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ABSTRACT 

The various aspects of the propagation of long waves onto a 

shelf (i.e., reflection, .transmission and propagation on the shelf) 
~ 

are examined experimentally and theoretically. The results are 

applied to tsunamis propagating onto the continental shelf. 

A numerical method of solving the one-dimensional Boussinesq 

equations for constant depth using finite element techniques is 

presented. The method is extended to the case of an arbitrary 

variation in depth (i.e., gradually to abruptly varying depth) in 

the direction of wave propagation. The scheme is applied to the 

propagation of solitary waves over a slope onto a shelf and is 

confirmed by experiments. 

A theory is developed for the generation in the laboratory of 

long waves of permanent form, i.e., solitary and cnoidal waves. The 

theory, which incorporates the nonlinear aspects of the problem, 

applies to wave generators which consist of a vertical plate which 

moves horizontally. Experiments have been conducted and the results 

agree well with the generation theory, In addition, these results 

are used to compare the shape, celerity and damping characteristics 

of the generated waves with the long wave theories. 

The solution of the linear nondispersive theory for harmonic 

waves of a single frequency propagating over a slope onto a shelf is 

extended to the case of solitary waves. Comparisons of this analysis 

with the nonlinear dispersive theory and experiments are presented. 
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Comparisons of experiments with solitary and cnoidal waves with 

the predictions of the various theories indicate that, apart from 

propagation, the reflection of waves from a change in depth is a 

linear process except in extreme cases. However, the transmission 

and the propagation of both the transmitted and the reflected waves 

in general are nonlinear processes. Exceptions are waves with heights 

which are very small compared to the depth. For these waves, the 

entire process of propagation onto a shelf in the vicinity of the 

shelf is linear. Tsunamis propagating from the deep ocean onto the 

continental shelf probably fall in this class. 
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CHAPTER 1 

INTRODUCTION 

Long waves are waves w i t h lengths which are large compared t o 

the depth of water i n which they are propagating. Among the waves 

which f a l l i n t h i s class are "tsunamis" or, as they are sometimes 

c a l l e d , " t i d a l waves." The word "tsunami" i s a Japanese word which 

means "harbor wave." I t has been adopted by the s c i e n t i f i c community 

i n preference to " t i d a l wave" to mean an earthquake-generated sea 

wave. 

The earthquakes which generate tsunamis u s u a l l y i n v o l v e v e r t i c a l 

movements of the sea bed. Such an earthquake occurred i n Alaska i n 

1964; i t generated a tsunami which propagated throughout the P a c i f i c 

causing damage at various l o c a t i o n s along the West Coast of the United 

States, p a r t i c u l a r l y i n Crescent C i t y , C a l i f o r n i a . An Important aspect 

i n t r y i n g t o e i t h e r avoid or prepare f o r such a d i s a s t e r i s to under

stand how a tsunami propagates. 

I n the deep ocean where the depth may be 3500 m a tsunami might 

t y p i c a l l y have a l e n g t h of about 300 km and a height of 1 m and 

t r a v e l a t a speed of 700 km/hr. The propagation of the tsunami 

would proceed e s s e n t i a l l y i n constant depth through the deep ocean 

u n t i l i t reached the reg i o n of shallower depth which surrounds most 

land masses—the c o n t i n e n t a l s h e l f . Here the depth decreases 

considerably; of i n t e r e s t i n t h i s i n v e s t i g a t i o n was to determine 



.o„ .uch chan.es In depth affect tsunamis or t . u n a . i - l l . e waves. 

Since f i e l d observations of tsunamis are d i f f i c u l t except at 

the coast, the investigation was carried ont hy -eans ot physical 

and a n a l y t i c a l models. 

1,1 Ob-] ect i v e s and Scope 

The objective of t h i s investigation was to examine, both 

experimentally and theoretically, the various aspects of the propa

gation of long waves onto a shelf, i . e . , the r e f l e c t i o n , transmission 

and propagation of the waves on the shelf, for both abrupt and gradual 

Changes in depth. Of e,ual importance was to determine i f the li n e a r 

mathematical models which commonly are used i n the analysis of 

4f - i i - -fp necessary to use more complicated 
tsunamis are s u f f i c i e n t or i f x t xs necessary 

nonlinear models. 

The waves used i n t h i s study were primarily s o l i t a r y waves. These 

were chosen because i t can be shown theoretically that waves which 

have net positive volume eventually, i f the propagation distance i s 

s u f f i c i e n t , w i l l brea. up into a aeries of s o l i t a r y waves. For 

a n a l y s i s , s o l i t a r y waves have the advantage that, although nonlinear, 

they can be described with Just two parameters: the wave height and 

the depth. Additional benefits are: they propagate with constant 

form i n constant depth and generally they can be separated from 

reflected waves. Periodic waves i n the form of cnoidal waves also 

were considered for propagation over abrupt changes i n depth. 

TO f a c i l i t a t e the experimental investigation, a theory was 

developed for the generation In the laboratory of long waves of 



permanent form, i . e . , s o l i t a r y and cnoidal waves. The t h e o r e t i c a l 

i n v e s t i g a t i o n included the development of a f i n i t e element technique 

of s o l v i n g the one-dimensional Boussinesq equations. This was 

applied to the f u l l problem of s o l i t a r y waves propagating over a 

slope onto a sh e l f and was confirmed by p h y s i c a l experiments. 

A review of previous studies of the propagation of long waves 

onto a s h e l f i s presented i n Chapter 2. The t h e o r e t i c a l a n a l y s i s 

which includes a review of the c l a s s i c a l long wave the o r i e s and 

t h e i r a p p l i c a t i o n to t h i s problem, wave generation theory and the 

development of the f i n i t e element numerical method are presented i n 

Chapter 3. The experimental equipment and procedures are described 

i n Chapter 4. The r e s u l t s of the I n v e s t i g a t i o n are presented and 

discussed i n Chapter 5, and conclusions based upon these are described 

i n Chapter 6. 
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CHAPTER 2 

LITERATURE SURVEY 

The nonlinear p a r t i a l d i f f e r e n t i a l agnations which govern the 

However, u n t i l recently, only the equation arialng f r o . a lin e a r 

approximation to theae e,uatlon3 has heen used for predicting the 

propagation of long waves onto a shelf. 

The theory a r i s i n g from this equation i s termed the lin e a r 

^ ^ ^ . . ^ theory. The solutions of the theory for long waves 

„f arbitrary shape propagating over abrupt and gradual slopes are 

presented i n .amb (1«.) • ^ 

„,.bewor.. I t was ori g i n a l l y published i n 18...) .amba,3...ne) 

Shows, for a step, the re f l e c t i o n and transmission coefficients are 

given by: 

( i - / h 7 r 2 ) (2.1) 
I L , = — i z r » 
^ C l + / h ^ ) 

and 

(2.2) 

1 + v/hj/h^ 

respectively, where h, i s the upstream depth and h^ i s the depth on 

the s h e l f . 

,„r a "gradual" slope, i . e . , a slope on which the depth changes 

by only a small fraction of i t s e l f within the li m i t s of a wavelength. 



5 

Lamb ( 1 9 3 2 , § 1 8 5 ) shows the r e f l e c t i o n and transmission c o e f f i c i e n t s 

are given by Green's Law: 

KR = 0 , ( 2 . 3 ) 

and 

= (h^/h2)^ , ( 2 . 4 ) 

r e s p e c t i v e l y . 

Solutions of the l i n e a r nondispersive theory f o r the slopes 

between an abrupt slope ( i . e . , a step) and a gradual slope have been 

presented by K a j i u r a ( 1 9 6 1 ) , Wong et al. ( 1 9 6 3 ) and Dean ( 1 9 6 4 ) . For 

a l l of these studies the s o l u t i o n was obtained f o r an harmonic wave 

w i t h a s i n g l e frequency i n the steady s t a t e . 

K a j i u r a ( 1 9 6 1 ) proposed a method of s o l u t i o n f o r slopes of 

general shape and presented the s o l u t i o n s f o r two cases: 

i ) A slope on which the depth v a r i e s as the square of the 

distance along i t . The s o l u t i o n f o r the wave on the slope 

i s a f u n c t i o n of x^. 

i i ) A continuous slope determined such th a t the basic equation 

i s transformed i n t o an equation which gives simple expressions 

f o r the r e f l e c t i o n and transmission c o e f f i c i e n t s . 

Wong et al. ( 1 9 6 3 ) and Dean ( 1 9 6 4 ) obtained the s o l u t i o n f o r a 

slope on which the depth v a r i e s l i n e a r l y as a f u n c t i o n of the distance 

along i t . The s o l u t i o n of the wave on the slope i s a f u n c t i o n of 

Bessel f u n c t i o n s . 
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. . e a u . the aoluUona fo. the » o a..e.aa of abrupt and gra.uaX 

aiopos »ore for W »a,es „f arbitrary shaped tbarefora. i f i t .s 

. a i i . to ao so. tbs solutions oan ba appiia. direotiy to s o l i t a r y or 

„oiaai waves. However, for slopes between tbe two extremes, tbe 

solutions are for barmonio waves witb a single frequency only. 

. e r e f o r e tbe solutions, even i f v a l i d , cannot be applied d i r e c t l y to 

s o l i t a r y or c n o i d a l waves. 
f i r s t solved f o r the problem 

The f u l l nonlinear equations were f i r s t solv 

n*-n a she l f by Madsen and Mei (1969) . 
of long waves propagating onto a s h e i t oy 

„Sing tbe equations developed by Mel and M.baut. (l.«,, wbicb 

C i « « developed a numerical metbod of solution based on tbe metbod-

^ of Long (1964). The slowly v a r y i n g depth 
o f - c h a r a c t e r i s t i c s scheme of Long ^ 

A Mpi (1969) i s equivalent t o the gradual 
assumption used by Madsen and Mei (1969; 

slope mentioned e a r l i e r . 

„adsen and «ei (196,) found tbeoretically and experimentally tba 

as a s o l i t a r y wave propagates up a gradual slope i t s abape changes. 

With the front face of tbe wave steepening and secondary waves emerging 

,„m tbe bac. face of tbe wave. Eventually, either on the slope or 

> a s e r i e s of s o l i t a r y waves 
on the shelf, the waves separate into a 

by a t r a i n of o s c i l l a t o r y waves. B a r l i e r , Street . • 

axperimentally had observed similar behavior but over a propagati 

distance which was i n s u f f i c i e n t for the s o l i t a r y waves to emerge f u l l y 

from the main t r a i n . 
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A n a l y t i c a l s o l u t i o n s of the problem of s o l i t a r y waves propagating 

over a gradual slope were found independently by Tappert and Zabusky 

(1971) and Johnson (1973). By assuming zero r e f l e c t i o n and slowly 

varying depth, a v a r i a b l e depth form of the KdV equation can be 

derived and, using the same techniques as were used by Gardner et al. 

(1967) to solve the KdV i n constant depth, as3rmptotic s o l u t i o n s f o r 

the s o l i t a r y waves which emerge on the shelf can be obtained. The 

number of s o l i t a r y waves which w i l l emerge on the she l f i s a f u n c t i o n 

of only the depth r a t i o , h^/h2, as given by: 

1 + h + 8 —- [ 
I 1̂ 2/ i (2.5) 

N < P 

where the number of waves, N, i s s t r i c t l y less than P. The height 

of the s o l i t a r y waves which emerge i s given by: 

H /h/-2 
n ] 

ô ^ \^2, 

n = 1, 2, , N 

where i s the height of the i n c i d e n t s o l i t a r y wave. 

To summarize, previous i n v e s t i g a t i o n s i n the f i e l d of long waves 

propagating onto a she l f have d e a l t w i t h one of the f o l l o w i n g aspects 

of the problem: 

(1) Linear waves of a r b i t r a r y shape propagating over an extreme 

slope ( i . e . , e i t h e r gradual or a b r u p t ) ; 
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( i l ) Linear harmonic „avea with a aingle £re,nency propagating 

over a slope; or 

( U l ) Solitary waves propagating over a gradual slope. 

The ,uestlon o£ which of the theories to use for the propagation 

of long waves In various situations I s addressed hy HammacU and Segur 

(1978). They show, using asymptotic arguments and a rectangular 

of the i n i t i a l wave and an U r s e l l Numher hased on the amplitude and 

length of the I n i t i a l wave. Applying the i r c r i t e r i a to tsunamis, 

they Show the U s H E - É - B " ^ theory i s the relevant theory for 

the propagation of the leading wave of a tsunami i n a constant depth 

from the generation region to the beach. 
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CHAPTER 3 

THEORETICAL ANALYSIS 

The t h e o r e t i c a l aspects of the problem can be described r e f e r r i n g 

to Fig. 3,1 which shows the series of events which takes place as a 

long wave propagates onto a s h e l f . 

F i g , 3.1(a) shows the i n c i d e n t wave propagating towards the 

shelf i n a region of constant depth. The various t h e o r i e s f o r long 

waves propagating i n a constant depth are reviewed i n Section 3.1 and 

exact s o l u t i o n s are described. 

As w i t h other I n v e s t i g a t o r s (e.g. Madsen and Mel (1969)), f o r 

the analysis the i n c i d e n t wave was assumed t o be a s o l i t a r y wave 

(although, as mentioned p r e v i o u s l y , recent work by Hammack and Segur 

(1978) has cast some doubt on the p r a c t i c a l v a l i d i t y of t h i s ) . A 

theory f o r the generation, i n the l a b o r a t o r y , of s o l i t a r y waves and 

also of cnoi d a l waves i s presented i n Section 3,2. 

As the wave propagates through a region of v a r i a b l e depth i t s 

shape changes as shown i n F i g . 3.1(b), and even t u a l l y the wave s p l i t s 

up i n t o two waves: a r e f l e c t e d wave t r a v e l i n g to the l e f t i n the 

deep water and a t r a n s m i t t e d wave t r a v e l i n g to the r i g h t on the s h e l f , 

see F i g . 3.1(c). Two t h e o r i e s are presented which solve the problem. 

I n Section 3.3 a f i n i t e element method of s o l u t i o n of the Boussinesq 

equations f o r the case of waves propagating i n a constant depth i s 

presented, then the method i s extended to the case of waves propagating 
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INCIDENT WAVE 

F i g . 3.1(a) I n c i d e n t wave 
propagating towards the s h e l f , 

F i g . 3.1(b) Wave transforming on the slope. 

REFLECTED WAVE 

TRANSMITTED WAVE 

F i g . 3.1(c) Reflected and t r a n s m i t t e d waves. 
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i n a region w i t h v a r i a b l e depth. This s o l u t i o n i s the more accurate 

of those considered because i t incorporates, up to second order, the 

e f f e c t s of d i s p e r s i o n and n o n l i n e a r i t y . A f i r s t order s o l u t i o n i n 

xjhich these e f f e c t s are neglected i s presented i n Section 3.4 where 

the theory developed by others f o r the s o l u t i o n f o r i n c i d e n t waves 

which are harmonic i s reviewed and applied to the case of an 

in c i d e n t wave which i s a s o l i t a r y wave. 

F i n a l l y i n t h i s chapter the technique of inverse s c a t t e r i n g i s 

described and numerical schemes f o r i t s s o l u t i o n are presented. 

Inverse s c a t t e r i n g allows one to determine the f i n a l s t a t e of a 

long wave i f i t propagates to i n f i n i t y i n constant depth i n the 

absence of f r i c t i o n . I t was used i n t h i s study to analyze the 

r e f l e c t e d wave. (This w i l l be discussed i n d e t a i l i n Section 5.2.) 

3.1 O u t l i n e D e r i v a t i o n of the Long Wave Equations and Exact Solutions 

The long wave equations can be derived i n numerous ways; the 

approach which i s o u t l i n e d here f o l l o w s t h a t of Whitham (1974). 

Consider the f l o w s i t u a t i o n shown i n Fig . 3.2 which shows a 

00 
h 

CD 

y / / / / / y-j-y-y-y-y 

F i g . 3,2 D e f i n i t i o n Sketch of the Flow S i t u a t i o n 
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wave propagating i n water of depth h i n a reg i o n of i n f i n i t e 

h o r i z o n t a l extent. The v e r t i c a l y axis has i t s o r i g i n at the 

s t i l l water l e v e l . The displacement of the f r e e surface from the 

s t i l l water l e v e l i s . ( x , t ) . Assuming I n v l s c l d , I r r o t a t i o n a l . 

incompressible f l o w , there e x i s t s a v e l o c i t y p o t e n t i a l . ( x , y , t ) 

which s a t i s f i e s the Laplace equation: 

V2$ = 0 - h < y < r ) (3.1) 

The boundary c o n d i t i o n s are: 

i ) No flow through the bottom boundary: 

$ =0 y = -^ 
y 

11) Kinematic boundary c o n d i t i o n at the surface: 

(3.2) 

(3.3) 

(3.4) 

i i i ) Dynamic boundary c o n d i t i o n at the surface: 

$ + 1 (* 2 + $ 2) +gn = o y = n 
t 2 ̂  x y 

The waves under co n s i d e r a t i o n are long waves which are defined as 

waves Whose c h a r a c t e r i s t i c h o r l s o n t a l l e n g t h . i s l a r g e compared t o 

the depth h, i . e . . > h . For long waves the h o r i z o n t a l v e l o c i t y 

IS approximately constant over the depth so the v e l o c i t y p o t e n t i a l 

can he expanded i n terms of the parameter y - h + y which i s small 

compared to the c h a r a c t e r i s t i c h o r i z o n t a l l e n g t h 
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H^,y,t) = J 2 f ( x , t ) . (3.5) 

n=0 

By s u b s t i t u t i n g Eq. (3.5) i n t o Eq. (3 . 1 ) , equating l i k e powers of 

Y and applying the boundary c o n d i t i o n '̂ y = 0 at Y-0, the expansion 

i s s i m p l i f i e d t o : 

,2n 3^"f 

Each v a r i a b l e i s now normalized by s c a l i n g by a c h a r a c t e r i s t i c 

q u a n t i t y : 

X* y* n = ^ 

il JIH > g 

where 5, i s the c h a r a c t e r i s t i c h o r i z o n t a l l e n g t h and H i s the 

c h a r a c t e r i s t i c height of the wave and s t a r r e d symbols denote the 

o r i g i n a l dimensional v a r i a b l e s . (Henceforth a l l equations w i l l 

be dimensionless unless s p e c i f i c a l l y stated otherwise.) When 

these v a r i a b l e s are s u b s t i t u t e d i n t o the expansion, Eq. (3.6), 

and the remaining boundary c o n d i t i o n s , Eqs. (3.3) and (3 . 4 ) , two 

dimensionless numbers emerge: a = H/h and & = h^/Z^. I n w r i t i n g 

the expansion, Eq. (3 . 5 ) , i t was assumed t h a t B < 1 ( i . e . the l e n g t h 

of the wave i s la r g e compared to the depth). I t i s also necessary 

to assume th a t a < l ( i . e . the wave height i s small compared to the 

depth). 



14 

- - - - - - - : r 7 : ; : : » ' 
and r e t a i n i n g terms to order a , 3 

n Ril'i and are as f o l l o w s , 
equations a f t e r Boussinesq (1872) 

| ( l + ari)u|^-|p^xxx"° 

1 Ril =0 
u^ + auu^ + n ^ - ^ P'^xxt 

(3.7) 

(3.8) 

. (3 7) and (3.8) the dimensionless numbers, a 
Notice i n Eqs. (3.7) and 

1. . The number a appears before 
and 3, have d i f f e r e n t r o l e s . ^^^^^ 

i n d i c a t i n g t h e i r importance r e l a t x v 
nonlinear terms i n d i c a t i n g ^^^^^ 

K i-hlrd d e r i v a t i v e terms which are 
e modifies the t h i r d ^^^^ 

(or, acuivalently, tha preaaure dxstrxh 

hydrostatic). , ,. i s further required that 

n r, and (3.8) to apply, i t ^ 

" , , (.0 i l l u s t r a t e the reason for t h i s . 

„ and e he of the same order. ^ ^ ^ ^ 

1 , v<= ft i s so much greatet 
consider the case where 3 i s .reference to terms 

of order should be included m pr e f e r e n 
then terms of order p ^„„r-iate.) This 

d (3 8) are not appropriate.; 
of order a, and Eqs. (3.7) an . ^^^^^^ ^^^^^^ 

- ' ^ — : ; : : r p : p i ' e . u c i t i y expounded 

- ,ne Boussines, equations 
t-ViP r a t i o a/p. nt;u«_>̂  

the importance of the r a t 
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to be a p p l i c a b l e , the U r s e l l Number must be of order u n i t y . Since 

a represents the magnitude of nonlinear e f f e c t s and 3 represents the 

magnitude of d i s p e r s i v e e f f e c t s , the U r s e l l Number of order u n i t y 

implies a balance of nonlinear and d i s p e r s i v e e f f e c t s . 

The v e l o c i t y u appearing i n Eqs. (3.7) and (3 .8) i s the 

v e l o c i t y a t the bottom y = - l . I t i s o f t e n more convenient to use 

the depth averaged v e l o c i t y : 

n 

Ü = J $^dy . (3.9) 

The Boussinesq equations then take the form: 

j ( l + a n ) ü | ^ = 0 , (3.10) 

ü , + aG5^ + n,43G^^, = 0 . (3.11) 

The Boussinesq equations cannot, i n general, be solved i n closed 

form so i t i s necessary to r e s o r t to a numerical scheme such as 

th a t which w i l l be described i n Section 3 .3 . 

The Boussinesq equations are the most general form of the long 

wave equations since the other w e l l known equations can be deduced 

from them. These w i l l now be l i s t e d along w i t h t h e i r general 

s o l u t i o n s : 

i ) For small amplitude, very long waves (a « 1, B « 1) Eqs. 

(3.10) and (3.11) reduce t o : 
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and ïit-'^x^^ 

(3.12) 

n - a =0 
or ^ t t XX 

a = f ( k x - a ) t ) + gCl^+'^t^ . 

,2 =,21,2 and c ^ = > ^ • 
where o 

Waves propagate 
e o . . a « speed end wU. 

i „ a n d -X d i r e c t i o n s . ,3 „„t as great as 

i « ^ « - - - - - ¬
those considered above ( a « l , 

and (3.11) reduce to: 

\ + ̂ x'° 

and 1-

^ t t - ^ x x - S ^ ^ x t t 

r e the Unear.iiffla£^ 
These are the i i i i S — — 
1„ dimensional ter»s oi the form: 

(3.14) 

which have s o l u t i o n s 

u = Ae 
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c 2 k 2 

This Implies t h a t waves propagate w i t h speeds which are a 

f u n c t i o n of the le n g t h of the wave and the waves do not 

have a permanent shape. 

For f i n i t e amplitude, very long waves ( a < l , 3 « 1 and 

U » l ) , Eqs. (3.10) and (3.11) reduce t o : 

{ ( l + an)ü(^= 0 

(3.16) 

+ aüü^ + " ° ' 

which are the nonlinear nondlsperslve equations 

(sometimes c a l l e d the A i r y equations). By r e v e r t i n g back 

to dimensional q u a n t i t i e s , Eqs. (3.16) can be expressed 

more simply i n c h a r a c t e r i s t i c form: 

^ ( I I±2c ) = 0 o n ^ = G±c , (3.17) 

where ^ = /g (h+n) 

For waves propagating to the r i g h t i n t o s t i l l water, Eqs. 

(3.17) p r e d i c t t h a t the wave amplitude and the v e l o c i t y 

are constant along the c h a r a c t e r i s t i c curves dx/dt = ü + c, 

which are s t r a i g h t l i n e s . Thus, each p o r t i o n of the wave 

t r a v e l s at i t s own speed, ü + c. This process was termed 

amplitude d i s p e r s i o n by L i g h t h l l l and Whitham (1955). At 

the leading edge the v e l o c i t y and amplitude are zero, hence 
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the leading edge t r a v e l s at speed / i h ; under a c r e s t the 

v e l o c i t y and the amplitude are each greater than zero, 

hence the c r e s t moves f a s t e r than the leading edge. 

Eventually t h e r e f o r e the c r e s t w i l l overtake the leading 

edge and the wave w i l l break. Breaking may a c t u a l l y occur 

before t h i s depending on the shape of the wave, 

i v ) For waves t r a v e l i n g to the r i g h t o n l y , the v e l o c i t y 

can be expressed i n terms of the amplitude: 

and the Boussinesq equations then reduce to the KdV 

equation ( a f t e r Korteweg and de V r i e s (1896)): 

Since, 

^ =_Ti + 0 ( a , B ) 

Eq. (3.19) can be CKpressed to the same order a s : 

which i s more amenable to numerical s o l u t i o n (see, for 

example. Peregrine (1966)). 

The KdV equation has exact a n a l y t i c a l s o l u t i o n s i n the form 

of waves of permanent s h a p e - s o l i t a r y waves and c n o i d a l waves. 

Before d i s c u s s i n g these waves i n d e t a i l , an example i s presented 

Which i l l u s t r a t e s how waves propagate by the t h e o r i e s discussed: 



( i l ) Linear Dispersive 

( i i i ) Nonlinear Nondispersive 

( i v ) Nonlinear Dispersive 

R e f e r r i n g t o F i g . 3.3(a), the problem i s posed where at t = 0 there 

e x i s t s , i n water of constant depth and I n f i n i t e e x t e n t , a wave 

w i t h p r o f i l e given i n dimensional terms by: 

n(x,0) = H sech^KX , (3.21) 

For the example shown, the f o l l o w i n g c o n d i t i o n s apply: 

^ = 0.05 and k= \-^ 
h >4 h3 

and f o r t > 0 the wave i s assumed to propagate to the r i g h t i n t o s t i l l 

water. Figs. 3.3(a), ( b ) , (c) and (d) show the wave p r o f i l e s 

c a l c u l a t e d using the various t h e o r i e s l i s t e d above at I n t e r v a l s of 

nondimensional time, t/g/h , of 25. The abscissas are t 

which means t h a t the f i g u r e s are the series of events an observer 

would see i f he were t r a v e l i n g at speed Vgïï. 

I n F i g . 3.3(a) the p r o f i l e s from a l l four t h e o r i e s are p l o t t e d 

together. I n Figs. 3.3(b), (c) and (d) the l i n e a r nondispersive 

theory i s compared r e s p e c t i v e l y w i t h the l i n e a r d i s p e r s i v e theory, 

the nonlinear nondispersive theory and the nonlinear d i s p e r s i v e 

theory. Under the l i n e a r nondispersive theory, the wave would remain 

s t a t i o n a r y and r e t a i n i t s o r i g i n a l shape. Under the l i n e a r d i s p e r s i v e 

theory the wave would propagate as i f i t consisted of a l i n e a r 



\ NONLINEAR 
\ DISPERSIVE 

V<( (a) 

/7-;<0<r\ NONLINEAR 
/ / ' / ' \ \ > NONDISPERSIVE 

I W — ^ 

LINEAR 

^"^'''^NJoTNONDISPERSIVE 

-30 -20 -10 

F i g . 

0 10 20 

x / h - t y g 7 h " 
A/ I I ' -V -3' • • 

3.3(a) a»d (b) The propagation of a seoh^ »ave by various theories. 



x/h-tTgTh x/h-tygTïï 

F i g . 3.3(c) and (d) The propagation of a sech^ wave by various t h e o r i e s . 
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the o v e r a l l shape would change. _ 

. l e t s t h a t t h a wave would t e t a l u i t a i n t e g t l t y hot t h a t the 

coordinates behxnd the c r e b 

4 . 0 ^ + - T h e wave would 
3,eepeu w h i l e the c t e a t height temalued constant. he 
. , l n to h t e a . When the . o n t .ace hecame v e r t i c a l cat t/iTK-,0.9 

i n t h i s case). /o o n none 

X. f a c t f o r the wave chosen and de s c t l h e d hy K,. C3..1) 

s o l u t i o n of the KdV equation. Hence,t 

. a p e as Shown l n . l g . 3 . 3 C d , . ^ ^ ^J^^: 

„onld under the U , , . . ^ - . " 

^'tTr. the wave ta.es as I t propagates i n a . r t l c u l a r case 

. .he r e l a t i v e Magnitudes o£ the d i s p e r s i v e t e r . ^ ^ o " ^ k . 
depends on the r e i a c i v e & 

3 !o the dimensional form of the KdV 
and the nonlinear term ^ ^ ^^x 

equation: ^3^22) 

n + c _ ( l + U b . + l ^ o ^ ^ K x x - ° 

c = 
where 
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V 3 H 

represents the case where the nonlinear term balances the d i s p e r s i v e 

r3 H 

term and the wave shape remains constant. I f K << ̂  — ^ the 

nonlinear term i s l a r g e r than the d i s p e r s i v e term (U >> 1) and 

amplitude d i s p e r s i o n as shown i n F i g . 3.3(c) takes place. I f 

K » ( i . e . the wave i s more peaked than a s o l i t a r y wave of the 

same height) the d i s p e r s i v e term i s l a r g e r than the nonlinear term 

(U<<1) and frequency d i s p e r s i o n as shown i n F i g . 3.3(b) takes place. 

Since the KdV or Boussinesq equations can be solved i n the 

near f i e l d only by approximate numerical techniques, i t i s d e s i r a b l e 

to use the other equations wherever possible since they can be solved 

exactly i n many cases. The problem of which of the equations to 

use i n various circumstances i s addressed by Hammack and Segur (1978). 

They show t h a t f o r i n i t i a l c o n d i t i o n s of a rectangular wave, the 

a p p l i c a b l e equation depends on the I n i t i a l volume and i n i t i a l U r s e l l 

Number, but t h a t e v e n t u a l l y , a f t e r a propagation time which i s a 

f u n c t i o n of the i n i t i a l c o n d i t i o n s , only the KdV equation w i l l apply. 

This Introduces another important parameter i n long wave propagation: 

the propagation time. 

I t i s evident from F i g . 3.3 t h a t i f the time of I n t e r e s t i s 

0 < t/g/h < 25 then any of the four t h e o r i e s can be used since they 

a l l provide e s s e n t i a l l y the same r e s u l t s . However f o r t/g/h> 25 

the s o l u t i o n s become q u i t e d i f f e r e n t . The I n t e r p r e t a t i o n of t h i s i s 

t h a t both d i s p e r s i v e and nonlinear e f f e c t s take some propagation time 

(or distance) to become important. For example, f o r the nonlinear 
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..eo.. a o h a . a c t e . i e . i c p . o p a s a t i o . ti»e i a the time . 

nondis£ersive theory a . KV Ea (3.21) i s 

a . i ^ i t i a i e o . . i t i o n s^ven B,. 

„ p „ . i . a t e i , 

, . . i e t . e o t . an. t o t t . i s ^vpe oi wave, t.e propagation time 

Ihna for t h i e theory percentage of 

. f f e c t a to become important i s some p 

d i s p e r s i v e theory. the 

. . . . . . • • : . . — 

: : : : r •••-•"*•'• 

„f the other t h e o r i e s , 

approach i s to a s s . e t h . - - ^ ^ ^ 

- e s s the J „ of t h i s 
o f f p c t s to become importani:, 

, , . , e r s i v e e f f e c t 

r : I f „. the c o n : : ! : : : : : : ^ - - t h e o r i e s 

e same r e s n i t s . The s o r t Of c o n c i s i o n Which can he 

' i s that i f , for exampie, the 2 0 , U n H ^ i - 2 - H . 

. i s p e r a i v e e f f e c t s to become important. 
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3.1.1 The S o l i t a r y Wave 

The s o l i t a r y wave was observed f i r s t by Scott Russell 

(1844). I t co n s i s t s of a s i n g l e hump of water e n t i r e l y above s t i l l 

water l e v e l and extends from x = -oo to x = oo. Three th e o r i e s are 

a v a i l a b l e which describe the wave p r o f i l e ; those obtained by: 

Boussinesq (1872), McCowan (1891) and Laitone (1963). The most 

important of these i s t h a t due to Boussinesq (1872) since i t i s 

t h i s form which i s an exact s o l u t i o n of the KdV equation. I n 

dimensional q u a n t i t i e s the Boussinesq s o l i t a r y wave i s : 

n ( x , t ) =H sech2 ( x - c t ) 

(3.25) 
where 

c = /g(h + H) 

The McCowan and Laitone s o l i t a r y waves r e s u l t from higher order 

t h e o r i e s but do not f i t experimental data any b e t t e r than does Eq. 

(3.25) (see f o r example Naheer (1977), French (1969)). 

The s o l i t a r y wave has the unique property t h a t i n a depth h i t 

i s completely defined by the wave h e i g h t , H. This s i m p l i c i t y of 

shape along w i t h i t s ease of generation i n the l a b o r a t o r y and i t s 

propagation w i t h constant shape make the s o l i t a r y wave a p a r t i c u l a r l y 

s u i t a b l e model wave to study experimentally. For t h i s study i t had 

the added advantage t h a t when considering r e f l e c t i o n s from a slope or 

a step the r e f l e c t e d wave was completely separate from the i n c i d e n t wave. 

3.1.2 Cnoidal Waves 

Cnoidal waves are p e r i o d i c s o l u t i o n s of the KdV equation. 
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i n dimensional form they are defined (e.g. Svendsen (1974)) as: 

n ( x , t ) = y , - h + Hcn2l2K(M)M , (3.26) 

where m=a/B i s the e l l i p t i c parameter (sometimes c a l l e d k^) , K = K(m) 

i s the f i r s t complete e l l i p t i c i n t e g r a l , cn i s one of the Jacobian 

e l l i p t i c f u n c t i o n s (hence the name c n o i d a l ) , y, i s the heig h t of the 

trough above the bottom, L i s the wave len g t h and T i s the p e r i o d . 

I t i s noted t h a t f o r given depth h, c n o i d a l waves are defined by 

any two of the f o l l o w i n g : 

i ) the wave l e n g t h L (or the period T ) , 

i i ) the wave height H, 

i i i ) the e l l i p t i c parameter m (or the e l l i p t i c i n t e g r a l K). 

The r e l a t i o n s h i p s between these and the other parameters were 

described by Wiegel (1960) and Svendsen (1974). They are presented 

i n Appendix A along w i t h the numerical techniques which were developed 

during t h i s study f o r t h e i r e v a l u a t i o n . 

The e l l i p t i c parameter m, by d e f i n i t i o n , i s the U r s e l l Number, 

i . e . . U = a/3. Another type of U r s e l l Number which can be defined i n 

terml of p h y s i c a l parameters i s HL^/hB. xhe d i f f e r e n c e i n these two 

d e f i n i t i o n s i s i n the use of the c h a r a c t e r i s t i c l e n g t h . f o r U = a/B 

and the use of the wave l e n g t h L f o r HL^/hS. ^he two numbers are 

r e l a t e d by: 
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hence the lengths are r e l a t e d by: 

L = -;= K£ (3.28) 

Since the e l l i p t i c I n t e g r a l K I s a f u n c t i o n of only the parameter m, 

HL^/h^ i s also a f u n c t i o n only of m; hence e i t h e r of the U r s e l l 

Numbers can be used to define the shape of the cnoid a l wave. The 

parameter m can take values between 0 and 1. At the two extremes: 

1) As m->0 (and, consequently, HL^/h^ -^0) , the Jacobian 

e l l i p t i c f u n c t i o n , cn, becomes the t r i g o n o m e t r i c f u n c t i o n , 

cos, and K^^' Hence the equation f o r cno i d a l waves, 

Eq. (3.26) becomes: 

i . e . , a harmonic wave, 

i i ) As m-»-l (and, consequently, HL^/h^->-"), the Jacobian e l l i p t i c 

f u n c t i o n , cn, becomes the hyperbolic f u n c t i o n , sech, and K, 

L and T-^". Hence the equation f o r cnoidal waves, Eq. (3.26), 

becomes: 

The range of cnoid a l wave shapes from m=0 and HL^/h^ = 0 to xa^l 

and HL^/h^^-oo i s shown i n Fi g . 3.4. For HL ^ / h ^ l l O , the shape 

appears s i n u s o i d a l to the eye but i n f a c t a t HL^/h^ = 10 the c r e s t 

amplitude i s about 20% greater than the trough amplitude, i . e . , 

(3.29) 

(3.30) 

i . e . , a s o l i t a r y wave. 
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3.4 Various c n o i d a l 
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ÜSI^ = 0.547, = 0.453. As HL2/h3 increases t h i s d i f f e r e n c e 
n n 

increases, and as a consequence the c r e s t becomes more peaked and 

the trough becomes f l a t t e r . At HL2/h3 = 1000, the cnoidal waves have 

the appearance of a t r a i n of s o l i t a r y waves however the wave l e n g t h 

L i s s t i l l f i n i t e and there i s s t i l l a trough below s t i l l water l e v e l ; 

t h e r e f o r e , the waves are s t i l l cnoidal waves. 

I t i s of i n t e r e s t to compare cnoidal waves w i t h Stokes waves i n 

shallow water. Stokes waves can be obtained as a p e r t u r b a t i o n s o l u t i o n 

of the KdV equation (see, f o r example, Whitham (p. 471)): 

n 3 ( x , t ) = I cose + ^ COS20 

+ — -TT '̂ "̂ ê + , (3.31) 
512 k'^h^ 

where 9 = kx - wt 

The d i s p e r s i o n r e l a t i o n i s : 

^ = l - i k 2 h 2 + - J i t ^ + , (3.32) 
6 64 k^h^ 

where co = 2IT/T and k = 2ir/L 

H 1 H L 2 
Notice t h a t the p e r t u r b a t i o n parameter o ^ - r ~ . o 

^ k^h^ (2Tr)2 h3 
i s another form of the U r s e l l Number. For the Stokes expansion to 

be v a l i d , - j - j «1 or, e q u i v a l e n t l y « (2 IT)2. 
k h h 

Stokes waves may be compared to cno i d a l waves by expressing 

c n o i d a l waves i n t h e i r Fourier Series form and comparing the harmonics 

of the Stokes waves w i t h these cnoidal wave components: 
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2^ \ . (3.34) 

where 

cosne de 

( Y t - ^ ) _ . 1, i t i s evident t h a t n , / H i s a f u n c t i o n 

Now, since u mK ' . „„iv of' m 

, . Xh! u r s e l l .umber, HlVb3. I s also a functron oulv 

! <3.„).beuce,lt.ollo . s r b a r n./Hau..bus.be 
(as given by Eq. ( 3 . 2 7 ) ) , henc , , 3 , n 31) 

, . , a s a are fu n c t i o n s only of HL2/h3. Eq. (3.31) 
Eourier amplitudes a^ ^^^^^.^^^ 

— = - : : : : : l e s oau . oom.re. 
only H.̂ /.'. therefore, S„.es waves an. eno .aa l 

. mnlltudes o£ the components In Eqs. (3.31) 
by comparing the amplrtudes j . j ^ ^ e r e t h e 
(3 33) as functions of HhVh3. This i s done .n E.g. . 

. , „f the f i r s t three components i n each case are plotted 

magnitude o£ the ^^^^ amplitudes 

against Hl^/h'. The dashed l i n e s represent 

. .q (3 31). . continuous form for the a„, defined by 

given by Eq. (3.31) ^^^^^^^^^ „„„erically 

(3.3«, could not be found so the n t . ^^^^ ^^^^^^^^ 

nsing the East Eourier Transform ^^^^^^ 

„„ly three Eourier amplitudes are plotted, the 

sentation of cnoidal waves i s an i n f i n i t e s e r i e s . ) 

n^„^ps of stokes waves and 
, i , . 3.5 shows the component amplitudes 

^ f„r m^/h' < 10 but diverge as HL /n 
— »ves are coincident Hi ^^^^^^^^ 

« Since Stokes waves are only an app 
increases, bxnce ou 
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F i g . 3.5 Comparison 
of the f i r s t three harmonic components of cnoid a l 

waves ( ) and Stokes waves ( ) 
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. . ..e «„.e Of v a l i d i t y of Sto.es waves i s not incteased 

"""'^ : t r . . - — - a o t , f o t O . H i V . 3 , . o , 

, meinsion tn ^^^^^^ ^^^^^^^^ ^^^^ _ 

^ " " ^ ^ t most a ^ i i o a t i o n s i t ean be ne.eoted. 
the f i r s t component ^^^^^^ amplitudes 

v inn the second and t n x t u 

and then tend a s y m p t o t i o a i i y to the 

, l . s t a.pUtnde. ^^^^^^^^ 

and the shape approaehing that 

Fourier amplitudes are a l l equal. 

^ ^ ^ - ^ - ^ ^ ^ „ ^ ,.sented here i s appUcahle only to 
The wave generation ttieory v 
ine wdvc & ^ /•4 o s o l i t a r y and ... „ - » : : ; : : : : , „ , „ . . . -

I t was developed to prescrxD 
c n o i d a l waves). I t wa 
nistory Of the piston wave generator whieh was ^ ^ ^^^^^ 

CseeSeetion«. — " - ^ ^ ^ ^ servo¬

, horizontal direction by means of by 

"""" 
,,stem. The input v o l t a g e to the ser 

taming 1000 voltages equispaced i n time, 
memory unit containing ^^^^ ^^^^^^^^ ^^^^^ ^„^^^,p„, 

^ ^ s : punched. The ob.ect of the theory developed 

: : : : r r i : - n from Which the d l s p l a c ment points 

, for a given wave can be obtained. 

T h e ^ e r i v a t l o n o l i G e n ^ 7 7 ^ 7 7 7 » ^ 
consider the generation phase plane. Fig. 

^ s t r a t e the way i n Which the generation equation 1 
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( f i . 3.6(b)) "here the wave properties 

^ , (1 e characterlstioe) which are 
velocity propagate along l i n e s ( i . e . c ^^^^^^^ 

atraight ana p a r a l l e l an. have Slope a . / d t - c . 

i h F i g . 3.e(b) by the c n r v e . t ) Which W i l l h t e - . ^ 

••trajectory" i n this stndy. I n i t i a l l y , for time t < 0, the 

, , , 5 - 0 At time t - O the wave plate begins to 
T ^ i p f e i s at r e s t at ^ - u . " - i - . 

T a l o n g the trajectory . t ) . T . Object Of t h i s d e v e l o p . . . 

, ( . , , Of constant f o r . propagating with c e l e r i t y c . 

.,,dt, With the corresponding v e l o c i t y of the p a r t i c l e s o n d . 

.be p a r t i c l e velocity i s approximately constant over 

For long waves the p a r t i c i e 
.be depth, so the ve l o c i t y averaged over the depth. n ( x , t ) . 

HF ^ ».35) 

f . a ( 5 , t ) . 

r i n the v e l o c i t y , u ( 5 , t ) , 

— ~ : : ; ; : : . r : : ^ 

. d i s t o r t e d from what i t would be xt , ̂  
.„.ectory which i s ^^^^^^^^^^^^ ^^^^^^^ 

used. This can be seen m Fxg. 3.b, 
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the p a r t i c l e v e l o c i t y averaged over the depth ( F i g . 3.6(a)) i s a 

nliiiple sine curve. For t h i s case, i f the v e l o c i t y u ( 0 , t ) were used 

i n Eq. (3.35), the t r a j e c t o r y would have s i n u s o i d a l shape and the 

crest of the t r a j e c t o r y , 5 = S, would occur at time j T . However, 

using the v e l o c i t y ü(5,t), Fi g . 3.6(b) shows t h a t the cre s t of the 

t r a j e c t o r y occurs at time t='^1 + S/c. Thus the time taken f o r the 

plate to t r a v e l forward to i t s f u l l extent i s time S/c longer than i t 

would be i f the t r a j e c t o r y were s i n u s o i d a l and consequently the time 

taken f o r the p l a t e to t r a v e l back to i t s o r i g i n a l p o s i t i o n i s time 

S/c shorter than i t would be i f the t r a j e c t o r y were s i n u s o i d a l . The 

e f f e c t of i n c l u d i n g the p o s i t i o n E, i n the v e l o c i t y t h e r e f o r e i s t h a t 

when the p l a t e and wave are moving i n the same d i r e c t i o n , the time 

coordinate s t r e t c h e s ; when the p l a t e and the wave are moving i n 

opposite d i r e c t i o n s , the time coordinate c o n t r a c t s . 

The simple sine water p a r t i c l e v e l o c i t y shown i n F i g . 3.6(a) 

was presented as an example; f o r waves of permanent form i t can be 

shown (e.g. Svendsen (1974))- by c o n t i n u i t y t h a t the v e l o c i t y averaged 

over the depth i s : 

- S f e r i ) • ".36) 

Thus, i n terms of the p l a t e v e l o c i t y , from Eq. (3.35): 

• ^ c n ( x , t ) (3.37) 
^ h+n(x,t) 

where 5 = ff" • Eq. (3.37) must be I n t e g r a t e d to o b t a i n the t r a j e c t o r y , 

5 ( t ) . I t i s assumed t h a t the wave has the form: 
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.C?,t) =H£(9) 

0 = k(ct - O 

where 

of Eq. (3.39) is-. 

(3.38) 

(3.39) 

The t o t a l d e r i v a t i v e 

and 

^ = k ( c - 5 ) 
dt 

(3.40) 

or, by rearranging: ^ ^^^^^^ 

ék = — ^ - r -
d6 k(c - I ) 

/Q A1^ the l a t t e r 
n 37) and (3.38) i n t o Eq. (3.41), 

s u b s t i t u t i n g Eqs. (3.37) 

.educes to the simple form: 

d i _ H f ( 6 l 

de 

(3.42) 

(3.43) 

5 ( t ) kh 4 
and 

.1 ft -iq given by Eq. 

_...............> 
("̂  ̂ 3") i s an i m p l i c i t en 

„„ly be solved for a partreul ^^^^ ̂  

e f f i c l e . .e.bod of s o l . l o o was o n . ^ ^3,3, 

„ S 1 „ S B , . ( 3 . 3 « . — 
^9 (3.44) 

, , ̂ 5. / f(w)d«-0 
f . e - ket + j ; 
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The task i s now t o solve Eq. (3.44) f o r 0 at a given time t . D i f f e r 

e n t i a t i n g Eq. (3.44): 

I? = i + Sf(e) (3.45) 

Newton's Rule iss 

,(1+1) ^ g d ) _ F(e^^^) 

F«(0^^^) 
(3.46) 

where s u p e r s c r i p t s denote i t e r a t i o n number and Fg = 3F/8e, 

f o r F and FQ i n Eq. (3.46) y i e l d s : 

0 ( i ) 

fi(i+l) = , ( i ) . _ 

- k c t + f ƒ f(w)dw 

1 + 1 f(Q^^h 

S u b s t i t u t i n g 

(3.47) 

Having found 0 f o r given time t , the displacement ? i s given by: 

5 = c t - e/k (3.48) 

Eqs. (3.43), or (3.47) and (3.48) provide the wave p l a t e displacement 

as a f u n c t i o n of time C ( t ) f o r a general wave form f ( 0 ) . These 

equations w i l l now be applied f o r s p e c i f i c f u n c t i o n s f ( 0 ) which 

describe p a r t i c u l a r waves. 

3.2.1.1. The Generation of S o l i t a r y Waves 

For a s o l i t a r y wave, the wave f u n c t i o n f ( 0 ) i n 

Eq. (3.38) i s : 

f ( e ) = sech20 (3.49) 
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, J U . a n d c = / i a ^ . s u b s t i t u t i n g Eq. (3.49) 

where e = ic(ct-ü, l( 4 h^ , i n t e g r a -
T?. n 43), and performxng the im- & 

in t o the generation equation, Eq. (3.43), 

t i o n y i e l d s : 

H r . P\ (3.50) 

15,3 (3.47) and (3 .48) , become: 
and the i t e r a t i v e equations. Eqs. 

e ( ^ > - < c t + | t a n t ^ ^ 

h 

(3.52) 
5 = c t - e/K 

and 

The phase plane m F i g . J.' 

, . n 52) The o r i g i n of displacement 5 and 
from Eqs. (3.51) and (3.52). d e f i n i t i o n of the 

. , i n 

(3 49). xn a d d i t i o n , since the f u n c t i o n f xn 

s o l i t a r y wave. Eq. (3.49) i n t e r c e p t s of 

. n 49) tends to ̂ ero as 6 goes to xnfxnxty. 

precision o£ only three ..fined, for 

actual generarms device, the Intercepts. t„, 

p r a c t i c a l purposes, by: 

t a n t r l i O ^ = 3 ^ . (3.53) 
t _ = 7^ KC 
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Phase plane showing t y p i c a l wave p l a t e t r a j e c t o r y 

s o l i t a r y wave. 
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n 50) at times t - + " 
S i s obtained M evaluating B,. (3-30) 

The stroke b i s o 

and snbtraetlng to y i e l d : 

and t - (3.54) 
2H _ . ( 5 1 - h 

7 bv computing 
. , , i s obtained from Fig- 3.7 by 

The d u r a t i o n of motion c h a r a c t e r i s t i c s 
^ v h the leading and t r a i l i n g g 

the times at which ^^^^^^^^^^^ ^...s: 

i n t e r s e c t the t r a j e c t o r y . ( t ) 

, = 2t„+S/c . 

v<= q y i e l d s f o r the 
t and stroke S y i e 

. „ f o r the i n t e r c e p t t ^ a 
S u b s t i t u t i n g f o r t n 

d u r a t i o n : ^^^3^^ 

VCC VCC - ^ 1 
1 S) 

A to the p o i n t (--S"̂ ' '"^ 
r ( 0 ) , was moved t o tne v 

(.ne origin oi tbe tra.eetoty U ^^^^ . 

forward d i r e c t i o n . ) d i r e c u i v j i " . . / 

. . . . . . ¬waves tne j - " - -

For c n o i a a i 

y - h , 1 ̂  " - " ^ 

. „ m t h i s development, i» 

,„ ( t - f ) (which, for convenrence 

' ' ^ ' „ aeiined e a r l i e r ) , and K i s the f i r s t 

" 1 lacobian e l l i p t ^ c function, m i s the 

e i i i p t i c integral, cn i ^^^^^^ ^ 

e l l i p t i c parameter. 
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substituting E,. (3.57) into the generation equation, E,. (3.43), 

and performing the Integration y i e l d s : 

5 ( t ) i ( y , - w » + ! « ( « l " ' - " ' ° ' l • 

„here.E(e|m) i s the second Incomplete e l l i p t i c i ntegral, and m' i s 

the complementary parameter, m' -1-m. 

. <„,o Fn (3 47) gives the i t e r a t i v e equation: 
Substituting t h i s Into Eq. K^.til B 

2Kht. .Hml) e<"+S-E(e<^M"«) 
„(i+l)-e("- :J:1^^S--^^1^ .(3.59) 
" y, + H cn2(6'^'|m) 

™l »„d cn2(e*^' m) can most e a s i l y be 
The e l l i p t i c functions E(6 m) and cn w 

evaluated by the numerical methods described In Appendix A. 

Having found 6 for given time t , the displacement 5 i s given by: 

U t ) = I ( i - è ) • 

Fig. 3.8 shows a ty p i c a l trajectory C ( t ) , normalised with respect to 

the maximum, calculated using E,s. (3.59) and (3.S0). Because 

of the form of the definition of the function £ ( e ) i n E,. (3.57), 

the origin occurs at a point of maximum velocity. However, i t i s 

desirable to s t a r t the motion of the wave plate at a position where 

the plate velocity and wave amplitude are .ero, i . e . where: 

dt 

and 
, = y ^ - h + H c n ^ ( e J i u ) = 0 , (3.62) 



€/S 

0.51 

0.25 

O 

J/2 
T 

3T/2 

-0.25 

-0.5 

f i g . 3.8 T y p i c a l wave 
p l a t e t r a j e c t o r y 

f o r c n o i d a l wave generation. 
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„.ere 9„ l a the argument of the cnoidal function determined such that 

the »av°e amplitude i s »ero. Eq. (3.62) can he written as, 

which can he evaluated for a given wave hy the numerical method 

• escribed i n Appendix A. 

S u b s t i t u t i n g f o r 6^ i n Eq. (3.51) gives: 

, [(y - h ) e +f l E ( e J i n ) - m ' 0 j ] .(3.64) 
W ^^min 2Kh [^^^t ^ o m < o 

^̂ o _ ^max , lo (3.65) 
and T = — 2K 

The maximum excursion of the wave p l a t e or stroke S i s : 

S = ^ W • 

, Unce the leading wave of a t r a i n of cnoi d a l waves i s a t r a n s i e n t wave, 

1 p n o s i t i v e wave r a t h e r than a negative wave 
i t was d e s i r a b l e to make i t a p o s i t i v e wav 

. 1 nt- Thus the motion i s s t a r t e d a t a 
so the t r a i n would not overtake i t . Thus, 

.•nt i n Fig 3.8, so the o r i g i n of the t r a j e c t o r y c a l c u l a t e d 
minimum p o i n t m n g . ->•"> 

from Eqs. (3.59) and (3.60) I s moved forward hy a time I-t„. 

The application of this theory and the waves which resulted from 

i t are presented i n Section 5.1. 

3.3 a e ™ a t i o n ^ L i 2 H i i ! S ^ S ^ ^ 

D i s p e r s i v e Theory; 

TWO of the methods which presently exist for numerically solving 
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the Boussinesq equations I n constant depth are the f i n i t e d i f f e r e n c e 

approach used by Peregrine (1966) and the method of c h a r a c t e r i s t i c s 

which was employed by Long (1964). The f i n i t e element method 

described here has c e r t a i n s i m i l a r i t i e s t o the scheme of Peregrine 

(1966) but m c o n t r a s t to those of Peregrine (1966) and Long (1964) 

I t i s u n c o n d i t i o n a l l y s t a b l e and second order accurate. Madsen and 

Mel (1969) extended the approach of Long (1964) to solve the 

Boussinesq equations f o r the case of a gradually v a r y i n g depth. I n 

order to avoid the r e s t r i c t i o n of a gradual change i n depth, the 

approach t h a t was taken i n t h i s study was to f i r s t formulate a 

f i n i t e element s o l u t i o n of the Boussinesq equations f o r the case of 

a constant depth. The var y i n g depth was then considered to c o n s i s t 

of a series of steps between which the Boussinesq equations f o r a 

constant depth applied. The s o l u t i o n s i n a d j o i n i n g regions were 

matched at the steps by applying the boundary conditions of c o n t i n u i t y 

of surface e l e v a t i o n and fl o w r a t e ; the l a t t e r i s equivalent t o 

matching the surface slopes. 

3.3.1 The Numerical S o l u t i o n of the Boussinesq Equations f o r 

Constant Depth bv a F i n i t e Element Method 

3.3.1.1 A n a l y t i c a l Formulation of the Problem 

Consider the p h y s i c a l system shown i n F i g . 3.9 which 

consists of a body of water, bounded at x = 0 and x = X w i t h a depth h, 

i n which a wave propagates w i t h c h a r a c t e r i s t i c h o r i z o n t a l l e n g t h i 

and c h a r a c t e r i s t i c height H. 
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x=X 

F i g . 3.9 D e f i n i t i o n Sketch f o r Numerical Scheme 

For long waves (Jl » h) of moderate amplitude (H < h) where the 

U r s e l l Number (Hit^/h^) i s of order u n i t y , the governing equations 

are the Boussinesq equations, Eqs. (3.10) and (3.11), which i n 

dimensional form are: 

Ti^+ j ( l i + n ) G } ^ = 0 (3.67) 

and 
(3.68) 

where ü(x,t) i s the v e l o c i t y averaged over the depth and defined by: 

/

h+n 
u(x,y. t ) d y (3.69) 

Following the usual f i n i t e element f o r m u l a t i o n , the problem i s f i r s t 

s t a t e d i n i t s three f o r m s — S t r o n g , Weak and Galerkin. 
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CS) < 

(or C l a s s i c a l ) f o m of the problem denoted as (S) i s : 

The Strong (or Classicax; ^ .„tbe 

the amplitude hCx.t) and the ve l o c i t y u ( . , t ) . 

l u t e t v a U O ; . l X a n d O < t < T , such that: 

+ {(h + n ) s l x • ° 

1 2 . " " 0 
üt + üG^+S^x" 3^ "^xxt " 

w i t h the boundary c o n d i t i o n s : 

ü(0,t) = ü^(t) and ü(X,t) = ü^(t) . 

and the i n i t i a l c o n d i t i o n s : 

,(x,0) = H(x) and S(x,0) = G(x) 

Find the amplitude . ( x , t ) and t h e v e l o c i t y u ( x , t ) whxch 

1, f\.ct f o r a l l v a r i a t i o n s 
s a t i s f y the boundary c o n d i t i o n s such t h a t 

„(x) and v ( x ) : ^ 

( n,w)+ f w|ü(h + n ) } ^ d x = 0 

^.,,),lh^a(ü,v)+ | ' v ( - . + S n , ) d x - 0 

and, (lri ( K , 0 ) - G(x)} ,w) = 0 

, (iü(x,0) - F ( x ) l , v ) = 0 

j „ i s the amplitude v a t i s t i o n a u d V i s the velocity v a t l e t i o . 

and n = » " - 3t • rX 

A rr i s defined as: (u,v) = / uv dx , 
The inner product xs derxnt; ^ 

and t h e b i l i n e a r form: a(u,v) = ƒ u ^ V ^ 

(W)< 
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The Galerkin (or d i s c r e t e ) form of (W) which i s denoted as (G) i s : 

Find the d i s c r e t e f u n c t i o n s n'^Cxjt) and ü'^(x,t) which s a t i s f y 

the boundary c o n d i t i o n s such that f o r a l l d i s c r e t e f u n c t i o n s 

h , h 
w and V : 

(G)< 

(n^.w^) + f wh|üh(h + n ^ ( ^ d x = 0 

(n^,^b^+lh2a(ü\vS + ƒ \Nü^ ü ; ; + gn^)dx = O 

and, 1(G'^(X,0) - G( x ) ) , v ^ } = 0 

(n^(x,0) - H(x)),w^} = 0 

In t h i s manner, the problem has been transformed from one of f i n d i n g 

the s o l u t i o n s , continuous i n x and t , of a set of p a r t i a l d i f f e r e n t i a l 

equations to one of f i n d i n g the s o l u t i o n s , continuous i n t but 

d i s c r e t e i n x, of a set of ord i n a r y d i f f e r e n t i a l equations. 

3.3.1.2 F i n i t e Element Formulation 

Consider the one-dimensional f i n i t e element mesh shovm 

i n F i g . 3.10 where the i n t e r v a l 0 < x < X has been d i v i d e d i n t o N + 1 

elements and N+2 nodes. Let the amplitude v a r i a t i o n w'^(x) and the 

v e l o c i t y v a r i a t i o n v ^ ( x ) be l i n e a r combinations of the f i n i t e element 

basis f u n c t i o n s (t)j^(x) and ijj ^ ( x ) r e s p e c t i v e l y : 

N 

v^ ( x ) = ^ . ^ . ( x ) (3.70) 

1=1 

N+1 

w^(x) = ^ * . ( x ) , (3.71) 

1=0 
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w of the node and (̂ Ĉx) and ^ ^ ( x ) .here s u b s c r i p t s denote the numher of the 

• . . t i s f y the f o l l o w i n g c o n d i t i o n s , 
are f u n c t i o n s which s a t i s f y 

1 j = i 

lo i^^ 

1 j = 1 

il^.Cx.) = 
(3.72) 

The 
t y p i c a l basis f u n c t i o n s shown m 

fun c t i o n s defined by: 

0 j ^ i 

F i g . 3.10 are the l i n e a r 

piecewise continuous 

<t>.(x.) 

Ax. 

^ i + l " " 
Ax i + 1 

0 

i . l , 2 . - S . C3.73) 

^i+1 
< X < X i _ i 

and 
(t)^(x) 

X < X, 

X > X 

(3.74) 

where 

NODE 0 
X 0 

ELEMENT 

Ax. = X. - X. _;L 

2 3 

F i g . 3.10 F i n i t e Element Mesh 

N-1 N N+1 

N N + 1 
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Denoting the amplitudes at the nodes by e ^ ( t ) and the v e l o c i t i e s 

at the nodes by d ^ ( t ) , l e t : 

N+1 

n ^ ( x , t ) = 2 ^ ' l ' i ( x ) e ^ ( t ) (3.75) 

i=0 

N 

ü''(x,t) = ^ ,|i.(x)d^(t)+i|)^(x)ü^(t)+i(i^(x)ü^(t) . (3.76) 

i = l 

The object of the numerical scheme i s to f i n d the nodal amplitudes 

( e ^ ( t ) i = 0, N+1) and the nodal v e l o c i t i e s id^(t) i = l , 2 N) 

fo r the i n t e r v a l 0 < t < T'. At a p a r t i c u l a r time, the amplitude and 

v e l o c i t y between nodes i s found by i n t e r p o l a t i o n using the basis 

f u n c t i o n s , <}i(x) and i(;(x). Linear basis f u n c t i o n s imply l i n e a r 

v a r i a t i o n of v e l o c i t y and amplitude between nodes. 

S u b s t i t u t i n g the d i s c r e t e approximations of the amplitude and 

v e l o c i t y given by Eqs. (3.75) and (3.76) i n t o the Galerkin form of 

the problem (G) y i e l d s : 

N+1 

(<f'i.'t'j)4j - f ^ = 0 j = 0,1,2, N+1 (3.77) 

1=1 

N 

1 ] 1 ̂ h'h^ ^1^^ a(r(;. , ^ . ) ( d . + 1(^^,^.) +\h^ a ( t l . ^ , ^ . ) [ u ^ 

1=1 

+ {(.^^,^.)+^h^ ai^^,^.)}u^~ff= 0 (3.78) 

j - 1,2, N 
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where 

^ o i = l ^" 

dx (3.79) 

and 

4 • [•j l g * i ^ i ^ * o % ^ * . > H Ë * . , . ^ ^ * o . x ^ 

N+1 

dx 

m a t r i x form, l e t i 

. ^ 0,1 N+1 

(3.80) 

i=0 

To w r i t e Eqs. (3.77) and (3.78) i n 

mj J 

Ul Cr^ which i s denoted as (M) i s : 
r a l e r k i n Problem (.tr; wnicu 

The m a t r i x form of the Galerlcxn 

i =0 1, N+1 and the nodal 
the nodal amplitude e . ( t ) 1 

• <-ovi7n1 0 < t < T such t h a t : 
d , ( t ) 1 = 1,2,—N, over the i n t e r v a l t . 

(3.82) 

Find 

v e l o c i t y dA 

(M)< 

^ d = f ^ - / u ^ - % % 

e,(0) = H(x,) d,(0) = G(x,) 

(3.83) 
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The matrices and M^, a r i s i n g from the c o n t i n u i t y equation Eq. 

(3.67) and the momentum equation (3.68) are symmetric p o s i t i v e 

d e f i n i t e matrices of order N+2 and N r e s p e c t i v e l y . (For l i n e a r 

shape f u n c t i o n s they are t r i d i a g o n a l . ) The vectors { and f 

cont a i n nonlinear terms i n the nodal amplitudes e and the nodal 

A o c i t i e s d. The vectors m^ and m̂^ contain only one nonzero term 

f o r l i n e a r shape f u n c t i o n s . 

3.3.1.3 The Time I n t e g r a t i o n Algorithm 

The time i n t e g r a t i o n a l g o r i t h m used to solve the 

m a t r i x form of the problem, (M), was the Midpoint Rule: 

^.. = ^ ' ( | f - ^ n + l - ^ n M l ^ n . l - n } ) ' ^^^^^ 

f ^ ^ , - ^ ( | h n . l - ^ n M l ^ n . l - U ) ' ^^'^^^ 

^ - i l - +1- A , (3.88) 

and the s u b s c r i p t s denote the number of the tdone step. 

The Midpoint Rule d i f f e r s from the well-lmown Trapezoidal Rule 

(or crank-Nicholson Method) i n a s u b t l e way which i s apparent only 

when considering nonlinear problems. For the Trapezoidal Rule, t h e 

where 
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vector f ^ ^ , f o r example, would be defined as: 

{U-Kï '^VV-ï'<^n.l-Vl'] • ""'^ 

i=! found by evaluating 

Thus, I n Midpoint Rule, the vector t^^,^ 

t b e f u n c t i o n f " " b arguments wblcb are tbe average of tbose at tbe 

beginning and end of tbe time step, „blle f o r Trapesoldal . u l e tbe 

vector IS found b, eva l u a t i n g tbe f u n c t i o n f ^ a t t b e beginning 

and end ̂ ^ b e time step and averaging tbese f u n c t i o n s . C l e a r l , i f 

fC 1. a l i n e a r f u n c t i o n , tbe Midpoint Kule and tbe .rapesolda u e . 

"are I d e n t i c a l , bo.ever. I f f = I s a nonlinear f u n c t i o n , ,B.s. (3 Se, 

and C3 .S , ) are q u i t e d i f f e r e n t . Mtbougb botb tbe H . p o l n t Kule and 

Trape.oldal . u l e are u n c o n d i t i o n a l l y s t a b l e and second order 

accurate, t b e Midpoint .ule Is p r e f e r r e d f o r nonlinear problems 

. , , , _ t Of u n c o n d i t i o n a l s t a b i l i t y , .be d e t a i l s of t b i s and 

aspects of tbe s t a b i l i t y a n a l y s i s of t b e Midpoint Kule and tbe 

uion,« are given by Hughes (197/;. 
Trapezoidal Rule f o r nonlinear problems are gxv 

3 3 1 4 T1.P T t e r a t i v e Scheme 

The i t e r a t i v e s c h ^ e used to solve Eqs. (3.84) and 

A 1.V Peregrine (1966) to solve a f i n i t e 
(3.85) i s s i m i l a r to t h a t used by Peregrin 

i . i - - i n n of the Boussinesq equations: 
d i f f e r e n c e f o r m u l a t i o n or cne 

1 F i r s t I t e r a t i o n : 

, , .ft,,d) and solve Eq. (3.84) f o r the 
i ) Evaluate f ^ ^ ^ - i 'sej^.Sti^ 

nodal amplitudes ê ^̂ .̂ 
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i i ) Evaluate f^^^^ = f (| I ?nil + ?n I ' ̂ n) ^̂ '̂  ^^'^^^ 

f o r nodal v e l o c i t i e s d̂ .|.|' 

I t i s noted the bracketed s u p e r s c r i p t s denote i t e r a t i o n number. 

2. Second and Subsequent I t e r a t i o n s k = 2,3, : 

i , Evaluate f^.^=f=(||e<ï->..J,|ieï"-«nO 

(k) 

and solve Eq. (3.84) f o r the nodal amplitudes e^_^y 

U ) Evaluate £ » ^ = J» . • I H ^ f ^ ^ j ) 

solve Eq. (3.85) f o r the nodal v e l o c i t i e s 4n+l* 

The d i f f e r e n c e i n t h i s scheme from t h a t of Peregrine i s t h a t , i n the 

second and subsequent i t e r a t i o n s . Peregrine's scheme evaluates the 

fu n c t i o n s f ^ and f ^ f o r the nodal v e l o c i t y a t the previous time d^ 

instead of t h e average of t h i s and the best estimate of the nodal 

v e l o c i t i e s a t the forward time step, f { d ^ + d^^^^^^}. I t was found t h a t 

t h i s change, which amounts t o f u l l instead of p a r t i a l implementation 

of Midpoint Rule, e l i m i n a t e d numerical d i s s i p a t i o n and thus e r r o r s i n 

the q u a n t i t i e s which should be conserved (volume and energy) were 

reduced from a few percent t o zero. 

3.3.1.5 Convergence and Accuracy 

The convergence of the i t e r a t i v e scheme was t e s t e d by 

numerical experiments. The experiments Involved f i r s t s e t t i n g up the 

i n i t i a l c o n d i t i o n s f o r a s o l i t a r y wave w i t h height H and nodal spacing 

Ax. The nodal spacing was chosen by assuming t h a t , f o r numerical 

purposes, the amplitude of a s o l i t a r y wave i s zero f o r n/H< 0.001. 
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..e„..o.B.. (3.35, the o. the „ave can be . e f i n e d as, 

8.3 (3.90) 
L = 

K 

where 

N^, the n o d a l s p a c i n g i s found from: 

8.3 (3.91) 
N^Ax = L = — 

S i m i l a r manner t h e " t i m e step number", N,, i s d e f i n e d as: 

L (3.92) 
= 7 = 

T At/gn 

. v . . se. . . e . . . . . c e . . . » s . — ^ ^ ^ ^ ^ 

which t h e e r r o r : 
(W _ n''--" 

max _ i -77-s— ^ 1000 

e = i ^ i ^ 2 % - ( ^ ) 

< . (3.93) 

^ i 

. . e . e s . U s f o . . . » a v e s » . . . . . . t K / . = 0 . . e . 0 . . a . e . e s e . e a 

m . a U e s 3 . u a , a . 3 . U « . * « e . e . - e . Of . e . a . o - ^ ^ 

_ e . e . e e f s g i v e , f o r v a . o . s „.a. s . a o i . ™ m . « 3 ^ 

at-n-VP scheme converges t o r 
T,or<, N The data show the x t e r a t x v e scnem 

step numbers N„. " , 
, .f N >40 I t i s noted t h a t f a i l u r e to 

the f u l l range of N^ «T ̂  
t-vadlct the un c o n d i t i o n a l s t a b x l x t y 

converge f o r <40 does not contradxct 



Table 3.1 Number of i t e r a t i o n s f o r convergence 

f o r various nodal spacing numbers, % . 

and time step numbers, N^. (NC im p l i e s 

not convergent.) 

Ca) H/h = 0.1 

5 10 20 40 80 

5 NC NC NC NC NC 

10 3 NC NC NC NC 

20 2 4 5 9 NC 

40 2 2 2 3 3 

80 1 2 2 2 2 

160 1 1 1 2 2 

(b) H/h = 0.7 

5 10 20 40 80 

5 NC NC NC NC NC 

10 5 NC NC NC NC 

20 3 4 7 NC NC 

40 2 3 3 3 4 

80 2 2 2 2 2 

160 2 2 2 2 2 
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„£ the a l g o r l t M ; i t i e a f e a t u r e of t h e i t e r a t i v e aeheme choaen t o 

aolve the equatioue a r i a i n g f r o . the a l g o r i t h m . Having aeiected a 

nodal apacmg numher whieh provides the desired degree of r e s o l u t i o n 

^ the wave p r o f i l e , tha optimum time step number i s found by 

minimising t b e produet of and the number of i t e r a t i o n s f o r =on-

verganoe. For t h e waves i n t h i s study, t h r e e i t e r a t i o n s and 

N =N„, = 40 were used. 

' A measure of t h e aecuracy of a numerieal scheme i s t h e accuracy 

w i t h which q u a n t i t i e s which are conserved a n a l y t i c a l l y also a r e 

.Observed n u m e r i c a l l y , .or t b e Boussinesq equations these conserved 

q n a n t l t l e s are the volume and t h e energy ( p o t e n t i a l . . l u e t i c ) . 

The accuracy of t h e scheme described here was teste d by propagating 

.he two s o l i t a r y waves described p r e v i o u s l y (H,h=0.1 and 0.7, f o r 

ten wave lengths usl.g t h r e e i t e r a t i o n s and 40 and comparing 

the r a t i o s of i n i t i a l t o f i n a l v o l t e s , V,/V,, and I n i t i a l t o f i n a l 

energies, The r e s u l t s , which are presented i n Table 3.2, show 

er r o r s I n tbe volume and energy r a t i o s which are considered n e g l i g i b l e . 

scheme has a h i g h degree of accuracy. 

Table 3.2 Comparison of I n i t i a l and f i n a l 
conserved q u a n t i t i e s f o r the 
numerical scheme. 

— 

No. of 
Time Steps 

H/h= 0.1 1.002 1.001 376 

H/h= 0.7 0.998 1.005 312 
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Also of i n t e r e s t was the way i n which these s o l i t a r y waves 

propagate. The wave p r o f i l e s a t regular tlone i n t e r v a l s are presented 

i n F i g . 3.11 where, i t i s noted, the abscissas are distance normalized 

w i t h respect t o wave l e n g t h , L, as given by Eq. (3.90). The t o t a l 

distance of propagation i n each case i s ten wave lengths (lOL); 

hus, the wave has propagated 1.25L between each p r o f i l e . 

I n both cases the shape of the i n i t i a l wave changes as i t 

propagates. For the l a r g e r wave (H/h=0.7) the wave height decreases 

to H/h =0.66 over the f i r s t f i v e wave lengths and then remains 

constant. The trough which forms i n i t i a l l y behind the main wave i s 

l e f t behind by the main wave and, a f t e r propagating a distance of 

f i v e wave len g t h s , they are completely separate. For the smaller 

wave (H/h =0.1) the wave height decreases to H/h = 0.090 over the f i r s t 

f i v e wave lengths and then remains constant. The trough which forms 

behind the main wave grows i n amplitude, reaching a maximum of a^/h 

= 0.0066 a f t e r the wave has t r a v e l l e d f i v e wave lengths. Subsequently 

the amplitude of the trough slowly decreases accompanied by an increase 

i n t h e l e n g t h of the trough. 

The shape of the main wave a f t e r i t has t r a v e l l e d ten wave lengths 

i s examined i n Fig . 3.12. I n F i g . 3.12(a) the l a r g e r wave (H/h=0.7) 

i s compared t o the Boussinesq and McCowan s o l i t a r y waves. The wave 

f o l l o w s the theory of Boussinesq (1872) i n the region of the c r e s t and 

the theory of McCowan (1891) near the leading and t r a i l i n g edges. 

(This also was found t o be t r u e f o r l a r g e waves (H/h>0.3) generated 

i n the l a b o r a t o r y , and w i l l be discussed i n Section 5.1.) I n F i g . 3.12 
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F i g . 3.11 Wave p r o f i l e s c a l c u l a t e d using the numerical 
(a) H/h = 0.7 and (b) H/h-0.1. 
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the smaller wave (H/h=0.1) i s compared t o the Boussinesq s o l i t a r y 

wave. As in d i c a t e d i n the f i g u r e , the waves both have sech^ shape 

but the "wave number" of the wave obtained numerically i s 0.220 

compared w i t h 0.260 f o r the s o l i t a r y wave of the same wave h e i g h t . 

Increasing the nodal spacing number, N^, or the t m e step number, 

N^, d i d not change the r e s u l t s presented i n Figs. 3.11 and 3.12 

s i g n i f i c a n t l y so i t i s assumed the behavior observed i s not caused 

by t h a t aspect of the numerical scheme. Also, i t i s pointed out 

t h a t w i t h the f i n i t e d i f f e r e n c e scheme of Peregrine (1966), numerical 

d i s s i p a t i o n caused by the p a r t i a l Instead of the f u l l Implementation 

of the Midpoint Rule (as was discussed p r e v i o u s l y ) e l i m i n a t e s some 

of t h e d e t a i l s of the p r o f i l e s which are shown i n Figs. 3.11 and 3.12. 

I n both cases considered, the i n i t i a l wave i s a s o l i t a r y wave 

which i s an exact s o l u t i o n of the KdV equation; however the shape of 

the wave changes as i t propagates which i s contrary to what the KdV 

equation p r e d i c t s . A possible reason f o r t h i s i s t h a t although the 

s o l i t a r y wave i s an exact s o l u t i o n of the KdV equation, the KdV 

equation i s only an approximate form of the Boussinesq equations; 

t h e r e f o r e the s o l i t a r y wave i s not an exact s o l u t i o n of the Boussinesq 

equations. To demonstrate t h i s , r e c a l l the expression f o r v e l o c i t y , 

Eq. (3.18). which a r i s e s from the d e r i v a t i o n of the KdV equation and 

which was used to compute the I n i t i a l v e l o c i t i e s f o r the waves being 

considered. I f t h i s expression i s s u b s t i t u t e d i n t o the f i r s t of the 

Boussinesq equations, Eq. (3.67), the f o l l o w i n g equation i s obtained: 
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3 % 

(3.94) 

where = 

The l e f t hand side of Eq. (3.94) i s the KdV equation which, i f the 

r i g h t hand side were zero, would have the s o l i t a r y wave as a s o l u t i o n . 

However, since the numerical scheme solves the Boussinesq equations 

w i t h a high degree of accuracy, the presence of the higher order terms 

on the r i g h t hand side of Eq. (3.94) (which are 0 ( a 2 , a 3 ) ) prevents 

the s o l i t a r y wave from being an exact s o l u t i o n . Further discussion 

of t h i s w i t h reference to Boussinesq (1872) and Keulegan and Patterson 

(1940) i s presented i n Appendix B. 

The behavior of the l a r g e r wave (H/h=0.7) i s consistent w i t h 

^hat i s observed i n the l a b o r a t o r y , the shape f o l l o w s the theory of 

Boussinesq i n the reg i o n of the c r e s t and t h a t of McCowan near the 

leading and t r a i l i n g edges and the main wave q u i c k l y separates from 

the t r a i l i n g o s c i l l a t o r y waves. However, some of the behavior of 

the smaller wave i s con t r a r y to what i s observed i n the l a b o r a t o r y ; 

i n p a r t i c u l a r , the growth of the trough and the slow r a t e at which 

the main wave separates from i t . To i n v e s t i g a t e t h i s f u r t h e r , use 

was made of the f i n i t e element program developed by Hughes, L i u and 

Zimmermann (1978) t o solve the Navier Stokes equations. The program 

uses a penalty f u n c t i o n approach to take account of the pressure (the 
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t 

i n t e r e s t e d reader i s r e f e r r e d t o Hughes. L i u and Brooks (1978) f o r 

d e t a i l s of the method) and solves the problem of the f r e e surface by 

al l o w i n g the f i n i t e element mesh t o deform i n the v e r t i c a l d i r e c t i o n . 

The scheme i s two-dimensional so t h a t , i n co n t r a s t to the numerical 

method developed f o r t h i s study, the v e l o c i t i e s ( h o r i z o n t a l and 

v e r t i c a l ) can vary w i t h depth to a degree which i s dependent on the 

number of elements which are taken i n the depth. A comparison of 

wave propagation using t h i s scheme w i t h one element i n the depth w i t h 

wave propagation using the scheme developed f o r t h i s study was 

conducted. S t a r t i n g w i t h the same i n i t i a l wave p r o f i l e (amplitude 

and v e l o c i t y ) f o r the two schemes, a wave w i t h i n i t i a l h eight H/h=0.086 

was propagated f o r a nondimensional time, t / i / h , of 78.4. I n F i g . 

3.13, the p r o f i l e s a t i n t e r v a l s of t > ^ = 15.68 are compared, w i t h 

the scheme of Hughes, L i u and Zimmermann (1978) being the dashed 

curves. The f i g u r e shows the r e s u l t s agree remarkably w e l l consider

i n g they a r i s e from approaches which are q u i t e d i f f e r e n t . Notice the 

r a t e of growth of the trough i s even greater w i t h the scheme of 

Hughes, L i u and Zimmerman (1978) (a^/h= 0.0101 a t t = 7 8 . 4 ) than i t 

i s f o r the scheme developed f o r t h i s , study (a,/h= 0.0063 at t = 7 8 . 4 ) . 

This growth almost can be eli m i n a t e d by using the approach of Hughes, 

L i u and Zimmermann (1978) w i t h two elements i n the depth. The r e s u l t s 

are presented i n F i g . 3.14 which shows the trough has been reduced to 

a /h= 0.0033 a t t = 78.4 and the r e l a t i v e wave height i s e s s e n t i a l l y 

constant w i t h propagation. The d i f f e r e n c e i n having two instead of one 

element.in the depth i s t h a t the d i s t r i b u t i o n s of v e l o c i t y ( h o r i z o n t a l 

and v e r t i c a l ) are no longer constrained t o be l i n e a r w i t h depth. 
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100 

F i g . 3.13 Comparison of wave propagation using the scheme developed 

f o r t h i s p r o j e c t ) w i t h the scheme ot hughes, L i u and 

Zimmermann (1978) ( ) • 
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That t h i s change reduces the r a t e of growth of the trough i s taken to 

imply the growth of the trough i s caused by the one-dimensional 

approximations. These approximations, f o r the scheme of Hughes, L i u 

and Zimmermann (1978), are made i n the numerical scheme but f o r the 

scheme developed f o r t h i s study they are inherent i n the d e r i v a t i o n 

' the Boussinesq equations. 

Considering the di s p e r s i v e nature of the trough, i t i s not 

s u r p r i s i n g these e f f e c t s are more pronounced f o r the smaller wave 

height because f o r the l a r g e r wave height the nonlinear e f f e c t s would 

be expected to be stronger. I n f a c t f o r the cases considered i n t h i s 

study where the numerical scheme was used to propagate s o l i t a r y waves 

onto a s h e l f , problems w i t h the formation of a trough d i d not a r i s e . 

Part of the reason f o r t h i s probably i s t h a t nonlinear e f f e c t s caused 

by the reduced depth masked t h i s behavior, but also the trough i s 

.mall compared to the main wave ('̂ 6̂%) and i t s growth requires propa

g a t i o n over a greater distance than was considered f o r most cases. 

3.3.2 Extension to the Case of Variable Depth 

Consider the problem shown i n F i g . 3.15 where a long wave 

i s propagating from a region w i t h a constant depth h^ (Region I ) over 

a step i n t o Region I I i n which the depth also i s constant but reduced 

y — ? — 7 — 7 — 7 — 7 ^ - - ^ 
T 

REGION I _ 

F i g . 3.15 D e f i n i t i o n Sketch f o r Extension to V a r i a b l e Depth 

® 
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.he step on eU.e. siae O. At a pa..en.a. . . . a n . o. ̂  

,..e. the a.p..uaes a. Sections (X) and are and r e s p e c t i v e . , 

and the depth averaged v e l o c i t i e s are given by: 

f \ , i y ) é y , (3.95) 

^2 
J U2(y)dy 

(3.96) 

(1) 
and ( 2 ) , r e s p e c t i v e l y , defined as: 

^ 1 = 
ƒ u^(y)dy 

(3.99) 

•̂ 2 . ,„^,„ (3.100) 

-hr 

"2 I 

I f the distance between Sections ( i , and ( 2 , i s decteased u n t i l tbe 

ate an i n f i n i t e s i m a l distance apart on eitber side of tbe 

step, tben for continuity of tbe water surface p r o f i l e : 

(3.97) 

Til = ^2 ' 

and f o r conservation of mass: 

(3.98) 

q i = ^2 

and a are the flow r a t e s per u n i t w i d t h through Sections 
where and q2 are tnt; 
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Eq. 3.98 can be w r i t t e n i n terms of the depth averaged v e l o c i t i e s 

defined by Eqs. (3.95) and (3.96) as: 

ü^(hj^ + n p = G2(h2 + n2) (3.101) 

Since, f o r the problems under c o n s i d e r a t i o n , r)^< \ and n2<h2, as a 

r s t approximation Eq. (3.101) may be w r i t t e n as: 
{ 

ü^h^ = Ü2h2 (3.102) 

An estimate of the e r r o r e i n using Eq. (3.102) instead of Eq. (3.101) 

may be obtained by t a k i n g the d i f f e r e n c e between Eqs. (3.101) and 

(3.102) (which, using Eq. (3.97), gives: r^^in^-^)) and d i v i d i n g by 

the f l o w r a t e U2h2: 

\ ( ^ 2 - V 
e = 

"2^2 
(3.103) 

S u b s t i t u t i n g f o r the v e l o c i t y r a t i o from Eq. (3.102), Eq. (3.108) 

becomes: 

^ " ho h 
i L ^ (3.104) 

2 ' " l 

where has been replaced by a c h a r a c t e r i s t i c wave height H and 

Ah = h^-h2. Thus, the e r r o r i n using Eq. (3.102) i s less than the 

maximum wave height r a t i o H/h2 and may be made a r b i t r a r i l y small by 

considering only small d i f f e r e n c e s i n depth. 

The f i n i t e element method described i n Section 3.3.1 i s extended 

to the case of v a r i a b l e depth by considering the v a r y i n g bottom as 

c o n s i s t i n g of a se r i e s of steps, as shown i n F i g . 3.16. I n the 
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NODES i-1 

, 3 e , ) a . a ( 3 . e 8 ) , a . l , . „ o „ . e . ..ese ..««e„..aX equations 

rio : I aotoss . e ste.s beeause at a uo.e 1 . . . I s a t a s t e . 

, „.o£lle i s continuous, v e l o c i t i e s jump ftom 

altboush tne sutface p t o f . l e ^ , 3„l„.lon, 

- „ a and the depth jumps ftom h^ to h^+j^ 

' . l i f l e d hy t e s t t i c t l n g the change i n depth hetween 

the ptohlem i s s i m p l i f i e d hy t ' (3 104) i s 

h EO (3 101). By i n t r o d u c i n g a volume flow r a t e 
Eq. (3.102) as by Eq. QJ-lUi..). 

defined as: 

q = ah 
(3.105) 
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the Boussinesq equations i n constant depth may be r e w r i t t e n i n the 

form: 

These equations s t i l l are a p p l i c a b l e only i n a constant depth, since 

the depth h i s discontinuous across a step; however both dependent 

v a r i a b l e s , surface p r o f i l e n(K,t) and the flow r a t e q ( x , t ) , now are 

continuous across a step. The f i n i t e element scheme i s implemented by 

p l a c i n g nodes at the steps as shown i n F i g . 3.16. Upstream of Node 1, 

Eqs. (3.106) and (3.107) apply w i t h h = h,; downstream of Node 1, 

Eqs. (3.106) and (3.107) apply w i t h h = h,^,. Since the same and 

-q. are used f o r both regions, the c o n t i n u i t y c o n d i t i o n s across the 

step given by Eqs. (3.97) and (3.98) are a u t o m a t i c a l l y s a t i s f i e d . 

The technique was tested by comparing w i t h p h y s i c a l experiments and 

the r e s u l t s w i l l be presented i n Section 5. 

Long Waves n.f-n a Shelf by theJAnear 
3.4 The Propagation o t J ^ o B i - ^ 1 1 ^ 

Nnndlspersive Theory 

I„ t h i s section the method of solution of the llHH^nSSÉiSH-iï^ 

theory as repotted hy »ong at. (1963, and Dean (1964) I s applied 

.0 the case of s o l i t a r y waves propagatlns onto a shelf over a t r a n s i 

tion m W h i c h the depth decreases l i n e a r l y with distance. (These 

approaches d i f f e r from those of Kajiura (1961) who used transitions 

m W h i c h the depth varied I n a more complicated manner with distance.) 
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. v f . p s as a s o l u t i o n of a nonlinear 
Even though the s o l i t a r y wave ar i s e s as 

^ ^ ^ ^ ^ ^ ^ . . . . . . . c . . . e f o . a . . . . . 

a . . a „ a . . o a . . o . o . . . . . s o U . a . . . . . a . a o 

„ . , . . l v e a o f . M S p o r t i o n o f . h e i n . e s . i . a . l o n . ™ 

o f . h i s W i l l b e d l s e u s s e d m o r e f u l l y i n S e o . i o n 5. 

_ . h , - - - - - - - " - ^ " ^ " ^ ' ' t r r r a 

, I S a s s u m e d . h a . no w a v e s p r o p a g a t e f r o m . = » i u a 

: : a : r e : : i r e e . i o n . . g i o n l l i s o f l e n g . h . a n d . h e d e p . h e h a n g e s 

— ; i ^ l i ^ e , u a . i o n f o r y a r ^ ^ ^ ^ ^ 
and h y d r o s t a t i c 

by Larab (1932. §169) assuming small amplitude 

pressure d i s t r i b u t i o n , i s : 

(3.108) 

X 

. . . g . . . (1963),.ean (196.) and K a j i u r a (1961) solved E.. (3.108) 

f o r a s i n g l e harmonic i n c i d e n t wave: 

i(kx-ü3t) (3.109) 
n ( x , t ) = A ^ e 
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X 

Fi g . 3.17 D e f i n i t i o n sketch f o r l i n e a r nondispersive theory. 

where i = o) i s the r a d i a l frequency, k i s the wave number and, 

since i t i s assumed t h a t there i s no d i s p e r s i o n , w = / i h ^ k . The 

method used was to solve Eq. (3.108) f o r each of the three regions 

i n t u r n and then match the s o l u t i o n s a t the boundaries by assuming 

c o n t i n u i t y of surface e l e v a t i o n and surface slope. D e t a i l s of 

the method are presented i n Appendix C. 
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The s o l u t i o n i s : 

(3.110) 

(3.111) 

X = 
2wL 

1 -

h , ^ \ ) \ 

i(k/hi/h„ x-(Ot) 
Ti3(x,t) = e 1 2 

(3.112) 

Region I : 

Region I I : 

where 

Region I I I : 

.here J„CX) and Y„(« are the .ero order Beasel f u n c t i o n s of the f i r s t 

and s e c L d ki n d r e s p e c t i v e l y and the c o e f f i c i e n t s A^, B,, B, and C, 

are f u n c t i o n s of the I n c i d e n t „ave amplitude A,, the depth r a t i o h,/h, 

and the dimensionless q u a n t i t y » . / ^ • ^^e r e l a t i o n s h i p s f o r the 

c o e f f i c i e n t s A,. B,. B, and as deduced hy Wong et al. (1963, are 

l i s t e d m Appendl. C. The r e f l e c t i o n c o e f f i c i e n t , defined as K^-A^/A,, 

and the transmission c o e f f i c i e n t , defined as K,.C,/A,, can he deter

mined i n simple terms only f o r extreme values of . 

For « i ( i - '̂ -O. » " ^ f ' - '̂ "̂  

Bessel f u n c t i o n s of small argument can he used and the c o e f f i c i e n t s 

can he evaluated i n terms of the depth r a t i o only: 

1 - / h j / h j 
(3.113) 

1 + 
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(These also can be obtained by the more basic approach of Lamb (1932, 

§176).) 

The magnitude of the r e f l e c t i o n c o e f f i c i e n t i s bounded by 

0 < K j ^ < l and the transmission c o e f f i c i e n t i s bounded by 0 < K ^ < 2 . 

When the depth r a t i o h^l^ i s u n i t y ( i . e . there i s no s h e l f ) there i s 

, >.ro r e f l e c t i o n I<^=0 and p e r f e c t transmission = 1 as expected. 

For small depth r a t i o s ^2l\ ( i . e . h2 « h^) the r e f l e c t i o n c o e f f i c i e n t 

] ^ - > l and the transmission c o e f f i c i e n t K^^2, however care must be 

exercised i n using these expressions f o r small depth r a t i o s to ensure 

tha t the small amplitude assumption i s not v i o l a t e d on the s h e l f . For 

example, i f h2/h-|̂  = 0.01 and the i n c i d e n t wave amplitude to depth r a t i o 

A^/h^ = 0.01 (which i s small enough to be considered small amplitude), 

then the t r a n s m i t t e d wave amplitude to depth r a t i o C-̂ /h2 = 1.82 which 

i s c e r t a i n l y not small amplitude. I n f a c t f o r the waves on the s h e l f 

to have amplitude to depth r a t i o s C^/h2<0.01, the i n c i d e n t wave 

^ amplitude to depth would have to be A^/h^< 5.5 xlO'S. S i m i l a r 

arguments apply when the depth r a t i o i s l a r g e h2 » h^) except t h a t 

i n t h i s case care must be taken to ensure t h a t the long wave,assump

t i o n i s not v i o l a t e d . 

For a)L//ih^»l ( i . e . a long s l o p e ) , the r e f l e c t i o n and t r a n s 

mission c o e f f i c i e n t s are: 

K^=0 , (3.115) 
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. • .1 Green's Theorem (Lamb (1932. §185) f o r 
which represents the c l a s s i c a l Green 

long waves propagating over gradual slopes. 

Wong.taZ. (1963). .ean (1964) and K a j i u r a (1961) solved B.. 

cï-inre Eq, (3.108) i s a 
(3 108) f o r a s i n g l e harmonic I n c i d e n t wave. Since E l 

l l l e a r . n a t i o n the s o l n t i o n s can he snperimposed f o r an I n c i d e n t 

wave given by: 

i ( k x-w t ) (3.117) 
. ( x . t ) = L A l e W n 

Eqs 

n=0 tl 

. (3 .110) , (3.111) and (3 .112) , become: 

Region I : ^ ^ ( x . t ) - 1,^ ^ i ^ ^ n=0 n 

-^^n^ (3.119) 

Region I I : 

• ^ - f i - ^ ' l ! 

N i ( k „ / h 7 h ^ ^ - V ^ (3-120) 
n I I I : n 3(x.t) = S / l ^ ^ " ' ' 

-> n=0 n 

. ^ 117^ the r e f l e c t i o n and t r a n s -
Eor i n c i d e n t waves given by Eq. (3 .117) , 

, (3.113) and (3.114)) 
f f l c l e n t s f o r (Eqs. (3.11 

mission coe 

apply f o r two c o n d i t i o n s : 
n 113) and (3.114) are 

a) l / h , . 0 ( i . e . a s t e p ) . Since Eqs. (3.113) 

„ d e n t Of f r e q n e n c , each f r e . e n . component of the i n c i ent 

. a v e . , IS r e f l e c t e d or tra n s m i t t e d h. the same p r o p o r t i o n . Thns . 
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the r e f l e c t e d and t r a n s m i t t e d waves have the same shape as the 

in c i d e n t wave. This i s the c l a s s i c a l r e s u l t of Lamb (1932) who used 

a more fundamental approach and general f u n c t i o n s f ( x , t ) instead of 

harmonic f u n c t i o n s , 

b) n = 0 ( i . e . ( 0 ^ = 0 ) . Since Eqs. (3.113) and (3.114) are 

independent of the slope l e n g t h L. the p r o p o r t i o n of the mean component 

( i . e . the volume) of the i n c i d e n t wave r e f l e c t e d or t r a n s m i t t e d i s 

the same f o r a l l slope lengths L. This r a t h e r s u r p r i s i n g r e s u l t w i l l 

be discussed f u r t h e r i n Section 5. 

For the s o l u t i o n s . Eqs. (3.118), (3.119) and (3.120), to apply 

to a . p a r t i c u l a r long wave given by Eq. (3.117). i t i s necessary f i r s t 

t h a t the wave height be everywhere small compared t o the depth and 

second t h a t the wave s a t i s f y e i t h e r of the two c o n d i t i o n s : 

a) The maximum frequency (Ô  i s small enough f o r the nondispersive 

assvimption t o be v a l i d , or 

b) The e n t i r e wave form propagates without d i s p e r s i n g . 

A s o l i t a r y wave propagates i n constant depth without d i s p e r s i n g but 

the wave height i s not ne c e s s a r i l y small compared to the depth. As 

the wave enters a re g i o n of changing depth such as Region I I i n 

Fi g . 3.17, i t i s expected t h a t amplitude and frequency d i s p e r s i o n 

w i l l occur. However. Hammack and Segur (1978) p o i n t out t h a t the 

Unear nondispersive theory may apply f o r some time before i t i s 

necessary to use the f u l l Boussinesq equations to model the propagation. 

I t i s to determine t h i s range of a p p l i c a b i l i t y t h e r e f o r e t h a t the 

l i n e a r nondispersive theory i s applied to a s o l i t a r y wave propagating 
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onto a s h e l f . 
" . n 25) i n s e c t i o n 3.1 also can 
The s o l i t a r y wave defined by Eq. (3.25) 

be w r i t t e n as: 

o 3/3 ,x::ct ^ (3.121) 
n ( x , t ) =H sech^ n r ^ ^ ' 

. . . . . . . — " -

I t IS convenient to normalLe the inde 
„se the c e l e r i t y c / i h - ,3 follows, 

of t-n the slope l e n g t h , Ij, 
pendent v a r i a b l e s w i t h respect to 

x = x*/L t = t * / i h ^ / I ^ 

tbe o r i g i n a l dimensional v a r i a b l e ) and to normalize 

,.,..e ^ denotes the o r i g . _ , . ,./H. Then 

the wave amplitude w i t h respect to 

Eq. (3.121) becomes: 

.2 3 / 3 L , - (3.123) 
n ( x , t ) =sech2 — ^ 

^^^^ ^„,,,,1,,! 

i o r . oi the c o e i f i c i e n t s A,. 3,, B, i ot 

courier Transform method d i f f i c u l t to implement. 
: . a s t Fourier Transform . . . a U o r i t h m however, has made 

i r l c a l solution of the prohlem accurate and inexpensive. 
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The s o l u t i o n at a p a r t i c u l a r x i s found i n four steps: 

1, The i n c i d e n t wave at x = 0 i s approximated by the d i s c r e t e 

f u n c t i o n 

2 ^ k t , (3.124) Ti(0,t ) = s e c h - — 
m 

m 
where the t„ are N equispaced p o i n t s i n the f i n i t e i n t e r v a l 

-T/2<t„<T/2 
m 

where the magnitudes of N and T are governed by the desired accuracy 

and r e s o l u t i o n as w i l l be discussed p r e s e n t l y . 

2. The d i s c r e t e approximation of the i n c i d e n t wave Eq. (3.124) 

i s put i n the form: 

N/2 

n ( 0 , t j = V \ e-^%^m , (3.125) 

_ 2TTn 

where " t i T ' 

by computing the d i s c r e t e Fourier c o e f f i c i e n t s : 

^ 1 - iE "̂̂ '̂  ' 
using the Fast Fourier Transform (FFT) al g o r i t h m . 

3. The s o l u t i o n s , Eqs. (3.118), (3.119) and (3.120), normalized 

as described above and w i t h = i ^ ^ L / / ^ and = k*L may be t r a n s 

formed from the time domain t o the frequency domain to become: 
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i k ^ x , , _-ik„x (3.127) 
Region I : \ = h ^ ^ +^2 ^ 

n n n 

Region I I : ( x , ^ = J , ( X ^ ) + Y ^ ( X ^ ) (3.128) 
n n n 

where 

2tü 
X = 
n 

n 

^1 

Region I H i n3 (x,ü)̂ ) = Cj^ e n 1 2 

n 

(3.129) 

n = - "2 J ~ 2 
N_ . N 

•'2 ' 2 

The s o l u t i o n i n the frequency domain f o r the wave at the p a r t i c u l a r 

l o c a t i o n , X, (F^) i s c a l c u l a t e d by ev a l u a t i n g one of Eqs. (3.127), 

(3.128) or (3.129) a t t h a t p o s i t i o n , f o r the N components. 

4. The s o l u t i o n s F^ are transformed back i n t o the time domain: 

N/2 

n=-N/2 

(3.130) 

using the inverse Fourier t r a n s f o r m a t i o n . 

The numerical scheme requires s p e c i f i c a t i o n s of the two q u a n t i t i e s 

T and N. The t o t a l l e n g t h of the time record T must be made l a r g e 

enough to include the e n t i r e wave at the l o c a t i o n x. The number of 
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p o i n t s N i n the time i n t e r v a l T determine the r e s o l u t i o n w i t h which 

the s o l u t i o n at x i s determined. The accuracy i s determined by the 

maximum frequency w^ax^'f' ̂ ^^''^ """̂ ^ ^̂ ""̂ ^ enough f o r |F(Wj„ax̂  

to be n e g l i g i b l e . An estimate of the magnitude of oi^^ can be 

obtained by considering the a n a l y t i c a l Fourier Transform of 

n ( t ) = sech2 n r i ' ^^^^^ gives: 

A, (ü)') cosech — Ü3 / 0 
1 ' 2Ü 

A i ( 0 ) = 2/n . (3.131) 

o - 3/3 L 
where " 

For A, (03 )/A,(0)< 1x10-5, gq. (3.131) i m p l i e s o) > 30ü/ir which, 
1 max . 1 

by s u b s t i t u t i n g f o r o)^^^ and becomes f>-f> ^° a c c u r a t e l y 

d e f i n e the i n c i d e n t wave i n the frequency domain, the r a t i o of the 

number of poi n t s i n the i n t e r v a l to the l e n g t h of the i n t e r v a l (N/T) 

must be greater than f o u r times the len g t h r a t i o . 

Results of t h i s a n a l y s i s and comparison w i t h the nonlinear, 

d i s p e r s i v e theory and experiment w i l l be presented i n Section 5. 
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. of Long W a ^ ^ e s ^ o J u f H i t 2 . b ^ ^ 
3.5 T h e _ l r o 2 a £ a t H E _ o f J i O n ^ 

. . . . a3..p.o.c o. the K.V e . a . . . . . a .a. 
mxtiing a y F ^. ^ b e i n R propagated by 

- - - - - - ^ ^ " r a : : : ^ 
: e r ^ e r e b e . g .opagated by 

barmonic a n a l y s i s could be used xf the 

a l i n e a r d l s 2 e r s i v e theory. 
wave equatxon (Eq. 

Lineardis£ersive equations such 

. , , ^,^e exact s o l u t i o n s i n the form of 
3 14) discussed i n Sectxon 3.1 have 

xn a corresponding way the KdV equation has exact 

, ...e of a r b i t r a r y Shape 
- i . the form of s o l i t a r y waves. A wave 

being propagated by a U b e « i _ J ^^^^^ 

r n : : . — • ^ - r " 

. 11V s p l i t up i n t o a f i n i t e number of s o l x t a r y 
theory w i l l e v entually s p i x t up 
1 d l « e r e . belg b t foUo.ed by a t r a i n o. o e o l U a t o r y „ ^ 

o^.fP at a speed which i s a functxon 
. -„.O s o l i t a r y waves propagate at a sp 

of the wave hexght, ^̂ ^̂  Unear 

l a r g e s t wave leading and tbe smallest wave t r a i l i n g , .or 

. ,,eory barmonlc a n a l y s i s provides tbe amplitudes ot 

S r t u : : :: s m u s o l d a l wa,es wbleb emerge, f o r tbe ^ 

tneory. Inverse s e a t t e r l n g provides tbe n . b e r and tbe 

be l g b t of tbe s o l i t a r y waves wblob emerge. 
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In this section the Inverse scattering theory, which was derived 

by Gardner et al. (1967), I s outlined, then one of the few a n a l y t i c a l 

solutions i s presented and, f i n a l l y , numerical methods of solution 

are described. 

3.5.1 Summary of the Inverse Scattering Theory 

J Consider the KdV equation, Eq. (3.22). By changing 

variables as follows: 

h ' 6 " ^ h 

(3.132) 

f ( r , T ) r i ( x , t ) 

Eq. (3.22) becomes: 

f +6ff + f =0 
T r r r r 

(3.133) 

Whitham (1974, P585) shows that the asymptotic solution of Eq. (3.133) 

•:an be transformed to the Sturm-Louiville problem: 

[A + f (r,0)]iiJ = 0 (3.134) 

where primes denote d i f f e r e n t i a t i o n with respect to r, f ( r , 0 ) i s the 

normalized i n i t i a l wave p r o f i l e and ijj(r)->-0 as I r j - x » . Whitham shows 

the number of negative eigenvalues X gives the number of s o l i t a r y 

waves which w i l l emerge as t-^<» and the height of these s o l i t a r y waves 

i s : 

h 3 N 
(3.135) 
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I n i 

The nuinber of negative eigenvalues i s found by s o l v i n g the 

i t i a l value problem (see Hammack and Segur (1974)): 

, j j " + f ( r , 0 ) i | j = 0 

,{)C0) = 1 ij;'(0) = 0 

(3.136) 

and counting the number of zero crossings of 

The inverse s c a t t e r i n g theory has been applied to p r a c t i c a l 

problems by Ha^ack and Segur (1974,1978) among others. Han^ack and 

Segur (1974) show t h a t i f the i n i t i a l wave p r o f i l e has net p o s i t i v e 

volume, a t l e a s t one s o l i t a r y wave w i l l emerge followed by a t r a i n of 

s o l i t a r y waves may or may not emerge depending on the form of the 

i n i t i a l wave. I f the wave amplitude i s e n t i r e l y negative, no s o l i t a r y 

waves w i l l emerge. 

3.5.2 T h e _ A n a l ^ t i c . S ^ ^ 

A n a l y t i c s o l u t i o n s of the inverse s c a t t e r i n g problem are 

a v a i l a b l e f o r only a few i n i t i a l wave p r o f i l e s , i . e . , n ( x , 0 ) . One of 

these, given by Whitham ,(1974, p597), i s : 

n(x,0) =A sech2B(x-x^) , (3.137) 

where A i s the wave height and B i s a type of wave number. 

The number of s o l i t a r y waves emerging as x and t - » i s : 
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p + 1 . (3.139) 
where - ^ ^ ^3^2^ 

Note t h a t N i s an inte g e r which i s s t r i c t l y less than | P (e.g. i f 

P = 4.0. N = l ) . The height of the emerging s o l i t a r y waves i s given 

by Whitham (1974) as: 

^̂ 2̂  = i h^B2(P-2n)2 . (3.140) 
h 3 

n=l,2....N 

Since A i s a wave height and 1/B i s a h o r i z o n t a l l e n g t h , the 

nondimensional q u a n t i t y A/h^B^ i s a type of U r s e l l Number. Eq. (3.139) 

can be r e w r i t t e n i n terms of the U r s e l l Number defined by Hammack 

(1972) as: 

U = 
^max ^ (3.141) 

'x max 

Evaluating the U r s e l l Number f o r a wave given by Eq. (3.137) using 

Eq. (3.141) gives: 

and s u b s t i t u t i n g t h i s i n Eq. (3.139) y i e l d s : 

p = ( 1 + ̂ U ) ^ + 1 . (3.143) 

A s p e c i a l case occurs when B^= f ^ ( i . e . a s o l i t a r y wave); then 

U = 9/4 and, from Eq. (3.143), P = 4, hence, using the i n e q u a l i t y of 
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o o H t a r v wave w i l l emerge. 
(3.13S) , o . y one s o X . « y ^^^^^^^ _ 

^ C e l : - - - - - ¬
t h e r e f o r e only one s o l i t a r y wave „ U 1 erne 

form: 

„fe,0)-oH . . c h i l l i 

a o l l t a r y wave whose amplitude has heen reduced hy 

Where » < l , — = ..a h e i g h t of the one s o l i t a r y 

a constant r a t i o over the 

,a,e Which emerges a t I n f i n i t y from (3.1 

Hi-|t(l+8«> 

. m t h a t although I t I t the s o l u t i o n of 

- ' " ' " r t i ; . e i g h t Of the emerging wave i s 

the . . . U a S . - ^ ^^^^^^ I t s o r i g i n a l 

l i n e a r l y p r o p o r t i o n a l to ^^^^^^ 

Shape. ( « s has Important I m p l i c a t i o n s 

J • ^ « 1 - a i l i n Section 5 . 2 ) . discussed xn d e t a x l ^^^^^^^^ ̂ ^^^ ^^^^ 

- — - ' ' ' : r 3 . 3 gives the maximum . s e l l 

"7 "irr'numher Of s o l i t a r y waves w i l l emerge. 

i : l i e the . s e l l .mher of a p a r t i c u l a r wave 

I t shows t h a t I t f o r , , ,5 < u < 6.75, then two s o l i t a r y 

sech^ Shape Ues m the I n t e r v a l a.23 

waves w i l l emerge. 
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Table 3.3 Maximum 
so" • 

U r s e l l Numbers f o r a p a r t i c u l a r number of 
r. » „ «rtrtV.^ T . T a i r o _ 

N 1 2 3 4 5 6 7 

U 
max 

2.25 6.75 13.5 22.5 33.75 46.75 63. 

3.5.3 N.imerical Solutions f o r Wave.^±hArMt£ari-glia£^ 

The S t u r m - L o u i v i l l e problem Eq. (3.134) was solved using 

the Rayleigh-Ritz technique: 

Define the l i n e a r operator: 

L4» = - f ' - f i | ^ , (3.146) 

then Eq. (3.134) can be w r i t t e n as; 

fhere \ i s the eigenvalue. 

The Rayleigh Quotient i s ; 

Q = 

where the inner product i s defined i n general terms as: 

(u,v) uv dr 

(3.147) 

(3.148) 

The eigenvalues X are found by minimizing the Rayleigh Quotient 

Q over a l l f u n c t i o n s \ i ) ( r ) : 
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. min Q . (3.149) 

^ " H r ) ^ 

The c a l c u l a t e d eigenvalue: 

(3.150) 
y = Q 

. of Ea (3.148) f o r a p a r t i c u l a r f u n c t i o n 

r e s u l t i n g from e v a l u a t i o n of Eq. (3. 

, ( . ) , i s a n u p p e r hound on the a c t u a l eigenvalue X: 

(3.151) 
VI > X • 

on . . c . . e . . e . . . o „ * . ) . X„o schemoo 

. .l„«ent function. * ( r ) and although the basic 

,,.eloped us.ng dxffete .plementation and a p p l i -

Kayleigh-Rit. techniques «ere the same, 

cations were quite different. ^ 

schemel: D l M - ^ ' ^ • i C - ) - l ( " ) = » 

i = l 

scheme 2: • W ^ ^ " ) " " 

, » eigenvalue estimates and involves 

A . m a t r i x eigenvalue problem. Scheme 2 
A ol -intearations and a mat r i x e x g 

produces only the height of only the leading 

Integrations and no matrices Th ^^^^ ^^^^ 

s o l i t a r y wave i s required,scheme 2 i s pref 

height i s required Scheme 1 must be used. 
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Let: 

3.5.3.1 Scheme 1: A Sum of Functions 

H r ) = ^ c ^ * ^ ( r ) ; ^ . M = ̂ ^C») = 0 , (3.152) 

i = l 

where the are a r b i t r a r y f u n c t i o n s 

and minimizing Q w i t h respect to c^ gives 

Then s u b s t i t u t i n g i n Eq. (3.148) 

/ ^ l ^ j d r - £ f ( r , 0 ) * , Y - - y £ * i * / ^ _ 

i = l 

j = 1,2,....N 

= 0 

(3.153) 

where primes denote d i f f e r e n t i a t i o n w i t h respect to r , and y Q. 

Eq. (3.153) may be w r i t t e n i n m a t r i x form: 

[ A - B - y D ] c = 0 . (3.154) 

where 
dr 

i ^ j = ƒ f(r,0)<t.^(t>jdr 

'^rL * i * J 
dr 

Eq. (3.154) provides a standard m a t r i x eigenvalue problem, the 

r e s u l t i n g eigenvalues y, being upper bounds on the a c t u a l eigenvalues 

X,: 

X . < y i 
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I n order t o s i m p l i f y the m a t r i x eigenvalue problems i t was 

decided to use orthogonal base f u n c t i o n s The f u n c t i o n s chosen 

were the t r i g o n o m e t r i c f u n c t i o n s : 

^ ^ = s i n i ^ i - 1 . 2 N , (3.155) 

where L i s a l e n g t h l a r g e enough to be considered i n f i n i t e f o r the 

p a r t i c u l a r i n i t i a l wave f ( r , 0 ) , and: 

r ' = r + | 

The t r i g o n o m e t r i c f u n c t i o n s are not i d e a l because the d e f i n i t i o n 

of the l e n g t h L i s a r b i t r a r y , but none of the other r e a d i l y evaluated 

orthogonal f u n c t i o n s such as the orthogonal polynomials have a s u i t a b l e 

form f o r t h i s problem. S u b s t i t u t i n g f o r the base fu n c t i o n s given by 

Eq. (3.155) i n Eq. (3.154) y i e l d s : 

A = —>J - - I cos 

i 5̂  j 

i = i 

(3.156) 

2L 

B. . 
13 

1 é j 

I 
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and using these r e l a t i o n s h i p s the matrix equation i n Eq. (3.154) can 

be s i m p l i f i e d t o : 

[A' -B' - y l ] c = 0 , (3.157) 

where ^\±"~[2~ > ^ i j " ° 

and I i s the i d e n t i t y m atrix. 

To t e s t the numerical scheme, the eigenvalues of waves w i t h 

i n i t i a l shape given by Eq. (3.137) were calculated f o r v a r i o u s wave 

heights A and wave numbers B and compared w i t h the t h e o r e t i c a l 

eigenvalues. (The r e s u l t s are presented i n Appendix D.) The t e s t s 

i n d i c a t e d t h a t t h i s scheme i s sensitive to the choice of the l e n g t h 

L (which i s discussed i n Appendix D) and that i t i s most accurate 

.'or waves from which more than one s o l i t a r y wave w i l l emerge. 

3.5.3.2 Scheme 2: A Single Function 

Since the so l u t i o n sought i s the height of the leading 

s o l i t a r y wave, an obvious choice for the t r i a l f u n c t i o n ^ i s : 

= sech^kr , (3.158) 

which s a t i s f i e s the boundary conditions i|)(±oo)= 0. Using Eq. (3.158), 

the denominator of the Rayleigh Quotient (Eq. 3.149)) i s : 

(i(j,t|j) = J s e c h V d r = ^ , (3.159) 
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and the numerator i s : 

16 
f { ( ^ ' ) ^ - f ( r . O ) } d r = § - l , (3.160) 

where 

I = f f ( r , 0 ) sech'^krdr (3.161) 

Thus, the Rayleigh Quotient becomes: 

^ _ O M l ^ i k 2 _ 4 k j . (3.162) 

Q - (,|̂,,|,) 5 4 

The best estimate of the lowest eigenvalue i s found by minimizing 

the Rayleigh Quotient Q w i t h respect to the parameter k: 

8Q 8, 3 3 91 (3.163) 
9 ^ = 5 ^ - 4 ^ 4^3k ' 

where 

9 1 - -4 r r f ( r , 0 ) sech'+kr tanh kr dr . (3.164) 

S e t t i n g 9Q/9k=0, Eq. (3.163) was solved f o r the parameter k 

using Newton's Rule: 

p = 8^ 3^ 3 ^ | 1 , (3.165) 
Put P dk 5 4 4 9k 

then. 

where 

d i f f e r e n t i a t i n g w i t h respect to the parameter k: 

9 1 = 8 3 9 I _ 3 ^ 9 f i ^ (3.166) 

9k 5 ~ 2 9k 4 9k2 

l ! l = -4 r r 2 f(r,0) IsechSkr - 4 s e c h ^ k r t a n h 2 k r]dr .(3.167) 

9k2 
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Newton's Rule i s : 

^ ( i + l ) . ^ ( i ) _ E ( 4 ^ , (3.168) 

where s u p e r s c r i p t s denote i t e r a t i o n nuinber. Having found k w i t h i n 

given accuracy from Eq. (3.168) i t can be s u b s t i t u t e d i n t o Eq. (3.162) 

to evaluate the Rayleigh Quotient Q, then 

X < Q 

The same t e s t s which were performed f o r Scheme 1 also were 

c a r r i e d out here, using Scheme 2 to c a l c u l a t e the lowest negative 

eigenvalue of waves w i t h shape given by Eq. (3.137). The r e s u l t s , 

presented i n Appendix D, show t h a t t h i s scheme also i s most accurate 

f o r waves from which more than one s o l i t a r y wave w i l l emerge. 



CHAPTER 4 

EXPERIMENTAL EQUIPMENT AND PROCEDURES 

Most of the equipment used i n t h i s i n v e s t i g a t i o n was constructed 

using "U.S. Customary" u n i t s ; however, a l l experimental data 

were taken i n SI (System I n t e r n a t i o n a l e ) u n i t s . I n t h i s chapter, 

i n d e s c r i b i n g the equipment, measurements i n the system of u n i t s 

used m the c o n s t r u c t i o n of the equipment w i l l be stated f i r s t and 

the equivalent measurement i n the other system of u n i t s w i l l be 

stated i n parentheses. 

4 . 1 The Wave Tank 

The wave tank which was used f o r the experimental program 

measures 123.8 f t (37.73 m) long, 2 f t (61 cm) deep and 15h i n . 

(39.4 cm) wide. The tank i s constructed of t h i r t e e n separate 

modules, twelve of which are i d e n t i c a l ; the a d d i t i o n a l module i s 

located a t one end of the wave tank and contains a movable block 

s e c t i o n of the bed which was used by Hammack (1972). This module 

was sealed o f f and not used i n t h i s study. A schematic drawing of 

one of the ten s i m i l a r modules of the wave tank i s shown i n F i g . 4.1. 

D e t a i l s of the c o n s t r u c t i o n of these modules have been given pre

v i o u s l y by French (1969) and w i l l be discussed only b r i e f l y here. 

The side w a l l s of each module are constructed of glass panels 

measuring 5 f t (1.52 m) long, 25 i n . (63.5 cm) high and h i n . (1.27 cm) 

t h i c k . The instrument carriage r a i l s are made of 1 i n . (2.54 cm) 
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F i g . 4.1 Schematic drawing o£ a t y p i c a l tank module ( a f t e r French (1969)) 
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diameter s t a i n l e s s s t e e l rod and are mounted on the top flanges of 

the tank sidewalls w i t h studs spaced at 2 f t (61 cm) i n t e r v a l s . The 

r a i l s were c a r e f u l l y l e v e l e d to w i t h i n 0.001 f t (.3 mm) of a s t i l l 

water surface i n the wave tank. 

To simulate a s h e l f , a f a l s e bottom and f o u r slopes were 

constructed; the d e t a i l s are shown i n F i g . 4.2. The s h e l f was 

constructed of plywood i n 8 f t u n i t s and each was weighted w i t h lead 

b r i c k s to prevent i t f l o a t i n g . The r i b s shown i n F i g . 4.2(a) which 

were placed a t 4 f t centers were shaped so as to al l o w the a i r t o 

escape along the underside of the shelf as the water l e v e l rose 

during f i l l i n g . The s h e l f was sealed by packing the gap between the 

shel f and the glass w a l l s of the tank w i t h 3/8 i n . diameter polyethylene 

rod. 

Three slopes w i t h lengths of 150 cm, 300 cm and 450 cm were 

constructed of 3/4 i n . plywood as shown i n F i g . 4.2(b). Each slope 

was approximately 6 i n . high ( a c t u a l l y 15.54 cm) at the one end where 

i t butted i n t o the she l f and tapered to a feather-edge. The f e a t h e r -

edge was constructed of 16 gauge sheet metal. The h a l f - s i n e t r a n s i t i o n 

shown i n F i g , 4.2(c) was cut from a glued laminated pine block. The 

equation representing the shape of the face of the t r a n s i t i o n i s : 

y = 3 | l + s i n | ( x - 3 ) | , (4.1) 

where x and y are i n u n i t s of inches. 
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AT 4'C E N T E R S 

F i g 4.2(a) Cross-section of the s h e l f . 

BOUNDARY O F 
WAVE TANK 

-16 G A U G E S H E E T M E T A L 

F i g . 4.2(b) E l e v a t i o n of the slopes (L=150 cm, 300 cm and 450 cm) 

F i g . 4.2(c) E l e v a t i o n of the h a l f - s i n e t r a n s i t i o n . 
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4.2 The Wave Generator 

The wave generator which was designed and constructed f o r t h i s 

study consists of a v e r t i c a l p l a t e which i s moved h o r i z o n t a l l y i n a 

prescribed manner by means of a h y d r a u l i c servo-system. The system 

accepts a programmed inp u t v o l t a g e and converts the inp u t e l e c t r i c a l 

s i g n a l i n t o a displacement (which i s d i r e c t l y p r o p o r t i o n a l t o the 

magnitude of the v o l t a g e ) ; hence, the displacement-time h i s t o r y , or 

" t r a j e c t o r y " , of the movement i s p r o p o r t i o n a l to the voltag e - t i m e 

h i s t o r y of the inp u t s i g n a l . For purposes of discussion the o v e r a l l 

wave generating system can be d i v i d e d i n t o three p a r t s ; the 

hy d r a u l i c system, the e l e c t r i c a l servo-system and the c a r r i a g e and 

wave p l a t e . Schematic drawings of the e n t i r e system are shown i n 

F i g . 4.3(a) and (b) and an o v e r a l l view of the wave generator i s 

shown i n the photograph of F i g . 4.4; the various components shown i n 

these f i g u r e s now w i l l be discussed. 

4.2.1 The Hydraulic System 

Tke h y d r a u l i c system consists of an o i l r e s e r v o i r , a pump, 

a f i l t e r , an unloading v a l v e , a check v a l v e , two accumulators, a 

second f i l t e r , a servo-valve and two h y d r a u l i c c y l i n d e r s (only one 

of which can be used at a t i m e ) . Figure 4.5 i s a photograph of the 

hy d r a u l i c supply system which also can be seen i n the lower l e f t of 

Fig . 4.4. I n the background of F i g . 4.5 i s the r e s e r v o i r which has 

a capacity of 40 g a l , (0.152 m3) of h y d r a u l i c o i l . I n f r o n t of the 

r e s e r v o i r i s the pump which i s a Denison, constant volume, a x i a l -

p i s t o n - t y p e pump, r a t e d at 2.9 gpm (0.012 m3/mln) a t 3000 p s i 
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F i g . 4.5 View of t h e h y d r a u l i c supply system. 
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(20,000 kN/m^) and 2.8 gpm (0.011 m3/mln) at 3500 p s i (24.000 kN/m^); 

i t i s powered by a 7.5 hp (5.6 kW). 1800 rpm e l e c t r i c motor. Pro

v i s i o n has been made f o r water c o o l i n g the o i l but under present 

operating c o n d i t i o n s the o i l temperature has never exceeded lOCF (38°C) 

and thus the thermostat has never been a c t i v a t e d . Immediately 

downstream of the pump i s a f i l t e r constructed of s t a i n l e s s s t e e l 

w i r e c l o t h w i t h a nominal and absolute p a r t i c l e diameter r a t i n g of 

5 microns and 15 microns r e s p e c t i v e l y . Downstream of the f i l t e r i s 

an unloading valve which i s followed by a check valve. The unloading 

valve senses the system pressure at a p o i n t downstream of the check 

valve; when the system pressure i s below a preset value (3000 p s i 

during normal operation) the unloading valve d i r e c t s the f l o w of 

hy d r a u l i c f l u i d i n t o the system. Once the desired system pressure i s 

reached, the system side of the valve closes and the f l o w i s d i v e r t e d 

through an a i r - c o o l e d heat exchanger (the r a d i a t o r s t r u c t u r e shown i n 

Fig . 4.5) and back to the r e s e r v o i r . The check valve prevents a 

reverse f l o w through the pump from the pressurized system when power 

to the pump i s turned o f f . 

From the valves, the o i l i s pumped i n t o two 10 g a l . accumulators 

which are mounted on the w a l l above the h y d r a u l i c supply u n i t and can 

be seen i n the background i n F i g . 4.4. Each accumulator c o n s i s t s of a 

rubber bladder f i x e d i n s i d e a pressure v e s s e l . The bladder i s pre-

charged w i t h n i t r o g e n gas a t 600 p s i (4000 k^/m^) and when there i s no 

o i l i n the accumulator, the bladder f i l l s the e n t i r e v e s s e l . When o i l 

i s introduced a t pressure, the increased pressure causes the n i t r o g e n 
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gas and the bladder which contains i t to compress. As more o i l i s 

pumped i n , the pressure continues t o r i s e u n t i l the rated pressure 

of 3O00 p s i (20,000 kN/m^) i s reached when the unloading valve 

a c t i v a t e s and d i r e c t s flow back i n t o the o i l r e s e r v o i r . At t h i s 

pressure each accumulator holds approximately 7 g a l . (0.027 m^) of 

i l which provides a r e s e r v o i r to supply flows which exceed the 

capacity of the pump ( i . e . , 2.9 gpm). The accumulators also serve to 

damp out pressure f l u c t u a t i o n s due to the opening and c l o s i n g of the 

servo-valve and the unloading valve although t h i s was not the primary 

purpose. 

A second f i l t e r (Moog Buta N w i t h nominal f i l t r a t i o n of 10 microns) 

i s I n s t a l l e d downstream of the accumulators to p r o t e c t the servo-valve 

which i s the most s o p h i s t i c a t e d and s e n s i t i v e item of the h y d r a u l i c 

system. The servo-valve a d j u s t s the q u a n t i t y and the d i r e c t i o n of 

the flow of o i l i n d i r e c t p r o p o r t i o n to the e l e c t r i c a l current i t 

receives. The servo-valve i s a Moog Model 72-103 which has a r a t e d 

f l o w of 60 gpm (0.24 m^/min) at 40 ma c u r r e n t . 

The servo-valve d i r e c t s the f l o w of o i l to e i t h e r end of a double-

a c t i n g h y d r a u l i c c y l i n d e r . Two c y l i n d e r s were used i n t h i s study, 

b o t h of which can be seen i n F i g . 4.4; a "long" c y l i n d e r which i s 

mounted beneath the truss and a " s h o r t " c y l i n d e r which i s mounted on 

the sloping face of the t r u s s . I n the photograph the servo-valve i s 

mounted on the shorter c y l i n d e r i n d i c a t i n g t h i s c y l i n d e r was i n use. 

For ope r a t i o n of the "long" c y l i n d e r the servo-valve must be moved to 

a p o s i t i o n i n s i d e the t r u s s not v i s i b l e i n the photograph. The t r u s s 
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was made massive to avoid v i b r a t i o n problems and i n f a c t there i s 

no apparent v i b r a t i o n of the s t r u c t u r e during o p e r a t i o n . The long 

c y l i n d e r i s a M i l l e r Model DH77B c y l i n d e r w i t h 2̂ 2 i n . (6.35 cm) bore 

and 1 3/8 i n . (3.49 cm) rod w i t h a stroke of 96 i n . (2.44 m). The 

c y l i n d e r i s f i t t e d w i t h e x t e r n a l drainbacks to e l i m i n a t e o i l leakage. 

This was important because i t was found even a small amount of o i l 

i n the water caused the wave gauges to behave i n an e r r a t i c manner. 

The l e n g t h of the c y l i n d e r was designed so as to be able to gen

er a t e a s i n g l e or a series of s o l i t a r y waves; each use requires move

ment i n the forward d i r e c t i o n only. However, problems occurred i n the 

generation of p e r i o d i c waves w i t h the a c t u a l motion being d i s t o r t e d 

from the desired motion a t the ends of the s t r o k e . The cause of 

t h i s a f t e r some i n v e s t i g a t i o n was found to be the s t a t i c f r i c t i o n 

between the seals and the p i s t o n rod and the p i s t o n and the c y l i n d e r 

w a l l s which has to be overcome before the p i s t o n can move. At the 

end of a stroke when the p i s t o n i s momentarily at r e s t , before i t 

can begin to move a f o r c e termed the "break-loose f o r c e " must be 

a p p l i e d t o overcome the s t a t i c f r i c t i o n . However, the f o r c e i s 

provided by the d i f f e r e n t i a l pressure across the p i s t o n and t h i s 

pressure takes a f i n i t e time to become s u f f i c i e n t to produce the 

break-loose f o r c e . I n the meantime the i n p u t from the f u n c t i o n 

generator i s c o n t i n u i n g so t h a t when the break-loose f o r c e i s reached 

the p i s t o n has to move f a s t e r than desired to catch up w i t h the i n p u t 

f u n c t i o n . 
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Two ways of reducing t h i s problem are: 

1) To increase the bearing area of the p i s t o n so t h a t the 

d i f f e r e n t i a l pressure r e q u i r e d t o produce the break-loose 

f o r c e i s reduced, and 

i i ) To improve the f r i c t i o n a l c h a r a c t e r i s t i c s of the seals, 

i . e . , to reduce the break-loose f o r c e . 

Both of these were employed i n the design of the smaller c y l i n d e r 

which i s a M i l l e r Model DER-77 c y l i n d e r w i t h 5 i n . (12.7 cm) bore 

and 1 3/4 i n . (4.45 cm) rod w i t h a stroke of 16 i n . (40.6 cm). The 

bearing area of t h i s c y l i n d e r i s 17.3 i n . ^ (112 cm^) compared w i t h 

3.4 in.2 (22 cm2) f o r the longer c y l i n d e r . To ensure f r i c t i o n would 

not cause problems f o r t h i s c y l i n d e r , the manufactured seals were 

removed and replaced by low f r i c t i o n Shamban Va r i d r y R. G. Seals 

Model S32573-132. For these seals the f r i c t i o n i s reduced by reducing 

the bearing area of the seals t o a k n i f e edge. These two measures 

e f f e c t i v e l y e l i m i n a t e d the problem of f r i c t i o n f o r the short c y l i n d e r . 

4.2.2 The Servo-System 

The servo-system co n s i s t s of a f u n c t i o n generator, a 

feedback device and a s e r v o - c o n t r o l l e r . The p r i n c i p l e of op e r a t i o n 

i s t h a t the v o l t a g e from the f u n c t i o n generator and the voltage from 

the feedback device which are of opposite sign are summed i n the 

s e r v o - c o n t r o l l e r which then a m p l i f i e s the r e s u l t i n g c u r r e n t which 

i s t r a n s m i t t e d t o the servo-valve. The servo-valve d i r e c t s f l o w i n 

one d i r e c t i o n or the other depending on the sign of the c u r r e n t ; the 

q u a n t i t y of f l o w through the valve and hence the v e l o c i t y of the p i s t o n 

i s p r o p o r t i o n a l to the magnitude of the c u r r e n t . 
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The purpose of the f u n c t i o n generator i s to provide the v o l t a g e -

time h i s t o r y which i s p r o p o r t i o n a l t o the desired displacement-time 

h i s t o r y , i . e . , the t r a j e c t o r y of the wave p l a t e . The f u n c t i o n 

generator used i n t h i s study was designed and constructed by Shapiro 

S c i e n t i f i c Instruments, Corona d e l Mar, C a l i f o r n i a j a block c i r c u i t 

diagram i s presented i n F i g . 4.6 and the f r o n t face of the e l e c t r o n i c s 

i s shown i n the photograph of F i g . 4.7. The various components of 

the f u n c t i o n generator shown i n F i g . 4.7 w i l l be described b r i e f l y 

f i r s t and the d e t a i l s of operation w i l l be given l a t e r . 

The lower p a r t of the photograph shows the paper tape reader which 

can be used e i t h e r t o load a memory u n i t which can be played back at a 

l a t e r time or to d r i v e the motion d i r e c t l y . Located above the tape 

reader are the three d i g i t a l thumbwheel potentiometers which a l l o w 

s c a l i n g of the amplitude of the motion. The d i a l on the l e f t i n the 

uppermost panel i s the time adjustment. When the switch beside i t i s i n 

the UP p o s i t i o n , the time base i s c a l i b r a t e d i n t e r n a l l y and the r a t e a t 

which the data are generated i s determined by the l a r g e r knob and the 

d i a l . The data r a t e can range from 1 word/sec to 1 x 1 0 ^ words/sec; 

thus, since the memory contains 1000 words, the d u r a t i o n can range 

from 1000 sec to 0.001 sec. When the switch i s i n the down p o s i t i o n , 

the data r a t e may be set between the i n t e r n a l l y c a l i b r a t e d r a t e s 

using the smaller f i n e tuning knob located on the outer p a r t of the 

la r g e r knob. The r i g h t side of the upper panel contains the c o n t r o l s 

f o r the mode of operation—Manual, Run or Load from Tape—and the 

switches which execute the various phases of op e r a t i o n — L o a d Data, 
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F i g . 4 . 6 Block c i r c u i t diagram of the f u n c t i o n generator. 
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Increment Address, Select Address and S t a r t . The nuinber of cycles 

which the f u n c t i o n generator w i l l execute i s governed by the s i n g l e / 

continuous switch on the lower r i g h t of the upper panel. The LED's 

on the upper p a r t of the upper panel d i s p l a y the address and the 

data continuously. Below these i n the center are the d i g i t a l thumb-

..neel switches used f o r manual o p e r a t i o n . 

The f u n c t i o n generator allows almost u n l i m i t e d f l e x i b i l i t y i n 

programming the motion of the wave p l a t e ; however, due to the 

mechanical l i m i t a t i o n s of the system, the wave generator i s less 

f l e x i b l e i n i t s o p e r a t i o n . The only r e s t r i c t i o n s on the f u n c t i o n 

are t h a t i t be adequately described by: 

i ) Equispaced time steps, and 

l i ) Normalizing the stroke between the l i m i t s of 0 and 999 w i t h 

each word ( i . e . , p o i n t ) represented by three d i g i t s , 

-he t r a j e c t o r y may be entered i n any of the f o l l o w i n g three ways: 

1) With 1000 p o i n t s punched on paper tape and stored i n the 

memory. The paper tape, which may be punched e i t h e r manually 

or by computer, i s read i n t o the memory by the tape reader. 

Once i n the memory, the t r a j e c t o r y remains there u n t i l i t 

i s over-ridden or the u n i t i s switched o f f . 

i i ) With 1000 p o i n t s entered manually by means of the d i g i t a l 

thumbwheel switches and stored i n the memory. This f a c i l i t y 

i s u s e f u l i f the paper tape described above contains a bad 

p o i n t (or p o i n t s ) because c o r r e c t i o n s can be made to the 

memory w i t h o u t repunching the tape. 
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„ U . continuous tape tea.ing, ..pessins the .e.ot.. U the 

„e,ectot, cannot be descti.e. by « 00 points, .ote points 

.A d i r e c t l y from P^P^^ ^^^^ 
can be used and the t r a j e c t o r y read d x r e c t l y 

c o n t r o l l e r at the constant r a t e of 37.5 words 

i n t o the s e r v o - c o n t r o l l e r av. 

per second. 

. the tape teadet i s s c a i e . . o . 0 to i n ampUtude 

xne actuai t o t a i amplitude oi the wave .enetatot ( i . e . , t 

are c o n t r o l l e d by the 

.. ̂  .1 d i g i t a l potentiometers shown xn F i g . 
..ree thumhwheel d i g i t ^^^^ ^^^^^^^^ ^^^^ 

i n i t i a l Value. Gain, and I n i t i a l 

.ions irom 0 to ^ and the. have the ioUowlng purposes: 

1, i n i t i a l value i s the i i r s t integer o. the tra , e c t o r . 

11> oam I S an integer d i r e c t l , proportional to the strode. 

For a s t r o k e of S cm the gain i s t 

9 S f o r the long c y l i n d e r 

Gain = Integer p o r t i o n of 

51 s f o r the short c y l i n d e r 

i n i t i a l . o s i t i o n allows adjustment oi the e t - r e s t position 

input and ieedhac. voltages are hoth.ero. When the 
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r e t r a c t e d I n t o the c y l i n d e r ; when i t reads 999 the p i s t o n 

rod i s f u l l y extended from the c y l i n d e r . 

At the completion of the motion, the wave p l a t e w i l l be i n a 

p o s i t i o n given by the product of the Gain and the d i f f e r e n c e between 

the l a s t and f i r s t i n t e g e r s of the program. Pressing the Reset 

att o n l o c a t e d beneath the I n i t i a l P o s i t i o n thumbwheel w i l l r e t u r n 

the p l a t e t o i t s o r i g i n a l p o s i t i o n a t a constant r a t e of 5.5 cm/sec. 

The d u r a t i o n time of the motion i s set using the coarse and f i n e 

adjustment knobs shown i n F i g . 4.7 (and discussed e a r l i e r ) and a 

d i g i t a l c l o c k . Shutting the valve j u s t downstream of the accumulators 

removes the pressure from the servo-valve. I n t h i s depressurized 

s t a t e , the f u n c t i o n generator i s put i n the Continuous mode and the 

Run sw i t c h depressed. The t r a j e c t o r y w i l l cycle continuously w i t h 

the d u r a t i o n of a l t e r n a t e cycles displayed on the d i g i t a l clock. 

Raving set the desired time, the f u n c t i o n generator i s switched to 

the Single mode and the Reset b u t t o n depressed. A f t e r p r e s s u r i z i n g , 

the wave generator I s ready f o r o p e r a t i o n . 

Two d i f f e r e n t devices are used f o r feedback f o r the two c y l i n d e r s . 

For the long c y l i n d e r the feedback voltage i s supplied by the v o l t a g e 

drop across a r o t a r y potentiometer f i x e d to the ca r r i a g e which i s moved 

by a rack and p i n i o n arrangement. The v o l t a g e drop across the 

potentiometer i s d i r e c t l y p r o p o r t i o n a l to the car r i a g e p o s i t i o n . The 

potentiometer i s a H e l i p o t Model 7603 w i t h a ten t u r n , 10 K ohm 

res i s t a n c e and 0.15% Independent l i n e a r i t y . The anti-b a c k l a s h gear 

which has a c i r c u l a r p i t c h of 48 and the p r e c i s i o n rack are Bearing 



110 

S p e c i a l i t i e s Models APA8W-150 and RI-6-C2 r e s p e c t i v e l y . 

For the short c y l i n d e r the p o s i t i o n of the c a r r i a g e i s converted 

i n t o an e l e c t r i c a l s i g n a l by means of an LVDT ( l i n e a r l y v a r i a b l e 

d i f f e r e n t i a l t r a n s f o r m e r ) , C o l l i n s Model LMT 711 P38. The LVDT 

consi s t s of primary and secondary c o i l s wound i n the form of a tube 

i n s i d e which a ferro-magnetic core moves. The primary c o i l i s 

supplied w i t h 6 VAC from the s e r v o - c o n t r o l l e r and the output of the 

secondary c o l l i s returned to the s e r v o - c o n t r o l l e r where i t i s demodu

l a t e d i n t o d i r e c t current. As the core moves w i t h i n the c o i l s , 

the f i e l d i s changed and the demodulated vo l t a g e from the secondary 

c o i l v a r i e s l i n e a r l y w i t h the p o s i t i o n of the core. The core i s 

attached d i r e c t l y to one end of the p i s t o n rod; hence, as the 

p i s t o n moves, the core moves w i t h i n the c o i l s and the demodulated 

vol t a g e from the secondary c o l l v a r i e s l i n e a r l y w i t h the p o s i t i o n 

of the c a r r i a g e . 

The s e r v o - c o n t r o l l e r r e f e r r e d t o above i s a Moog AC/DC servo-

c o n t r o l l e r (Model 82-151), and power pack (Model 82-152). The servo-

c o n t r o l l e r was modified s l i g h t l y f o r t h i s a p p l i c a t i o n and the m o d i f i e d 

c i r c u i t diagram i s presented i n F i g . 4.8. The m o d i f i c a t i o n s are: 

i ) The a d d i t i o n of the bank of r e s i s t o r s which allows f i n e r 

tuning of the e l e c t r i c a l damping than would be a v a i l a b l e 

otherwise. 

i i ) The a d d i t i o n of the i n t e g r a t o r c i r c u i t a f t e r the summing 

p o i n t of the f u n c t i o n generator and the feedback from the 

potentiometer. This improved the response f o r the longer 

c y l i n d e r . 



F i g . 4.8 Block c i r c u i t diagram of the s e r v o - c o n t r o l l e r . 
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i i i ) The o p t i o n a l f e a t u r e of the D i t h e r O s c i l l a t o r which provides 

a 600 Hz e x c i t a t i o n t o the servo-valve and hence improves 

the response was included a l s o . 

Examples of the response of the wave generator are presented i n 

F i g . 4.9 where the s o l i d curves are the programmed motion from the 

f u n c t i o n generator and the dashed curves are the a c t u a l motion from 

the feedback device. Figure 4.9(a) shows the response to a h y p e r b o l i c 

tangent f u n c t i o n which would be used to generate a s o l i t a r y wave 

and F i g . 4.9(b) shows the response to the f u n c t i o n which would be 

used to generate a s e r i e s of cno i d a l waves. The time l a g of approx

imately 0.05 sec between programmed and a c t u a l motion which i s evident 

i n both f i g u r e s i s a f e a t u r e of the s e r v o - c o n t r o l l e r . I n F i g . 4.9(a), 

near the s t a r t and f i n i s h of the motion, the curves f o r both the 

f u n c t i o n and the motion e x h i b i t some roughness. This i s a t t r i b u t e d 

t o the f u n c t i o n being described w i t h voltages equispaced i n time and 

w i t h p r e c i s i o n of only one p a r t i n one thousand. Apart from t h i s , 

the a c t u a l motion shows good agreement w i t h the programmed motion. 

4.2.3 The Carriage and Wave P l a t e 

The c a r r i a g e and wave p l a t e which are i n the foreground 

i n F i g . 4.4 are constructed of aluminum I-beams and p l a t e . The 

c a r r i a g e i s supported on Ih i n . (3.18 cm) hardened s t e e l s h a f t r a i l s 

( P a c i f i c Beariftgs Model SA-20-120) by means of four l i n e a r b a l l 

bushings ( P a c i f i c Bearings Model SPB-20-OPN) mounted beneath the 

support p l a t e as shown i n F i g . 4.4. The v e r t i c a l post extending 

upward from the c a r r i a g e allows f o r the connection of e i t h e r the 
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Examples of the a c t u a l and programmed wave p l a t e d i s p l a c e 

ments f o r (a) s o l i t a r y wave generation and (b) cn o i d a l 

wave generation. 
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upper short c y l i n d e r or the lower long c y l i n d e r depending on the 

motion desired. 

To avoid problems of leakage around the wave p l a t e , the wave 

p l a t e i s sealed against the glass side w a l l s and s t e e l bottom of the 

wave tank by means of rubber windshield wiper blades. The device 

which holds the wiper blades i s shown i n F i g . 4.10. I t c o n s i s t s of 

two i d e n t i c a l aluminum bars w i t h grooves cut out to accept the body 

of the wiper blade. The blade i s held i n place by t i g h t l y b o l t i n g 

the two bars together. The wiper blade and holder are attached t o 

the wave p l a t e by #8 screws a t 4 i n . (10.2 cm) i n t e r v a l s . The holes 

i n the holder through which the screws pass are s l o t t e d so as to a l l o w 

adjustment of the distance the wiper blade protrudes beyond the 

edge of the p l a t e . This distance was set such t h a t the wiper blade 

bears against the glass s i d e w a l l s and s t e e l bottom of the tank i n 

the manner shown i n F i g . 4,10 over the f u l l l e n g t h of the tr a v e r s e 

of the wave p l a t e . 

4.4 The Measurement of Wave Amplitudes 

Resistance wave gauges are used i n conjunc t i o n w i t h the Hewlett 

Packard (7700 Series) recorder i n order to measure wave amplitudes 

as a f u n c t i o n of time at a s p e c i f i c l o c a t i o n i n the wave tank. A 

drawing of a t y p i c a l wave gauge i s shown i n F i g . 4.11. The wave 

gauge c o n s i s t s of two s t a i n l e s s s t e e l wires 3.25 i n . long w i t h a 

diameter of 0.01 i n . , and spaced 0.16 i n . a p a r t . The wires are 

stretched t a u t and p a r a l l e l i n a frame constructed of 1/8 i n . diameter 



F i g . 4.10 Drawing of the blade h o l d e r . 
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F i g . 4.12 C i r c u i t diagram f o r wave gauges ( a f t e r Okoye (1970)). 
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s t a i n l e s s s t e e l rod. The wires are i n s u l a t e d e l e c t r i c a l l y from each 

other i n the frame, however, a c u r r e n t can pass between the wires 

when they are immersed i n a conducting f l u i d . A Hewlett Packard 

C a r r i e r P r e a m p l i f i e r (Model 8805 A) i s used to supply the 2400 cps/4.5 

v o l t e x c i t a t i o n f o r the gauges as i n d i c a t e d by the c i r c u i t diagram 

. F i g . 4.12. The output s i g n a l from the wave gauge i s also received 

by the C a r r i e r P r e a m p l i f i e r which a f t e r demodulation and a m p l i f i c a 

t i o n i s displayed on the recording u n i t . As the immersion of a wave 

gauge i s v a r i e d i n a conducting s o l u t i o n , the resistance i n the 

c i r c u i t changes p r o p o r t i o n a l l y , causing an imbalance i n the f u l l 

b r idge c i r c u i t shown i n F i g . 4.12; t h i s imbalance i s recorded as a 

change from the balanced p o s i t i o n . 

The wave gauge i s attached t o a remotely c o n t r o l l e d c a l i b r a t i o n 

device which allows f i v e wave gauges to be c a l i b r a t e d simultaneously. 

The c a l i b r a t i o n device i s mounted on an instrument c a r r i a g e r e s t i n g 

on the s t a i n l e s s s t e e l r a i l s which are mounted to the w a l l s of the 

wave tank. The c a l i b r a t i o n device, which i s shown i n F i g . 4.13(a), 

co n s i s t s of a rack and p i n i o n d r i v e n by a synchronous motor. The 

wave gauge i s attached to the rack and i t s weight i s counterbalanced 

by a lead weight. The synchronous motor (GE Model SG 101) I s connected 

to the master c o n t r o l shown i n F i g . 4.13(b) which c o n s i s t s of a 

synchronous generator (GE Model SF 142) which i s d r i v e n by a p i n i o n 

and the rack of a p o i n t gauge. When the p o i n t gauge i s moved, a 

c u r r e n t i s generated and relayed to the motors which move the wave 

gauges v e r t i c a l l y . There i s a one-to-one r e l a t i o n s h i p between movement 
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F i g . 4.13(b) View of t h e master c o n t r o l . 
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of the p o i n t gauge and v e r t i c a l displacement of the wave gauge so 

t h a t , f o r example, a 1 cm d e f l e c t i o n of the p o i n t gauge w i l l move 

the wave gauge 1 cm v e r t i c a l l y . To c a l i b r a t e , the f u l l bridge 

c i r c u i t f i r s t i s balanced a t a f i x e d gauge Immersion, then the gauge 

i s immersed and withdrawn a known distance from the balanced p o s i t i o n 

means of the p o i n t gauge and the d e f l e c t i o n of the s t y l u s i s noted. 

This procedure i s repeated f o r various immersions and withdrawals 

and a t y p i c a l c a l i b r a t i o n curve which r e s u l t s i s shown i n F i g . 4.14(a). 

I f the wave gauge record i s to be recorded using an a n a l o g - t o - d i g l t a l 

converter, the p o s i t i o n of the p o i n t gauge may be represented e l e c t r i c a l l y 

by means of the potentiometer shown i n the foreground of F i g . 4.13(b). A 

t y p i c a l c a l i b r a t i o n curve using t h i s method i s shown i n F i g . 4.14(b). 

Notice the c l u s t e r s of p o i n t s a t regu l a r i n t e r v a l s along the curve. 

These occur because, when t u r n i n g the wheel on the p o i n t gauge shown 

i n F i g . 4.13(b), a f t e r t u r n i n g to the l i m i t one's w r i s t w i l l r o t a t e , 

the hand i s l i f t e d and the w r i s t r o t a t e d back i n order to continue 

t u r n i n g . During the time i t takes to l i f t one's hand and r o t a t e the 

w r i s t back, data s t i l l are being recorded by the A/D converter and 

these appear as c l u s t e r s of p o i n t s i n the c a l i b r a t i o n curve. The 

s c a t t e r i s caused by e r r o r s i n the A/D converter. 

Every wave gauge i s c a l i b r a t e d before each experiment; however, 

no c a l i b r a t i o n curves were obtained a t the end of the experiment, since 

each experiment was completed w i t h i n minutes of the i n i t i a l c a l i b r a t i o n . 
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CHAPTER 5 

RESULTS AND DISCUSSION OF RESULTS 

The v a r i o u s aspects of the problem of long waves propagating 

to a shelf to be discussed I n t h i s s e c t i o n can be I l l u s t r a t e d best 

by considering a t y p i c a l experiment, the layout of which I s shown 

i n F i g . 5.1. For t h i s experiment, the upstream depth ĥ ^ was 25 cm 

and the height of the she l f was 15.54 cm, thus the depth r a t i o 

ih^/h^) was 2.64. The f r o n t face of the shelf was v e r t i c a l ( i . e . a 

s t e p ) . Five wave gauges were located as shown i n the f i g u r e : Gauge 1 

was placed 23 h^ (5.75 m) upstream of the step; Gauge 2 was placed 

at the step; and Gauges 3, 4.and 5 were placed a t I n t e r v a l s of 60 

(5.68 m) downstream of the step. The distance from Gauge 5 to the end 

of the wave tank was 30 h^, so t h a t waves had t r a v e l l e d 60 h^ between 

being f i r s t recorded at Gauge 5, r e f l e c t i n g o f f the tank endwall and 

being recorded a second time a t Gauge 5. 

A s o l i t a r y wave was generated by moving the wave generator w i t h 

the t r a j e c t o r y given by Eq. (3.50) f o r a r e l a t i v e wave height of 

H/h=0.1, a stroke of 18.25 cm and a period of 4.24 sec. The v a r i a t i o n 

f the water surface e l e v a t i o n as a f u n c t i o n of time as recorded by 

the wave gauge i s shown i n F i g . 5.2. The i n c i d e n t wave i s the f i r s t 

wave recorded a t Gauge 1; i t has a height H, of 2.5 cm. Notice t h a t 

i t i s symmetric about the c r e s t and there are no t r a i l i n g o s c i l l a t o r y 

aaves. 

o 
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Fig 
. 5 . 1 The layo u t and the various aspects of a t y p i c a l experiment. 
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F i g . 5.2 Os c i l l o g r a p h record from a t y p i c a l experiment of a s o l i t a r y wave propagating over a step onto 
a s h e l f . 
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... l„ciae« wave propagate, ova. the step apd oo.o ..e a . e l . . 

. .3 r e n e c r a . apd „ a v e . .ac. .o„a..s ..e wave genera... 

.na second wave recorded a. Oange . i s . . i s r e i i e c c e d wave, i t s 

. . ,.is0.3c.a„di.ssnapeisso.ewna.diiierenr.an.eincrdenc 

wave. 

,3 ..S c. compared .o . 3 c. i o r cne i n c i d e n t wave i . s snape 

. n,. «s th a t of the I n c i d e n t wave. I n t a c t 
appears to be about the same as tha t 

^^--irplv l i n e a r i t would 
i f the r e f l e c t i o n - t r a n s m i s s i o n process were e n t i r e l y 

the i n c i d e n t and r e f l e c t e d waves to obtaxn the 
be possible to superpose the xncxden 

reasons w i l l be discussed i n some d e t a i l l a t e r . 

rhe shelf a r a t h e r remarkable event 
As the wave propagates on the s h e l l 

, . the s i n g l e wave recorded at the step s p l i t s up i n t o a 
rakes place: tne bxugx'^ 

L j o . s o l i t a r , waves o i d i . e r e n t heights i o l l o w e d h. a t r a i n o i 

. . 1 amplitude, o s c i l l a t o r , waves, . h i s i s a p r a c t i c a l e.ample o i 

..a inverse s c a t t e r i n g t h e o r . discussed i n Section 3.3. For t h i s 

p a r t i c u l a r case the theor. can be used t o p r e d i c t the number a . 

„j t-ViP wave at tne 
b e . b t O i the waves as i o l l o w s : the time racor 

3.ap i s transiormed approximately i n t o a s p e c i a l re cor . 

time coordinate b. a phase speed determined such tha t 
. . nd r e f l e c t e d waves sum to the xncxdent wave 

of the t r a n s m i t t e d and r e t i e c t t ; 

w i t h wave heights 4 . 5 , j.„„lng 

„ O i t r l c t i o n . so applying an experimentally determined 
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equation Cthe de t a i l s e£ whieh w i l l he discussed l a t e r ) , the corrected 

„ave heights which are predicted at .- 360 h, (the second pass o£ 

Gauge 3) are 2.6, 1.5, 0.7 and 0.1 cm. Tha i i r s t three are similar 

to the wave heights recorded experimentally at x = 360 h^. 

As the wave t r a i n propagates off the shelf Into deep water, 

dispersion takes place immediately. The small waves which appear at 

Gauge 3 at ahout 48 sec are those which were reflected hack from the 

step when the wave t r a i n propagated into deep water. 

The various aspects of F i g s . 5.1 and 5.2 (wave generation and 

propagation i n constant depth, r e f l e c t i o n , transmission, transformation 

on the shelf and propagation into deep water) w i l l now be considered 

sequentially and in d e t a i l , including theoretical aspects of the 

problem. 

5.1 M.ve generation .nd Pronaeation 1n a Constant Depth 

5.1.1 The Generation of Solitary Haves 

Ham«ck and Segur (1974) showed theoretically and 

experimentally that from any block of water with net positive volume 

at l e a s t one s o l i t a r y wave followed by a t r a i n o£ o s c i l l a t o r y waves 

w i l l eventually evolve. Consequently, s o l i t a r y waves can be generated 

i n the laboratory simply by producing a block of water ahove the s t i l l 

water l e v e l and allowing i t to propagate a s u f f i c i e n t distance for 

s o l i t a r y waves to emerge. Figure 5.3 I s an oscillograph record showing 

hy a l i n e a r displacement-time history of the wave generator. For t h i s 

case the depth was constant throughout the tank and equal to 10 cm, the 



.3 Oscill o g r a p h record of the waves generated by a ramp t r a j e c t o r y (S = 10.33 cm, T = 0.80 sec and 
h =10 cm). 
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stroke was 10.33 cm and the d u r a t i o n of motion was 0.8 sec. The gauges 

were spaced 2.5 m apart ( i . e . , 25 depths) w i t h Gauge 1 placed 1.0 m 

from the wave p l a t e . I n i t i a l l y (Gauge 1) the wave has an a r b i t r a r y 

shape w i t h a s i n g l e main c r e s t followed by a deep trough and several 

o s c i l l a t o r y waves. By the time the wave has propagated the 25 depths 

to Gauge 2, a s o l i t a r y wave w i t h a r e l a t i v e height of H/h=0.18 has 

emerged followed by a t r a i n of o s c i l l a t o r y waves w i t h heights which 

are about 25% of the height of the leading s o l i t a r y wave. As the waves 

propagate, the s o l i t a r y wave q u i c k l y outpaces the remainder of the 

t r a i n u n t i l a t Gauge 5, 110 depths from generation, the s o l i t a r y wave 

i s completely separate from the t r a i l i n g o s c i l l a t o r y waves. For 

many l a b o r a t o r y studies t h i s method of wave generation would be 

s a t i s f a c t o r y ; however, i n t h i s study the s o l i t a r y wave I n t e r a c t e d w i t h 

a step or a slope producing a r e f l e c t e d wave whose c h a r a c t e r i s t i c s i t 

was desired to measure. T r a i l i n g waves such as those f o l l o w i n g the 

main wave i n F i g . 5.3 would have I n t e r a c t e d w i t h the r e f l e c t e d wave 

causing d i f f i c u l t i e s i n i n t e r p r e t i n g the measured wave. Therefore, 

considerable e f f o r t was made to e l i m i n a t e the t r a i l i n g waves from the 

i n i t i a l l y generated wave. 

Re f e r r i n g to the wave generation theory developed i n Section 3.2, 

i f the p o s i t i o n of the wave p l a t e i s neglected i n the v e l o c i t y of the 

water p a r t i c l e s ( i . e . , i f ü(0,t) i s used Instead of ü ( C , t ) ) , the 

generation t r a j e c t o r y f o r s o l i t a r y waves of a l l heights I s : 

^ = " „ h 7.6(H) . (3-1) 



128 

t. T7̂  54") and T I s the 
as before. S i s the stroke given hy M- (3.3« 

ii,„hieh.as ahont... O f t h e height O i t h e . ^ 

„hen a iin e a r tre.eetory »as nse. cas sho^n i n . i g . 3.3,.co.i 

to as i i t t i e as i C . Ke.notion of the o s e i i i a t o r y tar 

fnrther. however, r e t i r e d i.ie.entatio„ of the f n i i theory o 

3 . . . . 3... i n the theory, i t b e r e e a i i e . the tra t^^^^^^ 

KoHaVit H/h. Thus seven t r a j e c t o r x e 
fnnetion of the r e l a t i v e wave height 

prepared for r e l a t i v e „ave heights of from 0.1 to 0.7 

. , „ith displaeement normalised „lth respect to 
0 1 These t r a j e c t o r i e s , with d i s p i 

tie'stroke, and time normalised „ith.respect to the duration, are 

d m F i g 3... The t r a j e c t o r i e s are evidently of similar shape, 

„„„aimensional slope 

heing distinguishable from one another only by 

a t mldstroke: 

l + H/h 

fr.r a r e l a t i v e wave h e i g h t „hich implies the S l o p e of the trajectory for a r l 

0 7 IS 75% of that for a r e l a t i v e wave height of H/h 0. 
of H/h-u./ J- uoi'pht to another i s 

difference i n t r a j e c t o r i e s from one r e l a t i v e wave height 

. the degree of "tuning" being attempted was 
small; however, since the degree 

,l„e. i t was considered necessary, i n i t i a l l y at l e a s t , 

as fine as t h i s into account ^^^^ ^^^^^^^^^^ ^^^^^^^^^ 

The oscillograph record from a typ 

d m n g 5.5. The setup was precisely tha same as was 

i s presented i n Fig. „,,,,tory used was the 
R but I n t h i s case the tr a j e c u u y 

described f o r F i g . 5.3, but m 
descrxoe , •aly.-O 2 As before the 
s o l i t a r y wave trajectory for a wave height H/h - 0.2. 
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(S = 10.33 cm, T = 2.044 sec and h = 1 0 cm). 
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depth was 10 cm and the stroke was 10.33 cm, but I n t h i s case the 

d u r a t i o n was 2.044 sec. The f i g u r e shows the t r a i l i n g waves nearly 

have been e l i m i n a t e d , except f o r small amplitude, high frequency 

waves which are a t t r i b u t e d to surface tension e f f e c t s . 

The d u r a t i o n , T = 2.044 sec, i s 7.4% greater than the t h e o r e t i c a l 

d u r a t i o n c a l c u l a t e d using Eq. (3.56). I t was found t h a t increasing 

the d u r a t i o n of the t r a j e c t o r y by 10% the amplitude of the t r a i l i n g 

waves was reduced by 1% to 2%. I t i s at t h i s stage t h a t using the 

r e f i n e d t r a j e c t o r i e s i s important because i f one attempts to generate 

a wave w i t h the wrong t r a j e c t o r y , the t r a i l i n g waves cannot be reduced 

as much by a d j u s t i n g the d u r a t i o n as they can be i f the c o r r e c t 

t r a j e c t o r y i s used. 

That the optimum d u r a t i o n i s not the t h e o r e t i c a l d u r a t i o n i s 

a t t r i b u t e d to the approximate nature of the assumptions t h a t : 

1) the a c t u a l motion of the wave p l a t e i s the programmed 

motion (see Section 4,2.2); 

11) the v e l o c i t y d i s t r i b u t i o n i s constant w i t h depth (see 

Eq. (3.5) i n Section 3.1); and 

i l l ) a l a b o r a t o r y s o l i t a r y wave i s given by the Boussinesq 

p r o f i l e (Eq. ( 3 . 2 5 ) ) . 

The l a t t e r assumption i s addressed i n F i g . 5.6 i n which the shape 

of s o l i t a r y waves w i t h r e l a t i v e heights of H/h=0.15 and 0.61 are com

pared w i t h the th e o r i e s of Boussinesq (1872) and McCowan (1891). (A 

summary of these t h e o r i e s i s presented i n Table 5.1 which was extracted 

from Naheer (1977)). For small wave hei g h t s , the s o l i t a r y waves derived 
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F l g . 5.6 Comparison of the shape of s o l i t a r y waves w i t h r e l a t i v e 

heights (a) H/h =0.15 and (b) H/h = 0.61 w i t h the t h e o r i e s 

of Boussinesq and McCowan. 
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TaUe 5.1 solution, o i the ̂ oUtety »eve due to Bouesines,, McCowan 

and L a i t o n e . (Naheer (19//;; 

Boussinesq McCowan Laitone 

Wave prof i l e n = 

(3 
h N slnM(l+n/h) H s e c h a ( a f ) [ l - f | ( l W ^ ) ] 

Wave prof i l e n = 
M[cosM(l+n/h) + coshM^J 

H s e c h a ( a f ) [ l - f | ( l W ^ ) ] 

Wave speed C = /gh(l+H/h) tanM 
CM 

Fluid p a r t i c l e 
velocities 

horizontal u = 

(1 

Cn 
h+n 

CN(I+ c o s M ^ coshl^) 

(cosM^ +coshï^)^ 

v e r t i c a l v = 

(2 
CN slnM^ s i n h l ^ 

( c o s l ^ + cosW^)'' 

Notes 

1) u I s averaged 
over the depth 
applying continuity 
consideration 
2) expression for the 
v e r t i c a l velocity was 
not presented by 
Boussinesq for s o l i 
tary waves 

3) the relationships for 

N and M are 

N = f s l n ^ [ M ( l + f | ) ] 

4) 

. = v f ('-ID-©'" 

by Boussinesq (1872) and McCowan (1891) are coincident except a t the 

leading and t r a i l i n g edges and, as shown by F i g . 5.6(a). the shape of 

small experimental waves compares w e l l w i t h the t h e o r i e s . However, as 

the wave heig h t increases, the Boussinesq and McCowan p r o f i l e s become 

d i f f e r e n t , w i t h the Boussinesq p r o f i l e being wider a t the c r e s t and 

narrower a t the leading and t r a i l i n g edges. For r e l a t i v e wave heights 

which are greater than 0.3, the experimental waves were found t o f o l l o w 

Boussinesq near the c r e s t and McCowan a t the edges, as shown i n 

Fi g . 5.6(b). (This same phenomenon was observed by French (1969) i n 

experiments conducted i n the same wave tank as was used f o r these 

experiments, but w i t h a d i f f e r e n t method of wave generation.) 



134 

Ihe generation and propagation data £or aoUtary waves whieh 

„al he presented were ohtalned I r o . two different sets of experiments. 

experiments to he deserlhed In Seetion 3.2. The experiments were 

,„r r e l a t i v e wave heights of from H/h=0.05 to 0.63 and for depths 

.rom 17.2, om to 31.0B cm. The data were ohtalned from a wave 

gangs placed 8.4 m from the I n i t i a l position of the wave plate. The 

.at of experiments was performed to Investigate the hehavlor 

of s o l i t a r y waves as they propagate. Five wave ganges were used, 

gauges spaced at 4.0 m I n t e r v a l s downstream. Two depths were 

from H/h = 0.1 to 0.6. I n t h i s discussion, the data from the f i r s t 

aet of experiments and the data from Gauge 1 of the second set of 

experiments w i l l he presented f i r s t , l a t e r the data from the remain

ing four gauges of the second set of experiments w i l l he compared to 

the data from Gauge 1. 

The s o l i t a r y wave generation data are presented In Mg. 3.7 

u 'crx^t H/h The equation of the t h e o r e t i c a l 
of the r e l a t i v e wave hexght H/h. me eq 

curve, which can be derived from Eq. (3.54), i s : 

H I 3 H (5.3) 

u •cv.^c m/h < 0.1) the theory agrees q u i t e w e l l 
For small wave hexghts w m u . x y 



135 

0.4 

0.35 

0.3f-
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0. 

h(cm) x/h 

+ 31.08 27.0 

A 23.31 36.0 
• 21.76 38.6 
X 20.73 40.5 
0 18.13 46.3 
O 17.27 48.6 
V 10.00 10.0 
< 5.00 20.0 

0.05 

0 

'8 

H /S =y3H/I6h 

< O 

O 

0 

O* 

X 
0 0.1 0.2 0.3 OM 

H / h 

< 
of 

0.5 0.6 0.7 

5 7 v a r i a t i o n of H/S w i t h the r e l a t i v e wave h e i g h t , H/h, f o r 

s o l i t a r y wave generation. 
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„1.. the aata; however, ee the r e l e U v e wave hel.hr Increases, rhe 

13 f r o . the „ave seneraCor. . r l c r l o n cannoc he rhe only cause ol 

numerator. ^ j 4„ 

Xhe rime-amplitude h i s t o r i e s irom „hlch the data presented 

,1,. 3.V were ohtalned „ere d i . l t l . e d and a comparison oi the ioUow-

properties with those oi theoretical s o l i t a r y waves was made, 

. o f the s o l i t a r y waves was compared to the shape 
i ) The shape o f the soxit-i'-y 

oi the Bousslnes, s o l i t a r y wave hy noting that, i n F i g . 3.6. 

,orh waves follow the Boussines, theory i o r the upper , 

oi the wave height. Therefore.a regression analysis could 

. t h . nart of the wave where the amplitude 
be performed on the part oi 

1 • n a and t i n the expression: 
exceeded | H to determine » 

, , . \ (5.4) 
„ = Hj^g sech^ S(t - t„) 

.or a l l hut 11 of the 63 experimental waves considered, the 

coef f i c i e n t of determination, r ^ was greater than 0.999 

and the minimum for a l l 65 experiments „as 0.990 which 

indicates the surface p r o f i l e s of the waves are well 

deserlhed hy a sech^ curve, ( m t h i s discussion, waves 

with t h i s feature fre,uently w i l l he referred to as having 

"sech^ shape.") The calculated wave height, H^^g, ag«ad 

With the measured wave height to within the wave gauge 
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e r r o r of ±0.04 cm f o r waves less than 2 cm I n height and 

±2% f o r l a r g e r waves. The frequency, Ü, I s compared w i t h 

t h a t of the Boussinesq theory described by: 

i n F i g . 5.8 where the nondimensional frequency ü/h/g i s 

p l o t t e d as a f u n c t i o n of the r e l a t i v e wave height H/h. 

The data f o l l o w the theory f o r small wave heights (H/h<0.2) 

but f o r l a r g e r wave heights the frequency i s less than 

the theory p r e d i c t s . This implies the experimental waves 

were less peaked than the theory p r e d i c t s . The dashed 

curve i n F i g . 5.8 represents the best f i t of the data t o 

an expression w i t h the form; 

(The regression a n a l y s i s gave a=0.28 w i t h c o e f f i c i e n t of 

determination r ^ = 0.69.) 

i i ) Since the gauge at which the s o l i t a r y waves were measured 

was less than 50 depths from generation, i t was po s s i b l e 

t h a t the propagation distance was i n s u f f i c i e n t f o r the 

leading s o l i t a r y wave to completely separate from the 

remainder of the t r a i n . To check t h i s , the waves were 

propagated a n a l y t i c a l l y to i n f i n i t y using the technique 

of inverse s c a t t e r i n g . For a p a r t i c u l a r i n i t i a l wave, the 

ana l y s i s y i e l d s the number and heights of s o l i t a r y waves 



, „ „£ the " £ « < , u e W o£ experlmentel s o l i t a r y waves 

r i t f t t r o f t h ^ B o u s s l n e s , theory. 
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which emerge at I n f i n i t y . For a wave which I s I n i t i a l l y 

a s o l i t a r y wave, only one s o l i t a r y wave w i t h the same 

heigh t as the i n i t i a l wave w i l l emerge a t i n f i n i t y . The 

r e s u l t s of t h i s a n a l y s i s on the 65 waves considered here 

are presented i n F i g . 5.9 where the r a t i o of the wave 

heigh t c a l c u l a t e d from inverse s c a t t e r i n g to the wave 

heigh t which was measured, H^j^/H, i s p l o t t e d as a f u n c t i o n 

of the measured r e l a t i v e wave h e i g h t , H/h. The h o r i z o n t a l 

l i n e represents the t h e o r e t i c a l r e s u l t t h a t a wave which 

i s i n i t i a l l y a s o l i t a r y wave w i l l r e t a i n i t s height at 

i n f i n i t y . The data from the second set of experiments a l l 

l i e below the t h e o r e t i c a l l i n e and t h i s w i l l be discussed 

i n d e t a i l p r e s e n t l y . The m a j o r i t y of the data from the 

f i r s t set of experiments l i e between H3.^/H=0.98 and 1.08 

i n d i c a t i n g the waves would have r e t a i n e d t h e i r shape i f 

they had propagated to i n f i n i t y i n the absence of f r i c t i o n . 

One exception i s the wave w i t h height H/h=0.61 i n depth 

h = 21.76 and f o r t h i s wave the theory p r e d i c t e d two s o l i t a r y 

waves would emerge a t i n f i n i t y , 

i l l ) The volume under the experimental s o l i t a r y waves i s 

compared to the t h e o r i e s of Boussinesq (1872) and McCowan 

(1891) I n F i g . 5.10 where nondimensional volume per u n i t 

w i d t h , V/h2, i s p l o t t e d as a f u n c t i o n of the r e l a t i v e wave 

h e i g h t , H/h. The s o l i d curve i s the theory of Boussinesq 

(1872) and the dashed curve i s the theory of McCowan (1891). 



•R-ia. 5.9 

s c a t t e r e d to measured wave he i g h t r a t i o , 
v a r i a t i o n of the inverse s c a t t e r e d 

H^^/H, w i t h r e l a t i v e wave 
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. . a u wave .eights, the theone...a coincident hu. 

as wave height incteases. .ccowan.s t h e e , predicts a 

, a a t e t voin . e than B o n s s i n . s , . theory, then as the 

approaches h r e a . i n g C H / h . 0 . . , . ^ -^^^^^^^^ 

_ . g e again. ^"'^ ' 
i,„t- a<? the r e l a t i v e 

data agree well with the theories hut 

, rte experi-ental waves have greater 
wave height increases the exp 

, . l n . e than either oi the theories predict. 

,.13 I S evident i r o . n g . 3.e which shows the e 

.ental p r o i U e ioUows 3 o n s s i n e s . s theory m the c 

and Kccowan.s at the edges W h i c h can only the tot 

volume greater than either theory. 

. s o l i t a r y waves generated i n the 
These r e s u l t s show the ^^^^^^^ 

,, with the theories for small r e l a t i v e 
generally agree well with 

Aa a s o l i t a r y wave propagates i n 

. on the S i d e walls and the hottom of the flume 
effect of f r i c t i o n on ^ ^^^^^^^^ _ 

— - " - - ^ ^ " " ^ " T h : e g . S c o t t - . u s s e l l C l S . « . 

. . r a h l e attention i n the pas h ^^^^^^ ̂  ̂ ^^^^^ _ 

- - ^ " r : ; : : : : : r t : : : a . . . ^ e t w e e n t 
but i n none of these ,„„lving the theory 

f f l c i e n t l y good to be confident i n applying 
experiment s u f f i c i e n t l y g , , set of experiments 

K . r a t i v e experiments. Therefore, a set 
wit h o u t c o r r o b a r a t i v e exp determine 

cpt") was conductea 
J „»i-,r a s the second set; 

(described p r e v i o u s l y as t n 
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the damping c h a r a c t e r i s t i c s of s o l i t a r y waves i n t h i s flume and i n 

p a r t i c u l a r to determine, f o r a range of wave height and depth, the 

damping exponent ƒ i n : 

H = Ĥ e-'̂ /̂̂  . (5.7) 

here i s the i n i t i a l wave hei g h t . The exponential form was used 

because°the data seem to f i t Eq. (5.7) q u i t e w e l l . As mentioned 

p r e v i o u s l y , f i v e wave gauges were used, w i t h Gauge 1 placed 1.0 m 

from the wave p l a t e and the other four gauges spaced at 4.0 m 

i n t e r v a l s downstream. A s o l i t a r y wave was generated and recorded 

on the o s c i l l o g r a p h and, i n a d d i t i o n , on magnetic tape using an 

a n a l o g - t o - d i g i t a l (A/D) converter. 

The c r e s t height H, the inverse scattered wave height H^^, and 

the wave height H^^^ and frequency Ü from regression on the upper 

2/3 of the wave records were obtained from each d i g i t i z e d record, 

data are presented i n F i g s . 5.11 to 5.13. F i g . 5.11 i s a p l o t 

f the damping exponent ƒ as a f u n c t i o n of the r e l a t i v e wave height 

H^h. where both ƒ and were obtained by semi-log regression using 

Eq. (5. 7 ) . Data from Naheer (1977) which were, f o r greater depths 

than were considered here and f o r a tank w i d t h of 110 cm are included 

i n the f i g u r e . The curves are the theory of Keulegan (1948) which 

also can be expressed approximately i n the form of Eq. (5.7) w i t h 

the damping exponent given by: 

(5.8) 

The 

o 

1 /H \ / 9u' 

^ 3\h \ b ,1/2 hV^ 
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.005h 

SYMBOL h (cm) 

• 
• 

5.0 
10.0 

PRESENT STUDY -

O 12.8 
A 
• 

14.5 
18.5 

NAHEER (1977) -

O 26.2 -

H/h 

5.11 V a r i a t i o n of the damping exponent, ƒ, w i t h r e l a t i v e 
h eight H/h f o r s o l i t a r y waves. 
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„Hete V i s ths Unematic v i s c o s i t y . . i s the width oi the tan. and 

. i i other quantities are as have heen deiined previousiy. The theory 

predicts a small v a r i a t i o n oi the exponent, f . with wave height hut 

the data do not appear to exhihit t h i s . However, the increase i n 

the exponent with decreasing depth which the theory predicts also i s 

e x h i b i t e d by the data. 

.-^.-.c m Hr, and ^) were c a l c u l a t e d from 
The other q u a n t i t i e s "Reg 

... i n an e f f o r t t o determine i f and how the shape of 
the wave records m an e i i u i u 

the wave changed as i t propagated, i n F i g . 5.12 the ratio o i 

the wave height calculated hy inverse scattering to the measured 

wave height, H,^/H. i s plotted as a iunction oi the measured r e l a t i v e 

wave height, H/h. Bach symhol r e i e r s to a d i i i e r e n t experiment and 

point was ta.en. e.g., symhols with a v e r t i c a l t i c U ahove denote 

Gauge 1. The figure shows, for a l l experiments, the wave height 

other gluges the wave height r a t i o i s scattered ahout unity. The 

rhe t l ^ e i t reached Gauge 2 i t had, and as i t propagated reduction i n 

wave height due to f r i c t i o n was accompanied hy the appropriate change 

In shape i o r that wave height. 

This i s further I l l u s t r a t e d i n Fig. 5.13 where the frequency, «, 

oalculated from regression on the upper 2/3 of the wave i s plotted as 

a function of r e l a t i v e height, H/h. The s o l i d curve i n F i g . 3.13 i s 
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the theory of Boussinesq as given by Eq. (5.5) | the dashed curve 

represents the best f i t of the data, other than those from Gauge 1, 

to an expression w i t h the form of Eq. (5.6) ( i n t h i s case i t was 

found a =-.004). The frequency of the wave a t Gauge 1 i n a l l cases 

i s greater than the frequency of the wave when i t passes the other 

gauges. This i m p l i e s the wave becomes less peaked as i t propagates 

from Gauge 1 t o Gauge 2. However, the data from the other gauges 

appear to be less scattered which i n d i c a t e s the shape i s not changing 

as r a p i d l y as i t does between Gauges 1 and 2. 

The speed of propagation, or c e l e r i t y , of s o l i t a r y waves was 

measured by p l a c i n g f i v e wave gauges 0.45 m a p a r t , generating a 

wave and recording the times at which the c r e s t passed each gauge. 

The c e l e r i t y was c a l c u l a t e d by l i n e a r r e g r e s s i o n from the f i v e 

p a i r s of x and t and i s p l o t t e d as a f u n c t i o n of the r e l a t i v e wave 

height i n F i g . 5.14(a). With the gauges only 0.45 m a p a r t , the change 

i n height of the wave between the f i r s t and f i f t h gauges was n e g l i g i b l e 

so the average of the f i v e wave heights was used. The three curves 

i n F i g . 5.14(a) represent the th e o r i e s of Boussinesq (1872), McCowan 

(1891) and Laitone (1963). The the o r i e s of Boussinesq and Laitone 

agree up to a wave height H/h=0.2, then diverge s l i g h t l y w i t h the 

Boussinesq theory p r e d i c t i n g a l a r g e r c e l e r i t y (2% l a r g e r f o r H/h=0.7) 

The theory of McCowan agrees w i t h the other two up to a wave height 

H/h=0.12, then diverges to p r e d i c t c e l e r i t i e s which are s i g n i f i c a n t l y 

less than the other two t h e o r i e s . The data tend to f o l l o w the theory 

of Laitone more than any other which i s a r e s u l t also found by D a i l y 
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(5.10) 

, a932) and French (1969). Their data along with those 
and Stephan (1952) ^^^^^ ̂ ^^^^^ . 

of Naheer (1977) are presented rn Fxg. 

5 1 3 T h e ^ f f i « a t l o n _ o l ^ n 2 i ^ ^ 

•a d i f f i c u l t hecause nonlinear effects can never 
- - lahorator. iS d r f f i c ^^^^^^^^^^ 

he completely eliminated. This 

a wave oi form: {S.9) 
nCx.t) - a sin(l«-<.t) 

and suhstltutmg into the KdV equation: 

n,-o(^4S)v4co^^^-.-° • 

^ .or nonlinear effects to he negllglhle. the magnitude 

Where c „ - ^ . „„.t he much l e s s than the magnitude 

Of the nonlinear term ,, c (3.9) and (5.10) . 

of the dispersive term-jc^h n^x-

, a 1 2 . (5.11) 

A kh<Tr/10, thus Eq. (5.11) 
..̂  „Qiiallv assumed t h a t Kni,'^-^ » 

For long waves, i t i s u s u a l l y 

i m p l i e s : ^ ^2 (5.12) 

t Ï0Ö 

.... . . . . . . « - • T T . , ' : : . " 

extremely small. Because propagate w i t h 

n o i d a l waves which although n o n l i n e a r , P P 
t h i s study were cnoi d a l wave 
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constant form. 

The wave generation theory developed I n Section 3.2 was ap p l i e d 

to produce s i x c n o i d a l wave generation t r a j e c t o r i e s , named CNl to CN6, 

which were stored on punched paper tape. The t r a j e c t o r i e s , the 

t h e o r e t i c a l shape of the waves the t r a j e c t o r i e s generate, and other 

associated data are presented i n F i g . 5.15, where the abscissas 

are time normalized by the wave p e r i o d , t/T, and the ordlnates are 

the displacement normalized by the s t r o k e , 5/S, and the wave amplitude 

normalized by the wave h e i g h t , n/H. T r a j e c t o r i e s CNl t o CN4 have a 

nondimensional p e r i o d : T/i7h= 20.3 and wave heights which, s t a r t i n g 

w i t h H/h=0.025, double successively. For t r a j e c t o r i e s CN5 and CN6 

the r e l a t i v e wave height i s : H/h=0.6 and the nondimensional periods 

are: T/i7h= 20 and 40. The t r a j e c t o r i e s i n F i g . 5.15 correspond 

to a range of the complementary parameter, m', of 0.470>m' > 9.53x10"^ 

As the complementary parameter, m', decreases, the c r e s t of the 

t r a j e c t o r y moves towards the l e f t which means the average speed i n 

the forward d i r e c t i o n i s greater than the average speed i n the reverse 

d i r e c t i o n . Since forward motion of the generator p l a t e produces the 

wave c r e s t w h i l e reverse motion produces the trough, greater speed 

i n the forward d i r e c t i o n produces a higher c r e s t and consequently a 

shallower trough than i f the average spped were the same i n both 

d i r e c t i o n s . I n a d d i t i o n , as the p r o p o r t i o n of the period i n which 

forward motion of the p l a t e takes place decreases, the wave c r e s t 

becomes more peaked. 

The a c t u a l waves which t r a j e c t o r i e s CNl to CN6 generated 



(t+g/T t/T 

5.15 T r a j e c t o r y shapes, waves and associated data f o r c n o i d a l wave t r a j e c t o r i e s CNl to CN6. 
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are compared to t h e o r e t i c a l c n o i d a l wave shapes i n F i g . 5.16. For 

these experiments a wave gauge was placed 1.0 m from the wave 

generator and a t r a i n of c n o i d a l waves was generated. The data f o r 

F i g . 5.16 were taken from the t h i r d cycle which passed the gauge. 

The wave hei g h t used f o r the t h e o r e t i c a l wave was the measured wave 

h e i g h t , which was i n general less than what the generation theory 

p r e d i c t e d . F i g . 5.16 i n d i c a t e s t h a t the generated wave shapes are 

pr e d i c t e d q u i t e w e l l by the theory. 

Figure 5.17 i s the o s c i l l o g r a p h recording of the v a r i a t i o n of 

the water surface during a t y p i c a l wave generation experiment using 

t r a j e c t o r y CN4. The f i v e wave gauges were spaced 2.5 m apart w i t h 

Gauge 1 placed 1.0 m away from the wave generator. For t h i s e x p e r i 

ment the depth was h = 2 0 cm, the stroke was S = 11.18 cm and the 

per i o d was T=2.90 sec. The wave generator executed four c ycles, 

as shown by the displacement time record a t the bottom of the f i g u r e , 

and four waves r e s u l t e d . The behavior of the leading and t r a i l i n g 

waves w i l l be discussed l a t e r . A t t e n t i o n i s c a l l e d here to the waves 

i n the middle of the t r a i n which r e t a i n the same shape from gauge t o 

gauge. Compare t h i s w i t h the recording shown i n F i g . 5.18 i n which 

everything i s the same as f o r F i g . 5.17 except t h a t the period was 

increased t o 4.28 sec. I n F i g . 5.18 the wave shape i s not constant 

between gauges; there appears to be a secondary wave as i n d i c a t e d i n 

the f i g u r e w i t h a p e r i o d h a l f the main p e r i o d . This phenomenon was 

examined by Madsen (1971) f o r waves w i t h small U r s e l l Numbers, 

HL^/h^. He showed, using Stokes second order theory, t h a t the waves 
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Tj/h o.osi 
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CN4 0 . 2 0 2 0 . 3 3 85 .0 5 . 3 8 X IQ - ' 

1 

+ + 

) 1 

» -r ' 

1 1 1 1 1 
0 0.1 0 . 2 0.3 Q.ll a.s 0 .6 

t / T 

0.7 o.fl 0.9 1 

1 1 1 - \ 1 1 l l l l 

TRAJ. H/h TVgTii HLVh' m' 

€ N 5 0 . 6 0 20.01 3 3 2 2 . 2 2 X 1 0 " ' 

^ • — 

i I 1 1 

+ 

1 1 1 1 
0 0.1 0 .2 0.3 . o.u O.S 

t / T 

0.6 0.7 O.B 0 .9 1 

1 1 1— 1 1 1 1 1 1 1 

TRAJ. H/h T v ^ H L V h ' m' 

CN6 0 . 5 4 4 0 . 0 1229 L 0 4 X 1 0 " " 

_ ] 1 1 -

-T ^ 
_1 I 1 L-

0 0 .1 0.2 0.3 O.li 0 .5 O.G 0.7 0.6 0 .9 I 

t / T 

F i g . 5.16(b) Comparison of the shape of experimental c n o i d a l waves 
w i t h theory. ( T r a j e c t o r i e s CN4, CN5 and CN6) 
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F i g . 5.18 O s c i l l o g r a p h record showing the waves generated by t r a j e c t o r y CN4 w i t h h = 2 0 cm, S=11.18 cm 
and T = 4.28 sec. 



158 

generated by sinusoidal trajectory, 5 = ^isinoit, have the form: 

Ti(x,t) = a sinCkx-ut) +ap s i n 2 ( k x - u t ) 

(5.13) 

where 

+ aj^ sin(k^ü) - 2ut) 

(1)̂  = gk tanh kh and k-j^ > 2k. 

The f i r s t two terms represent a Stokes wave. The t h i r d term i s a 

f r e e second harmonic wave which t r a v e l s a t a slower speed than the 

Stokes wave and thus causes the wave shape to change as i t propagates. 

Madsen showed t h a t the second f r e e harmonic wave can be e l i m i n a t e d 

by using a t r a j e c t o r y w i t h the form: 

5 = ?3^cos(wt)+ ?2 sin(2a)t) , (5.1^) 

i n which the second h a l f - s t r o k e ^2 i s adjusted so as t o make a^^O. 

As was shown i n Section 3.2, f o r HL^/hS<10 , Stokes waves and 

c n o i d a l waves are c o i n c i d e n t . Hence, the theory of Section 3.2 

produces the same and ^2 ^ Eq. (5.14) as does Madsen's theory; 

however, f o r t h i s theory the arguments of the t r i g o n o m e t r i c f u n c t i o n 

i n Eq. (5.14) are ( u t - kO instead of u t . The changing wave shape 

i n F i g . 5.18 cannot be expressed i n the form of Eq. (5.13) because 

f o r t h i s case HL^/h^'v^ 120 which i s w e l l o utside the range of a p p l i 

c a b i l i t y of Stokes waves (HL^/hS<10), however the phenomenon i s 

s i m i l a r . Cnoidal waves, t h e r e f o r e , are generated only by t h e i r unique 

t r a j e c t o r y and unless t h i s t r a j e c t o r y i s used, the waves change shape 

as they propagate. 
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, , r M i to CN6 w i l l 
hat trajecotries CNi 

This discussion seems to ijnply t a ^̂ ^̂ ^̂ ^ however, since 

produce only the waves f o r which they were "'^^^^^^^ 

the t r a j e c t o r i e s were stored on tape i n the no by 

^. ^ IS f i e. with displace 
they are p l o t t e d i n Fxg. ^ - i ^ „ith 

ther cnoKiai-
s t r o k e ) , i t was possible to generate o 

V, t different s t i " 
. r a j e c t o r i e s w i t h the same shape ^^^^ ̂ ^^^^^ 

To f i n d which waves have t r a j e c t o r i e s w ^^^^^^g^y distinguishes 

noted i n F i g . 5.15. the only '^^'^''^J^^.l ^stance f r - the 

one t r a j e c t o r y from another i s the absciss 

. , p the value of the 
o r d i n a t e axis to the c r e s t , i . e . . distance has 

3 8 i t can be seen 
c r e s t . R e f e r r i n g back to Fig. • » ^^^^.^ ^^^ed to 

been defined already: i t i s twice the ^ ^^^^ ̂ ^^^^^^ 

Ot IT Fig. 5.19 ̂ ® 
s t a r t motion from zero, ^^qI^' constant wave 

j-jr The curves are 

the nondimensional period T/g/ti. particular tjï 

h e i g h t H/h and the h o r i z o n t a l l i n e s are o ^^^^^ ^^^^^^^^ 

corresponding to t r a j e c t o r i e s CNl to • ^ ^ ^ ^ ^ r e l a t i v e wave 

t h a t f o r CN5 which was designed for period ^^^^^^^ ^^^^^ ^^^^^^ ̂ ^^^^ 

' heig h t H/h =0.60. waves w i t h (period, wave t„/T = 0.135. 

the satne mag"* 
(23.3, 0.4), (26.2. 0.3), etc. have „^ve height pairs 

her of p e r i " " ' 
The h a l f t r a j e c t o r i e s of a num displacement 

, I n Table ^'^> 

f o r which t,/T = 0.200 are -"^^^^'^^^^ .^^piaceaent. 

normalized w i t h respect to the maximum ^ ^^^^^.isons made: for" 

The t a b l e i l l u s t r a t e s a feature common ^ essentially 
y~7h> 20 the traje c c o i 

a p a r t i c u l a r t /T and f o r T/g/ - possible 
. f o r a given t r a j e c t o r y shape, 

the same. Therefore, f o r a giv 
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Fie 5 19 V a r i a t i o n s of the r e l a t i v e time, t / T , w i t h nondimensional 
F i g . 5.iy v a r i a t i ^ c n o i d a l wave generation t r a j e c t o r i e s . 



161 

Table 5.2 Comparison of Generation T r a j e c t o r i e s f o r t^/T=0.200. 

f o r a h a l f period f o r various wave height and 
'max 

per i o d combinations. 

H/h 0.2 0.1 0.05 0.025 

\ ^ » ^ 16.36 21.33 28.81 40.0 

t / T ^ \ 

0.0 0.0 0.0 0.0 0.0 

0.05 0.408 0.412 0.414 0.416 

0.10 0.738 0.741 0.743 0.746 

0.15 0.937 0.939 0.939 0.940 

0.20 1.000 1.000 1.000 1.000 

0.25 0.947 0.950 0.951 0.951 

0.30 0.817 0.823 0.825 0.825 

0.35 0,639 0.644 0.650 0.650 

0.40 0.437 0.443 0.446 0.447 

0.45 0.221 0.225 0.227 0.227 

0.50 0.0 0.0 0.0 0.0 
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„ set the petiod end the etro.e to senetate cnoidal waves othet 

than those tot which the tta.ectoty was designed without genetatlng 

secondat. waves. That this was cottect only fot T^iTh . 20 t a l s e s 

an i n t e t e s t m s point. The cnoidal wave telations (Appendl. A, have 

no mathematical r e s t r i c t i o n s on the period (or, e,nlvalently, the 

wave length). The relations apply e<,nally as well to a wave with 

. / i T h - l as they do to a wave with T/iTh-lOO. Thus, the long 

„ave assumption I s an external physical re,ulrement. However, when 

the generation theory I s extended to waves which are not long. i . e . . 

T/i7h< 20, I t produces r e s u l t s which are different from those for 

Physically long waves CT/i7h> 20) with the same t„/T. For example, 

the trajectory shapes change s l i g h t l y for constant t„/T as shown In 

Tahle 5.2, and the curves for various H,h In . I g . 5.» converge. The 

reason for t h i s I s that although the long wave assumption I s not 

e x p l i c i t m the mathematical r e l a t i o n s . I t s t i l l must he there 

I m p l i c i t l y . 

wave part of the H/S vs l/T/i7h plot often used for small amplitude 

wave generation. The wall-hnown small amplitude theory (see, e.g., 

„rsell at. (1.5B)) I s represented hy the curve passing through the 

constant r e l a t i v e wave height H,h. For l/T/i7h= 0, I.e., waves with 

i n f i n i t e period CsoUtary waves), the v a r i a t i o n of H/S with H/h I s 

• n h y H . J O " . which I S E,. (3.54). As the quantity l/T/i7h 
given by. g \ i 6 h ' . n „ 

the curves I n F i g . 5.20 converge and. I n f a c t , a c t u a l l y 
increases, the curves l u i-x^ 
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„oss for l/l/i7h>0.06. Cloarly, the theory I s i n v a l i d «hen t h i s 

oocurs, i . e . . when the long wave e r l t e r i o n (h/i.0.05) i s violated. 

The experiments performed to test the generation theory Involved 

generating waves of varlons periods with eaeh of the t r a j e c t o r i e s , 

C«l to CN6, and measuring the wave heights 1.0 m irom the wave plate. 

The r e s u l t s are presented i n ïlg. 5.21 which i s the same as F i g . 5.20 

hut with the addition of curves of constant t„/T (the dashed curves) 

and the experimental data. Comparison of experiment with theory ta.es 

place m two ways. F i r s t , the symhol shapes are associated with a 

p a r t i c u l a r trajectory represented hy a dashed curve (e.g., the points 

represented hy s o l i d triangles were generated hy traiectory C.6). 

second, the position of the f l a g on the symhol defines the range of 

wave height i n which a particular point l i e s , (e.g.. symhols with a 

v e r t i c a l f l a g imply the r e l a t i v e wave height: H/h<0.05). Thus, the 

position of the point r e l a t i v e to the curves of constant wave 

height IS also a comparison with the theory. I t i s evident that for 

t r a j e c t o r i e s CN5 and C « (which were designed for H/h.0.6 and 

T/i7h.20 and 40) a l l the experimental points l i e helow the t h e o r e t i c a l 

curves. For the waves generated by trajectory C»4, H/S i s either on 

Io r t r a i e c t o r i e s CKl, CB2 and CS3 the 
or below the theoretical curve. For trajector 

points l i e above, helow or on the theoretical curves. Thus, the 

agreement with the theory i s better ior larger t„/T. A possible 

reason for t h i s i s that the t r a j e c t o r i e s with smaller t„/T generate 

high frequency small amplitude waves which appear i n the trough of the 

main wave. This can be seen i n F i g . 5.16 where a wave with H/h = 0.54 



0.01 0.02 0.03 0.04 0.05 0.06 

F i g . 5.21 V a r i a t i o n of H/S w i t h the inverse 
nondimensional p e r i o d l / x / i / h f o r c n o i d a l wave generation. 
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was generated by t r a j e c t o r y CN6 and also to a lesser extent i n 

F i g . 5.17 where the t r a j e c t o r y used was CN4. The e f f e c t i s even 

more pronounced i n F i g . 5.22 which shows the waves generated by 

t r a j e c t o r y CN6 i n a depth of 5 cm w i t h stroke S = 6.07 cm and perio d 

T = 3.40 sec, which corresponds to H/S = 0.304 and l/T/i7h = 0.021 i n 

Fig. 5.21. (This f i g u r e w i l l be discussed i n more d e t a i l p r e s e n t l y . ) 

The generation of spurious high frequency waves d e t r a c t s from 

the energy a v a i l a b l e to generate the desired wave, so the e f f e c t i s 

a r e d u c t i o n i n wave hei g h t . Harmonic ana l y s i s proved f r u i t l e s s f o r 

t h i s problem because cnoidal waves have c o n t r i b u t i o n s a t a l l frequen

cies so the spurious high frequency waves could not be separated from 

the c n o i d a l wave components. A period r e p r e s e n t a t i v e of the waves 

i n the trough at Gauge 1 i n F i g . 5.22 i s 0.35 sec which gives a 

nondimensional period of T v ^ « 5 and a wave l e n g t h of L«10 cm. 

c a p i l l a r y waves at an air / w a t e r i n t e r f a c e have L«1.7 cm which i s an 

order of magnitude less than the observed waves so i t i s concluded 

t h a t the waves are not caused by surface tension. Conversely, T/i7h«5 

i s about a quarter of the minimum period f o r long waves so the 

spurious waves would not be predicted by any long wave theory. Having 

excluded the two extremes of c a p i l l a r y and long waves, only s h o r t 

and intermediate waves remain, but no theory other than the f u l l 

Navier Stokes equations i s known which could p r e d i c t the simultaneous 

appearance of both cnoidal waves and short waves. 

One approximation which i s made i n the generation theory and i t s 

a p p l i c a t i o n which can be eliminated as a cause of lower wave heights 
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F i g . 5.22 O s c i l l o g r a p h record of the waves generated by t r a j e c t o r y CN6 w i t h h = 5 cm, S = 5.07 cm and 
T = 3.40 sec. 
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i s the uss O i . S P . avsrage. veiooi.ios sn. a v o . i c a i 

„nve pi a t s . This i s hecansa the disagreament i s worse ior iarge 

,ario.s Where rhe v e i o c i r . d i s t r i h n r i o n with depth wouid he near , 

t i o n v a r i e s more w i t h depth. 

3.1.4 T h ^ ^ ^ - ^ ^ - ^ i ^ a i J ^ H S . ^ ^ ^ ^ 

.he propagation oi enoidai waves was eonsidered i n two 

, , 3 s e s : Short range propagation whieh i s relevant to t h i s stnd. 

and iong range propagation whieh i s oi general Interest 

.n example oi short range propagation was presented m F i g . 3. 

W h i e h Shows a p a o . t oi ionr waves propagating 30 depths. At Oange . 

.ive depths irom the wave generator, the crest and trongh amplitndes 

the same ior a l l ionr waves and the c r e s t s are e,„ispaced i n 

rime. AS the t r a i n propagates, the height oi the leading wave 

herween i t s crest and the crest oi the next wave increases h, a . 

... period irom gange to gange indicating the leading wave 

rear oi the t r a i n maintains the same amplitude as the two central 

„onghs hut increases i n period as the t r a i n propagates. he small. 

period from gauge to gauge. 

„.3ts appears unaiiected. Hance, the decrease In height irom gauge 
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ganse of the „avee i n the eente. oi the t r a i n i s attrihuted to 

i r i e t i o n e n t i r e i . . .»o sets oi experiments were periorme. to test 

..nerate. and the height oi the t h i r . wave passing eaeh gange was 

reeor.ea. . regression analysis was periorme. on these wave herghts 

.0 determine the i n i t i a l height an. the exponent f i n the .amping 

data ineln.ing the e o e i i i e l e n t o i .etermlnation, r ^ For twent, 

the twenty-eight experiments the l a t t e r excee.e. 0.9 whioh 

. . l e a t e s the .eerease in wave height with propagation .istance 

I S reasonahl, well représenté. h. the exponential agnation. (=• ) • 

.he data exhlhlt eonsi.erahle seatter hnt. even allowing i o r thrs. 

.o v a r i a t i o n oi damping exponent . with wave height H„/h i s apparent 

s 9 3 w i t h F i g . 5.11 which showed the 
i n F i g . 5.23. comparing F i g . 5.23 w i t h F i g 

the similar depths considered. Cor comparison. 

h. (3.S) i o r s o l i t a r y wave damping are presented i n i g . 3 

.he wave gange records oi the experiments mar.e. with an a s t e r i s k 

C*) m F i g . 3.2. were d i g i t i z e d nsing an A/B converter and an 
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Symbol 

O 

Trajec tory 

CN4 

CN5 

CN6 

CN5 

CN6 

Depth 
(cm) 

10.0 

10.0 

10.0 

A.5 

4 . 5 

H / h 

0.076 
0 .012* 
0.147 
0.185 
0 .193* 
0 .245 

0.092 
0.184 
0.284 
0.439 
0.440 

p.086 
0.131 
0.179 
0.269 
0.361 
0.414 

0.129 
0 .184* 
0.284 
0.391 
0 . 642* 

0.122 
0 .199* 
0.239 
0 .383* 
0.441 
0 .536* 

ƒ X 10^ 

0 .98 
1 .63 
1.08 
0 .81 
1.48 
1 .12 

0 . 6 5 
0 . 9 5 
0 .94 
1.11 
0 .75 

0 . 7 5 
1 .05 
1.50 
1.14 
1.07 
1.29 

2 .61 
1.34 
2 .08 
1 .42 
3 .25 

1.47 
1 .43 
1 .52 
1.21 
2 .19 
0 .74 

0 .994 
0 .970 
0 .938 
0 . 9 3 2 
0 .950 
0 .980 

0 .888 
0 .872 
0 . 9 0 2 
0 .877 
0 .527 

0 .974 
0 . 9 5 6 
0 .937 
0 .827 
0 . 7 4 5 
0 .393 

0 . 8 5 6 
0.934 
0 . 9 7 5 
0 .963 
0 . 9 2 5 

0 .969 
0 . 9 5 5 
0 .947 
0.927 
0.914 
0 .985 

^ f w i t h r e l a t i v e wave 
F i g . 5.23 v a r i a t i o n of the damping exponent, wxth 

^ h e i g h t , H/h, f o r c n o i d a l waves. 
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Change aa t h e i . height decteaeee dne to i t i c t i o n a l e i f ecta and whether 

the ahape remains cnoidal. Harmonic analysis was nsed only hecanse 

i t provides a means oi quantitatively descrihing the complicated 

shape oi a wave. The r e s n l t s i o r the i i r s t three ire,nency components 

are presented i n F i g . 3.24 where the component amplitndes. normalised 

W i t h respect to the wave height, are plotted against ^ . The corves 

presented i n F i g . 3.24 are the theoretical curves which were deserlhed 

i n section 3.1 and plotted i n Mg. 3.3; they represent the i i r s t three 

theoretical Fourier components oi cnoidal waves. As the wave propa

gates, the period remains constant hut the wave height, H. ̂  hence 

the c e l e r i t y (and the wave length, L) decrease; thereiore, ^3 

decreases. Hence, the progression irom one wave gauge to another i n 

a downstream direction corresponds to moving irom right to l e i t In 

F i g . 3.24 ( i . e . m the direction oi decreasing a pa r t i c u l a r 

point at the l e i t irom Gauge 3. Apart irom one experiment, the 

th e o r e t i c a l curves agree well with the data with no apparent trend 

o. the data either towards or away irom the theoretical curves. Thus, 

the waves r e t a i n cnoidal shape as they propagate even though the wave 

height decreases due to f r i c t i o n . The exception i s the experiment 

, ^ = 2 0 W h i c h exhlhits large variations i n the second and 

third components. I t i s t h i s experiment for which, i n F i g . 3.23. 

the damping exponent f i s conslderahly greater than ior the other 

exponents (ƒ - 3.23 x l O - , . Therefore, i t i s concluded that for t h i s 

„ave the wave shape was changing as i t propagated due to Improper 



F i g . 5.24 
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generation. 

Another quantity of Intereat I n the propagation of enoldal wavea 

l a their apeed of propagation or c e l e r i t y . The theoretical r e l a t i o n 

i o r c e l e r i t y (see, e.g., Svendsen (1974» I s : 

gh h 

where . i s the e l l i p t i c parameter and K and E are the f i r s t and 

second complete e l l i p t i c Integrals respectively. The^arameter a. 

which i s a iunction of only m or, equivalently, only | r • i= P l " ' " ^ 

against ^ , i n F i g . 5.25. For large ^ . a tends to unity and 

, 1 , 5.25 v a r i a t i o n oi the c e l e r i t y parameter, a, with U r s e l l «umher, 

HL^/h^, f o r c n o i d a l waves. 
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the c e l e r i t y tends to the s o l i t a r y wave c e l e r i t y , c -

A3 goes to zero the parameter a goes to negative i n f i n i t y b ut, 

since small ^ implies small wave height a l s o , the c e l e r i t y remains 

f i n i t e and tends to c = » ^ • 

The c e l e r i t y of c n o i d a l waves generated i n the l a b o r a t o r y was 

measured by p l a c i n g f i v e wave gauges 0.45 m a p a r t , generating a 

group of waves and recording the time at which a p a r t i c u l a r c r e s t 

passed each gauge. The c e l e r i t y was c a l c u l a t e d by l i n e a r regression 

from the f i v e p a i r s of x and t and i s p l o t t e d as a f u n c t i o n of wave 

heigh t i n F i g . 5.26. With the gauges only 0.45 cm a p a r t , the change 

i n height of the waves between the f i r s t and f i f t h gauges was 

n e g l i g i b l e so the average of the f i v e wave heights was used. The^ 

numbers next to the p o i n t s i n F i g . 5.26 represent the value of ^ 

(» denotes a s o l i t a r y wave). The curves are the theory as given by 

Eqs. (5.15) and (5.16) , f o r constant values of ̂  . The dashed curve 

represents the long wave l i m i t of h/L< .05. The s c a t t e r e x h i b i t e d 

by the data i s p a r t i a l l y explained by the s e n s i t i v i t y of the graph 

exceeding the accuracy of the data. (For waves w i t h l a r g e U r s e l l 

Number t h i s i s less of a problem because the wave c r e s t s are sharp 

and t h e r e f o r e w e l l defined, but f o r waves w i t h a small U r s e l l Number 

the c r e s t i s less peaked and i t s p o s i t i o n i s not as w e l l defined.) 

I n s p i t e of the s c a t t e r the trend i s f o r the cnoidal wave c e l e r i t y 

to be gen e r a l l y less than the theory p r e d i c t s , w h i l e the s o l i t a r y 

wave c e l e r i t y i s w e l l defined by the theory. 

Only near f i e l d propagation has been considered so f a r . Also 
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F i g . 5.26 v a r i a t i o n of c e l e r i t y of s o l i t a r y and cnoid a l waves w i t h 

r e l a t i v e wave h e i g h t , H/h. 
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„£ int e r e s t le what happens to a t r a i n of enoldal waves as I t 

propagates to I n f i n i t y . The Inverse seatterlng theory predlets 

one s o l i t a r y wave w i l l e.erge-the lead wave, hnt the theory does 

not provide Information ahont the t r a i l i n g waves. An example cf 

the long distance propagation In the lahoratory of a t r a i n of cnoidal 

„aves was presented earUer I n F i g . 5.22 which shows a p a C e t of 

£„nr cnoidal waves propagating 340 depths from generation. The 

hehavlor of the leading c r e s t , which slowly separates from the t r a i n 

and the t r a i l i n g trongh, which Increases In dnratlon, was deserlhed 

e a r l i e r when considering near f l e l d propagation. Of more Interest 

vary hy up to 0.025 cm ( I . e . , 1.3% of the wave height,. The period, 

set at 3.40 sec, varies hetween 3.37 sec and 3.40 sec. These 

fluctuations are considered too small to Imply any change I s ta.ing 

place to the center of the t r a i n as I t propagates the 340 depths 

from generation. However. I t cannot he concluded from t h i s limited 

aspect of the study that the t r a i n would continue to propagate In 

t i n f i n i t y even i n the absence of f r i c t i o n , 
t h i s manner to i n f i n i t y ev^u 

5.2 T.. deflection of '-"11 " - v " ° "'^"""^ 

5.2.1 T.. l e c t i o n of - f t o m a Step 

The ^ " " ^ ..ondlsnerslve theory deserlhed In Section 3.4. 

when applied to s o l i t a r y waves propagating over a step onto a shelf, 

predicts the reflected wave w i l l r etain the same shape as the 
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i n c i d e n t wave, but the amplitude w i l l be scaled by the r e f l e c t i o n 

c o e f f i c i e n t (given by Eq. , (3.113)). Hence, the p r e d i c t e d r e f l e c t e d 

wave would be given by: 

na = H,sech^VÏf ̂ ^̂^̂^ ' 
.here H, i s the height of the i n c i d e n t s o l i t a r y wave and H^ i s the 

r e f l e c t e d wave height given by: 

A s e r i e s of experiments were conducted, f o r a range of wave 

heights and depths, to t e s t the v a l i d i t y of the l i n e a r _ n o n ^ ^ 

theory when ap p l i e d t o the r e f l e c t i o n of s o l i t a r y waves from a step. 

The experiments comprised e s s e n t i a l l y the arrangement described 

e a r l i e r and shown i n F i g . 5.1 except t h a t one of the gauges from 

the s h e l f was removed and placed adjacent to Gauge 1. This gauge 

was adjusted to be more s e n s i t i v e than Gauge 1 so t h a t maximum resolu

t i o n of the r e f l e c t e d wave (which had height 10-45% of the i n c i d e n t 

wave) could be achieved. E l e c t r i c a l i n t e r f e r e n c e between the gauges 

was minimized by c a r e f u l l y and d i r e c t l y grounding the gauge support 

clamps. 

The experiments were performed i n two sets: i n the f i r s t set 

the e f f e c t of the height of the i n c i d e n t wave on the r e f l e c t e d wave 

was examined; i n the second set the e f f e c t of the depth r a t i o on the 

r e f l e c t e d wave was examined. 
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The f i r s t set comprised 51 experiments w i t h I n c i d e n t wave 

height to depth r a t i o s H^/h^ var y i n g from 0.05 to 0.65 and w i t h depth 

r a t i o s : h^/h2 of 2, 3. 3.5, 4, 7 and 10. The height of the shelf 

was 15.54 cm and Gauge 1 was s i t u a t e d 5.7 m upstream of the step. 

A s o l i t a r y wave was generated and the i n c i d e n t and r e f l e c t e d waves 

were recorded. Both waves were d i g i t i z e d and the f o l l o w i n g q u a n t i t i e s 

were c a l c u l a t e d : maximum wave amplitude. Inverse scattered wave 

height and volume. The r e s u l t s f o r the I n c i d e n t waves were presented 

i n Section 5.1.2; the r e s u l t s f o r the r e f l e c t e d waves r e l a t i v e to 

these i n c i d e n t waves are p l o t t e d as a f u n c t i o n of the r e l a t i v e wave 

hei g h t , Hj/h^, I n Figs. 5.27 to 5.29. 

Figure 5.27 shows the r a t i o of measured wave heights H^/Hj 

p l o t t e d as a f u n c t i o n of the i n c i d e n t wave height r a t i o H^/h^. The 

l i n e s represent the best f i t through the experimental p o i n t s . They 

i n d i c a t e t h a t , as the i n c i d e n t wave height Increases, the r e l a t i v e 

h e i g h t of the r e f l e c t e d wave decreases and, as the depth r a t i o 

increases, t h i s decrease takes place at a greater r a t e . C l e a r l y t h i s 

i s c o n t r a r y to the l i n e a r nondispersiv_e theory which from Eq. (5.17) 

p r e d i c t s , f o r constant depth r a t i o , h^^/h^. no v a r i a t i o n i n the wave 

heigh t r a t i o H^/H^ w i t h i n c i d e n t wave h e i g h t . Therefore, the Unear 

nondispersive theory i s i n v a l i d f o r some time between the time the 

i n c i d e n t wave leaves the gauge u n t i l the r e f l e c t e d wave reaches the 

same gauge. The propagation of the I n c i d e n t wave toward the step i s 

expected to be p r e d i c t e d w e l l by the Unearjiondis£ers^ (as w e l l as 

by the l i n e a r d i s p e r s i v e theory) theory since the I n c i d e n t wave 
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O E X P E R I M E N T S WITH S T E P 
• E X P E R I M E N T S WITH TRANSIT ION 
A NONLINEAR D I S P E R S I V E THEORY 
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Fle 5 28 V a r i a t i o n of the Inverse s c a t t e r e d wave heig h t r a t i o , 
F i g . v a n ^ ̂ ^^^ r e l a t i v e i n c i d e n t wave hexght, Hj/h^. 
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, 1 , . 5.., v a r i a t i o n o i the volnme r a t i o . V x - " - " ^ 
i n c i d e n t wave h e i g h t , % / h j ^ . 
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Is a s o l i t a r y wave which propagates w i t h constant shape, however 

t h i s i s not t r u e f o r the propagation of the r e f l e c t e d wave from the 

step back to the gauge. Assuming, the r e f l e c t e d wave a t the step 

(x = 0) i s given by Eq. (5.17), then computing the U r s e l l Number 

a f t e r Hammack (1974) Eq. (3.141) gives U = 2.25 K^, i . e . less than 

the u r s e l l Number of a s o l i t a r y wave (U = 2.25). Hence, the wave 

w i l l change i t s shape as i t propagates u n t i l one or more s o l i t a r y 

waves emerge followed by a t r a i n of o s c i l l a t o r y waves. Since the 

gauge measuring the r e f l e c t e d wave i s a f i n i t e distance (18-34 depths) 

from the step, d i s p e r s i v e and p o s s i b l y nonlinear e f f e c t s w i l l occur 

and cause the r e f l e c t e d wave to be d i f f e r e n t i n shape from t h a t a t 

the step. I n a d d i t i o n , since the distance f o r complete separation 

i n t o s o l i t a r y waves i s a f u n c t i o n of the wave h e i g h t , waves w i t h 

d i f f e r e n t heights w i l l be i n d i f f e r e n t stages of e v o l u t i o n as they 

pass the wave gauge. Thus, the r a t i o of the r e f l e c t e d wave height 

to the i n c i d e n t wave height H^/H, w i l l be a f u n c t i o n of the distance 

from the step and, t h e r e f o r e , dependent on the i n c i d e n t wave h e i g h t . 

A s o l u t i o n of t h i s problem would be to measure the r e f l e c t e d wave a 

l a r g e distance from the step a f t e r the separation process has taken 

place. This i s not p r a c t i c a l f i r s t because the l e n g t h of the flume 

i s l i m i t e d and second because f r i c t i o n causes a r e d u c t i o n i n the 

wave h e i g h t . However, propagation to I n f i n i t y i n the absence of 

f r i c t i o n can be performed a n a l y t i c a l l y by the method of inverse 

s c a t t e r i n g discussed i n Section 3.5. As was shown i n Section 3.5, 

from a wave w i t h the form of Eq. (5.17) one s o l i t a r y wave emerges 
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w i t h the height given by: 

* . . e i . the t e n e c t i o n c o e f f i c i e n t i r o . the l i n e e ^ , i O s d i a « ^ 

theory. E,. ( 3 . U 3 ) . Hence, using the inverse scattered height of 

the reflected „ave. H, computed irom the record of a „ave gauge 

located at some p o s i t i r u p s t r e a m o i the step, the dependence of the 

r e s u l t s on the actual position of the gange w i l l he eliminated. 

m addition, i i the l l n , « B - 4 i » 2 ^ ^ " - ^ '""''^^ 

the r e f l e c t i o n process at the step, from E,. (5.19) there „111 he 

„o va r i a t i o n o i „ave height r a t i o H,^^/H, „ith Incident „ave height, 

.he r e s n l t s of this a n a l y sis for the experiments plotted I n F i g . 5.27 

are presented i n Fig. 5.28 where the „ave height r a t i o H,^^/H, i s 

plotted as a iunction of the incident „ave height to depth r a t i o 

. . ^ v-\c,^ 5 27 and 5.28 i s q u i t e marked 
H /h The d i f f e r e n c e between ïlgs. ana 

l l L most (hut not a l l , of the variation oi the „ave height r a t i o 

„lth r e l a t i v e Incident „ave height has heen removed, p a r t i c u l a r l y for 

small r e l a t i v e „ave heights and small depth r a t i o s , i n f a c t , for 

incident „ave heights H,/h,<0.3 and depth r a t i o s h,/h,ï 7 the data 

indicate no variation of the „ave height r a t i o H,^^/H, „ith incident 

. a l a t i v e „ava height H,/h,. Hence, for these parameters the inverse 

scattered r e i l e c t e d „ave height H,^^^ i s Ptoportional to the Incident 

„ave height H, as predicted hy the l l s e « n o n d l s ^ theory. 

Eq. (5.19). 
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. hts H/h,> 0.3 O. depth r a t i o s H/h2> 7 

, • v,t- r a t i o w i t n iticiuc; 

v a r i a t i o n o i « , a herght 

„ _ s and Sinoa. h, nsing indorse soatta^^^^^^^^^ 

i i ^ ^ ^ ^ ^ ' ^ ^ ' ' ' ^ u r g e depth ra t i o s the „ave hreaUs on 

,or large „ave heights or l a g nsing the li<£S£ 

the c r i t e r i o n t h a t d 
^ ^ ^ ^ ^ ^ ^ ^ ,,,„ry and t ,,.iang r e l a t i v e incident 

A th r a t i o exceeds 0.7, tne 
heigh t to depth r a t i .̂ ^ 

V, • h t f o r a non-breaking wave on the 
wave heig h t t o r a 

H h ^ / . f ^ \ (5.20) 

^ <_ 0 . 3 3 ^ 1^.1 h^ 

. -.hts f o r the depth r a t i o s 

. . l i m i t i n g r e l a t i v e incident - - - . r e s e n t e d l n . a h l e 3.3. 

considered here ohtalned irom K,. ^^^^^ ^^^^ 

. comparison oi the U m i t i a . „ave h ^^^^ ^^^^^^ 

. Vie 5.28 f o r which tne 
of wave heights m Fig- ^^.^^^^^ 

-ident wave heië"<-
independent of the incide ^^^^^ ,,,,,i„r i o r some cases 

^ ^ ^ ^ ^ ^ ^ theory predicts the CO ^^^^^^ 

.ven though the „ave may hrea. on ^^^^^^^^^^^ 3 , , 

. f o r the 51 experiments under ^^^^^^ 
where, f o r t ^^^^^ ^ /V^, i s v 

a f u n c t i o n of the r e l a t i 
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- ~ s n r e . f ILT^SSS-
theory. 

2. 3. 3.5 4. 7. 10. 

0.30 0.18 0.15 0.13 0.07 0.05 

r a t i o appears independent of i n c i d e n t wave hei g h t f o r a l l depth 

r a t i o s and even f o r waves which obviously break onto the s h e l f . 

Hence, the r e f l e c t e d volume appears to be a l i n e a r f u n c t i o n of the 

i n c i d e n t volume, as p r e d i c t e d by lHiearjiondls£^^ theory. 

Included i n Figs. 5.27 to 5.29 are data from experiments i n 

which the step was replaced by the h a l f - s i n e t r a n s i t i o n described 

i n s e c t i o n 4.1. These data l i e close enough t o the data f o r the 

step to imply the t r a n s i t i o n has no e f f e c t on the r e f l e c t e d wave. 

The f i n i t e element numerical scheme described i n Section 3.3 

also was used to determine the waves r e f l e c t e d from a step." However, 

i t was found the r e f l e c t e d waves were dependent on the i n c i d e n t wave 

h e i g h t , an e f f e c t the p h y s i c a l experiments do not p r e d i c t and an 

e f f e c t which d i d not occur when a slope instead of a step was used 

( t h i s w i l l be discussed i n more d e t a i l i n Section 3.2.3). Hence, i t 

was concluded, the approximation used to match flow r a t e s across a 

step, which was described i n Section 3.3.2, caused e r r o r s i n the 

numerical scheme i n t h i s case. To avoid t h i s , the numerical scheme 

was used w i t h the step replaced by the h a l f - s i n e t r a n s i t i o n . This 

change, the p h y s i c a l experiments show, has e s s e n t i a l l y no e f f e c t on 
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the r e f l e c t e d wave, but I t reduces the e r r o r given by Eq. (3.104) by 

reducing the change i n depth between the elements. Ah. The e f f e c t of 

t h i s I s shown i n Figs. 5.28 and 5.29 where f o r a depth r a t i o of 

hj^/h2 = 3 and r e l a t i v e i n c i d e n t wave heights of Ĥ -Zĥ ^ = 0.05, 0.10 and 

0.15, the r e f l e c t i o n c o e f f i c i e n t s c a l c u l a t e d by the f i n i t e element 

scheme are the same f o r a l l three wave h e i g h t s . 

As was mentioned e a r l i e r , the experiments were conducted i n two 

sets. The experiments described so f a r comprise the f i r s t set i n 

which the v a r i a t i o n w i t h wave height was examined. The second set 

of experiments involved keeping the r e l a t i v e i n c i d e n t wave height 

constant and v a r y i n g the depth r a t i o to determine the behavior w i t h 

depth r a t i o . The experiments were arranged i n the same manner as 

f o r the f i r s t set w i t h adjacent gauges placed 5.7 m from the p l a t e ; 

one adjusted t o measure the i n c i d e n t wave and the other adjusted w i t h 

increased s e n s i t i v i t y to measure the r e f l e c t e d wave. The r e l a t i v e 

i n c i d e n t wave height was f i x e d nominally a t E^/h^ = 0,10 and a l l the 

waves were w i t h i n : 0.090<H^/h<0.103. I n i t i a l l y f o urteen experiments 

were conducted w i t h depth r a t i o s i n the range: 1.51<hi/h2< 68.4; 

f o r hi/h2 = 68.4 the depth on the shelf was 0.19 cm. To determine i f 

there was any dependence on the height of the s h e l f , two subsequent 

sets of experiments were conducted w i t h shelves of smaller h e i g h t . 

For the f i r s t set the s h e l f - h e i g h t was 5.97 cm and the waves were 

measured at gauges located 3.0 m from the step. For the second s e t , 

the s h e l f - h e i g h t was 5.68 cm and the waves were measured w i t h gauges 

located 2.08 m from the step. (This l a t t e r set of experiments i s 
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equivalent to those w i t h the 15.54 cm step because the wave gauges 

were placed the same number of s h e l f - h e i g h t s from the step.) The 

r e s u l t s i n the form of the r a t i o s of r e f l e c t e d to i n c i d e n t measured 

q u a n t i t i e s : wave height inverse scattered wave height 

and volume V^/V^ are p l o t t e d as f u n c t i o n s of depth r a t i o h^/h^ i n 

Figs. 5.30 t o 5.32. The curves i n each of these f i g u r e s represent 

the l i n e a r nondispersive theory. For Figs. 5.30 and 5.32 t h i s i s 

given by Eq. (3.113) which i s the r e f l e c t i o n c o e f f i c i e n t f o r a step. 

For F i g . 5.31 the curve i s given by Eq. (3.145) and also Eq. (5.19) 

which gives the r a t i o of the inverse scattered r e f l e c t e d wave height 

to the i n c i d e n t wave he i g h t , Ĥ , /H-j-. 

For a l l three p l o t s , the data l i e below the t h e o r e t i c a l curves 

and the distance below increases w i t h increasing depth r a t i o h^/h2. 

One reason f o r t h i s i s t h a t from the equation which p r e d i c t s approx

im a t e l y the conditions f o r breaking onto the s h e l f , Eq. (5.20), the 

maximum depth r a t i o f o r an i n c i d e n t wave of height Hjh^ = 0.1 to be 

a nonbreaking wave i s h^/h^^S. Therefore the l i n e a r nondi_s2erslve 

theory would not be expected to p r e d i c t accurately the r e f l e c t e d 

wave f o r depth r a t i o s h^/h2> 5, and the data do seem to depart more 

from the theory f o r h^/h2>5. F r i c t i o n also i s a cause of the wave 

hei g h t data l y i n g below the t h e o r e t i c a l curve but accounting f o r i t s 

e f f e c t s only s l i g h t l y increases the wave height r a t i o s (by from 4% f o r 

h^/h2 = 1.5 to 11% f o r h3^/h2 = 60) and t h i s does not b r i n g the data up 

to the t h e o r e t i c a l curve. I n a d d i t i o n , i n F i g . 5.32, which shows the 

r e f l e c t e d volume r a t i o , the data are not a f f e c t e d by f r i c t i o n but 
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F i g . 5.30 V a r i a t i o n of the wave h e i g h t r a t i o , /̂H-,-, w i t h depth r a t i o , h^/h2. 
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s t i l l tend to be below the t h e o r e t i c a l curve. 

I n Figs. 5.31 and 5.32 the data from the four d i f f e r e n t sets 

of experiments f i t together w e l l i n d i c a t i n g there i s no dependence 

on s h e l f - h e i g h t . However, i n F i g . 5.30, which shows the measured 

wave height r a t i o Ĥ /Ĥ ., the data from the experiments w i t h the 5.97 cm 

sh e l f placed 3.0 m from the gauge are generally less than the other 

data. The reason f o r t h i s i s t h a t the distance from the step to the 

gauge f o r t h i s set of experiments was 50.25 s h e l f - h e i g h t s whereas 

the distance f o r the other experiments was 36.68 s h e l f - h e i g h t s ; thus, 

f o r the former, the wave had t r a v e l l e d f u r t h e r and d i s p e r s i v e and 

perhaps nonlinear e f f e c t s had more time to develop. Notice t h a t t h i s 

tendency i s s u b s t a n t i a l l y reduced i n F i g . 5.31 which shows the inverse 

s c a t t e r e d wave height r a t i o Hj. / H j . 
INV 

Also Included i n Figs. 5.30 to 5.32 are the data from four e x p e r i 

ments i n which the h a l f - s i n e t r a n s i t i o n instead of the step was used. 

The data show no d i f f e r e n c e from the data obtained when the step was 

used. 

The r e s u l t s f o r the nonlinear d i s p e r s i v e theory, c a l c u l a t e d using 

the f i n i t e element scheme w i t h the h a l f - s i n e t r a n s i t i o n , c o incide 

w i t h the 1inear nondispersive theory i n Figs. 5.30 to 5.32. Thus, 

from t h i s and from the experiments conducted, i t may be concluded 

f o r depth r a t i o s of h^/h^llO the r e f l e c t i o n of s o l i t a r y waves from 

a step i s a l i n e a r process, apart from the propagation and the 

r e f l e c t e d wave may be approximately p r e d i c t e d by the l i n e a r nondis

p e r s i v e theory. 



192 

5.2.2 r e f l e c t i o n of ^rom a Step. 

Experiments condncted to measnre the waves which are 

. a i l e c t e d when cnoidal waves propagate over a step onto a s h e l f 

r e q u i r e a d i i i e r e n t l a h o r a t o r y technique than t h a t used i i the waves 

were small amplitude, harmonic waves. I n the l a t t e r case a standard 

procedure i s to deduce the r e f l e c t e d waves from the comhined i n c i d e n t 

and r e i l e c t e d waves using the p r i n c i p l e o i superposition. However 

f o r c n o i d a l waves, which propagate i n accordance w i t h the 

^ i , ^ theory, the p r i n c i p l e o i su p e r p o s i t i o n i s not v a l i d . 

. . . r e f o r e an a l t e r n a t i v e method must he devised. The technique used 

measure the I n c i d e n t and r e i l e c t e d waves a t a p o i n t i n the ilume 

.he lea d i n g edge o i the r e i l e c t e d wave group a r r i v e d . The method has 

two c o n f l i c t i n g requirements: 

The wave group must con t a i n a s u i f i c l e n t numher o i waves so 

th a t the waves i n the center o i the group where measurements w i l l 

ra.e place are not a f f e c t e d hy t r a n s i e n t e f f e c t s a t the leading and 

t r a i l i n g edges o i the wave group. 

( U ) The wave group must he short enough t h a t the i n c i d e n t and 

r e i l e c t e d wave groups are separated a t the p o i n t of measurement. 

.s was demonstrated e a r l i e r (see Section 5.1.2). i o r short 

distance propagation, the requirement t h a t t r a n s i e n t e f f e c t s do not 

s i f e c t the waves i n the center o i the pac.et may he s a t i s i l e d hy a 
TV,„Q the procedure used 

4 - - I n o nf as few as four waves. Thus, tne pi-
group c o n s i s t i n g ot as rew 
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here was to place the wave gauges midway between the wave generator 

and the step and to generate as many waves as possible (f o u r or 

greater) but s t i l l s a t i s f y the requirement t h a t i n c i d e n t and r e f l e c t e d 

wave packets be separate at the poi n t of measurement. 

To i l l u s t r a t e the experimental d e t a i l s , the r e s u l t s of f i v e 

experiments, i n the form of the wave a m p l i t u d e - t i m e h i s t o r y are 

presented i n Fi g . 5.33, where the o r d i n a t e i s the wave amplitude 

normalized w i t h respect to the depth, and the abscissa i s the non-

dimensional time t/iTÏÏ^. The experiments were conducted using the 

15.54 cm she l f w i t h the step s i t u a t e d 23.84 m from the wave generator 

and the wave gauge which gave the records presented i n F i g . 5.29 

s i t u a t e d midway between the step and the wave generator ( i . e . , 11.92 m 

from b o t h ) . For each experiment, four waves were generated using 

t r a j e c t o r y CN4 w i t h a stroke S/h^ = 0.378 and a period l/Uh[=n.l, 

which t h e o r e t i c a l l y should have produced waves w i t h a r e l a t i v e h e i g h t 

of H/hi = 0.1. The f i v e experiments were performed w i t h f i v e d i f f e r e n t 

upstream depths and consequently f i v e d i f f e r e n t depth r a t i o s . The 

four waves to the l e f t i n each pa r t of F i g . 5.33 are those which 

comprise the i n c i d e n t wave group; the four t o the r i g h t i n each p a r t 

comprise the r e f l e c t e d waves. Progressing down the f i g u r e , the depth 

upstream of the step, h p Increases and, consequently, the depth r a t i o , 

h^/h2, decreases as does the distance of the gauge from the step 

expressed as the number of depths, x/h,. The decreasing depth r a t i o . 

h,/h2. produces r e f l e c t e d waves of smaller h e i g h t ; the decreasing 

relative distance, x/h,, causes the time between i n c i d e n t and r e f l e c t e d 
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. . . auo to daoteaaa. CXoaa loapaotion o. . . . 3.33 taveaU 

I n addition to the eonstaney o£ period 

" ' £„r hoth meldent and reiieoted waves, this 

. l t d and ionrth orasts io h . ^^^^^^^^ ^^^^^ 

. d l e a t e s the " . gronp, as 

. e wave gronp do no a i i e t ^^^^^^^^^^ 

„as assnmed prevlonsly. ITlgure 

rhe disousslon i o r l U n s t r a t i v e purposes; i t w i i l 

.ore d e t a l i P » " " - - were condueted 

„.1„, rhe arrang . n . ^ ^^^^^^^^^ 

^ " ''''' ' " T ' t f r a t l l O i reiieoted to ineident wave heights 
- i ^ Ti-TB 5.34 where the ra t x o ^ , . „ t , + . 

^ ^ . r e l a t i v e i n c i d e n t wave hexght 

VHl - ^ - " ^ - ^ i>.a nondimensional quantity; 

- — '""̂ nr u l a r . I t i= . a d In preierenee to 
.n T2/h2 which I s a type oi U r s e l l 

' 1 ^ ,s d e a r l i e r (m and HL^/h^) hecause I t can he 
rhe u r s e l l «umhers deserlhed e a r l i e r 

, . d d i r e c t l y irom experimentally measured quantities 

" he deduced using complex numerical calculations. I t 

' ^ ' ° ' ^ " : : o i ; 3 . rhe c e l e r i t y , c . l . . . ^ - " ^ exhlhlt 

i s r e l a t e d to HL /h Dy s h o r t l y ) but show 
t-his w i l l be presented shortxy; 

scatter (some reasons i o r t h i s with 

, variation o i r e i l e c t l o n c o e i i i c i e n t , V i 

no trend i n the v „ ,̂  „, the U r s e l l Sumher, 
. the r e l a t i v e incident wave height, H,/h,, or 

either the r e l a t i ^^^^^^^^ ^^^^^^^ 

^V-'^l- - 1 , ,3 , „ d hy the 1 1 . ^ 

height i o r a nonhreaUng wave on the s h e l i 
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O 15.54cm SHELF ^yj^gERS BESIDE POINTS ARE gHiTVhf 
• 5.97cm SHELF 

s 34 V a r i a t i o n of the wave height r a t i o , % / H i , w i t h r e l a t i v e 
F,g. 5.34 VarxatJ-on^^^^ ^^^^^^^ ^^^^^^ ^^^,3. 
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nondlsperslve theory, Eq. (5.20). 

Included I n the f i g u r e are data from experiments I n which a 

sh e l f w i t h a height of 5.97 cm was used. For these experiments the 

wave gauge measuring i n c i d e n t and r e f l e c t e d waves was placed the 

same r e l a t i v e distance, x/h,, from the step as the equivalent 

experiments w i t h the 15.54 cm s h e l f , i . e . , x/h,=51 f o r the depth 

r a t i o h,/h2 = 3. I n F i g . 5.34, the data generally l i e below the 

data f o r the 15.54 cm s h e l f and t h i s i s a t t r i b u t e d t o the increased 

e f f e c t of f r i c t i o n f o r the smaller depth. 

I n F i g . 5.35 the r a t i o of r e f l e c t e d to i n c i d e n t wave h e i g h t s , 

Hj^/H,, i s p l o t t e d as a f u n c t i o n of the depth r a t i o , h,/h2. The 

curve was obtained from the l i n e a r nondispersive theory (as given 

by Eq. (3.113)). The data were obtained from the experiments pre

v i o u s l y described and from experiments i n which the r e l a t i v e i n c i d e n t 

wave h e i g h t and peri o d were set at H3./h, = 0.1 and n/U^^-21.1 and 

the depth, h,. was changed. The data f o l l o w the trend of the l i n e a r 

nondispersive theory but the r e f l e c t i o n c o e f f i c i e n t i s g e n e r a l l y 

less than theory p r e d i c t s as was found to be t r u e also f o r s o l i t a r y 

waves. Part of the reason f o r t h i s i s , of course, the e f f e c t of 

f r i c t i o n f i r s t on the i n c i d e n t waves as they propagate the 11.92 m 

from the gauge to the step and second on the r e f l e c t e d waves as they 

propagate the same distance from the step back to the gauge. However, 

a more important e f f e c t i s the change i n shape of the r e f l e c t e d waves 

as they propagate, due to amplitude and frequency d i s p e r s i o n . 
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This e f f e c t was examined f o r f i v e of the seven experiments 

represented by s o l i d c i r c l e s i n Fig . 5.35 ( f o r which, i t w i l l be 

r e c a l l e d , the nominal i n c i d e n t wave heig h t was H3./h, = 0.1 and the 

per i o d was Tv^Th^^ 27.2). These are the f i v e records which were 

presented p r e v i o u s l y i n F i g . 5.33 and now w i l l be considered i n 

d e t a i l . The l i n e a r nondispersive theory p r e d i c t s the r e f l e c t e d 

waves w i l l have the same shape as the i n c i d e n t waves and w i l l r e t a i n 

t h i s shape as they propagate. Examination of F i g . 5.33. however, 

i n d i c a t e s the c r e s t s of the r e f l e c t e d waves are only approximately 

symmetric, tending to be steeper on the back face of the wave than 

on the f r o n t face. I n a d d i t i o n , the troughs e x h i b i t secondary waves 

which vary from experiment to experiment. Hence the l i n e a r nondlsper

s l v e theory appears to be i n v a l i d f o r some p o r t i o n of the time between 

the time the i n c i d e n t waves leave the gauge and the time when the 

r e f l e c t e d waves reach i t . The obvious r e g i o n where the l i n e a r 

nondispersive theory does not apply i s i n the propagation of the 

r e f l e c t e d waves from the step back to the gauge. 

For s o l i t a r y waves, t h i s e f f e c t was accounted f o r by propagating 

the r e f l e c t e d waves t o i n f i n i t y i n an a n a l y t i c a l manner using 

inverse s c a t t e r i n g . 

For c n o i d a l waves, to i n v e s t i g a t e the e f f e c t of amplitude and 

frequency d i s p e r s i o n , the f o l l o w i n g a n a l y s i s was performed. F i r s t , 

the i n c i d e n t wave group was assumed to propagate w i t h o u t change 

of shape to the step. Second, the l i n e a r nondlsperslve r e f l e c t i o n 

c o e f f i c i e n t (Eq. (3.113)) was applied t o the i n c i d e n t wave group to give 
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the t h e o r e t i c a l r e f l e c t e d wave group. Thus, the shape of the 

r e f l e c t e d wave group at the step was assumed t o be i d e n t i c a l t o t h a t 

of the i n c i d e n t wave group. F i n a l l y , t h i s r e f l e c t e d wave group was 

propagated numerically the 11.92 m back to the wave gauge by: ( i ) the 

l i n e a r d i s p e r s i v e theory using a Fourier transform method, and ( i i ) 

the KdV equation using Peregrine's f i n i t e d i f f e r e n c e scheme (from 

Peregrine (1966)). The l a t t e r was used i n preference to the numerical 

scheme developed f o r t h i s study because the waves were t r a v e l l i n g 

i n one d i r e c t i o n only. The r e s u l t s are compared w i t h the wave gauge 

record from F i g . 5.33 i n Figs. 5.36 and 5.37 which are arranged i n 

a s i m i l a r manner to F i g . 5.33, w i t h the normalized amplitude, n/h,, 

p l o t t e d as a f u n c t i o n of the nondimensional time, t / i T h ^ . The f i v e 

r e f l e c t e d wave groups from F i g . 5.33 are represented by the s o l i d 

curves and the t h e o r e t i c a l r e s u l t s are represented by the dashed 

curves. I n F i g . 5.36 which shows the l i n e H ^ i s E e r s l v e theory 

compared w i t h experiment, the theory p r e d i c t s the r e f l e c t e d waves 

q u i t e w e l l f o r small depth r a t i o s but as the depth r a t i o increases 

the r e f l e c t e d waves are more peaked than t h i s theory p r e d i c t s . The 

reason f o r t h i s i s the experimental U r s e l l Number, gH^T^/h^ increases 

w i t h depth r a t i o because the r e f l e c t e d wave height increases. There

f o r e , since the U r s e l l Number i s a r a t i o of nonlinear to l i n e a r 

e f f e c t s , the nonlinear e f f e c t s are greater f o r l a r g e r depth r a t i o s 

than f o r smaller depth r a t i o s and consequently the J.lnear dispersive, 

theory i s less l i k e l y to be a p p l i c a b l e to l a r g e depth r a t i o s . The 

v e r a c i t y of t h i s i s I l l u s t r a t e d by F i g . 5.37 where the nonlinear 
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5.37 Comparison of the experimental r e f l e c t e d c n o i d a l waves w i t h 
those c a l c u l a t e d from the nonlinear, dls£erslve theory. 
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theory i e oompared »ith experiment. Here the agreement 

.etween theory and experiment i s good, with even the secondary c r e s t s 

m the tronghs predicted hy the theory. The only diiierence hetween 

the theories i n . i g s . 5.36 and 5.37 i s the inclusion, i n the l a t t e r , 

.£ the nonlinear term. The good agreement hetween the theory and 

the experiments ior the larger depth r a t i o s i s somewhat surprising 

considering, as was determined e a r l i e r , the wave hreaUs on the s h e l i 

f o r depth r a t i o s h,/h2> 5. 

R e c a l l that some oi the data presented e a r l i e r i n F i g . 5.35 

were irom the reflected waves shown In Tigs. 5.36 and 5.37. I n 

n g . 5.35, the wave height r a t i o , =̂ ^ ^ " " ^ ' °' 

depth r a t i o and the data are compared with the U n e a r n o n d i s ^ e r s ^ 

,,eory. However, the comparison does not appear as good there as i t 

height. Which IS deiined as the difference hetween the maximum and 

the minimum amplitudes. I s a measure only oi the extremes oi the 

wave whereas Fi g s . 5.36 and 5.37 give the shape also. 

The wave height r a t i o s from the three theories and irom the 

f i v e experiments heing considered are l i s t e d i n Tahle 5.4. The wave 

The tahle shows the three theories predict e s s e n t i a l l y the same 

The d i i i e r e n c e hetween t h . experiments and the theories I s attrihuted 

to d l s s i p a t i v e e i f e c t s which are not included i n the theories. 

Mthough the theories agree i n the height oi the reflected waves. 
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Table 5.4 Wave heig h t r a t i o s f o r experiments, (%/%^g^p^' l^^ÈÊJL 

nondispersive theory, iU^/lij)^^> ll^^S^LMS^^ 

theory, ^ ^ , and nonlinear d i s p e r s i v e theory, 

L . D . 

H,/h2 ( H R / H , ) 
^ Expt ^ ^ L . N . 

( H ^ ^ / H , ) 
^ ^ N . D . 

10.48 0,510 0.528 0.529 0.529 

6.32 0.406 0.431 0.429 0.434 

4.96 0.337 0.380 0.376 0.381 

4.03 0.289 0.335 0.331 0.339 

3.42 0.277 
.. 

j 0.298 0.302 0.298 

the t h e o r i e s p r e d i c t d i f f e r e n t shapes f o r the r e f l e c t e d waves. This 

can be seen by comparing the dashed curves i n F i g . 5.36 which show 

the l i n e a r d i s p e r s i v e theory w i t h those i n F i g . 5.37 which show 

the nonlinear d i s p e r s i v e theory. The shape of the r e f l e c t e d waves 

p r e d i c t e d by the Unear nondispersive i s the same as t h a t of the 

i n c i d e n t waves shown i n F i g . 5.33. 

Thus, the experiments conducted here, as was found f o r s o l i t a r y 

waves, i n d i c a t e the r e f l e c t i o n process i s l i n e a r and governed by the 

1ln.ar nondispersive theory. However, the propagation of the r e f l e c t e d 

waves requires a higher order theory i n order to a c c u r a t e l y determine 

the shape of the waves. 
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i n t h i s section the t e s n l t s irom two theories and irom 

experiments w i l l he presented. The theories are: the U ^ ^ 

rheory. which was soived hy the Fonrier transiorm 

„arhod deserlhed i n Section 3.4, and, the ssEUBS-iiSE-iïl 

rheory. which was soived hy the i i n i t e element method deserlhed i n 

Section 3.3. 

.he parameters involved In the prohlem oi r e i l e c t l o n o i s o l i t a r y 

„aves from a slope i n t h . ahsence of f r i c t i o n are: 

the upstream depth, h,; 

the downstream depth, ^2', 

the slope l e n g t h , 

the i n c i d e n t wave h e i g h t , H,; and 

the r e f l e c t e d wave h e i g h t , % • 

The Characteristic horisontal length of the wave. i n general also 

l a a parameter hnt ior the partlcnlar case oi s o l i t a r y waves . I s a 
u Arrhf a n d the upstream depth as 

f u n c t i o n of only the i n c i d e n t wave hexght and 

„ 1 CH /h ) ~ \ . ) ' The problem has 
given by Eq. (3.122) ( i . e . , 1̂ = 1-5 (%/h,) h,; 

ucr^r^ using the Buckingham ir 
f i v e v a r i a b l e s and one dimension; hence, usxng 

theorem, there are four dimensionless groups: 

\ A k . (5.21) 

That i s , the r e f l e c t e d wave height r a t i o , ^ , i s a f u n c t i o n of the 
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to depth r a t i o H,/h,. For both the experiments and the nonlinear 

d i s p e r s i v e theory, the r e f l e c t e d wave height r a t i o , E^f\, i s a 

f u n c t i o n of a l l three of these parameters, but f o r the l i n e a r 

nondispersive theory i t i s a f u n c t i o n of only the depth r a t i o and 

the l e n g t h r a t i o . Hence, the r e s u l t s of the l i n e a r . n o n d i s 2 e ^ ^ 

theory are presented f i r s t and, w i t h corresponding experimental data, 

the r e s u l t s of the nonlinear d i s p e r s i v e theory w i l l be presented l a t e r . 

I t i s r e c a l l e d from Section 3.4 t h a t the method used to solve 

the problem using the linearjiondis£e^^ theory i s a Fourier 

transform method i n which the i n c i d e n t wave i s transformed i n t o the 

frequency domain and the r e f l e c t i o n c o e f f i c i e n t , which i s a f u n c t i o n 

of frequency, i s applied to each frequency component of the i n c i d e n t 

wave i n t u r n . The r e s u l t a n t r e f l e c t e d wave i s obtained by the 

synthesis of these components. I n a d d i t i o n , i t was shown i n Section 

3.4, using the dimensionless frequency <.L/^, the Fourier transform 

of a s o l i t a r y wave f o r the purposes of the analysis may be considered 

to be a f u n c t i o n of the l e n g t h r a t i o , L/l, and the frequency, o^L//^, 

w h i l e the r e f l e c t i o n c o e f f i c i e n t i s a f u n c t i o n of the depth r a t i o , 

h,/h2, and the frequency, ^L//^ . This i s i l l u s t r a t e d i n F i g . 5.38(a) 

and ( b ) . 

Figure 5.38Ca) shows the Fourier transform of the i n c i d e n t s o l i t a r y 

wave, as given by Eq. C3.131), w i t h the amplitude normalized w i t h 

respect t o the amplitude a t a. = 0, A,(a.)/Ai(0), p l o t t e d as a f u n c t i o n 

of the nondimensional frequency toL/Zih^. The curves, which are f o r 

various l e n g t h r a t i o s , L/l, e v i d e n t l y have s i m i l a r shape but r o l l o f f 
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from u n i t y at d i f f e r e n t frequencies which are a l i n e a r f u n c t i o n of 

the l e n g t h r a t i o (e.g. A,Ca.)/A,(0) = 0.95 occurs a t coL/Zih^^ 0.461 Ll I) . 

Figure 5.38(b) shows the modulus of the r e f l e c t i o n c o e f f i c i e n t , 

lK^(a,)l ( r e c a l l K^(a>) i n general i s complex) p l o t t e d as a f u n c t i o n of 

the nondimensional frequency ^Ll^. The curves, which are f o r 

various depth r a t i o s , h./h^, have s i m i l a r shape but are displaced from 

one another according to the magnitude of the r e f l e c t i o n c o e f f i c i e n t 

a t 0) = 0. 

K a j i u r a a961) presented curves s i m i l a r t o F i g . 5.38(b) but used 

as the abscissa L/L where L "is the wave l e n g t h of the harmonic wave 

under c o n s i d e r a t i o n . However, the abscissas are equivalent because 

using the r e l a t i o n s h i p L ^ / i h ^ T , the frequency . L / Z i h ^ reduces to 

2irL/L. K a j u i r a (1961) considered slopes i n which the depth was a 

nonlinear f u n c t i o n of the distance along the slope, whereas, i n t h i s 

study the depth was a l i n e a r f u n c t i o n of distance along the slopes. 

I n p r i n c i p l e , the process of c a l c u l a t i n g the r e f l e c t e d wave i s 

to take the f u n c t i o n d e s c r i b i n g a curve f o r a p a r t i c u l a r l e n g t h r a t i o , 

Lll, from F i g . 5.38(a) and m u l t i p l y i t by the f u n c t i o n d e s c r i b i n g a 

curve f o r a p a r t i c u l a r depth r a t i o , h./h^. from F i g . 5.38(b). This 

gives the r e f l e c t e d wave i n the frequency domain which can be t r a n s 

formed i n t o the time domain by m u l t i p l y i n g by e"̂ -*̂  and i n t e g r a t i n g 

over the frequency range. Cln p r a c t i c e , t h i s procedure i s performed 

numerically.) 

Before presenting the r e s u l t s of these c a l c u l a t i o n s . F i g . 5.38(a) 

and (b) can be used to deduce the o v e r a l l behavior: 
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« . . a u Xengt. ra t i o s < i ) tha majority oi tha Fouriar 

transiorm curva Xias i n tha iraqnenoy range 0<.L/^ <-^° 

„here the refXeetion ooeiiieient i s assentiaXXy eonstant. 

„ence. the shape oi the reiXected wave i s aXmost the same as 

that oi the incident „ave. A speciaX case oi t h i s which 

axready has heen considered i s when I/.-O. i . e . . a step. 

U , For Xarge Xength r a t i o s (L/.>X) a considerahXe portion oi 

the Fourier transiorm curve l i e s at irequencies » l / ^ > 1 

Where the reiXection c o e i i i c i e n t i s essentiaXXy .ero. Hence, 

when the muXtipXication of the two functions ta.es pXace, 

the high frequency components of the incident wave are 

,a.„ced to sero and. since i t i s these high frequency com

ponents Which a i f e c t the peahedness oi the wave, the refXected 

wave i s l e s s peaked than the incident wave. 

U l ) Because the r e f l e c t i o n c o e i i i c i e n t curves are similar i n 

ahape hut displaced v e r t i c a l l y i n F i g . 5.3S(h). the s h a ^ 

the reflected wave for a particular length r a t i o I s almost 

independent oi the depth r a t i o . However, the a j ^ of 

rhe reflected wave i o r a particnXar Xength r a t i o i s propor-

tlonaX to the reiXection c o e i i i c i e n t at »- 0 which I s a 

function of the depth r a t i o , 

.ne t r a n s i t i o n hetween the two extrames of length r a t i o deserlhed 

1„ 1) and i l ) ahove i s i l l u s t r a t e d i n F i g . 3.3, where the reflected 

„aves predicted hy the U^^J^^^^^U^ ^ ^^'^ 

O f h,/h,= 3 are plotted for length r a t i o s oi = 0. 0.25, 0.3, 1. a. 



210 

0.2 

0.1 

O 

0.2 

0.1 

O 

0.2 h 

O. 

O 

0.2 

0.1 

O 

0.2 

0.1 

O 

0.2 

O . l h 

0 

0.2 

0.1 

O 
O 10 20 30 40 

varxous 
theory. 



211 

4 and 8, I n the t a b l e alongside the f i g u i e the q u a n t i t i e s shown are 

as defined p r e v i o u s l y except f o r the l e n g t h L* which i s defined as 

the distance between p o i n t s i n the wave where the r a t i o n/H>0.01. 

i . e . , the l e n g t h occupied by the upper 99% of the wave; thus, L*/Lf 

i s the r a t i o of the l e n g t h occupied by the upper 99% of the r e f l e c t e d 

wave to the corresponding l e n g t h of the i n c i d e n t wave. The abscissa 

i s t>/i7h^-x/h, which means the leading edge of the wave i s towards 

the l e f t i n the p l o t s (which can be thought of e i t h e r as time records 

or as p r o f i l e s w i t h the wave moving to the l e f t ) . 

For L/£ < 1 the shape of the r e f l e c t e d wave i s s i m i l a r to the 

shape of the i n c i d e n t wave and the slope can be thought of as 

r e l a t i v e l y abrupt, since i t does not a f f e c t s i g n i f i c a n t l y the shape 

of the wave. However, f o r l e n g t h r a t i o s greater than u n i t y , the wave 

shape does change w i t h the r e f l e c t e d wave t a k i n g the form of a 

"plateau" which slopes down towards the f r o n t of the wave. The higher 

amplitude near the rear of the wave i n d i c a t e s the p r o p o r t i o n of the 

wave r e f l e c t e d increases as the wave climbs the slope. 

The s i m i l a r i t y of r e f l e c t e d waves f o r a p a r t i c u l a r l e n g t h r a t i o 

but various depth r a t i o s as discussed p r e v i o u s l y i s I l l u s t r a t e d i n 

F i g . 5.40 which shows the r e f l e c t e d wave height r a t i o H^/H, p l o t t e d 

as a f u n c t i o n of the l e n g t h r a t i o , L/£, f o r various depth r a t i o s , 

h,/h2. The curves i n F i g . 5.40 appear to have s i m i l a r shape and, i n 

f a c t , can be collapsed almost to a s i n g l e curve by normalizing the 

r e f l e c t e d wave h e i g h t , H , ( | ) , w i t h respect to the r e f l e c t e d wave height 

f o r a step, H^CO), as shown i n F i g . 5.41. Hence, f o r t h i s l i n e a r 
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F i g . 5.41 V a r i a t i o n of the r e l a t i v e r e f l e c t e d wave h e i g h t , U^iL/I)/E^(0), w i t h l e n g t h r a t i o , L/l, as 
pr e d i c t e d by the l i n e a r nondispersive theory. 
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^onéls^^ theory the depth r a t i o , j u s t l i k e the r e l a t i v e i n c i d e n t 

wave he i g h t , H,/h,, i s not a parameter i n the s o l u t i o n . 

Figure 5.41 shows as the le n g t h r a t i o increases from zero t o 

u n i t y the r e f l e c t e d wave height decreases r a p i d l y but as the l e n g t h 

r a t i o increases beyond u n i t y the r e f l e c t e d wave height decreases at 

a slower r a t e . 

The solutions desctlhed so f a r are solutions to the l i n e a r ^ -

dlsnersive theory I n »hieh the r e l a t i v e incident wave height, Hj/h,, 

does not a i f e c t the shape of the reflected wave. However, I n the 

actual physical problem i t i s expected the r e l a t i v e Incident wave 

height would have some influence on the shape of the r e i l e c t e d wave. 

TO investigate t h i s , a s e r i e s of numerical experiments and a s e r i e s 

oi physical experiments were periormed. The numerical experiments 

comprised using the f i n i t e element progra. deserlhed In Section 3.3 

f o r a range of c o n d i t i o n s . 

The p h y s i c a l experiments, i n which the o b j e c t i v e was to measure 

the wave r e f l e c t e d when a s o l i t a r y wave propagates up a slope onto a 

s h e l f , had a number of d i f f i c u l t i e s which l i m i t e d t h e i r e x t e n t . The 

main problems were*. 

1) When one wishes to measure two waves, one oi which I s a tenth 

or l e s s i n height than the other, the accnracy oi measurement 

„£ the smaller wave i s conslderahly l e s s than that oi the 

larger wave. For example, i i the waves t r a i l i n g the incident 

wave are IX of the height, they are negliglhle with respect 

to the incident wave. However, for a reflected wave which 
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. . ..e K e i . . . O . tUe .ncUe« „ave. ..e „ a U i n s 

„ p « a a n . 10. o l ..o r o n o C e . »a,o ao. t.o. can a«ac. 

the shape considerably. 
T?HB 5.39 shows the l e n g t h ot 

lU ^a the length «tlo Incteaaes, ng. 

H p n c e the len g t h of tanK 
the reflected wave also mcreaaee. Hence, 

reflected wave which ma, he man, t l . e s longer than the 

i n c i d e n t wave. 
. were performed f o r two depth r a t i o s , 

The p h y s i c a l experiments were pert 

, r = 150 cm, 300 cm and 
W h - 3 0 and 4.0, and f o r three slopes, L 

'^' ^ a - 0 ) - the shelf height was 15.54 cm. The 

450 cm, and the step (L - 0 ) , 

r e l a t i v e i n c i d e n t wave h e i g h t was v a r i e d from H,/h,-0.033 

, a arose from the d i f f i c u l t y of accurately measuring 
the lower bound arose i r o " ' 

„ . . . . . . . . . . . . . . . . . — : : : : . r . : . . 

greater height broke on the slope. For pa 

hMeht halves the length r a t i o , Ll>., 
increase I n the Incident wave height 

hecanse. I t w i l l he re c a l l e d , the c h a r a c t e r i s t i c length, . 

. 1 3(H /h Hence, a range of length r a t i o s conld he 

as 5, = 1.5(.%/n,; " i v,o-foV>t 

. v e r e d with one slope s l m p . h, varying the 

However, to allow for the effects of Incident ^ 

Slopes covered. linearnondis£er--
1.. of the p h y s i c a l experiments, and the l i n e 

The r e s u l t s of tne pi y 

^ ,..„... .--^^•'^::Z:::::L, .... 



F i g . 5.42(a) V a r i a t i o n of the r e f l e c t e d wave heig h t r a t i o , \ / \ , w i t h l e n g t h r a t i o , L/l, f o r a depth 

r a t i o of h,/h2 = 3. 
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5.42(b) V a r i a t i o n of the inverse s c a t t e r e d r e f l e c t e d wave he i g h t r a t i o , I L /H^, w i t h l e n g t h r a t i o 

L/!L, f o r a depth r a t i o of h,/h2 = 3. Ĵ NV 



F i g . 5.43(a) V a r i a t i o n of the r e f l e c t e d wave heig h t r a t i o , w i t h l e n g t h r a t i o , L/l-, f o r a depth 

r a t i o of h,/h2 = 4. 
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F i g . 5.43(b) V a r i a t i o n of the inverse s c a t t e r e d r e f l e c t e d wave heig h t r a t i o , Ĥ ^ /H,, w i t h l e n g t h r a t i o , 
L/l, f o r a depth r a t i o o f h,/h2 = 4. INV 
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height i s p l o t t e d as a f u n c t i o n of the l e n g t h r a t i o , Ll%. Figures 

5.42(a) and (b) are f o r the depth r a t i o h,/h2 = 3; Figs. 5.43(a) and (b) 

are f o r the depth r a t i o h,/h2 = 4. Figures 5.42(a) and 5.43(a) are 

r e f l e c t e d wave heig h t r a t i o s H^/H,; Figs, 5.42(b) and 5.43(b) are 

inverse s c a t t e r e d r e f l e c t e d wave height r a t i o s \^J\' 

curves are the l i n e a r _ n o n d i s ^ ^ theory; the dashed curves are 

the nonlinear d i s p e r s i v e theory f o r a r e l a t i v e i n c i d e n t wave height 

of H3./hi=0.1. The experimental p o i n t s have d i f f e r e n t symbols 

according to the slope which was used, and the numbers beside the 

po i n t s are the r e l a t i v e i n c i d e n t wave height H^/h,. 

The f i g u r e s show the d i f f e r e n c e between the l i n e H _ n o n d i s £ e ^ 

theory and the nnni inear d i s p e r s i v e theory w i t h H,/h, = 0.1 i s small, 

and the experiments show good agreement w i t h the t h e o r i e s , p a r t i c u l a r l y 

considering the problems of accuracy discussed e a r l i e r . For the 

experimental data, the data i n the overlapping regions described 

e a r l i e r e x h i b i t some d i f f e r e n c e s but i n such a random manner they 

are assumed to be s c a t t e r due to problems associated w i t h experimen

t a l accuracy. Hence, the experimental data seem to i n d i c a t e the 

i n c i d e n t wave height does not a f f e c t the r e f l e c t e d wave f o r the 

range of r e l a t i v e heights i n v e s t i g a t e d . 

To i n v e s t i g a t e t h i s f u r t h e r , the f i n i t e element an a l y s i s was used 

f o r a depth r a t i o , h./h^=3 and a range of i n c i d e n t wave heights and 

l e n g t h r a t i o s ; the heights of the r e f l e c t e d waves are compared i n 

Tables 5.5(a) and ( b ) , where zero r e l a t i v e I n c i d e n t wave height 

represents the 1 m . ^ r n o n d i s p e r s i v e theory. The tables show the 
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Reflected wave heig h t r a t i o s , (a) H^/H, and (b) B^Jn^: 

,or various l e n g t h r a t i o s T^'Q^l^^ 
heights f o r depth r a t i o h^/h2 ^ ~ 

theory) 

(a) V ^ I 

0 0.05 0.10 0.15 

0.53 
1.03 
1.56 
2.00 

0.218 
0.152 
0.110 
0.0888 

0.228 
0.162 
0.121 
0.0980 

0.235 
0.161 
0.123 
0.0978 

0.238 
0.165 
0.123 
0.0997 

(b) \ / % 

0 0.05 0.10 1.15 

0.53 
1.03 
1.56 
2.00 

0.137 
0.119 
0.101 
0.0831 

0.138 
0.120 
0.099 
0.0884 

0.139 
0.120 
0.101 
0.0879 

0.139 
0.122 
0.098 
0.0871 
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r e s u l t s f o r the n o n l i n e a r _ d i s H ^ ^ theory agree w i t h each other 

w i t h i n 5% which i n d i c a t e s no detectable i n f l u e n c e of i n c i d e n t wave 

height on the s o l u t i o n f o r the range used. However, f o r t h i s depth 

r a t i o (h^/h^ ̂  3) the maximum i n c i d e n t wave f o r a nonbreaking wave 

on the s h e l f , as given by Eq. (5.20). i s . H,/h, = 0.18. which i s 

not a very l a r g e wave. To increase the size of the i n c i d e n t wave 

but avoid breaking waves on the s h e l f , the depth r a t i o was reduced 

to h^/h2 = 1.5; then i n c i d e n t waves w i t h r e l a t i v e heights up t o 

H,/h' = 0.4 could be considered. The r e s u l t s of the analysis, again 

using the f i n i t e element f o r m u l a t i o n , are presented i n Table 5.6. 

E v i d e n t l y , f o r these extreme cases, the height of the r e f l e c t e d 

wave i s dependent on the height of the i n c i d e n t wave, however the 

dependence i s only weak, w i t h a f o u r f o l d increase i n the i n c i d e n t 

wave height r e s u l t i n g i n a t most a 16% change i n the r e f l e c t e d wave 

height r a t i o . 

The ...... nnndieosrsive theory generally predicts lower wave 

heights than the i ^ n l l n e a ^ d l s E e r s l v e theory and a reason for t h i s 

IS shown m Fig. 5.44(a) and (h) where the p r o f i l e s of two waves 

f r o . the experiments and the theories are compared. The ordlnates 

m the flgnres are amplltnda normalised with respect to Incident 

wave height, n/H,. so that the reflected waves from Incident waves 

of different heights can he compared d i r e c t l y . The waves from the 

^^^^^^,,,_^is,^ theory for varlons wave heights are shown as 

dashed cnrves and apart from small differences which can he attrlhnted 

to nnmerlcal e i i e c t s they predict the same wave p r o f i l e . However. 
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Table 5.6 Reflected wave height r a t i o s , (a) H^/Hj and (b) 

f o r various l e n g t h r a t i o s and r e l a t i v e i n c i d e n t wave 

heights f o r depth r a t i o , h./h^ = 1 • 5. (nonlinear dx-spersive 

theory) 

(a) V % 

L/a 
0 0.1 0.2 0.3 0.4 

0.26 
0.53 
1.06 
2.00 

0.0965 
0.0849 
0.0606 
0.0356 

0.0961 
0.0845 
0.0647 
0.0376 

0.0928 
0.0815 
0.0640 
0.0389 

0.0889 
0.0788 
0.0638 
0.0387 

0.0862 
0.0764 
0.0592 
0.0378 

L/l 
0 0.1 0.2 0.3 0.4 

0.26 
0.53 
1.06 
2.00 

0.0259 
0.0256 
0.0244 
0.0211 

0.0246 
0.0243 
0.0233 
0.0202 

^ • 

0.231 
0.0225 
0.0219 
0.0195 
: • 

0.0219 
0.0215 
0.0204 
0.0183 

0.0211 
0.0195 
0.0186 
0.0170 
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F i g . 5.44 Comparison of the t h e o r e t i c a l r e f l e c t e d waves w i t h the 

experimental wave. 
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„ave p.edie.e. .y the U , , , ^ . ^ ! ^ - e e t v hae a . i f f e t e e t 

ahape and the difference i a attrihnted tc the e f i e c t mentioned 

s a r l i e r of ampiitnde and fre^nenc. disperaion i n the propagation of 

taken. 

s 

i s 

The p r o f i l e s irom the two experiments also are plotted i n Figs. 

3 ,Ma) and (h,. m . i g . 3...<a) the data from the experiment agree 

enca i s attrlhnted to i r i e t i o n which i s not inclnded i n either theor.. 

. i g . 3.«(h, the agreement i s not as good althongh the o v e r a l l 

.ape oi the wave predicted hy the , , 0 1 ^ . ^ ^ ^ 

.s evident i n the experimental r e i l e c t e d wave. However, to i l l n s t r a t e 

the prohlem oi accnracy mentioned e a r l i e r , an error oi 0.01 cm i n 

t of the teflected wave hecomes an error of 0.008 
the measurement oi tne t e i i o 

/a 1 a an error of ahout 8% oi the wave height 
i n the amplitude n/Hj, i . e . . an erro 

I n Mg. 5.44(h). ^ 

Xhe process of r e i l e c t l o n oi s o l i t a r y waves irom a slope i n most 

.ases . y he predicted approximately hy the U , H . « - . — 

hut the . s S i - , . - ^ " " " " " " 

upstream of the slope. 

. . r Wavesover.J_Change„^ 
5.3 T h e _ T r a n s m i 8 8 a ^ ^ „ 

J t h i s study the "transmitted wave" w i l l be 
For the purposes of t h i s stuoy 

as the tlme-history of the variation ^ ^ ^ ^ 

alevatlon (the wave) at the upstream edge of the 
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a r i s e s from the l i n e a r . u o n d ^ ^ theory which p r e d i c t s t h i s wave i s 

i n f a c t the wave measured a t any p o s i t i o n on the she l f because under 

t h i s theory waves propagate unchanged i n shape i n a constant depth. 

The p r e d i c t i o n of the t r a n s m i t t e d wave i s a p a r t i c u l a r l y important 

aspect of the problem. Once i t i s known i t can be used as the boundary 

c o n d i t i o n of one of the more s t r a i g h t f o r w a r d t h e o r i e s of propagation 

f o r waves t r a v e l l i n g i n one d i r e c t i o n only (e.g., the KdV equation) to 

o b t a i n the c h a r a c t e r i s t i c s of the wave at any p o s i t i o n on the s h e l f . 

5.3.1 The Transmission of S o l i t a r ^ M j a v e s _ g v e r _ a _ S ^ 

I n the experiments described i n Section 5.2.1, i n a d d i t i o n 

to measuring the i n c i d e n t and r e f l e c t e d waves, the waves at the step 

also were recorded. The data from these experiments are presented i n 

F i g . 5.45 where the r a t i o of the wave heig h t a t the step to the i n c i d e n t 

wave h e i g h t , H,/H,, i s p l o t t e d as a f u n c t i o n of the r e l a t i v e i n c i d e n t 

wave he i g h t , H,/h,, f o r various depth r a t i o s , h./h^. The v e r t i c a l 

dashed l i n e s represent the i n c i d e n t wave height at which the l i n e a r 

nondispersive theory p r e d i c t s the wave w i l l break onto the s h e l f (see 

Table 5.3). I n f a c t , i n the experiments, the i n c i d e n t wave height a t 

which the wave broke onto the shelf was not w e l l d e f i n e d , and i n most 

cases the only i n d i c a t i o n of breaking was i r r e g u l a r i t i e s j u s t past 

the c r e s t i n the recorded water surface-time h i s t o r y . 

The data e x h i b i t considerable s c a t t e r , but f o r depth r a t i o s 

h^/h2<3.5 i n the nonbreaking region there appears to be a s l i g h t 

tiend f o r the t r a n s m i t t e d wave height r a t i o to decrease w i t h i n c r e a s i n g 

r e l a t i v e i n c i d e n t wave hei g h t . However, t h i s i s not r e f l e c t e d i n the 

r e s u l t s of the ..nnl.near d i s p e r s i v e theory applied to the case of the 
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O STEP 
• HALF-SINE TRANSITION 
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H i / h , 

0.5 0.6 0.7 

s o l i t a r y waves. 
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waves t r a n s m i t t e d over the h a l f - s i n e t r a n s i t i o n slope. These r e s u l t s , 

which are presented i n Table 5.7, i n d i c a t e no s i g n i f i c a n t dependence 

of the t r a n s m i t t e d wave height r a t i o , H^/H^, on the r e l a t i v e i n c i d e n t 

wave h e i g h t , H^/h^ (although the frequency r a t i o , f J ^ / f i ^ , does vary 

w i t h Hj/h^ and t h i s w i l l be discussed p r e s e n t l y ) . Hence, the trend 

i n F i g . 5.45 i s a t t r i b u t e d to d i s s i p a t i v e e f f e c t s which increase 

w i t h r e l a t i v e i n c i d e n t wave hei g h t . 

Table 5.7 Transmitted waves c a l c u l a t e d using the^ 
nonlinear d i s p e r s i v e theory f o r h-j^/h^ -

«I «T 

\ ^ I 

0 1.268 1.000 

0.05 1.261 0.973 

0.10 1.256 0.946 

0.15 1.258 0.936 

The data from these experiments and also from the experiments 

described i n Section 5.3.1 as the second set of experiments are 

compared w i t h the l i n e a r nondispersiv_e theory as given by Eq. (3.114) 

i n F i g . 5.46 where the t r a n s m i t t e d wave height r a t i o , H^/Hj, i s 

p l o t t e d as a f u n c t i o n of the depth r a t i o , h^/h2. The heights of the 
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wave a t the step e v i d e n t l y are less than the theory p r e d i c t s f o r the 

e n t i r e range of depth r a t i o s which i s a t t r i b u t e d to d i s s i p a t i v e 

e f f e c t s . The data depart more from the theory f o r depth r a t i o s 

h i/h2> 5. ( R e c a l l , as mentioned e a r l i e r , an i n c i d e n t wave, w i t h a 

r e l a t i v e height of H j l h , = 0.1 w i l l break onto the she l f at depth 

r a t i o s h,/h2 greater than 5.) The data from the experiments w i t h 

d i f f e r e n t s h e l f heights agree s u f f i c i e n t l y w e l l to i n d i c a t e there 

i s no dependence on the a c t u a l s h e l f h e i g h t . 

Also p l o t t e d i n F i g . 5.46 are data from experiments i n which the 

v e r t i c a l face on the she l f was replaced by the h a l f - s i n e t r a n s i t i o n 

slope. These data l i e close enough to the data from experiments i n 

which a step was used to i n d i c a t e the t r a n s i t i o n has no e f f e c t on 

the wave at the step. 

The nn.Hnear d i s p e r s i v e theory when applied t o the case of 

s o l i t a r y waves w i t h r e l a t i v e height H,/h, = 0.1 propagating over the 

h a l f - s i n e t r a n s i t i o n slope gave t r a n s m i t t e d wave heights which are 

p l o t t e d as s o l i d c i r c l e s i n F i g . 5.46 w i t h i n 1% of those p r e d i c t e d 

by the Unear nondispersive theory f o r h^/h2<^' 

As mentioned e a r l i e r when describing F i g . 5.2, the shape of the 

tr a n s m i t t e d wave appears the same as the shape of the i n c i d e n t wave, 

as the Unear nondispersive theory p r e d i c t s . To I n v e s t i g a t e t h i s , 

the t r a n s m i t t e d waves f o r experiments w i t h the depth r a t i o s h,/h2 = 2, 

4, and 10 were d i g i t i z e d and the frequency, a, and wave h e i g h t , H^^g, 

i n Eq. (5.4) were c a l c u l a t e d by performing a regression a n a l y s i s on 

the upper 2/3 of the wave. The r e s u l t s are presented i n F i g . 5.47 



. „,„ „ith r a U t l v . incident „ave height. 

3 . . V a t l a t i c n o i the ttanemitted „ave i t . n e n c . r a t i o . 
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where the r a t i o of the frequency of the tr a n s m i t t e d wave to the f r e 

quency of the i n c i d e n t wave, .^/ü,, i s p l o t t e d as a f u n c t i o n of the 

r e l a t i v e i n c i d e n t wave h e i g h t , H./hi- The data appear to l i e about 

a r a t i o of frequencies f o r wave heights n^/h^<0.2, 

then the r a t i o of frequencies decreases as the wave height increases 

w i t h those f o r l a r g e r depth r a t i o s decreasing at a f a s t e r r a t e . 

The i. - . . . . r nondispersive theory p r e d i c t s ü^/ü^'^l.OO as denoted 

by the h o r i z o n t a l l i n e i n F i g . 5.47. However, the n o n U n e a ^ ^ i s ^ ^ 

theory p r e d i c t s the frequency r a t i o decreases w i t h r e l a t i v e i n c i d e n t 

wave height as shown by the experimental data i n Table 5.7 which 

also are p l o t t e d i n F i g . 5.47. 

u n l i k e the process of r e f l e c t i o n , the process of transmission 

of a s o l i t a r y wave over a step appears to be one i n which nonlinear 

e f f e c t s are important, p a r t i c u l a r l y i n the determination of the 

of the transmitted wave. 

5.3.2 The Transmission oi Cnoidal Maves over a Step 

Ihe r e s u l t s oi experiments conducted to determine the wave 

height oi cnoidal waves as they propagate over a step onto a shelf 

are presented i n F i g . 5.48 where the transmitted wave height r a t i o . 

H,/H,, i s plotted as a iunction oi the r e l a t i v e Incident wave height, 

H,/h,. for depth ratios h./h^-S, 3.5, 4 and 10. The numhers heslde 

tha experimental points are the quantity gH, tW, which, as deserlhed 

e a r l i e r , i s the U r s e l l Numher with wavelength replaced hy wave period. 

The v e r t i c a l dashed l i n e s represent the l i m i t s i n incident wave height 

for the wave to hrea. or not to hreaU onto the s h e l i , predicted hy the 
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i.n..rnondispersive theory (described e a r l i e r ) and l i s t e d i n 

Table 5.3. 

The data exhibit conalderahla scatter, part of the reason for 

this i s the way In which these f i n i t e amplitade, periodic waves 

at the step I s In the downstream direction. I.e., onto the s h e l f , 

and as the trongh propagates onto the shelf, the flow I s In the 

reverse direction. I.e., off the shelf. However, since the waves 

have f i n i t e amplitude, the dapth of water under the trough on the 

he achieved without some I r r e g u l a r i t i e s occurring In the trough of 

the wave at the step. (As a crude analogy of t h i s , the process can 

be likened to the flow over a weir.) 

5.3.3 The Transmlssjon nf s o l i t a r y Haves over a Slope 

The dimensional analysis periormed i n Section 5.2.3 when 

considering the r e f l e c t i o n of s o l i t a r y waves irom a slope also i s 

applicable here. Eq. (5.21) hecomes: 

"T J \ i M (5.22) 

where H, i s the transmitted wave height, h./h^ i s the depth r a t i o , 

Ln i s the length r a t i o where L i s the length oi the slope and . i s 

the Characteristic length of the wave (. - 1.5(H,/h,)-X) • «l'-l 

i s the r e l a t i v e incident wave height. 

i n i t i a l l y , the e i i e c t o i the r e l a t i v e Incident wave height, 

H,/h,, w i l l he neglected and the l l n , « n o s d l s H H i - theory w i l l be 
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,3ed to i l l u s t r a t e the e f f e c t of the l e n g t h r a t i o , L/., and the depth 

r a t i o , h^/h^, of the t r a n s m i t t e d wave. This i s done using F i g . 5.49 

. h i c J c o n s i s t s of two p a r t s . Figure 5.49(a) shows the Fourier 

transform of the i n c i d e n t s o l i t a r y wave which, as shown i n Section 3.4. 

f o r the purpose of a n a l y s i s , may be considered to be a f u n c t i o n of 

the l e n g t h r a t i o , Ll%, and the nondimensional frequency. o^L/Zih^. 

Figure 5.49(b) shows the transmission c o e f f i c i e n t normalized w i t h 

respect t o the transmission c o e f f i c i e n t K^(a>)/K,(0). v h i c h i s a 

f u n c t i o n of the depth r a t i o . h,/h,. and the nondimensional frequency. 

,Z)//ib7. The l a t t e r have s i m i l a r shape but have increasing t r a n s 

mission c o e f f i c i e n t r a t i o f o r in c r e a s i n g depth r a t i o s at l a r g e f r e ¬

quencies. 

The technique mentioned e a r l i e r for calculating the reflected 

„ave from Fig. 5.38 aleo appUea for calculating the transmitted 

„ave from Fig. 5.49. Selecting a pa r t i c u l a r length r a t i o and a 

p a r t i c u l a r depth r a t i o , the corresponding functions of frequency for 

the Fourier transiorm and tha transmission c o e f i i c l e n t are multiplied 

together to give the transmitted „ave i n the irequency domain. To 

ohtain the transmitted „ave In the time domain the product i s multi

plied by e-^"t and Integrated over the irequency range. 

The overall behavior can be deduced from Fig. 5.49 as follows: 

1) For small length r a t i o s . t/» « 1, ( i . e . . an abrupt slope) the 

transmitted „ave „111 have e s s e n t i a l l y the same shape as the 

incident „ave because the majority of the irequency range 

„hare the Fourier transform i s nons.ro 1. t h . irequency range 
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Fie 5 49 T h e o r e t i c a l v a r i a t i o n of (a) the Fourier transform of a 
F i g . 5.49 Theor^^^ ^^^^ transmission c o e f f i c i e n t w i t h 

frequency. 
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„har. the traneniselon c o e f f i c i e n t i a a constant. 

U ) For large length r a t i o s . m » l . ( i - , a gradual slope) the 

^ j o r l t y of the Fourier transform „111 he multiplied hy a 

constant transmission co e f f i c i e n t ; hence the shaEe of the 

transmitted „a,e should he almost the same as that of the 

he larger than for the comparable caae with small length 

r a t i o ( i . e . , 

<l .r,d 11) ( I . e . , the change from an 
The t r a n s i t i o n between l ) and l i ) U.e., 

transmitted wave height r a t i o . V»!- =̂ ^̂ ""'̂  " ° °' '"̂  
length r a t i o , m . for various depth r a t i o s . The ilgure shows the 

for small depth r a t i o s but increases with depth r a t i o . As the length 

„,i„ ,„es to sero the transmitted wave height r a t i o tends asymptoti

c a l l y to the value for a step given by K,. (3 . 1 U ) . As the length 

r a t i o goes to i n i i n l t y the transmitted wave height r a t i o tends 

asymptotically to Green's law, Eq. (3.116). 

The Shape of the transmitted wave may he compared to the shape 

„i the incident wave by the iollowing procedure: CD multiplying 

rhe incident wave by the wave height r a t i o , H,/H„ d ü l i n i n g up 

the c r e s t s o i t h i s wave and the transmitted wave, ( i l l ) tahing the 

difference between the amplitudes, and ( i v ) squaring the dii i e r e n c e 

and summing the squares. For a transmitted wave with exactly the 

same shape as the incident wave, the snm-oi-the-squares must he .ero; 
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theory. 



239 

......... " •<-• - ••" -
: : . . . . . . . . . . . : : : : ; r . : : : . . . 
„ U h the ehepe o£ the Incident »ave. The 

-'^'Tt:::r:;::r 
. . i n e ccneldeted. the ̂ . . ^ a l l eccnt In the t e n . . 

.hue the 1 1 , , , ^ ^ . » ^ ^ — ^"""^ * ' 

i n c i d e n t s o l i t a r y wave. 

' ^ ^ : : : : : l l l ^ t h e e t . c e n e l d e t e d . t h e . . ^ ^ ^ ^ ^ 

" " ^ ^ r r l ^ i ^ - t „ave height. H,/h, (although 

^ t h e d e f i n i t i o n of the c h a t a c t e t l e t l c length, 

i t enters x n d i r e c t i y x , „f the r e l a t i v e 

. a s . . - , . . C3.1.». - ; r : r : eondltlone 

,„.l,.t „ave height on the "-^"^ ̂^^JZ.^ _ 1 . 

thie lnveetlgatlon.e.etl.ente„ 

. . Ihe 15 54 cm ehelf and the elopes deserlhed previously. 

T s e res I t s „ere compared „lth those from the f i n i t e element numerl-

r c h e m e to j u s t i f y investigation using numerical meth.^^^^^^ 

^^A f i r s t and the r e s u l t s of tne 
These comparisons „111 be presented f i r s t 

numerical experiments l a t e r . 

The exper^ents „ere conducted for an upstream depth 

, =31.0S cm. a depth r a t i o o i h , / h , . . . 0 . and for a nomina r e U 

. . ht H /h .0.1. Four slopes „ere used: the h a l i 
incident „ave height H^/h^ 
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t r a n s i t i o n slope and the l i n e a r slopes w i t h lengths: 150 cm, 300 cm 

and 45a cm. Each experiment was conducted i n three runs. I n the 

f i r s t run the f i v e wave gauges were placed a t various l o c a t i o n s along 

the flume and a wave was generated. The r e s u l t i n g displacement of 

the water surface was recorded on both the o s c i l l o g r a p h and the A/D 

converter. For the second run, Gauge 1 was placed i n the p o s i t i o n 

occupied by Gauge 5 i n the f i r s t run and the other four gauges were 

p o s i t i o n e d downstream of Gauge 1. The same wave which was generated 

f o r the f i r s t run also was generated f o r the second run and the waves 

were recorded i n s i m i l a r manner. This was repeated once more r e s u l t i n g 

i n 15 wave gauge records at 13 d i f f e r e n t l o c a t i o n s . The records 

were a l i g n e d i n time by l i n i n g up the wave crests of the records 

from Gauge 5 of the f i r s t run and Gauge 1 of the second run and 

Gauge 5 of the second run w i t h Gauge 1 of the t h i r d run. 

I n the numerical experiments, a wave of the same height as 

was generated i n the p h y s i c a l experiments (nominally Hj/h-,^ = 0.1) was 

used and the time records at l o c a t i o n s equivalent to the t h i r t e e n 

l o c a t i o n s of the wave gauges were computed. The numerical and p h y s i c a l 

experiments were aligned by l i n i n g up, i n time, the c r e s t s of e i t h e r 

the f i r s t or the second time record ( i . e . , e i t h e r Gauge 1 or Gauge 2 

of the f i r s t r u n ) . 

The r e s u l t s of the four experiments are presented i n Figs. 5.51 

to 5.54 which correspond to the h a l f - s i n e t r a n s i t i o n , the 150 cm slope, 

the 300 cm slope and the 450 cm slope r e s p e c t i v e l y . The s o l i d l i n e s 

represent the p h y s i c a l experiments and the dashed l i n e s represent the 
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F i g . 5.51 Comparison of p h y s i c a l and numerical experiments f o r a 
s o l i t a r y wave w i t h h e i g h t Hi = 3.1 cm propagating from a 
depth h i = 31.08 cm over a slope w i t h l e n g t h L = 15.54 cm 
onto a shel f w i t h depth h2 - 15.54 cm. 
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3 ^ 5 
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3.53 comparison o i ̂ ^1^^,^^^^^.^^ 7o%T^^^ 
onto a shelf w i t h depth h2-15.54 cm. 
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F i g . 5.54 Comparison of p h y s i c a l and numerical experiments f o r a 
^ s o l i t a r y wave w i t h height Hi = 3.1 cm f °P^f ̂ i n g from a 

depth h i =31.08 cm over a slope w i t h l e n g t h L = 450 cm 
onto a she l f w i t h depth h2=15.54 cm. 
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™.„ical resuXts. Xhe figures are presented In dimensional form 

heoause, although there are the three lengths: the upstream depth, 

,he important lengths for the three regions: upstream of the slope, 

the S l o p e , and the shelf, none o f these lengths I s the Important 

length for a l l three regions. 

i n Figs. 5.51 to 5.54 the or i g i n of X was taKen to he at t h . top 

the amplitude-time history oi waves at locations upstream of the 

S l o p e , exhlhlt the Incident „ave „ith i t s crest at time t«2 sec 

then at time t . 6 sec the reflected „ave can he seen. As the length 

r a t i o increases irom figure to figure t h i s „ave hecomes longer and 

smaller es „as discussed i n Section 5.2.3. As the s o l i t a r y „ave 

propagates onto the s h e l i , the front face of the „ave steepens 

end as the „ave propagates a second „ave heglns to iorm h.hind the 

m.ln c r e s t . This process „111 he discussed i n more d e t a i l shortly 

hut f i r s t the physical and numerical experiments „111 he compared. 

i n Figs. 5.51 and 5.53 t h . „av.s from t h . numerical experiments 

appear to he propagating faster than those from the physical experi

ments, p a r t i c u l a r l y on the s h e l i . Ho„.v.r, t h i s I s not true of the 

„aves sho„n i n Figs. 5.52 and 5.54; thereiore, the apparent s h i f t i n g 

of the „ave records i n time „hlch occurs i n Figs. 5.51 and 5.53 i s 

I t „111 he re c a l l e d , t h . method used to assemhle the three physical 

experiments and the single numerical experiment „hlch comprise each 
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f i g u r e i n v o l v e d , f o r the p h y s i c a l experiments, l i n i n g up the record 

from Gauge 5 of one experiment w i t h Gauge 1 of the next experiment. 

Hence, i f an e r r o r occurred i n t h i s procedure, a l l other records i n 

t h a t experiment would be misaligned. The numerical scheme re q u i r e d 

only a s i n g l e alignment since a l l the time records were taken from 

a s i n g l e experiment. An example of misalignment occurs i n F i g . 5.51 

where, comparing the s h i f t i n time between the p h y s i c a l and the 

numerical waves, the lower four waves appear t o be al i g n e d c o r r e c t l y 

but the next f i v e , i . e . , a t x = 0 , 0.4, 0.86, 1.3 and 1.66 m, a l l 

appear to have been s h i f t e d by the same amount and the upper fo u r 

waves appear to have been s h i f t e d by an even greater amount. 

As the waves propagate, the p h y s i c a l experiments e x h i b i t smaller 

wave amplitudes than the numerical experiments. This i s a t t r i b u t e d 

to f r i c t i o n a l e f f e c t s i n the p h y s i c a l experiments which are not 

accounted f o r i n the numerical experiments. 

Apart from these two e f f e c t s , the p h y s i c a l and numerical e x p e r i 

ments show reasonably good agreement p a r t i c u l a r l y w i t h regard to 

the shape of the waves; the e r r o r s i n alignment a c t u a l l y h i g h l i g h t 

some aspects of t h i s . For example. F i g . 5.52, i . e . , the experiments 

w i t h the 150 cm slope shows the good agreement i n the shapes of the 

f r o n t faces of the waves w h i l e Figs. 5.51 and 5.53, i . e . , the e x p e r i 

ments w i t h the t r a n s i t i o n slope and the 300 cm slope, show the good 

agreement i n the shapes of the back faces of the waves. I n F i g . 5.54, 

i . e . , the experiment w i t h the 450 cm slope, the waves appear to be 

aligned b e t t e r and t h i s shows the o v e r a l l shapes of the waves i n the 
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experiments e.ree „eXl except i o t the di«ete„ce i n ampiitnde 

„uch ie censed hy f r i c t i o n i n the physical experiments. 

.s mentioned previonsiy. on the hasis o i the asreement hetween 

rhe nnmericai and the physical experiments, the effect of the i n c i 

dent wave height on tha transmitted wave was Investisated hy means 

of nnmericai experiments. For depth r a t i o s : h./h,- 2, 3 and 4, 

experiments were condncted to i l n d the time record o i tha transmitted 

„ave ior varlons length r a t i o s , and ior incident wave heights 

O f H , / h , =0, 0.05, 0.10 and 0.15. 

.0 compare the transmitted waves, the time records at the hottom 

r e s n l t o i a ty p i c a l set oi nnmericai experiments, i n t h i s case i o r 

a constant length r a t i o of W.-^.OO. »ote, the c h a r a c t e r i s t i c 

length. varie s with the r e l a t i v e incident wave height, H,/h„ 

therefore a constant length r a t i o , Ll. implies the slope length, 

IS d i i i e r e n t ior d i f i e r e n t r e l a t i v e incident wave heights. The 

. • a i n Fig 5.55 i s the nondimensional time t ^ / i h ^ A and the 
abscissa i n rig« ->'->-> 

ordlnates are the r e l a t i v e amplltnde n/H,. These allow waves of 

different Incident height H, propagating over slopes of different 

at the hottom of the slope collapse into e s s e n t i a l l y one p r o i i l e . 

The s o l i d cnrve represents the l i 5 , « ^ , S B É i 5 £ H ^ — ^ 

denoted H./h.-O to indicate i t i s independent oi the wave height. 

The dashed cnrves represent the ̂ s O i - E ^ ^ ^ ^ ^ ^ 

varlons r e l a t i v e incident wave heights, H,/h,. The maxlmnm wave 
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F i g . 5.55 comparison of t r a n s m i t t e d waves f o r i n c i d e n t waves of 
^ various heights f o r a l e n g t h r a t i o ot Ll% 2 . U U . 
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, 3 H /h .0.15 because Incident waves higher than 

incident wave h e l ^ ^ ^ 

,lrted wave Increase with Increasing r e l a t i v e 

. , i„ section 3.1. the phenomenon of steepening o l 
AS was mentioned I n Sectio ..„erslve 

. f a wave i s a nonlinear rather than a d i s p e r s l 
the front iace of a wave ^ 

i n F i e 3.3, nonlinear effects taKe p 

distance 

a l r e r a certain propagation distance. Hence, 

. I n F l g 5.55 must have been s u i i l c i e n t for 

for the cases shown m Fig. 

t , to develop. Waves with larger heights have 

- r r , : : : : : -

,...,1,..». . . — • >•• — • 

. . . . . . . . . . . ~ • " • • » - r 

presented i n F i g s . different r e l a t i v e 
Ui and comprised four waves with d l f f e r e 

length r a t i o , LlU ^^^^^^ 5.55 

incident wave heights. This resulted i n a , 

. r each experiment hut only the transmitted waves are pres 

Figs. 5.56(a) and ( b ) . 
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. . . 3.5ea) comparison o. „ a p s m l » . wavas f o r l n o . e „ waves o. var l o o s h e l s . r s an. .or v a r l o n s U n . 

r a t i o s f o r a depth r a t x o of h ^ / t i 2 - J -
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I n a l l cases the slope of the f r o n t face, I . e . , the l e f t face 

of the wave, f o r the la r g e r waves I s greater than f o r the smaller 

waves. As the le n g t h r a t i o Increases f o r a given r e l a t i v e I n c i d e n t 

wave h e i g h t , the slope of the f r o n t face also increases. For the 

length r a t i o of L / i l = 0.53, which would be considered an abrupt slope 

by the c r i t e r i o n described e a r l i e r f o r the li^yearj^o^^ 

theory, there i s evidence of steepening of the f r o n t face. This 

i n d i c a t e s , even when the c h a r a c t e r i s t i c l e n g t h of the wave i s twice 

the l e n g t h of the slope, nonlinear e f f e c t s are important to some 

degree. 

For l e n g t h r a t i o s less than u n i t y , the t r a n s m i t t e d wave height 

r a t i o , H^/H,, i s almost constant w i t h r e l a t i v e i n c i d e n t wave h e i g h t . 

However, as the le n g t h r a t i o increases the height increases and t h i s 

i s i n t e r p r e t e d as i n d i c a t i n g the growth i n the importance of dis p e r ¬

sive e f f e c t s . 

For the tr a n s m i t t e d wave r e s u l t i n g from an i n c i d e n t wave w i t h a 

r e l a t i v e height of H,/h^ = 0.15, when the l e n g t h r a t i o i s L/£ = 3.04 

an abrupt change i n slope appears i n the back face of the wave and 

f o r l a r g e r l e n g t h r a t i o s t h i s becomes more pronounced. S i m i l a r l y 

f o r the wave r e s u l t i n g from the H./h^^O.lO i n c i d e n t wave, a change 

i n slope appears when the le n g t h r a t i o i s L/. = 4.08. However, no 

change i n slope i s evident i n the back face of the waves r e s u l t i n g 

from the i n c i d e n t wave w i t h the r e l a t i v e height of Hj/h^ = 0.05. 

These changes i n slope correspond to the emergence of a s o l i t a r y 

wave from the main wave and i t s appearance i s I n t e r p r e t e d as an 
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. • f f p r t s are becoming equally 
Indication nonlineat an. diapetsive e i i e c t s 

, . .nls i s tne atea investigated Madsen and «e. (»69) 
important. This 

Mv bv Tappert and Zabusky ( W D an 
and subsequently by PP ^^^^^^ ^^^^^^^^ 

m „bieb i t was assumed tbe S l o p e , 

_ O i the parameters considered ere ( 

experiments performed, the 

T = rvf the f r o n t face, b- 1^^ j q ^ X ' 
i ) the maximum slope of the 

i i ) the wave he i g h t , H^, and 

i i i ) the u r s e l l Number defined as: 

U = 
gï4 (5.23) 

h l ^ t ^ m a x 

A^f^r^pA bv Hammack (1972) 
n r s e l l Number defined oy 

except that the time derivative, n,, 

derivative, n^)• ^^^^^ 1£ the 
r the diiierence i n the soiu 

TO estimate „bat 

^ ^ ^ ^ ^ theory „ere used i n s t e ^^^^ 

.hp r e l a t i v e d i f f e r e n c e xn the maxxmu 

^ : r : : : l e a r theory, ( . - W - U n - ^ ^ 

i : t h ! t l m l t t e d „ave height irom that calculated hy the 
diii e r e n c e In the ^^^^ ^^^^ 

line a r theory, ^ J . . ^^^^^^^^ nonlinear 

he interpreted aa m data, ior a depth ratio 

and dispersive e i i e c t s respectrvely. 
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of hj^/h2 = 3, are p l o t t e d as fun c t i o n s of the l e n g t h r a t i o i n F i g . 5.57 

(a) and ( b ) . Figure 5.57(c) shows the U r s e l l Number defined by 

Eq. 5.23 p l o t t e d as a f u n c t i o n of the len g t h r a t i o ; t h i s f i g u r e w i l l 

be discussed p r e s e n t l y . 

The curves i n F i g . 5.57(a) and (b) represent the best f i t of 

these data and also the data f o r depth r a t i o s \/h.2 = 2 and 4 (which 

are presented i n Appendix F) as given by the f o l l o w i n g expressions: 

H ^ - H ^ v l . 2 8 \ 1 . 1 9 m \ 1 . 3 8 

-H — = 0 - 1 8 I i ^ - 1 M- . (5.25) 
H \l] \h2 / \h^/ 

lm 

Differences between the numerical r e s u l t s and the corresponding 

e m p i r i c a l expression (Eq. (5.24)) i n Fi g . 5.57(a) are p r i m a r i l y due 

to the f a c t t h a t data f o r a l l values of h^/h2 (see Appendix F) were 

used to d e r i v e Eq. (5.24) whereas only those data f o r h.|̂ /h2 = 3 are 

presented i n F i g . 5.57(a). The r e l a t i v e d i f f e r e n c e s p r e d i c t e d by 

Eqs. (5.24) and (5.25) are compared to the a c t u a l data i n F i g . 5.58(a) 

and ( b ) . The s c a t t e r e x h i b i t e d there i s a t t r i b u t e d to the approximate 
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r.f (^^ the r e l a t i v e d i f f e r e n c e 
5 57 V a r i a t i o n w i t h l e n g t h r a t x o of ^^.^^ d i f f e r e n c e f o r 

f o r slopes, (S - ^ n ^ ) / ^ l i n ' ^he^ the U r s e l l Nuinber, 
wave 

he i g h t s , C H T - t ^ T i i n ^ ' ^ ^ i l i n ' 
U ( f o r h-|^/h2= 3) • 



256 



257 

U „ U l he r e c a l l e d , are lro» numerical experlmenta. B,a. 

: : ; a u d C 3 . . , m a , . e u s e d r e . l . e o r d e r - o l - m a . l r u d e e s r l m a r e a 

, \ . a coudlclcua under „hlch I r le.neceeaar, Co uae r h e ^ 

^ . e o r . racher . a n . e . . ^ . . . . « H ^ ' ^ ^ 

::::;;:r^or a len.rn « . 0 ./....O andadepr. rarro o l ^/K, 

rne nonlinear analysis ro be dll.erenc 10. irom r.e l i n e a r 

a n a l g i a , rne lollo„lns r e l a r l . e Incldenl „a.e Kel..» „ould . 

required: °^ ^ ^ 

f o r the wave hei g h t . 

xn 5.37(c) r.e U r a c i l «umber at m-O l a approximately 

„raeXX Number ol tbe Incident „ave multiplied by (b,/b,, . 

rne lenstb r a t i o Increaaee, tbe . r a e l l Number ol tbe tranamltted 
„„d, to the transmitted „ave becoming 

„ave decreases „hlch corresponds to the 

C5.«)ls..Z5,(l.H,/h,,. Xhe appearance oi the Changes i n 

Slope oi the hack iace oi the „ave mentioned e a r l i e r occur „hen 

the U r s e l l Number i s U « 9 . 

..a transmission o i s o l i t a r y „aves over a slope, i n general. 

requires numerical solution oi the 

. „hlch can be determined using Eqs. 
Ho„ever. i n some circumstances, which 

and (5.25). the simpler and more stralghtiorward 1 ^ 

nondiSESrsive theory may he used. 
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5.4 The Propagation of Long Waves on the Shelf 

5,4.1 The Propagation of S o l i t a r y Waves on the Shelf 

As a s o l i t a r y wave propagates over a step onto a s h e l f , 

I t was shown I n Section 5.3.1 the wave height and frequency of the 

tr a n s m i t t e d wave are of the same order as the Incid e n t s o l i t a r y wave. 

Hence, using the U r s e l l Number defined by Eq. (5.23), the U r s e l l 

Number of the tr a n s m i t t e d wave i s approximately the U r s e l l Number of 

the i n c i d e n t s o l i t a r y wave m u l t i p l i e d by ( h ^ / h ^ ^ . Therefore, since 

the U r s e l l Number of the t r a n s m i t t e d wave i s not the U r s e l l Number 

of a s o l i t a r y wave of the same he i g h t , the tr a n s m i t t e d wave must 

change i t s shape as i t propagates. Furthermore, since the U r s e l l 

Number of the tra n s m i t t e d wave i s gr e a t e r than the U r s e l l Number 

of the s o l i t a r y wave of the same he i g h t , nonlinear e f f e c t s w i l l be 

more important than d i s p e r s i v e e f f e c t s i n the propagation. As was 

shown i n Section 3.1, when nonlinear e f f e c t s are greater than l i n e a r 

e f f e c t s , the f r o n t face of the wave begins to steepen, ( i . e . , 

and n increase). However, as t h i s occurs the U r s e l l 
^ t max 'x max 

Number given by Eq. (5.23) decreases and thus nonlinear e f f e c t s 

become r e l a t i v e l y less important. I n t h i s s e c t i o n , t h i s phenomenon 

i s examined f o r the p a r t i c u l a r case of a t r a n s m i t t e d wave w i t h the 

form: 

n = H„ sech2 t . (5.26) 

Of p a r t i c u l a r i n t e r e s t i s under what c o n d i t i o n s and f o r what distance 

of propagation do nonlinear e f f e c t s dominate. 
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a transmitted „ave given .y K,. (3.26) pvopagating on a 

s,.U „it. a deptn the U t s e i l »nm.et deiined (5.23) 

becomes 

27 M 
U = — — 

(5.27) 

16 \h2l 

Ihete are two extremes to be considered: 

„ Xi tne u r s e l l Nnmber i s small enongb i o r a lin e a r tbeor, 

to apply, tben i o r t b i s l i n e a r tbeory tbe propagation i s 

.„t dependant on tbe actnal wave belgbt. H,. (One way tb i s 

c a n t a t e place i s i i b , > b „ I.e. . i i tbe wave propagates 

into deeper water.) 

1Ü l i tbe ursell Number i s large enougb ior tbe s o u U - r 

„lv i t can be shown the propaga-
nondisnersiïÊ -«ory to apply, i t can 

rion i s not dependent on tbe £re,uency, 8,, and tbe 

independent variables, x and t . can be normalised wltb 

respect to tbe irequency and tbe depth h, (i o r d e t a i l s 

r h l s and other aspects oi the , 2 . 1 i i , 5 ^ ^ 2 ï ^ i a ^ 

theory oi propagation o i sech^ waves, see Appendix E ) . 

„ance, i i the ^ „ 

..andent on the irequency but independent oi tbe wave herght ^ 

CO versely, i i the , , , ^ ^ . . . - 1 ^ applies, propagation 

,3 .pendent on the wave height but Independent o i the irequen 

„ L e e n these extremes the , , , U . H . . « . — 

^ p r e s e n t e d hy tbe KdV equation) where propagation i s dependent on 

I' 
I 



260 

both the frequency ürj, and the wave height H^. 

To i n v e s t i g a t e these e f f e c t s experiments were conducted using 

the r e s u l t s of Section 5.3.1, w i t h the i n c i d e n t s o l i t a r y wave h e i g h t , 

H j , and the upstream depth, h^, adjusted t o give a range of r e l a t i v e 

wave h e i g h t s , U^/h^, and nondimensional frequencies, ü^/h^, f o r 

the t r a n s m i t t e d wave. The wave propagating on the shelf was then 

recorded a t e i g h t l o c a t i o n s downstream of the step. The desired 

wave heights and frequencies of the t r a n s m i t t e d waves were 

V h 2 = 0.10» 0-30 and 0.50 and ü^/ï^lï- 0.10, 0.13 and 0.15 respec

t i v e l y . Of these nine experiments, only e i g h t could be conducted 

because i n the case of H^/h2 = 0.50 and ü^/h^-0.10 the depth on 

the s h e l f was too small (h2 = 3 cm) . 

The a c t u a l wave heights and frequencies are presented i n Table 5.8 

along w i t h other experimental data. These include the distance 

between the l o c a t i o n s at which the wave was recorded. Ax, and the 

u r s e l l Number of the tr a n s m i t t e d wave, U„. This U r s e l l Number v a r i e s 

from U^=5.5 which i s 2.2 times t h a t of the s o l i t a r y wave of the 

same b l i g h t to U„=57.4 which i s 17 times t h a t of the s o l i t a r y wave 

of the same height. 

The time records i . e . , the v a r i a t i o n of the water surface eleva

t i o n w i t h time, at various l o c a t i o n s are presented i n Figs. 5.59, 5.60 

and 5.61 f o r the desired r e l a t i v e wave heights H^/h2 = 0.10, 0.30 and 

0.50, r e s p e c t i v e l y . The ordlnates are the amplitudes normalized w i t h 

respect to the depth h2 and the abscissas are the nondimensional time 

t/iThT . The distance between the l o c a t i o n s at which the waves were 
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F i g . 5.60 Experimental wave records showing sech^ waves w i t h approximate r e l a t i v e wave height of 

H,j,/h2 = 0.3 propagating on the s h e l f . 
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F i g . 5.61 Experimental wave records showing sech^ waves w i t h approximate r e l a t i v e wave hei g h t of 

Ilj,/h2 = 0.5 propagating on the s h e l f . 
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waves on tne s u c j - j - s 

Expt 

No 

1 
2 
3 
4 
5 
6 
7 

Desired Desired 
f h " 

0.1 0.15 

0.1 0.13 

G.l 0.10 

0.3 0,15 

0.3 0.13 

0.3 0.10 

0.5 0.15 

0.5 0.13 

"1 

Com) 
"2 
(cm) 

34.55 19.01 

29.63 14.01 

24.41 8.87 

22.50 6.96 

21.42 5.88 

15.37 4.15 

20.61 5.07 

19.79 4.25 

(cm) 

2.01 
1.48 
0.92 
2.21 
1.77 
1,22 

2.51 
2.05 

Ax 

(cm) 

Measured 

Hrj,/h2 

45.0 
45.0 
45.0 
22 
22 
22.5 
22 
22.5 

Measure_d 

0.106 
0.108 
0.109 
0.330 
0.304 
0.322 
0.519 
0.512 

surea 

0.148 
0.126 
0.091 
0.135 
0.117 
0.084 
0.130 
0.112 

5.5 
10.1 
14.3 
25.8 
31.7 
57.4 
42.3 
48.8 

o //^ The l a t t e r q u a n t i t y 
. . - i . l i s t e d as x/h2 and also J2^x//gh2 • 

;T,T.r"...... - . " — • * • — T 

,A be e l B l l e r f o r waves w i t h tbe seme r h i t l a l 
the waves wouU be srm , , e t . i n s p e e t i o n o i 

h e i g h t . H,/b„ a t e . e i veioes o . ^^^^^^^^ 

rhe i i g o r e s , p a r t i e o i a r i , n g s . 3..0 and 3.6X 

::;:;,:::::.r.;!:::;r=^ 
• th. h e i g h t of the c r e s t wxth 

f-v,o increase xn the hexgni-
p r e d i c t s . However the xncrea 

• ^ . T , . f o r each experiment xn Figs. 

i t : : : : - : : . . . — - - - - , 

r he eause. h , the i o t e r a e t i o n o i nonlinear e i i e c t s an. 

" „ : m. the .i s t a n c e over which the ^ . . ^ . . . . - i ^ -

. 0 were propagated by t h i s theory 
sive tbeory a p p l i e s , tha waves a t K/h^ 
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by t h e HBliïfiyuli^ESHiïa """^^ 

„ . p a r e d „Ith tbe experiments. The eomparlsons for the experiment 

„lth desired r e l a t i v e „ave height »,/h,.0.5 and desired nondimensional 

£re,neney « , ^ - 0 . 1 5 „hlch are considered t y p i c a l are presented 

m Figs. 5.62 to 5.64, „here the experiment i s represented hy the 

soli d cnrves and tbe theories hy the dashed cnrves. The ^onlliiear 

^^^^dls^ersive theory i s not presented i n Fig. 5.64 hecause i t predicts 

the „ave breaks at x/h,»29 and the theory i s Invalid a l t e r t h i s 

occurs, m addition to the nonlinear nondlsperslve theory and the 

„„„»neer dispersive theory, the l l n e « n o n d i S £ « s i ™ theory also 

I S presented. As mentioned e a r l i e r the l a t t e r predicts the shape 

of the „ave remains the same and the „ave propagates „ith c e l e r i t y 

, . / i h ^ . Figure 5.62 sho„s tbe j E n l i n e ^ i i a H S i - theory and the 

^ ^ j ^ ^ ^ ^ ^ ^ ^ d i , , ^ theory are almost coincident i o r the i n i t i a l 

13 3 depths from the step and hoth predict a greater c e l e r i t y than 

the l l n e a ^ n o n d l a - l v e theory. The experimental data folio» tbe 

nonlinear theories hatter than the lin e a r theory but have a smaller 

„ . ^ „ . than the nonlinear 
„ave height and smaller iront iace slope, 

theories predict. Some reasons i o r t h i s „111 be discussed presently. 

Figure 5.63 sho„s a a the „ave propagates iurther onto the shelf 

tbe r e s n l t s f r o m the t„o nonlinear theories diverge, i . e . , the 

^^^^^^^^^^^^^^^.^^ rheory predicts tbe „ave height „111 remain 

constant but the iront iace of tbe „ave „ i U continue to steepen 

nntU the „ave breaks, „hlle the nonUneH.dlsEeHive theory predicts 

the „ave „111 begin to transiorm into a series of s o l i t a r y „aves. 
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62 Comparison of waves measured experimentally w i t h those 

' c a l c u l a t e d by va r i o u s t h e o r i e s a t l o c a t i o n s given by 

x/h2 = 0, 8.88 and 13.31. 
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EXPERIMENT 
_ _ LINEAR NONDISPERSIVE THEORY 
- NONLINEAR NONDISPERSIVE THEORY 

NONLINEAR DISPERSIVE THEORY 

0.6 

0.4 

0.21 

0 

x/h, = 26.63 

0.6 

04 

0.21 

0 

22.19 2.88 

0.6 

04 

0.21 

0 

•25 

17.75 

0 25 50 75 

tygTïï: 

fi3 Comnarison of waves measured experimentally w i t h those 
c a l c u l a t e d by various t h e o r i e s a t l o c a t i o n s given by 
x/h2=17.75, 22.19 and 26.63. 
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EXPERIMENT 
- - LINEAR NONDISPERSIVE THEORY 
---- NONLINEAR DISPERSIVE THEORY 

t y g T h 

s 64 fomnarison of waves measured experimentally w i t h those 
c a l c u l a t e d by various t h e o r i e s a t l o c a t i o n s given by 
x/h2 = 31.07, 35.50 and 39.94. 
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..e experimental p r o i l l e a again exblMt a amallet „ave helset and 

amallet itont iaee alepe, .nt notlee at x/n=26.e3 tne expetimental 

„ave nelght i s s U g . t l y greater than tne „ave .eight predieted 

rnere l e a email trongh indieating a aeeond „ave l a heginning to 

emerge 

X„ F i g . 5.64 the nonUnearjSïi^EaHJï^ theory i a omitted 

heoanse i t predlets the „ave hreaks het„een x/h,.26.63 and 31.07. 

Xhls ilgure sho„s there i s a considerahle d i i i e r e n c e het„een the 

re s n l t s o i the experiment and these oi the .^,^,^^,^1,2^ 

. s the „ave propagates irom deep „ater Into shallo„ „ater one 

„„nld expect houndary layer separation to occur on the s h e l i close 

to the step. TO investigate t h i s , the „ater i n the region oi the 

step „as mixed „lth i i n e aluminum po„der, a „ave „as generated and 

the resulting motion oi the aluminum p a r t i c l e s „as photographed. The 

„f heieht H, -2.0 cm propagating 
r e s u l t s i o r an incident s o l i t a r y „ave of height 

f r o m a d e p t h h , = 2 0 . 5 c m i n t o a d e p t h h , = 5 . 0 c m C a , o v e r t h e s t e p 

and (h) over the half-sine t r a n s i t i o n slope are presented in Fig. 5.65, 

.he photographs „ere taken at Intervals oi . sec. and irom l e i t to 

u H M f The s t i l l water l e v e l i s denoted 
wave propagating onto the s h e l f . The 

, T7r,r the Step, the r e g i o n 
m each photograph hy the horizontal l i n e . F o r t h e 

K p about 60% of the depth on the 
of separation appears to grow to be about 

„ . t h i s i s reduced to about 20% of the depth when the 
s h e l f . However, t h i s i s reu 



NJ 
O 

(b) 

F i g . 5.65 Views of the separation caused by a s o l i t a r y wave propagating 
over (a) the step and Cb) the h a l f - s i n e t r a n s i t i o n . 
( h i = 20.50 cm, h2 = 4.96, H i = 2.0 cm) 
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h a l f - s i n e t r a n s i t i o n slope i s used. 

To examine the e f f e c t the d i f f e r e n t regions of separation have 

on the height of the wave as i t propagates, experiments were conducted 

w i t h the step and w i t h the h a l f - s i n e t r a n s i t i o n and the changing 

height of the waves as they propagate was compared. The r e s u l t s are 

presented i n F i g . 5.66 where f o r four d i f f e r e n t depths on the sh e l f 

the r e l a t i v e wave h e i g h t , H/h^, i s p l o t t e d as a f u n c t i o n of the 

r e l a t i v e distance from the edge of the s h e l f , x/h^. For each of 

the experiments the i n c i d e n t s o l i t a r y wave had a r e l a t i v e h e i g h t of 

H,/h,= 0.1. The t r a n s m i t t e d waves, i . e . , the waves at x = 0, e v i d e n t l y 

have'almost the same height f o r the step as they do f o r the h a l f - s i n e 

t r a n s i t i o n . I n f a c t , as i s shown i n Table 5.9 which compares the 

tr a n s m i t t e d wave data, the shape of the tr a n s m i t t e d waves i n the 

form of the t r a n s m i t t e d wave frequency, also i s e s s e n t i a l l y the 

same f o r the step as i t i s f o r the h a l f - s i n e t r a n s i t i o n . Thus, as 

was noted i n Section 5.3.1 the t r a n s i t i o n slope has no e f f e c t on the 

tra n s m i t t e d wave. However, f o r the smaller depths, i . e . . h2 = 7.77 

and 6.22 cm, the height of the wave propagating on the sh e l f which 

had propagated over the h a l f - s i n e t r a n s i t i o n increases f a s t e r than 

the wave which had propagated over the step. This r e f l e c t s the e f f e c t 

of the d i f f e r e n t extents of the zone of boundary la y e r separation 

shown i n F i g . 5.65. 

I n a d d i t i o n , d i s s i p a t i o n due to f r i c t i o n on the side w a l l s and 

the bottom which would be expected to be conuuon to waves both from 

the step and from the h a l f - s i n e t r a n s i t i o n causes the wave height to 
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0,6 
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0.30 

025 
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Q 9 Q 9 

0.20 

15.54 
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x/ha 

3.6e v a r i a t i o n o i the r e U t i v e - i S ^ t . ^ H / ^ . - J ^ ^ " 

r i r r s t V - a l f e d - w i t n ïhoae i n „hich tha h a l i - a i n o 

t r a n s i t i o n was used. 
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. ... „a„s.i«e. « , e f o r the e..«i.e«s 

(cm) STEP 

0.393 
0.331 
0.246 
0.218 

TRANS 

0.385 
0.339 
0.246 
0.217 

I r E P l TRANS 

0.138 
0.144 
0.201 
0.193 

0.135 
0.142 
0.193 
0.192 

' Z T ^ . cu»lati,a e f f e c t on the ^ 

,e lese than the t . e o t l e e p t e • ^^^^^^^^ 

, „ave „ M O . f t i c t i o n - ^^^^^ ^^^^^^^^^^^^ ^„ 

. e ^ Of t . e „a.e . e.aos.. ^^^^^^^^^^ 

- - — a.f.e.eet than f f ^ ^ - ^ ^ 

then t . e ^ ^ .heoty e x . i M t e . i n 

Henoe, the .i«.tenoes .et„een expe ^^^^ ^^^^ ^^^^^ 

ate a t t . i . n t e . t o - - - - „anemitte. 

, . « e « e an. of tUe .ifücaU. of acentat ^^^^^ ^^^^ ^^^^^^^^^ 

„ave, f n t t . e t a n a i . i a of t.e P t o . a . t ^ ^ ^^^^ ^^^^ ^^^^ 

tne ; t h e o t i e e e v e n t n a i i . 

appear t o p r e d i c t the aa.e r e s n i t . ^^^^ ^^^^ ^^^^^^^ 

r.Kif>h the wave has LI--^ 
diverge and t.e distance „ M c . ^^^^^^^^^ 

a Si.an a.onnt represents t.e propa^atron ^^^^ ^^^^^^^^ 

. „ e e f f e c t s t o .eco.e i « P O « a n . ^^^^^^^^ 

i o .opagate „aves „it. . o t . " ; ^ divergence o i t.e 

J w n r t h i s study the xu 
which they diverged. F o r t h 
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E,. (5.23) became different by 10%. Tbe U r s e l l «nmber was nsed 

becanse I t i s sensitive to cbanges In botb tbe maKlmnm slope oi tbe 

„^^. „ , and the «axtonn, wave amplltnde, n^^. The l e t t e r I s 

of partlcnlar importance becanse the n ^ n U s e a r n e s i i ^ E - ^ 

predicts the amplltnde of tbe cr e s t remains constant, hence any change 

m the crest height Indicates dispersive e i i e c t s have become important. 

However dliierences i n the maxlmnm slope o i tbe wave also indicate a 

diiierence i n tbe theories so i t s effect needs to be inclnded a l s o . 

The problem of comparing the two theories ior waves given by 

K,. (5.26) with varlons heights and ire,nencles i s s l m p l l i l e d 

conslderahly hy r e c a l l i n g that the theory i s 

independent of tbe nondimensional ire,nency • Hence, ior a 

partl c n l a r r e l a t i v e wave height y b , the solntlon i s the same ior 

a l l fre^nencles, . P - v " - g the independent variables x and t 

are normalized witb respect to tbe fre,nency ( i . e . , a,x//ih^ and «,t 

resp e c t i v e l y ) . The propagation distance over which most of the 

numerical experiments were conducted was the distance tbe ^ S B i - S " 

^^^^^.^^ theory predicts the wave w i l l t r a v e l from t h a point at 

W h i c h I t s time record i s given hy E,. (5.26) to the point at which 

l„ I s i n i l n l t e , i . e . , the wave breaks. This 
the maximum slope, „3^, 1» i n i i n j . 

height, H,/h„ m Fi g . 5.67 where the ordinate i s the normalised 

distance « , x , / ^ . The relationship plotted i n E l g . 5.67 cannot 

he expressed i n closed form (see Appendix B), however, for H,/h,<0.05, 





276 

i n F i g 5 67 i s e s s e n t i a l l y l i n e a r and i s given by the 
the curve i n F i g . ^.oi 

r e l a t i o n s h i p : 

/V V b „ 0 ^ - . (5.28) 

/ghT '2 

f (5 28) f o r waves w i t h small h e i g h t , i . e . , 
The s i g n i f i c a n c e of Eq. ( 5 . ^ ö ; 

lL,/ho<0.05, w i l l be discussed p r e s e n t l y . 

^ o. . o . S « . . . ™ o . . . . . U . . wave 

, , „ -0 1 0,3 and 0.5 ara prasented I n Figs. 5.68, 5.69 

: r o t L : : . : . . . a . a n . . . 4 v . - ^ » " - ; -

r . n o. rne propagarlon dlsranee normaU.ed w i . reapeer ro rhe 

ro .reaumg, - ord.nare, 0«| .,/g. s 
K*. of a s an U r s e l l Number i n whxch 

defined by Eq. (5.23), oan be tbongbt of as an 

rbe time nsed I s tbe normalized time Ü,U slnee: 

^max o2 (5.29) 

g ^2 ^ t max 

m eaeb of tbe flgnres tbe lower onrve eorresponds to tbe 

^ ^ ^ ^ . ^ tbeory. (Oslng tbe ordinate, ^V^- ^ ^ 

: : : : : : : : .mas of tbe fre,neney « , ) - tbeory predlots t e 

r l t v m^. /g decreases as tbe wave propagates wblob eorresponds 

quantity ua^h^/g Increases, 

to tbe front fate of tbe wave steepening, i . e . , max 
front face becomes v e r t i c a l 

Eventually U.^h^/g becomes zero when the f r o n t 

and the wave breaks. 
the f i g u r e s are the v a r i a t i o n of TO^h^/g 

The other curves xn the txguxe 
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theo r i e s 
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ÜJ 
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8.0 

0.127 0.22 4.6 

0.032 0.50 21.0 

0.008 0.7D 58.8 

0.2 0.4 0.6 0.8 1.0 

X . e „ e U « l v a r i a t i o n o i " ^ a a l l Hn.h«, 

s r o i VH;"Ö!3; Ï^Slneïï Sarar'.ive an. nonaispersive 

t h e o r i e s . 
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0.843 

Xd 

2.0 0.211 0.25 3.1 

4.0 

8.0 

0.053 

0.013 

0.56 

0.75 

14. 

37.7 

T h e o r e t i c a l v a r i a t i o n of the U r s e l l Number, u4h2/g, wxth 
p r o p l g l t i o n distance, x/x^, f o r an i n i t i a l r e l a t i v e wave 

heigh t of HT/h2 = 0.5; nonlinear d i s p e r s i v e and nondxspersxve 

t h e o r i e s . 
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, distance c a l c n l a t a d by the n f f i U n e a t ^ s p S B i ^ 
„lth Ptspagatlcn . s t . ^^^^^^^^^ 

l M a n . m . These cottespona t c 

wave, of - " ' hei g h t . 

_ s which ate less peaks, than the s o U t a t y ^ v 

x = 0 i s a s o l i t a r y wave, the n 
C l e a t l y , 11 wave ^^^^ ^^^^^ 

^;^7:;:r::o shc: . the . a g e n c y . the wave a t 

However, Figa. . rhe s o l i t a r y wave of the same 

I S less than the freqnency f . ^^^^^^^ ^^^^ 

... TTo2h /e decreases as tne 
he i g h t , the q u a n t i t y ^^^^ , 3 

.1 r tn the steepening of the x r u i 

" n l ^ - " ^ ' " " " ^ 
- - i ^ - - - ^ ^ ^ , „ . . s e cas was evident I n n g s . 

, f e c t s cause the wave heig h t ^^^^^^^^^^ ^^^^^^^^ 

3,0 an. 3.ei,., t h e comhlnation r e s u l t 

„ the . . . i , . . . . . . . ^ 7̂̂^ . a o l l t a r y 

4-^i--irallV to the vaiue u X ̂  
The curves t e n . asymptotica ^^^^^^^ 

. „ „2h /g) * l c h i s reache. when the l e a . i n g 
„ v e (.enoted U,«,h,/g) ^ e r i g h t o i 

from the group. va^^A ^= ^""^ ^" 

to the p o i n t at which the the o r i e s diverge hy 10., 

The distance to the p ^^^^^^ 

e the propagation distance f o r d i s p e r s i v e e f f e c t 

' ,ea i n the tahles I n Figs. 5.68 t o 5.70 as x,/h, 

important) i s presented xn ^ 
. . t-a an approximate r e l a t i o n s h i p f o r x^/ ^ 

and x,/x,. From the data, ^^^^^^^ 

. f the r e l a t i v e wave h e i g h t , H^/h2 and 
f u n c t i o n of the r e i a expression: 

• ^ ITsing regression analysxs, the exp 
n/ü , can be determined. Using g 
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. . . . ^ " / H T V ° - ° ° . (5.30) 
1.68 

. .he best f i t of tbe date, wltb eoefflelent of 

, a t e t . l b a t l o n o f t - 0 . , . S S . . b i s e,oattoe a l S 

data osed to obtaia I t ate plotted l a ^- • 

P . a s o l l t a t . wave p t o p a g a t l . oato a sbelf. 

„ and tbe belgbt, H,, of tbe transmitted 
tbe freqneney, B., approxlmate-

„ tbose of tbe moldent wave, as wa 
the same as tbose o 

, . 1 1 tbe r a t i o of freqneneies i s g l 
lv true m Section 5.3.1, 

A iTn (5.30) becomes: 
'S'^T" l ' 2 

,b. xl-"/M'°'" . (5-31(a)) 

m terms of tbe incident wave: 

, - 0 . 8 8 , H , \ - " - ° ° 
/M (^1 (5.31(b)) 

i « 1 . 6 8 ( ^ - 1 ) [ïT, 

(3 30) and (5.31) i s t e s t r l c t e d to tbe range of the 

Tbe use of Eqs. (5.30) ano v , . „ < a . (" 

,, ™ i e 0.1<Hi/l'2^°-^ ^ ^ 

\ I .eights 
, 1 i s t l c to generate data for waves with 

„ot r e a l i s t i c ^^^^^^^^ ^^^^^ 

H^/n^< 0.1 hecanse the dlstanc ^^^^^ 

(5.28, m t h i s case, becomes proh b ^^^^^^^^^ ^^^^ 

.„l„tion oi the . . . U a H Ï - a l » ^^^^ 

s 
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160 
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,or the eeeh^ »eves eoneidered. the dletence fot nonllneet e f f e e t s 

„ heeome Important eao he ealoolated i n a mannet aimiiat to the way the 

dietanee i o r dispersive effeets to heeome important was oalenlated. 

This involves propagating a wave hy the lln«rnondlsserslve theory 

and hy the n o n U n e a ^ n o n d l ^ ^ theory and ilnding the distanee, 

. for the qnantltles Uü|h,/g to heeome different hy 10.. Rec a l l , 

L l i n e a ^ n o n d l a e r s l v e theory predicts the wave retains i t s o r i g i n a l 

Shape, hence for this theory U«|^,/g i s constant. For the n s ^ l i - l 

^^.^i,,^ theory, the propagation distance ior Ua|h,/g to change 

hy 10% can he expresses a n a l y t i c a l l y hnt not I n closed form (see 

Appendix E ) . Hence the nondimensional distance « , x „ / ^ I s 

presented graphically as a innction of the r e l a t i v e wave height, 

^/b,. i n F i g . 5.72. Notice the s i m i l a r i t y i n the shape oi the cnrve 

to t L oi the cnrve In F i g . 5.67 which i s ior the nondimensional 

distance to hreaumg «.x^/ZihJ . As ior that curve, the cnrve In 

F i g . 5.72 i s e s s e n t i a l l y l i n e a r i o r H,/h,<0.05 and i s given hy the 

approximate r e l a t i o m s h i p : 

V n ^ . . . J M . (5.32) 

comparison w i t h Eq. (5.28) f o r the distance to breaking shows the 

distance f o r nonlinear e f f e c t s to become important i s approximately 

1/20 oi the distance to hreaklng, i . e . , t^«=<^/20. 

To summarise the r e s u l t s oi this section, when a wave oi sech^ 

Shape propagates onto a sh e l f , i n i t i a l l y , ior a distance x„ (given 
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F i g . 5.72 T h e o r e t i c a l v a r i a t i o n of the distance f o r nonlinear e f f e c t s 
to become important, fi^x^/vih^, w i t h r e l a t i v e wave h e i g h t . 
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dlSEerslve theory must be used. 

^ - " ° - - - - r : : ^ ^ ^ ^ 

unear waves, the r ^^^^^^^^^^ 

- " : : L rhe ineident wave. Henee. the 
^= a„ro..tely tbe same as a oi ^^^^^ ^ ^^^^^^^^ 

„ . e U .umber, deiined as SH A> _ 

. . e waves — ^ " „^,.,, . m . e t e i y deiines 

r m w a L s i n terms oi the r e l a t i v e amplitude, 

the shape of the ^.^^^ 

• of the r e l a t i v e tune, t/T. inu , 

' a r l i l .umber d i i i e r e n t irom that o i the onoidal 

" " " ^ " ^ ' ^ ^ a Z the transmitted waves a onoidal 

_ O i the same s b a . _ 

waves. Thereiore, srnoe y „„st eban.e 

„lr. permanent iorm, the shape oi 

as they propagate on the s h e l i . «periments 

. investigate the way i n whieh this t a . e s ^ ^ . 

„ere oondueted i n whioh onoidal waves were e n ^ ^^^^^ ^^^^^ 

. allowed to propagate over a step ont 

the depth was h^-'^-'^'' 
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at the step and a t 1.0 m I n t e r v a l s downstream on the s h e l f . The 

r e s u l t i n g o s c i l l o g r a p h records are presented I n F i g . 5.73 which shows 

three experiments I n which the r e l a t i v e height of the t r a n s m i t t e d 

waves was kept constant a t H^/h2 = 0.28 and the period was v a r i e d 

(Tv^ThJ = 42.1, 57.1 and 77.4) and i n F i g . 5.74 which shows three 

experiments i n which the period was kept constant at l/gT^ = 57.1 

and the r e l a t i v e height of the t r a n s m i t t e d wave was v a r i e d (H^h2 = 0.16, 

0.28 and 0.50). 

I n F i g . 5.73 which shows the experiments i n which the wave height 

was held constant, the t r a n s m i t t e d waves ( i . e . , x/h2=0) f o r each 

experiment e v i d e n t l y have d i f f e r e n t shape; the amplitude of the trough 

decreases from 50% of the wave height f o r the record at the l e f t 

of the f i g u r e ( i . e . , f o r l / i T h J = 42.1) t o 35% of the wave height f o r 

the record a t the r i g h t of the f i g u r e ( i . e . , f o r Tv^ThJ = 77.4). The 

tr a n s m i t t e d waves are approximately symmetrical about the c r e s t , but 

21.3 depths downstream, f o r the three cases the f r o n t face of the waves 

i s steeper than the back face. At x/h2=42.6 secondary troughs appear 

on the back face of the waves and as the waves propagate secondary 

waves emerge i n a manner s i m i l a r to what was seen t o occur f o r s o l i t a r y 

waves (e.g., see F i g . 5.58) except t h a t i n t h i s case the wave groups 

are p e r i o d i c and there i s a trough below s t i l l water l e v e l . Although 

the number of waves emerging i s d i f f e r e n t f o r each experiment, the 

development of the secondary waves appears to be s i m i l a r f o r each 

experiment, namely, the f r o n t face steepens and secondary troughs 

emerge on the back face a f t e r the same distance of propagation i n each 

case, 
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I n a dditions although the shape of the waves at x/h2 = 85.3 i s 

d i f f e r e n t f o r each experiment, the height of the waves measured from 

the main c r e s t t o the main trough i s the same (H/h2 = 0.30) and the 

amplitude of the main trough i s 23% of the wave height f o r a l l three 

experiments. This i s somewhat s u r p r i s i n g because, i t w i l l be r e c a l l e d , 

the amplitudes of the troughs of the t r a n s m i t t e d waves v a r i e d from 

50% of the wave height to 35% of the wave he i g h t . I t may be i n f e r r e d 

from these experiments the wave period governs the number of secondary 

crests which emerge but i t i s the wave height which determines the 

manner i n which the waves propagate. 

This i s I l l u s t r a t e d f u r t h e r i n F i g . 5.74 which shows the records 

of the experiments i n which the period was set at T/g7hJ=57.1 and 

the wave height was v a r i e d . I n these experiments a l s o , the tr a n s m i t t e d 

waves have d i f f e r e n t shape but i n each case the waves are a p p r o x i 

mately symmetrical about the c r e s t . As the waves propagate, the f r o n t 

face steepens then secondary troughs appear on the back face of the 

waves and f i n a l l y secondary waves emerge. The height of the t r a n s 

m i t t e d waves approximately doubles between each experiment and i t i s 

i n t e r e s t i n g t o compare the shapes of the waves a f t e r they have 

propagated distances p r o p o r t i o n a l to the inverse of the r e l a t i v e height 

of the t r a n s m i t t e d wave, i . e . , x/h2 °= (llj,/h2)~^ For example, comparing 

the waves a t x/h2 = 85.3 of the record at the l e f t (Ĥ /h2 = 0.16) w i t h 

those a t x/h2 = 42.6 of the record i n the center (Ĥ /h2 = 0.28) w i t h 

those a t x/h2=21.3 of the record at the r i g h t (Ĥ /h2 = 0.50) , the 

shape of the waves appears s i m i l a r w i t h a secondary trough j u s t 
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beginning to emerge on the back face of the wave. S i m i l a r l y comparing 

the waves at x/h2 = 85.3 of the record i n the center w i t h those a t 

x/h2 = 42.6 of the record a t the r i g h t , the shape i n t h i s case also 

appears s i m i l a r , w i t h three c r e s t s evident and a number of other 

c r e s t s emerging. Hence, as was found f o r the case of s o l i t a r y waves 

propagating onto a s h e l f , when cnoidal waves propagate onto a s h e l f 

the propagation distance f o r nonlinear and d i s p e r s i v e e f f e c t s to 

occur i s approximately p r o p o r t i o n a l to the inverse of the r e l a t i v e 

wave h e i g h t . 

The numerical s o l u t i o n of the nonlinear d i s p e r s i v e theory, i n • 

p r i n c i p l e , i s no d i f f e r e n t f o r t h i s problem than f o r the case o f 

s o l i t a r y waves propagating on the s h e l f . However, the d i s c r e t i z a t i o n 

i n t e r v a l , i . e . , the time step, must be made small enough to describe 

each wave emerging i n the group. Hence, f o r wave groups which break 

up i n t o many waves, the time step must be made small, which i m p l i e s 

l a r g e numbers of c a l c u l a t i o n s . An example of the numerical s o l u t i o n 

of the nonlinear d i s p e r s i v e theory f o r cnoi d a l waves i s presented 

i n F i g . 5.75, where the theory i s compared w i t h a p o r t i o n of the 

experiment shown at the r i g h t i n F i g . 5.74, i . e . , f o r a[,/h2 = 0.50. 

The experiment and the theory agree q u i t e w e l l w i t h regard t o the 

leading wave, however the theory p r e d i c t s the emergence of secondary 

waves on waves f u r t h e r back i n the group occurs more r a p i d l y than 

observed i n the experiment. One possible reason f o r t h i s i s the 

d i s s i p a t i v e e f f e c t s which were mentioned e a r l i e r when considering 

s o l i t a r y waves propagating on the s h e l f . I n s p i t e of these e f f e c t s 

the o v e r a l l behavior agrees between experiment and theory. 
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5.5 Waves Propagating Off the Shelf 

Although I t i s outside the scope of t h i s I n v e s t i g a t i o n , the 

process of waves propagating from shallow i n t o deeper water over a 

step i s presented f o r a s i n g l e case to demonstrate one way by which 

i t can be t r e a t e d . 

I n an experiment s i m i l a r to t h a t shown i n F i g . 5.2, a s o l i t a r y 

wave was generated and allowed to propagate over a step and onto the 

s h e l f . The r e f l e c t e d wave from the shelf was trapped by dropping a 

gate a f t e r i t had passed. The main wave r e f l e c t e d o f f the rear w a l l 

of the tank and propagated back towards the step separating i n t o a 

group of s o l i t a r y waves i n a manner s i m i l a r to th a t shown i n F i g . 5.2. 

Wave gauges were located a t the step and a t four other l o c a t i o n s 

2.4 m apart i n the region downstream of the step where the depth was 

h^=21.73 cm. The waves were recorded on the o s c i l l o g r a p h and on an 

A/D converter and are presented as the s o l i d curves i n F i g . 5.76. 

The wave group at the step (x/h^ = 0) c o n s i s t s of four s o l i t a r y waves 

and a t a i l which gradually decreases i n amplitude and from which more 

s o l i t a r y waves may have emerged i f propagation i n constant depth had 

continued. I n f a c t , the depth increased a b r u p t l y to be 3.5 times 

th a t on the s h e l f . Hence, f o r any of the waves w i t h i n the group, 

the U r s e l l Number given by Eq. (5.23) was reduced to 1/12 ( i . e . , 

(h2/h-|^)2) t h a t on the s h e l f . Thus, d i s p e r s i v e e f f e c t s became more 

important than nonlinear e f f e c t s and t h i s i s r e f l e c t e d i n the wave 

records as the group propagated i n the deep water. 
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The dashed eurves I n Mg. 5.76 are the ltaearjlls£ersi^ theory 

and „ere eelonlated from the „ave reeord a t x/h,= 0 nsing the disper

sion r e l a t i o n I n E,. (3.15). The shaBi of the „aves predieted hy the 

theory agrees w e l l w i t h the experiment, p a r t l c n l a r l y f o r the longer 

waves at the f r o n t of the t r a i n as wonld he expected since the d i s p e r 

sion r e l a t i o n , E,. (3.15). i s a v a l i d approximation i o r long waves only. 

However, there i s a d i i f e r e n c e i n time hetween the t h e o r e t i c a l and the 

experimental time records w i t h the theory p r e d i c t i n g a greater c e l e r i t y 

than the experiment e x h l h i t s and the d i i f e r e n c e Increases w i t h propa

g a t i o n distance. The reasons f o r the time s h i f t are not nnderstood h n t , 

apart from t h i s , the hehavlor i s p r e d i c t e d w e l l hy the l i n e a i U l s B e r s l v e 

theory. 

5 6 A E H l l c a t l o n o l J h ^ ^ 

i n t h i s s e c t i o n , the r e s n l t s presented i n previons sections 

are applied t o the prohlem o i a tsnnaml propagating onto the con-

t i n e t i t a l s h e l f . 

. t y p i c a l c ross-section o i tha c o n t i n e n t a l slope o f i the coast 

„1 C a l l i o r n l a i s shown I n F i g . 5.77 where, f o r c l a r i t y , the v e r t i c a l 

acale has heen d i s t o r t e d ; the c o n t i n e n t a l slope o f f New Zealand has 

S i m i l a r c h a r a c t e r i s t i c s . The depth I n the deep ocean v a r i e s from 

.700 to 3,00 m w i t h an average of 3500 m. D e f i n i n g the s t a r t o i the 

c o n t i n e n t a l shelf to occnr where the contents hegln to increase 

t h e i r spacing markedly, the depth on the s h e l f a t the shelf-hreaU i s 
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„.ean to that on the a.eU-.tea.. vat.as .torn ^ . to 3.9. ..a 

of 30 km. 

100 to 300 km 
TO COAST 

2700 to 3900 m 
Avg.= 3500m 

DEEP 
OCEAN 

h2=IOOOm 

I 

CONTINENTAL 
SHELF 

CONTINENTAL 
SLOPE 1 

to 90 km 
Avg. = 30 km 

3.77 SCematic drawing oi tne continentai slope o i i the ooast 

of C a l i f o r n i a . 

.oth on the eatthqnahe whioh generated i t and on i t s propagation 

,ro. the generation region, .nrthermore. three-dimensional e i i e o t s 
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i n the propagation, which were not considered i n t h i s i n v e s t i g a t i o n , 

probably are important. 

An assumption sometimes made i n the analysis of tsunamis i s 

t h a t the tsunami takes the form of a s o l i t a r y wave. I n f a c t , 

Hammack and Segur (1974) show t h i s w i l l be t r u e only i f the i n i t i a l 

wave has non-negative net volume and the wave has propagated a 

s u f f i c i e n t distance f o r the s o l i t a r y wave to emerge. However, i f 

the i n i t i a l wave has negative net volume, no s o l i t a r y waves w i l l 

emerge and i f i t has zero net volume s o l i t a r y waves may or may not 

emerge depending on the d e t a i l e d s t r u c t u r e of the i n i t i a l wave. 

Furthermore, Hammack and Segur (1978) p o s t u l a t e t h a t the maximum 

distance of propagation p o s s i b l e across any ocean i s not s u f f i c i e n t 

f o r s o l i t a r y waves to emerge. Hence, the assumption of a tsunami 

having the form of a s o l i t a r y wave may not be accurate. However, 

both tsunamis and s o l i t a r y waves are long waves; t h e r e f o r e , the 

behavior of both i s described by the long wave equations and i t i s 

on t h i s basis the a p p l i c a t i o n of the r e s u l t s of the present study 

to tsunamis i s made. 

To apply the r e s u l t s , some assumption must be made w i t h respect 

to the wave height of the tsunami i n the deep ocean near the slope. 

Following the example used by Hammack and Segur (1978), i n c i d e n t 

wave he i g h t s , H,, of 0.35 m and 3.5 m w i l l be considered. Assuming 

the depth i n the deep ocean i s 3500 m t h i s implies r e l a t i v e i n c i d e n t 

wave h e i g h t s , H,/h,, of 1 x IO"'* and 1 x lO'^, r e s p e c t i v e l y . 
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»c.p. waves propaga-a ^^^^ 

Hsaee. the . . a c U s P e s a « . . a . for . s U 

. = to the assumed height of t n i 
3.0 i s a p p l i c a h l e t ^ ^ ^ ^^^^^^^^^ ̂ ^^^ ̂ ^^^ ^^^^ 3̂ ^̂  

a depth r a t i o , h,/h, o ,^ ̂ ^^^^^ ^^^^^^^^ ̂ ^^^ ^^^^ 

of the volume and up t o 30/o 

the s h e l f . , 5 3 the tr a n s m i t t e d wave I s 
. s w m . a . e e a U s . . o . S s c a o p 3 . ^ ^ 

• theory i s used, the Qi^ 

y^^^^^^Sléim^ ' e„d i n tha wave 
of t-he f r o n t racti 

theories i n the slope oi the ^ ^ ^ , , „ , ( 5 . 2 5 ) . I n 

height are given approximately hy , s . ^^^^^^^^ ̂ ^^^^ ^^^^ 

- - - ' r r : : : . t h ratio o i h , h , 3 . 3 . . t n e t a h l e 

„,,,10 an. 100,» ... .li i e r e n e e s are so small the 1 1 ^ 

Shows, ior this example. ^^^^^ ^^^^ ^ ^ , ^ , , , , , , ^ ^ 1 ^ 

.neory oan ^ „ ,e a 10% .i«arenee In 

'°r:r:nt::i h i h t , w o n . h a v e t o i . 

; 2 3 ) . — ior s o l i t a r y waves, are 

E,s. C5.24> and (5.25), . . a r a e t e r l s t i c length, 

r h l t r a r y wave to determine the oh 
applied to an arhltrary ^^^^^^^^^ 1,. 

W h i c h wonld he necessary ior ^^^^ ^ 

O i the s t a t i o n s Indicates the ^ i - ^^^^ 
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Table 5 10 R e l a t i v e d i f f e r e n c e s between the the o r i e s i n (a) t h e 
Table 5.1U Ke ^^^^^ ^^^^ t r a n s m i t t e d wave 

height f o r tsunamis which are s o l i t a r y waves. 

(a) 

L (km) 

Cm) 10 100 

0.35 6.7 x l O - S 3.9X10-5 

3.5 2.4 xlO-"* 1.4x10-3 

L (km) 

Cm) 10 100 

0.35 3.0X 10-8 5.6x10-"^ 

3.5 3.1X10"^ 6,0x10-5 
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hence, che che.ecte.lsclc Xength c a l c n l a t e . „ i U tepte.ent 

the n^ximn. length for the theories to he different h , n. Using 

a depth r a t i o of h , / h , 0 . 3 , a r e l a t i v e Incident „ave height of 

t: 7- - 1 nn km the maximum charac-
H / h , - 1 x 1 0 - ' and a slope length of t - 100 tan, 

the li n e a r and nonlinear theories are different hy l e s s than U . 

Ihns, the transmitted „ave prohahly „111 b a predicted hy the 11,^^1 

^ ^ ^ ^ ^ ^ ^ ,,eory. deferring to F i g . 5.30, since the maximum 

length r a t i o o f t h e slope r e l a t i v e to the „ave I s .M-O.O^, 

(corresponding to a slope length of . - 100 hm and a s o l i t a r y „ave 

height Of „,=3.3 m) the S l o p e I S considered abrupt. Xhls Implies 

the S h a p e Of tbe transmitted „ave i s the same as that of tbe Incident 

„eve and tbe amplitude l e scaled by the transmission c o e f f i c i e n t 

given h y E , . (3.114). (K, - 1.30 for h , / b , = 3.5). 

.or sech^ „aves propagating on a shelf „lth constant depth, tba 

distance to breaUlng predicted by tbe — 
. hvEo (5 28). Thus, for an incident s o l i t a r y 

„as found to be given by Eq. (5.^»^. 

„ave „ith height of 3.5 m „hlch i s transmitted i n the menner 

The distance ior nonlinear e i i e c t s to become Important „as iound to 

he X ~ x /20, thus x„»700 hm. Ho„ever, as sho„n i n rig. 5.77, the 
bex„~x^/iU, „ „ , 1. only 100 to 300 km. 
distance from the continental slope to the coast I s only 

. A the l i n e a r nondlsperslve theory 
Hence, f o r a shelf w i t h constant depth, the Ixne 
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can be used f o r the propagation of the tsunami from the slope to the 

region near the coast where shoaling begins. ( I t should be r e a l i z e d 

t h a t depth changes on the she l f may be important and shoaling e f f e c t s 

may take place on the she l f which were not t r e a t e d i n t h i s study.) 

From these examples i t may be concluded, because of the small 

r e l a t i v e h eight of tsunamis and t h e i r l a r g e lengths r e l a t i v e to the 

lengths of the c o n t i n e n t a l slope, the propagation of tsunamis from 

the deep ocean to the c o n t i n e n t a l shelf-break and f o r some distance 

onto the she l f w i l l be p r e d i c t e d as w e l l by the l i n e H _ n o n d i s 2 e ^ 

theory as by the nonlinear t h e o r i e s . 
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CHAPTER 6 

CONCLUSIONS 

„.es o. t fo™ bee. i . e . et 

— - - - - ^ " ^ ^ : : : : t : : : : a s . . e . t b e . o . . -

— - e.o«e. „e,ee . e ^^^^ ^ ^^^^^ ^^^^ ^^^^ 

,10, of eoUtaty waves over ^ H S S ^ , , , ! ^ -

..petlmeataU, a., also tbeotetreaUv a 

- ^ ' ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ T : : : l l t e e b . . e o s e . t o 

. , e „ l t e s o u s . . e a t e tbe ^^^^^^^^^ ^^^^^^ ^ 

solve the Boussinesq equations pre ^^^^ ^^^^ ^^^^^ 

, o l i t a r y waves propagating o i f 

3,„,Xa oase of s o l i t a r y ,,eoretloally using the 

also has been Investigated experimentally 

^ ^ ^ ^ ^ ^ " ^ " ^ major oonclusions drawn from t h i s study are 

For convenienoe, ^^^^^ ^^.tion 5: 

arranged i n tbe order i n whieh the res n l t s ^ 

2 2 ^ ^ ^ ^ ^ ^ ^ , a s o l i t a r y wave without o s e i i i a t o r y t r a i l i n g 
1. Tbe generation oi a sol ^^^^^^^^ 

' " " ' d o e l e r l t y o f s o l i t a r y waves generated i n the 
2. The shape and ceierxi-y 
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l a b o r a t o r y are predicted w e l l by the theories of Boussinesq, 

McCowan and Laitone f o r small r e l a t i v e wave heights (H/h<0.3). 

However, f o r l a r g e r e l a t i v e wave h e i g h t s , i . e . , H/h>0.3, the 

shape and c e l e r i t y of the s o l i t a r y waves are somewhat d i f f e r e n t 

from these t h e o r i e s . 

3. Cnoidal waves also r e q u i r e precise programming of a wave 

generator (see, e.g., Eq. (3. 5 8 ) ) ; i f the t r a j e c t o r y i s i n c o r r e c t , 

secondary waves which t r a v e l a t a d i f f e r e n t speed from the main 

waves are generated. 

4. The shape of cnoid a l waves i s w e l l p r e d i c t e d by the KdV 

equation, but the experimentally measured c e l e r i t i e s are some

what less than those p r e d i c t e d t h e o r e t i c a l l y . 

5. I n the l a b o r a t o r y , the inner waves of a l i m i t e d group of 

cn o i d a l waves propagate over short distances e s s e n t i a l l y as the 

theory p r e d i c t s an i n f i n i t e number of waves would, i . e . , without 

change i n shape. 

6. The r e d u c t i o n of the height of s o l i t a r y waves and cnoidal 

waves due to f r i c t i o n i s accompanied by corresponding changes i n 

the shape of the wave. The e f f e c t of f r i c t i o n on the height f o r 

s o l i t a r y waves i s reasonably w e l l p r e d i c t e d by the theory of ot h e r s . 

Experiments w i t h c n o i d a l waves gave s i m i l a r r e s u l t s as e x p e r i 

ments conducted w i t h s o l i t a r y waves. 

The R e f l e c t i o n of Long Waves from a Change i n Depth 

7' At a step, the r e f l e c t e d wave measured experimentally i s 

described w e l l by the l i n e a r nondispersive theory f o r both 
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s o l i t a r y waves and enoldal waves. 

, .ne H ^ B i S - l f f i o l tne wave re U e o t e d f r o . a step l o r 

I e . e l . t Of the wave re l l e e t e d when a s o l i t a r y wav 

,ates np a elope, lor most eases Investigated. I s predloted 

a l l by 1 « - . B ^ — " well oy ^^^^ predicted by 

tbeory. However, tbe sba^e 

: ; : f ; : : : a o r l e s IS somewbat different and tbe ^ 

, . . r y tends to agree better wltb experiment. . e 

n„ear effects become toportant for 

nnmericai tbeory predicts nonlinear 

„,es wltb a latge belgbt propagating onto a sbelf 

depth r a t i o . 

— - ; ; 7 ; : ; 7 : ; : ; : i : r e x p e r l m e n t and tbeory, tbe b ^ 

„ansmltted wave Cfor botb s o l i t a r y and cnoidal waves, ^ 

. fnnctlon of tbe r e l a t i v e Incident wave belgbt. However, 

tbe shape of tbe transmitted wave 
the case of so l i t a r y waves, the sha2e 

Z .or s o l i t a r y waves propagating over a slope, the 

theory and the . . . . . . . . ^ 

• , The difference Increases with 

different transmitted waves. The 

, .tb and incident wave height, and hence, the 

,,,, ,3pect 

of the propagation. 
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The Propagation of Long Waves on the Shelf 

12. As a s o l i t a r y wave propagates over a step onto a s h e l f , 

close to the step a l l three t h e o r i e s : the l i n e a r nondispersive 

theory, the nonlinear nondispersive theory and the nonlinear 

d i s p e r s i v e theory, p r e d i c t the same r e s u l t . However, a t some 

distance from the step, the l i n e a r nondispersive theory p r e d i c t s 

a d i f f e r e n t wave from the nonlinear t h e o r i e s ; t h i s distance 

(Eq. (5.30)) i s the distance f o r nonlinear e f f e c t s to become 

important. At a l a r g e r distance from the step thé nonlinear 

nondispersive and nonlinear d i s p e r s i v e t h e o r i e s p r e d i c t d i f f e r 

ent r e s u l t s ; t h i s distance (Eq. (5.32)) i s the distance f o r 

d i s p e r s i v e e f f e c t s to become important. 

13. As cnoidal waves propagate onto the s h e l f , each wave s p l i t s 

up i n t o a series of waves of d i f f e r e n t height w i t h the l a r g e s t 

f i r s t . The distance over which the change i n shape takes place 

i s i n v e r s e l y p r o p o r t i o n a l to the r e l a t i v e wave h e i g h t ; the shape 

of the waves i s r e l a t e d to the nondimensional per i o d (T/g/h) of 

the c n o i d a l waves. 

The Propagation of Waves o f f the Shelf 

14. As waves propagate o f f the s h e l f i n t o deeper water, the 

waves disperse i n a manner predicted by the l i n e a r d i s p e r s i v e 

theory. An e x p l o r a t o r y experimental and t h e o r e t i c a l i n v e s t i g a t i o n 

i n d i c a t e s the l i n e a r d i s p e r s i v e theory p r e d i c t s the propagation 

of long waves from shallow to deeper water reasonably w e l l . 
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,,- of the r e s u l r n Tsuna-i Problem 

15. For teunamle propagating from the deep oeean, i n the 

v l e l n l t y o i tbe e o n t i n e n t a l a h e l i , the r e l a t i v e wave helghta are 

probably email; benee. the lineH.nondlapera£^ theory p r e d i o t e 

the same r e a n l t a l o e a l l y as wonld the nonlinear t h e o r l e a . 
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LIST OF SYMBOLS 

Wave height 

A ,A ,B,.B„,C, C o e f f i c i e n t s I n the s o l u t i o n of the l i n e a r nondlsperslve 

1* ^ 1 ^ theory 

a C e l e r i t y parameter 

a Amplitude 

B Wave number 

b Width of the channel 

C e l e r i t y 

ji_^e_^ Nodal v e l o c i t y and amplitude 

E Second e l l i p t i c i n t e g r a l 

ƒ Damping exponent 

jC^jM C o n t i n u i t y and momentum vectors 

G(x),H<x) I n i t i a l c onditions 

A c c e l e r a t i o n of g r a v i t y 

H Wave height 

H I n i t i a l wave height 

Reflected wave height 

Inverse scattered r e f l e c t e d wave height 

g 

o 

Transmitted wave height 

^ Depth 

h Upstream depth 

Depth on shelf 

i , j , k I n tegers 
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I I n t e g r a l 

J ,J, Bessel f u n c t i o n s of the f i r s t k i n d 
o' 1 

K F i r s t complete e l l i p t i c i n t e g r a l 

R e f l e c t i o n c o e f f i c i e n t 

Transmission c o e f f i c i e n t 

k Wave number 

L Wave l e n g t h 

L Slope l e n g t h 

a C h a r a c t e r i s t i c l e n g t h of the wave 

i* Length of the wave over which the amplitude exceeds 
1% of the wave height 

m ' ^ j M ^ Mass matrices f o r c o n t i n u i t y and momentum equations 

m'̂ .m̂  Mass vectors a t the boundaries 
~o' ~m 

m E l l i p t i c parameter 

m' Complementary e l l i p t i c parameter ( = l - m ) 

N,n Integers 

P Parameter i n inverse s c a t t e r i n g theory 

Q Rayleigh q u o t i e n t 

q Flow r a t e per u n i t w i d t h 

r Distance i n inverse s c a t t e r i n g theory 

S Stroke 

S Slope of f r o n t face of a wave 

T Period 

t Time 

t Time i n t e r v a l between c r e s t and s t i l l water l e v e l 
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t 

u 

Ü 

U 

U 

^ Volume 
s 

v,w 

X 

X 

^ o ' ^ l 

Y 

y 

n 

0 

K 

V 

IT 

Parametric time f o r n o n l i £ e a r j ^ ^ theory 

H o r i z o n t a l component of v e l o c i t y 

Depth averaged h o r i z o n t a l v e l o c i t y 
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Error 
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S o l i t a r y wave number 
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Time 

V e l o c i t y p o t e n t i a l 
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<t>>^ T r i a l f u n c t i o n s 

^ Frequency of sech^ wave 

Frequency of t r a n s m i t t e d wave 

Frequency Hi 

Operators 

d(...) 

^ T o t a l d e r i v a t i v e 

..) P a r t i a l d e r i v a t i v e . P a r t i a l d i f f e r e n t i a t i o n w i t h respect to s u b s c r i p t 

A. ,. Dif f e r e n c e (e.g., Ah^ 

V2 Laplacian 

Function of 

o( . . . ) Order of magnitude 

(-•) Vector i f lower case; m a t r i x I f upper case 

( « e « ) Depth averaged value 

B i l i n e a r form 

C-* « 0 5 a B 6 ) Inner product 
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APPENDIX A 

cnoida l waves: 

C y ^ - h ) + H c n ^ { 2 K ( M ) K j 

, _ _ « r (K-E) + h-H 

S k i ^ 16 K^d-m') 

h3 3 

3E 

(A.l ) 

(A.2) 

(A.3) 

, (A.4) 

t, Anht K and E are the f i r s t 

. ».lete e l l i p t i c integrals respectively, y^, 
and second complete ^ 

. IS tne period. Tbe e l l i p t i c parameter . .as been replaced by i 

, [ _ „nlcn makes t.e relatlonsnips more cnm.ersome, 

..plement i • ^^^^^^^^^^ ^^^^^ „ 

but i s more s u i t a b l e f o r 1 _ ̂  = 1 x IQ-'̂ O . 

::v: 
Relationships A . l , A.Z ana e e l e r i t y 

^ -iT, Wleeel's expression f o r c e i e r i u y 
c H..n (1974) p o i n t s out an e r r o r m Wiegel 

svendsen (1974; P expression 

(A 4) as an a l t e r n a t i v e . This i s 
and presents 

,„r c e l e r i t y given by Kenlegan and Patterson ( m O ) . 

' y r : Z Z : Z ^ p a r a m e t e r m' can be as small 
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the numerical e v a l u a t i o n of e l l i p t i c f u n c t i o n s f o r cnoidal waves 

requ i r e s d i f f e r e n t treatment than f o r most other a p p l i c a t i o n s . 

The methods of ev a l u a t i o n given here were extracted from Abramowitz 

and Stegun (1965), and represent the most e f f i c i e n t and accurate 

methods found. 

The f i r s t step i n computing any of the e l l i p t i c f u n c t i o n i s to 

set up the Arithmetic/Geometric Mean (AGM) scale: 

a = 1 c^ = / r ^ 
o " 

^ 1 " 2 

= J ( a j ^ _ i + = ̂ ^N-l^N-1 ' I ^^N-1 ' ^N-l^ 

Stop at the N^^ step, where a^=b^ ( i . e . c^= 0) t o the accuracy 

desired. ( T y p i c a l l y , Cg < lO'^.) 

From the AGM, the e l l i p t i c f u n c t i o n s are c a l c u l a t e d as f o l l o w s 

1. F i r s t Complete E l l i p t i c I n t e g r a l K. 

K = Tr/2ay 

2. Second Complete E l l i p t i c I n t e g r a l E. 

E = K { 1 - | (c^+2c2 + 22c| + — + 2 « c ^ ) } 

3. Jacobian E l l i p t i c Function P = cn(w). 

a) Find <f,j^=2^aj^w i n radians. 
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, i d,,. <1) from the 

b) Compute successively «t-̂-a' ^ 1 ' 

r e c u r s i v e r e l a t i o n : 

sin(2<t.^_l-*„) - ^ «int>n 

c) Evaluate P = cn(w) = cos^^. 

Inverse Jacobian E l l i p t i c Function w = cn' 

a) Find from: 

•UP) 

b) Compute successively ^-^Ai ~ h 

cosff)^ = P = cn(w) 

from the r e c u r s i v e r e l a t i o n : 

b 

c) Evaluate: 

w = cn"HP) = «I'N/^^^N 

The r e c u r s i v e r e l a t i o n I s ambiguous by m u l t i p l e s of How-

converges to the exact value from below so the c o r r e c t can 

be found by evaluating w a t each step and using: 

ever w 

w((t)^) >w(<|)j^_]^) 

i . Second Incomplete E l l i p t i c I n t e g r a l E(w). 

E(w) = | w + c , s d n * i + C 2 s l n ^2 + - - + c^sdn 

where ( f i ^ ^ are 
those ealeulated from the teeutslve relatloos ahove 

. ^ A 1 to A 4 and the numerieal methods 
Using the relationships A.l to A . l ano 

t enoldal „ave problems can he solved it. straight 
described above, most 
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forward manner by computer. However, one Important problem t h a t 

requires s p e c i a l treatment i s : given H and T, f i n d m'. I t e r a t i v e 

schemes ( f i x e d p o i n t , Newton's Rule, Regula F a l s i ) do not converge; 

hence, an ad hoc t r i a l - a n d - e r r o r scheme was developed. The scheme i ^ 

presented w i t h no claims of elegance. 

For the given H, period can be expressed as a f u n c t i o n of m' 

T(m') = L/c 

The o b j e c t i s to f i n d the m' f o r which T(m') equals t h e given period 

T, t h a t i s : 

T-T(m') = 0 

The f i r s t step i s t o compute T-T(m') f o r : 

m'-lO"^ j -0,1,2,3, 

unt i l : 

s g n ( T - T ( 1 0 ^ ) ) i s g n ( T - T ( 1 0 " ^ ' * ' h ) 

i t i s i n f e r r e d t h a t T-T(m') =0 f o r 10 ^ <m' l i o ' ^ " ^ : Then 

The second step involves f i n d i n g i n : 

and: 

m' = kj^ X 10 ^ 

m[= ( k ^ + 1 ) x l O " ^ 

such t h a t : 

s g n ( T - T ( m ' ) ) ^ s g n ( T - T ( m p ) 
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where k̂ ^ i s a d i g i t between 1 and 9, 

The t h i r d step i s to f i n d k2 i n : 

and: 

such t h a t : 

m' = (k3^+k2xlO b x l O ^ 

i n | = ( k ^ + ( k 2 + l ) x l O ' ^ ) x l O ~ ^ 

sgn 
( T - T ( m ' ) ) i s g n ( T - T ( m p ) 

where k2 i s a d i g i t between 1 and 9. 

n*^^ step i s to f i n d k^ i n : The 

= Ckj^ + k2 X 10-^ + k3 X10- n — + k^ X 10- ) X 10 

and: 

m| = m'+10-"-^''^ 

such t h a t : 

sgnCT-T(m')) f sgn(T - T(iiip ) 

where k^ i s a d i g i t between 1 and 9. This process i s continued f o r 

as many\imes as the number of s i g n i f i c a n t f i g u r e s r e quired f o r m' . 

TO e l u c i d a t e the procedure, consider an example where 3 s i g n i f i 

cant f i g u r e s are required and i t i s found t h a t j - 3. Then the r e q u i r e d 

m' i s one of the 900 numbers between 0.00100 and 0.00999. The second 

step w i l l determine the f i r s t nonzero d i g i t a f t e r the decimal p o i n t 

( k , ) , the t h i r d step w i l l determine the second nonzero d i g i t (k2) 

and the f o u r t h step w i l l determine the t h i r d nonzero d i g i t ( k 3 ) . The 

f i n a l r e s u l t w i l l be m' = 0.00k3^k2k3 . 
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APPENDIX B 

The Equation from Boussinesq (1872), the Boussinesq Equations and 

S o l i t a r y Waves 

I n Section 3.3.1.5, i n discussing the accuracy of the numerical 

scheme i t was pointed out t h a t although the s o l i t a r y wave i s an exact 

s o l u t i o n of the KdV equation (Eq. ( 3 . 2 2 ) ) , i t i s not an exact s o l u 

t i o n of the Boussinesq equations (Eqs. (3.67) and ( 3 . 6 8 ) ) . However, 

the o r i g i n a l equation derived by Boussinesq (1872) (and also by 

Keulegan and Patterson (1940)): 

does have the s o l i t a r y wave as an exact s o l u t i o n . 

A question which a r i s e s i s : how can the Boussinesq equations, 

Eqs, (3,67) and (3.68), and the equation from Boussinesq (18 72), 

Eq, ( B . l ) , have d i f f e r e n t exact s o l u t i o n s i f they are of the same 

order of approximation, i . e . , 0(a2,ag,e2), i n terms of the parameters 

defined i n Section 3.1? 

The answer i s found i n the e a r l y stages of the d e r i v a t i o n s of 

the equations. I n the method used by Boussinesq (1872) and Keulegan 

and Patterson (1940), i n evaluating the nonlinear terms i n the dynamic 

boundary c o n d i t i o n : 

<l>t+j (u2 + v 2 ) + g n = 0 , (B.2) 

the approximations v ?a 0 and u « n are used. S i m i l a r l y i n the 

kinematic boundary c o n d i t i o n : 
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(B.3) 

the approximation u w - ^ n i s used. 

Although of the same order of approximation, t h i s i s s l i g h t l y 

d i f f e r e n t to the approach of Korteweg and de Vries (1895) and 

Whitham (1974) where u and v are expressed as and r e s p e c t i v e l y 

and order of magnitude s o r t i n g i s done w i t h a l l the terms included. 

I n a d d i t i o n , i n d e r i v i n g Eq. ( B . l ) the approximation - ~ ^ ^ 

i s used but i t i s not necessary to make t h i s approximation i n d e r i v i n g 

the Boussinesq equations. Eqs. (3.67) and (3.68). 



322 

APPENDIX C 

The Linear Nondlsperslve Theory f o r a _ S i n g l e J i a r m ^ ^ ^ 

The theory developed here i s e s s e n t i a l l y t h a t presented by 

Wong et al, (1964). Using the nomenclature of Section 3.4, the 

v a r i a b l e s are normalized as f o l l o w s : 

X = x * / i t = t * /^^L 

n = nVh^ h = h*/h3^ . 

Equation (3.108) becomes: 

Considering only the steady s t a t e s o l u t i o n , the time dependenc 

of n ( x . t ) can be separated from the x dependence by assuming the 

s o l u t i o n has the form: 

n ( x , t ) = C(x)e-^"^ . (C.2) 

S u b s t i t u t i n g CC.2) i n (C.l) r e s u l t s i n the nondimensional o r d i n a r y 

d i f f e r e n t i a l equation: 

( h c ^ ) ^ + a>2c = 0 . (C.3) 

R e f e r r i n g to Fig . 3.17, the general s o l u t i o n s of (C.3) f o r 

Regions I , I I , and I I I are: 

Region I : ^ i ^ V "^V ' 
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Region I I : ?2 = \ ^O{T^ ^ ^ V ^ T ^ ^ ) 

Region I I I : , 3 = C ^ e ^ ^ / ^ + V ^ - ^ ^ ' (̂ '̂ ^ 

where A,, A^, B,, B^, C, and are constants to be determined and 

) and Y^( ) are the Bessel f u n c t i o n s of zero order of the f i r s t 

and second k i n d r e s p e c t i v e l y . 

The 6 constants are determined as f o l l o w s : 

(1) I n Region I the ri g h t w a r d t r a v e l l i n g wave i s the i n c i d e n t wave 

which has amplitude A. Thus A^ = A. 

( 2 ) I n Region I I I i t i s assumed th a t there i s no wave t r a v e l l i n g 

l e f t w a r d from x = ", t h e r e f o r e C2 = 0 . 

( 3 ) The surface e l e v a t i o n a t the boundary of Region I and Region I I 

must be the same: 

C^C-l) = ? 2 ( - l > 

thus: \ / \ 

S i m i l a r l y a t the boundary of Regions I I and I I I : 

^ 2 ( 0 ) = ^ ( 0 ^ 

thus: 

\ -^oVl-h 



324 

(4) The surface slope must also be continuous at the boundary of 

Regions I and I I : 

thus: 

(-1) = ^2 (~1) 
X X 

S i m i l a r l y at the boundary of Regions I I and I I I : 

^2 (0) = ^3 (0) 

thus; 

Equations (C.7), (C.8), (C.9) and (C.IO), which must be solved 

simultaneously, may be w r i t t e n i n m a t r i x form: 

e -Y 
o 

0 A2 

f \ 
-A 

. i u 
•2-e ^ 1 0 

< 

\ 
>-< ) ( C l l ) 

0 J * o Y * 
o -1 0 

0 -1 H \ J 
0 

\ } 
where 

Y = 

Y^ EY 

= J / 2(0 \ 

- 0 ^ 1 „h2) 

k ) 
{ ) 
A ) 
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and 
2ü) 

Y * = Y„ 
O O 

^ 1 * = ^ 1 

D e f i n i n g : 

the determinant of the m a t r i x i n ( C . l l ) i s : 

A = ê *" (a + i3) 

The s o l u t i o n of ( C . l l ) i s : 

\ / . 

2(Y^*+iYj^*) 

- 2 ( V - i J l * ) 

- 2 i ( l - h 2 ) 

/ 

2 

. A j 

(C.12) 

(C.13) 

(C.14) 
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where, i n evaluating C-̂, use has been made of the i d e n t i t y : 

J ^ C z ) Y ^ ( z ) - J l ( z ) Y ^ ( z ) = ^ . (C.15) 

The f u l l s o l u t i o n i s t 

. . iü)(x-t) , . , . -i(jü(x+t) /p 
Region I : n-,^(x,t)=Ae +A2(ü))e , (S..Li>) 

n 2 ( x , t ) =B^(ü))J^[~™ /h2- ( l - h 2 ) x j e - ' ' ' ^ ^ Region I I : 

(C.17) 

Region I I I : . 3 ( x , t ) = C , ( . ) e ^ ' ^ < - / ^ - . ( C I S ) 

w i t h k M , Bĵ (üj), B2(ü)) and Cj^(a)) given by equations (C.14) 
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APPENDIX D 

Tests of the Inverse S c a t t e r i n g Numerical Schemes 

Since the m a j o r i t y of the waves under co n s i d e r a t i o n I n t h i s 

I n v e s t i g a t i o n were of sech^ shape, the t e s t s performed on the 

numerical schemes described,In Section 3.5.3 also were f o r waves 

w i t h sech2 shape. These waves have the advantage t h a t exact a n a l y t i c a l 

r e s u l t s are a v a i l a b l e f o r comparison (see Eq. (3.140)). 

I t was found f o r both schemes the wave height H i n the i n i t i a l 

c o n d i t i o n : 

n(x,0) = H sech^ kx , (D-1) 

d i d not a f f e c t the r e s u l t s . To i l l u s t r a t e t h i s , the r e s u l t s f o r 

Scheme 2, i n which no parameters other than H and k are i n v o l v e d , 

w i l l be presented f i r s t and l a t e r the r e s u l t s f o r Scheme 1, which 

involves several parameters, w i l l be presented f o r one r e l a t i v e wave 

he i g h t , H/h. 

The r e s u l t s f o r Scheme 2 are presented i n Table D.l where the 

r a t i o of the c a l c u l a t e d to the exact height of the leading s o l i t a r y 

wave i s l i s t e d as a f u n c t i o n of the r e l a t i v e i n i t i a l wave h e i g h t , 

H/h, and the wave number r e l a t i v e to t h a t of the s o l i t a r y wave of the 

same h e i g h t , i . e . , k / K where K = ^ [ f f • The c a l c u l a t e d height i s 

obtained from the numerical theory discussed i n Section 3.5 and f o r 

purposes of t h i s comparison the exact height i s defined as th a t given 

by Eq. (3.140). Recall from Section 3.5.2 th a t f o r wave number r a t i o 
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Ratio of the c a l c u l a t e d to the exact wave height of 

leading s o l i t a r y wave using Scheme 2. 

— _ — — r -

0.10 0.20 0.30 0.40 0,50 0,60 

0.25 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 

0.50 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

1.00 0.9968 0.9968 0.9968 0.9968 0.9968 0.9968 

2.00 0.9562 0.9562 0.9562 0.9562 0.9562 0.9562 

4,00 0.8357 0.8357 0.8357 0.8357 0.8357 0,8357 

8.00 0.7443 0.7443 0.7443 0.7443 0.7443 0.7443 

16.00 0.7139 0.7139 0.7139 0.7139 0.7139 0.7139 

32,00 0.7058 0.7058 0.7058 0.7058 0.7058 0.7058 

64,00 0.7037 0.7037 0.7037 0.7037 0.7037 0.7037 

128.00 0.7032 0.7032 0,7032 0.7032 0.7032 0.7032 
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only one eolltary «ave emerges and for R/. < 1 more than one 

aolltary „ave amergee. The tahle aho„s the aconracy of the nnmerleal 

aeheme l a Independent of the r e l a t i v e „ave height H/h. Ho„aver. I t 

l a dependent on the „ave nnmher ratio K/. and I t has an aoenraoy of 

.etter than 1% for „aves from „hlch mora than one s o l i t a r y „ave „ U I 

wave emerges. o c Q i 

. or scheme 1, i t w i l l he r e c a l l e d , as discussed i n Section 3.3.3.1 

two other parameters must he prescribed, the l e n g t h , L, d e f i n i n g 

the t r i g o n o m e t r i c f u n c t i o n s and the numher of f u n c t i o n s , For the 

1, .-.ht H/h=0 1. a number of t e s t s were conducted f o r 
r e l a t i v e wave height H/h u . i , d i 

. , / - n 9S 0 5 1. 2 and 4 where, f o r k / K = l , 2 
wave number r a t i o s k / K = 0 . 2 5 , 0.5, i , 

and only one „ave emerges hnt for h/.-O.S, three „aves emerge and 

s i x „aves emerge. The r e s n l t s . In the form of the 

ra t i o s of the eompnted to the exaet „ave heights, are presented In 

.ahle 0.2 „here (a, I s for U/. - 1. 2 and 4, (h, I s for - 0.3 and 

IS for W..0.23. The re s n l t s are l i s t e d as fnnotlons of the 

length r a t i o WI3 K ' ^'^ 

seoh^5.3 = I X 1 0 - ) and for (a, 20 trigonometrie fnnotlons „ere nsed 
^r.A The tables show there 

w h i l e f o r (b) and (c) 50 func t i o n s were used. The 

. l e n e t h L f o r maximum accuracy. For waves from which 
i s an optimum l e n g t h , L, r o i 

a single s o l i t a r y „ave emerges, Tahle B.2Ca) sho„s a good rnle of 

„r, e^nlvalently, pnt h » l O . e / . , I . e . , the "length" of the s o l i t a r y 
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Table D.2 Ratio of the c a l c u l a t e d t o the exact heights of the emerging 

s o l i t a r y waves using Scheme 1. 

(a) N=20. Single wave emerges, 

\ k/K 
1.0 2.0 4.0 

0.75 
1.0 
1.5 
2.0 
3.0 
4.0 
6.0 
8.0 

0.9965 
1.0000 
1.0000 
0.9979 

0.9852 
0.9973 
0.9949 
0.9802 

0.8609 
0.9567 
0.9743 
0.9507 

(b) N=50. k / K = 0.5 Three waves emerge. 

L 

> s 

Wave 
1 

Wave 
2 

Wave 
3 

1.5 
2.0 
2.5 
3.0 

0.9995 
0.9995 
0.9992 
0.9977 

0.9996 
0.9995 
0.9995 
0.9897 

0.9660 
0.9923 
0.9953 
0.9258 

N= 50. k / K = 0.25 Six waves emerge. 

L 
L 
s 

Wave 
1 

Wave 
2 

Wave 
3 

Wave 
4 

Wave 
5 

Wave 
6 

1.0 
1.5 
2.0 
2.5 
3.0 

0.9995 
0.9993 
0.9994 
0.9993 
0.9941 

0.9995 
0.9995 
0.9994 
0.9955 
0.9582 

0.9993 
0.9993 
0.9979 
0.9797 
0.8846 

0.9994 
0.9998 
0.9953 
0.9522 
0.7158 

0.9966 
0.9900 
0.9829 
0.8563 
0.4585 

-3.76 
0.0959 
0.6161 
0.0205 
-1.10 
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i-hc. -hpcit l e n g t h r a t i o appears 
,ore than one s o l i t a r y wave emerge, the best leng 

to be L/L « 2 . 0 . 

X„ „si„s t h i s scheme U „es .one. a.visaUe te s U e . the numhet 

fnnetleas. te i.etemeat e n t U the des.te. aecutae, „as teeehe. 

eest iaeteases ee„s«etahly »ith « se some oppet l l . i t needs to he 

placed on N. 
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APPENDIX E 

The Nonlinear Nondlsperslve Theory f o r the Propagation of sech^ Waves 

I n t h i s s e c t i o n the s o l u t i o n of the nonlinear nondispersive 

theory as given i n c h a r a c t e r i s t i c form by Eqs. (3.17) w i l l be applied 

to the p a r t i c u l a r case of a wave given by: 

Ti(o,t) = H sech^nt , ( E . l ) 

propagating i n t o s t i l l water w i t h a constant depth, h. 

For the case of waves propagating i n t o s t i l l water the method of 

c h a r a c t e r i s t i c s s i m p l i f i e s considerably because as shown by, e.g., 

Henderson (1966) the c h a r a c t e r i s t i c s are s t r a i g h t l i n e s w i t h slope: 

^ - Ü + C , (E.2) 
at 

where 

c = /g(h + n) , (E.3) 

and between these c h a r a c t e r i s t i c s the q u a n t i t y (Ü - 2c) i s constant. 

Hence, r e f e r r i n g to Fi g . E . l , which shows the x - t plane f o r the case 

of a wave given by Eq. ( E . l ) ; the v e l o c i t y Ü and the c e l e r i t y c are 

constant along the c h a r a c t e r i s t i c s and the v e l o c i t y can be expressed 

as a f u n c t i o n of the c e l e r i t y : 

Ü = 2(c-c„) , (E.4) 

where c„ = /gh . 
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F i g . E.l The x - t plane f o r a sech^ wave propagating i n t o s t i l l 
water by the nonlinear nondispersive theory. 
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S u b s t i t u t i n g Eq. CE.4) i n t o Eq. (E.2) gives: 

| i = 3c - 2c 
dt o 

(E.5) 

and since the c e l e r i t y c i s constant along the c h a r a c t e r i s t i c s 

Eq. CE.5) can be i n t e g r a t e d to y i e l d : 

X = ( 3 c - 2c^) ( t - t) 

or, e q u i v a l e n t l y : 

t = 
X 

3 c - 2c 
- + t 

(E.6) 

(E.7) 

where t I s the i n t e r c e p t of the c h a r a c t e r i s t i c w i t h the t axis and 

thus n ( t ) . . ( o , t ) . Eqs. (E.6) and (E.7) are not i n the usual func

t i o n a l f o r . because the v a r i a b l e s u s u a l l y considered the independent 

v a r i a b l e s , x and t , are expressed as f u n c t i o n s of the v a r i a b l e u s u a l l y 

eonsidered the dependent v a r i a b l e , instead of v i c e versa. However, 

i t i s found more convenient to use the s o l u t i o n s i n the form of Eqs. 

(E.6) and (E.7) because of t h e i r r e l a t i v e s i m p l i c i t y . 

The time slope of the wave, n , , i s found by d i f f e r e n t i a t i n g 

Eq. (E.7) p a r t i a l l y w i t h respect to t to y i e l d : 

9c , 3t 
1 = - 3 x ( 3 c - 2 ) 2 3^+97 

(E.9) 

and, using the r e l a t i o n f = ^ f , one ob t a i n s : 

- 1 

.(E.IO) 

Eq. (E.IO) i s ap p l i c a b l e to any wave, n ( t ), but f o r the case of 
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g i v e n by Eq. (E.D, Eq, (E.IO) becomes: 
a wave 

C3c - 2c ) 11 + ̂ , 

( E . l l ) 

. o . a aacH^ » a v e . . a . . o n . i a e o o f t . e „ a v e s t e e p e n a aa U p . o p a s a t e a 

„nile t h e haeU i a e e i l a t t e n s a a i a i n d l e a t e . h y t h e o o n v e t . i n . a n d 

d i v e t s l n . C h a t a e t e t i s t i o s i n n s - . - L Btea.in. o o o n t e a t t h e l o o a t i o n 

„ h e t e t h e i t o n t i a o e o i t h e „ a v e h e e o . e e v e t t i e a l , I . e . . w h e r e t h e 

d e r i v a t i v e | ? = » . - - h o o e n r a „ h e n t h e e x p r e a e i o n i n t h e hracUeta I 

m K,. CK . l l ) l e . e r o . « o t i e e t h a t i o r t h i e t h e o r y t h e „ a v e h e i g h t . 

„ , r e m a l n a e o n s t a n t e v e n at h r e a . l n . . This i s h e o a n s e t h e o e l e r i t y 

a n d the v e l o e l t y a r e e o n s t a n t a l o n . t h e e h a r a e t e r l s t l o s „ h l e h a r e 

, l r s t h s o o m e s v e r t i c a l , i . e . the . l n l . n „ ^ f o r t h e e x p r e s s i o n In 

h r a c u e t s to h e s e r o . This . l n l . n . x , d e n o t e d t h e d i s t a n c e t o hreaUln, 

a n d d e f i n e d a s x , . I s i o n n d h y a l s e h r a l c ^ n l p n l a t l o n o i B,. (B.U) 

to be: 

where c^ i s t h e r o o t o f : 

. c ï - 3 ( | . 3 ) c 3 - < | . i ) 4 - ( | - K - < | - ) -

W h i c h l i e s i n t h e i n t e r v a l 1 < c ^ < • 
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|„ I at any l o c a t i o n i n the 
The maximum absolute slope, i n ^ l ^ ^ ^ ' 

i n t e r v a l 0 < x < x ^ i s : 

l^t'max \ ' (E.14) 

where c, i s the r o o t of: ^ 

l..<hl „ _ H \ . 3nx f , 2 „ n 2 ( i + ?--c^! 

\ V \ ^ CE.15) 

l i e s i n the i n t e r v a l 1 < c, < 

v e h the front face reaches a particular 
The location at which the tron 

maximum absolute slope, U t U a x ' 

/ i h * ^ / (E.16) 

i s the root of: 
where c^ 

cl (3c 
- « 34-3-4 -C4-« - f - ^ 

(K.17) 

. . . . . « . V - . J ^ ^ ^ ^ ^ ^ ^ 

°̂'̂';̂r::::L......... 
^ u -lc an independent parameter, 

l i k e the depth, h, i s an ma v 
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APPENDIX F 

T«i,lP F 1 S o l i t a r y waves t r a n s m i t t e d over a slope: the d i f f e r e n c e 

Table F . l l^J^l^^^l^^^SM^J^SlélSI^^ «̂ ^̂  nonlinear 

d i s p e r s i v e t h e o r i e s . 

0 . 5 3 0 

1 - 0 3 0 

1 . 0 3 0 

1 . 5 6 0 

2 . 0 0 0 

2 . 0 0 0 

2 . 0 0 0 

3 . 0 4 0 

4 . 0 8 0 

4 . 0 8 0 

4 . 0 8 0 

5 . 1 3 0 

3 . 0 0 0 

2 . 0 0 0 

4 . 0 0 0 

3 . 0 0 0 

2 . 0 0 0 

3 . 0 0 0 

4 . 0 0 0 

3 . 0 0 0 

2 - 0 0 0 

3 . 0 0 0 

4 . 0 0 0 

3 . 0 0 0 

l i n 

0 . 0 5 0 
0 . 1 0 0 
0 . 1 5 0 

0 . 0 5 0 
0 . 100 
0 . 150 

0 . 0 5 0 
0 . 100 
0 . 1 5 0 

0 . 0 5 0 
, 100 

0 . 150 

0 . 0 5 0 
0 . 100 
0 . 150 

0 . 0 5 0 
0 . 100 
0 . 1 5 0 

0 . 0 5 0 
0 . 1 0 0 
0 . 150 

0 . 0 5 0 
0 . 100 
0 . 1 5 0 

0 . 0 5 0 
0 . 1 0 0 
0 . 1 5 0 

0 . 0 5 0 
0 . 1 0 0 
0 . 1 5 0 

0 . 0 5 0 
0 . 1 0 0 
0 . 150 

0 . 0 5 0 
0 . 1 0 0 
0 . 1 5 0 

l i n 

0 , 0 0 2 
0 . 0 0 2 
0 . 0 0 2 

0 . 0 0 1 
0 . 0 0 1 
0 . 0 1 0 

0 . 0 3 0 
0 . 0 6 0 
0 . 1 0 0 

0 . 0 1 0 
0 . 0 2 0 
0 . 0 4 0 

0 . 0 0 1 
0 . 0 2 0 
0 . 0 5 0 

0 . 0 2 0 
0 . 0 4 0 
0 . 0 6 0 

0 . 0 2 0 
0 . 0 5 0 
0 . 0 9 0 

0 . 0 2 0 
0 . 0 4 0 
0 . 1 0 0 

0 . 0 2 0 
0 . 0 7 0 
0 . 1 2 0 

0 . 0 3 0 
0 . 1 1 0 
0 , 1 8 0 

0 . 0 5 0 
0 . 2 3 0 
0 . 4 6 0 

0 . 0 6 0 
0 . 1 5 0 
0 . 2 4 0 

S-S. l i n 

"Un 

0 . C 7 0 
0 . 1 5 0 
0 . 2 1 0 

0 . 1 4 0 
0 . 3 4 0 
0 . 5 4 0 

0 . 4 2 0 
0 . 9 5 0 
1 . 5 3 0 

0 . 1 8 0 
0 . 4 0 0 
0 . 6 3 0 

0 . 1 4 0 
0 . 3 4 0 
0 . 5 4 0 

0 . 2 6 0 
0 . 5 1 0 
0 . 8 9 0 

0 . 4 1 0 
0 , 9 3 0 
1 . 5 1 0 

0 . 3 0 0 
0 . 7 5 0 
1 , 2 3 0 

0 , 2 4 0 
0 . 5 9 0 
0 , 9 3 0 

0 , 3 7 0 
0 , 9 2 0 
1 , 7 6 0 

1 , 0 4 0 
3 , 0 7 0 
5 . 5 3 0 

0 , 6 1 0 
1 . 7 8 0 
2 . 7 2 0 


