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Abstract

This research investigates the impact of gravitational scatterings caused by
close encounters between particles in an N -body Kepler system, addressing
three main questions: (1) the influence of scatterings on system evolution, (2)
the correspondence between simulated and expected average times between
scatterings, and (3) the effect of increasing different parameters individually
on the average scattering time. Simulations demonstrate an average scatter-
ing angle of 15.2 ◦ for particles involved in the top 10 % of scatterings. This
would indicate a non-negligible impact of gravitational scatterings, especially
for systems with heavier bodies. The results indicate that the simulated av-
erage time between scatterings is higher than the expected average, necessi-
tating further research for accurate estimation. Moreover, the time between
scatterings Tscatt decreases over time, before reaching a stationary state after
roughly 300 scatterings. On this domain, the correlation coefficient between
Tscatt and the scattering counter nscatt was found to be ρ = −0.08. By varying
the test domains for different parameters, a new expression for the expected
time between two scatterings is proposed based on simulation data. A clear
connection was found between the scattering time and the number of parti-
clesN , the maximum orbital radius amax, and the maximum inclination angle
Imax. The study acknowledges limitations, including the non-stationary ini-
tialization state and linear approximations to most computations, suggesting
avenues for future improvement. Overall, this research aims to find the role
of gravitational scatterings in Kepler systems and underscores the need to
consider these interactions, which are now often considered to be negligible.

1



Constants and symbols

In this report, a vector v will be indicated in bold letters. The length ∥v∥ of
a vector will be denoted as v. A list of constants is given in Table 1. In all
computations, the astronomical system is used to denote physical quantities.
This way the accuracy of floating point numbers can be improved. A list of
symbols is included in Table 2.

Symbol Definition SI units Astronomical system
AU astronomical unit 1.495978707 · 1011 m 1
M⊙ Solar mass 1.9891·1030 kg 1
y year 31536000 s 1
G Newton’s constant 6.6743·10−11m3kg−1s−2 39.48 AU3M−1

⊙ y−2

S Solar radius 6.957 ·108 m 0.00465047 AU
mJ Jupiter mass 1.89813 ·1027 kg 0.0009543 M⊙
sJ Jupiter radius 6.9911 ·107 m 0.000467 AU

Table 1: List of constants
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Symbol Quantity
t time
x, y, z Cartesian coordinates
V volume

r =

x
y
z

 position vector

v = ṙ velocity vector
w = v1 × v2

d = r2 − r1 difference position
u = v2 − v1 difference velocity
R centre-of-mass position
V centre-of-mass velocity
m particle mass
s particle radius
sinf gravitational sphere of influence
A effective cross section
t0 particle creation time
ω angular frequency
T = 2π/ω orbit time
Tscatt time between consecutive scatterings
a, b semimajor-, semiminor axis
c = aϵ semi-focal separation
ℓ = b2/a semi-latus rectum
r0 particle creation point
L orbital angular momentum
K = L1 ×L2 direction of nodal line
ϵ eccentricity vector
ϖ argument of periapsis
Ω ascending node
I inclination
ν true anomaly
E eccentric anomaly
M mean anomaly
R rotation matrix
δ scattering angle in CM-frame
N number of particles
i, j particle indices
nscatt scattering counter

Table 2: List of symbols
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1. Introduction
A Kepler system of celestial bodies refers to a system of objects in space that
follows the laws of planetary motion derived by the astronomer Johannes
Kepler in the early 17th century. These laws describe the motion of objects
under the influence of gravity. A Kepler system can include various celestial
bodies such as planets, moons, asteroids, and comets, all of which interact
with each other through the force of gravity. By understanding the Keplerian
dynamics of a system, astronomers can predict the motion and behaviour of
these celestial bodies within that system.

The conventional approach to studying planetary motion within a Kepler
system typically assumes that the gravitational influence of one planet on
another is negligible compared to the dominant central star. This simplifica-
tion, while useful for certain scenarios, fails to capture the intricacies of the
true interactions occurring between heavier celestial bodies. As a result, the
dynamic interplay of gravitational forces, which can significantly affect the
orbital dynamics and stability of planetary systems, is often disregarded or
oversimplified.

In this research, we will try to expand an algorithm [1] that describes
the evolution of a Kepler system consisting of N celestial bodies, with these
gravitational interactions which we will call scatterings. Furthermore, we will
look at the average time between two consecutive scatterings, and determine
whether our expected theoretical average gives an accurate approximation
of this value. Also, we will determine what the influence of individual input
parameters is on this average scattering time. This research thus aims to
quantitatively answer the following questions:

1. Do gravitational scatterings have a significant impact on the evolution
of a Kepler system?

2. Does the simulated average time between two scatterings correspond
with expected average?

3. What is the effect of increasing the number of particles, the maximum
particle mass, the maximum semi-major axis, the maximum eccentricity
and the maximum inclination on the average time between two scatter-
ings?

Chapter 2 of this report will explore the existing theory, providing an anal-
ysis of relevant topics used for answering these questions. Subsequently, in
chapter 3, the experimental methodology employed in this research will be
presented. Chapter 4 will show the results obtained from the simulations.
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These results will then be discussed in chapter 5. Finally, chapter 6 will con-
clude this report by summarizing the key outcomes and their implications.
This research report is part of the BSc programme Applied Mathematics and
Applied Physics of the Delft University of Technology and is an attempt to
obtain the degree of Bachelor of Science.
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2. Theory
In this chapter, the theory required for the use of Visser’s algorithm [1] with
gravitational scatterings is described.

2.1 Kepler orbits

Orbital elements are used to describe the equations of motion for a particle
in a Kepler system. This particle can for example be a planet in orbit around
a large central mass such as the Sun, a satellite in orbit around the Earth
or a ring particle in a planetary ring system. At large distance from other
particles, we assume the particles move in elliptical orbits and only feel the
gravitational force of the Sun. Each particle is in a Kepler orbit defined by
its angular momentum vector L and eccentricity vector ϵ, where the latter
has magnitude ϵ and points from the center of the orbit to the periapsis,
which is the point of closest approach to the central body. We can write L
and ϵ in terms of the five independent conserved orbital elements: the semi-
major axis a, the eccentricity ϵ, the argument of periapsis, ϖ (pronounced as
’varpi’), longitude of the ascending node Ω and the inclination I (see Figure
2.1). This can be done by using the following equations from [1]:

L = LR

0
0
1

 = L

 sinΩ sin I
− cosΩ sin I

cos I

 , L = mωab, ω =

√
GM

a3
, (2.1)

ϵ = ϵR

1
0
0

 = ϵ

cosϖ cosΩ− sinϖ sinΩ cos I
cosϖ sinΩ + sinϖ sinΩ cos I

sinϖ sin I

 , (2.2)

where L = mωab, ω =
√

GM
a3

and b =
√
1− ϵ2a. The orbit is parametrized

by the true anomaly ν or the eccentric anomaly E. The position vector and
the velocity vector can now be expressed as:

r =

x
y
z

 = rR

cos ν
sin ν
0

 = R

a cosE − c
b sinE

0

 , (2.3)

v = ṙ =
ωa

b
R

 −a sin ν
a cos ν + c

0

 =
ωa

r
R

−a sinE
b cosE

0

 , (2.4)
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Figure 2.1: Diagram illustrating the orbital elements. [2]

where the equation for the orbit in the plane is:

r =
b2

a+ c cos ν
(2.5)

and R is a constant rotation matrix:

R =

cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1

1 0 0
0 cos I − sin I
0 sin I cos I

cosϖ − sinϖ 0
sinϖ cosϖ 0
0 0 1

 .

(2.6)
The relation between the eccentric anomaly E, the mean anomaly M and
the time t since periapsis is described by Kepler’s equation:

M = ωt = E − sinE ⇔ t =
E − sinE

ω
. (2.7)

2.2 Gravitational sphere of influence

Each particle in our Kepler system has mass and therefore a gravitational
sphere of influence, within which the gravity of the particle becomes signif-
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icant as opposed to that of the central body. When another particle enters
this sphere of influence, we will perform a scattering event in CM-frame of
the two particles, during which the gravitational influence of the Sun is ne-
glected. There are several definitions available that each provide a useful
estimate for this sphere of influence. We will use the Laplace sphere, which
is defined as: the radius of a spherical region where the perturbing effect of the
Sun on the particle’s planetocentric orbit is lower than the perturbing effect
of the planet on the particle’s heliocentric orbit [3].

We will now derive Laplace’s expression for the radius of this spherical
region. Consider a three-body problem for a system with a Sun, a planet,
and a satellite (see figure 2.2). The sphere of influence of the planet is now
that region of space in which it is feasible to assume a planet as the central
body and the Sun as the perturbing body when computing perturbations [4].
The equations of motion of the satellite can be written both in the reference
frame of the Sun and in the reference frame of the planet.

Figure 2.2: Geometry of the three-body problem (not to scale). r1 and r are the
heliocentric position vectors of the planet and the satellite, respectively. In the reference
frame attached to the planet, the position vector of the satellite is ∆ = r − r1[5].

For the heliocentric reference frame, the main body is considered to be the
Sun with massM , and the perturbing acceleration is caused by the attraction
of the planet with mass m. We thus find for the motion of the satellite (mass
m′ ≪ m):

r̈ = −GM

r3
r −Gm

[
∆

∆3
+

r1

r31

]
= A+ F , (2.8)

where ∆ = r − r1, A is the central acceleration of the satellite caused
by the Sun and F the perturbed acceleration caused by the planet. These
accelerations and their magnitudes are thus given by:
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A = −GM
r3

r, A = GM
r2

≃ GM
r21

,

F = −Gm
[

∆
∆3 +

r1

r31

]
, F ≃ Gm

∆2 ,
(2.9)

where the approximations hold since we assume that r ≃ r1 and r1 ≫ ∆.
Similarly, for the planetary reference frame we find that:

∆̈ = −Gm

∆3
∆−GM

[
r

r3
− r1

r31

]
= A1 + F 1, (2.10)

where A1 is now the central acceleration of the satellite caused by the planet
and F 1 is the perturbed acceleration caused by the Sun. These accelerations
and their magnitudes are given by:{

A1 = −Gm
∆3 ∆, A1 =

Gm
∆2 ,

F 1 = −GM
[

r
r3

− r1

r31

]
, F1 ≃ GM∆

r31

√
1 + 3 cos2 ϕ,

(2.11)

where cosϕ = r1·∆
r1∆

. F and F1 are derived by writing
∥∥∥ ∆
∆3 +

r1

r31

∥∥∥ and
∥∥∥ r
r3

− r1

r31

∥∥∥
as functions of u = ∆

r1
and cosϕ, and then truncating the expressions to the

0th order in u, since u can be considered small. Step-by-step calculations to
arrive at the aforementioned magnitudes of F and F 1 are tedious and have
therefore not been included in this chapter, but can be found in the paper
by Chebotarev [4]. From the accelerations given above, equating the ratio
of Solar accelerations (central/perturbing) to that of the planetary accelera-
tions (central/perturbing) gives the natural bounding surface of the sphere
of influence of the planet:

A

F
=

A1

F1

, (2.12)

where the sphere of influence itself is thus the region for which A1

F1
> A

F
holds.

Substituting Equations (2.10) and (2.11) into (2.12) gives:

sinf = r1

(
m2

M2

)1/5
1

(1 + 3 cos2 ϕ)1/10
. (2.13)

Considering that 1 ≤ (1+3 cos2 ϕ)1/10 ≤ 22/5 ≃ 1.32, we simply approximate
this value with 1 and finally get the radius of Laplace’s sphere of influence:

sinf = r1

(m

M

)2/5

. (2.14)
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2.3 Elastic collision using a hyperbolic orbit

When two particles travel inside one of the other’s gravitational sphere of
influence, the gravitational attraction between them has to be accounted for.
During this encounter, we will ignore the gravitational attraction from the
Sun, thus obtaining a classical two-body problem. If the two bodies do not
hit each other, no energy is dissipated and the process can be modelled as an
elastic collision. We consider two particlesm1 andm2, moving on an elliptical
orbits described by position vectors r1 and r2 and velocity vectors v1 and
v2, respectively. The interaction between these particles can be described
by the relative coordinate d = r2 − r1. This relative coordinate moves in a
hyperbolic orbit with velocity u = v2 − v1 in the center-of-mass frame [1]
(see Figure 2.3).

Figure 2.3: Hyperbolic trajectory and asymptotes of the relative coordinate. In this
figure, S is the centre-of-mass, D is the shortest distance of the incoming asymptote to
the origin, a is the semi-transverse axis, c is the semi-focal separation, rp is the distance
between the trajectory and the centre-of-mass at periapsis (y = 0), θ is the angle between
the x-axis and the incoming asymptote and δ is the angle through which the relative
coordinate’s path is deflected by the gravitational attraction of the centre-of-mass. [6]

We will approximate the trajectory of the relative coordinate by its asymp-
totes. Thus, before the scattering event, the position of the relative coordi-
nate moves on a straight line di(t) with constant velocity ui. By conservation
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of momentum, it immediately follows that the magnitude of the velocity vec-
tor is conserved, hence uf = ui = u. The shortest distance between the two
masses is reached when di ⊥ ui, and we define d⊥

i for the position vector
where this is the case (equal to the dashed line with length D in Figure 2.3).
At this point, we perform the scattering event by rotating the direction of
the position and velocity both by an angle δ = π − 2θ. The particle then
continues its trajectory with velocity uf , starting from d⊥

f , which is similarly
defined as the position vector where df ⊥ uf . By conservation of angular
momentum, di × ui = df × uf and hence d⊥f = d⊥i = d⊥.

Figure 2.4: Geometry of a hyperbola. In this figure, a is the semi-transverse axis, b is
the semi-conjugate axis, c =

√
a2 + b2 is the semi-focal separation, θ is the angle between

the x-axis and the incoming asymptote. F1 and F2 are the focal points with vertices V1

and V2, respectively. C = (c, 0) is the centre of the hyperbole. [6]

From the geometry of Figure 2.4, we see that tan θ = b
a
. Since θ = π

2
− δ

2

and tan
(
π
2
− δ

2

)
= (tan δ

2
)−1, it follows that δ = 2arctan a

b
. The conservation

of energy equation for a hyperbolic Keplerian orbit is given by the vis-viva
equation (where a is defined to be positive) [7]:

u2 = G(m1 +m2)

(
2

d
+

1

a

)
. (2.15)
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When d → ∞, we find that a = G(m1+m2)
u2 . Since c2 = a2 + b2, we find

two angle-angle-side (π
2
, θ, c) congruent triangles from which it follows that

b = D. From the geometry of Figure 2.3 it follows that D is equal to the
shortest distance of the incoming asymptote to the origin, which is the length
d⊥ of the vector d⊥

i that is perpendicular to ui. Hence b = d⊥. We can now
compute the rotation by using:[

d⊥
f

uf

]
= Rδ

[
d⊥
i

ui

]
, (2.16)

where

Rδ =

[
cos δ b

u
sin δ

−u
b
sin δ cos δ

]
=

[
b2−a2

c2
2ab2

uc2

−2au
c2

b2−a2

c2

]
. (2.17)

The placement of the positive and negative signs on the off-diagonal ele-
ments follows from the fact that the force acting on the relative coordinate
is attractive.

2.4 Estimated time between two scatterings

One of the objectives of this research is to test whether the measured average
of the time between two scatterings T̄scatt in our simulations corresponds with
a theoretical estimate E[Tscatt]. This theoretical estimate of the scattering
time will be derived in this section.

In our simulation, every particle in the system will have mass mi ∈
[mmin,mmax], semi-major axis ai ∈ [amin, amax], an inclination I ∈ [0, Imax]
and eccentricity ϵi ∈ [0, ϵmax] Each particle thus exists inside a volume that
represents a segment of a sphere. The volume of this segment is given by:

V =

∫ 2π

0

∫ π
2
+Imax

π
2
−Imax

∫ amax

amin

r2 sin θdrdθdϕ =
4π

3
(a3max − a3min) sin Imax. (2.18)

By taking amin = 0 and Imax = π
2
, we recover the volume of the entire

sphere. For the distribution of the radii si of the particles in the system
we take dN/ds ∝ s−3, which is roughly the same as in the Asteroid belt
[8]. From the assumption that each particle has the same density of mass,
it follows that mi ∝ s3i and thus dN/dm ∝ m−5/3. Since

∫ mmax

mmin
p(m)dm =∫ mmax

mmin
Am−5/3dm = 1, we find:

p(m) =
2

3

(mmaxmmin)
2/3

m
2/3
max −m

2/3
min

m−5/3. (2.19)
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To create a system of that has a uniform particle density for its entire volume,
we require that dN/da ∝ a2 and dN/dI ∝ sin I. Since

∫ amax

amin
p(a)da =∫ amax

amin
Ba2da = 1, we find:

p(a) =
3

a3max − a3min

a2. (2.20)

For the inclination we then have
∫ Imax

0
p(I)dI =

∫ Imax

0
C sin IdI = 1, from

which it follows that:

p(I) =
1

1− cos Imax

sin I. (2.21)

The eccentricity is drawn from a uniform distribution U [0, ϵmax] and thus
p(ϵ) = 1

ϵmax
. Now, we assume that the scattering rate 1

Tscatt
, defined as

the rate at which scatterings occur between two particles somewhere in the
system, is a function of the time-averaged velocity ⟨v⟩i of a particle i, its
effective cross section Ai, the total volume V of the system and the number
of possible scattering pairs

(
N
2

)
in the following way [1]:

1

Tscatt

=
⟨v⟩iAi

V

(
N

2

)
, (2.22)

where Ai = π(sinfi )2 = π
(
mi

M

)4/5
a2i . For ⟨v⟩i we have to compute:

⟨v⟩i =
1

Ti

∫ Ti

0

vidt =
ω

2π

∫ 2π

0

vi
dt

dE
dE. (2.23)

It follows from Equations 2.4 and2.5 that:

v = ∥v∥ =
ω
√
a2 sin2E + b2 cos2E

1− ϵ cosE
=

ωa
√
1− ϵ2 cos2E

1− ϵ cosE
, (2.24)

and from Equation 2.7 that:

dt

dE
=

1− ϵ cosE

ω
(2.25)

We are thus able to write:

⟨v⟩ = ωa

2π

∫ 2π

0

√
1− ϵ2 cos2EdE ≃ ωa

2π

∫ 2π

0

(
1− ϵ2

2
cos2E

)
dE, (2.26)

where we have applied the Taylor series of
√
1− x2, since ϵ2 can be assumed

small. Hence, for the time-averaged velocity of particle i, we find that:

⟨v⟩i ≃ ωiai(1−
1

4
ϵ2i ) =

√
GM

ai
(1− 1

4
ϵ2i ). (2.27)
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(
N
2

)
≃ N2

2
for large N . Substituting all these expressions back into 2.22 gives

us for the expected duration of time between two scatterings somewhere in
the system:

Tscatt =
2V

N2viAi

=
8M3/10(a3max − a3min) sin Imax

3
√
GN2

(1− 1

4
ϵ2i )

−1a
−3/2
i m

−4/5
i .

(2.28)
In order to find E[Tscatt], we compute:

E[(1− 1

4
ϵ2)−1] =

∫ ϵmax

0

1

1− 1
4
ϵ2
p(ϵ)dϵ =

1

ϵmax

[ln(2 + ϵmax)− ln(2− ϵmax)],

(2.29)

and we note that E[(1− 1
4
ϵ2)−1] ≃ 1+ ϵ2max

12
for small values of ϵmax. Further-

more, we compute:

E[a−3/2] =

∫ amax

amin

a−3/2p(a)da =
2

a
3/2
max + a

3/2
min

, (2.30)

and

E[m−4/5] =

∫ mmax

mmin

m−4/5p(m)dm =
5

11

m
22/15
max −m

22/15
min

m
22/15
max m

4/5
min −m

4/5
maxm

22/15
min

, (2.31)

which is a decreasing function for mmax when fixing mmin. We thus obtain
the theoretical estimate for the time between two scatterings:

E[Tscatt] =
4

9

M3/10(a
3/2
max − a

3/2
min)(12 + ϵ2max) sin Imax√

GN2
E[m−4/5]. (2.32)

Hence, we expect that, while keeping all other parameters fixed, to find
an increase in the expected time between two scatterings E[Tscatt] (so less
scatterings) when amax, ϵmax or Imax is increased and when N or mmax is
decreased.
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3. Experimental Method
In this chapter, the specific ways the simulations will be run are elaborated
upon. First, the initialisation of the system is discussed. Next, the main
loop of Visser’s algorithm [1] will be described with which the system will
be evaluated through time. After this, the main focus of this research will
be presented, which is the finding and performing of gravitational scattering
events for close encounters between two particles.

3.1 Initialisation

We now initialise a system of particles orbiting a central mass. The particles
are numbered i = 1, ..., N . For each particle i, we store the following set of
variables:

{t0i , ai, ci, si,mi, r
0
i ,Li, ϵi, ωi}. (3.1)

Here, t0 is the time of creation, a is the semi-major axis, c = ϵa the focal
distance, s is the particle radius,m is the particle mass, r0 is its position, L its
angular momentum vector, ϵ is the eccentricity vector, and ω is the angular
frequency of the orbit. For each particle that is created at the start of the
simulation, we have that t0i = 0. We choose each particle mass at random
such that the mass density function is proportional to m−5/3. In order to
make a uniform particle disk we choose each of the six orbital ai, ϵi, Ii, ϖ,Ωi

and Mi of the initial particles at random within a specified domain, see Table
3.1. Derivations of the expressions in Table 3.1 can be found in Appendix
A. We give each of the particles the same mass density as Jupiter (1326
kg/m3), hence si = sJ(mi/mJ)

1/3. The eccentric anomaly is determined from
the mean anomaly by performing three iterations of the recursive formula
Ei,n+1 = Ei,n − (Ei,n − ϵi sinEi,n −Mi)/(1− ϵi cosEi,n) [9].

The boundaries of each parameter domain are specified in Table 3.2 and
are based on those in the Asteroid belt [8]. We define a standard simulation
as one where all domain boundaries are given by their standard value. When
testing the influence of a specific parameter, we randomize the boundary
within its test domain once for the entire simulation, while keeping all other
boundaries fixed at their standard value. We then compare the effect on the
scattering time of this parameter over multiple simulations.
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Parameter Domain

mi mmin[1− ξ(1− (mmin/mmax)
2/3]−3/2

ai
3
√

a3min + ξ(a3max − a3min)
ϵi ϵmaxξ
Ii arccos(cos Imax + ξ(1− cos Imax))
ϖi 2πξ
Ωi 2πξ
Mi 2πξ

Table 3.1: Initialization domains of the particles in the system. We choose ξ ∼ U [0, 1]
randomly for the parameters of each particle. See Appendix A for derivations of the shown
expressions.

Parameter Standard value Test domain

N 103 10[2,3]

mmax 10−7 M⊙ 10[−8,−6] M⊙
mmin 10−10 M⊙
amax 4 AU [2,6] AU
amin 1 AU
ϵmax 0.1 [0,0.5]
Imax 0.1 10[−4,−1]

Table 3.2: Boundaries of the initialization domains. The boundaries of each of the
parameters are randomized individually within their test domains, while keeping all other
parameters fixed at their standard value.

3.2 Main loop of the algorithm

The algorithm used in the simulations in this research is described in Visser’s
paper [1]. We have adjusted the algorithm to look for gravitational scatter-
ings instead of collisions between two particles.

1. If the scattering list is empty, end the simulation.

2. Take the pair (i, j) with the soonest scattering: the first in the list.
Perform the scattering event (see section 3.4).

3. Update the time t to the time t1(i,j) of the scattering.

4. Remove any pair containing i and any pair containing j from the list
of scattering pairs.

5. Remove the particles i and j from the particle list.
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6. If the orbit of the new particles intersects the central mass or is un-
bound, go to the next scattering on the list. (see section 3.5)

7. Create new particles i′ and j′ defined by
{
t1(i,j), a, c, s,m, r0,L, ϵ, ω

}
(see section 3.5)

8. For any new particle, consider the other particles and decide if there
are new scatterings possible. If this is the case, calculate the time of
the earliest scattering.

9. Make a sorted list of the new scattering possibilities with a record of
the scattering time and the pair, soonest encounter first.

10. Merge this sorted list with the existing sorted list of scattering possi-
bilities into a full list of pairs, sorted by time of the scattering event,
soonest scattering first.

3.3 Scattering detection

Before executing the main loop of the algorithm as described above, we have
to create a list of all possible scattering pairs sorted by the time they occur.
The method for detecting these scattering pairs and the moments they take
place are described in this section and are based on derivations in [1].

3.3.1 Determining scattering pairs

The radial coordinate for a body with a gravitational sphere of influence
sinfi = ai(

mi

M
)2/5 ranges over the interval from periapsis to apoapsis: [ai−ci−

sinfi , ai + ci + sinfi ]. As long as ai + ci + sinfi ≥ aj − cj − sinfj , the intervals
for i and j overlap and the pair is a candidate for scattering. Now, consider
a pair (i, j) = (1, 2), a1 > a2 for which the above criteria hold. We compute
the direction of the nodal line K and its magnitude K:

K = L1 ×L2, K =
√
K ·K. (3.2)

For both particles (1,2) we now compute the semi-latus rectum ℓ, the two
intersection points with the nodal line r± and the velocities v± at these
points:

ℓ1 =
L1 ·L1

GMm2
1

, ℓ2 =
L2 ·L2

GMm2
2

, (3.3)
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r1,± =
Kℓ1

±K + ϵ1 ·K
, r2,± =

Kℓ2
±K + ϵ2 ·K

, (3.4)

r1,± =
√
r1,± · r1,±, r2,± =

√
r2,± · r2,±, (3.5)

v1,± =
L1

m1ℓ1
×

(
ϵ1 +

r1,±

r1,±

)
, v2,± =

L2

m2ℓ2
×
(
ϵ2 +

r2,±

r2,±

)
. (3.6)

It follows that r1+ and r2+ point in the direction of K, while r1− and r2−
point in the direction of −K (since ϵ1,2 ·K < K for ϵ < 1).

Next, we approximate the points where the minimal orbit intersection
distance (MOID) is found. This is done by considering the tangent lines
of the orbits at the points r1,± and r2,±, and then calculating the points
r′
1,± and r′

2,± where the distance between these two lines is minimal. These
positions can be written as:

rmin
1,± = r1,± +

[
(r2,± − r1,±) ·

v2,± × (v1,± × v2,±)

|v1,± × v2,±|2

]
v1,±, (3.7)

rmin
2,± = r2,± +

[
(r2,± − r1,±) ·

v1,± × (v1,± × v2,±)

|v1,± × v2,±|2

]
v2,±. (3.8)

For the shortest distance between the two lines we have:

dmin
± = |rmin

2,± − rmin
1,± | =

∣∣∣∣(r2,± − r1,±) ·
(v1,± × v2,±)

|v1,± × v2,±|

∣∣∣∣ . (3.9)

We will perform a gravitational scattering whenever dmin
± ≤ max{sinf1 , sinf2 }.

3.3.2 Calculating the time of a scattering

We suppose the expression above is satisfied for two particles (i, j) = (1,2).
To calculate the time a scattering occurs, we first have to know the time for
which the particles first pass the nodal line K. These times are denoted as
t11 and t12, respectively. For each particle, we need to know the difference in
eccentric anomaly ∆E = E1 − E0 between position vectors r1 and r0. This
angle ∆E can be written as the argument of a complex number as follows
[1]:

∆E = arg

[(
r1

a
− ir1v1

a2ω

)
·
(
r0 − ϵϵ·r0

a− ϵ2a
+ ϵ

)
+

r0 ·ϵ
a

+ ϵ2

]
(3.10)
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The scattering time tk,l, or the time when particles 1 and 2 have completed
an integer k and l respective number of orbits after first reaching their inter-
section with nodal line, is computed by:

tk,l = kT + t0 +
∆E

ω
− ϵ× (r1 − r0)

ωb
· L
L
, (3.11)

where 0 ≤ ∆E < 2π. The algorithm to find values of k and l can be found
in Chapter 6 of [1]. We now perform the scattering at this time tk,l, when
the particles are both located adequately close to rmin

1,± and rmin
2,± to be inside

one of other’s gravitational sphere of influence.

3.4 Performing a scattering event

In this section, step 2 of the main loop of the algorithm is discussed in de-
tail. When planets come very close to each other, their mutual gravitational
interaction becomes significant and cannot be ignored. This event is treated
as a scattering process between two particles, ignoring the gravity from the
star and other particles in the system for a short period of time. We will
divide this case into three phases: the period before gravitational scattering,
the scattering event itself and the period after scattering.

3.4.1 Before scattering

Let tk,l be the time derived in Equation 3.11. We linearize the initial tra-
jectory of the orbits of the two particles m1 and m2 around their respective
positions r1 = r1(tk,l) and r2 = r2(tk,l) at the time tk,l (where we ignore the
± subscripts in this section):

r1,i(t) = r1 + (t− tk,l)v1,i, r2,i(t) = r2 + (t− tk,l)v2,i, (3.12)

v1,i = v(r1), v2,i = v(r2), (3.13)

where the r1 and r2 follow from equation 2.3, and v1,i and v2,i follow from
equation 2.4. We will now transform these coordinates to the centre-of-mass
frame. Before the scattering event, the relative mass µ = m1m2

m1+m2
has initial

position di and velocity ui:

di(t) = r2,i(t)− r1,i(t), ui = v2,i − v1,i. (3.14)

We will perform the scattering at the time t⊥, when the distance from di(t)
to the origin is minimal, which occurs when di(t) ·ui = 0. Solving for t gives:

t⊥ = tk,l −
(r2 − r1) · ui

u2
, (3.15)
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and thus the position of the relative mass µ at this time t⊥ is equal to:

d⊥
i = di(t

⊥) = r2 − r1 −
(r2 − r1) · ui

u2
ui (3.16)

where the superscript follows from the fact that d⊥
i ⊥ ui. Thus {d⊥

i

d
, ui

u
}

forms an orthonormal basis in R2. The centre-of-mass m1 +m2 moves with
position Ri(t) and velocity V i:

Ri(t) =
m1r1,i(t) +m2r2,i(t)

m1 +m2

, V i =
m1v1,i +m2v2,i

m1 +m2

. (3.17)

Since Ri(t) moves with constant velocity, we can choose an inertial reference
frame in which the CM is at rest in the origin and the total momentum is
zero. Both particles m1 and m2 are moving, but with equal and opposite
momenta. This situation gives precisely the same equation as the equations
for a single particle of mass equal to the reduced mass µ.

3.4.2 The scattering event

As there is no energy loss in the interaction, it can be considered an elas-
tic collision, and the relative coordinate describes a hyperbolic orbit with
parameters:

a =
G(m1 +m2)

u2
, b = d = |d⊥

i |, c2 = a2 + b2, (3.18)

where u = |ui| = |uf | because of conservation of momentum. The in-going
asymptote has direction ui and the out-going asymptote has direction uf .
The gravitational interaction causes a rotation of the position and velocity
vector of the relative mass µ over an angle δ = 2arctan(a/b). From equations
2.16 and 2.17, we find that:

d⊥
f =

b2 − a2

c2
d⊥
i +

2ab2

uc2
ui, (3.19)

uf = −2au

c2
d⊥
i +

b2 − a2

c2
ui. (3.20)

3.4.3 After scattering

The motion of the relative mass µ after the scattering event (t > t⊥) has
velocity uf and position df (t) = d⊥

f +(t− t⊥)uf . We now have to transform
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back the particle coordinates m1 +m2 and µ = m1m2

m1+m2
. For their respective

velocities v1,f and v2,f after the scattering event we find:

v1,f = V i −
m2

m1 +m2

uf , v2,f = V i +
m1

m1 +m2

uf . (3.21)

The particles now travel along two new lines given by:

r1,f (t) = Ri(t)−
m2

m1 +m2

df (t), (3.22)

r2,f (t) = Ri(t) +
m1

m1 +m2

df (t). (3.23)

We see that immediately after the scattering event, we have:

r1,f (t
⊥) = Ri(t

⊥)− m2

m1 +m2

d⊥
f , (3.24)

r2,f (t
⊥) = Ri(t

⊥) +
m1

m1 +m2

d⊥
f . (3.25)

3.5 Finding new scattering possibilities

After removing the old particles (before scattering) from the scattering and
particle lists, we find the new particles (after scattering) by adjusting the
parameters of the particles as defined in Equation 3.1. For each of the two
particles, we know its mass m, its position r = rf (tk,l) and velocity v = vf .
It follows that:

L = mr × v, (3.26)

ℓ =
L ·L
GMm2

, (3.27)

r =
√
r · r, (3.28)

ϵ =
v ×L

GMm
− r

r
, (3.29)

ϵ =
√
ϵ · ϵ. (3.30)

The particle stays in elliptical orbit and does not collide with the central
mass if ϵ < 1 and ℓ > (1 + ϵ)S, where S is the radius of the central body. If
that is indeed the case, we calculate the required orbital parameters of the
new particle:

a =
ℓ

1− ϵ2
, c = aϵ, ω =

√
GM

a3
. (3.31)

In all other cases, we eject the particle from the system. Because of conser-
vation of energy and angular momentum in elastic collisions, we note that
ejections due to ϵ > 1, which would imply an increase of energy, can only be
the result of approximations or other inaccuracies in our model.
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4. Results

4.1 Standard domain

In this section, the results are presented of five simulations of 500 scatterings
each on the standard domain as described in Table 3.2. In Figure 4.1, the
time a scattering occurred in each simulation is plotted. The scattering angle
δ of the 2500 total scatterings will be shown in Figure 4.2 in order to give an
indication of the impact of scatterings on the evolution of a Kepler system.
In Figures 4.3 and 4.4, the time between two consecutive scatterings Tscatt is
analyzed, in order to verify the expected theoretical value in Equation 2.32.

Figure 4.1: The number nscatt of each scattering is plotted for the time t in years each
scattering occurred. Five standard simulations of 500 scatterings (light blue dots) were
computed. The thick blue line indicates the average of the five times each nscatt occurred.
The dashed orange line shows the expected function nscatt =

t
E[Tscatt]

. The expected time

between two scatterings E[Tscatt] is equal to 27.3 y.
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Figure 4.2: Above: cumulative distribution of the logarithm of the scattering angle δ
for each of the 2500 scatterings that were performed. Below: Histogram of the logarithms
of these 2500 scattering angles δ. In these graphs, the average scattering angle of all
scatterings δ̄ = 0.0366 rad = 2.10 ◦ is indicated with the red dashed line. The average
of the 50 largest scattering angles (the top 10%) was 0.265 rad = 15.2 ◦ and is indicated
with the green dashed line.
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Figure 4.3: Above: the difference in time Tscatt between each scattering and the scat-
tering that occurred before it for the average of the five simulations (the thick blue line
in Figure 4.1). Below: the same data points, but only on the domain nscatt ∈ [300, 500].
We note that the time between two consecutive scatterings first seems to decrease as
the simulation time is running, which is indicated by a negative correlation coefficient of
ρ = −0.44 for the diagram above. In the diagram below, the time between two consecutive
scatterings seems to be roughly stationary, which is indicated by the smaller correlation
coefficient of ρ = −0.08. The average scattering time T̄scatt of the 500 scatterings in the
entire domain is equal to 107.1 y and is indicated by the dashed red line. The average
scattering time T̄scatt of the final 200 scatterings is equal to 60.0 y and is indicated by the
dashed green line. The expected time between two scatterings E[Tscatt] is equal to 27.3 y
and is indicated by the dashed orange line.
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Figure 4.4: Cumulative distribution (above) and histogram (below) of the time between
two consecutive scatterings on the domain nscatt ∈ [300, 500]. It is now clear that only
approximately 10% of scatterings are followed by another scattering within E[Tscatt] =
27.3 years, whereas almost Tscatt ≤ T̄scatt = 60.0 years for almost 60 % of scatterings.
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4.2 Test domains

In this section, the results are presented of the effects of varying N , mmax,
amax, ϵmax and Imax. These results are presented in Figures 4.5 through
4.9, respectively. In these figures, the x-axis is chosen is such a way that
the expected linear correlation between each varied parameter and Tscatt as
derived in Equation 2.32 can be shown. Each parameter is varied individually
within its respective test domain as described in Table 3.2 while keeping all
other parameters fixed. This is done for 25 simulations with 100 scatterings
each. In each figure, the dashed red line shows a linear fit through the
simulation data and the dashed orange line shows the function of the expected
value E[Tscatt] on the respective test domain.

Figure 4.5: Inverse of the average time between two scatterings (T̄scatt)
−1 plotted against

the number of particles squaredN2 for 25 simulations, each with 100 performed scatterings.
N was varied within the interval [102, 103] to obtain these results.The correlation coefficient
of the simulation data (blue dots) is given by ρ = 0.89. The 95%-confidence interval for
the slope of the dashed red line is equal to [3.4, 4.2] · 10−9.
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Figure 4.6: Average time between two scatterings T̄scatt plotted against the average
⟨m4/5⟩ value for 25 simulations, each with 100 performed scatterings. mmax was varied
within the interval 10[−8,−6] M⊙ to obtain these results. The correlation coefficient of the
simulation data (blue dots) is given by ρ = 0.16. The 95%-confidence interval for the slope

of the dashed red line is equal to [5.3, 6.7] · 10−6 yM
4/5
⊙ .
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Figure 4.7: Average time between two scatterings T̄scatt plotted against a
3/2
max−a

3/2
min for

25 simulations, each with 100 performed scatterings. amax was varied within the interval
[2,6] AU to obtain these results. The correlation coefficient of the simulation data (blue
dots) is given by ρ = 0.80. The 95%-confidence interval for the slope of the dashed red

line is equal to [33, 43] yAU
−3/2
⊙ .
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Figure 4.8: Average time between two scatterings T̄scatt plotted against 12 + ϵ2max for
25 simulations, each with 100 performed scatterings. ϵmax was varied within the interval
[0,0.5] to obtain these results. The correlation coefficient of the simulation data (blue dots)
is given by ρ = −0.11. The 95%-confidence interval for the slope of the dashed red line is
equal to [15,20].
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Figure 4.9: Average time between two scatterings T̄scatt plotted against sin Imax for
25 simulations, each with 100 performed scatterings. Imax was varied within the interval
[10−2, 10−1] to obtain these results. The correlation coefficient of the simulation data (blue
dots) is given by ρ = 0.87. The 95%-confidence interval for the slope of the dashed red
line is equal to [2.4, 3.0] · 103.
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4.3 Correcting the estimate

The correlation coefficients of the five parameters whose domains were varied
are summarised in Table 4.1.

Correlation coefficient Value
ρ(N2, T−1

scatt) 0.89
ρ(⟨m−4/5⟩, Tscatt) 0.16

ρ(a
3/2
max − a

3/2
min, Tscatt) 0.80

ρ(12 + ϵ2max, Tscatt) -0.11
ρ(sin Imax, Tscatt) 0.87

Table 4.1: Correlation coefficients of the five parameters whose domains were varied.

We note that only N2, amax and Imax give a relatively strong indication of
the value of Tscatt on their respective test domains, whereas mmax and ϵmax

had almost no predictive value on their respective test domains. We will now
improve our initial expected value E[Tscatt] by writing it as a function of N2,
amax and Imax multiplied by a constant K:

E[Tscatt] = K
(a

3/2
max − a

3/2
min) sin Imax

N2
, (4.1)

where we note that this function would only be valid when mmax = 10−7M⊙,
mmin = 10−10 M⊙, amin = 1 AU and ϵmax = 0.1, where each parameters is
also distributed as in Table 3.1. Our goal now is to find a 95%-confidence
interval for the value K. Using our results from Figures 4.5, 4.7 and 4.9, we
can construct the following table:

Parameter Slope 95%-confidence interval

N2 [K(a
3/2
max − a

3/2
min) sin Imax]

−1 [2.4, 2.9] · 108]
a
3/2
max − a

3/2
min K sin Imax/N

2 [33, 43]

sin Imax K(a
3/2
max − a

3/2
min)/N

2 [2.4, 3.0] · 103

Table 4.2: 95%-confidence interval of the slope as expressed in the form of equation 4.1.

The resulting three 95%-confidence intervals for the value of K are shown in
Table 4.3
We are now able to conclude that the 95%-confidence interval of K must be
contained within K = (3.8± 0.5) · 108. Equation 4.1 can thus be written as:

E[Tscatt] = (3.8± 0.5) · 108 · (a
3/2
max − a

3/2
min) sin Imax

N2
, (4.2)
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Parameter 95%-confidence interval for K
N2 [3.4, 4.2] · 108

a
3/2
max − a

3/2
min [3.3, 4.3] · 108

sin Imax [3.4, 4.3] · 108

Table 4.3: 95%-confidence interval of the slope as expressed in the form of equation 4.1.

where we again note that this relation only holds on the domains as specified
in Tables 3.1 and 3.2.
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5. Discussion
Since the results of our simulations often did not correspond to the expected
values, it is likely that our model, assumptions and calculations had short-
comings in them. Possible causes of these shortcomings will now be further
elaborated upon. In further research, it would be interesting to try to adjust
the model in order to overcome these shortcomings.

Stationarity of the initialisation state

We see in Figure 4.1 that the time between the first scatterings is higher
than the time between later scatterings, giving a root-like interaction between
nscatt and Tscatt. However, it was tried to set up the system as a uniformly
homogeneous disk, from which it would be expected that the evolution of
the system was time-invariant and thus stationary. It is unclear why the
system becomes more reactive (more scatterings per unit of time) over time.
One cause could be that the average eccentricity increases as there are more
scatterings, which would mean higher particle velocity and thus again more
scatterings.

Assumptions for the scattering time estimate

In Equation 2.22, it is implicitly assumed that all particles are allowed to
move freely and independent of each other throughout the entire volume V ,
as if they are particles in an ideal gas. In a Kepler system, this is however not
the case. Particles move in near-circular orbits around a heavy central mass,
which means that particles that are close to each other will also have near-
similar velocity vectors. These effects are not accounted for in the further
deviation of our estimate for the scattering time in 2.32.

Test domains for mmax and ϵmax

In Figures 4.6 and 4.8 the expected Tscatt is almost constant on the domain
that was tested, since ⟨m−4/5⟩ and 12+ ϵ2max react relatively little to changes
in mmax and ϵmax, respectively. To observe a stronger connection between
⟨m−4/5⟩ and Tscatt, it would likely have been more interesting to vary mmin

instead of mmax. However, since simulations of systems with a lot of very
small masses sometimes did not reach 100 scatterings, it was chosen to keep
mmin constant instead of mmax in order to maintain comparable data points.
For the dependence of Tscatt on ϵmax, it could still be interesting to look at
what happens in the limit ϵmax ↓ 0 or when ϵmax ↑ 1, since this would greatly
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alter the dynamics of the Kepler system. Verifying these effects was beyond
the scope of this research.

Validity of corrected scattering time estimate

For computational reasons, the simulation data with which the corrected
estimate in Equation 4.2 was derived, was based on the average time between
the first 100 scatterings of in a simulation for each of the 25 simulations.
However, because the initialisation state is usually non-stationary, this means
that we are in principle not able to extend this estimate to systems in which
a different number of scatterings were executed, even if they where to have
the exact same initialisation conditions.

Linear approximations

In order to simplify the calculations that are needed to compute the evo-
lution of the Kepler system, a lot of interactions are linearised, the most
important being in the computation of the minimum orbit intersection dis-
tance in Equation 3.8 and the linearisation of the hyperbolic orbit in Equation
3.12. These approximations become worse for larger masses, since they cause
greater scattering angles.

Gravitational sphere of influence

In the derivation of the definition of the gravitational sphere of influence
sinf , it was assumed that a satellite enters a planet’s sphere of influence.
However, in our case, a planet with roughly the same mass enters its sphere
of influence. Since we do not assume planets start orbiting each other (as
would be the case for satellites), this should not have greatly affected our
calculations.

Collisions

In order to focus on the evolution of the system, we did not perform a proper
collision when the distance between two planets was smaller than the sum
of their radii. Instead, we acted as if the two planets collided elastically,
which would mean they bounced off each other without losing energy. This
is not physical, however it can be noted that these situations would imply
scattering angles of more than 90 degrees, which almost never occurred.
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Long-range gravitational interactions

A next step in fully simulating the gravitational forces present in a Kepler
system, would be to not only include the gravitational interactions of particles
which are close to each other, but also the gravity between particles that are
further away. Especially when the system contains one or multiple particles
with a relatively large mass (such as Jupiter in our Solar System), such a
mass would significantly affect the stationarity of orbits of smaller bodies on
long timescales.
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6. Conclusion
The aim of this research was to answer three questions about the simulation of
gravitational scatterings in N -body Kepler systems. For clarity, the answers
to these questions will be evaluated separately.

1. Do gravitational scatterings have a significant impact on the evolution
of a Kepler system?

In the five simulations of 500 scatterings on the standard domain it was
found that the average scattering angle δ̄ was equal to 2.10 ◦. For the
50 largest scatterings, the average δ was equal to 15.2 ◦. This implies
a significant change of orbit for the particles involved in the scattering.
In order to make an accurate description of the evolution of a Kepler
system, it is thus necessary to include scatterings. This is especially
the case for systems with heavier particles such as planets in a Solar
system.

2. Does the simulated average time between two scatterings correspond
with expected average?

While looking at the results in Figures 4.3 and 4.4, it becomes clear that
the average scattering time from the simulations T̄scatt is significantly
higher than E[Tscatt] for both the total 500 scatterings (by a factor 3.9)
and the last 200 scatterings (by a factor 2.2). While having the same
order of magnitude, which indicates that the assumptions on which our
derivations are likely to be at least partially correct, further research
is needed to give a more accurate estimate of the time between two
scatterings. Throughout all five standard simulations, the time between
two scatterings first starts to decrease after initialisation (ρ = −0.44).
The time between two scatterings did not significantly change after 300
scatterings and became stationary (ρ = −0.08).

3. What is the effect of increasing the number of particles, the maxi-
mum particle mass, the maximum semi-major axis, the maximum ec-
centricity and the maximum inclination on the average time between
two scatterings? From Figures 4.6 and 4.8 it followed that we do
not find a clear correlation between ⟨m−4/5⟩ and T̄scatt, and between
12 + ϵ2max and T̄scatt, which was also indicated by the relative stabil-
ity of our estimate on the respective test domains. By omitting these
factors in a new estimate based on our simulation data, we found the
following expression for the expected time between two scatterings:
E[Tscatt] = (3.8± 0.5) · 108 · (a3/2max − a

3/2
min)N

−2 sin Imax, where we again
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note that this equation only holds on the domains as specified in Tables
3.1 and 3.2.

Shortcomings in the model and computations are likely attributed to possibly
wrong assumptions for the scattering time estimate, the non-stationarity of
the initialisation state, several minor other causes. In further research, it is
recommended to try to find methods to decrease their impact on the results
of the simulations.
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A. Derivations for Table 3.1
For each of the parameters x ∈ {m, a, ϵ, I,ϖ,Ω,M}, we want to create the
distributions as specified in Section 2.4 in order to create a uniformly homo-
geneous disk of particles, where the masses of the particles are distributed
similarly as in the Asteroid belt. This is done by setting the cumulative
distribution function of each parameter equal to a random value ξ chosen
uniformly between 0 and 1:

PX(x) = P(X ≤ x) =

∫ x

−∞
pX(u)du = ξ, ξ ∼ U [0, 1]. (A.1)

Using the probability density functions from Equations 2.19 through 2.21
and p(ϵ) = 1

ϵmax
, we find:

P (m) =

∫ m

mmin

p(m′)dm′ =
(mmax

m

) 2
3 m

2
3 −m

2
3
min

m
2
3
max −m

2
3
min

, (A.2)

P (a) =

∫ a

amin

p(a′)da′ =
a3 − a3min

a3max − a3min

, (A.3)

P (ϵ) =

∫ ϵ

0

p(ϵ′)dϵ′ =
ϵ

ϵmax

, (A.4)

P (I) =

∫ Imax

I

p(I ′)dI ′ =
cos I − cos Imax

1− cos Imax

. (A.5)

Setting Equations A.2 through A.5 equal to ξ and solving for m, a, ϵ and
I respectively, gives the expressions in Table 3.1. For x ∈ {ϖ,Ω,M}, x
is chosen randomly from a uniform distribution between 0 and 2π. Hence
x = 2πξ for these parameters.
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B. Source code
1 import numpy as np

2 from numpy import linalg as LA

3 import math

4 from scipy.spatial.transform import Rotation

5 import random

6 import matplotlib.pyplot as plt

7 from scipy.optimize import curve_fit

8
9 M = 1 #solar mass

10 G = 39.48 #Newton ’s constant in AU^3*yr^-2*M^-1

11 S = 0.00465047 #solar radius in AU

12 MJ = 0.0009543 #Jupiter ’s mass in solar mass M

13 SJ = 0.00046732617 #Jupiter ’s radius in AU

14 m_min = 10**( -10) #minimial mass of particle in solar M, constant in all simulations

15 a_min = 1 #minimal semi -major axis of particle in AU ,constant in all simulations

16
17 class Particle(object):

18 """ Represents an asteroid or other astronomical particle in 3D space."""

19 def __init__(self , p):

20 self.t0 = p[0]

21 self.a = p[1]

22 self.c = p[2]

23 self.s = p[3]

24 self.m = p[4]

25 self.r0vec = p[5]

26 self.Lvec = p[6]

27 self.eccvec = p[7]

28 self.omega = p[8]

29 self.v0vec = p[9]

30 @property

31 def Inclination(self):

32 return np.arccos(self.Lvec [2]/LA.norm(self.Lvec))

33 @property

34 def ColRange(self): #gravitational sphere of influence

35 return (self.m/M)**(2/5)*self.a

36 @property

37 def TimePeriod(self):

38 return 2*np.pi/self.omega

39 @property

40 def LeftBound(self):

41 return self.a-self.c-self.ColRange

42
43 class system:

44 def __init__(self ,N, m_max , a_max , ecc_max , inc_max): #N is number of particles in the system

45 sys=Generate_sys(N, m_max , a_max , ecc_max , inc_max)

46 self.particles=sys

47 self.cl=pairlist(sys)

48 self.tl=t_collision(self.cl)

49
50 def KeplToProps(t0,s,m,a,ecc ,argper ,ascnode ,inc ,E): #use after initialization

51 omega = np.sqrt((G*M)/(a**3))

52 b = np.sqrt(1-ecc **2)*a

53 c = ecc*a

54 L = m*omega*a*b

55 r0vec = np.matmul(Rotation_orb(ascnode ,inc ,argper),np.array((a*np.cos(E)-c,b*np.sin(E) ,0)))

56 v0vec = (omega*a/LA.norm(r0vec))*np.matmul(Rotation_orb(ascnode ,inc ,argper),np.array((-a*np.sin(E

),b*np.cos(E) ,0)))

57 Lvec = L*np.matmul(Rotation_orb(ascnode ,inc ,argper),np.array ((0,0,1)))

58 eccvec = ecc*np.matmul(Rotation_orb(ascnode ,inc ,argper),np.array ((1,0,0)))

59 props = [t0,a,c,s,m,r0vec ,Lvec ,eccvec ,omega ,v0vec]

60 return props

61
62 def CartToProps(t,s,m, rvec , vvec): #use after collision

63 Lvec = m*np.cross(rvec ,vvec)

64 l = np.dot(Lvec ,Lvec)/(G*M*m**2)

65 r = LA.norm(rvec)

66 eccvec = np.cross(vvec ,Lvec)/(G*M*m)-rvec/r

67 ecc = LA.norm(eccvec)

68 a = l/(1-ecc **2)

69 c = a*ecc

70 omega = np.sqrt((G*M)/(a**3))

71 if (ecc >= 1 or l <= (1+ecc)*S):

72 print("Ejection needed")

73 props = [t,a,c,s,m,rvec ,Lvec ,eccvec ,omega ,vvec]

74 return props

75
76 def MOID(p1,p2): #determine minimal orbit intersection distance between two particles , returns [p1 ,p2

,[d_MOID ,r1 ,r2,v1,v2]]

77 Kvec = np.cross(p1.Lvec ,p2.Lvec)

78 K = LA.norm(Kvec)

43



79 l1 = np.dot(p1.Lvec ,p1.Lvec)/(G*M*p1.m**2)

80 r1vec_plus = (Kvec*l1)/(K+np.dot(p1.eccvec ,Kvec))

81 r1vec_minus = (Kvec*l1)/(-K+np.dot(p1.eccvec ,Kvec))

82 r1_plus = LA.norm(r1vec_plus)

83 r1_minus = LA.norm(r1vec_minus)

84 v1vec_plus = np.cross((p1.Lvec/(p1.m*l1)),(p1.eccvec+r1vec_plus/r1_plus))

85 v1vec_minus = np.cross ((p1.Lvec/(p1.m*l1)),(p1.eccvec+r1vec_minus/r1_minus))

86 l2 = np.dot(p2.Lvec ,p2.Lvec)/(G*M*p2.m**2)

87 r2vec_plus = (Kvec*l2)/(K+np.dot(p2.eccvec ,Kvec))

88 r2vec_minus = (Kvec*l2)/(-K+np.dot(p2.eccvec ,Kvec))

89 r2_plus = LA.norm(r2vec_plus)

90 r2_minus = LA.norm(r2vec_minus)

91 v2vec_plus = np.cross((p2.Lvec/(p2.m*l2)),(p2.eccvec+r2vec_plus/r2_plus))

92 v2vec_minus = np.cross ((p2.Lvec/(p2.m*l2)),(p2.eccvec+r2vec_minus/r2_minus))

93 dvec_plus = r2vec_plus - r1vec_plus

94 wvec_plus = np.cross(v1vec_plus ,v2vec_plus)

95 w_plus = LA.norm(wvec_plus)

96 r1vec_MOID_plus = r1vec_plus + (np.dot(dvec_plus ,(np.cross(v2vec_plus ,wvec_plus)/( w_plus **2))))*

v1vec_plus

97 r2vec_MOID_plus = r2vec_plus + (np.dot(dvec_plus ,(np.cross(v1vec_plus ,wvec_plus)/( w_plus **2))))*

v2vec_plus

98 dvec_MOID_plus = r2vec_MOID_plus - r1vec_MOID_plus

99 d_MOID_plus = LA.norm(dvec_MOID_plus)

100 dvec_minus = r2vec_minus - r1vec_minus

101 wvec_minus = np.cross(v1vec_minus ,v2vec_minus)

102 w_minus = LA.norm(wvec_minus)

103 r1vec_MOID_minus = r1vec_minus + (np.dot(dvec_minus ,(np.cross(v2vec_minus ,wvec_minus)/( w_minus

**2))))*v1vec_minus

104 r2vec_MOID_minus = r2vec_minus + (np.dot(dvec_minus ,(np.cross(v1vec_minus ,wvec_minus)/( w_minus

**2))))*v2vec_minus

105 dvec_MOID_minus = r2vec_MOID_minus - r1vec_MOID_minus

106 d_MOID_minus = LA.norm(dvec_MOID_minus)

107 arr = np.array ([], dtype = object)

108 if d_MOID_plus < max(p1.ColRange ,p2.ColRange):

109 arr = np.append(arr ,np.array ([p1,p2,np.array([ d_MOID_plus ,r1vec_plus ,r2vec_plus ,v1vec_plus ,

v2vec_plus],dtype = object)], dtype=object))

110 arr = arr.reshape(int(len(arr)/3) ,3)

111 if d_MOID_minus < max(p1.ColRange ,p2.ColRange):

112 arr = np.append(arr ,np.array ([p1,p2,np.array([ d_MOID_minus ,r1vec_minus ,r2vec_minus ,

v1vec_minus ,v2vec_minus],dtype = object)], dtype=object))

113 arr = arr.reshape(int(len(arr)/3) ,3)

114 if min(d_MOID_plus ,d_MOID_minus) < max(p1.ColRange ,p2.ColRange):

115 return (arr)

116
117 def Rx(theta):

118 return np.array (([1,0,0],[0,np.cos(theta),-np.sin(theta)],[0,np.sin(theta),np.cos(theta)]))

119 def Rz(phi):

120 return np.array (([np.cos(phi),-np.sin(phi) ,0],[np.sin(phi),np.cos(phi) ,0],[0,0,1]))

121 def Rotation_orb(ascnode ,inc ,argper): #rotate orbital parameters

122 RxRz = np.matmul(Rx(inc),Rz(argper))

123 RzRxRz = np.matmul(Rz(ascnode),RxRz)

124 return(RzRxRz)

125
126 def Rotate_rel(m1,m2,dvec_i ,uvec_i): #rotate relative coordinate over angle delta in CM frame

127 b = LA.norm(dvec_i)

128 u = LA.norm(uvec_i)

129 a = (G*(m1+m2))/(u**2)

130 c = np.sqrt(a**2 + b**2)

131 delta = 2*np.arctan(a/b)

132 dvec_f = ((2*a*b**2)/(u*c**2))*uvec_i + ((b**2-a**2)/(c**2))*dvec_i

133 uvec_f = ((b**2-a**2)/(c**2))*uvec_i - ((2*a*u)/(c**2))*dvec_i

134 return (dvec_f ,uvec_f ,delta)

135
136 def ElCollision(m1,m2,r1vec_i ,r2vec_i ,v1vec_i ,v2vec_i): #perform a scattering between two particles

137 uvec_i = v2vec_i - v1vec_i

138 dvec_i = r2vec_i - r1vec_i - ((np.dot(( r2vec_i - r1vec_i),uvec_i))/(LA.norm(uvec_i)**2))*uvec_i

139 Rvec_i = (m1*r1vec_i+m2*r2vec_i)/(m1+m2)

140 Vvec_i = (m1*v1vec_i + m2*v2vec_i)/(m1+m2)

141 dvec_f ,uvec_f ,delta = Rotate_rel(m1,m2,dvec_i ,uvec_i)

142 r1vec_f = Rvec_i - (m2/(m1+m2))*dvec_f

143 r2vec_f = Rvec_i + (m1/(m1+m2))*dvec_f

144 v1vec_f = Vvec_i - (m2/(m1+m2))*uvec_f

145 v2vec_f = Vvec_i + (m1/(m1+m2))*uvec_f

146 return(r1vec_f , r2vec_f , v1vec_f ,v2vec_f ,delta)

147
148 #some mathematical functions

149 def calculate_eccentric_anomaly(mean_anomaly , eccentricity):

150 E = mean_anomaly

151 for i in range (3): # Perform three iterations

152 E = E - (E - eccentricity * math.sin(E) - mean_anomaly) / (1 - eccentricity * math.cos(E))

153 return E

154 def E_M_45_func(m_max):
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155 return (5/11) *(( m_max **(22/15) -m_min **(22/15))/(m_max **(22/15)*m_min **(4/5) -m_max **(4/5)*m_min

**(22/15)))

156 def Exp_value_45(mass_array):

157 mass45_array = np.zeros(len(mass_array))

158 for i in range(len(mass_array)):

159 mass45_array[i] = mass_array[i]**( -4/5)

160 exp_value_45 = np.mean(mass45_array)

161 return exp_value_45

162 def E_Tscatt(N, m_max , a_max , ecc_max , inc_max):

163 return ((4/9)*M**(3/10) *(a_max **(3/2) -a_min **(3/2))*(12+ ecc_max **2)*np.sin(inc_max)*E_M_45_func(

m_max))/(np.sqrt(G)*N**2)

164 def Line(x_data , a):

165 return x_data*a

166
167 def Generate_sys(N, m_max , a_max , ecc_max , inc_max): #generate random system of N particles

168 arr = np.array ([],dtype = object)

169 leftbound = np.array ([])

170 timeperiod = np.array ([])

171 for n in range(N):

172 t0 = 0

173 m = m_min /((1- random.uniform (0,1)*(1-( m_min/m_max)**(2/3)))**(3/2))

174 s = SJ*(m/MJ)**(1/3)

175 a = np.cbrt(random.uniform (0,1)*(a_max**3-a_min **3)+a_min **3)

176 ecc = random.uniform(0,ecc_max)

177 inc = np.arccos(random.uniform (0,1)*(1-np.cos(inc_max))+np.cos(inc_max))

178 argper ,ascnode ,mean_anomaly = random.uniform (0,2*np.pi),random.uniform (0,2*np.pi),random.

uniform (0,2*np.pi)

179 E = calculate_eccentric_anomaly(mean_anomaly , ecc)

180 props = KeplToProps(t0 ,s,m,a,ecc ,argper ,ascnode ,inc ,E)

181 particle = Particle(props)

182 arr = np.append(arr ,particle)

183 leftbound = np.append(leftbound , particle.LeftBound)

184 timeperiod = np.append(timeperiod , particle.TimePeriod)

185 print("Min time period is ", min(timeperiod))

186 print("Max time period is ", max(timeperiod))

187 arr = arr[leftbound.argsort ()]

188 return arr

189
190 def pairlist(sys): #create list of scattering pairs

191 arr = np.array ([],dtype = object)

192 for i in range(len(sys)):

193 for j in range(i+1,len(sys)):

194 if sys[i].a+sys[i].c+sys[i]. ColRange >= sys[j].a-sys[j].c-sys[j]. ColRange:

195 k = MOID(sys[i],sys[j])

196 if type(k)!=type(None):

197 arr = np.append(arr ,k)

198 else:

199 break

200 return arr.reshape(int(len(arr)/3) ,3)

201
202 def newpairs(sys ,p1new ,p2new): #compute new scatterings

203 arr = np.array ([],dtype = object)

204 for i in range(len(sys)):

205 if sys[i].a+sys[i].c+sys[i]. ColRange >= p1new.a-p1new.c-p1new.ColRange:

206 k = MOID(sys[i],p1new)

207 if type(k)!=type(None):

208 arr = np.append(arr ,k)

209 if sys[i].a+sys[i].c+sys[i]. ColRange >= p2new.a-p2new.c-p2new.ColRange:

210 k = MOID(sys[i],p2new)

211 if type(k)!=type(None):

212 arr = np.append(arr ,k)

213 return arr.reshape(int(len(arr)/3) ,3)

214
215 def t_collision(cl): #Calculate list of scatttering times

216 arr = np.array ([], dtype=object)

217 for i in range(len(cl)):

218 p1 = cl[i][0]

219 p2 = cl[i][1]

220 k = cl[i][2]

221 e1sq , e2sq = np.dot(p1.eccvec ,p1.eccvec), np.dot(p2.eccvec ,p2.eccvec)

222 r1,r2 = LA.norm(k[1]),LA.norm(k[2])

223 z1 = np.dot(k[1]/p1.a-1j*(r1*k[3]/(p1.a**2*p1.omega)),(p1.r0vec -p1.eccvec*np.dot(p1.eccvec ,p1

.r0vec))/(p1.a-e1sq*p1.a)+p1.eccvec)+(np.dot(p1.r0vec ,p1.eccvec))/p1.a+e1sq

224 z2 = np.dot(k[2]/p2.a-1j*(r2*k[4]/(p2.a**2*p2.omega)),(p2.r0vec -p2.eccvec*np.dot(p2.eccvec ,p2

.r0vec))/(p2.a-e2sq*p2.a)+p2.eccvec)+(np.dot(p2.r0vec ,p2.eccvec))/p2.a+e2sq

225 DE1 , DE2 = np.angle(z1)%(2*np.pi), np.angle(z2)%(2*np.pi)

226 t11 = p1.t0+DE1/p1.omega -np.dot(np.cross(p1.eccvec ,k[1]-p1.r0vec)/(1-e1sq),p1.Lvec/(G*M*p1.m)

)

227 t21 = p2.t0+DE2/p2.omega -np.dot(np.cross(p2.eccvec ,k[2]-p2.r0vec)/(1-e2sq),p2.Lvec/(G*M*p2.m)

)

228 uvec , wsq = k[4]-k[3], np.dot(np.cross(k[3],k[4]),np.cross(k[3],k[4]))

229 delta = (1/np.abs(t11 -t21))*np.sqrt(np.dot(uvec ,uvec)*(((p1.ColRange+p2.ColRange)**2-k[0]**2)

/wsq))
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230 q0,q1,k0 ,k1 = 2*np.pi/(p1.omega*np.abs(t11 -t21)) ,2*np.pi/(p2.omega*np.abs(t11 -t21)) ,1,0

231 q,alpha ,ks,n= np.array([q0 ,q1]),np.array ([]),np.array([k0,k1]) ,0

232 while n <=8:

233 q, alpha , ks = np.append(q,[0 ,0]), np.append(alpha , [0,0]), np.append(ks, [0,0])

234 alpha [2*n] = np.floor(q[2*n]/q[2*n+1])

235 q[2*n+2] = q[2*n]-alpha [2*n]*q[2*n+1]

236 if q[2*n+2] == 0:

237 break

238 ks[2*n+2] = ks[2*n] -alpha [2*n]*ks[2*n+1]

239 alpha [2*n+1] = np.floor(q[2*n+1]/q[2*n+2])

240 q[2*n+3] = q[2*n+1]-alpha [2*n+1]*q[2*n+2]

241 if q[2*n+3] == 0:

242 break

243 ks[2*n+3] = ks[2*n+1] -alpha [2*n+1]*ks[2*n+2]

244 xmax = np.floor ((1+ delta)/q[2*n+2])+1

245 if xmax > 1000000:

246 break

247 x = np.arange(np.ceil((1-delta)/q[2*n]),xmax ,1)

248 y = np.maximum(np.zeros(len(x)), np.ceil(q[2*n]*x/q[2*n+1] -(1+ delta)/q[2*n+1]))

249 for xi in range(len(x)):

250 if x[xi]*q[2*n]-y[xi]*q[2*n+1] > 1- delta:

251 sol = x[xi]*ks[2*n]-y[xi]*ks[2*n+1]

252 tnew = t11+2*np.pi*sol/p1.omega

253 arr = np.append(arr ,np.array ([p1 ,p2,tnew ,k[1:]], dtype=object))

254 n = 10

255 break

256 n=n+1

257 arr = arr.reshape(int(len(arr)/4) ,4)

258 return arr[(arr[:,2]).argsort ()]

259
260 def main(N,m_max , a_max , ecc_max , inc_max , simlen):

261 sys = system(N, m_max , a_max , ecc_max , inc_max)

262 particles = sys.particles

263 mass_array = np.zeros(N)

264 for i in range(N):

265 mass_array[i]= particles[i].m

266 cl = sys.cl

267 tl = sys.tl

268 tarr = np.array ([0])

269 NofCol = 0

270 delta_arr = np.array ([])

271 leftbound_arr = np.zeros(len(particles))

272 for i in range(len(particles)):

273 leftbound_arr[i] = particles[i]. LeftBound

274 print("Initial shape of time list is ", np.shape(tl))

275 while tarr[-1] <1e6 and not len(tl) == 0 and NofCol < simlen:

276 p1 = tl [0][0]

277 p2 = tl [0][1]

278 tkl = tl [0][2]

279 r12v12_i = tl [0][3]

280 dvec_kl = r12v12_i [1]- r12v12_i [0]

281 uvec_i = r12v12_i [3]- r12v12_i [2]

282 t_scatt = tkl - (np.dot(dvec_kl ,uvec_i))/(LA.norm(uvec_i)**2)

283 tarr = np.append(tarr , t_scatt)

284 r12v12_f = ElCollision(p1.m,p2.m,r12v12_i [0], r12v12_i [1], r12v12_i [2], r12v12_i [3])

285 p1new = Particle(CartToProps(t_scatt ,p1.s,p1.m,r12v12_f [0], r12v12_f [2]))

286 p2new = Particle(CartToProps(t_scatt ,p2.s,p2.m,r12v12_f [1], r12v12_f [3]))

287 delta_arr = np.append(delta_arr , r12v12_f [4])

288 boolean_particles = [False if (par == p1 or par == p2) else True for par in particles]

289 boolean_particles_np = np.array(boolean_particles)

290 index_scatt_par = np.where(boolean_particles_np == False)

291 particles = particles[boolean_particles]

292 leftbound_arr = leftbound_arr[boolean_particles]

293 boolean_tl = [False if (p1 == col[0] or p2 == col [0] or p1 == col[1] or p2 == col [1]) else

True for col in tl]

294 tl = tl[boolean_tl]

295 ncl = newpairs(particles ,p1new ,p2new)

296 ntl = t_collision(ncl)

297 merged_tl=np.append(tl,ntl)

298 merged_tl = merged_tl.reshape(int(len(merged_tl)/4) ,4)

299 tl = merged_tl [( merged_tl [: ,2]).argsort ()]

300 particles = np.append(particles , (p1new ,p2new))

301 leftbound_arr = np.append(leftbound_arr , (p1new.LeftBound , p2new.LeftBound))

302 particles = particles[leftbound_arr.argsort ()]

303 NofCol += 1

304 print(NofCol)

305 print("Number of collisions is ", NofCol)

306 print("End shape of time list is ", np.shape(tl))

307 sys.particles = particles

308 scatt_arr = np.zeros(len(tarr) -1)

309 for i in range(len(tarr) -1):

310 scatt_arr[i] = (tarr[i+1]-tarr[i])

311 return (tarr , delta_arr , scatt_arr ,mass_array)
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312 N = 1000

313 m_max = 10**( -7)

314 a_max = 4

315 ecc_max = 0.1

316 inc_max = 0.1

317 simlen = 500

318 tarr , delta_arr , scatt_arr , mass_array = main(N, m_max , a_max , ecc_max , inc_max , simlen)

319 Nsim=5 #execute 5 simulations of 500 scatterings

320 tarr_avg = np.zeros(simlen +1)

321 for i in range(simlen +1):

322 tarr_avg[i] = (tarr1[i]+ tarr2[i]+ tarr3[i]+ tarr4[i]+ tarr5[i])/Nsim

323 delta_sum = np.concatenate ((delta1_arr ,delta2_arr ,delta3_arr ,delta4_arr , delta5_arr))

324 scatt_avg = np.zeros(len(tarr_avg) -1)

325 for i in range(len(tarr_avg) -1):

326 scatt_avg[i] = (tarr_avg[i+1]- tarr_avg[i])

327 mean_scatt = np.round(np.mean(scatt_avg) ,2)

328 mean_scatt_300_500 = np.round(np.mean(scatt_avg [300:499]))

329 ETscatt = E_Tscatt(N, m_max , a_max , ecc_max , inc_max)

330
331 def N_func(Nsim ,m_max , a_max , ecc_max , inc_max , simlen): #used for Figure 4.5

332 delta_avg_arr = np.zeros(Nsim)

333 scatt_avg_arr = np.zeros(Nsim)

334 N_arr = np.zeros(Nsim)

335 sim = 0

336 while sim < Nsim:

337 N = int(np.sqrt (10**4 + (10**6 -10**4)*random.uniform (0,1)))

338 N_arr[sim] = N

339 delta_arr , scatt_arr = main(N, m_max , a_max , ecc_max , inc_max , simlen)[1:3]

340 delta_avg_arr[sim] = np.mean(delta_arr)

341 scatt_avg_arr[sim] = np.mean(scatt_arr)

342 sim += 1

343 print(sim)

344 return N_arr , delta_avg_arr , scatt_avg_arr

345 N_arr , delta_avg_N_arr , scatt_avg_N_arr = N_func(Nsim ,m_max , a_max , ecc_max , inc_max , simlen)

346 N_bar_arr = np.zeros(len(N_arr))

347 for i in range(len(N_arr)):

348 N_bar_arr[i] = N_arr[i]**(2)

349 E_N2 = np.linspace (10**5 ,10**6 ,100)

350 E_N2inv = np.zeros (100)

351 E_N = np.zeros (100)

352 E_Tscatt_N = np.zeros (100)

353 for i in range(len(E_N)):

354 E_N2inv[i] = 1/E_N2[i]

355 E_N[i] = int(np.sqrt(E_N2[i]))

356 E_Tscatt_N[i] = E_Tscatt(E_N[i], m_max , a_max , ecc_max , inc_max)

357 values , covariance = curve_fit(Line , N_bar_arr , 1/ scatt_avg_N_arr)

358 a_fit = values [0]

359 y = Line(E_N2 ,a_fit)

360
361 def M_max(Nsim ,N,a_max , ecc_max , inc_max , simlen): #used for Figure 4.6

362 delta_avg_arr = np.zeros(Nsim)

363 scatt_avg_arr = np.zeros(Nsim)

364 m_max_arr = np.zeros(Nsim)

365 exp_value_45_arr = np.zeros(Nsim)

366 sim = 0

367 while sim < Nsim:

368 xi = random.uniform (0,1)

369 m_max_arr[sim] = 10**( -8+2* random.uniform (0,1))

370 delta_arr , scatt_arr , mass_array = main(N, m_max , a_max , ecc_max , inc_max , simlen)[1:4]

371 delta_avg_arr[sim] = np.mean(delta_arr)

372 scatt_avg_arr[sim] = np.mean(scatt_arr)

373 exp_value_45_arr[sim] = Exp_value_45(mass_array)

374 sim += 1

375 print(sim)

376 return m_max_arr , delta_avg_arr , scatt_avg_arr , exp_value_45_arr

377 m_max_arr , delta_avg_m_max_arr , scatt_avg_m_max_arr , exp_value_45_arr = M_max(Nsim ,N,a_max , ecc_max ,

inc_max , simlen)

378 E_m_max = 10**( np.linspace (-8,-6,100))

379 E_M_45 = np.zeros (100)

380 E_M_45_2 = np.linspace (4.4*10**7 , 4.8*10**7 ,100)

381 E_Tscatt_m = np.zeros (100)

382 for i in range(len(E_m_max)):

383 E_M_45[i] = E_M_45_func(E_m_max[i])

384 E_Tscatt_m[i] = E_Tscatt(N, E_m_max[i], a_max , ecc_max , inc_max)

385 values , covariance = curve_fit(Line , exp_value_45_arr , scatt_avg_m_max_arr)

386 a_fit = values [0]

387 y = Line(E_M_45_2 ,a_fit)

388
389 def A_max(Nsim ,N,m_max , ecc_max , inc_max , simlen): #used for Figure 4.7

390 delta_avg_arr = np.zeros(Nsim)

391 scatt_avg_arr = np.zeros(Nsim)

392 a_max_arr = np.zeros(Nsim)

393 sim = 0
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394 while sim < Nsim:

395 a_max = 2 + 4* random.uniform (0,1)

396 a_max_arr[sim] = a_max

397 delta_arr , scatt_arr = main(N, m_max , a_max , ecc_max , inc_max , simlen)[1:3]

398 delta_avg_arr[sim] = np.mean(delta_arr)

399 scatt_avg_arr[sim] = np.mean(scatt_arr)

400 sim += 1

401 print(sim)

402 return a_max_arr , delta_avg_arr , scatt_avg_arr

403 a_max_arr , delta_avg_a_max_arr , scatt_avg_a_max_arr = A_max(Nsim ,N,m_max , ecc_max , inc_max , simlen)

404 a_bar_arr = np.zeros(len(a_max_arr))

405 for i in range(len(a_max_arr)):

406 a_bar_arr[i] = a_max_arr[i]**(3/2) -a_min **(3/2)

407 E_a_max = np.linspace (2 ,6 ,100)

408 E_a_bar = np.zeros (100)

409 E_Tscatt_a = np.zeros (100)

410 for i in range(len(E_m_max)):

411 E_a_bar[i] = E_a_max[i]**(3/2) -a_min **(3/2)

412 E_Tscatt_a[i] = E_Tscatt(N, m_max , E_a_max[i], ecc_max , inc_max)

413 values , covariance = curve_fit(Line , a_bar_arr , scatt_avg_a_max_arr)

414 a_fit = values [0]

415 y = Line(E_a_bar ,a_fit)

416
417 def Ecc_max(Nsim ,N,m_max ,a_max , inc_max , simlen): #used for Figure 4.8

418 delta_avg_arr = np.zeros(Nsim)

419 scatt_avg_arr = np.zeros(Nsim)

420 ecc_max_arr = np.zeros(Nsim)

421 sim = 0

422 while sim < Nsim:

423 ecc_max = 0.5*np.sqrt(random.uniform (0,1))

424 ecc_max_arr[sim] = ecc_max

425 delta_arr , scatt_arr = main(N, m_max , a_max , ecc_max , inc_max , simlen)[1:3]

426 delta_avg_arr[sim] = np.mean(delta_arr)

427 scatt_avg_arr[sim] = np.mean(scatt_arr)

428 sim += 1

429 print(sim)

430 return ecc_max_arr , delta_avg_arr , scatt_avg_arr

431 ecc_max_arr , delta_avg_ecc_max_arr , scatt_avg_ecc_max_arr = Ecc_max(Nsim ,N,m_max , a_max , inc_max ,

simlen)

432 ecc_max_bar_arr = np.zeros(len(ecc_max_arr))

433 for i in range(len(ecc_max_arr)):

434 ecc_max_bar_arr[i] = 12+ ecc_max_arr[i]**(2)

435 E_ecc_max = np.linspace (0 ,0.5 ,100)

436 E_ecc_bar = np.zeros (100)

437 E_Tscatt_ecc = np.zeros (100)

438 for i in range(len(E_ecc_max)):

439 E_ecc_bar[i] = 12+ E_ecc_max[i]**2

440 E_Tscatt_ecc[i] = E_Tscatt(N, m_max , a_max , E_ecc_max[i], inc_max)

441 values , covariance = curve_fit(Line , ecc_max_bar_arr , scatt_avg_ecc_max_arr)

442 a_fit = values [0]

443 y = Line(E_ecc_bar ,a_fit)

444
445 def Inc_max(Nsim ,N,m_max ,a_max , ecc_max , simlen): #used for Figure 4.9

446 delta_avg_arr = np.zeros(Nsim)

447 scatt_avg_arr = np.zeros(Nsim)

448 inc_max_arr = np.zeros(Nsim)

449 sim = 0

450 while sim < Nsim:

451 inc_max = 10**( -2) + (10**( -1) -10**( -2))*random.uniform (0,1)

452 print("Inc is ", inc_max)

453 inc_max_arr[sim] = inc_max

454 delta_arr , scatt_arr = main(N, m_max , a_max , ecc_max , inc_max , simlen)[1:3]

455 delta_avg_arr[sim] = np.mean(delta_arr)

456 scatt_avg_arr[sim] = np.mean(scatt_arr)

457 sim += 1

458 print(sim)

459 return inc_max_arr , delta_avg_arr , scatt_avg_arr

460 inc_max_arr , delta_avg_inc_max_arr , scatt_avg_inc_max_arr = Inc_max(Nsim ,N,m_max , a_max , ecc_max ,

simlen)

461 inc_max_bar_arr = np.zeros(len(inc_max_arr))

462 for i in range(len(inc_max_arr)):

463 inc_max_bar_arr[i] = np.sin(inc_max_arr[i])

464 E_inc_max = np.linspace (10**( -2) ,10**( -1) ,100)

465 E_inc_bar = np.zeros (100)

466 E_Tscatt_inc = np.zeros (100)

467 for i in range(len(E_inc_max)):

468 E_inc_bar[i] = np.sin(E_inc_max[i])

469 E_Tscatt_inc[i] = E_Tscatt(N, m_max , a_max , ecc_max , E_inc_max[i])

470 values , covariance = curve_fit(Line , inc_max_bar_arr , scatt_avg_inc_max_arr)

471 a_fit = values [0]

472 y = Line(E_inc_bar ,a_fit)
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