable to provide relatively more



Comput Geosci

0 5 10 15

Li
qu

id
 r

at
e,

 [m
3/

d]

100

150

200

250
P1

Time, [years]

0 5 10 15
150

200

250

300

350

400
P2

0 5 10 15
250

300

350

400

450

500

550
P3

0 5 10 15
400

500

600

700

800

900
P4

Time, [years]

0 5 10 15

Li
qu

id
 r

at
e,

 [m
3/

d]

100

150

200

250
P5

0 5 10 15
100

150

200

250

300

350
P6

0 5 10 15

w
at

er
cu

t

0

0.2

0.4

0.6

0.8

1
P1

Time, [years]
0 5 10 15

0

0.2

0.4

0.6

0.8

1
P2

0 5 10 15
0

0.2

0.4

0.6

0.8

1
P3

0 5 10 15
0

0.2

0.4

0.6

0.8

1
P4

Time, [years]

0 5 10 15

w
at

er
cu

t

0

0.2

0.4

0.6

0.8

1
P5

0 5 10 15
0

0.2

0.4

0.6

0.8

1
P6

Fig. 28 Forecast of the liquid rate and water-cut using interval {-0.1,
0.1} for case 2: green line-initial model, blue line-reference model, red
line-updated model by subdomain POD-TPWL

accurate results, e.g., finding the “true” solution, of history
matching process, as a compensation, a large number of
sampling points are required to implement our SD POD-
TPWL. On the contrary, if we have good prior information
for the “true” model, a small parameter interval can be
perturbed around the prior parameter field. Using a small
number of sampling points enables us to obtain satisfactory
history matching results.

5.3 Computational aspects

This section discusses the computational aspects of our pro-
posed adjoint-based reservoir history matching algorithm.
The offline computational costs for subdomain POD-TPWL
algorithm comprise (1) executing parameterization using

Table 10 Comparison of subdomain POD-TPWL and FD method
using interval {-0.1, 0.1} for case 2
− Iterations FOM J (ξ) ×105 eobs eβ

Initial model − − 1.1417 73.5892 0.7078

SD POD-TPWL 195 112 0.1928 11.1802 0.4685

FD 78 3510 0.1935 11.2532 0.3925

“True” model − − 0.1777 9.2531 0

eigenvalue decomposition of the covariance matrix, (2)
implementing model order reduction using POD in each
subdomian, (3) conducting RBF interpolation and comput-
ing the derivative matrices. The cost of eigenvalue decom-
position and POD is negligible for small models, while it
will become significant for large-scale models. In our cases,
the required number of FOM simulations is roughly 2-3
times the number of PCA coefficients, e.g., 54 simulations
for the synthetic model, 113 (sampling within a small inter-
val [-0.1, 0.1]) and 199 (sampling within a relative large
interval [-1,1]) FOM simulations for the SAIGUP model,
respectively. This process is code non-intrusive without the
need of large programming effort. Besides, this process is
also easily parallelized. Once available, the costs of run-
ning the reduced model are negligible. We should note
that the gradient-based reservoir history matching generally
requires O(102 − 104) FOM simulations, thus, an offline
cost of O(10 − 102) FOM simulations in these settings
is attractive. For large-scale reservoir history matching, the
main computational cost is dominated by the required num-
ber of FOM simulations. In our proposed method, most part
of the FOM simulations is mainly in offline stage, which
means that our method is easily implemented.

6 Conclusions

We have introduced a variational data assimilation method
where the adjoint model of the original high-dimensional
non-linear model is replaced by a subdomain reduced-
order linear model. Parameterization and proper orthogo-
nal decomposition techniques are used to simultaneously
reduce the parameter space and reservoir model. In order to
avoid the need for simulator code access and modification
and numerous full-order model simulations, we integrated
domain decomposition and radial basis function interpo-
lation with trajectory piecewise linearization to form a
new subdomain POD-TPWL algorithm. The reduced-order
linear model is easily incorporated into an adjoint-based
parameter estimation procedure. The use of domain decom-
position allows for large-scale applications since the number
of interpolation points required depends primarily on the
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number of the parameters and not on the dimension of the
underlying full-order model.

We used the subdomain model-reduced adjoint-based
history matching approach to calibrate the unknown
permeability fields of a small 2D synthetic model and of
a modified version of the SAIGUP benchmark model with
noisy synthetic measurements. The permeability field is
parameterized using a KL-expansion resulting in a small
number of permeability patterns that are used to represent
the original gridblock permeability. The reservoir domains
for the small model and the SAIGUP model are divided
into 9 and 40 subdomains respectively. In the first numerical
experiment, our methodology accurately reconstructs the
“true” permeability field and shows similar results as
more classic finite-difference based history matching. Our
method also significantly improves the prediction of fluid
rate and water breakthrough time of production wells.
Without any additional full-order model simulations, our
approach efficiently generates an ensemble of models that
all approximately match the observations. The results of
the second example show that also for a more complex
history matching problem, very promising results could be
obtained. For the cases studied in this paper, the number of
full-order model simulations required for history matching
is roughly 2–3 times the number of the number of global
parameter patterns.

There are a number of aspects of the proposed
methodology that could possibly be improved. In example
2, it was observed that sampling strategy has to be chosen
with care to obtain an efficient implementation. Some
diagnostics could possibly be devised to determine if and
how many additional sampling points need to be generated.
We have chosen somewhat arbitrary decompositions of the
global domain into subdomains. In the first example it was
observed that it may be beneficial to choose the subdomains
based on information about the main dynamical patterns.
Since in reservoir applications these patterns are strongly
affected by the placement of producers and injectors the
subdomain decomposition could possibly be informed by
the well lay-out. In this paper, we considered a global
parameterization of the log-permeability field where the
PCA patterns are defined over the entire domain. From a
computational point of view, a local parameterization where
the parameters are defined in each subdomain separately
is very attractive. Since in this case parameters can be
perturbed independent of each other and the effects of
all these perturbations can be computed with very few
full-order model simulations. The local parameterization
technique is the focus of our ongoing research.
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