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Abstract: This paper examines a problem related to dispatching materials 

to spreaders in coal (lignite) mines operated under the paradigm of 

continuously excavated material flow. In the considered particular case, 

complexity arises from different material types of overburden to be 

placed on the dump site in pre-defined patterns that guarantee 

geotechnical safety. These types include wet, semi-wet and dry material, 

which are accessed on the excavation site according to the geological 

deposition and the mining plan. Controlling of the dispatch system has to 

take into account the extraction sequence and geological stratification 

on the excavation site and the available dump space per material on the 

dumping site. With eight excavators on the excavation site and seven 

spreaders on the dump site the problem is already complex, having not 

stated yet that random breakdowns may make some options temporarily 

unavailable. To optimize the dispatch system in terms of minimum idle 

time due to unavailability of dumping space, a new multi-stage 

simulation-based optimization approach is proposed. This approach 

consists of running alternatingly a deterministic optimization model and 

a stochastic simulation model. It combines simulation and algorithms to 

solve a transportation problem and a job-shop scheduling problem. The 

proposed approach is tested on a large continuous mine under given 

different dumping sequences, and results are reported. The merits and 

limitations of the proposed approach as pinpointed and farsighted 

operations management are discussed. 
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Dear Reviewers, 

We take this opportunity to express our profound gratitude and deep regards for spending 

your time for reviewing our paper, very appreciated.  

The following is the point-to-point responses to your recommendations after applying the 

suggested corrections:  

  

*Detailed Response to Reviewers



Reviewer #1:  

 

This paper has developed a simulation-based optimised model for Continuous Mining System 

and applied on Hambach mine in Germany. 

 
The authors appreciate your comments/suggestions and the below is the point-to-point responses to your 

valuable comments.  

 

Comments:  

 

i-1) How is this approach of simulation different from other simulation models?  
 

Generally, simulation models only function as system analysis tools. In the context where decisions 

have to be made to obtain pre-defined objectives, simulation studies help to perform the computational 

experimentation. Feasible solutions can be explored using what-if analyses and among these solutions, 

the best decision can be found. These analyses are normally performed in an iterative routine. Results of 

previous experiments are used to perform following experimentations. In summary, the assessments 

against forthcoming uncertainties are used to make representative decisions. The only drawback here is 

that it requires additional effort from the decision maker to come to the best decisions.  

Considering the drawback in simulation studies, optimization techniques can clearly help by 

providing the structure required to achieve the best decisions. The search process of finding the best 

decisions can be automated, if the optimization method is implemented in a computer program. In fact, 

the reported successful efforts in combining simulation and optimization methods encourage the 

development of research into this so-called simulation-based optimization field. In the simulation-based 

optimization method, optimization performs as the search method that discovers the alternative space of 

a simulation model in such a way that solutions contributing to the desired system performance(s) can be 

found. 

Using this method, optimal solutions can be obtained from the modeled mining system without 

tiresome effort (manually going through the whole set of feasible alternatives for the input of the 

simulation model) while the dynamics and stochasticity of the system are taken into account. 

 

 

i-2) Add some literature on simulation based optimisation techniques. 

 
We have added much literature; they are highlighted in the text of the revised manuscript. Section 2 has 

been altered extensively. Please see the revised manuscript.  

 

 

ii) How the company made their decisions before this model? What recommendations are given 

to the company after executing the simulation model? 

 
They have their own MS Excel based planning software. However, they mostly relay on the very 

experienced planning staff that they have. Every morning, before the start of the first working shift, they 

get together and make decision on the schedule of that day based on the yesterday’s outcome and what 

targets should be achieved.  

 



The company, especially managers and staff of R&D division, are very happy with the outcome of this 

research. We had many meeting with them and they showed a serious interest to implement this in their 

mine.  

 

 

iii) In table 3 why excavators S1, B7, and spreader I7 are unavailable? If that are available, then 

how much the results are affected? 

We requested company to send us real date for the validation of the approach. For the day that they sent 

the data, those machines were not working due the planned maintenance. In order to compare the result 

of our approach with the actual result, we had to make them unavailable.  

For the second part of your question, in this paper, we focused on the overburden management. B7, 

mostly produces coal (because it works on the lowest/deepest bench in the mine), consequently, its effect 

is negligible; S1, is a small excavator in comparison to the other bucket wheels and I7 is a big spreader (its 

capacity is twice as S1). Accordingly, S1 is not a bottleneck and if they were available, the total production 

would rise.  

The approach has been also tested it with the full availability of machines. It works perfectly and change 

in the calculation time is insignificant.  

 

  



Reviewer #2:  

 

The authors presented a paper dealing with a stochastic simulation-based optimization 

approach applied to mining industry. In general, the paper is well written and well structured. 

However, we suggest addressing the following point before a publication in EJOR: 

 

Comments: 

 

i) In section 2, Page 5, Line 18: The authors state the scientific gap of the actual paper only 

mentioning that there is few application of simulation optimization approach in mining. We 

suggest to better states and discuss the innovation of the current research comparing to existing 

literature. What is different and what is new in your approach as you applied for the article 

type "Innovative Application of OR"  

 
We truly appreciate all the constructive comments and suggestions from you. Section 2 has been 

rewritten in the revised manuscript in responding to the reviewer’s comments. We have added much 

literature and discussed the proposed simulation-based optimization platform in detail to show the 

novelty of the approach in the mining field.  

 

ii) As mentioned several time in the paper (P17 L47, Fig8, Fig9, P21 L62, P22 L20) a stochastic 

discrete event simulation DES is coupled with optimization in this development. However, 

there is no detailed information about this stimulation. The main stochastic variables are not 

described. What are the probability density functions? How many iteration are performed? Is 

the convergence reached? How are the breakdown rates implemented? As the DES is one of the 

key elements of the approach we believe that more details and discussions on this module 

should be addressed. One possibility is that the simulation is not stochastic at all. Then, a major 

revision of the paper should be performed in order to clearly state this hypothesis. 

 
To address your comment and make it clear for the readers, we have added a small paragraph in the 

section 2 of the revised manuscript mentioning that the stochastic simulation model of the Hambach mine 

is presented in the below stated papers. Moreover, it is stated in page 20 line 2 of the original manuscript 

that, “The detail of the construction of the simulation model of an opencast mine and simulation model 

interface can be found in (Shishvan & Benndorf, 2014; Shishvan & Benndorf, 2016; Shishvan & Benndorf, 

2017).”  

 
Shishvan, M. S., & Benndorf, J. (2014). Performance optimization of complex continuous mining system using stochastic 

simulation. Paper presented at the Engineering Optimization IV, LISBON, PORTUGAL.  

Shishvan, M. S., & Benndorf, J. (2016). The effect of geological uncertainty on achieving short-term targets: A 

quantitative approach using stochastic process simulation. Journal of the Southern African Institute of Mining 

and Metallurgy, 116(3), 259-264.  

Shishvan, M. S., & Benndorf, J. (2017). Operational Decision Support for Material Management in Continuous 

Mining Systems: From Simulation Concept to Practical Full-Scale Implementations. Minerals, 7(7), 116. doi: 

10.3390/min7070116 

 

Shishvan & Benndorf, (2017), (~ 26 pages), discuss the development of the simulation model of the 

Hambach mine in very detail. Integrating all the detail of the simulation model to the current paper, 



which is already a long paper, was not possible. We recommend the reader to read the previous paper, as 

well.  

Reviewer #3:  

The reviewed manuscript provided a good example of applications of OR, which would attract 

certain number of readers and makes contributions to the research area, although the theoretical 

contribution is NOT much. In general, it is still worth publishing, but should NOT be in a 

journal as good as EJOR.  

 

The authors appreciate your comments on practical quality of presented method and your insightful 

feedback. However, as the title reads, this study is an “Innovative applications of OR” and can be 

considered as an added value to existing theory (for both validation and completion purposes). 

Additionally, to address your comment and to improve the theoretical background of the paper for a 

more general group of readers, we have updated the discussed literature to a greater extent and 

described the proposed simulation-based optimization platform in more details. Please see the section 2 

of the revised manuscript. 

 

 

Hope to be satisfied from our changes. We are always looking forward for comments and new 

suggestions from researchers to make our works stronger than before.  

 

 

 



Highlights: 

 Simulation-based optimization approach is capable of optimizing dispatch decisions.  

 It is highly efficient for short-term production scheduling of opencast mines. 

 It combines deterministic optimization with stochastic simulation in a closed loop.  

 Number of feasible solutions increases as the sim-opt iteration loop progresses. 

*Highlights (for review)
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 2 

Abstract—This paper examines a problem related to dispatching materials to 

spreaders in coal (lignite) mines operated under the paradigm of continuously excavated 

material flow. In the considered particular case, complexity arises from different material 

types of overburden to be placed on the dump site in pre-defined patterns that guarantee 

geotechnical safety. These types include wet, semi-wet and dry material, which are 

accessed on the excavation site according to the geological deposition and the mining plan. 

Controlling of the dispatch system has to take into account the extraction sequence and 

geological stratification on the excavation site and the available dump space per material 

on the dumping site. With eight excavators on the excavation site and seven spreaders on 

the dump site the problem is already complex, having not stated yet that random 

breakdowns may make some options temporarily unavailable. To optimize the dispatch 

system in terms of minimum idle time due to unavailability of dumping space, a new 

multi-stage simulation-based optimization approach is proposed. This approach consists 

of running alternatingly a deterministic optimization model and a stochastic simulation 

model. It combines simulation and algorithms to solve a transportation problem and a job-

shop scheduling problem. The proposed approach is tested on a large continuous mine 

under given different dumping sequences, and results are reported. The merits and 

limitations of the proposed approach as pinpointed and farsighted operations 

management are discussed.  

Keywords: OR in natural resources; simulation-based optimization; opencast coal 

mining; short-term scheduling; material dispatching.  

1. Introduction 

Short-term production scheduling of a continuous mining system defines a sequence 

of extraction and dumping operations over time within a predefined production plan. This 

schedule is concerned with the present operating conditions and constraints within the 

confines of the most recent long or medium-term plan. It plans extraction and dumping 

sequences in terms of weeks or days. The optimization of short-term production 

scheduling is conventionally performed in two distinct steps, (Hustrulid & Kuchta, 2006). 

The first step optimizes only the sequence of extraction of materials. The second step 

optimizes the dispatch decisions based on the dumping sequences, equipment capacity, 
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 3 

performance, and availability. The focus of this study is on the second step of the 

optimization. 

In the real world, there are limitations to the above mentioned distinct optimization 

steps, which may result in non-optimal or infeasible short-term production schedules. 

First, uncertainty in input parameters is not considered in the optimization steps. Second, 

the optimization of the extraction sequence of material ignores operational considerations 

and equipment availability, and thus can be unrealistic. Lastly, most of the mathematical 

programming approaches are limited by the amount of the decision variables. Indeed, 

simplifying assumptions should be made to develop a manageable mathematical model. 

The performance of the production scheduling can be adversely affected by these 

limitations and this may lead to: (a) increased operating costs due to the unscheduled 

downtimes; (b) uncertainty in equipment performance and lower utilization of equipment; 

and (c) inability to meet expected production targets. This paper proposes a new 

simulation-based optimization approach that can accommodate these limitations. This 

approach consists of running alternatingly a deterministic optimization model and a 

stochastic simulation model. It uses a top staged down approach by combining simulation, 

the transportation problem, and the job-shop scheduling problem. The transportation 

problem provides a mechanism to optimize dispatch decisions. In other words, it finds 

optimal connections between excavators and spreaders. Because of the nature of the 

transportation problem, it is possible to have multiple connections for an excavator. 

Therefore, the job-shop scheduling problem deals with the allocation of spreaders to 

different excavators over time. Its objective is to find the processing sequences and starting 

times of each operation on each spreader, in order to minimize the total weighted 

tardiness. Finally, the system simulation uses the dispatch decisions generated by 

optimization and evaluates particular performance indicators under uncertainty in system 

performance. The calculated values are then introduced into a control module. The control 

module suggests refinements to parameters of the optimization model (e.g. transportation 

costs, jobs order, and jobs weight). The iterative process ends after a stopping criterion is 

met. The proposed approach is tested on a large continuous mine under given different 

dumping sequences, and results are reported. The merits and limitations of the proposed 

approach as pinpointed and farsighted operations management are discussed. 
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 4 

In the following sections, a literature review and a brief background about continuous 

mining systems will be given. It continues by defining the problem. Then, the solution 

strategy is discussed in detail. After that, the computational framework and its 

implementation are presented. Finally, the description of a real-size case study is given 

and the obtained results are reported. The last section concludes the findings of this study. 

2. Review of Literature and Proposed Simulation-based Optimization Platform 

A considerable amount of literature has been published on the optimization of short-

term production scheduling. These studies in early attempts have focused on evolving 

concepts and related formulations for finding extraction sequences based on mathematical 

programming, e.g. (Gershon, 1983; Wilke & Reimer, 1977; Wilke & Woehrle, 1980). Their 

objective is to minimize production deviations from the long-/medium-term production 

targets. While allocating resources, the conventional optimization process considers 

mining direction and fleet capacity. Nevertheless, it does not integrate the fleet 

management, i.e. dispatching of mining equipment and uncertainty in equipment 

availability. More recent attentions thus focus on the provision of real-time fleet allocation 

for short-term production scheduling (Alarie & Gamache, 2002; L’Heureux, Gamache, & 

Soumis, 2013) and stochastic optimization of short-term production scheduling 

(Matamoros & Dimitrakopoulos, 2016; Topal & Ramazan, 2012). They have been 

successfully applied for over three decades to find optimal solutions for real size case 

studies. However, a large and growing body of literature has mainly investigated the 

applications that are in the discontinuous block mining with the diffuse deposits.  

Simulation–optimization is a method that stems from the rapid and successful 

development of simulation and optimization techniques. The idea is to discover 

simultaneously the great detail provided by simulation and the capability of optimization 

techniques to find good or optimal solutions (Fu, 2002). The possibilities of coupling 

simulation and optimization are vast and the appropriate approach highly depends on the 

problem characteristics. Thus, before all, it is very important to have a good overview of 

the different approaches.  

In the literature, different criteria are used to classify simulation-optimization 

approaches. Fu (1994) distinguished them based on properties of the optimization 

problem. The author separately discusses the discrete and the continuous parameter cases 
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 5 

including techniques for optimization, however, the focus of the paper is on the latter. 

Some discriminated simulation–optimization methods by the applied techniques, e.g. 

gradient approaches, stochastic optimization, heuristics, statistical methods, etc., (Ammeri, 

Hachicha, Chabchoub, & Masmoudi, 2011; Andradóttir, 1998; Carson & Maria, 1997; Fu, 

2001). Banks, Carson, Nelson, and Nicol (2005) classified the approaches by their 

algorithms into four categories; approaches that (i) guarantee asymptotic convergence, (ii) 

guarantee optimality, (iii) guarantee a pre-specified probability of correct selection from a 

set of alternatives, or (iv) are based on heuristics. Fu (2002) considered the purpose of the 

stochastic simulation in the overall design as a key criterion. Based on this criterion the 

approaches are categorized into two main categories namely, “optimization for 

simulation” and “simulation for optimization”. Fu (2002) stated that their relation is not an 

equal partnership, but a subservient one. The former uses the optimization routine as an 

add-on to suggest candidate solutions to the simulator. The latter, in contrast, uses 

stochastic simulation to generate scenarios for math programming formulations from a set 

of possible realizations. However, the author has not discussed it further in the paper. 

Other classifications focus on the problem characteristics such as objective functions (e.g. 

single or multiple objectives), solution space (e.g. discrete or continuous), or shape of the 

response surface (e.g. global or local optimization) (Ammeri et al., 2011; Barton & 

Meckesheimer, 2006; Tekin & Sabuncuoglu, 2004). Recently, a comprehensive taxonomy 

for simulation–optimization methods was proposed by (Figueira & Almada-Lobo, 2014). 

The authors classified the simulation-optimization approaches based on four key 

dimensions: Simulation Purpose, Hierarchical Structure, Search Method, and Search 

Scheme. The first two are related to different ways in which simulation and optimization 

interact, whilst the other two concerned with the design of the search algorithm. The 

authors claim that, considering these four dimensions (and their full spectrum), they were 

able to cover the complete range of simulation–optimization methods and distinguish 

them in at least one dimension. Based on the Simulation Purpose, they distinguished three 

major streams as follows: 

 Solution Evaluation (SE): Here, simulation is used to evaluate solutions and hence 

assess the response surface.  
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 6 

 Analytical Model Enhancement (AME): Simulation is used to enhance a given 

analytical model, either by refining its parameters or by extending it (e.g. for different 

scenarios). 

 Solution Generation (SG): Simulation generates the solution based on the optimization 

output. 

Based on the Hierarchical Structure, Figueira and Almada-Lobo (2014) categorized the 

simulation-optimization methods into four classes namely: 

1. Optimization with simulation-based iterations – in all (or part) of the iterations of an 

optimization procedure, one or multiple complete simulation runs are performed, see 

Figure 1-a. 

2. Alternative simulation-optimization – both components run alternatingly, see  

Figure 1-b. 

3. Sequential simulation-optimization – both components run sequentially (either 

optimization following simulation or the opposite), see Figure 1-c. 

4. Simulation with optimization-based iterations – in all (or part) of the iterations of a 

simulation process, a complete optimization procedure is performed, see Figure 1-d. 

 

Figure 1. Four classes of simulation-optimization based on Hierarchical Structure, (Figueira & 

Almada-Lobo, 2014). 

The categories defined for Search Method dimension are aligned with the major 

dichotomies in optimization problems such as exact vs heuristic; and continuous vs 

discrete (or combinatorial). Finally, in the Search Scheme the sequence of solutions and 

realizations are concerned, i.e. deterministic and stochastic problems are distinguished.  

In the field of mining, little research to date has been carried out in the simulation-

based optimization method. Mena, Zio, Kristjanpoller, and Arata (2013) presented 

simulation and optimization modeling framework for allocating trucks by route based on 

their operating performance. In their optimization problem, equipment availability is a 

variable and the objective is to maximize the overall productivity of the fleet. Their 

computational cycle is such that the optimization model provides an initial set of decision 
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 7 

variables. During the simulation run, when specific events (e.g. failure of a truck, etc.) 

occur, the optimization model is called to provide a new set of variables to the simulation 

model. Nageshwaraniyer, Son, and Dessureault (2013a) proposed a two-level hierarchical 

simulation-based planning framework to maximize the revenue in each shift in one of the 

largest coal mine in the world. Trucks and trains system are used for the transportation of 

the material. Their framework reduces the decision space by separating the problem into 

sub-problems. These sub-problems are then solved such that the lower-level problems (the 

machinery scheduling problem) are constrained by the solution of the preceding higher-

level problem (train-loading problem). In another study, Nageshwaraniyer, Son, and 

Dessureault (2013b) investigated a robust simulation-based optimization approach for a 

truck-shovel system in surface coal mines. The objective is to maximize the expected value 

of revenue obtained from the delivered trains to customers. The Response Surface Method 

(RSM, (Jones, 2001)) is applied to define the variance expression of the objective function 

under different parameter settings of the simulation model. To obtain robust solutions, the 

authors added the variance expression as a constraint to the formulation of the 

optimization model.  

Since there are few applications of the simulation-optimization approach in mining, it 

seems wise to focus on related fields, such as supply chain management, process system 

engineering, and scheduling of manufacturing environments to build upon their findings.  

A supply chain management problem under demand uncertainty was presented by 

Jung, Blau, Pekny, Reklaitis, and Eversdyk (2004) whereby safety stock levels were 

determined using a simulation-based optimization method in a rolling horizon manner. 

Their proposed approach consists of running alternatingly a deterministic planning model 

and a stochastic Monte-Carlo based simulation model in a loop structure. Their algorithm 

ends when the difference between the estimation and the target values of the customer 

satisfaction level is equal to very small number. Wan, Pekny, and Reklaitis (2005) present 

an extension to the proposed simulation-based optimization framework for analyzing 

supply chains. The extension consists of the iterative construction of a surrogate model 

based on simulation results. The model captures the relation between the decision 

variables and the performance of the supply chain. Instead of individual simulation runs, 

the decision variables can then be optimized using the surrogate model. The authors claim 

that the proposed framework can generally obtain better solutions with a smaller number 
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of simulation runs. The framework can also readily handle chance constraints and does 

not present serious scale-up problems. Truong and Azadivar (2003) developed a hybrid 

optimization approach to address the supply chain configuration design problem. Their 

approach combines simulation, mixed integer programming and a genetic algorithm. The 

genetic algorithm provides a mechanism to optimize qualitative and policy variables. The 

mixed integer programming model reduces computing efforts by manipulating 

quantitative variables. Finally, simulation is used to evaluate performance of each supply 

chain configuration with non-linear, complex relationships, and under assumptions that 

are more realistic. Yoo, Cho, and Yücesan (2010) used discrete-event simulation to 

improve the efficiency of the supply chain optimization. This is done with the application 

of Nested partitioning (NP; global random search) and optimal computing budget 

allocation (OCBA; statistical selection). A general framework using a combination of 

simulation and optimization is presented by Almeder, Preusser, and Hartl (2009) to 

support operational decisions for supply chain networks. The authors claim that results 

are competitive and the method is faster compared to conventional methods. Othman and 

Mustaffa (2012) reviewed simulation and optimization methods applied in supply chain 

management. 

Inventory optimization is one of the important topics in supply chain management. 

Köchel and Nieländer (2005) presented the application of the simulation optimization 

approach in multi-echelon inventory models. The search process in the optimization 

model is done by repeated processing of four stages using a genetic algorithm. The 

objective is to define optimal policies for the defined system. Lately, Chu, You, Wassick, 

and Agarwal (2015) proposed a simulation-based optimization framework to optimize 

multi-echelon inventory systems under uncertainty. The framework is composed by 

agent-based modeling, simulation, the Monte-Carlo technique, a cutting plane algorithm, 

an experimental design technique, and statistical hypothesis tests. For the given inventory 

parameters, the agent-based model simulates the performance measures. The output of the 

model forms the objectives and the constraints of the optimization problem. The functions 

expectations in terms of sample averages are estimated using the Monte-Carlo method. 

After that, an iterative cutting plane algorithm is used to solve the optimization problem. 

When a solution passes the hypothetical tests, it can be considered as a local optimal 

solution. Subramaniam and Gosavi (2007) examined a problem related to replenishing 
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inventories at retailers in distribution networks operated under the paradigm of Vendor-

Managed Inventory (VMI). A simulation-optimization approach is developed to minimize 

the average cost per unit time of operating the entire system. A combination simultaneous 

perturbation (SP) and simulated annealing (SA) is integrated to a discrete-event 

simulation. Jalali and Van Nieuwenhuyse (2015) reviewed and classified the applied 

simulation-optimization methods for the inventory management problem.  

The scheduling problem in manufacturing environments is another related field of 

interest. Hierarchical production planning creates a bridge between the long-term plans 

and short-term schedules. It has been applied in different problems such as a multi-plant 

production planning, planning of semiconductor wafer fabrication, flexible manufacturing 

system, a make-to-order environment, etc. (Albey & Bilge, 2011; Bang & Kim, 2010; 

Gansterer, Almeder, & Hartl, 2014; Venkateswaran & Son, 2005). Lim, Jeong, Kim, and 

Park (2006) studied a production-distribution plan taking into account a multi-facility, 

multi-product, and multi-period problem. Their solution procedure for production-

distribution planning consists of a mathematical solution procedure and a simulation 

solution procedure. First, the mathematical procedure is solved to decide the capacities of 

facilities and then outputs from this procedure are used to set the values of the inputs in 

the simulation procedure. The simulation procedure generates outputs, such as the 

production-distribution plans, as well as performance measures. If the outputs do not 

satisfy the required level, the replenishment policy in the factory and DC stages will be 

changed for the procedure. This approach continues iteratively until the desired optimal 

solutions are obtained. For a cooperative transportation problem, Sprenger and Mönch 

(2012) suggested a heuristic method using ant colony optimization combined with 

stochastic simulation. Discrete-event simulation is used to assess the method in a rolling 

horizon setting. Aqlan, Lam, and Ramakrishnan (2014) applied simulation-optimization in 

the consolidation of production lines in a configure-to-order production environment. On 

one hand, the method uses MIP model to minimize transportation cost and waiting time. 

On the other hand, simulation provides recommendations and supports the decision-

making. Lin and Chen (2015) studied the problem related to a real-world semiconductor 

back-end assembly facility. Simulation combined with a genetic algorithm is used to solve 

a hybrid flow-shop scheduling problem.  
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Subramanian, Pekny, and Reklaitis (2001) tackled a stochastic optimization problem in 

the context of R&D Pipeline management. The problem is an optimal resource-constrained 

project selection and task-scheduling problem in the face of significant uncertainty. They 

proposed a two-layer simulation-based optimization approach. The inner loop consists of 

a process optimizer, a process simulator, and a trigger event module. The simulator starts 

with an initial solution. When the simulation module encounters a need for control 

actions, it momentarily suspends itself and communicates the state of the system to the 

decision making module. The optimizer solves a combinatorial problem that is 

appropriately modified to account for the current system state. After that, the simulation is 

re-primed and it continues marching in time until its subsequent need for a control action. 

The outer loop (Subramanian, Pekny, Reklaitis, & Blau, 2003) modifies the problem 

formulation, based on the knowledge obtained from the inner loop. It attempts to drive the 

controlled trajectories in the inner loop toward improving solutions with respect to 

probability distribution of the NPV in the system. Figure 2 shows the “Sim-Opt” 

architecture, which is introduced by Subramanian et al. (2003).  

 

Figure 2. The “Sim-Opt” architecture (Subramanian et al., 2001). 

To decide which methods are of particular interest, the problem characteristics 

presented in section 4 need to be considered. Shishvan and Benndorf (2017) presented the 

development of the simulation model for continuous mining systems from extraction to 

coal stockpiling and waste dumping. It captures different sources of uncertainty (e.g. 

equipment failures, geological uncertainty) and their interdependencies. Additionally, the 

simulator integrates decision variables representing decisions to be made in short-term 

production scheduling and therefore can be utilized during the optimization process to 

suggest optimal dispatch decisions to the user. Choices that need to be made might be for 
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instance the equipment’s schedule, the equipment’s digging/dumping locations, the 

equipment’s capacities, or the schedule of auxiliary actions such as belt shifting. Thus, the 

optimization and the simulation modules need to be alternatingly connected. Moreover, 

the simulation module always requires inputs from the optimization module. Taken 

together, the alternating simulation-optimization class (Figure 1-b) seems to be more 

suitable for this problem. Furthermore, based on the size and the characteristics of the 

problem, the exact search method with stochastic search scheme is recommended.  

 

Figure 3.The suggested simulation-based optimization platform (reproduced after (Halim & Seck, 

2011)). 

Figure 3 depicts the concept of the suggested platform in this paper for the simulation-

optimization process. Hereafter, this platform is called “simulation-based optimization” 

approach (Halim & Seck, 2011). In this approach, the simulation model functions as the 

evaluator of the objective functions that are to be optimized by the optimization module. 

The user interface provides the user the flexibility to set the parameters of the optimization 

algorithm and the run control of the simulation model (the details are discussed in the 

following). Once the entire necessary configuration has been set, the optimizer will start 

with initial solutions for which evaluations using the simulation are performed. In other 

words, the optimizer calls the simulator and provides a new set of decision variables in 

each iteration step. The simulator simulates the mining operation for the given set of 

decision variables and based on the results, the system’s KPIs can be estimated. The results 

of the evaluations are then used by the optimization algorithm to generate new solutions 

that are expected to be better than the previous solutions. This loop continues until the 
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stopping criteria of the optimization algorithm are met. The following presents a brief 

background about continuous mining systems.  

3. Background 

Continuous mining systems, usually known as opencast mines, consist of excavators, 

belt conveyors, and spreaders operating in series and under the paradigm of continuously 

excavated material flow. Figure 4 shows a schematic section view of a continuous coal 

mining system. The operation starts with the excavation of materials by excavators at the 

extraction site. It continues by the transportation of the extracted materials from mining 

benches to dumping benches or a coal bunker. The transportation process includes a 

network of conveyor belts consisting of face conveyor belts, main conveyor belts, and a 

mass distribution center. Finally, coal is stacked at the bunker or waste materials are 

dumped at the dumping site. In such a paradigm, the excavators can be seen as supply 

points and the spreaders together with the coal bunker can be considered as demand 

points. 

The production planning in an opencast mine covers various periods, namely long-, 

medium-, and short-term planning horizons. The long-term planning affects an opencast 

mine across its entire life, all the way to the end of mining supervision after the land 

reclamation. The medium-term planning often covers the next five-year period. Finally, 

the short-term planning is a yearly seam-focused detailed plan.  

Besides operational and economical parameters that are necessary for any production 

planning process, the major input here is the geological block model. It is divided to two 

separate block models namely, the extraction block model and the dumping block model. 

The former includes the geological strata, quality parameters, volumes-tonnages, and 

material types. The latter includes dumping profiles and volumes.  
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Figure 4. A schematic view of continuous mining systems, reproduced after (Gärtner, Hempel, & 

Rosenberg, 2013). 

As mentioned earlier, the short-term plan is guided by medium and long-term plan. 

Forasmuch as the complex deposit formations require selective mining of coal as well as 

overburden on different benches. The objective of short-term planning is to find the 

sequence of blocks, known as the extraction sequence, that meet the defined targets under 

current operating conditions and constraints. After the creation of the extraction sequence, 

basically, the first step of the optimization of the short-term scheduling is completed. The 

created extraction sequence can be used as a guide to create the dumping sequence. It is 

also an input for the second step of the optimization, which is the focus of this paper. The 

next section describes the problem with the defined objectives.  

4. Problem Description 

Figure 5 presents the flow diagram of the short-term production scheduling in 

continuous mining systems. Three major processes can be seen in the diagram namely, 

short-term planning, dumping sequence creation, and material dispatching. These should 

be completed in the presented logical order to have a short-term schedule. Here, there are 

two underlying assumptions; the first is that the extraction block model, the dumping 

block model, and the extraction sequence are given as discussed in the previous section. 

Stable dump construction needs different material types with special sequences; while 

these materials are distributed unevenly at the extraction side, the second underlying 

assumption becomes very important. It is defined as that the problem should be relatively 

a balanced problem. In a sense, the difference between the total amounts of different 

overburden materials at the extraction site with the amounts of available spaces at the 

dumping site should be a small number. In the presence of finite available space for a 
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material type, when the extraction of that material type becomes sufficiently large, then for 

any given dumping sequence it will no longer be possible to meet the defined production 

targets. The optimization of dispatch decisions thus must involve the dumping capacity 

constraints. Furthermore, uncertainty is associated with input parameters, equipment 

availability, and their performances thus the resulting problem is a constrained stochastic 

optimization problem.  

The different ranges of the ratio of the expected amount of materials at the extraction 

site to the dumping capacities of the same materials give rise to three different scheduling 

scenarios. In scenario I, when the extracted to dumped capacity ratio is sufficiently small, 

the dumping site has sufficient spare capacity to cope with abrupt changes in the extracted 

materials due to the uncertainty involved. Therefore, in this scenario, challenges are 

mostly related to the optimization of the dispatch decisions. In scenario II, characterized 

by an intermediate range of the extracted to dumped capacity ratio, the production 

capacity may be quite constrained by the dumping capacity when the extraction of 

different materials spikes at some point in time. In this scenario, even with an optimal 

dispatch decision, the production for some excavators may fail to reach their targets due to 

the downtimes. Finally in scenario III, the extracted to dumped capacity ratio is 

sufficiently large that most of the extracted materials simply cannot be dumped and thus 

excavators will compete for dumping spaces. In this scenario, dispatch decisions and 

dumping spaces must be assigned strategically to meet the demands of some excavators in 

preference to others. In this paper, the optimization problem that is under scenario I and II 

will be addressed. The optimization of short-term scheduling for the case of scenario III 

involves strategies for the prioritization of excavators. Such strategies, while of 

considerable interest, are beyond the scope of this study.  
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Figure 5. Flow diagram of short-term production scheduling in continuous mining systems.  

To formulate the problem, the following problem context is assumed: 

 An opencast mine has multiple extraction benches with only one excavator operating 

on each bench. Different excavators may have different production capacities and 

each can extract any type of material. Furthermore, the mine has multiple dumping 

benches while only one spreader can operate on each bench. Similar to the excavators, 

different spreaders can have different dumping capacities.  

 The units at different benches cannot send material to a same destination at the same 

time.  

 The daily/weekly schedule known as the task schedule is an external input for the 

short-term scheduling problem. This schedule includes the planned availabilities and 

downtimes (i.e. planned maintenance) of the equipment. 

 Each excavator can supply any spreader and the transportation network is always 

available. Hence, in the first part of this study, namely optimization, availability of the 
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transportation network is not explicitly considered. Later, in the simulation part, it 

will be added to the problem as a feedback from the simulator.   

The objective is to minimize downtimes of equipment by effective resource 

allocations. This will result in decrements in overall costs, including extraction costs, 

dumping costs, and penalties for deviating from the predefined targets. There are two 

types of decisions, on the excavator and on the spreader side: 

 Decision on the excavator side: 

o Production rate of each excavator (between 0% and 100%) 

o Connection to the spreader 

 Decision on the spreader side: 

o Dumping sequence (depending on material type available) 

5. Solution Strategy  

To address the above-mentioned problem this paper proposes a new simulation-based 

optimization approach that relies on the use of a deterministic optimization model and a 

stochastic simulation model. The deterministic model is built using a certain feasible 

dumping sequence and incorporates a transportation problem and a job-shop scheduling 

problem. The transportation problem provides a mechanism to optimize dispatch 

decisions. In other words, it finds optimal connections between excavators and spreaders. 

Because of the nature of the transportation problem, it is possible to have multiple 

connections for an excavator. Therefore, the job-shop scheduling problem deals with the 

allocation of spreaders to different excavators over time. Its objective is to find the 

processing sequences and starting times of each operation on each spreader, in order to 

minimize the total weighted tardiness. A discrete event simulation of the system is 

executed implementing the dispatch decisions obtained via the deterministic model for a 

given dumping sequence. The results of multiple simulation replications serve to provide 

an estimate of a particular performance measure (e.g. utilization). The calculated values 

are then introduced into a control module. The control module suggests refinements to 

parameters of the deterministic optimization model (e.g. transportation costs, jobs order, 

and jobs weight). The iterative process ends after a stopping criterion is met. The strategy 

uses two aspects of the “Sim-Opt” architecture, which is introduced by (Subramanian et 
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al., 2001). Figure 6a-b presents the configuration of the discussed simulation optimization 

approach.  

 

Figure 6. Configuration of the simulation-based optimization approach. 

The following will discuss the three key sub-problems, the creation of a random 

dumping sequence, the transportation problem, and the job-shop scheduling problem. In 

the subsequent section, the various computational details that are needed to link these 

sub-problems and to drive the computations to obtain the desired short-term schedule will 

be discussed. 

5.1 Random Dumping Sequences  

Schematic representations of different dumping conditions are shown in Figure 7. 

Based on the dumping profile, after building a polder (a 100 m section), the possible 

dumping options are to continue building the polder or dump the type 2 material inside 

the polder, see Figure 7-a. If option 2 is randomly selected, the outcome is Figure 7-b. 

Similarly, there are two possible dumping options available in next stage of dumping. If 

option 1 is randomly selected, after the first stage, the type 2 material can be filled inside 

the polder, see Figure 7-c. After that, there are again two possible dumping options 

available; to continue to build the polder or to dump the type 3 material above the type 2 

material. In this stage, if the option 1 is randomly chosen, the type 3 material can be 

dumped inside the polder, Figure 7-d. Due to the fixed dumping sequence, here, the only 

possible dumping option is to continue building the polder with the type 1 material type.  
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Figure 7. Schematic representations of dumping options.  

 

Figure 8. Schematic diagram of evolution of random dumping sequences.  

If the dumping benches with their special profiles are discretized in defined sections 

(e.g. every 100 m), then the evolution of the random dumping sequences over time can be 

represented by the tree-like structure presented in Figure 8. Starting from each node, a 

large number of possible dumping options at the next dumping stage are expressed as 

branches stemming from that node. Assuming m possible next-stage dumping options at 

each node, the total number of scenarios will amount to mS, where S is the total number of 

dumping stages. Each scenario as a feasible dumping sequence is an input for the 

transportation problem as is shown in Figure 6-b.  

5.2 Transportation Problem 
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The transportation problem (TP) is concerned with shipping a commodity between a 

set of sources (e.g. excavators) and a set of destinations (e.g. spreaders). Each source has a 

capacity dictating the amount it supplies and each destination has a demand dictating the 

amount it receives, (Winston & Goldberg, 2004). The TP is a subset of network models and 

the set of resources and destinations can be illustrated, respectively, by a set nodes. Nodes 

are connected to each other via arcs; each arc has two major attributes namely the cost of 

sending a unit of a material from one node to the others and the maximum capacity of the 

arc, see Figure 9.  

 

Figure 9. A transportation problem with m sources and n destinations.  

An opencast mine extracts material at m different benches (       ). The amount of 

material to be extracted at bench i is ai. The demands for the extracted materials are 

distributed at n different dumping benches (       ). The amount of material to be 

dumped at bench j is bj. The problem is to find connections between excavators and 

spreaders at minimum cost. The linear programming (LP) formulation of the problem is as 

follows, (Winston & Goldberg, 2004): 
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                                                                                                (4) 

where,     is the number of units of materials sent from node i to node j through arc (i, 

j);     is the cost of transporting one unit of material from node i to node j via arc (i, j). The 

objective function, denoted by Eq. (1) involves a deterministic optimization in which the 

total cost of sending materials from supply points to demand points is minimized. In 

constraint (2), the sum of all shipments from a source cannot exceed the available supply. 

Constraint (3) specifies that the sum of all shipments to a destination must be at least as 

large as the demand. Constraint (4) is a binding constraint.  

Consider the feasibility of the problem. The only way that the problem can be feasible 

is if total supply exceeds total demand (    
 
        

 

   
). Two conditions can be implied 

from this: 

 When the total supply is equal to the total demand (i.e.     
 
         

 

   
) then the 

transportation model is said to be balanced.  

 A transportation problem in which the total supply and total demand are unequal is 

called unbalanced. If there is excess demand, a dummy source is introduced (i.e. a 

fictitious bench). The amount shipped from this dummy source to a destination 

represents the shortage quantity at that destination. If there is excess supply, a 

dummy destination is added to the network. Likewise, the amount received from this 

dummy destination from a source represents the excess quantity at that source.  

Due to the nature of the transportation problem, it is possible that an excavator has to 

send materials to multiple spreaders. The next section will discuss the job-shop scheduling 

problem, which deals with the allocation of spreaders to different excavators over the 

time. 

5.3 Job-Shop Scheduling Problem 

The job-shop scheduling problem (JSP) consists of a finite set of jobs           and a 

finite set of machines          . In this paper, excavators are defined as jobs and 

spreaders are defined as machines. The aim is to find a schedule of   on   under the below 

mentioned conditions: 
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 For each job    , a list (  
 
     

 
     

 ) of the machines which represents the 

processing order of   through the machines is given. Note that   
 
 is called the h-th 

operation of job   and   
 

 is the last operation of job j.  

 The processing order for each job is fixed, thus, a machine-sequencing problem for 

every job should be taken into account.  

 For every job   and machine  , a non-negative     is given, which represents the 

processing time of   on  .  

 Each machine must always be available and can process at most one job at a time, and 

once a job starts on a given machine, preemption is not allowed.  

 Every job   has an assigned release time      so that the first operation cannot start 

before   . In this paper,    is given in the task schedule.  

 An additional attribute of a job   is its weight   , which represents the relative 

importance of   in comparison to other jobs.  

 Furthermore, every job   has a due date      which should, but does not necessarily 

have to, be met in a schedule.  

In this study, the objective is to minimize the obtained total weighted tardiness, as 

defined            
 

   
, where                  is the resulting tardiness of job   in a 

schedule,    is the due date of the job, and    is its completion time. From now on, this 

problem is referred to as JSPTWT. Ku and Beck (2016) investigated the size of problem that 

can be solved by a Mixed Integer Programming (MIP) formulation. For a moderately sized 

problem up to 10 jobs and 10 machines, with the recent technology, MIP finds the 

optimum solution in a very reasonable amount of time. They also compared the 

performance of the four MIP models for the classical JSP. They concluded that the 

disjunctive MIP formulation with the use of the GUROBI v6.0.4 solver (Gurobi 

Optimization, 2016) gives the fastest result for a moderate sized problem. The list below is 

the disjunctive MIP formulation of JSPTWT, based on Manne (1960)’s formulations. The 

decision variables are defined as follows: 

     is the integer start time of job   on machine   

      is equal to 1 if job   precedes job   on machine   
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    (5) 

       

 
 
  
 
  
  

    
 

  
  

    
 

  
                                                  

(6) 

                                                                   (7) 

                                                            (8) 

                                                              (9) 

                                                                                (10) 

                                                                              (11) 

Constraint (6) is the precedence constraint. It ensures that all operations of a job are 

executed in the given order. The disjunctive constraints (7) and (8) ensure that no two jobs 

can be scheduled on the same machine at the same time. V has to be assigned to a large 

enough value to ensure the correctness of (7) and (8). In this paper, it is defined as   

            , since the completion time of any operation cannot exceed the summation of 

the processing times from all the operations. Constraint (9) and (10) measure the resulting 

tardiness of each job. Finally, constraint (11) ensures that a job cannot start before its 

release time, and thus, captures the non-negativity of the decision variables    .  

 

Figure 10. A simple job-shop scheduling problem, (Ku & Beck, 2016).  

As an example, Figure 10 shows a simple JSP in which three jobs J1, J2, and J3 are to be 

scheduled on three machines M1, M2, and M3. The graph on the top represents the 

precedence constraints. The Gantt chart on the bottom displays a feasible schedule that 
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satisfies the precedence constraints (Ku & Beck, 2016). As can be seen, the makespan is the 

total length of the schedule (that is, when all the jobs have finished processing). The term 

makespan will frequently be used in the case study section. The next section will elaborate 

more on the computational framework of the connection of the sub-problems.  

6. Computational Framework 

In this section, the overall computational approach is described. First, input 

parameters are explained. Then, the computational logic with the details of the integration 

of the sub-problems together and with the discrete event simulation is discussed. After 

that, the simulation based optimization framework is presented. 

6.1 Input Parameters  

The second step of the optimization of short-term scheduling starts with the 

assignment of input parameters. The definitions and their functionalities are as follows: 

 Start points of dumping in different benches, i.e. the start locations of spreaders on 

benches at the beginning of the working shift. This is an input for the creation of 

random dumping sequences. 

 The allowed range of movement for spreaders, i.e. in what range it is allowed to 

transport spreaders and start a new dumping profile. This is also an input for the 

creation of random dumping sequences. 

 Transportation costs, these costs are used to distinguish between different 

destinations for a source in the transportation problem.  

 Machine sequencing, the Earliest Due Date (EDD) sequencing method is used to 

create processing orders of the jobs in the JSP.  

 Finally, Job weights are some other input parameters for the JSPTWT. For instance, 

they can be used to prioritize an excavator if a bottleneck is seen after the simulation. 

The aim is to find the best combination of these parameters using simulation based 

optimization approach to achieve the optimum short-term schedule.  

6.2 Deterministic Optimization with Embedded Simulation 

The following describes the details of the integration of the sub-problems, together 

and with the discrete event simulation, in walk-through steps.  
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Step 1: start with an arbitrary set of input parameters.  

Step 2: create a sufficient number of random dumping sequences,         .  

Step 3: for a certain dumping sequence,           , optimal connections can be found 

using the transportation problem. 

Step 3.1: check the availability of the equipment based on the given task schedule and 

create the nodes. 

Step 3.2: start with first blocks in the given extraction sequence and assign their 

volumes as ai to supply nodes in the TP formulation.  

Step 3.3: assign the volumes of the first sequence of blocks in the given dumping 

sequence as bi to demand nodes in the TP formulation.  

Step 3.4: check if problem is balanced; if not add dummy nodes to the network. 

Step 3.5: create arcs between supply and demand nodes. Only these nodes get 

connected that have the same type of material.  

Step 3.6: add a capacity to the arcs. In the TP, the capacity is set to be infinite for all the 

arcs.  

Step 3.7: add costs to the arcs. In an opencast mine, the potential costs can be: 

 Excavators and spreaders on the same level (altitude) get lower cost of 

transportation.  

 Length of belt conveyors between supply nodes and demand nodes, the closer 

the equipment the lower the costs.  

 Difference between the production capacity and dumping capacity of the 

equipment, the lower the difference the lower the costs.  

Step 3.8: build the LP model with the help of Eqs. (1)–(4) and solve it by the GUROBI 

solver.  

Step 3.9: calculate the residual volumes and add them to the next iteration of the 

optimization. 

Step 3.10: go to the step 3.1 and repeat steps 3.1–3.10 until all the blocks are extracted 

in the given extraction sequence.  

Step 3.11: check for feasibility of the schedule, if there is residual volume left on the 

extraction side, set         and go to the step 3 until       . 

Otherwise, continue. 
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Step 4: create the input for the JSPTWT and build the MIP model using Eqs. (5)–(11) and 

solve it with the GUROBI solver.  

Step 5: create the Gantt chart. The output of the JSPTWT is the optimum short-term 

schedule for the given extraction and dumping sequence ( ).  

Step 6: run the discrete event simulation for the given short-term schedule.  

Step 7: record the state (utilizations, amounts) at the end of the time horizon.  

Step 8: set         and go to the step 3 until       . 

 

Figure 11. Computational flow diagram. 

6.3 Simulation Based Optimization Framework  

A more detailed flow diagram, which summarizes the overall computational 

framework, is presented in Figure 11. It combines the deterministic optimization with the 

stochastic simulation in a closed loop. Most of the steps are explained in detail in the 

Set input parameters 

Create random dumping sequences 

            ++ (dumping sequences)  

         ++ (extraction sequence)  

Build and solve the LP model of the TP 

Is the schedule feasible? 

Build and solve the MIP model of the JSP 

Run the discrete event simulation 

Select a number of best schedules 

Analyze them in the control module.  

If stopping criteria are met, stop. 

Otherwise, suggest a new set of input 

parameters. 

NO 

YES 
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previous section. As can be seen, the simulation is implicitly built over the embedded 

optimization. Once the computations over the simulation loop are completed, a number of 

best schedules based on the user-defined targets such as shorter makespan, higher 

utilization of equipment are selected. These are analyzed in the control modules; if the 

stopping criteria are met, the algorithm stops; otherwise a new set of input parameters is 

introduced to the optimizer. The following section presents more details about the 

interactions between the components in a simulation-optimization platform. 

7. Implementation of the Computational Framework  

The implementation of the proposed simulation-based optimization approach consists 

of the following major components: the computational control module, the databases, the 

three modules for the creation of random dumping sequences, the transportation problem 

and the job-shop scheduling problem, the discrete event simulation with its interface, the 

post-processing module, and finally the control module, Figure 12. The computational 

control module is responsible for controlling interactions of computational components. It 

has various functions including: 

 Issuing commands for retrieving information from the database.  

 Generating/updating and releasing commands for executing the steps of the 

algorithm. 

 Re-processing and controlling the output of each computational component before 

issuing the next command. 

 Selecting a number of best schedules based on the defined criteria to proceed the 

algorithm to the simulation part. 

The database contains information about the geological block model, the given 

extraction sequences, and the task schedule. These data are stored in a spreadsheet file. 

Since the computational control module is coded in Python, a publicly available Pandas 

library (McKinney, 2010) is used to access each cell in the spreadsheets. Big datasets can be 

readily read and stored in DataFrames with the help of Pandas library.  

The three major components of the deterministic optimization procedure were 

explained in detail in the previous sections. It should be noted that to solve the LP or the 

MIP models, the GUROBI Python interface is used. After the selection of a number of best 

schedules by the computational control module, the data are recorded in two separate 
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databases, namely, the block model and the schedule. These two are the major inputs for 

the discrete event simulation of an opencast mine. The detail of the construction of the 

simulation model of an opencast mine and simulation model interface can be found in 

(Shishvan & Benndorf, 2014; Shishvan & Benndorf, 2016; Shishvan & Benndorf, 2017). 

 

 

Figure 12. Simulation-optimization platform. 

The post-processing module processes the simulation outputs and creates plots and 

tables. Finally, the control module calculated the differences between the current results 

with the predefined targets. If another loop of simulation-optimization is required, the 

new input parameters are suggested to the computational control module. Next, the real-

size case study is presented. 

8. Case Study 

To demonstrate the performance of the proposed simulation based optimization 

approach, a real case study has been developed. The case study is the Hambach mine; it is 

located in Germany and is a large opencast coal mine. It produces over 100 million tons of 

coal and over 500 million m3 of overburden materials per year.  

8.1 Case Problem 

8.1.1 Overview of the Production System 
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A schematic view of the Hambach mine is shown in Figure 13. In total eight bucket-

wheel excavators (BWEs) have to be scheduled to serve continuously seven spreaders with 

waste materials and two bunkers with coal. Each BWE excavates either coal or waste in 

terrace cuts and transfers materials to the face conveyor belt, which carries it along the 

bench to the main conveyor belt. All excavated materials of the eight benches are 

distributed to their destinations at the mass distribution center. Based on the daily short-

term schedule, waste is distributed to the seven spreaders for dumping, and coal (lignite) 

is forwarded to two coal-bunkers. Table 1 shows the technical specifications of the BWEs. 

The mine operates 24 hours per day and seven days per week. Regular maintenance is 

carried out on weekly, monthly, and annually based schedules. During the regular 

maintenance or an unscheduled breakdown, the production process ceases on the bench. 

 

Figure 13. Schematic overview of the production system of the Hambach mine. 

Table 1. Technical specification of BWEs. 

Bench 
BWE 

model 

Discharge 

per min 

Bucket 

capacity (m3) 

Theoretical 

capacity (m3/h)* 

S1 259 44 2.6 5700 

B1 260 38 3.5 5700 

B2 291 48 5.0 12500 

B3 287 43 5.1 10400 

B4 290 48 5.0 12500 

B5 292 48.6-72.0 5.0 12500 

B6 293 48.6-72.0 5.0 12500 

B7 289 48 5.0 12500 

* 19.3 hours per day 
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8.1.2 Problem in Mining 

Waste materials at the Hambach mine are categorized in three types of mixed soils, 

dry mixed soils type1 (M1), semi-wet mixed Soils type2 (M2T) and wet mixed soils type2 

(M2N). The extraction of M2 type materials is increasingly facing deficiencies in output 

due to difficult mining materials. This type of soil, specifically M2N, exhibits a high share 

of cohesive components and is difficult to drain. M2N material cannot be used for stable 

dump construction and needs to be filled in between prebuilt polders constructed of dry 

material (Figure 14). The fact that only a limited quantity of these unstable mixed soils can 

be placed in the waste dump causes downtimes and bottlenecks in the placement process 

on the dumping side. 

Furthermore, historical data show that next to scheduled maintenance, breakdowns of 

the equipment occur in a random manner. Due to the “in series” system configuration, 

equipment units feeding or connected to the ceased equipment are blocked and set out of 

the operation while the maintenance is being done or the failure is being repaired. 

Furthermore, because of the multi-layer nature of the deposit, changes from one material 

type (e.g., M1) to another material type (e.g., M2N) happen very frequently. Each time a 

material change takes place, the BWE stops excavating while the mass distribution center 

changes the drop-point of the belt conveyor to its new destination. In reality, this 

operation approximately takes five to eight minutes. This time may increase due to the 

unavailability of the new destination. The combined effect of random equipment 

breakdowns and frequent changes in extracted materials, makes the prediction of the exact 

material flow rate at any given future time span a major source of uncertainty. Thus, the 

problem is a constrained stochastic optimization problem. It is formulated in the before 

mentioned problem context.  

 

Figure 14. Placement of M2N materials in between a prebuilt polder, (Gärtner et al., 2013). 
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The objective is to optimize dispatch decisions to decrease downtimes/increase 

efficiency of excavators and spreaders by effective resource allocations while ensuring 

stable dump construction using the proposed simulation based optimization approach. 

Here, decisions on the dumping site are the length of polders to be built while on the 

extraction side, decisions are production rates of excavators and their connections to 

spreaders.  

8.1.3 Input Data 

The following presents the input data used for this case study. Table 2 gives the 

extraction sequences of different material types as an input. These will be used as a guide 

in the creation of random dumping sequences. In total, over 830 thousands m3 of different 

material types should be scheduled to be extracted. The amounts of different material 

types for each sequence are shown in the table.  

Table 2. Extraction sequences as an input. 

Extraction 

Sequence 

Material Types 

M2T (m3) Coal (T) M2N (m3) M1 (m3) Total (m3) 

1 9,001  3,621  1,215  5,983   19,648  

2 4,573  2,008  - 15,486   21,971  

3 4,845  3,621  1,090  17,505   26,889  

4 10,093  2,008  8,642  22,805   43,452  

5 16,989  3,621  - 28,089   48,527  

6 14,343  2,008  - 28,385   44,640  

7 13,984  6,613  12,832  26,089   59,203  

8 22,732  11,520  18,346  12,769   64,818  

9 21,368  6,613  - 28,316   55,982  

10 - 11,520  25,313  33,264   69,548  

11 15,166  6,613  10,944  25,642   58,050  

12 21,115  11,520  8,949  19,189   60,224  

13 19,732  6,583  - 37,663   63,665  

14 - 7,742  9,721  35,246   52,340  

15 7,991  6,583  13,593  15,143   42,997  

16 - 7,742  - 31,333   38,706  

17 - 6,583  9,721  11,979   27,970  

18 - 7,742  - 16,075   23,448  

19 - 12,115  - -  11,538  

Total 181,932  126,376  120,366  410,961   833,617  

As discussed earlier, the extraction sequence of material ignores operational 

considerations and equipment availability. The availably of the equipment (the task 

schedule in Figure 5) as another external input is given in Table 3. The number “0” denotes 
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that the equipment is unavailable and “1” vice versa. A closer look at the task schedule 

reveals that excavators S1, B7, and spreader I7 are unavailable, and thus the transportation 

problem will have six supply nodes and seven demand nodes. The maximum allowed 

ranges of movement for different spreaders are presented in Table 4. They are important 

parameters for the creation of the random dumping sequences. Here, their range is 

defined as ± (200 – 500) meters for all spreaders. During the simulation-optimization loop 

iterations the optimum value will be determined. The plus-minus sign indicates that the 

spreader has the option to choose a dumping location from the front or back site of its 

standing position. Other important input parameters are the job weights for the job-shop 

scheduling problem. With the help of these parameters different excavators can be 

prioritized against each other. For example, if two excavators have to send extracted 

materials to one spreader, the one whose job weight is higher will be scheduled first. In 

this case, job weights are considered to be the same for all excavators, see Table 5.  

Table 3. Task schedule of BWEs and spreaders. 

Bench First Shift Second Shift Third Shift 

S1 0 0 0 

B1 1 1 1 

B2 1 1 1 

B3 1 1 1 

B4 1 1 1 

B5 1 1 1 

B6 1 1 1 

B7 0 0 0 

I1 1 1 1 

I2 1 1 1 

I3 1 1 1 

I4 1 1 1 

I5 1 1 1 

I6 1 1 1 

I7 0 0 0 

Table 4. Maximum and minimum allowed range of movements for the spreaders. 

 Benches 

 
I1 I2 I3 I4 I5 I6 I7 

Range of 

allowed 

movement 

±(200 – 500) ±(200 – 500) ±(200 – 500) ±(200 – 500) ±(200 – 500) ±(200 – 500) ±(200 – 500) 

Table 5. The job weights which are used in the job-shop scheduling problem. 

 Benches 

 
S1 B1 B2 B3 B4 B5 B6 B7 

Job weights 1 1 1 1 1 1 1 1 

The defined costs for the transportation problem are as follows: 
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 Distance to the destination: This cost can be calculated by Eq. (12). Where, C1 is the 

associated cost coefficient, distance (m) is the length of the belt conveyors between the 

source and the destination and            
 

 
  is the speed of the belt conveyors. It can 

be interpreted as the amount of time that is needed to transport one m3 of any material 

from the supply point to the demand point. The closer the equipment are the lower 

the cost is.  

                      
                               

         
  (12) 

 Capacity difference: This cost can be calculated by Eq. (13). Here, C2 is the associated 

cost coefficient, inflow (m3) is the amount of material to be sent to the destination from 

the source. Capacitysource and Capacitydestination  
  

 
  are the theoretical capacities of the 

supply point and demand point, respectively. It can be interpreted as the penalty for 

connecting a small excavator to a big spreader or vice versa. Altogether, the calculated 

value is the amount of extra time that is needed to extract or dump the material.  

                       
                          

                                    
      (13) 

 Altitude difference: This cost can be calculated via Eq. 14. Here, C3 is the associated 

cost coefficient. For a better clarification, Figure 15 is used to describe the parameters 

of this equation. In summary, it measures the amount of the extra transportation time 

that is needed if the supply point and the demand point are not at the same level. As 

can be seen in Figure 15, it is assumed that the maximum angle of inclination of the 

belt conveyors is 20 degrees. Here,                          are the elevations of 

excavators and spreaders, respectively.  

                     

 

 
 
 
                      

      
  

 
                      

      
 
 

 
 
 

  

         
  (14) 
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Figure 15. A schematic illustration of the parameters of Eq. (14). 

The level of the importance of the different costs is determined by cost coefficients (i.e. 

C1, C2, and C3). The variation ranges of the cost coefficients are given in Table 6. In this case, 

their variation range is defined to be from zero to three for all arcs in the transportation 

problem. Zero means that the related cost has no influence on the solution of the 

transportation problem; on the contrary, three means the related cost has the maximum 

influence on the solution of the transportation problem. The following section presents 

and discusses the obtained results. 

Table 6. Different cost coefficients used in the transportation problem. 

 Cost Coefficients 

 

Distance to destination 

C1 

Capacity difference 

C2 

Altitude difference 

C3 

Variation ranges 0 – 3  0 – 3 0 – 3 

8.2 Results 

The case problem was solved with the proposed simulation-optimization approach. 

The extracted to dumped capacity ratio is set to be sufficiently small (scenario I) thus the 

dumping site has sufficient spare capacity. For each loop iteration, one hundred random 

dumping sequences with a slice (section) length of 100 m are set to be created. The number 

of simulation replications is set to 20 replications as is suggested by (Shishvan & Benndorf, 

2016). The computation for the complete case was run on a Core™ i5-3380M Intel CPU @ 

2.90GHz and each loop iteration took about seven minutes.  

Figure 16 illustrates the trajectory of the number of feasible short-term schedules as 

the simulation-optimization loop iterations progressed. In the 1st loop iteration, no feasible 

schedules were seen. After that, the control module suggested a new set of input 

parameters. Here is the beginning of an upward trend. From the 2nd to the 7th loop 

iteration, the number of feasible schedules increased gradually, but rose sharply in the 8th 

loop iteration. It reached the highest point, with a figure of 76 feasible schedules, in the 9th 
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loop iteration. There was a slight drop in the last loop iteration when the stopping criteria 

were met.  

Box plots are drawn for makespan values of the feasible short-term schedules, see 

Figure 17. They provide a useful way to visualize the range, overall patterns, and also to 

study the distributional characteristics of a group of makespans as well as the level of the 

makespans. A single striking observation about the box plots could be a downward trend 

of the minimum values as the simulation-optimization loop proceeds. This indicates that 

the quality of solutions increases, with a figure of 24%, until it reaches its optimum value 

in the 10th loop iteration.  

 

Figure 16. Trajectory of feasible short-term schedules as simulation-optimization loop proceeds.  

 

Figure 17. Box plots of makespan values of the feasible short-term schedules for different 

simulation-optimization loop iterations.  

Some observations emerge from the box plots: 

 The box plots of the 5th and the 6th loop iterations are comparatively tall. This suggests 

that the range of makespan values are quite disperse. The possible explanation for this 
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could be that the algorithm starts to explore a wider range in the solution space of this 

problem.  

 In almost all the box plots, the 4 sections (quartiles) of the box plot are uneven in size. 

This shows the diversity, in the thicker section, and the similarity, in the thinner 

section, of the obtained results.  

 The medians of the box plots of the 9th and the 10th loop iterations are at the same 

level, however they show a different distributional characteristic.  

 Most of the box plots are positively (right) skewed and only two of them show a 

symmetric distribution (7th and 8th).  

To reduce the computational load quite effectively, in every simulation-optimization 

loop iteration, the ten best schedules are selected to be tested by the simulator and only 

their outputs are analyzed by the control module to redefine the input parameters. The 

criteria for the selection of the best schedules are: 

 Makespan: Having a short makespan is a necessary condition for the selection of the 

best schedules but it is not sufficient. The following two criteria should also be 

considered.  

 Utilizations of excavators: After the makespan, the total and also individual 

utilizations of the excavators should be analyzed in order to select the best schedules. 

For example, Figure 18 presents the utilizations of nine different schedules ((a) – (i)) 

which their makespan are about 2700 (min). The total utilizations of the equipment 

vary from 62% – 67%. Among these, schedules (b), (e), (f), and (i) have the highest 

utilizations and are added to the selection list. Next, the other criterion should be 

taken into account to narrow down the list.   

 Utilizations of Spreaders: Likewise to the excavators, the total and individual 

utilizations of the spreaders should be analyzed. Figure 19 displays the utilization of 

the same nine schedules ((a) – (i)). Based on the selection list’s items ((b), (e), (f), and 

(i)), the total utilizations fluctuate between 48% – 49%. Here, the individual 

utilizations play a crucial role. For instance, consider schedule (f) of Figure 19, the 

utilization of I2 is about 97% while other spreaders have lower utilizations. In this 

case, experiments revealed that there is a high chance of not meeting the target 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 36 

utilization when the unscheduled breakdown behavior is added to the model by the 

simulator. The  

 

Figure 18. Utilizations of nine different feasible schedules, output of optimization block. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 37 

 

Figure 19. Utilizations of nine different feasible schedules, output of optimization block. 

argument can be correct for the schedule (g) as well; its total utilization is about 51%, but 

there is a high chance to not to meet the target in the reality. These investigations narrow 

down the list to the schedule (e) in Figure 19 to be the best schedule. Having defined the 

best schedule, the following will now move on to discuss more details of its results. 

The output result of the transportation problem is given in Table 7. For each extraction 

sequence, the transportation problem finds the optimal connections between the 

excavators and the spreaders. For instance, in the first extraction sequence, bench I1 will 

receive materials from extraction benches B4 and B1. The question is now “which one of 

the excavators sends the materials first?” The job-shop scheduling problem will find the 

optimal schedule over time. Its detail and the formulation were discussed earlier in Section 

5.3. The output of the job-shop scheduling problem in the form of a Gantt chart is 

presented in Figure 20. The completion times (ci) and start/end times of different tasks of 

benches are shown in the figure. As can be seen, bench B4 sends first, then bench B1. 

Waiting for the assigned spreader causes the gap between two tandem tasks. In the case of 

bench B5, which produces only coal, no waiting times were expected as a result of material 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 38 

changes. In summary, the proposed method minimizes the number of these gaps with 

effective resource allocations.  

Table 7. Output of the transportation problem. 

 

 

Figure 20. A feasible Gantt chart. 

The details of the simulation model of the Hambach mine from the simulation concept 

to practical full-scale implementation can be found in (Shishvan & Benndorf, 2017). The 

following will conclude the salient findings of this study.  

9. Conclusions 

Extraction Sequence Connections of the Spreaders to Excavators

1 (I1 => B4), (I1 => B1), (I2 => B3), (C => B5), (I2 => B6), (I3 => B2)

2 (I1 => B3), (I1 => B1), (I2 => B2), (C => B5), (I2 => B6), (I1 => B4)

3 (I1 => B4), (I2 => B3), (I1 => B1), (I5 => B6), (C => B5), (I2 => B6), (I3 => B2)

4 (I1 => B1), (I4 => B4), (I2 => B3), (I4 => B6), (C => B5), (I3 => B2)

5 (I2 => B3), (I2 => B6), (I1 => B4), (I4 => B1), (C => B5)

6 (I2 => B2), (I1 => B3), (I1 => B1), (I4 => B4), (C => B5), (I2 => B6), (I1 => B4)

7 (I2 => B2), (I1 => B3), (I4 => B4), (I4 => B6), (C => B5), (I2 => B1)

8 (I6 => B2), (I1 => B1), (I2 => B3), (C => B5), (I5 => B4), (I2 => B6)

9 (I6 => B2), (I1 => B1), (I4 => B4), (C => B5), (I2 => B6), (I3 => B2), (I4 => B1)

10 (I6 => B2), (I4 => B4), (I2 => B3), (C => B5), (I5 => B4), (I2 => B6), (I1 => B4), (I4 => B1)

11 (I2 => B2), (I1 => B3), (I1 => B1), (I4 => B4), (I4 => B6), (C => B5)

12 (I1 => B1), (I5 => B2), (C => B5), (I5 => B3), (I1 => B4), (I2 => B6)

13 (I6 => B2), (I4 => B4), (I3 => B6), (I3 => B1), (C => B5), (I3 => B3), (I1 => B4)

14 (I6 => B2), (I1 => B1), (I2 => B3), (C => B5), (I3 => B3), (I1 => B4), (I1 => B6)

15 (I5 => B6), (I2 => B3), (C => B5), (I4 => B4), (I3 => B6)

16 (I4 => B4), (I2 => B6), (I6 => B3), (I6 => B6), (C => B5)

17 (I4 => B3), (C => B5), (I4 => B4), (I1 => B4)

18 (I1 => B4), (I1 => B6), (I1 => B3), (C => B5)

19 (I5 => B6), (I5 => B3), (C => B5), (I4 => B4), (I3 => B6)
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Throughout this study, a new simulation-based optimization approach has been 

proposed. The approach is capable of optimizing the dispatch decisions in an opencast 

mine operated under the paradigm of continuously excavated material flow. It combines 

deterministic optimization with stochastic simulation in a closed loop. A transportation 

problem and a job-shop scheduling problem composed the optimization model. The 

performance of the proposed approach was tested in a real-size case study. The Hambach 

mine is an opencast coal mine and is the biggest producer of coal (lignite) in Germany. In 

this case, for a given extraction sequences, one hundred random dumping sequences were 

created. From the obtained results, it can be concluded that: 

 The number of feasible short-term schedules increased as the simulation-optimization 

loop progressed. 

 The algorithm stopped after ten loop iterations when no further improvements were 

seen.  

 The box plots of the makespans of the schedules showed a downward trend of the 

minimum values as the simulation-optimization loop proceeded. This indicated that 

the quality of solutions increased, with a figure of 24%, until it reached to its optimum 

value in the 10th loop iteration.  

 The selection of the ten best schedules to be run in the simulation software reduced 

the computational load quite effectively. The criteria for the selection of the best 

schedules were the makespans, total/individual utilizations of excavators, and 

total/individual utilizations of spreaders. 

As future work, a single step optimization approach is recommended, i.e. physical 

sequencing can be merged into the deterministic optimization. This is because in a two 

step optimization approach of short-term production scheduling, the scheduling elements, 

i.e. physical sequencing and equipment utilization, are artificially separated so that they 

do not benefit from their simultaneous optimization.  
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