
RESEARCH FRAMEWORK

1

REUSING WASTE WOOD
FOR AN EXTERIOR WALL ELEMENT

2 3

COLOPHON

REPORT P5
Master Thesis

TITLE
Reusing waste wood for an exterior wall element

UNIVERSITY
Technical University of Delft
Faculty of Architecture & the Built Environment
Master Building Technology

TUTORS
Ir. Pieter Stoutjesdijk

Building product innovation
Main mentor

Ir. J.J.J.G. Hoogenboom
Design informatics
Second mentor

BOARD OF EXAMINERS DELEGATE
Mr.dr. H.D. Ploeger

DATE
08-04-2021

STUDENT
Joost van Eijk

STUDENT NUMBER
4222911

Completing this graduation project has been an
interesting and intensive process that I could not
have completed without the help and support of the
people around me. I would like to thank my main
mentor Pieter Stoutjesdijk for introducing me to this
intriguing topic, his guidance, and for getting me on
the right track. I would also like to thank my second
mentor Hans Hoogenboom who has helped me in
the process of understanding and integrating Python
within my thesis. I want to thank all my friends and
roommates for their mental support and positive
words. Lastly, I would like to thank my parents, Karin
& Marco, who have unconditionally supported me
throughout my entire study, no matter what interesting
sidetrack I decided to take.

Joost van Eijk
Rotterdam, April 2021

ACKNOWLEDGMENTS

SUMMARY
In 2017, 1610 million kg of waste wood was
collected in the Netherlands. The building and
demolition industry was, and still is, the most
significant contributor. The estimation is made
that in 2017 23% of this wood, 370 million kg,
consisted of solid waste wood. This solid waste
wood has the potential to be reused as a building
material without having to shred it. To this day,
with the current waste wood processing methods,
this high potential waste wood ends being
shredded for the engineered board industry or
incinerated for bioenergy. The problem with
engineered boards is that they cannot be recycled
again into an engineered board due to the
adhesives. They can only be incinerated for bio
energy. If all the 370 million kg of solid B waste
wood is downcycled into engineered boards
instead of reused, an additional 399.900.000 kg of
CO2 is emitted.

Reusing waste wood again as a building material
instead of downcycling it into an engineered board
is considered circular. Therefore, it is in line with
the Dutch government goal to create a circular
economy by 2050. However, the current commonly
used timber frame construction methods in the
Netherlands are not suitable for construction with
waste wood. Waste wood has certain
characteristics that differ from regular wood for
construction on a larger scale. It is possible to
create an exterior wall element from waste wood,
but this is a time-consuming process. Manual
labor is expensive in the Netherlands. Therefore, it
will probably not be an economically feasible
solution to construct the wall element. A carpenter
that needs to modify every piece by hand to get
everything in the correct dimensions will probably
be more expensive than buying new wood.

Using digital fabrication combined with a
parametric model can offer a solution to the
challenges of constructing an exterior wall element
with waste wood. The characteristics of the waste
wood are obtained and digitally stored in a
database. This database can communicate with a
parametric model and generate all the separate
3dm files required for digital manufacturing.

A design methodology was used in order to identify
the design problems, determine the criteria and
guide the designer in finding the most suitable
design that can work with the challenges of waste
wood. The obtained design fulfilled the objective
by having a design that can be constructed as
much as possible with waste wood, minimize any

additional material waste and be inline with the
circular economy. This means that the pieces of
wood need to be reused as much as possible after
the exterior wall element end of life. As a result of
following the methodology, a set of design
principles were derived:
• Modifications on the pieces of wood should

only be on the outside.
• Symmetry in the design should be prevented.
• A broad range of dimensions should be used

in the design.

The final design was made parametric so that it
could communicate with the database. Using
Rhino, Grasshopper and Python, a prototype of the
exterior wall element tool was made that bridged
the parametric model with a waste wood database
and gave the user some insight into the waste
wood statistics of the design. Python scripts were
used for an efficient selection procedure whereby
additional material waste could be minimized. The
exterior wall element

The final design combined with the exterior wall
element tool can calculate how many wall
elements can be constructed from waste wood.
The exterior wall element tool with the final design
calculates that a wall element with a height of 3
meters, a width of 4,8 meters and a center-to-
center distance of 600 mm weighs, on average,
503 kg. For a 100m2 single floor square house
with a height of 3 meters, a 120m2 wall is required.
120m2 exterior wall is 4.192 kg. If 10% of the solid
B-wood can be reused, 8.826 houses can be
constructed every year.

With the exterior wall element tool, it is possible to
create a national database with waste wood. The
sellers of waste wood can be the demolishing
companies but also the waste wood processors.
A contractor can use the exterior wall element tool
online to create an exterior wall element from
waste wood. Here the user, in this case the
contractor, gives the desired dimensions of the
wall, and the tool generates a design of an exterior
wall element. Additional information is given about
the cost, the amount of wood required and where
the wood is located. The contractor can adjust the
parameters of the model and choose, for example,
the cheapest option or the option where all the
wood is closest to the building side. In the end the
tool generates a list with 3dm files for every piece
of wood that has to be modified. These 3dm files
can be used for digital fabrication.

7

TABLE OF CONTENTS
1 INTRODUCTION 8
1.1 Waste wood in the Netherlands 10
1.2 Creating an exterior wall element 11

2 RESEARCH FRAMEWORK 12
2.1 Problem statement 14
2.2 Objective 14
2.3 Boundary conditions and limitations 15
2.4 Research question 16
2.5 Research methodology 16

3 WASTE WOOD 18
3.1 Wood waste introduction 20
3.2 Wood classification 20
3.3 The market 21
3.4 Recycling and incineration 22
3.5 Bottlenecks in the waste wood market 22
3.6 Real-life scenario 23
3.7 Location visit 23
3.8 Conclusion of the waste wood market 23
3.9 Processing reusable waste wood 26
3.10 Implementation proposal 28

4 DIGITAL DATABASE 30
4.1 Waste wood characteristics 32
4.2 Reusable waste wood 34
4.3 Dummy database 34

5 DESIGN METHODOLOGY 38
5.1 Design methodology 42
5.2 Used methodology 42

6 CONCEPT DEVELOPMENT 46
6.1 Criteria 48
6.2 Criteria Matrix 52
6.3 Asserting criteria to design problems 52
6.4 Design problems 55
6.5 Concept comparison: 62
6.6 New design problems 65
6.7 Concluding 72
6.8 Prototyping 76
6.9 Final design 78
6.10 Assembly sequence 80
6.11 Reflection on the methodology: 82

7 EXTERIOR WALL ELEMENT TOOL 86
7.1 Tool prototype 88
7.2 Prototype tool flowchart 90
7.3 Step by step explanation 92
7.4 Database query 100

8 CONCLUSION 102
8.1 Sub questions 104
8.2 Main research question 106

9 RECOMMENDATION 108
9.1 Recommendations 110

10 BIBLIOGRAPHY 112

11 APPENDIX 116
A CO2 CALCULATION 118
B GRASSHOPPER CANVAS 120
C EXTERIOR WALL ELEMENT TOOL 122
D TFC RESEARCH 126
E PYTHON CODE 136

1 INTRODUCTION

Used wooden beams,
(Gebruikte bouwmaterialen weert)

This chapter will give a brief introduction into the graduation topic

INTRODUCTION INTRODUCTION

10 11

1.1 WASTE WOOD IN THE NETHERLANDS

In 2017, 1610 million kg of waste wood was
collected in the Netherlands. The building and
demolition industry was, and still is, the most
significant contributor. The estimation is made
that in 2017 23% of this wood, 370 million kg,
consisted of solid waste wood (Bruggen & Zwaag,
2017). This solid waste wood has the potential to
be reused as a building material without having to
shred it. To this day, with the current waste wood
processing methods, this high potential waste
wood ends being shredded for the engineered
board industry or incinerated for bioenergy.

Meanwhile, the Netherlands is facing two
significant challenges. There need to be one
million additional houses before 2030 to challenge
the increasing shortage (ABF research, 2018).
Secondly, the Dutch government stated that the
building economy needs to be completely circular
by 2050 (Rijksoverheid, 2018). This circular goal is
to stop the significant impact the building industry
has on the climate because the building and
construction industry is responsible for 39% of all
carbon emissions in the world (World Green
Building Council, 2019). The circular economy is
based on three principles (Ellen MacArthur
foundation, 2017):

• Design out waste and pollution
• Keep products and materials in use
• Regenerate natural systems

Reusing waste wood again for the same purpose
is considered circular. So, reusing a wooden beam
in a new building again as a beam is circular.
Shredding a wooden beam into wood chips to
produce an OSB panel is not considered circular,
even though the material is used again as a
building material. To manufacture OSB, adhesives
are added to glue the shredded wood together.
Because of these adhesives, the wood cannot be
recycled again and can only be incinerated for
bioenergy. A wooden beam turned into an
engineered board, such as OSB, can only be
recycled once. While reusing it as a beam allows
the wood to be reused multiple times. When this is
not possible anymore, it can be sawed in smaller
pieces for furniture, for example. The wood’s value
has decreased, but it is still a better purpose than
shredding it to manufacture an engineered board.
When the furniture is disposed, and the wood has
no other use, it can be shredded and turned into an
engineered board. After that cycle, it can be
incinerated for bioenergy. This process allows the
wood to remain part of the circular economy till
the end of its life.

Figure 1.1 Circular economy (Ellen MacArthur foundation)

Due to the required one million additional homes
before 2030 and the goal to have a circular
economy by 2050, the expectation can be made
that the demand for circular building materials will
increase in the future. Meanwhile, waste wood
gets incinerated and downcycled that has the
potential to be reused. Reusing this waste wood
as a building material can offer a solution to both
these problems.

This thesis aims to research and develop a tool
that allows waste wood to be reused as a building
material circularly and helps with the increasing
housing demand challenge. Given the timeframe
for this graduation project and to specify the tool’s
goal, the choice is made to focus on an exterior
wall element instead of a complete house. The
tool’s output is an exterior wall element that is
constructed with the current availability of waste
wood. The exterior wall element must be designed
so that it can work with the challenges of waste
wood.

1.2 CREATING AN EXTERIOR WALL ELEMENT

Manual labor is expensive in the Netherlands.
Therefore, it will probably not be economically
feasible solution to sort and measure all the waste
wood by hand. The same goes for constructing
the wall element. A carpenter that needs to modify
every piece by hand to get everything in the right
dimensions will probably be more expensive than
buying new wood.

Design freedom in the dimensions of the wall
element will allow for more value. Allowing the
user to let the design fulfill their preference is
always preferred above a fixed number of design
options. However, adjusting everything constantly
to the preferences of each user is a costly process.
New techniques can offer solutions to these
problems. Robotic sorting and machine learning
can be used to identify the wood that is suitable
for reuse. Scanning can be applied to obtain the
dimensions and specific characteristics of the
wood.

Digital manufacturing can modify the wood in the
right dimensions without expensive manual labor
from a carpenter. Parametric modeling can be
used to develop a wall element that can generate
itself in an efficient way that minimizes additional
waste while still dealing with the user’s preferences.

Robotic sorting and 3d scanning are techniques
that are used today. The same goes for digital
manufacturing in the form of CNC milling. In this
thesis, the focus lies on the communication
between a digital database of waste wood and a
parametric model of an exterior wall element.

In the next chapter, the research framework is
presented to explain this thesis further.

CHANGING DIMENSIONS AND AVAILABILITY

REUSE AFTER END OF LIFE

Figure 1.2 Parametric model of an exterior wall element (own ill.)

2 RESEARCH FRAMEWORK
Processing of waste

wood

Stakeholders

History

Modern TFC methods

Building code and
regulations

Characteristics of
waste wood

Availabiltiy

Waste wood in the
Netherlands

Timber Frame
Construction

Define boundaries
designLiterature conclusion

Design conceptDesign criteria

Design proposal

Possbile
implementation of

the tool

Design problems

Prototype Database

Exterior wall element tool

Conclusions

Recommendations

SQL Python

Final design

Design methodology

Study

Prototype

Literature

Literature

Literature

In the chapter the used research framework for this graduation project will be explained. The problem
statement, the objectives, the boundary conditions & limitations and research question will be
elaborated.

RESEARCH FRAMEWORK RESEARCH FRAMEWORK

14 15

2.1 PROBLEM STATEMENT

Waste wood in the Netherlands gets incinerated
for bioenergy or downcycled to engineered boards.
This also happens for waste wood that can be
reused as a building material. In 2017, there was
370.000.000 kg of waste wood that had the
potential to be reused as a building material.
Suppose all this waste wood was downcycled into
particleboards. This would have resulted in an
additional 399.900.000 kg of CO2 emissions (CES
EduPack 2019). This number is equal to the yearly
carbon footprint of the energy demand for 89.500
household in the Netherlands (Mileucentraal). The
calculations can be found in the appendix of this
thesis.

Right now, there is no financial reason for
companies to reuse waste wood on a large scale
(Bruggen & Zwaag, 2017). With the Dutch
government’s aim to have a completely circular
building economy by 2050 and building one million
additional houses before 2035, this can change.
However, no significant purpose or method is
developed yet for reusing waste wood in the
construction of buildings on a larger scale.

For waste wood to be reused, it must be sorted,
stored, and modified. Doing this with manual labor
is expensive in the Netherlands. The additional
problem is that the changing sizes of waste wood
available for construction result in an intricate
design and construction challenge for the architect
and contractor.

New technologies can reduce the amount of
manual labor and allow for working with the
changing dimensions of waste wood. Robotic
sorting can replace manual labor. A parametric
model of the exterior wall element with a good
selection script can handle the waste wood’s
changing dimensions and reduce additional waste
during the exterior wall element construction.
Using a digital database with all the sorted and
stored waste wood characteristics can function
as an input for the parametric model and the
selection script.

Research is required about these technologies to
develop an exterior wall element tool that can be
implemented in the Dutch waste wood market.

2.1.1 SUBPROBLEMS
There are currently two problems that prevent
developing an exterior wall element tool and
creating an exterior wall element from waste wood
with the current timber frame construction
methods.

Database
A database with reusable waste wood in the
Netherlands does not exist. There is no record that
shows what percentage of the solid B-wood is
suitable for reuse. Only B & C wood need to be
registered by law. The wood that is registered is in
number of kilo’s, there is no data about the
dimensions of the waste wood.

Exterior wall design
The current commonly used timber frame
construction methods in the Netherlands are not
suitable for construction with waste wood. Waste
wood has certain characteristics that differ from
regular wood for construction. The developed
design principle of the exterior wall element must
be compatible with the constantly changing
availability of wood with different dimensions.

2.2 OBJECTIVE

The objective of this thesis is to develop an exterior
wall element tool that can be implemented within
the Dutch waste wood market. The tool consists
of a digital database that can communicate with
an exterior wall element’s parametric design. The
design principle of the exterior wall element must
be in-line with the circular economy to achieve the
government’s circular building economy goal by
2050. The design of the exterior wall element is
the result of following a design methodology.

2.2.1 SUB OBJECTIVES
Database creation:
A dummy database is created with the
characteristics of waste wood. This database
should suggest how a future waste wood database
can be designed. There is no data available in the
Netherlands about the dimensions of reusable
waste wood. Market research, a location visit, and
interviews are conducted to create a realistic
dummy database.

Exterior wall element
To make a parametric design of an exterior wall
element that can work with the exterior wall
element tool, a suitable design must be created
that can work with waste wood. This design is the
result of following a design methodology. From
this process, some design principles can be
derived. The design principles and following the
design methodology result in a design that can
work with waste wood. The objectives of this
design can be specified as follows:

• The design should be constructed as much as
possible with waste wood.

• The design should minimize any additional
material waste that can occur when building
this exterior wall element.

• The design must be compatible with the
circular economy. This means that the pieces
of wood need to be reused as much as possible
after the exterior wall element end of life.

Parametric model
A parametric model is created of the designed
wall element. This parametric model allows the
design to work with the changing availability of the
waste wood. Additionally, the user of the tool can
alter the dimensions of the wall to fit their
preference. For the model to be more realistic, the
user can choose to integrate a door and a window
inside the wall element.

The user can be anybody who wants to build an
exterior wall element from waste wood. However,
in this thesis, a suggestion is made for the
implementation of the tool where the user is the
waste wood processor and the contractor.

Selection script
The selected waste wood from the database
needs to work with the design of the exterior wall
element. The selection of the wood is preferably
done in the most efficient way. Thereby reducing
any additional material waste

2.2.2 END PRODUCTS
• Design and design principle of an exterior wall

element that can be constructed with waste
wood.

• Dummy database that communicates with
the exterior wall element tool.

• Prototype of the exterior wall element tool.

2.3 BOUNDARY CONDITIONS AND LIMITATIONS

It would be interesting to research if a complete
building can be constructed with waste wood.
However, it would not be possible considering the
time available for this thesis. The walls of a building
consist of the most surface. Therefore, the
decision is made to focus on only that aspect. If
an exterior wall element can be constructed from
waste wood and meet the building code
requirements, it is safe to assume this design can
then also be used for the interior walls.

Structural calculations are not conducted for this
thesis because of the given time for this graduation
project. Within the master Building Technology, it
is mandatory for the graduation project to connect
two fields within the master. This thesis focuses
on the field of design informatics and building
product innovation. It would be too time-
consuming to include the third field of structural
mechanics. For the design to be realistic, existing
wooden wall elements are analyzed, and their
dimensions are used as a reference. Implementing
structural calculation would be an interesting topic
for another student to continue this research on.

An exterior wall element in the Netherlands needs
to fulfil the requirements of the building code.
These requirements are about sound insulation,
thermal insulation, airtightness, etc. In this thesis,
the choice is made to fulfil these needs with
additional already proven materials due to the
given time frame. It would be interesting to
research if waste wood can meet these
requirements without the need for additional
materials.

Problem
statement Objectives Design

methodology

Design principles

Final design

Figure 2.1 Design principles (own ill.)

RESEARCH FRAMEWORK RESEARCH FRAMEWORK

16 17

Processing of waste
wood

Stakeholders

History

Modern TFC methods

Building code and
regulations

Characteristics of
waste wood

Availabiltiy

Waste wood in the
Netherlands

Timber Frame
Construction

Define boundaries
designLiterature conclusion

Design conceptDesign criteria

Design proposal

Possbile
implementation of

the tool

Design problems

Prototype Database

Exterior wall element tool

Conclusions

Recommendations

SQL Python

Final design

Design methodology

Study

Prototype

Literature

Literature

Literature 2.5.4 TOOL DEVELOPMENT PHASE
During the tool development phase, the design
proposal is made parametric. The prototype and
the connection with the database are created in a
single grasshopper file to give a clear overview.
Within the grasshopper file, a python script allows
for manipulation of the SQL database. The output
is sent from the SQL database to the same
grasshopper file, where the data is used for
generating the 3d model that will act as a prototype.

2.4 RESEARCH QUESTION

The main research question can be divided into
multiple sub-questions to answer the main
research question better. Some background
questions are answered to gain more insight into
the current situation and possible potentials.

2.4.1 BACKGROUND QUESTIONS
• How is waste wood being processed in the

Netherlands?
• Who are the stakeholders in the waste wood

market in the Netherlands?
• What is the history of timber frame

construction, and what can be learned from it?
• What are the requirements for building a

wooden wall element in the Netherlands?

2.4.2 MAIN RESEARCH QUESTION
How can a database, a parametric model, and
scripting be used to develop an exterior wall
element from waste wood that minimizes the
material loss and takes full benefit of the waste
wood dimensions?

2.4.3 SUB QUESTIONS
The main research question can be divided into
the following sub-questions:

1. How can a digital database with waste wood

properties communicate with a parametric
model of an exterior wall element?

2. How can the script minimize the additional
wood waste with the selection procedure
when selecting the waste wood from the
database for the exterior wall element?

3. Which parts of the exterior wall element can
be constructed with waste wood?

4. What design principles allow the exterior wall
element to be constructed with waste wood
while minimizing the additional material waste
and allow for reuse after its end of life?

5. How can scripting guide the designer with the
design process?

2.5 RESEARCH METHODOLOGY

The research is divided into different phases.
There is a literature phase, a study phase, a
designing phase, and a tool development phase.

2.5.1 LITERATURE PHASE
The literature phase is used to answer the
background questions and create a solid
foundation to answer the research question.
The process of waste wood in the Netherlands is
researched and analyzed. Interviews are
conducted with different stakeholders, and a
waste wood processing facility is visited. Modern
timber frame construction (TFC) methods and
TFC methods from the past are analyzed to study
what can be learned from them. The knowledge is
used in the development of the exterior wall
element that can work with waste wood. Within
this thesis, timber frame construction (TFC) can
be translated to the Dutch word Houtskeletbouw
(HSB). To generate a realistic dummy database,
research is done about the characteristics of wood
relevant for construction. The building regulations
in the Netherlands are analyzed to gain insight into
the requirements that the wall element needs to
fulfill.

After every chapter, a conclusion is given with
relevant information used for design decisions
later in this thesis.

2.5.2 STUDY PHASE
The study phase is about learning Python and
SQL. These programming languages are required
to build a functional database and parametric
prototype. At the beginning of this thesis, there
was no experience or knowledge in these
languages.

2.5.3 DESIGNING PHASE
A design methodology guides the designer in
finding the most suitable design solution for the
given problems. In the used design methodology,
criteria are drafted to test every design solution.
Knowledge from the literature phase will help to
define the criteria for the design.

A design methodology where the output of
scripting is used within the design process does
not exist. For this thesis, an existing methodology
is modified, and the scripting is implemented to
see if it can help the designer find the most suitable
solution.

At the end of the design process, the altered
methodology is reviewed and critically analyzed to
determine the effectiveness and added value
compared to the original design methodology. Figure 2.2 Research framework (own ill.)

19

3 WASTE WOOD

Sortiva / GP groot waste processing
facility, Alkmaar (Bing maps)

In this chapter the Dutch waste wood market is analyzed to discover what types of waste is suitable
for reuse and how it moves trough the market and is processed. By doing this the scope of this
graduation project could be further defined. In the end of the chapter a suggestion is made how the
exterior wall element tool could be implemented into the Dutch waste wood market.

WASTE WOOD MARKET WASTE WOOD MARKET

20 21

3.1 WOOD WASTE INTRODUCTION

To develop a tool that can generate a wall element
from waste wood, it is necessary to analyze the
Dutch waste wood market. Knowing who the
stakeholders are and how waste wood gets
processed can help with implementing the tool.
Besides the literature, interviews were conducted
with Martijn Meuleman from van Werven Recycling
and Gerald van Elburg from Nedvang. The
processing location from GP Groot / Sortiva was
visited in Alkmaar. The combination of literature,
interviews, and a location visit resulted in a better
understanding of the waste wood market.

In the Netherlands, there are three main
components in the waste wood market:

• The demolisher
• The collector
• The processor

In the Netherlands, the most significant contributor
in waste wood is the demolishing and building
industry (Afman et al, 2014). A demolition company
tears down a building and hires a collection
company to pick up all the waste. The collection
company sorts the different waste streams and
brings them to a processing facility where the
different types of waste get processed. In the
Netherlands, most of the time, two or three
components are integrated into one company.
This combination results in a demolisher that can
also sort and transports waste. Or a processing
facility that also collects the waste. Sortiva and
Renewi are examples of companies that collect
waste and process it.

When waste wood is brought to a processing
facility, it is sorted into different waste wood
classes. Depending on the assigned class, the

waste wood gets shredded for efficient transport
and transported to different companies where the
waste wood gets recycled into a new product or
incinerated for bio energy.

3.2 WOOD CLASSIFICATION

In the Netherlands, waste wood is divided into
three categories: A, B & C.

3.2.1 A-WOOD
A-wood consists of untreated, uncoated, and
unpainted wood. Examples of A-wood are pallets,
fruit crates, and wood waste from milling facilities.
Wood from packaging makes up 80% of the
A-wood; this includes pallets. Most of the A-wood
in the Netherlands ends up on a pile with B-wood.
When this happens, the A-wood becomes B-wood.
No law demands that A-wood needs to stay
separated from B-wood (Bruggen & Zwaag, 2017).

3.2.2 C-WOOD
C-wood is treated wood. This means the wood is
treated with preservative chemicals. These
chemicals extend the wood’s lifecycle and protect
wood fibers from structural degradation, decay
fungi, termites, marine organisms, and flames.
Due to these chemicals, the wood is contaminated
and therefore cannot be recycled. The C-wood is
chipped and transported to Germany, where they
have the proper facilities to incinerate the C-wood
and process the hazardous gases released within
this process.

3.2.3 B-WOOD
B-wood is all the waste wood that is not classified
as A- or C-wood. Processing facilities make a
distinction between solid B-wood and non-solid
B-wood and sometimes separate these streams.
This separation is not required by law, but the solid
B-wood can be sold for a higher price due to the

wood’s higher quality. An example of solid B wood
is a painted beam from an old barn, and an
example of non-solid B wood is a particleboard. A
particle board is labeled as non-solid B wood
because of the adhesives. Solid B-wood is the
class of wood that has the potential to be reused
as a building material.

3.3 THE MARKET

Waste wood gets also imported and exported
from and to other European countries. This makes
the Dutch waste wood market quite complicated.
Figure 3.2 shows all the different waste wood
streams in 2015.

3.3.1 2015
These numbers are not an estimation but are the
registered data by the government. The absence
of the A-wood stream is because it is not required
by law to register this waste wood stream. If
A-wood ends up on a pile with B-wood, the A-wood
is categorized as B-wood. In 2015 1.763.000.000
kg waste wood entered the Dutch market.
1.482.000.000 kg (84%) came from the
Netherlands, and 281.000.000 kg (16%) was
imported. The imported wood came from the UK
(52%), Belgium (33%), Germany (8,5%), and
Norway (5,5%) (Bruggen & Zwaag, 2017).

The waste wood market is volatile with low-profit
margins. Therefore, waste wood from other
countries may be more profitable than waste

wood from the Netherlands. For example, in
England, an additional tax was implemented for
the deposition of waste wood. This tax resulted in
waste wood being exported to the Netherlands
because this was cheaper than disposing it on a
landfill in the United Kingdom. This explains the
high amount of imported wood from the UK in
2015.

1660

1146 514

249
15%

848
51%

121
7%

393
24%

NL BE & DE

RECYCLED BIO ENERGY RECYCLED BIO ENERGY

IN 2015
1.660.000.000 KG PROCESSED

22% RECYCLED
75% BIO ENERGY

49
3%

UNKNOWN

69% 31%

In 2015 1.660.000.000 kg waste wood was
processed. The waste wood facilities prepare the
waste wood for transportation by shredding the
wood in chips. Each incineration and recycling
facility has unique preferences in the mixture of
waste wood they want to receive. This mixture is a
combination of A-wood and solid B-wood.

Figure 3.2 Dutch waste wood market in 2015, data by TAUW (own ill.) DEMOLISH
DISMANTLE

SORT &
COLLECT

PROCESSING

RECYCLING

BIO ENERGY

Figure 3.1 Stakeholders Dutch waste wood market (own ill.)

WASTE WOOD MARKET WASTE WOOD MARKET

22 23

3.3.2 2017
Bruggen & Zwaag estimated the processed wood
in 2017. This estimation is based on interviews
with stakeholders in the Dutch waste wood
market.

In total, there was 1.610.000.000 kg of waste
wood collected in the Netherlands.

• 250.000.000 kg (15,5%) as A-wood
• 1.260.000.000 kg (78,3%) as B-wood
• 370.000.000 (23%) as solid B-wood
• 890.000.00 (55,3%) as non-solid B-wood
• 100.000.000 kg (6,2%) as C-wood.

The estimation shows that the amount of waste
wood exported to Belgium and Germany for
recycling has more than doubled than in 2015. In
the estimation of 2017, the mono stream of
A-wood is taken into account while it is not shown
on the officially registered data from 2015; this
explains that specific difference. (Bruggen &
Zwaag, 2017). On page 24 & 25 a clear overiew of
the estimated waste wood streams can be seen.

1741

1120
64%

621
36%

260
15%

860
49%

300
17%

321
19%

NL BE & DE

RECYCLED BIO ENERGY RECYCLED BIO ENERGY

ESTIMATION OF 2017
1.741.000.000 KG WASTE WOOD

32% RECYCLED
68% BIO ENERGY

3.4 RECYCLING AND INCINERATION

Almost all processed wood that gets recycled in
the Netherlands is used to produce pallet blocks.

 All the processed C-wood is exported to Germany,
where it is incinerated. The Netherlands does not
have the facilities to incinerate this class of
contaminated wood.

The Dutch incineration facilities does not have the
capacity to incinerate all the available non-solid B
waste wood. Therefore, a significant amount of
waste wood gets transported to Belgium and
Germany, where the surplus is incinerated. This
transportation results in additional CO2 emissions.
The Dutch recycling facilities also do not have the
capacity to recycle all the waste wood suitable for
recycling. Again, a significant amount of waste
wood is transported to Belgium and Germany,
where the surplus is used for the production of
engineered boards. An engineered board is
manufactured by compressing layers of wood
chips or wood flakes with a binding adhesive.
Examples of engineered boards are:

• Oriented Stranded Board (OSB)
• Particleboard
• Medium Density board (MDF)

The downside of creating engineered boards or
pallet blocks is that they cannot be recycled again
due to the adhesives used to create this product.
The production from waste wood to engineered
boards and pallet blocks is considered
downcycling.

3.5 BOTTLENECKS IN THE WASTE WOOD MARKET
The TAUW report published some interesting
bottlenecks about the Dutch waste wood market
that is worth mentioning.

3.5.1 A-WOOD INCINERATION SUBSIDIZATION
80.000.000 kg of A-wood in the Netherlands gets
incinerated for bioenergy instead of being
downcycled to an engineered board. The reason
for this is the subsidization from the government
for bioenergy installations. With this subsidization,
the bioenergy installations can offer more money
for the A-wood than production companies of
engineered boards are willing to offer Bruggen &
Zwaag, 2017). Stopping this subsidization will
result in more A-wood being processed to
engineered board and less A-wood being
incinerated. This will help the circular economy
because downcycling is at least better than
incineration.

3.5.2 DOWNCYCLING CAPACITY
There is not enough capacity in the recycling
factories to process all the waste wood in the
north-west European waste wood market suitable
for recycling. Governments should stimulate new
and innovative ways of recycling to increase the
recycling capacity.

3.5.3 SEPARATE SOLID B-WOOD FROM B-WOOD
It is not required by law to separate the solid
B-wood from the B-wood stream. Therefore, it
happens that processing facilities which not
separate sell B-wood to incineration facilities that
have solid B-wood in them, and consequently, it
would be better to transform this into Engineered
boards.

3.6 REAL-LIFE SCENARIO

To obtain more knowledge about the Dutch wood
waste industry, an interview with Martijn Moleman
from van Werven was conducted. The interview
took place on the 7th of May 2020. Van Werven is
a company that is active in demolishing, collecting,
and processing. They offer the possibility to
demolish circular. This circular demolishing means
they carefully dismantle a building and reuse
products where possible. They only do this if the
client pays for it or if they have enough time to find
a new destination before the dismantling begins.

During the interview, Martijn said that it regularly
happens that reusable wood ends up being
downcycled to engineered board or incinerated
due to time pressure. For example, on the 30th of
April 2020, they started the demolishment of a
swimming pool in Dronten. This swimming pool
had sixteen 20-meter-long beams/rafters that are
suitable for reuse. However, they will not be reused
because van Werven got the job two days before
the demolition, which is not unheard of within the
demolition industry. The beams got saw into
pieces to make transportation easier and ended
up on a pile with other B-wood.

Here the tool developed exterior wall tool can offer
a solution for these rush jobs.

3.7 LOCATION VISIT

On August 26th, 2020, a visit was made to the
processing facility of GP Groot / Sortiva in Alkmaar.
Here Martine de Wit gave a tour and talked about
a new circular pilot of GP Groot. With this pilot, old
window frames were dismantled from houses in
Amsterdam and modified to be reused for a
business lobby’s interior. The modification took
place between all the waste wood on location.
This pilot was more something of a prestige
project, a way for the company where the interior
is used to say they participate in a circular project.
The window frames were modified by hand, and
therefore it is not a solution for a larger scale. Here
the developed tool could help this process.

3.8 CONCLUSION OF THE WASTE WOOD MARKET

What conclusion can be taken from this analysis
that helps with the implementation of the
developed tool?

Solid B-wood has the potential to be reused as a
building material. Estimation by TAUW stated that
in 2017 there was 370.000.000 kg of solid B wood
processed. What percentage of this solid B-wood
can be reused as a building material is unknown.
However, the conducted interviews and the visit to
GP Groot / Sortiva proved that there is waste wood
suitable for reuse.

A law forcing the sorting and registration of solid
B-wood and non-solid B-wood would give more
insight into the exact data of waste wood. It would
prevent solid B-wood from being incinerated for
bioenergy. Processing solid B-wood into
engineered boards is still a better solution than
incineration.

Figure 3.4 Swimmingpool dronten (omroep Flevoland)

Figure 3.3 Palletblock (Inka pallet UK)

WASTE WOOD MARKET WASTE WOOD MARKET

24 25

Figure 3.5 Estimation of the processed waste wood in 2017 in million kg, data by TAUW (own ill)

WASTE WOOD MARKET WASTE WOOD MARKET

26 27

The recycling and incineration capacity of the
Netherlands is not enough to process all the waste
wood. Therefore, a significant percentage gets
exported to Belgium and Germany. During the
export, there is strong competition with other
countries. It would be better if the Netherlands
would not be that dependent on the international
market to buy all the surplus of waste wood.

3.9 PROCESSING REUSABLE WASTE WOOD

In this section, a suggestion for a method is made
how the reusable waste wood can get processed
and work together with the exterior wall element
tool.

The first part of the process starts with sorting the
reusable solid B wood from the other waste wood.
There are multiple ways to filter the reusable wood
from the waste stream. The simplest option is to
do it by hand. However, sorting, checking,
measuring, weighing, and putting all the input in
the database is manual, a very time-consuming
process that is not feasible in the Netherlands due
to high labor costs.

Another solution can be found in robotic sorting,
photogrammetry, and machine learning.
Machine learning is an application of artificial
intelligence that provides systems, the ability to
learn and improve from experience without being
explicitly programmed automatically. For example,
showing pictures of cracks in wood can teach the
machine to recognize these cracks by itself. This
technique is already used in domestic waste
sorting. Here the robot can detect the different
types of waste and sort them in the designated
recycling bin (Recycling today, 2019).

 Figure 3.6 Robotic sorting of waste wood (recycling today)

Using photogrammetry with a grid-like backdrop
or with scanning, the dimensions of the waste
wood can be obtained. Machine learning,
combined with these methods, can detect the
structural integrity of the wood and if the wood is
painted. There are more suitable options available
for this step in the process. However, due to the
given time frame, this is not a part of this thesis.
The obtained characteristics of a piece of reusable
waste wood are sent to an SQL database. The
physical piece of wood is stored until it is selected
for the exterior wall element. It is crucial that the
piece of wood is tagged with an identification
number that correlates with an identification
number in the database. Otherwise, it is difficult to
find the correct piece of wood when assembling
the exterior wall element.

The database communicates with the exterior
wall element tool. When an exterior wall element is
needed, the tool searches in the database for the
most suitable pieces of wood and creates for
every piece of wood selected a separate 3d file
that can be used for digital fabrication. The tool
will show a list of all the identification numbers of
the pieces of wood required so that the correct
pieces of wood can be selected from the storage
for digital fabrication.

After modifying all the selected pieces of waste
wood, the exterior wall element can be assembled.
The scheme below shows an overview of this
process.

Within this thesis, the focus lies on the development
of the exterior wall element tool, developing a
realistic design for the exterior wall element, and
the communication between the database and the
parametric model (figure 3.7).

Figure 3.7 Scope of research (own ill)

SOLID B WOOD

NOT SOLID B WOOD

REUSABLE

NOT REUSABLE

B - WOOD

ROBOTIC SORTING

SCANNING

ARCHIVE

- HARDWOOD OR SOFTWOOD
- DIMENSIONS
- STRENGTH CLASS
- SUSTAINABILITY CLASS
- WEIGHT (DENSITY)
- STRUCTURAL INTEGRITY (CRACKS)
- ESTHETICAL PROPERTIES

DATABASE EXTERIOR WALL
ELEMENT TOOL

DESIRED DIMENSIONS

LIST REQUIRED WOOD

3D FILES FOR DIGITAL
FABRICATION

DIGITAL
FABRICATION ASSEMBLY

EXTERIOR
WALL ELEMENT

GRADUATION PROJECT

WASTE WOOD MARKET WASTE WOOD MARKET

28 29

3.10 IMPLEMENTATION PROPOSAL

With this chapter’s knowledge, the conducted
interviews with Martijn Meuleman from van
Werven Recycling and Gerald van Elburg from
Nedvang and the processing location visit in
Alkmaar; a thought experiment can be conducted
about a possible implementation of the exterior
wall element tool.

With the increasing demand for circular building
materials due to the Dutch government’s new
regulations and the need for one million additional
houses, demolition companies started to
dismantle instead of demolishing. The dismantled
products are being sold in the local shop of the
demolisher or online at their website. With the
exterior wall element tool, it is also possible to
register the wood they dismantled in the database.
This way, a national database is realized with
sellers of waste wood in the Netherlands. These
sellers can be the demolishing companies but
also the waste wood processors. A contractor can
use the exterior wall element tool online to create
a wall element from waste wood. Here the user, in
this case the contractor, gives the desired
dimensions of the wall, and the tool generates a
design of an exterior wall element. Additional
information is given about the cost, the amount of
wood required and where the wood is located. The
contractor can adjust the parameters of the model
and choose, for example, the cheapest option or
the option where all the wood is closest to the
building side. In the end the tool generates a list
with 3dm files for every piece of wood that has to
be modified. These 3dm files can be used for
digital fabrication. It is not difficult to implement
more building elements in the tool. This can create
a positive spiral where more people use the
exterior wall element because more building
elements are implemented. An additional benefit
is the additional data that is obtained about waste
wood that is suitable for reuse.

A different possible implementation can be directly
at the waste wood processor. With the increasing
demand for circular building materials, the
processor decides to focus on reusing waste
wood instead of shredding the wood and selling it
to recycling or bioenergy facilities. With the
reusable wood, the processor wants to produce
wall elements. Next to the waste wood facility, a
workspace and storage are designed. The reusable
waste wood is temporarily placed in the storage
where the wood is labelled. The characteristics
and the label number are stored in a digital
database. The workspace allows for assembly of
the exterior wall element and robotic manufacturing
such as CNC milling. This way, the waste wood
processor can sell the complete wall element or
just the waste wood they have registered to the
database. Most of the time, a waste processor
also collects waste. Therefore, the logistics and
equipment needed for transporting the wall
elements are already available. The same goes for
the space required to store the reusable waste
wood.

One supplier Closest Cheapest

Figure 3.8 National database with waste wood (own ill)

WASTE WOOD PROCESSOR ROBOTIC SORTING STORAGE

ASSEMBLY DIGITAL FABRICATION SELLING REUSE

WALL ELEMENT TOOL

Figure 3.9 Implementation suggestion at the waste wood processor

4 DIGITAL DATABASE

Used beams (Archdaily)

The previous chapter analyzed the Dutch waste wood market and showed that there is no database
or data available about the characteristics of waste wood in the Netherlands. This chapter will focus
on the database and suggest how this database can be constructed.

DIGITAL DATABASE DIGITAL DATABASE

32 33

4.1 WASTE WOOD CHARACTERISTICS

In the previous chapter, a possible implementation
of the database combined with the exterior wall
element tool in the Dutch waste wood market was
suggested. This chapter will focus on the database
and suggest how this database can be constructed.
A database with waste wood does not already
exist in the Netherlands. There is also no official
registered data in the Netherlands available about
the sizes of the waste wood suitable for reuse. To
better understand the possible sizes of suitable
waste wood, market research is performed by
looking at online sellers of reusable wood.

The database should consist of two tables. One
table should give an overview of the characteristics
of the waste wood that are relevant for the exterior
wall element tool. The Python script can use these
characteristics to select the most suitable pieces
of wood. These characteristics can be the
dimensions but also if a piece of wood is cracked
for example. Cracked cannot have a load bearing
function, while it still can be applied in the cladding.
The second table should contain information
about the seller of the waste wood, such as the
name of the company, city, address, etc. These
two tables allow the user to filter the wood that
matches their preferences, such as wood from
one seller or inside a certain radius of the
construction site.

During the literature research, the following
characteristics of waste wood were found
essential for the construction of an exterior wall
element. Therefore, these characteristics should
be included in the database.

• Dimensions
• Weight
• Hardwood or softwood
• Sustainability class
• Strength class
• Structural integrity
• Esthetical properties
• Moisture level

4.1.1 DIMENSIONS
The dimensions are one of the most essential
characteristics to add to the database. To prevent
additional waste, the script selects wood that
matches the dimensions of the required wood.

4.1.2 WEIGHT
combining the weight and the dimensions can
determine the density of the wood. The density
can indicate the type of wood. Adding the wood’s
weight to the tool can give an insight into the total
weight of the construction.

4.1.3 HARDWOOD OR SOFTWOOD
Wood can be divided into two categories,
Hardwood (loofhout) and softwood (naaldhout).
Hardwood is wood from dicot trees and is
deciduous. Deciduous means that the tree will
lose its leaves during the fall. An exception is
hardwood in the tropics and subtropics, where it is
evergreen. Softwood is wood from gymnosperm
trees such as pines and spruces. 77% of the logs
processed in Europe in 2019 were softwood
(United Nations, 2020). The term hardwood and
softwood can be confusing because it says
nothing about the hardness or the wood’s softness.
However, on average, softwood is less dense than
hardwood.

4.1.4 SUSTAINABILITY CLASSES
The European code EN 350-2 defines wood in
different sustainability classes. These classes
represent the natural durability of wood. The most
known sustainability class is against fungus/
mold.

There are methods to increases the wood’s
sustainability class. When wood is thermally
modified, its sustainability class is increased in an
environmentally friendly method. It can also be
done by injecting chemicals, though this is not
environmentally friendly and the wood cannot be
recycled or reused again after its end of life. Wood
with a sustainability class of I – III is suitable for
outdoor functions.

4.1.5 STRENGTH CLASS
The EU code EN 338 defines the different strengths
within timber. Unlike the sustainability class, the
strength class is not defined based on the type of
tree. There is also a distinction between hardwood
and softwood. To perform relevant calculations
about the structural capacity of the waste wood, it
is important to know the strength class of the
wood.

Timber strength grading in Europe is based on
three key grade determining properties: strength,
stiffness, and density. The grading is done in two

Sustainability classes for wood (NEN-EN 350-2 Norm)

Sustainability classes Lifespan (years), conditions
Protected wood in
contact with damp soil

Unprotected
wood outdoors

Wood types

1

2

3

4

5

Very sustainable

Sustainable

Moderately
sustainable
Not really
sustainable
Not sustainable

Lower than 25

15 - 25

10 - 15

5 - 10

Lower than 5

50

40 - 50

25 - 40

15 - 25

6 - 12

Iroko, red cedar, teak, rosewood

Chestnut, larch, meranti,
mahogany, robinia
Oak, walnut, American red fir,
oregon pine
Balsa, birch, elm, linden, parana
pine, fir
Ash, plane, poplar, willo

Figure 4.1 Sustainability classes wood (Design for Environmental
Sustainability: Life Cycle Design of Products (p132)

ways; there is visual strength grading and machine
strength grading. With visual strength grading, the
wood is graded based on the grader’s experience
to assess each piece of wood according to rules
that define the size type and the number of
strengths reducing characteristics allowed in each
grade. These strength-reducing characteristics
include knots, wane, and the slope of the grain.
Machine grading is performed by a machine based
on the relationship between strength and stiffness
(Woodcampus, 2017).

4.1.6 STRUCTURAL INTEGRITY
The structural integrity determines if the waste
wood is still suitable for a load bearing or structural
function. Wood with cracks can still be used for a
different purpose, such as the exterior cladding.

4.1.7 ESTHETICAL PROPERTIES
Esthetical properties are relevant if the wood is
visible. If one side of the wood suitable for cladding
is painted, it is preferable to face this piece in a
direction so that it is not visible.

4.1.8 MOISTURE LEVEL
If a piece of wood exceeds a certain moisture
level, the weight and dimensions can change
during the drying process. In the Netherlands,
wood for construction should have a moisture
level of around 14-18%. The moisture level can be
easily measured with a small device. The device to
measure this moisture level is simply pressed
against the wood (Houtinfo, 2013).

Figure 4.2 Strength class for softwood (left) & hardwood (right), (houtinfo)

DIGITAL DATABASE DIGITAL DATABASE

34 35

4.2 REUSABLE WASTE WOOD

The number of initiatives to reuse waste wood
grew within the last decade. Demolishers started
to see the value of the products that can be
dismantled from a building. Some demolishers
have a physical shop on their terrain where they
sell the dismantled products such as windows,
window frames, doors, etc. There also emerged
online initiatives. Websites as
gebruiktebouwmaterialen.com and
bloemgebruiktebouwmaterialen.nl are offering a
larger number of products that are dismantled
from buildings. Demolishers can bring their
dismantled products to these companies and the
website will resell these products to for example,
furniture makers or contractors. Marktplaats.nl
also offers a large amount of waste wood that is
being sold in smaller quantities by varies parties.
To create a representative dataset for the database
these websites are analyzed to obtain the
dimensions of waste wood that can be used for
the dataset.

During an email conversation with an employee
from Bloem Gebruikte Bouwmaterialen some
relevant knowledge was obtained. Between
January 2020 and September 2020, around
4000m of wood had arrived with varying lengths
between 300 and 510 cm. The cross-section of
this wood was in the following dimensions (mm):
50x150, 65x165, 70x195, 75x210 and 70x220.
When new wood arrives, it is not measured. It is

only sorted on cross-section. Therefore, it is
unclear to know the exact lengths of all the
reusable waste wood they have in stock.
Implementing the developed tool would require for
the wood to be measured. Having a better
understanding of the stock can also result in more
sales because contractors can see which
dimensions are available.
The mail conversation and the online research
conclude that the waste wood can have a length
of 5 meters. There is no restriction on the minimum
size. Bloem Gebruikte Bouwmaterialen does not
sell anything below 3 meters because it is not
profitable. Implementing the developed tool can
make this wood under 3 meters profitable in the
future.

4.3 DUMMY DATABASE

For this thesis, a suggestion is made of how such
a waste wood database can look like. The database
is created so that different sellers of reusable
wood can store their wood in the database.
The decision was made to create this database in
SQL instead of Excel. Excel would be suitable for
this prototype, but when this database is used
with all the reusable waste wood for the dataset,
the dataset’s size will be too large, and Excel will
not handle it properly. The SQL database is created
with PostgreSQL. There was no specific reason for
this other than the SQL course that was followed
used PostgreSQL. Other SQL languages would
also be suitable for creating this database. A

Figure 4.3 Screenshot from waste wood database in pgAdmin 4

python script is used to generate a fake dataset.
The dataset is only used to set an example.
Therefore, the wood type, strength class and
density do not correlate.

The database consists of two tables. One table
with all the waste wood characteristics and one
table with the information from the different
sellers. Both tables are relational tables, this
means search queries can be performed over both
tables. For example, it is possible to select all the
pieces of wood that are longer than 3 meters
(waste wood characteristics) and only sold in
Alkmaar (seller information). For both tables to be
relational with each other, they both require a
primary key. The primary key is a column where
the data inside that column is unique for every
row. For the waste wood characteristics table this
is the wood_id, and for the seller information table
the seller_id. Linking the two primary keys makes
the relation tables. In the waste wood
characteristics table, the seller_id is then defined
as the foreign key.

The waste wood characteristics table consist of
the following columns:

• wood_id, primary key of the table
• wood_length_mm, length of the piece of wood

in mm.
• wood_depth_mm, depth of the piece of wood

in mm.
• wood_width_mm, width of the piece of wood

in mm.
• strength_class, strength class of the wood

with C for softwood and D for hardwood.
• wood_weight_kg, weight of the piece of wood

in kg.
• wood_type, type of the piece of wood.
• structural_integrity, if the piece of wood can be

used for structural purposes.
• painted, if the piece of wood is painted.

• density_kgm3, generated column with the
density in kg/m3.

• volume_dm3, generated column with volume
in dm3.

• Archived_on, timestamp on which day and
time the piece of wood is archived.

• Sustainability_class, sustainability class
ranging from 1 to 5, with 1 as most sustainable.

• Seller_id, shows which piece of wood is from
which seller.

The wood ID is a unique number for every stored
piece of wood. This id number must also be
labelled on the archived wood. This ensure that
the wood selected for manufacturing correlate
with the wood from the exterior wall element tool.

Length, depth, width, and weight are stored in a
numeric datatype. The data from these
characteristics are later used to create generated
columns. The generated columns are created with
an expression that require a decimal. Density and
volume are the generated columns. A generated
column is a special column that is computed from
other columns. An example of a generated collumn
can be seen in figure 4.4.

Structural integrity and painted are stored with a
Boolean datatype, so either true or false. If the
structural integrity is true, the piece of wood does
not have any cracks and can be used for structural
purposes. False means it cannot be used for
structural purposes, but it is stills suitable for the
cladding or substructure.

Seller_id is a foreign key correlating to the wood_
seller table. Here a dataset is entered from six
waste wood processor that can sell reusable
waste wood. Each piece of wood in the database
is assigned to one of these waste wood processors.

Figure 4.4 Expression for a generated column that determines the density

DIGITAL DATABASE DIGITAL DATABASE

36 37

With a search query, the wood can be found suitable for
specific needs. In the images below, two examples are
given.

This search query selects wood that is longer than two
meters and is suitable for structural purposes. The
wood_waste table and the wood_seller table are shown
together with the inner join function. Inner join is
possible because of the assigned primary and foreign
key. This view allows the user to see where the wood is
located.

This search query selects wood that is not painted

5 DESIGN METHODOLOGY

To design an exterior wall element that can be made parametric and work with the exterior wall
element tool, a design methodology was followed. The design methodology was used to identify the
design problems, determine the criteria, and guide the designer in finding the most suitable design
that can work with the challenges of waste wood. In this chapter the chosen design methodology is
elaborated and altered to see if scripting can improve this design methodology.

DESIGN METHODOLOGY DESIGN METHODOLOGY

40 41

A. Design problems B. Criteria C. Alternatives D. Concepts

Scripting

Second iteration

Figure 5.1 Altered design methodology

E. Concept analyses F. Prototyping G. Sub-solutions H. Final design

DESIGN METHODOLOGY DESIGN METHODOLOGY

42 43

5.1 DESIGN METHODOLOGY

A design method will allow the designer to leave
the mind free to produce ideas, solutions and,
hunches at any time without being inhibited by
practical limitations and without confusing the
processes of analysis. During this process, the
method will provide a system of notation that
records every item of design information outside
the memory, keeps design requirements and
solutions utterly separate from each other, and
provides a systematic means of relating solutions
to requirements with the least possible
compromise (Cross, 1984)

Designing can be a subjective activity where a
certain creative feeling can determine, for the
designer, if a design decision is good or not good.
When using a design methodology, the design
process and this ‘feeling’ can become more
substantiated.

Designing something where flexibility is required
due to the constantly changing availability of
materials can increase the design’s complexity. A
design methodology can guide the designer in
finding and choosing the most suitable design for
the giving problem.

In this part of the research, an existing design
methodology is selected and modified, to discover
if it can be applied for a flexible design whereby
the available materials constantly change. Writing
‘quick’ scripts can give the designer some useful
insight and quantify the result. The output of the

scripts can be compared with an existing standard
system.

To see the effectiveness of the altered
methodology, the methodology is applied with
scripting and without scripting. This way, a
comparison can be made about the efficacy of
making the different parametric scripts.

The design methodology developed by Jeroen van
Veen & Nick van der Knaap is used and modified to
see if it can be applied to the problem of this thesis.
Their design methodology is a result from a
graduation thesis at the TU Delft. Van Veen and
van der Knaap used literature from Eekels
(Productontwerpen, structuur en methoden,
2003), Rutten & Zeiler (Geintergreerd ontwerpen
van gebouw en installaties, 2005) and Gijsbers
(Aanpasbaarheid van de draagstructuur, 2011) to
create their methodology.

5.2 USED METHODOLOGY

In this thesis, the design method developed by
Jeroen van Veen & Nick van der Knaap is used.
However, the scripting aspect is implemented
within the methodology to see if it can help the
designer choose the most suitable option.
The methodology of van der Knaap & van Veen is
divided into eight different stages:

A. Design Problems
B. Criteria
C. Alternative selection
D. Concept comparison

Figure 5.1 Design methodology by van Veen & van der Knaap (van Veen)

E. Concept proposal
F. Prototyping and testing
G. Sub-solutions
H. Final design

This methodological approach provides designers
a framework to develop their products based on a
specific set of criteria. The method can be used to
generate design options, draft recommendations,
and justify the final design on a quantitative basis.
(van der Knaap & van Veen, 2016)

5.2.1 DESIGN PROBLEMS
The methodology starts by identifying all design
problems that come with the specific design task.
In this case, it is about designing an exterior wall
element that can work with the varying dimensions
of waste wood.

5.2.2 CRITERIA
The selected criteria are a summary of the different
design objectives and the literature study. The
criteria are the backbone for this methodology.
Therefore, determining the criteria is an important
task; they represent the essence of the design.
The criteria should represent what the user desires
and what the designer sees as essential.

For this methodology, The Pugh concept selection
method (Pugh, 1981) is chosen to act as a guide in
finding the most suitable design. This decision-
matrix method is invented by Stuart Pugh, hence
the name Pugh concept selection method. The
decision-matrix works as follows; for each design
problem different solutions are tested against a
beforehand set up of weighted criteria. These
criteria are specified to define the essential and
the fundamentals of the design. The Pugh concept
selection method works with weighted criteria.
With the weighted criteria, each design solution’s
final scores will generate an outcome based on
the importance of the criteria. To determine the
weight of each criteria, the criteria are compared
with each other in a matrix. If the selected criterion
is more important than the compared criterion,
the selected criterion will receive a 1. Vice versa, if
the selected criterion is less important than the
compared criterion, the selected criterion will
receive a 0. A ranked list can be made by adding
the scores for each criterion. Each criterion can
have a weight of 1,2 or 3. The score required for a
certain weight depends on the number of criteria
that are used. It can be possible that certain

criteria are not applicable for a specific design
problem. If this happens, these criteria will be
removed from the list of criteria from that specific
design problem.

5.2.3 ALTERNATIVE SELECTION
All individual design problems with their concept
designs are reviewed according to the set criteria.
This process is done for every design problem.
After reviewing all the design problems with their
concept designs the most favorable concept is
selected. The most favorable concept can be
found by scoring the concepts to the criteria and
multiplying this by the applied weight. The sum of
these scores gives a theoretical most suitable
concept solution (van der Knaap & van Veen,
2016). (van der Knaap & van Veen, 2016). Here a
difference is made with the existing methodology.
With the existing methodology, the number of
points the designer can give for each criterion
ranges between 1 up to and including 4. These
points are distributed on a subjective scale. For
example: complex (1) – simple (4), difficult (1) –
easy (4), long (1) – quick (4), a lot of material (1)
– almost no material (4). The difference between
2 or 3 points is subjective, and there is not a
quantified threshold. Therefore, the points
assigned by the designer are based on a feeling.
This feeling is backed up with experience and
research so that the designer can substantiate it.
However, it remains a feeling.

By implementing scripting in this process, an
alternative from the original methodology is made.
Here scripting is used to quantify the criteria’s
thresholds and, therefore, create an objective
scale. Each design solution is feed through the
script, and the outputs can be placed on the scale.
For the criterion of material use, the scale can be

Figure 5.2 Method to determine the weight of each criteria (own ill)

DESIGN METHODOLOGY DESIGN METHODOLOGY

44 45

quantified as follow: 1 (> Z%) – 2 (Y-Z%) – 3 (X-Y%)
– 4 (<X%). The percentage is the output compared
with a reference solution. For this criterion, every
output was compared with the material use of a
standard TFC element.

The script parameters can be easily adjusted and
therefore show the designer how these parameters
relate to each other and, their impact is on the
outcome of the criterion. An additional benefit of
having scripts is that the designs can be easily
altered during a brainstorm and generate direct
feedback.

5.2.4 CONCEPT COMPARISON
In the previous step, the design solutions of a
specific design problem are compared with each
other. Here the solutions to different design
problems are compared. It is not a given fact that
the overall best design combines the highest
scoring solutions to each design problem. It can
happen that a lower scoring solution works better

with a solution from another design problem. It
can also happen that some solutions have nearly
identical scores. In the end, choosing the most
suitable option is something that the designer
does. Therefore, it is recommended to do this in a
brainstorm session so that multiple people can
give their input and come to a common decision.

Design problem 1 Design problem 2 Design problem 3 Design problem 4

Solution

A
Solution

A
Solution

A
Solution

A

Solution

B
Solution

B
Solution

B
Solution

B

Solution

C
Solution

C
Solution

C
Solution

C

Solution

D
Solution

D
Solution

D
Solution

D

5.2.5 CONCEPT PROPOSAL
After elaborating and prototyping multiple
concepts created with the previously mentioned
methods, different concepts can be compared.
This will result in one concept proposal which
seems the most suitable for the specific design
task. This concept proposal will be made
parametric for this thesis.

5.2.6 PROTOTYPING AND TESTING
This is a chapter where the altered methodology
deviates from the existing methodology. Here the
prototype takes shape in the form of a digital
playground. The result of an adjustment can be
directly visible due to the data output generated by
the model.

5.2.7 SUB SOLUTIONS
During the build of the prototype, new design
problems can emerge. The parametric model
gives a better 3d view of the design and can
provide a direct output based on the database.
Little adjustments can be made to see if the design
can be optimized.

Figure 5.3 Criterion for total material use (own ill)

Figure 5.4 Determing the highest scoring design solution (own ill)

Figure 5.5 Concept comparison (own ill)

5.2.8 FINAL DESIGN
After all the adjustments, a final design can be
shown that is specific to this problem. However, it
can also result in a set of compromises the user
can choose in.

6 CONCEPT DEVELOPMENT

In this chapter the altered design methodology from the previous chapter is applied. In the end of this
chapter a reflection is written about the effectiveness of the alterations.

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

48 49

6.1 CRITERIA

The criteria are a direct extension of the objectives
in chapter two and the literature study. The
objectives for the exterior wall element are:

• The design should be constructed as much as
possible with waste wood.

• The design should minimize any additional
material waste that can occur when building
this exterior wall element.

• The design must be compatible with the
circular economy. This means that the pieces
of wood need to be reused as much as possible
after the exterior wall element end of life.

The study about existing TFC construction
methods, which can be red in the appendix,
concluded that the middle and exterior part of the
exterior wall element could be constructed with
waste wood. The selected criteria need to make
sure this can indeed happen. Based on the
objectives and the literature, the criteria can be
summarized into three categories, a criterion can
overlap with multiple categories:

1. Criteria that allow the exterior wall element to
be constructed with waste wood and thereby
minimizing additional waste.

2. Criteria that allow the exterior wall element to
be reusable as much as possible after its end
of life and have an environmentally positive
impact.

3. Criteria that allow for a realistic and
straightforward construction process.

The criteria that can determine which design
solution minimizes the additional waste are:

• Expected material loss
• Full length usage
• Flexibility of pieces

The criteria were derived by implementing scripting
to some of the design solutions. During this
process, it became clear what types of design
decisions resulted in less waste. By considering
the wood that cannot be reused again after the
exterior wall element end of life, the expected
material loss criterion also overlaps with category
two.

Within this research, the concept is all about
reusing waste wood. Reusing waste wood is
derived from a broader perspective to create an
environmentally friendly solution instead of the
alternative where waste wood suitable for reuse
as a building material gets downcycled or
incinerated. Therefore, the selected criteria should
have an environmentally positive impact besides
utilizing building with waste wood. The criteria
that can determine which design solution have an
environmentally positive impact and allow for as
much as reuse after the wall elements end of life
are:

• Total material use
• Disassembly
• Loading efficiency.
• Expected material loss

Having less material result in a more
environmentally friendly design. Disassembly
allows for the exterior wall element to be reused
again after its end of life and efficient loading for
less carbon emissions during transportation.

For the exterior wall element tool to have a better
change to be implemented in the Dutch waste
wood market and for the exterior wall element to
be constructed with waste wood, the design
should be simple and realistic. The assembly
should be possible with a couple of people. The
criteria that allow for a simple and realistic
construction process are:

• Assembly complexity
• Assembly time
• Machine time
• Machine complexity
• Complexity of connection

All the criteria are elaborated in more detail in the
next paragraph.

6.1.1 DESIGN PRINCIPLES
The selected criteria are not only a result of the
literature study but also by following the design
methodology and discover by research through
design what design interventions can help achieve
the design objectives determined in chapter 2.
Some of these criteria are derived from certain
design principles that were discovered during the
design methodology. The design methodology
was repeated with the new criteria and design

principles integrated. The design principles that
were derived are as follows:
Modifications on the pieces of wood within the
chosen design should only be on the outside. This
allows for the wall element to maximize the
reusable pieces of wood after its first use as a wall
element. The modified parts can be removed, and
the remaining piece of wood can be reused again
in a new exterior wall element.

Symmetry of the design should be prevented. A
symmetric design can result in additional waste
because the same dimensions of the wood have
to be selected twice. The chance increases that
the wood is not available in that exact dimensions
twice, and therefore, a larger piece of wood has to
be cut to fulfill the required dimensions.

A broad range of dimensions should be used in
the design. This way, the chance increases in
selecting the pieces of waste wood that fits closest
to the required dimensions. Having only small
pieces required for the design can result in splitting
larger pieces of waste wood into smaller pieces.
This will result in a decrease in value. Having a
design with only large pieces of wood will result in
not having a function for the small pieces of wood.

QUANTIFY THE CRITERIA
In this thesis making scripts that can give a
quantified output allows for rating the criteria on
certain thresholds. The use of a parametric script
can provide a better understanding when all the
possible solutions are compared with each other.
The data from the script will be used in determining
the score. The criteria that are suitable for scripting
are:

• Expected material loss
• Total material use
• Machine time
• Flexibility of pieces

The following chapter will explain how these
criteria can be quantified. The exact scale is not
given because that can change with each given
design problem.

6.1.2 CRITERIA EXPLAINED
Expected material loss:
Expected material loss is all the waste that is
created during construction of the wall element.
For example, if the stud’s required length is 2
meters, but there is only a 2.15 meter piece of
waste wood available, 0.15 meter will be
considered as waste. If this specific wood can find

Figure 6.1 Design principle 1, modifications should be on the
outside of the piece of wood (own ill)

Figure 6.2 Design principle 2, symmetric design (left) should
be prevented (own ill)

Figure 6.3 Design principle 3, broad range of required
dimensions is preferred (left option) (own ill)

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

50 51

Machine complexity:
Machine complexity depends on the type of cut.
For a groove in a piece of wood a simple saw blade
can be efficient, while a complex Japanese
inspired joint requires a multiple axis CNC milling
machine.

Flexibility of pieces:
One of the biggest challenges of building with
waste wood is the diversity in the material’s
dimensions. A design that allows for multiple
combinations between the pieces of wood is
considered flexible. A repetitive design will require
the pieces to have the same dimensions. Every
time this piece is selected, the chance to find
another piece with that exact dimensions become
smaller. To obtain the right dimensions a larger
piece needs to be selected and shortened. This
will result in additional waste. A design with
repetitive dimensions will score low on this
criterion. To objectify this criterion, a percentage
can be calculated. The number of different lengths
divided by the total number of pieces * 100 gives a
percentage. This percentage can be used to
compare the different designs solutions.

ONE DIMENSIONS REQUIRED MULTIPLE DIMENSIONS

Disassembly:
Disassembly allows for the pieces of waste wood
to be reused on a new wall element. Some
connections allow for easier disassembly then
others.

Loading efficiency:
Can the wall be transported in segments and
stacked inside a truck, or does it need to be
transported in one piece. A higher loading
efficiency will result in less CO2 emission and will
reduce the transportation cost.

Complexity of connection:
Complex connections can have a negative impact
on the assembly and disassembly. A simple
connection is preferred over a complex one.

a function somewhere else in the design, it will not
be defined as waste. Wood that cannot be reused
after the end of life of the exterior wall element is
also considered as waste.

WASTE

WASTE

Total material use:
It is important to not only look at the total material
loss but also the total material use. Using less
material is overall a better design in an
environmental point of view.

However, a design can minimize the additional
waste but still requires more meters in total.
Because end of life is considered in the expected
material loss, it can be justified to have a design
that has a higher total material use but less waste
in the end.

To quantify the scale, the design is compared with
a standard TFC wall element.

Assembly complexity:
To end up with a realistic design, assembly
complexity is considered. The assumption is
made that humans, with the help of tools, are
assembling the construction. In the future, this
process can be replaced by machines, but that is
outside the scope of this research.

Assembly time:
It is safe to say that assembly complexity and
assembly time correlate. Increased complexity
will result in more assembly time. However, a
simple design can still take more time to assemble
than a complex design due to the number of
actions / pieces that need to be assembled.
Therefore, it is essential to separate the two
criteria.

Machine time:
The pieces of waste wood need to be modified so
they get the right dimensions and allow for certain
connections. The number of cuts and the
complexity of the cut will result in a machine time.
To objectify the scale a calculation about the
estimated machine time can be made by total
meters of cuts that need to be performed.

Figure 6.5 Flexibility of pieces (own ill)

Figure 6.4 End of life material loss (own ill)

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

52 53

Full length usage
When a design only requires small pieces,
eventually, a long piece needs to be cut in multiple
pieces to fulfill this demand. This will result in a
loss of value of the piece of wood and after the
disassembly of the wall element the piece of wood
cannot be reused in its original length. It is preferred
to use the pieces of wood in their original length. A
design scores higher if the length of dimensions
required vary.

6.2 CRITERIA MATRIX

The following table gives an overview of every
criteria compared with each other. The decision
which criteria is more important is a subjective
decision made by the designer(s).

The eleven criteria that where selected can have a
weight 1, 2 or 3. Criteria with a total score 0-3 will
have a weight of 1. Criteria with a score 4-6 will
have a weight of 2. Criteria with a score 7-10 will
have a weight of 3.

Product methodologies give to possibility to make
a substantiated decision and can support the
designer in the decision-making process. The first
step is to have a clear overview of all the design
problems that exist when creating an exterior wall
element from waste wood.

The following list identifies the problems of
designing an exterior wall with waste wood. Some

problems do not have a direct relation to designing
with waste wood, such as insulation or
soundproofing. For these problems, existing
solutions are chosen that already proven to be a
sustainable solution.

6.3 ASSERTING CRITERIA TO DESIGN PROBLEMS

Structural infill:
This aspect determines the structural infill of the
wall element and will carry the load of its own
weight, the substructure, and the cladding.
Different systems are described and researched.
The following criteria are applied:

• Expected material loss
• Total material use
• Assembly complexity
• Assembly time
• Machine time
• Flexibility of pieces
• Loading efficiency
• Complexity of connection
• Full length usage

Structural positioning:
How is the structural infill (studs) positioned
relative to each other, working with waste wood
gives the challenge of working with varying
dimensions of each stud.

Cladding:
The cladding is responsible for protecting the
inner structure against the elements. The choice
can be made for an open facade with an additional
foil that will act as water barrier or a closed facade
whereby the cladding is the water barrier.

• Total material use
• Assembly complexity
• Assembly time
• Disassembly

Cladding position:
Different options are researched and described
regarding the position of the cladding relative to
the substructure.

• Expected material loss
• Total material use
• Flexibility of pieces
• Full length usage

Figure 6.7 Decision matrix to determine weight of each criteria (own ill)

Figure 6.6 Splitting wood in multiple pieces result in a
loss of value (own ill)

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

54 55

Structural positioning Cladding positioning Cladding type Structural design

Figure 6.8 First iteration of design problems with each possible solution (own ill)

6.4 DESIGN PROBLEMS

6.4.1 STRUCTURAL INFILL:
The solutions to this design problem determine
the structural infill of the wall element. The
structural infill will carry the load of its own weight,
the substructure, and the cladding. Existing
designs and designs derived from traditional
building methods are compared and researched.
The criteria total material use has high importance
due to its weight. To generate a better estimation
about the total material use, the designs are made
parametric in a script. This will give a fascinating
insight into how a parametric script can support
the design methodology and test if the score for
each design based on logical thinking is the same
as the score based on the script’s output.

To keep the calculations and estimations simple,
only the total length required is compared. Here
the width and depth are neglected.

The outputs of the scripts are compared with the
length required of a basic timber framing wall. The
wall has a width of 4.8 meters and a height of 3
meters. The center-to-center distance is 600
millimeters. With these calculations, the number
of studs can be a number with a decimal. This
happens when the width of the wall is not a multiply
of 600mm. Usually, when this happens, an
additional stud is placed. However, for comparing
the different outputs this principle is ignored.
Otherwise, some designs would have an extra
negative result in comparison with the reference
wall element.

Score overview with Total material use based on
the outcome of the script with the following scale.
1 (> 130%) – 2 (120-130%) – 3 (110%-120%) - 4 (<
110%). The percentages are based on a comparison
of the total meters required for a standard TFC
element.

Score overview with Total material use based on
estimation. The score generated by the parametric
model did vary with the estimations by the designer,
especially on the more complicated designs.

A B

C D

E F

G H

Figure 6.9 Structural design problem (own ill)

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

56 57

Brikawood (A):

Brikawood is an existing system where the
construction consists of a brick-like design. The
benefit of Brikawood, besides being an existing
system and therefore already proven itself, is that
the use of nails, screws, or adhesives are not
required (Brikawood, 2012).

In the parametric script, the brick’s height and the
distance between the connection pieces can be
adjusted. Adjusting these parameters will result in
more understanding of the model and how the
total length can be minimized.

The brick has a standard length of 500 mm, with
two connector pieces joining the brick together.
The height is approximately 300mm. Using this as
an input for the script, while creating a wall of 4.8

meters wide and 3 meters high, will require roughly
154 meters of wood. This high result comes from
the requirement of two pieces of wood and two
connector pieces for every 500 mm.

Even increasing the center-to-center distance
between the connection pieces will result in a
higher total meters of wood required than the
standard TFC.

If the Brikawood would also act as an exterior
cladding, the high amount would be justified and
maybe even be more beneficial than other designs.
For the design to function as exterior cladding and
structural infill, it needs to be completely watertight.
However, working with waste wood brings some
downsides, such as the quality of the wood. Waste
wood has been used, it can contain small holes
from nails or screws, and therefore not all waste
wood can guarantee to be completely watertight.
Eliminating all this wood for reuse would shrink
the available wood drastically and is therefore not
preferred.

For the brick-like construction, every piece of wood
used needs to be modified, resulting in a high
machine time.

Figure 6.10 Determing the scores for the structural solutions (own ill)

Truss (B):

Design B is a wooden truss that acts as a column.
The column consists of multiple studs with slanted
web pieces between them. The following elements
are parametric within the script:

• The number of web pieces for every meter
height between two studs.

• The distance between the studs.
• The number of studs per truss
• The distance between the columns.

For this input, a truss consists of 4 studs, with 3
webs per meter height within 2 studs, a distance
between the studs of 200mm and a distance of 4
meters between the trusses will result in 68 meters
of wood required.

Even decreasing the number of studs, the distance
between the studs and the number of webs will
still result in a higher required length than the TFC.

NUMBER OF STUDS WEBS PER STUD DISTANCE BETWEEN STUDS DISTANCE BETWEEN COLUMNS

Figure 6.11 Script with parameters for the truss design solution (own ill)

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

58 59

Traditional framing with diagonal bracing (C):

Design C is closest to the current TFC method
with diagonal bracing. Therefore, the meters of
wood required for this type of construction is the
same as the standard reference.

The modifications in the studs allow this
construction design to work with waste wood. The
studs can consist of two pieces that are joint at
the location where it intersects with the bracing.
This results in lower material loss due to the
changing required length of the pieces.

Segments (D):

Design D consists of different rectangles with
diagonal bracing. The method of two braces
between two studs is called dog leg bracing.
However, this bracing type will result in a higher
amount of wood required because of the increased
bracing amount.

The increased number of bracing results in an
increased total material use. Also, with this design,
it can occur that five pieces of wood intersect, and
this will require a more complicated connection.

Post and beam (E)

Design E is a derivative from a traditional post and
beam construction method. This design combines
two studs that allow for an increased center-to-
center distance compared to the TFC. Knee
bracing is added for stability and stiffness. The
length of the knee bracing does not have to be
consistent and can vary based on the wood
available. The location where the knee bracing
connects with the stud can also be the point where
the stud is divided into multiple pieces. This will
also allow for more flexibility in the required length
of wood.

For the script, a fixed height is applied where the
bracing intersects with the studs. Being able to
change this parameter can give some insight into
the total meters of wood that are required. An
input of 0.5 means that the knee braces intersect
in the middle of the studs.

Diagonal design (F)

Design F is designed to use the full length of the
available wood, resulting in minimizing the waste.
Putting this principle in a parametric script would
consume too much time for this research. From a
material point of view, vertical load transfer is
always preferred over diagonal load transfer
because diagonal load transfer will require more
material to carry the same amount of load.
However, this design does not require any
additional bracing. The diagonal pieces already
create the needed stiffness. With the TFC
reference, 13% of the total length consists of
bracing. The lack of bracing required can
compensate for the additional material necessary
for this design to carry the load.

A downside of working with only slanted pieces
will result in a more complex connection when the
two pieces need to be joined to create a longer
piece. Slanted pieces require a connection that
can take compression and tension. The different
angles between the slanted pieces can also
increase the complexity of the connection.

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

60 61

Modular design (G):

Design G consists of a box module that can be
attached to each other to create the wall element’s
structural infill. This design, like design E, has
double studs. These double studs are created
when the modules are connected with each other.
These double studs will allow for an increased
center to center distance compared to a traditional
timber frame.

Increasing the width of the box by 100 mm results
in a lower amount of meter wood required than
the traditional timber frame.

Honeycomb (H):

Design H consists of a honeycomb structure.
This type of structure would not allow for a simple
python script. Instead of Python, grasshopper was
used. The design is slightly simplified, but the
number of meters required will give a good
estimation. In the parametric model, the
dimensions of the triangle and the hexagon can be
adjusted to see the effect relative to each other on
the total meters of wood required.

A hexagon where the length of a side is 650mm
and a triangle where the side is 50 mm will result
in 45.1 meters of wood.

A hexagon where the side is 500mm and where
the side of the triangle is 100 mm will result in 59
meters of wood.

A downside is that the pieces of wood are all the
same length making it less suitable for a wall
element from waste wood. Also, the load carrying
benefit of having a honeycomb type of structure is
mostly in a horizontal direction.

6.4.2 STRUCTURAL POSITIONING
The waste wood will have different dimensions,
resulting in an irregular alignment of the studs.
Multiple options are described for the alignment.
The decision for the alignment has no direct
relation to the criteria. Therefore, the methodology
cannot be used appropriately to gain a score for
each option. However, the decisions for the
alignment does have an impact on later stages of
the design.

Centre align (A):

With a center alignment, the studs will be aligned
through the middle. This will result in a difference
between the depts of the studs towards the
exterior and the interior.

Alternating (B)

An alternating positioning results in an alignment
towards the exterior and the interior. However, the
distance between the studs, which can be used to
attach the substructure, is doubled.

Rotating (C)

Rotating the studs can result in an interior and
exterior alignment. However, the rotated surfaces
increase the complexity of assembling the
substructure to the studs.

Exterior or interior align (D)

Alignment towards one side has the benefit that
the difference between the depts only occurs on
one side. With the assumption that the wall
horizontally assembled, one-sided alignment will
complement this building method.

6.4.3 CLADDING

A B C

The cladding protects the structural infill against
the elements. The cladding can be placed in a way

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

62 63

that it creates a closed facade or an open facade.
When an open facade is chosen, the water-barrier
is done by a foil placed behind the cladding with
enough room to create a ventilated cavity. With a
closed facade, the cladding itself will act as a
water barrier. Given that the cladding will consist
of waste wood, it is more likely that the pieces of
wood can be crooked, vary in dimensions, and
have tiny holes from previous nails and screws.
Therefore, it is a better choice to ensure the water
barrier is secured and performed by a foil.

6.4.4 CLADDING POSITION

A B

The cladding can be placed in front of the
substructure or between the substructure. Placing
the cladding between the substructure will
generate more waste and unnecessary cuts,
because this distance determines the required
length of the cladding. Placing the cladding in front
of the substructure will allow for using the full
length of the wood.

6.5 CONCEPT COMPARISON:

Circled in a solid line is the solution with the highest
score. Solutions that have a similar score have a
dashed circle.

The decision for the cladding type and positioning
is evident. However, there are multiple solutions
for the structural infill with a similar score, with the
box module scoring slightly higher. Choosing an
open facade will require a ventilated cavity and an
additional substructure where the exterior cladding
can be attached on. For this requirement, an
increased center to center distance results in less
space for the substructure and cladding to be
attached onto the structural infill. If we take this
into account, the truss would not be suitable due
to the considerable distance between the studs.
A combination between design C & G can be made,
where each element only consists of one diagonal
but has the center-to-center distance from design
C.

The wall will be assembled horizontally, having an
alignment to one side allows the studs to lay flat
during assembly. Additional substructure is
required for creating a cavity. This substructure
can be used to flatten the difference in depth from
the structural infill.

Structural positioning Cladding positioning Cladding type Structural design

Figure 6.12 Highest scoring design solutions (own ill)

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

64 65

Structural positioning Cladding positioning Cladding type Structural design

Figure 6.13 Most suitable design solutions first iteration (own ill)

6.6 NEW DESIGN PROBLEMS

The selected structural infill, structural positioning,
cladding type, and cladding positioning resulted in
more detailed design problems.

Bracing
To make the construction stiff, bracing is required.
Different ways of placing the bracing are described
and researched.

• Expected material loss
• Total material use
• Assembly complexity
• Assembly time
• Machine time
• Machine complexity
• Flexibility of pieces
• Disassembly
• Loading efficiency
• Complexity of connection
• Full length usage

Vertical joint positioning
It will not always be the case that the stud will
consist of one single piece of waste wood.
Therefore, a vertical joint needs to be applied.
Besides looking at how to join the two pieces, it is
necessary to research the positioning relative to
each other.

• Expected material loss
• Total material use
• Assembly complexity
• Assembly time
• Machine time
• Machine complexity
• Disassembly

Vertical joints
Multiple types of joints are researched and
described, varying from simple to more complex
vertical joints.

• Expected material loss
• Assembly complexity
• Machine time
• Machine complexity
• Complexity of connection

Corner joint
The stud, the bracing, and the horizontal beam will
connect/intersect with each other in some
corners. Multiple options for the positioning of the
connection are researched and described.

• Expected material loss
• Assembly complexity
• Machine time
• Machine complexity
• Complexity of connection

Center to center distance
Having a varying center to center distance can
have a positive impact on the total material waste.

Cladding connection
There are different ways to connect the cladding
to the substructure. The solutions will have an
impact on both the cladding and the substructure.

• Expected material loss
• Assembly complexity
• Assembly time
• Machine time
• Machine complexity
• Flexibility of pieces
• Disassembly

Connection substructure to structural framing
The substructure needs to be attached to the
structural infill (studs). Multiple connections are
described and researched.

• Assembly complexity
• Assembly time
• Machine time
• Machine complexity
• Disassembly
• Complexity of connection

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

66 67

Connection cladding
w/ substructure

Connection substructure
w/ structural design

Bracing Vertical joint positioning Vertical joint Corner joint ctc distance

Figure 6.14 Second iteration of design problems with each possible solution (own ill)

6.6.1 BRACING:

 A B

Two options are examined for the bracing:
continuous (A) and fragmented bracing (B).
Continues bracing consists of one single piece of
wood while with fragmented bracing, the bracing
is being interrupted by the studs, resulting in a
higher number of connections. An additional
downside of fragmented bracing is that the pieces
for the bracing are the same length. Using pieces
of the same length increases the chance of ending
up with additional waste when selecting the wood
from the database.

6.6.2 VERTICAL JOINT POSITION:

A B

For the vertical joint position, the decision can be
made between a butt joint (A) and a side joint (B).
With a side joint, the load must be transferred
through a connection that will cause rotation. This
will result in an unnecessary engineering problem
that does not occur with a butt joint. A butt joint
needs to hold the two pieces above each other so
that the load can be transferred due to
compression.

6.6.3 VERTICAL JOINT:
Different types of existing wood joints are
described and researched. The joints are derived
from standard wood joints that are used in
furniture building construction. When the joint can
be made without rotating the wood, the machine
time and machine complexity are significantly
reduced.

Joint A:
This is a simple joint that can be manufactured
from one axis but would rely on additional
connectors to secure the joint in place firmly.

Joint B:
Joint B is a dovetail joint; this joint can also be
manufactured from one axis but is more likely to
fail due to buckling.

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

68 69

Joint C:
The benefit of joint C is the ability to take tensile
forces. However, the number of cuts and machine
time is increased.

Joint D:
The possibility of joint D is limited by the width of
the stud. A smaller width will result in a more
fragile joint.

Joint E:
Joint E Is designed in such a way that it can take
compression and remain locked in place. However,
the material loss is increased when the joint’s
height is higher than the height of the bracing
intersecting the joint.

Joint F:
Joint F can take compression and tension, but the
high complexity will significantly increase machine
time.

Joint G:
The two slanted surfaces, in combination with the
diagonal bracing, will result in a self-locking
connection. However, this will require multiple axis

milling if the piece of wood is being processed flat.

Joint H:
This joint will have the same problem as joint D,
only in the depth direction.

6.6.4 CORNER JOINT:

There are different ways for the connection in the
corner. Design A scores the most point due to its
simplicity. There are only modifications required
on the vertical stud and the bracing and this allows
the horizontal beam to be completely reused in its
original length.

6.6.5 CENTER TO CENTER DISTANCE

This design problem is discovered during the
prototyping phase, where the concept proposal
was made parametric.

For this specific structural infill, a varying center to
center distance can reduce additional waste. The
diagonal bracing determines the length of the two
pieces of wood that create the stud. When this
distance can vary, the most suitable position can
be chosen that generates the least amount of

waste based on the available wood at that specific
moment.

With different scripts and changing database
sizes, research is conducted to see the influence
of having a variable center to center distance.

Allowing the distance between the studs to vary
frequently can positively impact the amount of
waste. It can decrease the amount of waste by
50%. However, the amount of waste created in the
first place with a fixed distance between the studs
is already meager, especially when the database’s
size keeps increasing. The benefit of the waste
reduction is not equal to the additional difficulties
this varying center to center results in the
assembly. In the future, this can be resolved with
robotic manufacturing.

A B C D

E F G H

A B

C D

41

42

42

43

43

44

44

45

45

46

46

47

1 2 3 4
0

20

40

60

80

100

120

140

160

1 2 3 4
0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

1 2 3 4

Script 1
Script 2
Script 3
Script 4

42.93
46.05
46.02
44.74

135.7
73.7
71.4
68.3

length (m) waste (cm)

3.2%
1.6%
1.6%
1.5%

Total wood used (m) Total waste (cm) Percentage waste

Scripts:
1. Fixed centre-centre (c-c) distance
2. Continue on best c-c option within set range
3. Random c-c for every stud, repeat x times, pick best option
4. Try every c-c possible within set range

DATABASE SIZE: 100

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

70 71

individual replacement of the cladding. Also,
working with the different center to center
distances between the substructure will result in a
unique positioning of the dovetail connection on
the cladding. This decreases the reusability of the
material.

Dowels (D)
Holes are milled in the substructure and the
cladding where the dowels can be fitted in. Reusing
the cladding or substructure would require new
holes. This has a negative effect on the reusability
of the system.

Screws (E)
Using screws is a common way to attach facade
elements to a substructure. The screws also allow
for individual facade plank replacement.

6.6.7 CONNECTION SUBSTRUCTURE TO STRUCTURAL
INFILL

A B

C D

The biggest challenge with connecting the
substructure against the structural infill is the foil
that acts as a water barrier between the
substructure and the structural infill. However, the
foil is designed so that it will not tear or rip if a cut
in the foil is made to make room for the connection
element.

The depth of the substructure can vary between
50-110mm. There are screws available that extend
this range and allow for an easy and fast
connection between the substructure and the
structural infill.

A smart connection such as a lamello would result
in a more elegant connection and easy
disassembly. However, it would require a slot in
the substructure and the structural infill where the
lamello can be placed. This increases the assembly
and machine time.

A dowel would also require a pre-milled hole in the
substructure and structural infill to make the
connection work. Just like the lamello connection,
this increases the machine time and assembly
time.

A dovetail connection generates the additional
challenge of fitting the foil between/inside the
dovetail connection. To get this right, this can
require intensive manual labor.

40

41

41

42

42

43

43

44

44

45

45

46

1 2 3
0

20

40

60

80

100

120

1 2 3
0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

1 2 3

Script 1
Script 2
Script 3
Script 4

41.92
44.60
44.86

9.6
4.2
5.1

length (m) waste (cm)

0.229%
0.096%
0.114%

Scripts:
1. Fixed centre-centre (c-c) distance
2. Continue on best c-c option within set range
3. Random c-c for every stud, repeat x times, pick best option
4. Try every c-c possible within set range

DATABASE SIZE: 1000

Total wood used (m) Total waste (cm) Percentage waste

6.6.6 CLADDING TO SUBSTRUCTURE

The connection between the cladding and the
substructure can affect the cladding as well as the
substructure.

Bracket (A)
With the bracket connection, two parallel grooves
are cut on one side of the cladding in the horizontal

direction, over the cladding’s entire length. The
distance between the two grooves on each piece
of cladding will always be the same. Therefore, the
cladding can be reused on a different wall after its
use. The bracket itself is placed on the substructure,
and the cladding can be clicked on the substructure.
A challenge with this system is connecting the
bracket to the substructure at the required height.

Friction (B)
The friction connection allows the cladding to be
unmodified. This enables the cladding to be used
for a different purpose after its end of life. A
downside is that the friction connection needs to
be milled in the substructure, resulting in the
substructure being unique for that specific wall
element. Therefore, the substructure cannot be
reused.

Dovetail (C)
The dovetail can be made with an all-wood
connection. However, this system will not allow for

A B EDC

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

72 73

6.7 CONCLUDING

Circled in a solid line is the solution with the highest
score. Solutions that have a similar score have a
dashed circle.

The choice for the bracing and vertical joint
position was quite clear. There the highest scoring
options also were the most logical.

For the vertical joint, the best solution is open for
debate. Design A is a proper solution due to its
simplicity. However, design G is a smarter solution

because the two opposite slanted sides lock the
two pieces with the diagonal bracing. The
downside of these opposite slanted sides is an
increased machine complexity. Design H is also
simple but is more likely to break due to its smaller
connection. In the end, design A is preferred for its
simplicity.

For the corner connection, the most significant
factor was the fixation of the horizontal beam and
the bracing perpendicular on the stud. This specific
demand resulted in the most suitable option not
be the option with the highest score. Design D

Connection cladding
w/ substructure

Connection substructure
w/ structural design

Bracing Vertical joint positioning Vertical joint Corner joint ctc distance

Figure 6.15 Highest scoring design solutions (own ill)

Connection cladding
w/ substructure

Connection substructure
w/ structural design

Bracing Vertical joint positioning Vertical joint Corner joint ctc distance

Figure 6.16 Most suitable design solutions second iteration (own ill)

requires fewer cuts than design B and is therefore
preferred.

The varying center to center distance has a
positive impact on the amount of waste. However,
with this research, the studs’ position was chosen
to minimize waste. In reality, if the distance
between the studs can vary, it will be determined
by the loadbearing capacity of each stud. After
this process, a selection procedure can be used to
minimize the amount of waste. It is unknown how
much impact it will have. This specific research is
not conducted for this paper because structural

calculations were outside the scope of this
research.

Screws are used for the connection between the
cladding and the substructure. This is not the
most elegant solution but, it was by far the most
practical solution. The same applies for the
connection between the substructure and the
structural infill. After the end-of-life the screws will
leave the smallest hole. This is not the same for
the other solutions.

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

74 75

Bracing Structural positioning Cladding positioning Cladding type Structural design

Figure 6.17 Overall most suitable design solutions (own ill)

Connection cladding
w/ substructure

Connection substructure
w/ structural design

Vertical joint positioning Vertical joint Corner joint ctc distance

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

76 77

6.8 PROTOTYPING

For the prototyping an environment was created
where multiple tests could be performed (figure
6.28). The grasshopper script has a timer
programmed that can re-run the canvas every X
milliseconds. This way a new dataset can be
generated and the result with that dataset is
written to an excel file. A flowchart of the process
can be seen in figure 6.27.

6.8.1 WATER RESISTANCE FOIL
During the prototyping phase, a problem occurred
with placing the water-resistant foil (figure 6.29).
With the selection procedure, the top stud may
have a lower depth than the bottom stud. This
choice is made because it will save additional
waste. However, this difference in depth can create
problems when attaching the foil.

For the final design, it is interesting to research if it
is better to find a new solution to the foil problem
or deal with the additional waste created by this
restriction. The table in figure 6.25 below shows
the outcome of this research with the values in
meters. The prototype was tested with 150
different datasets. The width of the wall element is
3 meters and the height 2.5 meters. The database
for structural infill, substructure, and cladding

each consisted of 200 pieces of waste wood. So,
in total the dataset consisted of 600 pieces of
wood.

Having no restrictions means that the bottom and
top studs can always be placed. It does not matter
if the top stud is wider or the bottom stud has a
lower depth. With the depth restriction, the top and
bottom stud always need to have the same depth.
The width can still vary. With the depth and width
restriction, the top studs’ width can only be the
same or less of that from the top stud. Having
these restrictions only affect the waste on the
structural infill and the substructure, the cladding
will stay the same.

 On a first look, the adding of the restrictions do
have an impact. Adding the same depth makes
the amount of waste increase by 39%. However, if
you compare this with the total meters needed to
construct the wall, the difference is almost
negligible. The waste increases by 23cm, while
the wall needs 40 meters for the structural infill
and substructure. Without the restrictions, 1.5% of
the wood used is waste. With the restriction, this is
2%. The additional waste is increased by 0.5%.
Due to these results, the decision is made to
restrict the studs’ depth instead of finding a
solution to the foil problem.

Figure 6.20 Digital playground flowchart (own ill.)

Figure 6.21 Digital playground Grasshopper canvas (own ill.)

STUD SUBSTRUCTURE

Figure 6.22 Water resistance foil problem (own ill.)

No restrictions

Depth

Depth & width

Total waste

1,80 m

2,03 m

2,13 m

Total used

95,24 m

95,42 m

95,49 m

waste struc + sub

0,59 m

0,82 m

0,92 m

used struc + sub

40,15 m

40,39 m

40,48 m

waste struc

0,28 m

0,47 m

0,56 m

waste sub

0,31 m

0,35 m

0,36 m

waste cladding

1,21 m

1,21 m

1,21 m

struc used

24,84 m

25,03 m

25,12 m

sub used

15,31 m

15,35 m

15,36 m

cladding used

45,41 m

45,41 m

45,41 m

Figure 6.18 Restriction research(own ill.)

Figure 6.19 Design proposal (own ill.)

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

78 79

6.8.2 SEGMENT WIDTH
During the prototyping phase, some insight was
obtained that possibly could reduce the additional
waste. The positioning where the bracing meets
when the wall element requires two or more
diagonal braces. This happens when the length
required is longer than the length available. It
would be logical to let the diagonals meet in the
middle because this will minimize the total meters
required for the bracing (left example). However,
this results in a symmetric design. With a
symmetric design, every piece of wood is needed
twice. With scripting, the insight was obtained that
symmetry will result in a higher total material
waste. This happens because the chance that two
pieces with the same dimensions are available is
lower.

When testing the two options in the prototype the
following results occurred. The height of the wall
is 2.5 meters and the width 4.8 meters with a
center-to-center distance of 600 mm. The left
variant is split into two equal segments with a
width of 2.4 meters the right variant is split in
segment with 1.8 meters and 3 meters. The left
option requires 6931 mm of bracing and the right
option 6986 mm. The right option requires 55mm
more bracing. However, this is only 0.8% increase
of length required. Running the two variants trough
the prototype gave the following results:

To see the effect of an increasing database size
the number of waste wood in the database is
increased in steps of 100. The waste reduces
exponential when the database increases. The

reason for this is that more wood is available to be
selected matching the exact required length. The
blue line represents the symmetric design, the
orange line represents the asymmetric design.
Having an asmmyetric design clearly has a benefit
over a symmetric design.

The design option on the right requires more
meters for the bracing, but it will generate less
waste and therefore uses less material in total.
This principle resulted in the criterion for flexibility
in pieces. A design that uses a broader range of
unique dimensions will result in a lower total
waste. This criterion can be used in the matrix
based on the subjective opinion of the designer. It
is easier to determine how flexible the design is
based on a feeling than to program it into a script.
Here, scripting resulted in an insight that is
subjectively used within the decision matrix.

6.9 FINAL DESIGN

The wall element is built with a vapor diffusion
permeable building method. A benefit from this
method is the natural regulation of humidity,
increasing the indoor climate. An additional benefit
is that the vapor barrier foil between the interior
and the structural infill is not required. For this
building method to work, every element in the wall
needs to be vapor permeable. Therefore, the foil
that is used to act as a water barrier needs to be
vapor permeable.
For the insulation, water barrier foil, and interior
finish existing products are used to ensure the
designed wall element meets the building code in
the Netherlands. Materials are chosen that have
the least impact on the climate and follow the
philosophy of this thesis.

6.9.1 MATERIALS
For the foil, the Pro Clima Solite Front Quattro FB,
flame retardant is used. This foil also has fire
resistance properties.

For the insulation, Gutex Thermoflex wood fiber
insulation is used. The material has a lambda of
0.036 W/(m.k). On the lowest depth, the studs
have a depth of 160mm. This equals to an Rc of
4.44. wood fiber insulation is produced from rest
wood from the wood industry. The panels are
made with an ecological friendly adhesive, making
the insulation suitable for recycling. Figure 6.23 Final design (own ill.)

For the inside finish, Sono plasterboards are used
with a thickness of 30mm this equals to a Rc =
0.75. The plasterboard allows the construction to
be plastered.

To calculate the Rc value of the construction the
studs need to be added to the calculation. The
width of the stud is on average 65 mm with a
lambda of 0.13. A center-to-center distance of
600mm results in the following Rc value:
Rc = (0.5 * 0.11 + 4.44 * 0.89) + 0.75 = 4.76

This Rc value meets the requirements of the
building code. The calculated Rc value is calculated
in the worst scenario. The studs can have a depth
between 160 and 200mm. In the best scenario, all
the studs hava a depth of 200. This result in a Rc
value of:

Rc = (0.5 * 0.11 + 5.56 * 0.89) + 0.75 = 5.75

The Rc value of the exterior wall will be in the range
of 4.76 – 5.75.

6.9.2 WEIGHT CALCULATION
The final design combined with the exterior wall
element tool can calculate how many wall
elements can be constructed from waste wood.
Chapter 3 showed that there is 370.000.000 kg of
solid B waste wood that has the potential to be
reused. The exterior wall element tool with the
final design calculates that a wall element with a
height of 3 meters, a width of 4,8 meters and a
center-to-center distance of 600 mm weighs, on
average, 503 kg. For the weight calculation, the
density of the wood is 500 kg/dm3. This is the
average density of pinewood, the most used
construction wood in the Netherlands.

For a 100m2 single floor square house with a
height of 3 meters, a 120m2 wall is required.
120m2 exterior wall is 4.192 kg. If 10% of the solid
B-wood can be reused, 8.826 houses can be
constructed every year. This amount can have a
significant contribution to the one million additional
houses.

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

80 81

6.10 ASSEMBLY SEQUENCE
In the image sequence below a suggestion is
made how the wall could be assembled.

The horizontal frame and the bracing is
placed on a flat surface.

The studs are placed on top of the horizontal
frame and the bracing and screwed into
place.

Apply the Pro Clima Solitex Fronta Quattro FB foil. Use a tacker to attach the foil to the studs.
The foil needs to be laid in horizontal strokes with overlapping sides of 10 cm. Attach the two
overlapping foils with double sided tape and finish the seam with a sealing tape.

Use screws to attach the substructure to the
studs. It is normal for the screws to penetrate
the foil.

Attach the cladding to the studs. Leaving
atleast a gap of 30 mm between the cladding
and the foil for a ventilated cavity.

Rotate the workbench vertical so that the
wall element can be flipped and placed
horizontal again.

The studs are placed on top of the horizontal
frame and the bracing and screwed into
place.

The studs are placed on top of the horizontal
frame and the bracing and screwed into
place.

Apply the Gutex thermoflex wood fiber
insulation.

Finish the wall element by placing the SONO wood fiber plasterboards.
When the wall element is on the building site it can be plastered for the
final finishing.

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

82 83

6.11 REFLECTION ON THE METHODOLOGY:

In this chapter, the altered methodology with
scripting is being analyzed, and a conclusion is
given about its effectiveness.

6.11.1 THE METHODOLOGY
The methodology used in this thesis consisted of
eight stages.

a. Design Problems
b. Criteria
c. Alternative selection
d. Concept comparison
e. Concept proposal
f. Prototyping and testing
g. Sub-solutions
h. Final design

6.11.2 CRITERIA
The criteria are a direct extension of the objectives
in chapter two and are determined during the
criteria phase. These criteria define the essentials
and fundamentals of the design. For each design
problem, different solutions are tested against this
beforehand specified set of weighted criteria.
Different solutions get points ranging from 1 to 4
for each criterion, and these points are then
multiplied with the weighted factor of the criterion.
For the design of the exterior wall element, the
following design criteria were specified:

• Expected material loss
• Total material use
• Full length usage
• Flexibility of pieces
• Assembly complexity
• Assembly time
• Machine time
• Machine complexity
• Complexity of connection
• Disassembly
• Loading efficiency

A design problem can have multiple design
solutions. Each solution can score points for each
criterion. In general, more points results result in a
more suitable solution. All the possible solutions
for a given design problem and all the applied
criteria were put in a decision matrix. The matrix
can show the designer the most suitable design
solution based on the score. With the existing
methodology of van der Knaap & van Veen these

points are based on a subjective scale. For
example, with this methodology, the criterion total
material use would use the scale: high amount of
material use (1 point) – low amount of material
use (4 points). The difference between 2 or 3
points is subjective, and there is not a quantified
threshold. Therefore, the points given are based
on a feeling. This feeling is backed up with
experience and research so that the designer can
substantiate it.

An alternative from the original methodology was
made during the criteria & alternative selection. As
a result of this, scripting was used to quantify the
criteria’ thresholds and, therefore, create an
objective scale. Each solution was feed through
the script, and the outputs could be placed in the
scale. For the criterion of total material use, the
scale can be quantified as follow: 1 (> Z%) – 2 (Y-
Z%) – 3 (X-Y%) – 4 (<X%). The percentage is the
output compared with a reference. For this
criterion, every output was compared with the
material use of a standard TFC element.

From the eleven criteria, four of them were suitable
for quantifying:

• Expected material loss
• Total material use
• Machine time
• Flexibility of pieces

With the alternative selection stage, every design
solution is tested upon the weighted criteria and
given a score in the decision matrix.

6.11.3 DECISION MATRIX
During the concept alternative (step c) phase,
each design solution was tested against the
applied criteria in the decision matrix. It became
clear that the original methodology was not that
effective for every design problem. Sometimes the
best solution was already so apparent that it
almost felt useless creating the matrix. For
example, this occurred with the cladding
positioning problem. The choice was made
between placing cladding in front of the
substructure or placing it between the substructure.
Filling in the matrix would give a confirmation.
However, the number of criteria that the two
solutions were tested on was limited. This can be
a reason why the answer was so logical in the first
place. The decision matrix can give the designer

guidance with an intricate design problem where
the solutions have different benefits and
downsides. Here, a particular choice can have a
substantial impact on other design problems.
During the development of the wall element, this
was not the case for some design problems.

6.11.4 ANALYZING THE ALTERED METHODOLOGY
DURING THE ALTERNATIVE SELECTION STAGE
The goal was to write a script for the total material
use, expected material loss, machine time, and
pieces’ flexibility. These scripts would be applied
to multiple design problems. Eventually, only a
script was written for the total material use
criterion and applied to two problems, the
structural infill problem and the decision between
a variable or a fixed center to center distance.

With the structural infill problem, a script was
written for eight possible design solutions. The
output of the script gave the total material use of
that design solution in meters. However, it became
clear that the time it took to write the scripts did
not weigh up against the benefit of having a
quantified output from the scripts. If the scripts
were written for the other suitable criteria, an
additional 24 scripts were needed. This would be
too time-consuming.

With the right background knowledge and
experience, the designer can fill in the matrix and
have a substantiated outcome. This outcome will
not be as accurate as of the script, but it is enough
to guide the designer in making the right decisions.

The scripts allow for easy adjustments of the
parameters and, thereby, see its effect on the
design solution. This tool can be useful during
brainstorms because it generates an instant
output. It also gives a clear overview of how the
different parameters relate and the impact a
change in the parameters had on the script’s
output. Before the script, this was just an estimated
guess.

The script was more suitable for the decision with
the variable center to center. Here there were only
two design solutions. This resulted in fewer scripts
that needed to be written in comparison with the
structural infill problem. Again, the script confirmed
an already logical estimation. With common
sense, the conclusion can be made that having a
varying distance between the studs would reduce

the additional material waste. A downside is the
increased complexity for assembly. A script can
only define how much this positive impact is on
the material waste and if it can compete with the
downside of the increased assembly complexity.
This increased complexity in assembly could be
solved by implementing robotic assembly.
However, the decision was made to exclude
robotic assembly because this would mean the
exterior wall element tool would be less accessible
due to the need for robots for assembly. The
assembly complexity remained on a subjective
scale. Therefore, the output of the quantified total
material use criterion still had to be compared
with the subjective scale of the assembly
complexity criterion. Therefore, the process
remained subjective despite the script.

6.11.5 INSIGHT BY SCRIPTING
While writing the script, some insights were
obtained that positively impacted the waste
reduction and even altered the criteria. For
example, the positioning where the bracing meets
when the wall element requires two or more
diagonal braces. This happens when the length
required is longer than the length available. It
would be logical to let the diagonals meet in the
middle because this will minimize the total meters
required for the bracing (left example). However,
this results in a symmetric design. With a
symmetric design, every piece of wood is needed
twice. With scripting, the insight was obtained that
symmetry will result in a higher total material
waste. This happens because the chance that two
pieces with the same dimensions are available is
lower.

The design option on the right requires more
meters for the bracing, but it will generate less
waste and therefore uses less material in total.
This principle resulted in the criterion for flexibility
in pieces. A design that uses a broader range of
unique dimensions will result in a lower total
waste. This criterion can be used in the matrix
based on the subjective opinion of the designer. It
is easier to determine how flexible the design is
based on a feeling than to program it into a script.
Here, scripting resulted in an insight that is
subjectively used within the decision matrix.

CONCEPT DEVELOPMENT CONCEPT DEVELOPMENT

84 85

6.11.6 PROTOTYPING
During the prototyping stage, the script showed its
potential. After the concept proposal, a new design
problem emerged with the water barrier foil and
the studs. In the first prototype, the bottom and
top studs could have different depths. As a result
of this, a kink happened in the foil between the top
and bottom stud. This kink could result in problems
during assembly. The script could be easily
adjusted to restrict the top stud from having the
same depth as the bottom stud. After running
multiple iterations with changing database sizes,
the result was that the additional waste resulting
from these restrictions was insignificant.
Therefore, a new solution was not required. Within
the prototyping stage, the script can act as a
playground, and with minor adjustments, multiple
tests can be performed under different
circumstances. This playground also allowed the
selection procedure, where the script decides to
pick which wood from the database, to be
improved continuously—the script allowed for
direct feedback.

6.11.7 CONCLUSION ON THE ALTERNATED SCRIPT
Scripting did have a beneficial impact in guiding
the designer with finding the most suitable design.
However, the designer should consider if it is worth
implementing it into the early stages of the design
process. The impact of the script increases when
the design gets more in detail.

The value of a script can also come to light when
the designer wants to quantify certain decisions.
The script is a playground, where experiments and
small studies can happen within a specific base
model. This has the most benefit when a design
proposal is already offered.

Within the general script, these experiments about
the influence of certain restrictions or small
alterations can be programmed rather quickly
because elements just have to be implemented or
modified within the general scripts. Different
restrictions can also be combined to see what the
effect is. Here the value of a parametric script can
be more useful for the designer to give some
insights.
 

7 EXTERIOR WALL ELEMENT TOOL

EXTERIOR WALL ELEMENT TOOL EXTERIOR WALL ELEMENT TOOL

88 89

7.1 TOOL PROTOTYPE

To create a proof of concept, a prototype of the
tool is developed. The prototype is developed in a
single Grasshopper file to retain a clear overview.

An overview of the Grasshopper canvas, the
Python code and screenshots of the developed
tool and all the python code can be seen in
Appendix B,C & E.

A video with a demonstration of the exterior wall
element tool can be seen on youtube:
https://youtu.be/bLwf9CknQGA

All the files can be downloaded from github:
https://github.com/JvE-TU/Waste-wood-graduation-project

The Human UI plug-in will create a user-friendly
interface where the user can give the dimensions
and properties of the wall as an input. After a 3d
model is generated, the Human UI interface shows
statistics about the amount of wood required for
the design and how much waste is generated.

Inside the grasshopper file, a python script will
generate a fake dataset and sent this set to an
SQL database. Another script will read the
database and select the waste wood that is
required for the parametric model. This rather
unlogic workflow will be for this prototype only, to
prove that the parametric model can work with the
data from the database.

To write Python scripts in Grasshopper the GH_
Python and GH_CPython plugins are used. From
now on, Python refers to GH_Python, and CPython
refers to GH_CPython. GH_Python has a better
workflow, while GH_CPython can import more
external Python libraries. GH_Python is preferred,
but GH_CPython is used where necessary.

With the programmer’s given restrictions and the
user’s desired dimensions, multiple components
in the grasshopper file will generate the 3d model.
The script will also export a separate 3dm file for
each modified piece of wood. These files can be
easily translated to files that are suitable for digital
manufacturing, such as CNC milling.

RHINO ENVIRONMENT
GRASSHOPPER ENVIRONMENT

SQL DATABASE

HUMAN UI

3D WALL ELEMENT

EXPORTED 3D FILES

USER INPUT

STATISTICS

Figure 7.1 Design environment exterior wall element tool (own ill.)

This page is intentionally left blank

EXTERIOR WALL ELEMENT TOOL EXTERIOR WALL ELEMENT TOOL

90 91

7.2 PROTOTYPE TOOL FLOWCHART

Figure 7.2 gives an overview of the complete
prototype. The different functions will be explained
in the following pages.

It starts with the user defining the desired
dimensions and properties of the exterior wall
element. The dimensions can be defined by
adjusting sliders. There is a 2d feedback preview
in Rhino so the user can see the proportions of the
choices made.

When checking the box preview 3d model &
calculate, the script will start running in
grasshopper. A query is sent to the database, and
extracting three lists with waste wood suitable for
the structural infill, substructure, and cladding.
The parameters of the database (number of
pieces, dimensions) are adjustable by the
programmer in this grasshopper file because there
does not exist a real database with waste wood.
This allows for experimenting with different
database sizes.

The script splits the wall into multiple segments
based on the wall’s dimensions and the choice for
a window and/or door. The longest available wood
limits the max-width of a segment for bracing.
The structural infill, substructure, and cladding
function determines which wood is selected from
the database lists to generate the least additional
waste. The programmer can add additional
restrictions to this selection procedure. These
restrictions can improve certain design factors
such as assembly complexity but can also result
in additional waste. Examples of restrictions are:

• The top studs cannot be wider than the bottom
stud.

• Segments cannot have the same width.
• Bottom and top studs need to have the same

depth.
• Center to center distance needs to be fixed

between studs.

The scripts will generate three types of lists that
will be used later.

1. List with selected wood from the database
lists.

2. List with Breps for 3d preview and baking in
Grasshopper.

3. Lists with waste, remaining of the pieces of
wood that are not used in the design.

Combining the lists with selected wood results in
the total amount of wood used. The same can be
done for the waste. The results of these
calculations are shown in the Human UI interface.
These results give the user direct feedback on the
inputs and allow for adjusting when the user is not
satisfied.

When the user is satisfied with the design, the
model can be exported. Every piece of wood used
in the model is exported as a separate 3dm file,
where the name of the file corresponds with the id
of the piece of wood in the SQL database. This
way, the physical piece of wood can be linked with
the 3dm file when it is used.

Figure 7.2 Flowchart exterior wall element tool (own ill)

EXTERIOR WALL ELEMENT TOOL EXTERIOR WALL ELEMENT TOOL

92 93

7.3 STEP BY STEP EXPLANATION

7.3.1 DATABASE CREATION
The script is added to the appendix in E.2 - E.5.

There is no official dataset available about waste
wood dimensions in the Netherlands. Therefore, it
is necessary to create a dummy database. With
the current script, it is possible to adjust the range
of dimensions of the pieces of wood created for
the database. For this prototype, the dimensions
of the wood are randomized within the given
parameters. The range of the parameters are
defined by previous research in this thesis. The
number of pieces of wood in the database is also
adjustable. This is implemented to what the effect
of the database size has on the additional waste.

To send the data to the database from a
grasshopper environment CPython is used with
the psycopg2 module. This module allows the
CPython component to connect with a PostgreSQL
database and edit the database.

When the script connects to the database, it
removes all previous data and resets the id of the
database. This allows the new entered dataset to
start with an id of 1.

7.3.2 EXTRACT DATA FROM DATABASE
The script is added to the appendix in E.6 & E.7

With a different CPython component, the data
from the database is extracted. The wood is sorted
into three lists:

• Structural infill database
• Substructure database
• Cladding database

To bring the data from the CPython to the Python
component, the Pickle module is used. This is not
ideal because the user needs to assign a directory/
location on the pc where the data can be stored so
that it can be read by the Python component. The
CPython cannot directly transfer the list to the
Python component.

Figure 7.4 Flowchart extract data from database (own ill)

Figure 7.3 Flowchart database creation (own ill)

The second script is written within the Python
component. With pickle the database lists can be
processed. Every piece of wood gets assigned to a
class and then sorted on a specific attribute that is
desirable for that class.

7.3.3 SEGMENTS
The script is added to the appendix in E.8.

Based on the dimensions of the wall and the
choice for a door and/or window the wall element
is split into segments.

The max-width of the segment is defined by the
longest piece of wood available for bracing. The

restriction is that a bracing element cannot consist
of two pieces of wood. The max-width can be
calculated with the Pythagoras formula, which
can be seen in line 19 of the script. The longest
piece of wood in the database gets used for this
calculation.

A while loop allows for the process to repeat until
the width of the segment left is smaller than the
maximum width. The top row shows the divisions
into segments for the structural infill and
substructure. If the segments still exceed the max
width, the segment is split into two segments.
This can be seen with the orange dashed line.
The bottom row shows the segment division for
the cladding.

Figure 7.5 Flowchart wall properties (own ill)

EXTERIOR WALL ELEMENT TOOL EXTERIOR WALL ELEMENT TOOL

94 95

Figure 7.6 Segment divisions structural infill (own ill)

Figure 7.7 Segment divisions cladding (own ill)

Figure 7.8 Flowchart segments (own ill)

7.3.4 STRUCTURAL INFILL & SUBSTRUCTURE
The script is added to the appendix in E.9.

The flowchart below gives a general overview of
how the scripts select wood for the structural infill
and the substructure. The structural infill can be
divided into three parts: the outer frame, the
bracing, and the studs.

The function that creates the outer frame can be
split into two parts: the vertical and the horizontal.
There are two distinct differences. With the
horizontal part, the required length is the segment’s
width, and with the vertical part, the required

length is the height of the segment. The second
distinction is that on the vertical outer frame
substructure is added for the cladding. There is no
substructure required on the horizontal frame.

Function outer frame
The list that contains the wood from the Structural
infill database and the substructure database is
already sorted ascending, based on the length of
the wood. With the next function in Python, the
wood piece can be selected that results in the
least amount of waste.

The difference between the length of the selected
wood and the required length is considered waste.
During the prototype phase, the observation was
made that these amounts of waste for every piece
of wood were so small that it is not possible to
reuse this small piece of additional waste

somewhere in the design again.

The selected piece of wood is appended to a list to
be used again for different scripts.

Function bracing

The length of the bracing can be calculated with
the Pythagoras formula. The selected wood for
the outer frame is subtracted from the width and
the height of the segment.

Generating the geometry requires some

Figure 7.11 Flowchart bracing (own ill)

Figure 7.9 Flowchart horizontal outer frame (own ill)

Figure 7.10 Flowchart vertical outer frame (own ill)

EXTERIOR WALL ELEMENT TOOL EXTERIOR WALL ELEMENT TOOL

96 97

trigonometry to obtain the starting coordinates.
When the starting coordinates are obtained, the
z-axis of the construction planed need to be
aligned with the bracing.

Function studs
Within the outer frame, studs are placed in a fixed
center to center distance, and this distance is

adjustable within the script. The length of the
studs is determined by the intersection point with
the bracing.

To calculate this intersection point on any given
position within the wall element, a formula is used:

Figure 7.12 Flowchart studs (own ill)

Figure 7.13 Python code to determine intersection point (own ill)

Figure 7.14 Intersection point between studs and bracing (own ill)

Figure 7.15 Flowchart substructure (own ill)

A while loop is used to generate studs until it
reaches the end of the segment. In this while loop,
additional restrictions can be given to the selection
of the top stud.

Function substructure
The substructure is being attached to the structural
infill to create a ventilated cavity. The cladding is
also attached to the substructure, but it does not

have to carry the weight of the cladding. The
structural infill will do that. Therefore the
substructure can be attached in multiple pieces.
This allows for combining pieces of wood so that
less waste is generated.

The substructure function will calculate how much
waste is generated when the substructure is done
with one piece and when it is done with two pieces.

EXTERIOR WALL ELEMENT TOOL EXTERIOR WALL ELEMENT TOOL

98 99

The option with the least waste will be chosen.

7.3.5 CLADDING

The script is added to the appendix in E.10.
.
The cladding function calculates which
combinations of pieces of wood with the same
height can fill the entire width of the segment with
the least waste.

The minimum length of a piece of cladding is twice
the center-to-center distance. This guarantees

that a cladding piece can always be mounted to at
least two pieces of substructure. With this
restriction, the maximum number of pieces for
one row can also be calculated. For example, a
wall with a width of 4.8 meters and a center-to-
center distance of 600mm, can consist of
maximum 4800 / (2 * 600) = 4 pieces. So, in this
situation, a row can consist of 1,2,3 or 4 pieces of
cladding. Each piece of wood in a single row must
have the same height.

The script first searches for a combination of
pieces with the same height where the combination
of lengths results in the required length of the
facade, this will result in zero waste. When all
those options are examined, an additional marge

Figure 7.16 Flowchart cladding (own ill)

is added. The marge represents the waste that is
created.

7.3.6 BOOLEAN DIFFERENCE AND BAKING
The script is added to the appendix in E.12 & E.13.

Boolean difference is performed when all the
wood is selected, and the geometry is generated.
With Boolean difference, the overlapping geometry
gets removed. A final check is performed to
remove any unwanted geometry that is created
with the Boolean Difference. This can happen
when the bracing is wider than the outer frame.

The check removes all Breps that have a volume
smaller than a specific value. The final Breps are
baked in rhino.

7.3.7 EXPORT 3DM FILES
The script is added to the appendix in E.14 & E.15.

The final baked geometry needs to be linked to the
id numbers in the lists of selected wood. This way,
each 3dm file can be named with the correlating id
number. When the files are exported, the correlating
id numbers are removed from the database.

Figure 7.17 Flowchart boolean difference (own ill)

Figure 7.18 Flowchart export 3dm files(own ill)

EXTERIOR WALL ELEMENT TOOL EXTERIOR WALL ELEMENT TOOL

100 101

7.4 DATABASE QUERY

All the wood suitable for the structural infill,
substructure and cladding is extracted from the
database and divided into three lists to allow for a
simpler workflow. In reality, this would not be
efficient when the size of the database keeps
increasing. Instead of using the next function in
Python to select the suitable piece of wood from
the lists, a search query is required to obtain the
required piece of wood directly from the database.
The code in figure x shows how this would look.
Figure x shows the original code where wood is
selected for the horizontal framing. The code
below shows how this would look with the search
query.

Figure 7.19 Working with lists (own ill)

Figure 7.20 Working with direct search query (own ill)

In [1]: import psycopg2 as pg2
id_list = []

class select_structural:
 def __init__(self, selected_wood, waste, geometry):
 self.selected_wood = selected_wood
 self.waste = waste
 self.geometry = geometry

def outer_frame_horizontal(required_length, waste_wood_database, position, id_list):
 """Selects wood from db and generates geometry for horizontal frame"""
 #pick piece of wood from database for horizontal outerframe (top & bottom)
 conn = pg2.connect(database='hout', user = 'postgres', password = 'baksteen')
 cur = conn.cursor()

 #search query
 query = "SELECT length_wood, width_wood, depth_wood, wood_id FROM wood_dimensions \
 WHERE wood_id NOT IN %s AND length_wood >= required_length AND depth_wood >= 160 AND \
 depth_wood <= 200 ORDER BY length_wood ASC"

 #the id list is to make sure the same piece of wood is not selected twice
 cur.execute(query, (tuple(id_list), required_length))
 chosen_beam = cur.fetchone()

 #determine additional waste with picked piece of wood
 waste = chosen_beam[0] - required_length

 if position == 'bottom':
 pt0 = rg.Point3d(seg_ver.x_cor_start, 0, seg_ver.z_cor_start)
 pt1 = rg.Point3d(seg_ver.x_cor_end, chosen_beam[1], seg_ver.z_cor_start + chosen_beam[2])

 if position == 'top':
 pt0 = rg.Point3d(seg_ver.x_cor_start, 0, seg_ver.z_cor_end -chosen_beam[2])
 pt1 = rg.Point3d(seg_ver.x_cor_end, chosen_beam[1], seg_ver.z_cor_end)

 # generate geometry in grasshopper
 box = rg.BoundingBox(pt0, pt1)
 brep = box.ToBrep()

 return select_structural(chosen_beam, waste, brep)

picked_hor = outer_frame_horizontal(width_segment, waste_wood_database, 'bottom', id_list)

structural_infill_waste.append(picked_hor.waste)
beams_selected_framing_hor.append(picked_hor.selected_wood)
beams_selected_framing.append(picked_hor.selected_wood)
structural_infill_used.append(picked_hor.selected_wood[0])
geometry_infill_horizontal.append(picked_hor.geometry)
id_list.append(picked_hor.selected_wood[4])

"""If the user accepts the generated design the scripts removes all the selected wood from the databas
e"""
conn = pg2.connect(database='hout', user='postgres', password='baksteen')
cur = conn.cursor()
for id_number in id_list:
 delete_id(id_number)

In []: class select_structural:
 def __init__(self, selected_wood, waste, geometry):
 self.selected_wood = selected_wood
 self.waste = waste
 self.geometry = geometry

def outer_frame_horizontal(required_length, waste_wood_database, position):
 """Selects wood from db and generates geometry for horizontal frame"""
 #pick piece of wood from database for horizontal outerframe (top & bottom)
 chosen_beam = next(beam for beam in waste_wood_database if beam.length >= required_length)

 #determine additional waste with picked piece of wood
 waste = chosen_beam.length - required_length

 if position == 'bottom':
 pt0 = rg.Point3d(seg_ver.x_cor_start, 0, seg_ver.z_cor_start)
 pt1 = rg.Point3d(seg_ver.x_cor_end, chosen_beam.width, seg_ver.z_cor_start + chosen_beam.depth)

 if position == 'top':
 pt0 = rg.Point3d(seg_ver.x_cor_start, 0, seg_ver.z_cor_end -chosen_beam.depth)
 pt1 = rg.Point3d(seg_ver.x_cor_end, chosen_beam.width, seg_ver.z_cor_end)

 # generate geometry in grasshopper
 box = rg.BoundingBox(pt0, pt1)
 brep = box.ToBrep()

 return select_structural(chosen_beam, waste, brep

picked_hor = outer_frame_horizontal(width_segment, waste_wood_database, 'bottom')

waste_wood_database.remove(picked_hor.selected_wood)
structural_infill_waste.append(picked_hor.waste)
beams_selected_framing_hor.append(picked_hor.selected_wood)
beams_selected_framing.append(picked_hor.selected_wood)
structural_infill_used.append(picked_hor.selected_wood.length)
geometry_infill_horizontal.append(picked_hor.geometry)

NameError Traceback (most recent call last)
<ipython-input-1-7f2bc94912d6> in <module>
 41 return select_structural(chosen_beam, waste, brep)
 42
---> 43 picked_hor = outer_frame_horizontal(required_length, waste_wood_database, position, id_list)
 44
 45 structural_infill_waste.append(picked_hor.waste)

NameError: name 'required_length' is not defined

In [1]: import psycopg2 as pg2
id_list = []

class select_structural:
 def __init__(self, selected_wood, waste, geometry):
 self.selected_wood = selected_wood
 self.waste = waste
 self.geometry = geometry

def outer_frame_horizontal(required_length, waste_wood_database, position, id_list):
 """Selects wood from db and generates geometry for horizontal frame"""
 #pick piece of wood from database for horizontal outerframe (top & bottom)
 conn = pg2.connect(database='hout', user = 'postgres', password = 'baksteen')
 cur = conn.cursor()

 #search query
 query = "SELECT length_wood, width_wood, depth_wood, wood_id FROM wood_dimensions \
 WHERE wood_id NOT IN %s AND length_wood >= required_length AND depth_wood >= 160 AND \
 depth_wood <= 200 ORDER BY length_wood ASC"

 #the id list is to make sure the same piece of wood is not selected twice
 cur.execute(query, (tuple(id_list), required_length))
 chosen_beam = cur.fetchone()

 #determine additional waste with picked piece of wood
 waste = chosen_beam[0] - required_length

 if position == 'bottom':
 pt0 = rg.Point3d(seg_ver.x_cor_start, 0, seg_ver.z_cor_start)
 pt1 = rg.Point3d(seg_ver.x_cor_end, chosen_beam[1], seg_ver.z_cor_start + chosen_beam[2])

 if position == 'top':
 pt0 = rg.Point3d(seg_ver.x_cor_start, 0, seg_ver.z_cor_end -chosen_beam[2])
 pt1 = rg.Point3d(seg_ver.x_cor_end, chosen_beam[1], seg_ver.z_cor_end)

 # generate geometry in grasshopper
 box = rg.BoundingBox(pt0, pt1)
 brep = box.ToBrep()

 return select_structural(chosen_beam, waste, brep)

picked_hor = outer_frame_horizontal(width_segment, waste_wood_database, 'bottom', id_list)

structural_infill_waste.append(picked_hor.waste)
beams_selected_framing_hor.append(picked_hor.selected_wood)
beams_selected_framing.append(picked_hor.selected_wood)
structural_infill_used.append(picked_hor.selected_wood[0])
geometry_infill_horizontal.append(picked_hor.geometry)
id_list.append(picked_hor.selected_wood[4])

"""If the user accepts the generated design the scripts removes all the selected wood from the databas
e"""
conn = pg2.connect(database='hout', user='postgres', password='baksteen')
cur = conn.cursor()
for id_number in id_list:
 delete_id(id_number)

In []: class select_structural:
 def __init__(self, selected_wood, waste, geometry):
 self.selected_wood = selected_wood
 self.waste = waste
 self.geometry = geometry

def outer_frame_horizontal(required_length, waste_wood_database, position):
 """Selects wood from db and generates geometry for horizontal frame"""
 #pick piece of wood from database for horizontal outerframe (top & bottom)
 chosen_beam = next(beam for beam in waste_wood_database if beam.length >= required_length)

 #determine additional waste with picked piece of wood
 waste = chosen_beam.length - required_length

 if position == 'bottom':
 pt0 = rg.Point3d(seg_ver.x_cor_start, 0, seg_ver.z_cor_start)
 pt1 = rg.Point3d(seg_ver.x_cor_end, chosen_beam.width, seg_ver.z_cor_start + chosen_beam.depth)

 if position == 'top':
 pt0 = rg.Point3d(seg_ver.x_cor_start, 0, seg_ver.z_cor_end -chosen_beam.depth)
 pt1 = rg.Point3d(seg_ver.x_cor_end, chosen_beam.width, seg_ver.z_cor_end)

 # generate geometry in grasshopper
 box = rg.BoundingBox(pt0, pt1)
 brep = box.ToBrep()

 return select_structural(chosen_beam, waste, brep

picked_hor = outer_frame_horizontal(width_segment, waste_wood_database, 'bottom')

waste_wood_database.remove(picked_hor.selected_wood)
structural_infill_waste.append(picked_hor.waste)
beams_selected_framing_hor.append(picked_hor.selected_wood)
beams_selected_framing.append(picked_hor.selected_wood)
structural_infill_used.append(picked_hor.selected_wood.length)
geometry_infill_horizontal.append(picked_hor.geometry)

NameError Traceback (most recent call last)
<ipython-input-1-7f2bc94912d6> in <module>
 41 return select_structural(chosen_beam, waste, brep)
 42
---> 43 picked_hor = outer_frame_horizontal(required_length, waste_wood_database, position, id_list)
 44
 45 structural_infill_waste.append(picked_hor.waste)

NameError: name 'required_length' is not defined

8 CONCLUSION

Waste wood (Print waste)

CONCLUSION CONCLUSION

104 105

8.1 SUB QUESTIONS

To conclude this research and answer the research
question, the sub-questions must be answered
first.

How can a digital database with waste wood
properties communicate with a parametric model
of an exterior wall element?

For the prototype, a SQL database is created with
PostgreSQL. SQL can handle large amounts of
data and still update in real-time, something that
cannot be done with Excel. In this database, all the
different properties and characteristics of the
waste wood are stored. The database can filter the
wood that is suitable for structural infill, cladding,
or substructure. With a search query, the desired
data can be extracted from the database. For the
prototype, the connection to the database is made
with the Psycopg2 module in Python.

The following columns are integrated into the
database.

• Id number
• Length in mm
• Depth in mm
• Width in mm
• Strength class
• Weight in kg
• Type of wood
• Structural integrity
• Painted
• Density
• Volume
• Archived on
• Sustainability class
• Seller id

How can the script minimize the additional wood
waste with the selection procedure when
selecting the waste wood from the database for
the exterior wall element?

The script extracts the data from the database
and places it in different lists for the structural
infill, cladding, and substructure. The lists with
wood available are sorted on the desired attribute
(length, height, etc.). This allows the script to
select the wood that is closest to the required
attribute. The cladding and substructure allow for

a more successful selection procedure were
waste is minimized due to the possibility of making
combinations. The script iterates through more
possible combinations and can therefore find
better solutions. Within the script, itertools is used
for this function. This method cannot be used for
the structural infill. The length required for the
structural infill is determined by the intersection
between the studs and the bracing. Using more
pieces for the studs will decrease the structural
stability. Because there are no structural
calculations conducted for this thesis, it cannot be
proven that the studs can still carry the load of the
exterior wall element when it consists of more
than two pieces.

Which parts of the exterior wall element can be
constructed with waste wood?

In the Netherlands, there are requirements for the
construction of buildings. These requirements are
written in the Bouwbesluit. For the developed
exterior wall element to be built in the Netherlands,
it is necessary to meet these requirements. Waste
wood is wood that is already used. Therefore, it
can have imperfections. These imperfections can
make it more complicated for the construction to
meet the requirements. For example, a closed
facade system is not recommended with waste
wood because the wood can be crooked, and
therefore make it difficult for the facade to be
watertight. Using a foil to act as a water barrier will
solve this problem.
Within this research, the decision was made to
fulfill the relevant building code demands with
external and already proven materials, such as a
water barrier foil.

As a conclusion of the literature phase, the exterior
wall can be divided into three segments: the
interior part, the structural middle part, and the
exterior part. It is preferable to do the interior part
with other materials than waste wood. For the
interior part it is desirable to have a surface that
allow for easy finishing. This is difficult to realize
with waste wood. It became clear that it is a better
idea to choose a material with additional sound
insulating and fire-resistant properties. If the user
wants an interior consisting of waste wood, which
was the case for the project at GPGroot/Sortiva, it
is still recommended to use a different material
between the structural middle part and the waste

wood interior.
The exterior cladding, the structural infill, and the
substructure can be constructed with waste wood.
However, the structural infill is still debatable
because calculations do not yet confirm this. After
developing the prototype, it became clear that the
most waste wood used, was for the cladding and
the substructure. These two combined make up
for 74% of the wood used while dealing with the
least restrictions from the building codes.

What design principles allow the construction of
the exterior wall element to be done with waste
wood without unnecessary cuts and minimizing
the material waste?

The design principles are a result of following the
design methodology. Trough research by design &
scripting some principles were obtained in the
design process that were later converged into
criteria. With the new criteria and design principles
the design methodology was repeated. The design
principles are:

Modifications on the pieces of wood within the
chosen design should only be on the outside. This
allows for the wall element to maximize the
reusable pieces of wood after its first use as a wall
element. The modified parts can be removed, and
the remaining piece of wood can be reused again
in a new exterior wall element.

Symmetry of the design should be prevented. A
symmetric design can result in additional waste
because the same dimensions of the wood have
to be selected twice. The chance increases that
the wood is not available in that exact dimensions

twice, and therefore, a larger piece of wood has to
be cut to fulfill the required dimensions.

A broad range of dimensions should be used in
the design. This way, the chance increases in
selecting the pieces of waste wood that fits closest
to the required dimensions. Having only small
pieces required for the design can result in splitting
larger pieces of waste wood into smaller pieces.
This will result in a decrease in value. Having a
design with only large pieces of wood will result in
not having a function for the small pieces of wood.

How can scripting guide the designer with the
design process?

Within this thesis, scripting was added to an
existing design methodology to see how and if
scripting can help guide the designer in finding the
most suitable design. The conclusion is that
scripting can guide the designer in the design
process. However, the designer should consider if

CONCLUSION CONCLUSION

106 107

it is worth implementing it into the early stages of
the design process. During the early stages of the
design process, it became clear that the script did
not add that much value in comparison to the time
invested. The parameters are still too vague and
the design possibilities to broad.

The benefit of scripting increases when the
number of solutions to a certain design problem is
limited and the desired output is preferably
quantified.

Writing scripts can help the designer with
confirming a certain suspicion. It can also generate
new insights and see how certain aspects of the
design relate to each other. The more specified the
design already is, the better scripting can confirm
a certain expectation.

The script can act as a playground, where
experiments and small studies can happen within
a specific base model. This playground has the
most benefit when a design proposal is already
drafted.

These experiments about the impact of specific
restrictions can be programmed rather quickly
within the general script. Different restrictions can
also be combined to study how they relate to each
other and what the combined effect is on the
additional waste.

8.2 MAIN RESEARCH QUESTION

How can a database, a parametric model, and
scripting be used to develop an exterior wall
element from waste wood that minimizes the
material loss and takes full benefit of the wood
dimensions?

8.2.1 ANSWERING THE MAIN RESEARCH QUESTION
In 2017, 1610 million kg of waste wood was
collected in the Netherlands. The building and
demolition industry was, and still is, the most
significant contributor. The estimation is made
that in 2017 23% of this wood, 370 million kg,
consisted of solid B waste wood. This solid B
waste wood has the potential to be reused as a
building material without having to shred it. To this
day, with the current waste wood processing
methods, this high potential waste wood ends

being shredded for the engineered board industry
or incinerated for bioenergy. The problem with
engineered boards is that they cannot be recycled
again into an engineered board due to the
adhesives. They can only be incinerated for bio
energy. If all the 370 million kg of solid B waste
wood is downcycled into engineered boards
instead of reused, an additional 399.900.000 kg of
CO2 is emitted.

Reusing waste wood again as a building material
instead of downcycling it into an engineered board
is considered circular. Therefore, it is in line with
the Dutch government goal to create a circular
economy by 2050. However, the current commonly
used timber frame construction methods in the
Netherlands are not suitable for construction with
waste wood. Waste wood has certain
characteristics that differ from regular wood for
construction on a larger scale. Right now, it is
possible to create an exterior wall element from
waste wood, but this is a time-consuming manual
process and not suitable for production on a larger
scale. Because manual labor is expensive in the
Netherlands. So, a carpenter that needs to modify
every piece of wood manually to get everything in
the correct dimensions will probably be more
expensive than buying new wood.

Combining a waste wood database in SQL and a
parametric model can offer a solution to the
challenges of constructing an exterior wall element
with waste wood. The benefit of a parametric
model is that it can fulfill the user’s preference in
dimensions and properties. Combining this with a
database and the computer can link the preference
of the user together with the available waste wood
without a human having to find the most suitable
pieces of waste wood manually. The database
can register all the characteristics and availability
of the waste wood. This data can be used to
categorize the wood so that is suitable for certain
functions within the design. For example, a piece
of wood with a crack cannot be used for a load-
bearing function but can be used in the cladding.
This way the piece of waste wood can still find a
purpose in the exterior wall element instead of
being thrown away. Using python scripts, the most
suitable pieces of wood can be selected from the
database, thereby minimizing any additional
material loss. With scripting, all the pieces of wood
can be modified digitally and exported as separate
3dm files that can be used for digital fabrication.

To design an exterior wall element that can be
made parametric and work with the exterior wall
element tool, a design methodology was followed.
The design methodology was used to identify the
design problems, determine the criteria, and guide
the designer in finding the most suitable design
that can work with the challenges of waste wood.
The chosen methodology was altered by
implementing scripting to see if it could improve
the methodology. Scripting allowed the designer
to adjust different parameters for the design
solutions, and therefore the designer could study
how these parameters relate to certain criteria and
to each other. This direct feedback allowed the
designer to improve the different design solutions
to a design problem. However, scripting showed to
be more effective in the later stages of the design
process because the number of solutions to a
certain design problem is limited, and the desired
output is preferably quantified. In the earlier phase
of the methodology, the design possibilities are
too broad, and this required to much time invested
in writing scripts. The time it takes to write these
scripts does not weigh up against the additional
obtained knowledge.

In later stages of the design process, the script
can act as a playground, where experiments and
small studies can happen within a specific base
model. This playground has the most benefit when
a design proposal is already drafted. These
experiments about the impact of specific
restrictions can be programmed rather quickly
within the general script. Different restrictions can
also be combined to study how they relate to each
other and what the combined effect is on the
additional waste.

By following the methodology, new criteria
emerged that resulted in certain design principles
that allowed the design objectives of this thesis,
having a design that can be constructed as much
as possible with waste wood, minimize any
additional material waste and be in line with the
circular economy, to be fulfilled. The developed
design principles are:

• Modifications on the pieces of wood should
only be on the outside.

• Symmetry in the design should be prevented.
• A broad range of dimensions should be used

in the design.

The final design was made parametric so that it
could communicate with the database. Using
Rhino, Grasshopper and Python, a prototype of the
exterior wall element tool was made. These
components bridged the parametric model with a
waste wood database and gave the user some
insight into the design’s waste wood statistics.
The user could see how certain design decisions
influenced the waste, material use and how much
could be reused after its end of life. This could be
narrowed down to the three elements of cladding,
structural infill, and substructure. Python scripts
were used for an efficient selection procedure
whereby additional material waste could be
minimized.

The final design combined with the exterior wall
element tool can calculate how many wall
elements can be constructed from waste wood.
The exterior wall element tool with the final design
calculates that a wall element with a height of 3
meters, a width of 4,8 meters and a center-to-
center distance of 600 mm weighs, on average,
503 kg. For a 100m2 single floor square house
with a height of 3 meters, a 120m2 wall is required.
120m2 exterior wall is 4.192 kg. If 10% of the solid
B-wood can be reused, 8.826 houses can be
constructed every year. This amount can have a
significant contribution to the one million additional
houses that are required by 2030.

9 RECOMMENDATION

Spatial timber assembly (ETH Zurich)

RECOMMENDATION RECOMMENDATION

110 111

9.1 RECOMMENDATIONS

With the increasing interest in a circular economy,
the reuse of waste wood is very relevant. This
thesis suggests a design of an exterior wall
element that can work with waste wood, and a
tool is developed that allows for this wall element
to be implemented in the Dutch market. Reflecting
on the research process, some recommendations
can be made.

For the design, the goal was to see what parts of
the exterior wall could be made from waste wood.
In the Netherlands, the construction of buildings
must meet the requirements of the building code.
Because of the varying quality of the waste wood,
it is nearly impossible for the wall element to meet
these requirements only with waste wood.
Therefore, this resulted in additional materials
added to the wall element.

9.1.1 STRUCTURAL CALCULATIONS
The structural part of the wall element must also
meet certain safety requirements to prevent the
wall from collapsing. For this thesis, there are no
structural calculations conducted due to the
graduation project’s limited time frame. For the
design to be realistic, reference projects were used
to determine the studs’ minimum size. It would be
interesting to calculate the load bearing capacity
of waste wood in combination with the varying
center to center distance.

Research in this thesis showed that having a
variable center-to-center distance can reduce the
additional waste created with the wall element.
This principle can be combined with the structural
calculations. In this situation the distance between
the studs is determined by the load bearing
capacity of the chosen stud. A combination of
studs can be selected that optimize the structural
capacity while minimizing the waste. The structural
capacity of a single stud can be determined by the
cross section and strength class. A larger cross
section results in a higher load bearing capacity.
The variable center-to-center distance over the
width of the wall element would result in an
increased assembly complexity. This could be
solved by integrating a robotic assembly.

Combining this robotic assembly with structural
load calculations can result in interesting follow-
up research. Having structural calculations would

also allow for a more generative design performed
by the script.

9.1.2 FACADE DESIGN
Looking at the bigger picture. The tool calculated
that, on average, only 26% of the wall element
consist of the structural infill, were the remaining
74% is the substructure and cladding. Using an
open facade and a water resistance foil, the
substructure and cladding do not have to meet
that many requirements as the structural infill.
Therefore, it is less complicated to implement this
realistically.

New research can be done by focusing on the
connection between the cladding and the
substructure and allow for a new facade system.
Here the script can create a design that is not
restricted by structural calculations. Without these
restrictions the selection procedure were the
scripts selects the waste wood to be used for the
facade can also be more efficient and minimizing
waste.

During the location visit at GP Groot/Sortiva it
became clear that there is already a demand for
such a facade system. The facade can act as an
interesting marketing tool.

It would be interesting to see if this facade system
could be assembled with robots. In chapter 3, the
suggestion was made to use robotic sorting to
filter the reusable solid b wood from the wood
stream. If a wood processor would use this, the
next step can be relatively easy to implement
robots in the assembly process.

9.1.3 ENGINEERED BOARDS
To conclude, bracing was used to make the wall
element stiff and stable. The decision was made
to use bracing instead of engineered boards
because engineered boards cannot be recycled
again. The production of engineered boards has a
negative impact on the climate. However, the use
of bracing increased the complexity of the design.
In the future, it could be possible for the engineered
boards to be manufactured with more biobased
advises. This allows for the engineered board to
be recycled into an engineered board again. Using
engineered boards allows for more room for the
insulation and easier placement. It would also
allow for a more flexible design with the studs
because the intersection point is not restricted.

Figure 9.1 Spacial timber assembly (ETH Zurich)

10 BIBLIOGRAPHY

Piled Up Waste Wood Man (Piet Hein Eek)

BIBLIOGRAPHY BIBLIOGRAPHY

114 115

ABF Research. (2018). 1 miljoen woningen. Retrieved February 15, 2021 from https://www.abfresearch.nl/
nieuws/1-miljoen-woningen/

Afman, M. A., Bergsma, G. C., Bijleveld, M. M., Krutwagen, B. T. J. M. (2014). Milieu-impacts van Nederlandse
bouw- en sloopactiviteiten in 2010 (Publicatienummer: 14.2746.25). Delft, The Netherlands: Bouwend
Nederland

BBC. (2018). Climate change: The massive CO2 emitter you may not know about. Retrieved June 5, 2020
from https://www.bbc.com/news/science-environment-46455844

Briel, J., Oldenburger, J. (2009). Houtsoorten voor de Woningbouw, Utiliteitsbouw en Grond-, Weg- en
Waterbouw. Wageningen, Stichting Probos. Retrieved houtdatabase website: https://www.houtdatabase.
nl/infobladen/infoblad_houtsoortenkeuze_versus_toepassing.pdf

Brikawood. (2012). Construire avec Brikawood. Retrieved February 15, 2021 from
https://www.brikawood-ecologie.fr/concept-kit-maison-passive-bois/construction-maison-bois-passive

Bruggen, R., Zwaag, N. (2017). Knelpuntenanalyse houtrecycling (Kenmerk R001-1250953RPB-hgm-V05-
NL). Deventer, The Netherlands: Tauw BV.

CBS. (2019). Milieuvoetafdruk van Nederlander licht toegenomen. Retrieved March 23, 2021 from
https://www.cbs.nl/nl-nl/nieuws/2019/20/milieuvoetafdruk-van-nederlander-licht-toegenomen

Centrum Hout. (2005). Houtwijzer, naaldhout in de bouw. Almere, The Netherlands.

Cross, N. (1984). Developments in design methodology. New York, USA: Wiley

Death, D., Mann, R., Picnic, D., Reilly, M., Taylor, J., Warnken, M. (year). Recycling and End-of-life Disposal of
Timber Products (Project no: PN05.1017). Victoria, Australia: Forest & Wood Products Research &
Development Corporation.

Duivenvoorde, G., Elburg, G., & Krebbekx, J. (2016). Detaillering roadmap recycling hout. Utrecht, The
Netherlands: Berenschot.

Ecohousemart. (2020). Modern log house construction. Retrieved February 15, 2021 from https://
ecohousemart.com/technology/construction-process/

Eekels, J. (2003). Productontwerpen, structuur en methoden (2e dr. ed.). Utrecht: Lemma.

Gijsbers, R. (2011). Aanpasbaarheid van de draagstructuur. TU/e, Eindhoven.

Hansen, H. J. (1971). Architecture in Wood; A History of Wood Building & It’s Techniques in Europe and
North America. Hamburg, Germany: Gerhard Stalling.

Hebel, D. E., Wisniewska, M. H., & Heisel, F. (2014). Building from waste, recovered materials in architecture
and construction. Basel, Switzerland: Birkhäuser.

Houtinfo. (2013). Hygroscopische eigenschappen. Retrieved February 15, 2021, from https://www.houtinfo.
nl/sites/default/files/Hout_Hygroscopische_eigenschappen_dec2013_0.pdf

Houtinfo. (2014). Infoblad houteigenschappen. Retrieved May 23, 2020, from https://www.houtinfo.nl/
sites/default/files/Infoblad_Houteigenschappen_Sterktegegevens_mrt2014_0.pdf

Hugues, T., Steiger, L., Weber, J. (2014). Timber Construction; Details, Products & Case studies. Basel,
Switzerland: Birkhauser.

JoostdeVree. (2012). balloon-framing, balloon-frame, balloon-methode, balloon-constructie. Retrieved
February 15, 2021 from https://www.joostdevree.nl/shtmls/balloon-framing.shtml

Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C.
Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M.
Tignor, and T. Waterfield (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global
warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the
context of strengthening the global response to the threat of climate change, sustainable development,
and efforts to eradicate poverty. IPCC

Milieu centraal. (2020). Wat is je CO2-voetafdruk? Retrieved March 23, 2021 from
https://www.milieucentraal.nl/klimaat-en-aarde/klimaatverandering/wat-is-je-co2-voetafdruk/

Nieman, H. M. (2012). SBR-referentiedetails woningbouw, studenteneditie 2012. Amersfoort, The
Netherlands: ThiemeMeulenhoff.

Pugh, S. (1981). Concept selection: a method that works. Proceedings international conference on
engineering design, March 1981, Rome. Zürich: Heurista, 1981, pp. 497 – 506.

Recylcling today. (2019). How robots are revolutionizing recycling. Retrieved June 7, 2020 from https://
www.recyclingtoday.com/article/recycling-robots-ai-sorting/

Rijksoverheid. (2021). Bouwbesluit 2012. Retrieved February 15, 2021 from https://rijksoverheid.
bouwbesluit.com/Inhoud/docs/wet/bb2012

Rijksoverheid. (2018). Transitieagenda Bouw. Retrieved June 5, 2020 from https://www.rijksoverheid.nl/
documenten/rapporten/2018/01/15/bijlage-4-transitieagenda-bouw

United Nations. (2020). Forest Products Annual Market Review 2019-2020. New York, USA: United Nations
Publications.

Van Veen, J. (2016). PD_LAB a file-to-factory envelope. TU Delft, Delft University of Technology.

Van der Knaap, N. (2016). PO_LAB: InDetail. TU Delft, Delft University of Technology.

Woodcampus. (2017). Strength grading. Retrieved February 19, 2021, from: https://www.woodcampus.
co.uk/builder-and-trade_strength-grading/

World Green Building Council. (2019). New report: the building and construction sector can reach net zero
carbon emissions by 2050. Retrieved June 5, 2020, from https://www.worldgbc.org/news-media/
WorldGBC-embodied-carbon-report-published

Zweger, K. (2011). Wood and Wood Joints: Building Traditions of Europe, Japan and China. Basel,
Switzerland: Birkhauser.

11 APPENDIX

Waste wood (Lidner Recyclingtech)

118 119

In 2017, there was 370.000.000 kg of waste wood
that had the potential to be reused as a building
material. This number is an estimation by TAUW
published in 2017 and not officially registered
data. There is only official data available about the
amount of B-wood. The estimated number from
TAUW is based on different interviews with
stakeholders. The number is based on the mixture
of solid B-wood and A wood that wood processors
make and shred for the recycling industry. The
actual amount of solid B wood may be higher
because solid B wood can end up on a pile with
non-solid B wood that is shredded for the bio
energy industry. No laws are preventing this from
happening. The percentage of solid B wood that is
suitable for reuse is unknown. For the calculation,
the assumption is made that all the 370.000.000
kg is downcycled and not being incinerated for
bioenergy.

CES EduPack states that the production of 1 kg
oriented stranded board is responsible for 0,91 kg
of CO2. With the assumption that 1kg of OSB
requires 1kg of waste wood, the 370.000.000 kg of
waste wood result in 337.600.000 kg of CO2.

The Belgium factory for oriented stranded boards
is in Wielsbeke. Renewi has it waste wood process
facility in Nieuwegein. The driving distance
between these two places is 210 kilometre. With
the TLNplanner, the CO2 emissions for the
transportation of the wood chips can be calculated.
A 5-axle truck, capable of loading 25.000 kg of
woodchips, generates 170 kg CO2 during the 208
kilometres drive. This results in an additional
2.300.000 kg of CO2 for all the solid B waste wood.
This is just 0,7% of the CO2 emissions that are
produced when manufacturing the OSB.

The total emission with transportation is
339.900.000 kg of CO2.

Milieu centraal calculated that the energy
consumption of an average household (2,2
persons) in the Netherlands is responsible for
3.800 kg of CO2 every year. If 10% of the estimated
solid B wood can be reused, this would save
33.990.000 kg of CO2. This is equal to the energy
consumption of 8.950 households, the same as a
village.

The incineration of these engineered boards for
bio energy will result in an additional 656.750.000
kg CO2

A CO2 CALCULATION

120 121

B GRASSHOPPER CANVAS

HUMAN UI

122 123

C EXTERIOR WALL ELEMENT TOOL

In Rhino a 2d preview is shown so that the user can see the proportions of the exterior wall element and the
desired properties. The sliders in the tool allow the user to change the dimensions.

When the preview 3d model & calculate option is checked a 3d preview is generated in grasshopper and
shown in Rhino. All the different statistics about the material use, material waste are also visible.

The end of life is also calculated and the user can see how much wood is used for the structural infill,
substructure and cladding.

124 125

The geometry can be baked in Rhino. The baked geometry shows the pieces of wood after the modifications.

When the user is satisfied all the pieces of wood can be exported as a separate 3dm file that can be used
for the digital fabrication. The number of the 3dm file correlates with the id number in the database. After
this process all the exported wood will be removed from the database.

126 127

In this chapter, timber frame construction methods
are analyzed, and a standard timber frame
construction element is dissected in different
components required for an exterior wall.

HISTORY OF TIMBER CONSTRUCTION

The history of timber and wood construction is
studied to see what techniques were used and
what can be learned from the past before modern
techniques were available.

Throughout history, there have been continuous
recordings of buildings with wood. Until the
beginning of the nineteen-century wood was the
most widely used building material in most of
Northern Europe and North America (Hansen,
1971).

One of the first forms of wooden structures were
shelters in the form of wattle work. Wattle work
combined with plaster such a mud created a shield
against the elements. Wattle work finds in origin in
weaving. Baskets were woven to transport goods
during the hunters and gatherers era. When people
started to settle, the wattle technique was used to
create cages for the animals, fences, and housing
(Zweger, 2011).

Over time tools were Improved, and this allowed
for new timber construction techniques. Traditional
timber constructions can be divided into two
categories: log construction and skeleton
construction. The appearance of log construction
is characterized exclusively by the horizontal
arrangements of its logs. In skeleton construction,
the vertical members take on the load-bearing
function (Hansen, 1971).

LOG CONSTRUCTION
The first log cabins were probably built in Northern
Europe around 3500 BC (Bronze age). Basic tools,
such as sharp stones, were used to chip the end of
logs. These logs were placed on top of each and
thereby creating stable structures. Between the
gaps, moss or other soft materials were applied to
make the structure watertight. This technique was
also seen in wattle works (Zweger, 2011).

Over the years, better tools were developed and
allowed for more elegant log construction, for

Figure Wattle shelter (avalon archaeology)

Figure Traditional log construction (myselfreliance)

Figure Modern log construction with dovetail joint (small-
cabin.com)

Figure Dovetail log construction (stonehouse woodworks)

D TFC RESEARCH
example, the dovetail connection. Log construction
requires the use of solid tree trunks and is therefore
only applied in forest areas. The transportation
cost and effort would be too much to achieve this
building technique in non-forest areas.

The technique of log construction is still applied
today but in a more modern way. EcoHouseMart
created a system where the processed logs can be
placed on top of each other with a tongue and
groove joint. This system has a resemblance to
LEGO. The log construction technique can also be
seen in garden sheds. The small dimension of the
garden shed will allow for the use of planks instead
of logs.

THE SKELETON CONSTRUCTION
When the logs are placed vertically, you speak of
skeleton construction. Logs that are placed inside
the ground are called posts. Logs that are vertically
above the ground are defined as columns (Zweger,
2011). The benefit of working with this vertical
construction is the freedom of design. With
(horizontal) log construction, the building area is
limited to the length of the log. With skeleton
construction, the building area can be defined by
the designer. The downside of skeleton
construction is the sinking from the post in the
ground due to its weight. This sinking resulted in
new construction techniques to prevent this from
happening.

One of the earlier forms of skeleton construction is
the post and plank construction or corner-post
construction. Between the vertical post, horizontal
planks were placed into slots in the post. The
horizontal planks can be thinner because they do
not carry the load of the building.

POST AND BEAM CONSTRUCTION
When cities grew, techniques improved, and more
buildings were built. This resulted in an increasing
wood price due to scarcity. The forests around the
cities were harvested, and the wood had to come
from further. Therefore, new techniques emerged
within the skeleton construction. Post and beam
construction created a loadbearing frame with
open spaces. These open spaces were filled up
using an ancient wattle and daub technique. When
the productions of bricks grew, bricks became
more used as infill material.

Figure Ecohousemart log construction (Ecohousemart)

Figure Typical garden shed (logcabinadvice.co.uk)

Figure Methods to prevent a post from sinking (Zweger, 2011)

128 129

BALLOON FRAMING
Balloon framing originated in 1830 in Chicago,
USA. This method is close to what we use today
with timber framing. With balloon framing,
lightweight studs are used instead of heavy posts.
Balloon framing components are nailed together
rather than using wood joinery. Balloon framing is
a cheaper alternative and does not require an
experienced carpenter to make handcrafted
dovetail or mortises and tenons joints. Balloon
framing emerged due to the invention of the water-
powered sawmill and the cheap production of
steel nails (Joostdevree, 2012). Diagonal studs
were used for bracing. Balloon framing used
continuous studs from the bottom to the top.

 PLATFORM FRAMING
When the long continuous wooden studs needed
for balloon framing became scarce, a new type of
framing was developed, platform framing. With
platform framing, the studs have the height
between two floors.

Again, diagonal bracing was necessary to make
the structure stable. The invention of Oriented
stranded board in 1960 made these bracing
unnecessary. To this day, Platform framing is the
most common method to build housing. Platform
framing is similar to the Dutch word
Houtskeletbouw (HSB), which can be translated to
Timber Frame Construction (TFC) in this thesis.

Figure Post and plank construction in Gotland, Sweden (Wikipedia) Figure Wood and plank well, dating back
5256 B.C. (thehistoryblog)

Figure Post and beam housing, Germany (pinimg) Figure Brick or wattle and daub infill (UWE)

Figure Difference between balloon framing (left) and platform framing (right), (O’Brien, 2010)

TIMBER FRAME CONSTRUCTION

Today TFC is the most used construction method
to build wooden walls within the Netherlands. In
general, a TFC exterior wall element consists of 3
parts:

• Interior part
• Structural middle part
• Exterior part

STRUCTURAL MIDDLE PART
The structural middle part consists of the studs,
the insulation, and an element to make the
construction stable and stiff—for example,
Oriented Strand Boards (OSB) or bracing. The wall
element can be load bearing or non-load bearing.
Load bearing means that the wall element also
carries the weight of other building elements such
as the floors or the roof. Non-load bearing means
that the wall element only needs to be capable of
holding its weight. The choice between load
bearing and non-load bearing has an impact on
the dimensions of the studs.

In the Netherlands, the strength class that is most
used in the construction of wall elements are C18
& C24. A strength class consists of a letter and a
number. The letter indicates if it is hardwood (D) or
softwood (C). The most frequently used softwood
for construction in the Netherlands is spruce wood
(Vuren) (Centrum hout, 2005).

The studs in a TFC element always have a fixed
center-to-center (CTC) distance. This allows for
standardizations of other elements, for example,
for the dimensions of insulation panels and
engineered boards. The standard options for a
center-to-center distance are 400mm and 600mm,
with 600mm being more commonly used.

There is a variety of insulation available, ranging in

Figure Prefab structural middle part with bracing
(Timbeco woodhouse)

Figure Prefab structural middle part with OSB (De kroon prefab)

Figure Flexible sheep wool insulation (eco-
bouwmaterialen)

Figure Rigid insulation (celotex) Figure Sprayed insulation (ultimate radiant
barrier)

130 131

all kinds of different materials. Some materials
can also be applied in different methods. In
general, there are three types of insulation.

• Flexible insulation that is delivered in rolls.
• Rigid insulation in the form of boards.
• Spray or blow-in insulation.

The insulation can be divided into insulation based
on natural products or insulation based on
fabricated materials. Insulation based on natural
products is more environmentally friendly.
However, more insulation material is needed to
achieve the same effect as a fabricated material
such as rockwool. For this thesis, an
environmentally friendly solution is used. Using a
fabricated material that possibly harms the
climate is contradictory to the goals of this thesis.
The insulation material can be applied within the
three types. For example, wood fiber insulation
can be flexible, rigid, or blow in.

EXTERIOR PART
The exterior part consists of the cladding and, if
required, additional substructure. The cladding
protects the structural middle part against the
elements and gives the wall an aesthetic
appearance. Different types of cladding with
different materials can be used, allowing buildings
to differ from each other. This thesis focuses on
the reuse of waste wood and will research of
waste wood can be applied as a cladding material.
Therefore, the following references only consist of
wood.

All these examples can be divided into two façade
categories: an open façade or a closed façade. A
closed façade is a façade where the cladding will
act as a water-resistant barrier. For the façade to
be closed, a specific building method is used. This
building method is called clapwood, potdekselen,
or rabat in Dutch.

An open façade is not entirely watertight.

Figure Flexible wood fiber insulation (steico
flex)

Figure Rigid wood fiber panel (Udifront) Figure Blown in wood fiber (isofloc)

Figure Vertical open facade cladding
(pinimg)

Figure Vertical closed facade cladding
(Spahaus timber)

Figure Vertical open facade
cladding (pinimg)

Therefore, an additional foil or layer is required to
act as a water barrier. When the foil is installed, a
cavity is required for ventilation and removing
moisture in the construction. Depending on the
chosen façade type and the exterior cladding, an
additional substructure may be required.

INTERIOR PART
The interior part consists of panels attached to the
middle part that allows for a finishing. Based on
the wishes of the user, this finishing can be paint

or plaster. The interior panels can have additional
fire resistance properties to prevent the fire from
directly spreading to the construction’s structural
middle part.

FOIL
Depending on the construction method and the
chosen façade type, foils are required to make the
construction water resistant and prevent mold. An
open façade requires two foils. The first foil is a
water resistance and vapor permeable foil between
the exterior part and the middle part. This foil will
act as a water barrier while moisture inside the
construction can still leave due to the vapor-
permeable property. The second foil is placed
between the middle part and the interior part and
is a non-vapor permeable foil. This foil is set to
prevent any moisture from inside the house from
penetrating the construction. It is possible to have
a vapor permeable construction, but this also
requires the right insulation material. With a
permeable construction, the foil between the
middle and interior part is not required.

Figure Horizontal closed
facade cladding (pinterest)

Figure Horizontal open facade
cladding (pinterest)

Figure Horizontal closed facade
cladding (au-mex)

Figure Clapwood (verdouw)

Figure Gypsum board (Home Statosphere) Figure Water resistance foil (Gerbri)

132 133

EXAMPLE
In the Netherlands, a reference guide with
standard construction details that follow the
building code is written by SBR (Nieman, 2012).
The image below is TFC detail with an open
façade. In the images below, the different parts
that were explained in this chapter are highlighted.

Figure TFC detail (SBR)

PREFABRICATION

In the Netherlands, one of the most common ways
to build a TFC element is prefabricated (Prefab).
This means that at least the structural framing is
assembled within the factory’s controlled
environment instead on the construction site. On
the construction site, the conditions such as the
weather can change regularly and negatively
impact the quality of the construction.

Working with waste wood will result in additional
challenges. Due to the constantly changing sizes
of the waste wood, it is not recommended to
exterior wall elements on the building site. On the
building site and during transportation, the waste
wood can get mixed up and. This will increase the
building process’s complexity because with waste
wood every piece had a unique location where it
needs to be assembled within the wall element. It
is recommended to construct the exterior wall
element from waste wood in a controlled
environment, just like the prefabricated wall
elements.

Prefabricated wall elements can differ from each
other in the way they are designed and assembled.
The assembly can be done manually, completely
automatic, or a combination of both. How much of
the wall is assembled in the factory can also vary
between the prefabricated elements. It can range
from just the structural frame to a complete wall
element, including insulation, window frames, and
cladding.

EXAMPLES
Timbeco woodhouse
At Timbeco woodhouse the complete exterior wall
element gets assembled in a factory. The studs
are placed on a horizontal workstation that can
rotate to a vertical position. A pre-cut shape in the
studs allows for the bracing to be placed. Gyproc
gypsum board is placed between the cladding and
structural middle. After applying the cladding to
the wall element, the workstation is standing up so
that the wall element can be flipped. Flexible
insulation is added.

Weinman
In this video, Weinman suggests a fully automatic
assembly line without any manual labor. Sheeting
is used to make the construction stiff, and the
insulation is blow in by robots. This process
requires a large starting investment.

Living wood
Living wood delivers only prefabricated structural
frames. The insulation, cladding, and interior are
assembled on the building sit.

Figure 0.1 Prefab (Timbeco woodhouse)

Figure Robotic framing, sheeting & insulating (Weinmann)

Figure Prefab frame (Livingwood)

134 135

BUILDING REGULATIONS

Every building in the Netherlands needs to fulfill
the building code (Rijksoverheid, 2021). The most
essential codes that have a direct impact on the
exterior wall element are:

• Insulation
• Airtightness
• Soundproofing
• Fireproofing

11.C.1 INSULATION
Since the oil crisis of 1973, the Dutch government
made it required by law to insulate houses. How
much a house should insulate increased over the
years due to climate change and for saving gas.
The value in which insulation is expressed is in the
R-value (Rc = warmteweerstand). The unit of the
R-value is kelvin square-meter per watt (m2K/W).
Since the first of January 2021, the building code
requires a minim RC value of 4,7 m2K/W for an
exterior wall element.

Due to wood’s low thermal conductivity, this
requirement can be met without problems for
Timber frame construction methods.

AIRTIGHTNESS
Airtightness is a building property that shows how
much air it is losing with a certain pressure
difference. When air unknowingly enters the
building, it is called infiltration, and when it leaves
the building unknowingly, it is called exfiltration. If
air enters or leaves the building depends on the
pressure difference caused by wind, temperature,
and residential behavior. The regulations for
airtightness are implemented in the building code
because of energy-saving and health reasons. The
airtightness is measured with the airflow rate
(luchtvolumestroom). The maximum allowable
amount in the building code is 0,2 m3/s (qv10 ≤
200 dm3/s). Infiltration and exfiltration can be
prevented by securely closing gaps and seams
with special tape. In a wall, the essential locations
are around the window frames and between the
interior finishing. For example, this can be the
seam between two gypsum boards.

SOUNDPROOFING
In the building code, there are also regulations for
soundproofing. These regulations make sure you

can live comfortably in every house regardless of
the location. The building code states the minimum
amount of decibel (dB) that a wall must reduce
and the maximum amount of dB allowed inside
the building. Inside the building, the sound level
cannot exceed 33db, and the façade must reduce
sound by at least 20db. The most prominent
sound leak is the ventilation grill. Gaps and seams
in the construction can also have a significant
influence. The structure itself can also reduce
sound when materials are chosen for the interior
and insulation with sound insulating properties.

FIRE RESISTANCE
It is vital to make sure your house does not burn
instantly if something catches fire. The building
code works with different fire compartments in a
building. For a standard house, this is just one
compartment. The compartment needs to survive
at least 60 minutes before the construction can
collapse.

CONCLUSION
In the Netherlands, the most used building method
with wood is prefabricated timber frame
construction. The developed exterior wall element
for this thesis will also be constructed in a
prefabricated method. The complexity of working
with waste wood does not allow for in-situ
construction. To keep everything more realistic,
the decision is made to assemble the exterior wall
element manually. The building codes in the
Netherlands require specific demands for fire
resistance, soundproofing, insulation, and
airtightness. Due to the time frame of this
graduation, it is not possible to research if waste
wood alone can fulfill these demands. The choice
is made to meet the building code requirements
with already proven materials and elements. The
goal is to select materials that have a positive
impact on the environment where possible.

136 137

E PYTHON CODE

1. Classes

print('import succes')

class wood_structural():
 def __init__(self, length, width, depth, db_id):
 self.length = length
 self.width = width
 self.depth = depth
 self.id = db_id

 def print_data(self):
 print(self.length, self.width, self.depth, self.id)

class wood_substructure(wood_structural):
 pass

class wood_cladding():
 def __init__(self, length, height, depth, db_id):
 self.length = length
 self.height = height
 self.depth = depth
 self.id = db_id

class coordinates_segments():
 def __init__(self, x_cor_start, z_cor_start, x_cor_end, z_cor_end):
 self.x_cor_start = x_cor_start
 self.z_cor_start = z_cor_start
 self.x_cor_end = x_cor_end
 self.z_cor_end = z_cor_end

 def print_cor(self):
 print(self.x_cor_start, self.z_cor_start, self.x_cor_end, self.z_cor_end)

class coordinates_segments_cladding(coordinates_segments):
 pass

2. Structural infill dataset

"""Generates the structural infill data voor the database.
 All the variables that start with an underscore and capital letter are direct inputs
 Inputs:
 _Database_amount: number of wood in database for structural infill
 _Min_length: minimal length in mm of wood for structural infill
 _Max_length: maximum length in mm of wood for structural infill
 _Min_width: minimal width in mm of wood for structural infill
 _Max_width: maximum width in mm of wood for structural infill
 _Min_depth: minimal depth in mm of wood for structural infill
 _Max_depth: maximum depth in mm of wood for structural infill
 Output:
 structural_database: list with wood dimensions"""

import random

structural_database = []

for i in range(0,_Database_amount):
 length = random.randrange(_Min_length, _Max_length + 1, 10)
 width = random.randrange(_Min_width, _Max_width + 1, 10)
 depth = random.randrange(_Min_depth, _Max_depth + 1, 10)
 piece_of_wood =(length, width, depth)
 structural_database.append(piece_of_wood)

138 139

3. Substructure dataset

"""Generates the substructure data voor the database.
 All the variables that start with an underscore and capital letter are direct inputs
 Inputs:
 _Database_amount: number of wood in database for substructure
 _Min_length: minimal length in mm of wood for substructure
 _Max_length: maximum length in mm of wood for substructure
 _Min_width: minimal width in mm of wood for substructure
 _Max_width: maximum width in mm of wood for substructure
 _Min_depth: minimal depth in mm of wood for substructure
 _Max_depth: maximum depth in mm of wood for substructure
 Output:
 database_substructure: list with wood dimensions for substructure"""

import random

database_substructure = []

for i in range(0,_Database_amount):
 length = random.randrange(_Min_length, _Max_length + 1 ,10)
 width = random.randrange(_Min_width, _Max_width + 1 ,10)
 depth = random.randrange(_Min_depth, _Max_depth + 1 ,10)
 piece_of_wood = (length, width, depth)
 database_substructure.append(piece_of_wood)

4. Cladding dataset

"""Generates the cladding data voor the database.
 All the variables that start with an underscore and capital letter are direct inputs
 Inputs:
 _Database_amount: number of wood in database for cladding
 _Min_length: minimal length in mm of wood for cladding
 _Max_length: maximum length in mm of wood for cladding
 _Min_width: minimal width in mm of wood for cladding
 _Max_width: maximum width in mm of wood for cladding
 _Min_depth: minimal depth in mm of wood for cladding
 _Max_depth: maximum depth in mm of wood for cladding
 Output:
 database_cladding: list with wood dimensions for cladding"""

import random

database_cladding = []

for i in range(0, _Database_amount):
 length = random.randrange(_Min_length, _Max_length + 1, 10)
 height = random.randrange(_Min_height, _Max_height + 1, 10)
 depth = random.randrange(_Min_depth, _Max_depth + 1, 1)
 piece_of_cladding = (length, height, depth)
 database_cladding.append(piece_of_cladding)

140 141

5. Sent datasets to database

""" Combines data and sents it to PostgreSQL database.
 Inputs:
 _Apply: boolean toggle to sent data to database
 Output:
 output: conformation when data is sent.
"""

def clear_data():
 #deletes existing data in database
 import psycopg2 as pg2
 conn = pg2.connect(database='hout', user='postgres', password='----')
 cur = conn.cursor()
 cur.execute("TRUNCATE wood_dimensions RESTART IDENTITY ")
 conn.commit()
 print('data removed')

def apply_data():
 #applies data to database
 for piece_of_wood in _Waste_wood_data:
 length = piece_of_wood[0]
 width = piece_of_wood[1]
 depth = piece_of_wood[2]
 strength_class = 'C18'
 collector_id = random.randint(1,6)

cur.execute("INSERT INTO
wood_dimensions(length_wood,width_wood,depth_wood,strength_class,collector_id)\

 VALUES (%s,%s,%s,%s,%s)",(length,width,depth,strength_class,collector_id));
 conn.commit()

 print('data import succes')
 return 'data import succes'

import psycopg2 as pg2
import random

conn = pg2.connect(database='---', user='---', password='----')
cur = conn.cursor()

if _Apply == True:
 clear_data()
 output = apply_data()

6. Extract data from database
""" Extracts data from PostgreSQL database.
 Inputs:
 x: reset toggle to extract new data
 _Structural_query: query to select wood suitable for structural infill
 _Substructure_query: query to select wood suitable for the substructure
 _Cladding_query: query to select wood suitable for the cladding
 Output:
 database: list of extracted data
 check: first line of data to check if data was extracted

"""
import psycopg2 as pg2
import ctypes.wintypes
import pickle

def import_data(query, database):
 cur.execute(query)
 conn.commit()
 data_set = cur.fetchall()
 print('data imported')
 for data in data_set:
 database.append(data)

database_infill = []
database_substructure = []
database_cladding = []

conn = pg2.connect(
 database='hout',
 user = 'postgres',
 password = '----')
cur = conn.cursor()

import_data(_Structural_query, database_infill)
import_data(_Substructure_query, database_substructure)
import_data(_Cladding_query, database_cladding)

total_database = (database_infill, database_substructure, database_cladding)

CSIDL_PERSONAL = 5 # My Documents
SHGFP_TYPE_CURRENT = 0 # Get current, not default value
buf = ctypes.create_unicode_buffer(ctypes.wintypes.MAX_PATH)
ctypes.windll.shell32.SHGetFolderPathW(None, CSIDL_PERSONAL, None, SHGFP_TYPE_CURRENT, buf)

filename
fname = buf.value + "\Exterior wall element tool\database_pickle"
print(fname)
#fname = "C:/Users/jvane/OneDrive/Building Technology/GRADUATION/GRASSHOPPER/database_pickle"
filehandle
fhandle = open(fname, 'wb')
dump data to file
pickle.dump(total_database, fhandle, protocol=2)
close file
fhandle.close()
output file
database = fname

check = database_infill[0]
print(check)
check = database_substructure[0]
print(check)
check = database_cladding[0]
print(check)

142 143

7. GH_CPython to GH_Python

"""distributes the data from the database in 3 classes and designated list.
 All the variables that start with an underscore and capital letter are direct inputs
 Inputs:
 _Database: list with data
 Output:
 structural_database: list with wood in structural class
 database_substructure: list with wood in substructure class
 database_cladding: list with wood in cladding class"""

import ctypes.wintypes
import sys

CSIDL_PERSONAL = 5 # My Documents
SHGFP_TYPE_CURRENT = 0 # Get current, not default value
buf = ctypes.create_unicode_buffer(ctypes.wintypes.MAX_PATH)
ctypes.windll.shell32.SHGetFolderPathW(None, CSIDL_PERSONAL, None, SHGFP_TYPE_CURRENT, buf)

install_path = buf.value + "\Exterior wall element tool\wood_classes"
sys.path.append(install_path)

from classes_wood import *
import pickle
import operator

fhandle = open(_Database, 'rb')
total_database = pickle.load(fhandle)
fhandle.close()

database_infill_list = total_database[0]
database_substructure_list = total_database[1]
database_cladding_list = total_database[2]

structural_database = []
database_substructure = []
database_cladding = []

for wood in database_infill_list:
 piece_of_wood = wood_structural(wood[0], wood[1], wood[2], wood[3])
 structural_database.append(piece_of_wood)

structural_database.sort(key = operator.attrgetter('length'))

for wood in database_substructure_list:
 piece_of_wood = wood_substructure(wood[0], wood[1], wood[2], wood[3])
 database_substructure.append(piece_of_wood)

database_substructure.sort(key = operator.attrgetter('length'))
database_substructure.sort(key = operator.attrgetter('depth'))

for wood in database_cladding_list:
 piece_of_cladding = wood_cladding(wood[0], wood[1], wood[2], wood[3])
 database_cladding.append(piece_of_cladding)

database_cladding.sort(key = operator.attrgetter('length'))
database_cladding.sort(key = operator.attrgetter('height'), reverse = True)

8. Segment calculation

"""Divides the wall in multiple segments
 All the variables that start with an underscore and capital letter are direct inputs
 Inputs:
 _Width_wall: width of the wall in mm
 _Height_wall: height of the wall in mm
 _Door: boolean toggle, if True apply door
 _Start_door: x coordinate of start door
 _Height_door: height of the door in mm
 _Start_x_window: x coordinate where window starts
 _Start_z_window: z coordinate where window starts
 _Width_window: width of the window in mm
 _Height_window: height of the window in mm
 _Database_infill: list with wood for structural infill
 _Ctc_distance: centre to centre distance between studs in mm
 _Window: boolean toggle, if True apply window
 Output:
 rectangle: list with rectangle geometry for preview in Rhino
 segments: list with dimensions and positions of segments for structural infill & substructure
 cladding_segments: list with dimensions and positions of segments for cladding
 database_substructure: list with wood in substructure class
 database_cladding: list with wood in cladding class"""

import Rhino.Geometry as rg
import math
from classes_wood import *

rectangles = []
segments = []
pt0 = rg.Point3d(0, 0, 0)
height_point = rg.Point3d(0, 1, 0)
zaxis = height_point-pt0
plane = rg.Plane(pt0, zaxis)

width_segments = []
cladding_segments = []

def number_segments(x_start, z_start, x_end, z_end):
 """Calculate how many segments are required for these dimensions"""
 width_element = x_end - x_start
 height_element = z_end - z_start
 max_width = int((_Database_infill[-1].length**2 - height_element**2)**0.5)

 while max_width < width_element:
 segment_width = math.floor(max_width / _Ctc_distance) * _Ctc_distance
 width_element -= segment_width
 segment = coordinates_segments(x_start, z_start, x_start + segment_width, z_end)
 segments.append(segment)
 x_start = x_start + segment_width

 if max_width > width_element:
 segment = coordinates_segments(x_start, z_start, x_end, z_end)
 segments.append(segment)

def rectangle_wall(_Width_wall, _Height_wall):
 """Generate 2d outline of wall for preview in Rhino """
 pt0 = rg.Point3d(0, 0, 0)
 pt1 = rg.Point3d(_Width_wall, 0, _Height_wall)
 rectangle = rg.Rectangle3d(plane,pt0, pt1)
 rectangles.append(rectangle)

def rectangle_door(_Start_door, _Width_door, _Height_door):
 """Generate 2d outline of door for preview in Rhino """
 pt0 = rg.Point3d(_Start_door, 0, 0)
 pt1 = rg.Point3d(_Start_door + _Width_door, 0, _Height_door)
 rectangle = rg.Rectangle3d(plane,pt0, pt1)
 rectangles.append(rectangle)

def rectangle_window(_Start_x_window, _Start_z_window, _Width_window, _Height_window):
 """Generate 2d outline of window for preview in Rhino """
 pt0 = rg.Point3d(_Start_x_window, 0, _Start_z_window)
 pt1 = rg.Point3d(_Start_x_window + _Width_window, 0, _Start_z_window + _Height_window)
 rectangle = rg.Rectangle3d(plane,pt0, pt1)
 rectangles.append(rectangle)

144 145

if _Door == False and _Window == False:
 rectangle_wall(_Width_wall, _Height_wall)
 number_segments(0, 0, _Width_wall, _Height_wall)
 cladding_segments.append(coordinates_segments_cladding(0, 0, _Width_wall, _Height_wall))

if _Door == True and _Window == False:
 rectangle_wall(_Width_wall, _Height_wall)
 rectangle_door(_Start_door, _Width_door, _Height_door)

 number_segments(0, 0, _Start_door, _Height_wall)
 number_segments(_Start_door, _Height_door, _Start_door + _Width_door, _Height_wall)
 number_segments(_Start_door + _Width_door, 0, _Width_wall, _Height_wall)

 cladding_segments.append(coordinates_segments_cladding(0, 0, _Start_door, _Height_door))
 cladding_segments.append(coordinates_segments_cladding(_Start_door + _Width_door, 0, _Width_wall, _Height_door))
 cladding_segments.append(coordinates_segments_cladding(0, _Height_door, _Width_wall, _Height_wall))

if _Door == False and _Window == True:
 rectangle_wall(_Width_wall, _Height_wall)
 rectangle_window(_Start_x_window, _Start_z_window, _Width_window, _Height_window)

 number_segments(0, 0, _Start_x_window, _Height_wall)
 number_segments(_Start_x_window, 0, _Start_x_window + _Width_window, _Start_z_window)
 number_segments(_Start_x_window, _Start_z_window + _Height_window, _Start_x_window + _Width_window, _Height_wall)
 number_segments(_Start_x_window + _Width_window, 0, _Width_wall, _Height_wall)

 cladding_segments.append(coordinates_segments_cladding(0, 0, _Width_wall, _Start_z_window))
 cladding_segments.append(coordinates_segments_cladding(0, _Start_z_window + _Height_window, _Width_wall,
_Height_wall))
 cladding_segments.append(coordinates_segments_cladding(0, _Start_z_window, _Start_x_window, _Start_z_window +
_Height_window))
 cladding_segments.append(coordinates_segments_cladding(_Start_x_window + _Width_window, _Start_z_window, _Width_wall,
_Start_z_window + _Height_window))

if _Door == True and _Window == True:
 rectangle_wall(_Width_wall, _Height_wall)
 rectangle_door(_Start_door, _Width_door, _Height_door)
 rectangle_window(_Start_x_window, _Start_z_window, _Width_window, _Height_window)

 if _Start_x_window < _Start_door:
 number_segments(0, 0, _Start_x_window, _Height_wall)
 number_segments(_Start_x_window, 0, _Start_x_window + _Width_window, _Start_z_window)
 number_segments(_Start_x_window, _Start_z_window + _Height_window, _Start_x_window + _Width_window, _Height_wall)
 number_segments(_Start_x_window + _Width_window, 0, _Start_door, _Height_wall)
 number_segments(_Start_door, _Height_door, _Start_door + _Width_door, _Height_wall)
 number_segments(_Start_door + _Width_door, 0, _Width_wall, _Height_wall)

 cladding_segments.append(coordinates_segments_cladding(0, 0, _Start_door, _Start_z_window))
 cladding_segments.append(coordinates_segments_cladding(0, _Start_z_window + _Height_window, _Start_door,
_Height_wall))
 cladding_segments.append(coordinates_segments_cladding(0, _Start_z_window, _Start_x_window, _Start_z_window +
_Height_window))
 cladding_segments.append(coordinates_segments_cladding(_Start_x_window + _Width_window, _Start_z_window,
_Start_door, _Start_z_window + _Height_window))
 cladding_segments.append(coordinates_segments_cladding(_Start_door + _Width_door, 0, _Width_wall, _Height_door))
 cladding_segments.append(coordinates_segments_cladding(_Start_door, _Height_door, _Width_wall, _Height_wall))

 else:
 number_segments(0, 0, _Start_door, _Height_wall)
 number_segments(_Start_door, _Height_door, _Start_door + _Width_door, _Height_wall)
 number_segments(_Start_door + _Width_door, 0, _Start_x_window, _Height_wall)
 number_segments(_Start_x_window, 0, _Start_x_window + _Width_window, _Start_z_window)
 number_segments(_Start_x_window, _Start_z_window + _Height_window, _Start_x_window + _Width_window, _Height_wall)
 number_segments(_Start_x_window + _Width_window, 0, _Width_wall, _Height_wall)

 cladding_segments.append(coordinates_segments_cladding(0, 0, _Start_door, _Height_door))
 cladding_segments.append(coordinates_segments_cladding(0, _Height_door, _Start_door + _Width_door, _Height_wall))
 cladding_segments.append(coordinates_segments_cladding(_Start_door + _Width_door, 0, _Width_wall,
_Start_z_window))
 cladding_segments.append(coordinates_segments_cladding(_Start_door + _Width_door, _Start_z_window,
_Start_x_window, _Start_z_window + _Height_window))
 cladding_segments.append(coordinates_segments_cladding(_Start_door + _Width_door, _Start_z_window +
_Height_window, _Width_wall, _Height_wall))
 cladding_segments.append(coordinates_segments_cladding(_Start_x_window + _Width_window, _Start_z_window,
_Width_wall, _Start_z_window + _Height_window))

9. Structural infill & substructure

"""Generates the geometry for the structural infill & substructure and calculates the waste
 All the variables that start with an underscore and capital letter are direct inputs
 Inputs:
 _Generate: Boolean toggle, if True apply
 _Segments: list with dimensions and positions of segments
 _Ctc_distance: centre to centre distance between studs in mm
 _Min_length_substructure_piece: minimal length that a piece of substructure can have in mm
 _Waste_wood_database: list with wood for structural infill
 _Database_substructure: list with wood for substructure
 _Depth_wall_element: depth of the exterior wall element in mm

 Output:
 geometry_infill_vertical: list with breps for vertical frame
 geometry_infill_horizontal: list with breps for horizontal frame
 geometry_infill_bracing: list with breps for bracing
 geometry_infill_studs: list with brep for studs
 total_infill_used: meter of wood used for structural infill
 total_waste_infill: waste in meter for structural infill
 total_infill_required: meter of wood required for structural infill
 total_substructure_used: meter of wood used for substructure
 total_waste_substructure: waste in meter for substructure
 total_substructure_required: meter of wood required for substructure
 beams_selected_framing_ver: list of wood selected for vertical framing
 beams_selected_framing_hor: list of wood selected for horizontal framing
 beams_selected_bracing: list of wood selected for bracing
 beams_selected_studs: list of wood selected for studs
 beams_selected_substructure: list of wood selected for substructure
 """

import Rhino.Geometry as rg
import random
import math
import operator
import itertools

class select_structural:
 def __init__(self, selected_wood, waste, geometry):
 self.selected_wood = selected_wood
 self.waste = waste
 self.geometry = geometry

def outer_frame_vertical(required_length, _Waste_wood_database, position):
 """Selects wood from db and generates geometry for vertical frame"""
 #pick piece of wood from database for vertical outer frame (left & right)
 chosen_beam = next(beam for beam in _Waste_wood_database if beam.length >= required_length)

 #determine additional waste with picked piece of wood
 waste = chosen_beam.length - required_length

 if position == 'left': #0 = outerleft vertical
 pt0 = rg.Point3d(seg_ver.x_cor_start,0, seg_ver.z_cor_start)
 pt1 = rg.Point3d(seg_ver.x_cor_start + chosen_beam.width, chosen_beam.depth, seg_ver.z_cor_end)
 x_start = seg_ver.x_cor_start
 z_start = seg_ver.z_cor_start
 z_end = seg_ver.z_cor_end

 if position == 'right': #1 = outerright vertical
 pt0 = rg.Point3d(seg_ver.x_cor_end -chosen_beam.width, 0, seg_ver.z_cor_start)
 pt1 = rg.Point3d(seg_ver.x_cor_end, chosen_beam.depth, seg_ver.z_cor_end)
 x_start = seg_ver.x_cor_end -chosen_beam.width
 z_start = seg_ver.z_cor_start
 z_end = seg_ver.z_cor_end

 # generate geometry in grasshopper
 box = rg.BoundingBox(pt0, pt1)
 brep = box.ToBrep()

 #generate substructure for stud
 picked_sub = select_substructure (chosen_beam, required_length, _Database_substructure, x_start, z_start, z_end)
 return select_structural(chosen_beam, waste, brep), picked_sub

146 147

def outer_frame_horizontal(required_length, _Waste_wood_database, position):
 """Selects wood from db and generates geometry for horizontal frame"""
 #pick piece of wood from database for horizontal outerframe (top & bottom)
 chosen_beam = next(beam for beam in _Waste_wood_database if beam.length >= required_length)

 #determine additional waste with picked piece of wood
 waste = chosen_beam.length - required_length

 if position == 'bottom':
 pt0 = rg.Point3d(seg_ver.x_cor_start, 0, seg_ver.z_cor_start)
 pt1 = rg.Point3d(seg_ver.x_cor_end, chosen_beam.width, seg_ver.z_cor_start + chosen_beam.depth)

 if position == 'top':
 pt0 = rg.Point3d(seg_ver.x_cor_start, 0, seg_ver.z_cor_end -chosen_beam.depth)
 pt1 = rg.Point3d(seg_ver.x_cor_end, chosen_beam.width, seg_ver.z_cor_end)

 # generate geometry in grasshopper
 box = rg.BoundingBox(pt0, pt1)
 brep = box.ToBrep()

 return select_structural(chosen_beam, waste, brep)

def inner_studs(required_length, _Waste_wood_database, stud_position):
 """Selects wood from db and generates geometry for vertical frame"""
 #pick piece of wood from database for vertical outer frame (left & right)
 chosen_beam = next(beam for beam in _Waste_wood_database if beam.length >= required_length)
 waste = chosen_beam.length - required_length

 #generate bottom stud geometry
 pt0 = rg.Point3d(seg_ver.x_cor_start + stud_position, 0, seg_ver.z_cor_start)
 pt1 = rg.Point3d(seg_ver.x_cor_start + stud_position + chosen_beam.width, chosen_beam.depth, seg_ver.z_cor_start +
required_length)
 x_start = seg_ver.x_cor_start + stud_position
 z_start = seg_ver.z_cor_start
 z_end = seg_ver.z_cor_start + required_length
 box = rg.BoundingBox(pt0, pt1)
 brep = box.ToBrep()

 picked_sub = select_substructure (chosen_beam, required_length, _Database_substructure, x_start, z_start, z_end)
 return select_structural(chosen_beam, waste, brep), picked_sub

def bracing (height_segment, width_segment, beams_selected_bracing, _Waste_wood_database):
 """Selects wood from db and generates geometry for bracing"""
 #determine dimensions right triangle for pythagoras calculation
 bracing_width = width_segment - beams_selected_framing[0+fr_counter].width -
beams_selected_framing[1+fr_counter].width
 bracing_height = height_segment - beams_selected_framing[2+fr_counter].depth -
beams_selected_framing[3+fr_counter].depth
 bracing_length = round((bracing_width**2 + bracing_height**2)**0.5)

 #pick piece of waste wood from database for bracing
 chosen_beam = next(beam for beam in _Waste_wood_database if beam.length >= bracing_length)
 waste = chosen_beam.length - bracing_length

 #calculation
 tan = bracing_width / bracing_height
 y = math.degrees(math.atan(tan))
 corner = 90 - y
 extra_x = math.sin(math.radians(corner)) * (0.5 * chosen_beam.depth)
 extra_z = math.cos(math.radians(corner)) * (0.5 * chosen_beam.depth)

 pt1 = rg.Point3d(beams_selected_framing[0+fr_counter].width + seg_ver.x_cor_start - extra_x , 0, seg_ver.z_cor_end -
beams_selected_framing[3+fr_counter].depth - extra_z)
 pt2 = rg.Point3d(seg_ver.x_cor_end-beams_selected_framing[1+fr_counter].width - extra_x , 0, seg_ver.z_cor_start +
beams_selected_framing[2+fr_counter].depth - extra_z)

 if tan < 1:
 box_1 = rg.Point3d(0,0,0)
 box_2 = rg.Point3d(chosen_beam.depth, chosen_beam.width, -bracing_length)
 zaxis = pt1-pt2

 if tan >= 1:
 box_1 = rg.Point3d(0,0,0)
 box_2 = rg.Point3d(chosen_beam.depth, -chosen_beam.width, bracing_length)
 zaxis = pt2-pt1

 plane = rg.Plane(pt1, zaxis)
 box = rg.BoundingBox(box_1,box_2)
 bracing_geo = rg.Box(plane, box)
 return select_structural(chosen_beam, waste, bracing_geo)

def intersection_formula (x_position, height_segment):
 """Formula to determine height of the studs"""
 #determine the formula of the bracing so the length of the bottom and top stud can be termined on every position
along the slope
 a = (height_segment - beams_selected_framing[2+fr_counter].depth - beams_selected_framing[3+fr_counter].depth) /
(width_segment- beams_selected_framing[0+fr_counter].width - beams_selected_framing[1+fr_counter].width)
 b = height_segment - beams_selected_framing[2+fr_counter].depth - beams_selected_framing[3+fr_counter].depth
 y = -a * x_position + b
 length_bottom_stud = round(y + beams_selected_framing[2+fr_counter].depth)
 return length_bottom_stud

def geo_bottom_stud (chosen_bottom_stud, bottom_stud_length, stud_position):

 #generate bottom stud geometry
 pt0 = rg.Point3d(seg_ver.x_cor_start + stud_position, 0, seg_ver.z_cor_start)
 pt1 = rg.Point3d(seg_ver.x_cor_start + stud_position + chosen_bottom_stud.width, chosen_bottom_stud.depth,
seg_ver.z_cor_start + bottom_stud_length)
 x_start = seg_ver.x_cor_start + stud_position
 z_start = seg_ver.z_cor_start
 z_end = seg_ver.z_cor_start + bottom_stud_length
 box = rg.BoundingBox(pt0, pt1)
 brep = box.ToBrep()

 picked_bot_sub = select_substructure (chosen_bottom_stud, bottom_stud_length, _Database_substructure, x_start,
z_start, z_end)
 return brep, picked_bot_sub

def geo_top_stud (chosen_top_stud, top_stud_length, stud_positiont):

 #generate top stud geometry
 center_align = (chosen_bottom_stud.width - chosen_top_stud.width) / 2
 pt0 = rg.Point3d(seg_ver.x_cor_start + stud_position + center_align, 0, seg_ver.z_cor_start + bottom_stud_length)
 pt1 = rg.Point3d(seg_ver.x_cor_start + stud_position + center_align + chosen_top_stud.width, chosen_top_stud.depth,
seg_ver.z_cor_end)
 x_start = seg_ver.x_cor_start + stud_position + center_align
 z_start = seg_ver.z_cor_start + bottom_stud_length
 z_end = seg_ver.z_cor_end
 box = rg.BoundingBox(pt0, pt1)
 brep = box.ToBrep()

 picked_top_sub = select_substructure (chosen_top_stud, top_stud_length, _Database_substructure, x_start, z_start,
z_end)
 return brep, picked_top_sub

def select_substructure (beam_infill, required_length, _Database_substructure, x_start, z_start, z_end):
 """Selects wood from db and generates geometry for substructure"""
 beam_pair = []

 #determine required depth for the substructure piece so that the complete substructre is alligned
 depth_required = _Depth_wall_element - beam_infill.depth
 length_required = required_length

 #picks the option to complete the substructure with 1 piece
 suitable_beams = iter([beam_sub for beam_sub in _Database_substructure if beam_sub.depth == depth_required and
beam_sub.length >= length_required])
 chosen_beam = next(suitable_beams)

 #temp list with all the possible pieces that are longer then min required length and smaller then the required
length.
 beams_selected_temp = [beam.length for beam in _Database_substructure if
 beam.length >= _Min_length_substructure_piece and beam.length < length_required and beam.depth == depth_required]

 #looks for all the options where the total length of two pieces is smaller then thet total length of 1 piece.
 for numbers in itertools.combinations(beams_selected_temp,2):
 if sum(numbers) >= length_required and sum(numbers) < chosen_beam.length:
 beam_pair.append(numbers)

 #if there is no combination of two pieces, the single piece is picked
 if beam_pair == []:
 waste = chosen_beam.length - length_required

148 149

 pt0 = rg.Point3d(x_start, beam_infill.depth, z_start)
 pt1 = rg.Point3d(x_start+chosen_beam.width, beam_infill.depth+chosen_beam.depth, z_end)
 box = rg.BoundingBox(pt0, pt1)
 brep = box.ToBrep()

 return [select_structural(chosen_beam, waste, brep)]

 #otherwise the combination that generates the least waste is selected
 else:
 beam_pair.sort(key=sum)
 beam_pair_1 = next(beam for beam in _Database_substructure if beam.length == beam_pair[0][0] and beam.depth ==
depth_required)
 beam_pair_2 = next(beam for beam in _Database_substructure if beam.length == beam_pair[0][1] and beam.depth ==
depth_required and beam.id != beam_pair_1.id)

 pt0 = rg.Point3d(x_start, beam_infill.depth, z_start)
 pt1 = rg.Point3d(x_start + beam_pair_1.width, beam_infill.depth+beam_pair_1.depth, z_start + beam_pair_1.length)
 box = rg.BoundingBox(pt0, pt1)
 brep_1 = box.ToBrep()

 pt0 = rg.Point3d(x_start, beam_infill.depth, z_start + beam_pair_1.length)
 pt1 = rg.Point3d(x_start +beam_pair_2.width, beam_infill.depth+beam_pair_2.depth, z_end)
 box = rg.BoundingBox(pt0, pt1)
 brep_2 = box.ToBrep()

 waste = (sum(beam_pair[0]) - length_required) / 2

 return select_structural(beam_pair_1, waste, brep_1), select_structural(beam_pair_2, waste, brep_2)

structural_infill_waste = []
substructure_waste = []
structural_infill_used = []
end_of_life = []

beams_selected_bracing = []
beams_selected_framing_hor = []
beams_selected_framing_ver = []
beams_selected_framing = []
beams_selected_studs = []

beams_selected_substructure = []

geometry_infill_booldifference = []
geometry_infill_horizontal = []
geometry_infill_vertical = []
geometry_infill_studs = []
geometry_infill_bracing = []
geometry_substructure = []

fr_counter = 0
br_counter = 0

if _Generate:
 for seg_ver in _Segments:
 width_segment = seg_ver.x_cor_end - seg_ver.x_cor_start
 height_segment = seg_ver.z_cor_end - seg_ver.z_cor_start

 picked_ver_frame = outer_frame_vertical(height_segment, _Waste_wood_database, 'left')
 _Waste_wood_database.remove(picked_ver_frame[0].selected_wood)
 structural_infill_waste.append(picked_ver_frame[0].waste)
 beams_selected_framing_ver.append(picked_ver_frame[0].selected_wood)
 beams_selected_framing.append(picked_ver_frame[0].selected_wood)
 structural_infill_used.append(picked_ver_frame[0].selected_wood.length)
 geometry_infill_vertical.append(picked_ver_frame[0].geometry)
 if height_segment > 1500:
 geometry_infill_booldifference.append(picked_ver_frame[0].geometry)

 for substructure in picked_ver_frame[1]:
 beams_selected_substructure.append(substructure.selected_wood)
 _Database_substructure.remove(substructure.selected_wood)
 geometry_substructure.append(substructure.geometry)
 substructure_waste.append(substructure.waste)

 picked_ver_frame_2 = outer_frame_vertical(height_segment, _Waste_wood_database, 'right')
 _Waste_wood_database.remove(picked_ver_frame_2[0].selected_wood)
 structural_infill_waste.append(picked_ver_frame_2[0].waste)
 beams_selected_framing_ver.append(picked_ver_frame_2[0].selected_wood)

 beams_selected_framing.append(picked_ver_frame_2[0].selected_wood)
 structural_infill_used.append(picked_ver_frame_2[0].selected_wood.length)
 geometry_infill_vertical.append(picked_ver_frame_2[0].geometry)
 if height_segment > 1500:
 geometry_infill_booldifference.append(picked_ver_frame_2[0].geometry)

 for substructure in picked_ver_frame_2[1]:
 beams_selected_substructure.append(substructure.selected_wood)
 _Database_substructure.remove(substructure.selected_wood)
 geometry_substructure.append(substructure.geometry)
 substructure_waste.append(substructure.waste)

 picked_hor = outer_frame_horizontal(width_segment, _Waste_wood_database, 'bottom')
 _Waste_wood_database.remove(picked_hor.selected_wood)
 structural_infill_waste.append(picked_hor.waste)
 beams_selected_framing_hor.append(picked_hor.selected_wood)
 beams_selected_framing.append(picked_hor.selected_wood)
 structural_infill_used.append(picked_hor.selected_wood.length)
 geometry_infill_horizontal.append(picked_hor.geometry)

 picked_hor2 = outer_frame_horizontal(width_segment, _Waste_wood_database, 'top')
 structural_infill_waste.append(picked_hor2.waste)
 beams_selected_framing_hor.append(picked_hor2.selected_wood)
 beams_selected_framing.append(picked_hor2.selected_wood)
 structural_infill_used.append(picked_hor2.selected_wood.length)
 geometry_infill_horizontal.append(picked_hor2.geometry)

 reuse = (height_segment - beams_selected_framing_hor[-1].depth - beams_selected_framing_hor[-2].depth +
width_segment) * 2
 end_of_life.append(reuse)

 if height_segment < 1500 or width_segment < _Ctc_distance:
 stud_step = 450
 stud_position = stud_step
 while stud_position < width_segment:
 #determine required length for bottom & top stud
 stud_length = height_segment
 picked_inner = inner_studs(stud_length, _Waste_wood_database, stud_position)

 _Waste_wood_database.remove(picked_inner[0].selected_wood)
 structural_infill_waste.append(picked_inner[0].waste)
 beams_selected_studs.append(picked_inner[0].selected_wood)
 structural_infill_used.append(picked_inner[0].selected_wood.length)
 geometry_infill_studs.append(picked_inner[0].geometry)

 for substructure in picked_inner[1]:
 beams_selected_substructure.append(substructure.selected_wood)
 _Database_substructure.remove(substructure.selected_wood)
 geometry_substructure.append(substructure.geometry)
 substructure_waste.append(substructure.waste)

 stud_position = stud_position + stud_step
 reuse = stud_length - beams_selected_framing_hor[-1].depth - beams_selected_framing_hor[-2].depth
 end_of_life.append(reuse)

 fr_counter += 4
 #inner_studs(stud_length, _Waste_wood_database, width_segment)

 else:
 picked_bracing = bracing(height_segment, width_segment, beams_selected_bracing, _Waste_wood_database)
 _Waste_wood_database.remove(picked_bracing.selected_wood)
 structural_infill_waste.append(picked_bracing.waste)
 beams_selected_bracing.append(picked_bracing.selected_wood)
 structural_infill_used.append(picked_bracing.selected_wood.length)
 geometry_infill_bracing.append(picked_bracing.geometry)

 stud_position = _Ctc_distance

 while stud_position < width_segment:
 #determine required length for bottom & top stud
 bottom_stud_length = intersection_formula (stud_position, height_segment)
 top_stud_length = height_segment - bottom_stud_length
 margin = 0
 controle = False

 while controle == False:
 suitable_bottom_studs = iter([beam for beam in _Waste_wood_database if beam.length >=
bottom_stud_length + margin])

150 151

 chosen_bottom_stud = next(suitable_bottom_studs)

 #restrictions top studs based on bottom stud, top stud cannot be wider or deeper then bottom stud
 suitable_top_studs = iter([beam for beam in _Waste_wood_database if beam.length >= top_stud_length
 and beam.width <= chosen_bottom_stud.width
 and beam.depth == chosen_bottom_stud.depth
 and beam.length < top_stud_length + 150
 and beam.id != chosen_bottom_stud.id])

 chosen_top_stud = next(suitable_top_studs, 0)

 #if no top stud is suitable, a different bottom stud is selected
 if chosen_top_stud == 0:
 margin +=1

 else:
 controle = True

 #determine waste bottom stud & remove bottom studs from database
 waste = chosen_bottom_stud.length - bottom_stud_length
 _Waste_wood_database.remove(chosen_bottom_stud)
 structural_infill_waste.append(waste)
 beams_selected_studs.append(chosen_bottom_stud)
 structural_infill_used.append(chosen_bottom_stud.length)

 picked_bot_stud = geo_bottom_stud (chosen_bottom_stud, bottom_stud_length, stud_position)
 geometry_infill_studs.append(picked_bot_stud[0])
 for substructure in picked_bot_stud[1]:
 beams_selected_substructure.append(substructure.selected_wood)
 _Database_substructure.remove(substructure.selected_wood)
 geometry_substructure.append(substructure.geometry)
 substructure_waste.append(substructure.waste)

 #determine waste top stud & remove top studs from database
 waste = chosen_top_stud.length - top_stud_length
 _Waste_wood_database.remove(chosen_top_stud)
 structural_infill_waste.append(waste)
 beams_selected_studs.append(chosen_top_stud)
 structural_infill_used.append(chosen_top_stud.length)

 picked_top_stud = geo_top_stud(chosen_top_stud, top_stud_length, stud_position)
 geometry_infill_studs.append(picked_top_stud[0])
 for substructure in picked_top_stud[1]:
 beams_selected_substructure.append(substructure.selected_wood)
 _Database_substructure.remove(substructure.selected_wood)
 geometry_substructure.append(substructure.geometry)
 substructure_waste.append(substructure.waste)

 stud_position = stud_position + _Ctc_distance
 reuse = height_segment - beams_selected_framing_hor[-1].depth - beams_selected_framing_hor[-
2].depth - beams_selected_bracing[-1].depth
 end_of_life.append(reuse)
 fr_counter += 4
 br_counter += 1

 #calculate the total waste of the structural infill + substructure
 total_waste = sum(structural_infill_waste) + sum(substructure_waste)

 total_infill = beams_selected_bracing + beams_selected_framing + beams_selected_studs
 total_infill_used = round(sum(structural_infill_used)/1000,2)
 total_waste_infill = round(sum(structural_infill_waste)/1000,2)
 total_infill_required = round((sum(structural_infill_used)/1000)-(sum(structural_infill_waste)/1000),2)

 substructure_used = [wood.length for wood in beams_selected_substructure]
 total_substructure_used = round(sum(substructure_used)/1000,2)
 total_waste_substructure = round(sum(substructure_waste)/1000,2)
 total_substructure_required = round(sum(substructure_used)/1000 - sum(substructure_waste)/1000,2)
 total_infill_used_2 = sum(structural_infill_used)/1000
 total_substructure_used_2 = sum(substructure_used)/1000
 reuse_end_of_life = round(sum(end_of_life)/1000,2)

 total_volume = []

 #check to see if no piece of wood was selected twice from the database
 print('\n')
 print('structural_infill')
 total_infill.sort(key = operator.attrgetter('id'))

 for balk in total_infill:
 balk.print_data()
 volume = (balk.length / 1000) * (balk.width / 1000) * (balk.depth / 1000)
 total_volume.append(volume)

 #check to see if no piece of wood was selected twice from the database
 print('\n')
 print('substructure')
 beams_selected_substructure.sort(key = operator.attrgetter('id'))
 for balk in beams_selected_substructure:
 balk.print_data()
 volume = (balk.length / 1000) * (balk.width / 1000) * (balk.depth / 1000)
 total_volume.append(volume)

 total_volume_def = sum(total_volume)
 print(total_volume_def)

152 153

10. Cladding

"""Generates the geometry for the cladding and calculates the waste
 All the variables that start with an underscore and capital letter are direct inputs
 Inputs:
 _Generate: Boolean toggle, if True apply
 _Database_cladding: list with wood for cladding
 _Ctc_distance: centre to centre distance between studs in mm
 _Cladding_segments: list with dimensions and positions of segments for cladding

 Output:
 geometry_claddingl: list with breps for cladding
 total_cladding_waste: waste in meter for cladding
 total_claddding_used: meter of wood used for cladding
 total_cladding_required: meter of wood required for cladding
 wood_selected_cladding: list of wood selected for cladding
 """

import Rhino.Geometry as rg
import itertools
import math

class cladding:
 def __init__(self, selected_wood_clad, geometry_clad):
 self.selected_wood_clad = selected_wood_clad
 self.geometry_clad = geometry_clad

def cladding_geometry (required_length, current_height, piece_height, x_start, x_end, z_start, z_end, height_segment):
 """Selects wood from db and generates geometry for cladding"""
 picked_cladding = next(clad for clad in _Database_cladding if clad.height == piece_height and clad.length ==
required_length)

 pt0 = rg.Point3d(x_start, 250, z_start + current_height)
 pt1 = rg.Point3d(x_end, 250 + picked_cladding.depth, z_start + current_height + piece_height)
 if current_height + piece_height > height_segment:
 pt1 = rg.Point3d(x_end, 250 + picked_cladding.depth, z_end)
 box = rg.BoundingBox(pt0, pt1)
 brep = box.ToBrep()

 return cladding(picked_cladding, brep)

cladding_waste = []
geometry_cladding = []
wood_selected_cladding = []

if _Generate:
 for segment in _Cladding_segments:
 height_segment = segment.z_cor_end - segment.z_cor_start
 width_segment = segment.x_cor_end - segment.x_cor_start
 x_start = segment.x_cor_start

 cladding_selected_temp = []
 current_height = 0
 marge = 0

 #calculate the max allowed cladding pieces in x-direction
 max_number_pieces = int(math.floor(width_segment / (_Ctc_distance*2)))

 min_length_clad = 2*_Ctc_distance
 if width_segment < 2*_Ctc_distance:
 min_length_clad = width_segment

 #marge prevents the happening of infinite while loop
 while marge < 1000:
 if current_height > height_segment:
 break

 #start finding cladding with the highest height cladding
 piece_height = _Database_cladding[0].height

 #continue until it is tried with the lowest height cladding
 while piece_height >= _Database_cladding[-1].height:
 #generate list with all the cladding with the same height
 cladding_same_height = [clad.length for clad in _Database_cladding if clad.height == piece_height and
clad.length >= min_length_clad]

 if current_height >= height_segment:
 break

 #see if the total width of the wall can be covered with one piece of cladding
 for clad_len in cladding_same_height[:]:
 if clad_len >= width_segment and clad_len <= width_segment + marge:
 cladding_same_height.remove(clad_len)
 waste = clad_len - width_segment
 cladding_waste.append(waste)
 picked = cladding_geometry (clad_len, current_height, piece_height, segment.x_cor_start,
segment.x_cor_end, segment.z_cor_start, segment.z_cor_end, height_segment)

 wood_selected_cladding.append(picked.selected_wood_clad)
 _Database_cladding.remove(picked.selected_wood_clad)
 geometry_cladding.append(picked.geometry_clad)

 current_height += piece_height

 if current_height >= height_segment:
 break

 #see if the width of the wall can be covered with n pieces of cladding, to a maximum of calculated
max_number_pieces
 for x_pieces in range(2,max_number_pieces+1):
 for numbers in itertools.combinations(cladding_same_height,x_pieces):
 x_start = segment.x_cor_start
 if current_height >= height_segment:
 break
 if sum(numbers) >= width_segment and sum(numbers) <= width_segment + marge:
 check = all(elem in cladding_same_height for elem in numbers)
 if check:
 for counter in range(0,x_pieces):
 if counter == x_pieces - 1:
 picked_1 = cladding_geometry (numbers[counter], current_height, piece_height,
x_start, segment.x_cor_end, segment.z_cor_start, segment.z_cor_end, height_segment)
 wood_selected_cladding.append(picked_1.selected_wood_clad)
 _Database_cladding.remove(picked_1.selected_wood_clad)
 geometry_cladding.append(picked_1.geometry_clad)
 else:
 picked_2 = cladding_geometry (numbers[counter], current_height, piece_height,
x_start, x_start + numbers[counter], segment.z_cor_start, segment.z_cor_end, height_segment)
 wood_selected_cladding.append(picked_2.selected_wood_clad)
 _Database_cladding.remove(picked_2.selected_wood_clad)
 geometry_cladding.append(picked_2.geometry_clad)
 x_start += numbers[counter]
 cladding_same_height.remove(numbers[counter])

 waste = sum(numbers) - width_segment
 cladding_waste.append(waste)
 current_height += piece_height

 piece_height -= 10
 marge += 10

 #calculate the amount of waste
 cladding_used = [length.length for length in wood_selected_cladding]
 total_cladding_used = round(sum(cladding_used)/1000,2)
 total_cladding_waste = round(sum(cladding_waste)/1000,2)
 total_cladding_required = round((sum(cladding_used)/1000)-(sum(cladding_waste)/1000),2)

154 155

11. Statistics calculation for interface

"""Transforms the waste wood data in a string for the exterior wall element tool
All the variables that start with an underscore and capital letter are direct inputs"""

total_infill_used = 'strucutral infill used: '+ str(_Total_infill_used) + 'm'
total_waste_infill = 'strucutral infill waste: '+ str(_Total_waste_infill) + 'm'
total_infill_required = 'structural infill required: ' + str(_Total_infill_required) + 'm'

total_substructure_used = 'substructure used: '+ str(_Total_substructure_used) + 'm'
total_waste_substructure = 'substructure waste: '+ str(_Total_waste_substructure) + 'm'
total_substructure_required = 'substructure required: ' + str(_Total_substructure_required) + 'm'

total_cladding_used = 'total cladding used: ' + str(_Total_cladding_used) + 'm'
total_cladding_waste = 'total cladding waste: ' + str(_Total_cladding_waste) + 'm'
total_cladding_required = 'total cladding required: ' + str(_Total_cladding_required) + 'm'

total_wood_used = 'Total wood used: ' + str(_Total_infill_used + _Total_substructure_used + _Total_cladding_used) + 'm'
total_waste = 'Total waste: ' + str(_Total_waste_infill + _Total_waste_substructure + _Total_cladding_waste) + 'm'

end_of_life = _End_of_life + _Total_substructure_used + _Total_cladding_used
end_of_life_txt = 'End of life reusable: ' + str(end_of_life) + 'm'
end_of_life_per = round(end_of_life / (_Total_infill_used + _Total_substructure_used + _Total_cladding_used) * 100)
end_of_life_waste = 100 - end_of_life_per

volume = bracing_geo = [piece_wood.GetVolume() for piece_wood in _Breps]
total_volume = round(sum(volume)/1000000)
total_volume_dm3 = 'Total volume: ' + str(total_volume) + ' dm3'
weight = round(500 * (total_volume/1000))
weight_kg = 'Total weight: ' + str(weight) + ' kg'

12. BooleanDifference

"""Peformes a BooleanDifference operation on the breps
 All the variables that start with an underscore and capital letter are direct inputs
 Inputs:
 _Generate: Boolean toggle, if True apply
 _Bracing: list with breps used for bracing
 _Studs: list with breps used for the studs
 _Framing: list with breps used with vertical frame that also have bracing
 _Horizontal_frame: list with breps used for the horizontal frame
 _Vertical_frame: list with breps used for the vertical frame

 Output:
 bracing_geo: list with modified breps for bracing
 vertical_frame_geo: list with modified breps for the vertical frame
 studs_geo: list with modified breps for the studs
 next_step: Boolean toggle, allow next step to happen when boolean difference is complete
"""

import Rhino.Geometry as rg

if _Generate:
 bracing_geo = rg.Brep.CreateBooleanDifference(_Bracing, _Horizontal_frame, 0.01)
 bracing_geo = rg.Brep.CreateBooleanDifference(bracing_geo, _Framing, 0.01)
 vertical_frame_diff = rg.Brep.CreateBooleanDifference(_Vertical_frame, _Horizontal_frame, 0.01)
 vertical_frame_geo = rg.Brep.CreateBooleanDifference(vertical_frame_diff, bracing_geo, 0.01)
 studs_diff = rg.Brep.CreateBooleanDifference(_Studs, _Horizontal_frame, 0.01)
 studs_geo = rg.Brep.CreateBooleanDifference(studs_diff, bracing_geo, 0.01)

 #removes any unwanted geometry that is generated when the bracing sticks out of the wall element.
 bracing_geo = [brep for brep in bracing_geo if brep.GetVolume() > 100000]

 #This assures that the export or bake can only happens when the Boolean difference is complete
 next_step = True

else:
 next_step = False

156 157

13. Bake geometry in Rhino

"""Bakes the geometry to a rhino file
 All the variables that start with an underscore and capital letter are direct inputs
 Inputs:
 _Active: Boolean toggle, if True apply
 _Geometry: list with breps
 _Layer: layer where geometry needs to be baked in
"""
import rhinoscriptsyntax as rs
import scriptcontext as sc
import Rhino

if _Active:
 for brep in _Geometry:
 brep_id = brep
 sc.doc = ghdoc
 doc_object = rs.coercerhinoobject(brep_id)
 baked_geo = doc_object.Geometry
 attributes = doc_object.Attributes
 sc.doc = Rhino.RhinoDoc.ActiveDoc
 baked_geo = sc.doc.Objects.Add(baked_geo, attributes)

#remove the baked geometry when the toggle is off
else:
 sc.doc = Rhino.RhinoDoc.ActiveDoc
 objs = rs.ObjectsByLayer(_Layer)
 rs.DeleteObjects(objs)

14. Export 3dm files

"""exports each baked brep to a seperate 3dm file
 All the variables that start with an underscore and capital letter are direct inputs
 Inputs:
 _Active: Boolean toggle, if True apply
 _Bracing_geo: list with breps for bracing
 _Vertical_frame_geo: list with breps for the vertical frame
 _Horizontal_frame_geo: list with breps for the vertical frame
 _Studs_geo: list with breps for the studs
 _Substructure_geo: list with breps for the substructure
 _Cladding_geo: list with breps for the cladding
 _Beams_selected_framing_ver: list of wood selected for vertical framing
 _Beams_selected_framing_hor: list of wood selected for horizontal framing
 _Beams_selected_bracing: list of wood selected for bracing
 _Beams_selected_studs: list of wood selected for studs
 _Beams_selected_substructure: list of wood selected for substructure
 _Wood_selected_cladding: list of wood selected for cladding
 _Layer: layer where geometry needs to be baked in

 Output:
 id_list: list with all the id numbers of the exported wood
 toggle: Boolean toggle, allow next step to happen when export is complete
"""
import ctypes.wintypes
import rhinoscriptsyntax as rs
import scriptcontext as sc
import Rhino

def export_file (geometry, wood_list):
 """Bakes brep to Rhino and exports it to 3dm file"""
 counter = 0
 for brep in geometry:
 id_list.append(wood_list[counter].id)
 brep_id = brep
 sc.doc = ghdoc
 doc_object = rs.coercerhinoobject(brep_id)
 baked_geo = doc_object.Geometry
 attributes = doc_object.Attributes
 sc.doc = Rhino.RhinoDoc.ActiveDoc
 rs.UnselectAllObjects()
 baked_obj = sc.doc.Objects.Add(baked_geo, attributes)
 rs.ObjectLayer(baked_obj, _Layer)
 rs.SelectObject(baked_obj)
 filepath = save_dir + 'id_' + str(wood_list[counter].id)
 rs.Command('_-Export "'+ filepath + '.3dm" _Enter _Enter')
 counter += 1

id_list = []
toggle = False

CSIDL_PERSONAL = 5 # My Documents
SHGFP_TYPE_CURRENT = 0 # Get current, not default value
buf = ctypes.create_unicode_buffer(ctypes.wintypes.MAX_PATH)
ctypes.windll.shell32.SHGetFolderPathW(None, CSIDL_PERSONAL, None, SHGFP_TYPE_CURRENT, buf)

save_dir = buf.value + "\\Exterior wall element tool\\Exported 3dm files\\"

#export every geometry to a folder with the correlating ID number as file name
if _Export and _Active:
 rs.UnselectAllObjects()
 export_file(_Vertical_frame_geo, _Beams_selected_framing_ver)
 export_file(_Horizontal_frame_geo, _Beams_selected_framing_hor)
 export_file(_Studs_geo, _Beams_selected_studs)
 export_file(_Bracing_geo, _Beams_selected_bracing)
 export_file(_Substructure_geo, _Beams_selected_substructure)
 export_file(_Cladding_geo, _Wood_selected_cladding)

 sc.doc = Rhino.RhinoDoc.ActiveDoc
 objs = rs.ObjectsByLayer(_Layer)
 rs.DeleteObjects(objs)
 toggle = True

158

15. Remove selected pieces of wood from database

""" Deletes used wood from SQL database.
 Inputs:
 _Apply: boolean toggle to start data the sciprt
 _Id_list: List with id numbers of the wood that needs to be deleted
 Output:
 output: conformation when data is removed.

"""

def delete_id(id_number):
 #deletes existing data in database
 cur.execute("DELETE FROM wood_dimensions WHERE wood_id = (%s)", (id_number,));
 conn.commit()
 print(str(id_number) + ' removed')

import psycopg2 as pg2
import random

if _Apply == True:
 conn = pg2.connect(database='hout', user='postgres', password='----')
 cur = conn.cursor()
 for id_number in _Id_list:
 delete_id(id_number)

