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Abstract: The thesis presents a parametric design tool for plate structural analysis. The goal of 

the thesis is to establish a real-time visualized program for structural calculation and to make it 

parameterized. The tool is based on a visualized drawing program Rhino with Grasshopper 

plug-in to generate the parametric environment for the plate structural analysis. The solution of 

plate analysis is computed by membrane analogy. For out-of-plane behavior, such analogy 

generates the solution of sum of bending moment. Followed by rain-flow analysis, the relation 

between shear force flows and the structural geometry is presented. And for in-plane behavior, 

the solution is so-called stress function. With such solution other structural behavior results can 

be calculated by applied finite difference method.  

 

Keywords: Design Tools, Plates Structure, Membrane Analogy, Rain-flow Analysis, Boundary 

Conditions, Stress Function. 

 

The basic outline of the thesis: 

Chapter 1: Background Introduction 

Chapter 2: Theoretical Framework 

Chapter3: Out – of – Plane Parametric Design Tool 

Chapter4: Out – of – Plane Result Verification 

Chapter5: In – Plane Parametric Design Tool 

Chapter6: In – Plane Result Verification 

Chapter7: Reinforcement Calculation 

Chapter8: Conclusion & Recommendation 
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1. Background Introduction 

1.1. Background 

In the recent years, accompanied by the development of construction and advanced computer 

technology, numerous complicate designs in the past now become possible. So far, it is like an 

explosion of construction with complex geometry. Lots of buildings with fantastic form are 

coming out. With aid of computer, more insightful analysis can be achieved, and therefore to 

enhance the quality of the design. 

 

For shell structure, the shape is critical and plays an important role in structure. However, due to 

the form complexity, the load path and structural behavior is quite inconvenient to understand. 

Respected to the reason above, in conceptual design stage when determining the shell shape, an 

insightful visualization of the shell’s structural analysis will be beneficial for generating a 

qualitative design.  

 

A computational tool for analysis is needed. Now the Finite Element Method (FEM) is widely used 

among the building field. Accurate analysis result can be gained but changing the model, 

especially the structural shape. However, such model modifying is time consuming and also not 

insightful. Each time people need to regenerate a new model to compute the result, which is just 

repeating the work that was done before. Next problem is the results comparison is not that easy. 

To contrast the value, people need to first subtract the number from the tabulated result which 

will definitely cost lots of human labor to finish, if the compared data are quite huge. 

 

To overcome these obstacles, a suitable tool needs to apply in the conceptual design phrase. 

Introducing real-time visualized figure can be easier for intuitive view of comparison. To modify 

the shape easily, and to become perceptive, parametric method is a solution. By changing the 

parameters, the relation between different parameters and the structural behavior will be 

unlocked. Therefore structure evaluation is much more effective. Not only parametric design way 

helps designer to change the model faster and to understand the structural behavior easily, but 

also it can be combine with some other optimization method, for example “Genetic Algorithm” 

and “Evolutionary Optimization”. With these helps the whole design will be promoted into a 

better level. By these reasons, parametric method will become one of the most important ways 

for building design in the future. And therefore, implementing the parametric design method into 

plate analysis is a good starting point.  

 

Another consideration is that, in plate or shell structure analysis, people will assume the solution 

first. Normally, such solutions consist of different forms. The widely used forms are polynomial 

form and Fourier series. Such formulas of the solutions describe most parts of the structural 

behavior. But still the solutions that have been found so for can not 100% fulfill the entire 

structural phenomenon. Searching for the correct solution will be time – consuming. And, of 

course, each situation has its unique solution, which means that, in each case, people need to 

repeat the whole process to find the answers. 
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Fortunately, accompanied with technology improvement, the real – time visualized 

computational program, like Rhino, occurred. With assist of these programs to generate the 

NURBS surface, the solution assumption is no longer needed. By the “membrane analogy” the 

solution for the structural analysis is computed and visualized by the computational programs. 

Saving time on looking for the solution and the solution that can satisfy all the structure behavior 

are the incentives for me to step into this field. 

 

This thesis is to develop such parametric structural design tool for the plate design first. The tool 

can be developed on the visualization program. Hence Rhino and Grasshopper plug-in are chosen 

as the program environment for the tool. The plate structural calculation plate’s out-of-plane 

behavior with simple support boundary has been defined by Mr. M. Oosterhuis. The main task of 

this thesis is to develop the Grasshopper program with different boundary conditions, and 

upgrade the program for in-plane analysis. 

1.2. Objective 

As what is mentioned above, the former program is only valid in plate supported with edge 

simple support. Still there are some other kinds of boundary conditions need to be satisfied. This 

thesis will search a way to introduce different types of boundary conditions into the program. 

 

Since the tool is now merely for plate with out-of-plane load, to develop the tool into another 

level, the in-plane analysis should be added to the program. Under this circumstance, the tool 

can reach the goal to analyze plate structure. 

 

Objectives summary: 

- Out-of-plane program: 

1. Define the theoretical framework in calculating the sum of bending moments with the 

membrane analogy. 

2. In the membrane analogy to compute the sum of bending moment, program will be 

extended to satisfy different boundary conditions. 

3. In the structural behavior calculation component, since the program now is only valid for 

simple supported edge, the program will be upgraded to fit different boundary condition. 

4. Verify the result of produced calculation in a qualitative and quantitative manner (compared 

with FEM program). 

 

- In-plane program: 

1. Define the theoretical framework of in-plane structural behavior, respected with the stress 

function, and combine with membrane analogy. 

2. Under the theory of membrane analogy, define the correct boundary for the membrane 

simulation. 

3. Concerning the usability and functionality, define the parameters that should be introduced 

into the tool and implementing the theory into computational program (Grasshopper). 

4. Generate the calculation component to compute the structure behavior based on the 
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membrane solution. 

5. Verify the result of produced calculation in a qualitative and quantitative manner (compared 

with FEM program). 

 

In case that the theory and computational program stated above has finished and pass the 

verification of the result with the FEM computational program, the main goals of the thesis are 

considered to be reach. 

 

To level up the model application, the reinforcement calculation will be introduced. This goal 

makes the program more practical. Therefore the program can be used for plate reinforcement 

design. Then the objective statement is: 

 

- Generate the reinforcement calculation component for plate design. 

1.3. Methodology 

The research in this field is not very deep. The theory of membrane analogy is still not clear. To 

discover the relation behind the theory is one of the main tackles. For this purpose, some ways to 

find the answers are needed. One is to look through the differential equation of plate and slab 

and compared that with membrane equation to find whether there are connections. Another is 

based on the previous model, to make some trials and errors to discover the relation.  

 

In former tool the software framework is developed in Rhino and Grasshopper. The thesis will 

follow this way to improve the program. Inside the Grasshopper, there are some predefined 

components for generating model. However, Grasshopper is not sophisticated software, the 

components is not enough. So making own components become necessary. Grasshopper 

provides two code languages for user to script. One is VB, the other is C#. In the former model, 

the code language is VB, I will follow this selection.  

 

For the comparison with finite element method calculation, the FEM program I used is TNO Diana. 

The reason to introduce such comparison into the report is to check the validation of the tool and 

also the accuracy. 

1.4. Scope 

The structural type that is considered in this thesis is rectangular plate structure. The reason to 

choose such type of structure is stated below: 

 

- Rectangle is the basic shape for a wild range of plate structural calculation. Most of the plate 

theories are based on this shape. By implementing rectangle into the program, the 

coordinate system does not need to be changed. 

- Plate structure is the basic theory for shell structure. Only after the plate theory is defined 

the theory of shell structure can be generated. Therefore, at the initial stage, plate is the 
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optimal structure choice for the program. 

- The analytical result of rectangular plate structural behavior has been published in numerous 

articles. Such analytical result is widely agreed, and can be used for validation. 

 

The next announcement of the scope is loading type. Since the program is separated into two 

parts. One is for the out – of – plane analysis. Another is in – plane analysis. 

 

- For out – of – plane program, the load is added perpendicular to the plane. 

- For in – plane program, load will be presented parallel to the plane and acting on the 

boundary. 

 

Considering the boundary constraints, following statements are made. 

 

- For out – of – plane program, the types of boundary constraints are simple supported, free 

edges with corner supported and fixed edges. 

- For in – plane program, the analysis case is confined to two parallel loaded edges and two 

parallel edges fixed. 
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2. Theoretical Framework 

This chapter will present the basic theories of the whole thesis. The theoretical framework is the 

basic of the parametric design program. They describe the relations in between the different 

parameters of plate structure, like geometry, boundary conditions, load cases, etc. Only by 

implementing these theories into the design tool, the program is valid. Therefore, to emphasize 

the framework at the first beginning is at the utmost position. 

 

To define which theories should be used in the tool, the basic analysis processes are stated 

followed: 

 

- Basic process for out – of – plane analysis program: 

a. Implement the boundary component to generate the correct boundary value of the 

membrane for the analogy 

b. Combine membrane analogy to indicate the value for sum of bending moment 

c. Introduce force density method to form the membrane shape 

d. Apply rain flow analogy to give image of principal shear trajectories 

e. Together with finite difference method to calculate structural behavior 

 

- Basic process for in – plane analysis program: 

a. Implement the boundary component to generate the correct boundary value of the 

membrane for the analogy 

b. Combine membrane analogy to indicate the value for stress function 

c. Introduce force density method to form the membrane shape 

d. Together with finite difference method to calculate structural behavior 

 

According to the basic analysis processed stated above, the following theories should be 

introduced: 

1) Differential equations for thin plates  

2) Membrane analogy  

3) Force density method  

4) Rain flow analogy  

5) Finite difference method 
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2.1. Differential Equations for Thin Plates 

The term “plate” is described as a flat structural member for systems in which there is a transfer 

of forces. Plenty of researches and equations derivations have been present to specify the thin 

plate mechanic behavior. 

 

There are two main categories for thin plate classification which are plates that are loaded in – 

plane and out – of – plane. For both cases, differential equations are given initially to state the 

relations between displacements, strains, stress and loads. These equations are based on 

mathematical theory. 

 

Figure 2.1: Relations of different structural behavior (Picture from J. Blaauwendraad [1])  

 

The relations are present respectively as Kinematic, Constitutive and Equilibrium equation. In this 

thesis, the scope has been announced previously that the plate is homogeneous isotropic plates. 

The chapter will be separated into two parts. One is about the theory of in – plane structural 

behavior, while another is for out – of – plane mechanics. 

 

Before deriving the differential equations of structural mechanics, some assumptions need to be 

stated before. 

 

1. The material is elastic, homogeneous and isotropic. 

2. The Poisson’s ratio is zero. 

3. The shape is initially flat. 

4. The deflection is small compared with the thickness of the plate. 

5. The straight lines which is initially normal to the mid - plane remain straight and normal to 

the middle surface. 

6. The stress normal to the middle plane nzz is small compare with other stress components and 

therefore it is neglected.  

 

Comprehensive researches give the following equations for thin plate mechanics 

2.1.1. In – Plane Mechanics 

In flat plate that is loaded in – plane, the state of stress is called plane stress. The stress are 

parallel the mid – plane. The meanings of stress components and strain components are showed 

below. 
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Figure 2.2: Quantities of a plate loaded in – plane (Picture from J. Blaauwendraad [1]) 

 

For deriving the basic differential equations, the elementary rectangular unit is set with 

infinitesimal small dimensions dx and dy. The thickness is t. 

 

Figure 2.3: Relations between the quantities (Picture from J. Blaauwendraad [1]) 

 

There are three series of basic equations to be presented. 

 

Kinematic Equations 

The elementary plate will deform after applying a load. The new state can be described by three 

rigid body displacements. The rigid body displacements are strainless movement and therefore 

the relation between displacements and deformations are stated by Kinematic Equations 

    
   
  

 

    
   
  

 

    
   
  

 
   

  
 

There is a relation equation represent the strain compatibility. 
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Figure 2.4: Displaced and deformed state of an elementary plate part (Picture from J. 

Blaauwendraad [1]) 

 

Constitutive Equations 

The equations declare the Hooke’s law in plate mechanics behavior. The relation between the 

stresses and the strains is provided. 

    
 

 
           

 

  
           

    
 

 
           

 

  
           

    
      

 
    

   

  
 

There is another interesting situation that, by substituted the above equations into strain 

compatibility equation (2.1) will yields: 

 
  

   
 

  

   
                                                                  

 

Figure 2.5: Stress and strain relations (Picture from J. Blaauwendraad [1]) 
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Equilibrium Equations 

The last equations give the relations between the loads and the stress resultants. The equilibrium 

equations are expressed as follows: 

    
  

 
    

  
     

    
  

 
    
  

     

 
Figure 2.6: Equilibrium of an elementary plate part (Picture from J. Blaauwendraad [1]) 

 

Normally the surface load px and py do not exist, the equilibrium equation will become: 

    
  

 
    

  
                                                                        

    

  
 
    

  
                                                                        

The invention of Airy Stress Function is based on this formula. Assume: 

    
   

   
 

    
   

   
 

     
   

    
 

The applied stress function automatically satisfies the force equilibrium equations (2.3) and (2.4). 

By replacing the stress function into strain compatibility equation: 

   

   
  

   

      
 
   

   
                                                       

All the basic equations for in – plane behavior have been determined now. 

 

Another concept is the principal stress: 
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2.1.2. Out – of – Plane Mechanics 

For this part, the derivation of the basic equations for out – of – plane mechanics of plate 

structure will be stated. The considered situation is the same as the previous chapter, a 

rectangular plate with thickness t.  

 

Figure 2.7: Stress quantities in the plate (Picture from J. Blaauwendraad [1]) 

 

To define the connectivity equation between different components, the concept of in – plane 

behavior will be continued. Three equations will be applied to describe the relation. 

 

Figure 2.8: Relation scheme (Picture from J. Blaauwendraad [1]) 

 

There are three series of basic equations to be presented. 

 

Kinematic Equations 

The definition of Kinematic Equations for thin plate that is subjected to the loads acting normal 

to the mid – plane is as follows: 
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Figure 2.9: Determination of the displacements from the mid – plane (Picture from J. 

Blaauwendraad [1]) 

 

Constitutive Equations 

In the theory of thick plate mechanics, the shear strain has to be taken into account. However in 

thin plate theory, the shear deformation is relatively small. Therefore, in constitutive relations, 

the shear strain is meaningless and can be neglect. 

 

Then the equations that declared the Hooke’s law in plate mechanics behavior are simplified. The 

relation between the stresses and the strains is provided. 

    
   

        
                       

    
   

        
                       

    
   

       
              

 

Figure 2.10: Stress resultants and deformation (Picture from J. Blaauwendraad [1]) 

 

Equilibrium Equations 

In the preceding sections, the kinematic and constitutive relations are found. For equilibrium in w 

– direction of infinitesimal small unit the load will be stood by shear forces. And not only the 

equilibrium in vertical direction should be achieved, the moment equilibrium also. 
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Substitution of the equations (2.7) and (2.8) in the first one (2.6) yields: 

     

   
  

     

    
 
     

   
                                                          

By replacing the moment with displacement will lead to: 

   

   
  

   

      
 
   

   
        

 

 
                                                  

 

Figure 2.11: Equilibrium of an elementary plate part (Picture from J. Blaauwendraad [1]) 

 

All the basic equations for out – of – plane behavior have been determined now. 

 

The principle moments equations are: 
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2.2. Membrane Analogy 

In previous plate structure research, people are focusing on looking for the solution for the 

analysis. Lots of trials and errors are made. During the solution searching, the polynomial form 

and Fourier series are used quite frequently. However, no matter polynomial form or Fourier 

series, still no solution is found that can fully satisfy all the structural conditions. 

 

In this thesis, another way is utilized which is call membrane analogy. Such method is invented by 

pioneering aerodynamicist L. Prandtl in 1903, also known as the soap-film analogy. By integrating 

membrane analogy to plate structure, the solution that can fulfill all the structural conditions will 

be generated. 

 

In introducing the membrane analogy, this part will be divided into two parts, because in 

different type of structural mechanics, the metaphor has different meaning. Then, in the 

following, this part will be separated into out – of – plane and in – plane behavior.  

2.2.1. Membrane Mechanics 

To facilitate the understanding of the logic behind the membrane analogy, the knowledge behind 

the membrane structure need to be introduced. 

 

Before showing the equations of membrane structure, some assumptions have to be announced. 

- The deflection of elastic membrane structure is assumed to be very small. 

- Due to the stiffness of membrane is very small, therefore, there is no out – of – plane 

moments and shear occurred. Either the in – plane shear Nxy. 

 

Following figure shows the mechanics system of in – plane structure. According to the 

assumptions, Nxy = 0. 

 

Figure 2.12: Equilibrium of an elementary membrane unit (Picture from E. Ventsel [4]) 
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Considering the projection of x – direction forces on z axis, the z component of the force in x – 

direction is: 

                
   
  

                                                          

Due to the deflection is assumed to be very small. 

       
   
  

 

And 

           
  

  
   

   
  

 
    
   

                                                  

Substituting the equation (2.12) into the x – direction component (2.11): 

       
   
  

     
   
  

         
   
  

 
    
   

    

Neglecting the higher order terms leads to: 

  
    
   

     
   
  

   
  

                                                       

Since in the x – direction the equilibrium equation leads to: 

   
  

   

Then the above component (2.13) is: 

  
    
   

     

In y – direction the formula form is the same only by replacing the x with y. 

  
    
   

     

Then in the vertical direction the equilibrium equation is: 

  
    
   

       
    
   

             

If assume Nx = Ny = T, then: 

    
    
   

  
    
   

 

 
 

 
 
    
   

 
    
   

                                                                

In the soap – film theory, T is equal to 1. 

2.2.2. Out – of – Plane Behavior 

The out – of – plane tool is based on this membrane analogy method to indicate the sum of 

bending moment (the summation of mxx and myy) in the plate structure. 

 

To fully describe the structural behavior of plate or shell, the normal force, shear and moment 

should be computed. The moment is expressed by second order differential equation of plate 
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deflection and the shear is by third order differential equation. Hence the plate deflection should 

be known beforehand. However to determine the solution for deflection is difficult, therefore the 

introduction of membrane analogy become necessary. Applying this analogy, the solution of sum 

of bending moment is obtained, further by using finite - difference method the shear and 

deflection can be derived. That is the reason why the membrane analogy is presented. 

 

Here, it comes to the theory of plate structure. To assume the function m (sum of bending 

moment) as followed: 

  
       

   
 

With 

       
   

   
  

   

   
  

       
   

   
  

   

   
  

Therefore the sum of bending moment m is: 

  
       

   
    

   

   
 
   

   
  

The equilibrium equation of plate (2.10) is: 

     
  

   
 

  

   
  

   

   
 
   

   
  

   

   
 
   

   
 

Compared to the equilibrium equation of membrane (2.14): 

     
    
   

 
    
   

  

Here, the wm is the deflection of membrane. And with the hypothesis that T = 1 N/m2, the 

formula can be rewritten as: 

   
    
   

 
    
   

                                                                    

The expressions of the equilibrium formulas for plate and membrane have the same form and 

same general solution.  

   
    
   

 
    
   

   
   

   
 
   

   
  

      

For this reason, the value of sum of bending moment in plate can be achieved by directly 

determining the displacement of an elastic membrane with a support layout similar to that of the 

original plate. 

2.2.3. In – Plane Behavior 

Compared to the out – of – plane tool, the in – plane program apply membrane analogy method 

to indicate the sum of normal force (the summation of nxx and nyy). In the out – of – plane 

mechanics, the normal force, shear and moment are presented by the plate displacement w. But 

in the in – plane behavior, features are linked to stress function Φ. 



23 
 

 

Here, the article assume n as sum of normal force: 

          

With 

    
   

   
 

    
   

   
 

Then the sum of normal force becomes: 

          
   

   
 
   

   
 

Because the stress function is computed base on equilibrium function, so at this place, the 

compatibility equation (2.1) for strain is applied. 

The equation is: 

    
   

 
    

   
 
     

    
   

Rewrite the above equation in terms of the stress components: 

 
  

   
 

  

   
           

   

   
 
   

   
   

Then again, compared with the equilibrium equation of membrane (2.15) (assume T = 1 N/m2): 

   
    
   

 
    
   

 

For this analogy, the membrane load p is set to be 0. It means that the membrane has no load 

adding on it.  

    
   

 
    
   

 
   

   
 
   

   
 

     

After generating the correct boundary value, the membrane can simulate the figure of “n – hill”. 

Then the stress function can be achieved by finite difference method base on this equation: 

  
   

   
 
   

   
 

At this point the solution for in – plane structural behavior is obtained. 
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2.3. Force Density Method 

In the visualization environment, form finding is the main problem. Rhino is a computational 

graphic program. The combination of drawing with structure calculation is the critical problem to 

solve. If the calculation result cannot be presented by the drawing program, it will be 

meaningless for the integration of drawing tool and mechanic calculation. 

 

In the research of membrane structure, form finding is always the major topic. From the physical 

models like soap bubbles, hanging fabric and air inflated membranes to energy method such as 

the least complementary energy and variation principle; lots of approaches have been developed. 

The studies and experiments of these approaches give a broader understanding about membrane 

form finding. However there is no method perfect. Each one has its own advantages and 

limitation. 

 

The background of the thesis is based on a membrane will small deflection. The equilibrium of 

the structure will form the geometry. Furthermore, because of programming environment, linear 

calculation is a better choice. By compared different form finding methods, the energy ways need 

complex process of iterative. Such energy methods require a number of calculation steps until 

the equilibrium shape is found, which will occupy plenty of CPU capacity. It is not an efficient 

way.  

 

The Force Density Method is the decision. In the field of network computation, Force Density 

Method is a solution to determine the shape. The concept is based upon the “force – length 

ratios” which is also name as “force density”. To description of equilibrium, this concept is quite 

suitable. Only by transforming the membrane into equivalent network system, the force density 

method can solve the equilibrium equation of membrane. 

 

Arguments have been draw that Force Density Method is a linear analysis approach. Linear 

computation process has been proved that it is fast and sometimes the process can be reversed. 

Comprehensive sources show that the theory of FDM fits the practical result of membrane shape 

with small deflection assumption. And the most important issue is FDM can be easily to be 

adapted to the Grasshopper parametric environment. 

 

Next part will introduce the mathematical theory behind Force Density Method. The content is 

based on the article of H. J. Schek in 1973. It is proposed to use the method for Olympic Stadium 

in Munich for determining the membrane form.  

 

First of all the membrane is transformed into a discrete cable network system which is consist of 

a series of nodes and lines.  

The shape of the network is described by the node and the connected branches. Therefore, a 

matrix to for this topological description is necessary. It starts with the graph of mesh. This matrix 

presents the connectivity between the nodes and branches. The nodes are separated into free 

nodes and fixed nodes. The number of free points is n, and for fixed points it is nf. So in total the 
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number of all the nodes is ns = n + nf. The usual branch – node matrix Cs is defined by 

    
                     

                     
                         

  

It has been classified into free and fixed nodes by matrices C and Cf.  

 

Figure 2.13: Graph and branch – node matrix (Picture from H. Schek [9]) 

 

The next step is to state the structure of equilibrium formula with Force Density Method. 

The free nodes are interpreted as points Pi with coordinates (xi, yi, zi), I = 1, …, n, and the 

boundary nodes are as Pfi with coordinates (xfi, yfi, zfi), I = 1, …, n. 

The coordinates of all the free nodes form the n – vector x, y, z and the nfi – vector xfi, yfi, zfi for 

all the boundary nodes. 

 

The coordinated difference u, v, w of the mesh node is 

            

            

            

With the diagonal transformation, U, V, W and L referring to u, v, w and l, the equilibrium follow 

           

           

           

Here we have used the obvious representation for the Jacobian matrices 

  

  
        

  

  
        

  

  
        

Then the definition of force density is 

       

With the rewritten symbols, 
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With the identities 

      

      

      

And the equilibrium equations is 

                 

                 

                 

For simplicity 

       

         

The equilibrium equations will have the form 

           

           

           

The purpose of making use of Force Density Method is to get the new coordinates of nodes 

under load equilibrium. Then 

               

               

               

In the parametric program the linear equilibrium equations will be solved and therefore the new 

coordinates of free points are achieved. In the article of H. Scheck (1973), there are two examples 

are showed by means of Force Density Method. 

 

Figure 2.14: Examples views (Picture from H. Schek [9]) 
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2.4. Rain - Flow Analogy 

The idea of Rain – Flow Analogy is inspired by Beranek (1976). The analytical method is making 

use of water stream lines which fall on a curved surface. The Rain - Flow Analogy is also named as 

“Rain Shower Analogy”, which is a method of simulation for principal shear trajectories. The 

phenomenon of water stream lines indicates the load path for out – of – plane structural 

mechanic behavior. To assume that function of m can be regarded as a “hill”. The gradient of the 

“hill” represent the value of shear.  

 

 

Figure 2.15: Rain – flow analogy (Picture from J. Blaauwendraad [1]) 

 

- Trajectories of Principle Shear Force 

 

In determining the trajectories, one can visualize the uniform load of the structure as water drops 

falling down on the “m – hill” surface. Such shape is defined by the value of bending moment 

summation. The highnesses of the hill represent the value of corresponded points. Following in 

the shape of the “hill” the drops will flow downward and generate stream lines. These lines 

follow the steepest decent direction and run to the edge. Such streams’ directions coincide to the 

principal shear orientation. Using the rain flow analogy, the indication of principal shear 

trajectories can be obtained. Also from the shear trajectories, the load path of the plate is known. 

There are some characters of the  

 

- Magnitude of Principle Shear Force 

 

The magnitude of principle shear forces is another topic. Not only the directions of the principle 

shear are important, but also the value of those. The magnitude can be achieved by integrating 

the associated load flows between the stream lines. But according to the theory behind Rain – 

Flow Analogy, the calculation is much simpler, since the gradient of the “hill” equal to the value of 

principle shear forces. 

 

For example the formula of sum of bending moment is: 
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The shear in x – direction is: 

   
    

  
 
    

  
   

 

  
 
   

   
  

   

   
        

 

  

   

    
   

 

  
 
  

   
 

  

   
  

 
 

  
    

The shear in y – direction is: 

   
    

  
 
    

  
   

 

  
 
   

   
  

   

   
        

 

  

   

    
   

 

  
 
  

   
 

  

   
  

 
 

  
    

The equations above show that the gradient of “m – hill” equal to the shear value in that 

direction. From figure below, it shows two triangular plate parts with shear forces acting on the 

edges. Base on the plate equilibrium, the vn and vt follows these formulas. 

 

Figure 2.16: Shear of an elementary plate (Picture from J. Blaauwendraad [1]) 

 

                   

                    

To determine the maximal value of vn, it leads to 

   
  

   

Then it requires: 

                   

Therefore: 

     
  
  

 

Following the graph below, it set that the angle β is α0. Therefore the maximal shear force 

becomes 
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Figure 2.17: Relations of shear forces (Picture from J. Blaauwendraad [1]) 

 

According to the derivation, the maximal shear force is perpendicular to the minimal one. And 

the minimal shear force is equal to 0. 

 

It has been stated that the gradient value of the surface is equal to the shear in corresponding 

direction. In the curved surface geometry, the slope of the contour lines of surface is zero, and 

the steepest direction is perpendicular to the contour lines. Such phenomenon aligns with the 

principal shear forces. In structural mechanics the principal shear trajectories is perpendicular to 

the minimal one, and the value of minimal one is zero. 

 

Therefore, when the theory comes to the Rain – Flow Analogy, the principal shear trajectories are 

in the direction of the slope, and perpendicular to the contour lines of the “m – hill”. In these 

directions of streams the shears reach to their maximum value. According to the theory of 

principal shear, in perpendicular to the minimal shear orientation which is also the contour lines’ 

direction, the shear is equal to zero.  

 

The principal shear expression is: 

   
 

  
    

Here n is the direction of principal shear. 
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2.5. Finite Difference Method 

The process to calculate the structural behavior of plate is base on partial differential equation. 

To achieve this goal in the visualization environment, the Finite Difference Method is a solution. 

In mathematics, the Finite Difference Method (FDM) is numerical method to approximate 

derivatives in the partial differential equation by linear combinations of function values at the 

grid points. People can find that such method is widely used in Finite Element Method (FEM). 

 

In both methods, FDM and FEM, a series of equations generate the matrixes for calculation. FEM 

will assemble the stiffness matrix which is quite huge and highly complicated. Unlike FEM, the 

FDM skip this step and can be used for calculation effectively. This is the main reason that this 

thesis presents FDM instead of FEM, where FDM provide a more straightforward formulation of 

the answer. It helps to make the program easier for user to understand the parametric 

application and get familiar with the program. 

 

To use Finite Difference Method to attempt to solve the partial differential equation, the domain 

needs to be discretized by dividing into grid. If the step size of the grid is chosen appropriately, 

the error by applied FDM to approximate the exact analytical solution will become small and 

acceptable. Within the FDM, a grid is implemented over the plate. The analysis process is based 

on the value that is distributed to each grid point. By using those values and the means of finite 

difference operators, the derivatives of the partial differential equations will be replaced. Due to 

the convenience of this computation process with FDM, the visualized environment computation 

program is realized. 

 

The next paragraphs will introduce the Finite Difference Operators and the boundary conditions 

of plate structure.  

2.5.1. Finite Difference Operators 

The case to be discussed is a square mesh grid with equal space of hx and hy. The grid is based on 

Cartesian coordinates. 
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Figure 2.18: Grid for finite difference method 

 

Considered a continuous function f(x), and it is known that Taylor series expansion of the 

function at point x0 is defined as follow. 

      
  

  
        

 

  
 
   

   
       

  
 

  
 
   

   
       

                  

Base on above equation (2.16), the value of point x3 and x1 can be computed. 

       
  

  
   

 

  
 
   

   
    

 

  
 
   

   
      

       
  

  
   

 

  
 
   

   
    

 

  
 
   

   
      

Assume that the distance increment h is small enough. The third order differential terms can be 

neglected. It leads to: 

       
  

  
   

 

  
 
   

   
                                                            

       
  

  
   

 

  
 
   

   
                                                            

By solving the equations above (2.17) and (2.18): 

  

  
 
     
  

 

   

   
 
         

  
 

With same method: 

  

  
 
     
  

 

   

   
 
         

  
 

And: 
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The expressions are also referred to Finite Difference operators. And by implementing these 

operators, the third and forth order differential derivatives of the function f(x, y) can be derived.  

 

  

    

 

Figure 2.19: Finite difference operators 

 

Of course the FDM is not only valid in Cartesian coordinates. Polar or other types of coordinates 

can be conveniently applied by the transformation of the corresponding equations relating the x 

and y coordinates to the set of coordinates and coefficient patterns.  

2.5.2. Boundary Condition 

For those points line on the edge or next to it, part of the operator points fall outside the grid of 

the plate mesh. Some ways have to be introduced in the boundary point calculation. 

 

For out – of – plane program: 

 

Figure 2.20: Simple support (Picture from E. Ventsel [4]) 

 

(a) The simply supported edge 
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According to the boundary conditions of simply supported edge: 

     

    
   

   
 
         

  
   

This will lead to 

     

       

 

(b) The fixed edge 

 

Figure 2.21: Fixed edge (Picture from E. Ventsel [4]) 

 

According to the boundary conditions of fixed edge: 

     

  

  
 
     

  
   

This will lead to 

     

      

 

(c) The free edge 

 
Figure 2.22: Free edge (Picture from E. Ventsel [4]) 
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According to the boundary conditions of fixed edge: 

    
   

   
 
         

  
   

     

 

For in – plane program: 

 

The situation is more complex than the out – of – plane program. For the previous program the 

function is vertical displacement. The physical meaning of that is quite clear. Therefore the 

boundary conditions are easier to be adapted to the program. However, in the in – plane tool, the 

function is stress function. Still in recent research, the physical meaning is in the mist. Not like the 

out – of – plane program, some of the boundary value cannot be set directly. The stress function 

cannot be introduced in the same way. So in the calculation process, the outer points are set. 

 

 

Figure 2.23: Points classification 

2.5.3. Linear Equations Calculation 

The partial differential equation is computed by finite difference method and transformed into 

linear equations. Under this circumstance, some calculation processes can be reversed. 

 

For example with membrane analogy, the equilibrium equation is: 

   
    
   

 
    
   

 

By rewrite the above formula with FDM manner: 
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Since the boundary points of the membrane are set beforehand, the displacement of those 

points are pre – defined. Only the middle free points are unknown. Therefore the membrane 

displacements of free points share the same dimension of membrane load. Then the FDM matrix 

A is a square matrix. The formula can be rewrite as: 

        

It means that the FDM is not a one – way computational process. The method can be reversed. 

Of course the square matrix should not be singular and with full rank. Otherwise the equations 

are not linear. The process presented above cannot be achieved.  

 

  



36 
 

2.6. Theory Application 

2.6.1. Introduction 

The description of the theory framework is the main content of the previous chapters. The 

theories are presented separately. To realize the goals of parametric program, the theories will be 

combined. These methods will build up the whole structural calculation process. For this reason, 

the relation between the theories should be announced, and also the structure of these 

combinations. 

 

The upcoming part will express the application of theory for different purposes. Since the thesis 

is separated by two parts, the out – of – plane program and the in – plane program, this section 

will elaborate the application with the same order. 

2.6.2. Out – of – Plane Program 

The results for structural evaluation of the program are as follows: 

- Shear force 

- Principle shear trajectories 

- Deformation 

- Bending moment 

- Torsion 

- Boundary reaction 

 

To realize all these goals the combinations will be: 

(1) Membrane Analogy + Finite Difference Method + Force Density + Rain Flow Analogy 

(2) Membrane Analogy + Finite Difference Method + Force Density + Finite Difference Method 

 

The combinations share the membrane analogy, the force density method and finite difference 

method. These three methods are used for generating the calculation solution. The solution in 

out – of – plane program is the sum of bending moment. The membrane analogy is to simulate 

the equilibrium equation of thin plate subjected to loads acting perpendicular on its surface. The 

finite difference method is applied for satisfy the boundary condition. After these two theories, 

the equilibrium equation and boundary condition will be defined. Then in the visualized 

computational program, the force density method is for form shaping. With help of force density 

method, the solution for calculation is found. 

 

Then the combination of rain flow analogy will lead to the result of shear force and principle 

shear trajectories. The finite difference method based on the found solution will come to the 

result of deformation, bending moment, torsion and boundary reaction. At this stage, the 

structure evaluation process is done. 



37 
 

2.6.3. In – Plane Program 

The results for structural evaluation of the program are as follows: 

- Normal stress 

- Shear stress 

- Deformation 

 

To realize all these goals the combination will be: 

(1) Membrane Analogy + Finite Difference Method + Force Density + Finite Difference Method 

 

The application purpose is the same as the out – of – plane program. The membrane analogy, 

force density method and finite difference method are used for generating the calculation 

solution. According to this solution, the result can be derived by finite difference method. Then 

the result of normal and shear stresses are computed, so as to deformation. 
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3. Out – of – Plane Parametric Design Tool 

3.1. Introduction 

First of all, for the out – of – plane parametric design tool, most of the work was done by Michiel 

Oosterhuis (2010). The previous model is a structural analysis tool for rectangular plate supported 

by four edges. The boundary conditions are all simple supported. The task for me in this model is 

to extend the boundary conditions to fixed and free edges.  

The new model will line with the old model. Therefore, at this part, the previous model structure 

will be briefly showed. And next section is the method to realize different boundary conditions in 

the program. The theories and the deriving procedure are the main story. The basic idea and the 

equations will be within this chapter. 

3.2. Usability & Functionality 

For freeform structures like shell, the basic form is the determinant factor. It will determine the 

structural behavior. Whether the structure is optimal, in this type of freeform building, mainly 

depends on the original shape. However, in freeform structure, such mechanic behavior is not 

that easy to figure out. Therefore the program is developed to solve this problem, in the 

conceptual design phase.  

  

Since the model is for the conceptual design phase, the expected users for the out – of – plane 

model are architects and structural engineers. It is upmost task is to give structural evaluation 

with easy model modification. Based on this goal the usability is confined. 

- Provide real – time results during the design process. 

- Able to change the design parameters, such as geometry, load case and support conditions. 

- Able to modify the program for different users and further developments. 

 

The demands for qualitative and quantitative insight of thin plate structure for plate out – of – 

plane mechanics determine the functionality of the program. Below results are the evaluation 

criteria that other structural calculation program used. 

- Bending moment 

- Torsion moment 

- Shear force 

- Principal moment 

- Principal shear 

- Displacement 

 

The out – of – plane parametric tool uses the same criteria. The result of these will be computed 

by the program in Grasshopper environment.  

 

To provide straightforward view of the result is another objective. Instead of just presenting the 
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number, showing the value shape of the result helps people to have a complete idea of the 

structural behavior. Then in the terms of functionality, the drawing shape of the results is one of 

the outputs.  

3.3. Previous Model 

Due to the thesis is based on previous model which is done by M. Oosterhuis (A Parametric 

Structural Design Tool for Plate Structures. 2010); the introduction of this model should be 

described beforehand. 

 

The basic outline of the previous model is described below. Each component will be explained 

separately. 

 

Figure 3.1: Previous model outline (Picture from M. Oosterhuis [14]) 

 

- Structural Geometry 

The input component of structural geometry define the rectangle plate dimension and the mesh 

width 

 

- Meshing Component 

For calculation purposes, meshing component generate the grid of the plates. After considered 

the convenience of implementing finite difference method, the square mesh is decided. Also in 

this component, the nodes are sorted for different application. 

 

- Force Density Component 

Here is the place that membrane analogy is utilized. The component is used for form finding. By 
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integrating the equilibrium equations with force density method, the membrane is shaped by 

Rhino. 

 

- Derivative Component 

The meshing of plate structure generates some marked points. This component shows the 

magnitude and the direction of principal shear in these marked points. 

 

- Rain Flow Analogy 

To determine the principal shear trajectories, this component make use of rain flow analogy. The 

analogy is based on gradient descent algorithm. 

 

- Finite Difference Component 

According to the plate theory, the mechanics behaviors are computed by differential equations. 

However in Rhino program, such application to calculate the differential equations does not exist. 

For this purpose, finite difference method component is applied to achieve the result for 

deflections, shears and moments. 

 

- Curvature Ratio & Sand Hill Component 

In M. Oosterhuis (2010) thesis, these two components are described. But in the model I gained 

from him such components were missing. And, on the other hand, this thesis does not need 

these components. They are outside of the thesis scope. 

 

At last the outlines of previous model the thesis will follow is 

 

Figure 3.2: Reduced outline of previous model  

3.4. Analysis Case 

The scope of the out – of – plane program is confined to certain boundary conditions. The 
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objective is to extend the program to satisfy different boundary conditions. Therefore, the 

analysis case will align with previous model. The load is uniform distributed load, acting 

perpendicular to the plate mid – plane. The plate is rectangular and constrained at the 

boundaries. The types of constraints are variable, with simple supported, free edges and fixed 

edges. 

 

 

Figure 3.3: Analysis case 

 

P is the distributed load. For further development, the program should be satisfied into a variety 

of analysis demands. 

3.5. Boundary Condition Component 

In previous article (M. Oosterhuis. 2010), the plate analysis tool had been developed. However 

the tool is only valid in plate and the boundary condition is merely restricted to four edge simple 

supported. In this thesis, such tool will be extended to be applicable with different boundary 

conditions like free edge and fixed edge support. 

 

In the membrane analogy, people can define different membrane boundary conditions according 

to the force density methods in the program. Coincidently, in plate with simple support, the 

moments in x - and y – direction are both equal to zero. Since the membrane nodes coordinate 

value in z – axis present the value of bending moment. It implies that setting the coordinate value 

in z – axis of the membrane boundary nodes to zero conform the simple supported edge behavior.  

Unlike simple supported edge, other types of boundary conditions do not only refer to the 

bending moment. In fixed edge, the rotation is constrained; and in free edge, the Kirchhoff shear 

appears. It means further research in the relation with membrane analogy and the boundary 

conditions is critical.  

 

In the beginning stage of the thesis research, I have tried to unlock the relation between the 

membrane boundary feature and the corresponding plate boundary conditions. Unfortunately 

the analogy between these two conditions is still in mystery. In line with this reason, generating 

the correct membrane boundary which is corresponding to the sum of bending moment should 

be combined with other method. 

 

Based on this idea, another calculation component is added to generate the boundary. Due to 
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only after the boundary value is defined, the correct membrane form – finding is achieved, such 

component is placed before the force density component. 

 

Figure 3.4: Outline of out – of – plane model 

3.5.1. Basic Idea 

The basic idea of this method is: 

 
Figure 3.5: Edges description (Picture from E. Ventsel [4]) 

 

- Simple supported edge (x = a) 
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- fixed edge (y = 0) 

 

- free edge (y = b) 

 

As the figure shows that in fixed edge and free edge, the boundary condition should be 

translated into plate deflections first. After that the sum of bending moment can be expressed by 

the deflections with assist of finite difference method. Then the membrane boundary is 

determined. 

 

- Previous Model: 

 

 

- New Model 

 

 

The main function of this component is to generate the equations that represent the relation 

between the plate deflection and membrane shape. At the input component, the boundary 

condition will be defined. Based on the selected conditions, the component first translated the 

boundary condition with the language of deflection w. According to the relation equations and 

the known deflection w, the membrane boundary value can be computed. 

 

The next part is to state the equations of relation and explain the meanings.   

mxx = 0 

myy = 0 m = mxx +myy = 0  wm = m = 0 

w = 0 

θy = K(w) = 0 m = C(w)  wm = m 

myy = m(w) = 0 

Vy = V(w) = 0 m = C(w)  wm = m 

BCs m wm 

BCs w m wm 
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3.5.2. Boundary Equations 

The formula below is derived from the equation in the thesis of H. Schek (1973). 

 

The free nodes are interpreted as points Pi-free with coordinates (xi-free, yi-free, zi-free), I = 1, …, n, and 

the boundary nodes are as Pi-fixed with coordinates (xi-fixed, yi-fixed, zi-fixed), I = 1, …, n. 

 

The coordinates of all the free nodes form the nfree – vector xfree, yfree, zfree and the nfixed – vector 

xfixed, yfixed, zfixed for all the boundary nodes. 

 

- The coordinate differences f of connected points: 

                            

C is the branch-node matrix. 

                

 

- The equilibrium equation is: 

     
       

Pz is the matrix of load in z direction. 

The equation can be rewritten as: 

     
       

With the identity: 

      

(F and Q are the diagonal matrices belonging to f and q) 

Then the equilibrium formula can be extended: 

     
                   

                   

And Q is the force density matrix. In minimal surface all the force density should be equal to one. 

Therefore, the matrix Q equal to unit matrix E. 

And rephrase the formula: 

     
                  

                  

For simplicity, set: 

           
       

            
        

Then: 

                             

With given loads and giving boundary value, the shape is stated by the equilibrium equation. 

           
                      

With 

   
      
     

  

In this method the boundary value zfixed is unknown. The displacement of the membrane can be 

presented by the plate boundary conditions. 

 

- The finite difference method: 



45 
 

According to membrane analogy (2.15): 

       

W is the displacement of plate. The deflection f of the plate can be computed by the finite 

difference method. The calculation is as followed: 

                                                                                  

1) w is the deflection matrix. 

2) C is the FDM computed matrix for sum of bending moment. But here the matrix C is different 

with different boundary conditions. 

3) m is the matrix of sum of bending moment. And m can be represented by the membrane 

displacement. 

     
      

     
                     

  

Therefore equation (3.1) is rewritten: 

     
      

     
                     

  

Then the deflection of the plate is: 

      
      

     
                     

  

Above equation shows the relation between membrane boundary value zfixed and the plate 

deflection w. Only after these two connections are unlocked, the whole boundary condition 

component to can be realized. Next step is to describe the relation between plate boundary 

condition and the plate deflection. 

 

- The all fixed boundary: 

In fixed boundary, two conditions are defined. One is the deflection w is equal to zero, which is 

quite easy to modify. The other is the curvature is set to be zero. Since the curvature is the first 

order differential equation of deflection w. That means this boundary condition should be 

integrated with finite difference method. 

 

For fixed boundary: 

       
  

  
   

And the curvature is computed as followed: 

       
  

  
           

      

     
                     

                               

For simplicity assume: 

                      

Then equation (3.2) is: 

                     
      

     
                     

    

Extend the equation: 

                         
                        

By rephrasing the order of each term: 
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Then the relation between fixed edge conditions and the membrane boundary value is found. 

The component calculates the value base on the followed equation: 

                   
                 

              
                          

 

- The all free boundary with four corners supported: 

In free edge boundary condition, the Kirchhoff’s shear stress is equal to zero. 

      
    

  
 
  

  
 
    

  
   

In finite difference method the first term and the second term of the equation above can be 

computed. The first term represent the shear stress is: 

  

  
                                                                     

With identity: 

                

The second term is calculated: 

    

  
            

      

     
                     

                                      

For simplicity assume: 

                      

Then Kirchhoff’s shear stress should be (with (3.4) and (3.5)): 

   
  

  
 
    

  
                                                       

By replacing: 

           
                      

The equation can be extended: 

                                          
                        

Again, for simplicity, assume: 

                  

                     

Then: 

                         
                        

Rephrasing the orders: 

           
                  

                         

Then the relation between free edge conditions and the membrane boundary value is found. The 

component calculates the value base on the followed equation: 

                   
                 

              
                             

 

At this stage, the connections between plate boundary conditions with membrane shape have 

unlocked. 

 

- The all simple supported boundary: 

In simple supported boundary, two conditions are defined. One is the deflection w is equal to 

zero, which is quite easy to modify. The other is the bending moment is set to be zero. This 

boundary condition should be integrated with finite difference method. 
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For simple supported boundary: 

       
   

   
   

And the moment is computed as followed: 

       
   

   
           

      

     
                     

                              

For simplicity assume: 

                      

Then equation (3.7) is: 

                     
      

     
                     

    

Extend the equation: 

                         
                        

By rephrasing the order of each term: 

           
                  

                         

Then the relation between hinged edge conditions and the membrane boundary value is found. 

The component calculates the value base on the followed equation: 

                   
                 

              
                                

3.5.3. Equations Combination 

For further consideration, the plate structure may have different type of boundary conditions in 

each edge. To make this thinking functional, the equations stated in above chapter will be 

combined. 

 

If people look at the equations for fixed edge and free edge: 

- Simple Supported Edge equation (3.8): 

                   
                 

              
      

(Based on the same theory the equation for the simple supported edge can be obtained by 

the same way. The matrix H represents the relation between simple supported conditions 

with membrane boundary) 

- Fixed Edge equation (3.3): 

                   
                 

              
      

- Free Edge equation (3.6) 

                   
                 

              
      

The equations share the same form. 

 

According to this phenomenon, the following presumption is made. Rectangular plate has four 

edges. Each edge has its boundary condition. Therefore, the edges are named by A, B, C and D for 

the equation. 
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Figure 3.6: Edges classification 

 

The equation is rewritten into following shape: 

        

        
        
        
        

   

 
 
 
 
 
       
       
       
        

 
 
 
 

      
          

 
 
 
 
 
        
        
        
         

 
 
 
 

    

 
 
 
 
 
       
       
       
        

 
 
 
 

      
      

With identities: 

         

                                              

                                               

                                 

                  

 

          

                                               

                                                

                                  

                  

 

In the boundary component, such equation is applied. 
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4. Out – of – Plane Result Verification 

4.1. Introduction 

In this chapter, the result comparison is presented. In qualitative comparison the generated 

outputs from the parametric model are compared to the general results produced by ir. W. J. 

Beranek (1976). The produced results from the parametric tool are compared with FEM (finite 

element method) program TNO Diana. The quantitative comparison evaluates the accuracy of the 

numerical result generated by Grasshopper model. 

 

In the comparison, rectangular plate subjected to a uniform distributed load p is set. In line with 

Grasshopper model, the grid I used in Diana model is square with dimension of 1m x 1m. Such 

meshing is the same as the parametric tool. The mesh type in Diana model is CQ24P. 

 

The properties of the analysis model are: 

1)          

2)          

3)            

4)     

The geometry of the plate and the definition of nodes location are showed below. The long edge 

points are defined as Bound X; and short edge points are Bound Y. 

 

Figure 4.1: Nodes classification 

 

Two boundary cases are taken into account. 

- Thin plate with 4 edges fixed 

- Thin plate with 4 corner support 

 

In plate structural theory of out – of – plane mechanics, the in – plane strain is ignored. However, 
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the in – plane mechanics still exist. It is just the matter of how much such behavior influence the 

out – of – plane behavior. Under the consideration of this question, the thickness of the plate is 

taken into account, because the span/thickness ratio plays an important role in the mechanics. 

That is why, in the following comparison, two different types of thickness are applied, with 0.1m 

and 1.0m thickness. 

 

The total cases I present in this chapter are 2 x 2 = 4. 

- Four edges fixed with t = 0.1m 

- Four edges fixed with t = 1.0m 

- Four corner support with t = 0.1m 

- Four corner support with t = 1.0m 
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4.2. Fixed Boundary Case 

4.2.1. Qualitative Verification 

In qualitative manner, the form – finding result will be compared. 

 

- Result of membrane shape: 

 

Figure 4.2: Membrane analogy of bending moment summation 

 

Figure 4.3: General bending moment summation (Picture from W. J. Beranek [6]) 

 

As the figures show that, the result from Grasshopper model is quite similar to the general result. 

The moments in the edges are negative, which means that the bending moments are negative. 

This conforms to the fact. And in the middle of plate, positive moments occur.  
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- Result of principal shear trajectories: 

  
Figure 4.4: Rain – flow analogy in GH   Figure 4.5: General Rain – flow analogy 

 

It can be seen again that the result from Grasshopper aligned with the general result (Picture 

from W. J. Beranek [6]) quite well. Especially at the corners, the trajectories are perpendicular to 

the angular bisectors. 

 

The verification presents a good calculation performance of the Grasshopper model, in 

qualitative manner.  

4.2.2. Quantitative Verification 

In the table the M (Diana) is the sum of bending moment which is calculated in TNO Diana FEM 

program. And M (GH) is the value of Rhino Grasshopper model. The ratio is the number of M 

(Diana) divided by M (GH). The figure shows the shape of the moment line. 

 

In the comparison of Bound Y results, the analytical results will be used. The results are from 

Tafeln fur Gleichmassig Vollbelastete Rechteckplatten. (Bautechnik – Archiv Heft 11) written by F. 

Czerny. 
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- Bound X (100mm Thickness) 

 

The unit of Node X is m, and M is N. 

Node X 0 1 2 3 4 5 

M(Diana) 0.01749 -0.0684995 -0.24984 -0.42333 -0.5513 -0.64818 

M(GH) 0 -0.096 -0.258 -0.417 -0.545 -0.635 

Ratio X 0 0.713536458 0.96839 1.015168 1.01155 1.020756 

 

Node X 6 7 8 9 10 11 

M(Diana) -0.70124 -0.7181 -0.70124 -0.64818 -0.5513 -0.42333 

M(GH) -0.687 -0.704 -0.687 -0.635 -0.545 -0.417 

Ratio X 1.020721 1.020028 1.020721 1.020756 1.01155 1.015168 

 

Node X 12 13 14 

M(Diana) -0.24984 -0.0685 0.01749 

M(GH) -0.258 -0.096 0 

Ratio X 0.96839 0.713536 0 

 

 

Figure 4.6: Sum of Bending Moment in Bound X (t = 100mm) 

 

It can be seen that the results from Diana model and Grasshopper model almost coincide. Only 

slight differences occur.   
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- Bound X (1000mm Thickness) 

 

The unit of Node X is m, and M is N. 

Node X 0 1 2 3 4 5 

M(Diana) 0.001155 -0.1079635 -0.26415 -0.42193 -0.55018 -0.64037 

M(GH) 0 -0.096 -0.258 -0.417 -0.545 -0.635 

Ratio X 0 1.124619792 1.023849 1.011819 1.009511 1.008456 

 

Node X 6 7 8 9 10 11 

M(Diana) -0.69245 -0.70948 -0.69245 -0.64037 -0.55018 -0.42193 

M(GH) -0.687 -0.704 -0.687 -0.635 -0.545 -0.417 

Ratio X 1.007937 1.00778 1.007937 1.008456 1.009511 1.011819 

 

Node X 12 13 14 

M(Diana) -0.26415 -0.10796 0.001155 

M(GH) -0.258 -0.096 0 

Ratio X 1.023849 1.12462 0 

 

 

Figure 4.7: Sum of Bending Moment in Bound X (t = 1000mm) 

 

Compared the results with different thickness, the Grasshopper model is close to the thicker case 

better. To interpret the phenomenon, the model thickness has to be taken into account. 100mm 

thickness is relative small to the dimensions of plate structure. Therefore, there may be large 

deflection which will cause in – plane mechanic behavior. With 1000mm, the ratio of thickness 

and plate dimension is logical to be considered as pure out – of – plane behavior. Base on this 

reason, the 1000mm thickness result is close to the Grasshopper model. 
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- Bound Y (100mm Thickness) 

 

The unit of Node Y is m, and M is N. 

Node Y 0 1 2 3 4 5 

M(Analy) 0 -0.074 -0.259 -0.425 -0.526 -0.572 

M(Diana) 0.01749 -0.0686355 -0.24937 -0.41644 -0.52351 -0.56106 

M(GH) 0 -0.096 -0.257 -0.408 -0.509 -0.544 

RatioA/G 0 0.770833333 1.007782 1.041667 1.033399 1.051471 

RatioD/G 0 0.714953125 0.970327 1.020683 1.028497 1.03136 

 

Node Y 6 7 8 9 10 

M(Analy) -0.526 -0.425 -0.259 -0.074 0 

M(Diana) -0.52351 -0.41644 -0.24937 -0.06864 0.01749 

M(GH) -0.509 -0.408 -0.257 -0.096 0 

RatioA/G 1.033399 1.041667 1.007782 0.770833 0 

RatioD/G 1.028497 1.020683 0.970327 0.714953 0 

 

 

Figure 4.8: Sum of Bending Moment in Bound Y (t = 100mm) 

  

-0.7 

-0.6 

-0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0 

0.1 

0 1 2 3 4 5 6 7 8 9 10 

Moment 
(N) 

Node Y (m) 

Diana 

GH 

Analytical 



56 
 

- Bound Y (1000mm Thickness) 

 

The unit of Node Y is m, and M is N. 

Node Y 0 1 2 3 4 5 

M(Analy) 0 -0.074 -0.259 -0.425 -0.526 -0.572 

M(Diana) 0.001155 -0.1079985 -0.26229 -0.41069 -0.51099 -0.54563 

M(GH) 0 -0.096 -0.257 -0.408 -0.509 -0.544 

RatioA/G 0 0.770833333 1.007782 1.041667 1.033399 1.051471 

RatioD/G 0 1.124984375 1.020597 1.006588 1.003918 1.002991 

 

Node Y 6 7 8 9 10 

M(Analy) -0.526 -0.425 -0.259 -0.074 0 

M(Diana) -0.51099 -0.41069 -0.26229 -0.108 0.001155 

M(GH) -0.509 -0.408 -0.257 -0.096 0 

RatioA/G 1.033399 1.041667 1.007782 0.770833 0 

RatioD/G 1.003918 1.006588 1.020597 1.124984 0 

 

 

Figure 4.9: Sum of Bending Moment in Bound Y (t = 1000mm) 

 

With results verification of Bound Y and also by introduced the analytical results; it is convincing 

that the Grasshopper model can generate precise structural analysis. And again, with the reason 

that has been declared above, the GH results fit the 1000mm Diana better.  
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4.3. Free Boundary Case 

4.3.1. Qualitative Verification 

In qualitative manner, the form – finding result will be compared. 

 

- Result of membrane shape from grasshopper model: 

 

Figure 4.10: Membrane analogy of bending moment summation 

 

Figure 4.11: Analytical bending moment summation (Picture from W. J. Beranek [6]) 

 

The scales of the results are a bit different. But in qualitative manner, the shapes of the 

membrane are close to each other. 
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- Result of principal shear trajectories: 

  

Figure 4.12: Rain – flow analogy in GH   Figure 4.13: Analytical Rain – flow analogy 

  

The verification presents a good calculation performance of the Grasshopper model, in 

qualitative manner.  
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4.3.2. Quantitative Verification 

- Bound X (100mm Thickness) 

 

The unit of Node X is m, and M is N. 

Node X 0 1 2 3 4 5 

M(Diana) 0.649 1.03225 1.646495 2.03595 2.353865 2.572335 

M(GH) 0 1.219 1.714 2.105 2.404 2.616 

Ratio X 0 0.846800656 0.960616 0.967197 0.979145 0.983308 

 

Node X 6 7 8 9 10 11 

M(Diana) 2.704205 2.74355 2.704205 2.572335 2.353865 2.03595 

M(GH) 2.743 2.786 2.743 2.616 2.404 2.105 

Ratio X 0.985857 0.984763 0.985857 0.983308 0.979145 0.967197 

 

Node X 12 13 14 

M(Diana) 1.646495 1.03225 0.649 

M(GH) 1.714 1.219 0 

Ratio X 0.960616 0.846801 0 

 

 

Figure 4.14: Sum of Bending Moment in Bound X (t = 100mm) 

 

According to the mechanics theory, the moment in the corner support should be equal to zero. 

But based on the Kirchhoff theory, the existing of concentrated shear force leads to unusual 

stress distribution in the boundary edges. The Diana program is not precise enough to come out 

with the right results of such special mechanic phenomenon. Therefore, in Diana model, when it 

comes to the corner point, the results are not fully correct. 

The above theory is presented in the book of Plates and FEM which is written by Professor 

Blaauwendraad. 
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- Bound X (1000mm Thickness) 

 

The unit of Node X is m, and M is N. 

Node X 0 1 2 3 4 5 

M(Diana) 1.753 1.435 1.62175 1.98955 2.2887 2.5059 

M(GH) 0 1.219 1.714 2.105 2.404 2.616 

Ratio X 0 1.177194422 0.946179 0.945154 0.952038 0.957913 

 

Node X 6 7 8 9 10 11 

M(Diana) 2.63705 2.6882 2.63705 2.5059 2.2887 1.98955 

M(GH) 2.743 2.786 2.743 2.616 2.404 2.105 

Ratio X 0.961374 0.964896 0.961374 0.957913 0.952038 0.945154 

 

Node X 12 13 14 

M(Diana) 1.62175 1.435 1.753 

M(GH) 1.714 1.219 0 

Ratio X 0.946179 1.177194 0 

 

 

Figure 4.15: Sum of Bending Moment in Bound X (t = 1000mm) 

 

In 1000mm thickness model the deviation of stress distribution in the corner points become 

larger.  
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- Bound Y (100mm Thickness) 

 

The unit of Node Y is m, and M is N. 

Node Y 0 1 2 3 4 5 

M(Diana) 0.649 0.97965 1.487014 1.7455 1.90895 1.9552 

M(GH) 0 1.182 1.573 1.831 1.979 2.028 

Ratio Y 0 0.828807107 0.945336 0.953304 0.964603 0.964103 

 

Node Y 6 7 8 9 10 

M(Diana) 1.90895 1.7455 1.487014 0.97965 0.649 

M(GH) 1.979 1.831 1.573 1.182 0 

Ratio Y 0.964603 0.953304 0.945336 0.828807 0 

 

 

Figure 4.16: Sum of Bending Moment in Bound Y (t = 100mm) 
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- Bound Y (1000mm Thickness) 

 

The unit of Node Y is m, and M is N. 

Node Y 0 1 2 3 4 5 

M(Diana) 1.753 1.3855 1.45415 1.6865 1.8218 1.8774 

M(GH) 0 1.182 1.573 1.831 1.979 2.028 

Ratio Y 0 1.172165821 0.924444 0.921081 0.920566 0.92574 

 

Node Y 6 7 8 9 10 

M(Diana) 1.8218 1.6865 1.45415 1.3855 1.753 

M(GH) 1.979 1.831 1.573 1.182 0 

Ratio Y 0.920566 0.921081 0.924444 1.172166 0 

 

 

Figure 4.17: Sum of Bending Moment in Bound Y (t = 1000mm) 
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As it can be seen that in Diana program, for free edges, the results is not fulfill the plate theory. 

The sum of bending moment in the corner should be zero. It means that the Diana results of the 

boundaries are not that reliable for free edge. However, at the rest part of the produced results 

still can be used for validation. So the points at the central line are used for comparison. 

 

- Center X (1000mm Thickness) 

 

The unit of Node X is m, and M is N. 

Node X 0 1 2 3 4 5 

M(Diana) 1.8774 2.1685 2.443 2.68 2.875 3.012 

M(GH) 2.0275 2.2987 2.5556 2.7853 2.9759 3.1183 

Ratio X 0.925968 0.94335929 0.95594 0.962194 0.966094 0.965911 

 

Node X 6 7 8 9 10 11 

M(Diana) 3.108 3.133 3.108 3.012 2.875 2.68 

M(GH) 3.2062 3.2359 3.2062 3.1183 2.9759 2.7853 

Ratio X 0.969372 0.968201 0.969372 0.965911 0.966094 0.962194 

 

Node X 12 13 14 

M(Diana) 2.443 2.1685 1.8774 

M(GH) 2.5556 2.2987 2.0275 

Ratio X 0.95594 0.943359 0.925968 

 

 

Figure 4.18: Sum of Bending Moment in Center X (t = 1000mm) 
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- Center Y (1000mm Thickness) 

 

The unit of Node Y is m, and M is N. 

Node Y 0 1 2 3 4 5 

M(Diana) 2.6882 2.829 2.961 3.0535 3.1085 3.133 

M(GH) 2.7855 2.9345 3.0604 3.1559 3.2156 3.2359 

Ratio Y 0.965069 0.96404839 0.967521 0.967553 0.966694 0.968201 

 

Node Y 6 7 8 9 10 

M(Diana) 3.1085 3.0535 2.961 2.829 2.6882 

M(GH) 3.2156 3.1559 3.0604 2.9345 2.7855 

Ratio Y 0.966694 0.967553 0.967521 0.964048 0.965069 

 

 

Figure 4.19: Sum of Bending Moment in Center Y (t = 1000mm) 

 

4.4. Conclusion 

Since the main task of this part is to generate the correct membrane boundary that represented 

the sum of bending moment, the verification is focus on the membrane shape. Other structural 

calculation result like displacement and shear will not be used for checking the validation. These 

results are computed by finite difference component which is produced by previous model, and 

the validation has been testified before. 

  

According to the evaluation of different points with results comparison, the Grasshopper model 

shows good calculation performance of out – of – plane mechanic analysis.  
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5. In– Plane Parametric Design Tool 

5.1. Introduction 

In this chapter, the development of in – plane parametric design tool for thin plate will be present. 

The model will follow the structure of out – of – plane model. The reason of establishing a new 

model on previous one is that they share the same theory of plate analysis. Another 

consideration is that in the final stage, the out – of – plane model and the in – plane program will 

be combined as one integrated tool for structure calculation. Models within similar structure will 

dramatically reduce the complexity during the combination.  

 

In the following section, the program components will be introduced. By giving the description of 

different components, the theoretical framework and the working process will be presented. And 

one will understand how the theories are implemented into the conceived model. 

5.2. Usability & Functionality 

The targeted users of the program are the same as the out – of – plane model which are 

architects and structural engineers. The goals are providing insightful structural evaluation in the 

conceptual design stage for freeform structure.  

 

The usability and functionality aligns with the out – of – plane program. Therefore the usability is 

as follows: 

- Provide real – time results during the design process. 

- Able to change the design parameters, such as geometry, load case and support conditions. 

- Able to modify the program for different users and further developments. 

 

When it comes to functionality, it demands the program to convey the qualitative and 

quantitative insight of thin plate structure for plate in – plane mechanics. The chosen result to 

present should be directly linked to the criteria of structural analysis. The following numerical 

result will be computed and showed in the program. 

- Stress function 

- Normal and shear stress 

- Principle stress 

- Displacement 

 

In comprehensive FEM computational program the results are presented by number. However in 

this thesis the model will come out with the shape of the value, which has a more 

straightforward view of the result.  
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5.3. General Outlines 

As the thesis mentioned before, the structure of in – plane model will be similar with out – of – 

plane program. The basic outlines are as follows: 

 

Figure 5.1: Outline of in – plane model 

 

- Structural Geometry 

The input component of structural geometry define the rectangle plate dimension and the mesh 

width 

 

- Meshing Component 

For calculation purposes, meshing component generate the grid of the plates. After considered 

the convenience of implementing finite difference method, the square mesh is decided. Also in 

this component, the nodes are sorted for different application. 

 

- Force Density Component 

Here is the place that membrane analogy is utilized. The component is used for form finding. By 

integrating the equilibrium equations with force density method, the membrane is shaped by 

Rhino. 

 

- Finite Difference Component 

According to the plate theory, the mechanics behaviors are computed by differential equations. 

However in Rhino program, such application to calculate the differential equations does not exist. 

For this purpose, finite difference method component is applied to achieve the result for 

deflections, shears and moments. 

     

Although the models share similar outlines, there are several modifications for in – plane tool. 
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One is that the rain - flow analogy and derivation components are deleted. The reason of this is 

the theory of implementing the analogy into in – plane behavior still unclear. The meaning of the 

stream lines of the membrane in the in – plane behavior has not be defined yet. Quite little 

researches pay attention to this topic, therefore, less material show the answer of this analogy. 

Since the model uses the same structure as the previous one, most of the component will be the 

same. There is no changes in the geometry defined component and the meshing component. For 

finite difference component, the concept is the same. The only difference is the differential 

formula.  

5.4. Analysis Case 

The scope of the in – plane program is confined to certain boundary conditions. The main task of 

the thesis for in – plane behavior analysis is to set the foundation of the program. It is the first try 

of in – plane tool realization. Based on this purpose the analysis situation is confined as a 

rectangular plate under loads acting on the edges that are parallel to x – axis. The edges parallel 

to y – axis is the fixed edges, which the vertical displacement uy is restricted. There is no vertical 

displacement at those edges. But the horizontal displacement ux is free. And there is no external 

load that will acting on these edges. 

 

Figure 5.2: Analysis case 

 

And of course, in the future, the sophisticated parametric program should fulfill the demands for 

different boundary conditions calculation. But at this thesis, the analysis case is confined for the 

above mentioned situation.  

5.5. Force Density Component 

The main difference between out – of – plane program and in – plane program is the force 

density component for membrane analogy. In out – of – plane program the membrane is used to 

simulate the shape of bending moment summation. But for in – plane program, the different 

type of mechanics will lead to different meaning of this analogy. This time the membrane shape 

is linked to the stress function. The theory has been spoken out in the previous chapter. 
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By using the stress function as the solution for plate analysis, the other structural behavior can be 

derived from this answer. After applying finite difference method, the structural result like 

normal stresses, shear stresses and displacement will be showed based on the membrane shape. 

5.5.1. Basic Idea 

The membrane analogy is base on a second order differential equation (2.15). 

   
    
   

 
    
   

                                                                 

However, according to the theory the stress function should be computed by a forth order 

equation (2.5). 

   
  

   
 

  

   
  

   

   
 
   

   
                                                      

Then the problem now comes to how to extend the membrane analogy second order differential 

equation to forth order equation. As the theory said that, the second order differential equation 

of stress function will lead to sum of normal stress. 

  
   

   
 
   

   
                                                                     

The membrane analogy can be used here by regarding the sum of normal stress n is a known 

parameter. But in fact, the sum of normal stress cannot be calculated beforehand. To solve this 

question another second order differential equation need to be used. 

  
   

   
 
   

   
                                                                    

This time the symbol at the left side of the equation, which is equal to zero, is a known parameter 

in the plate mechanics theory.  

 

Then the following idea shows the process to solve the biharmonic equation. In equation (5.1) 

and (5.4): 

   
    
   

 
    
   

      

  
   

   
 
   

   
     

In this equation series, the membrane analogy can be applied by regarding the membrane with 

no loads. It means 

     

Then: 

     
    
   

 
    
   

   

    
   

   
 
   

   
   

       

Under the given boundaries of the membrane, the shape can be generated. The membrane form 
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represents the value of sum of bending moment n. Now the values of n are obtained. And again 

the membrane analogy can be used. In equation (5.1) and (5.3): 

 
 

 
 
    
   

 
    
   

      

  
   

   
 
   

   
     

This time the values of n can be regarded as the loads on the membrane. 

 
 

 
   

Then: 

     
    
   

 
    
   

  
 

 
   

    
   

   
 
   

   
   

       

At this stage, the results of stress function are achieved. The computation procedure above 

shows that the membrane analogy is implemented twice. Therefore in this thesis such process is 

call “double membrane analogy”. Then it leads to the conclusion that by applying the membrane 

analogy of the equation (5.4), the answer of the sum of normal stress will become a known factor. 

And by using the membrane analogy again in the equation (5.3), the answer of stress function 

will be found. 

 

It may come to a question why not use the sum of normal stress as the solution to compute the 

structural behavior. Like the out – of – plane program, the solution for calculation is the sum of 

bending moment which is a second order differential equation and computed by using the 

membrane analogy once.  

 

The reasons are several. One is that in out – of – plane program the membrane of bending 

moment summation will be used for the rain – flow analysis. The gradient of the bending 

moment summation has meaning as shear force direction and magnitude. But for in – plane 

program, the gradient of sum of normal stress means nothing. So far there is no information and 

research showing what the definition is. And also in the in – plane program, the rain – flow 

component and derivative component are moved out. There is no need to stick to use sum of 

normal stress as solution.  

 

Another consideration indicated the reason about choosing stress function instead of sum of 

normal stress as solution is the boundary condition. For in – plane program, the boundary 

conditions are a bit more complex than the out – of – plane one. In out – of – plane program, the 

simple supported edge can be easily realized by just setting the bending moment summation to 

be zero. The other boundary conditions like fixed edge and free edge need another approach. 

The method is to translate the bending moment into plate displacement first. Based on that, and 

combining the finite difference method, the boundary conditions are defined. The in – plane 

mechanics do not has this simple situation like simple supported edge. All the boundary 

condition should be stated with the manner of stress function. Then why not use the stress 
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function as the solution at first. Furthermore, the physical meanings of stress function is not 

quite clear, the translation from sum of normal stress to stress function is not that simple as the 

out – of – plane program. To reduce the complexity of the tool, the stress function is a better 

choice. 

 

Based on the preceding reason the force density component is used to generate the form of 

stress function Φ. 

 

The basic boundary conditions for in – plane behavior is as follows: 

 

- Load edge 

Figure of boundary conditions 

      
   

   
                                                                        

      
   

    
                                                                        

- fixed edge 

Figure of boundary conditions 

      
   

   
                                                                        

                                                                                      

Since the analysis case is confined, only the above boundary cases will be introduced in the 

program. As people can see that the conditions should be translated into stress function first. 

Then regarding the edges situation, the finite difference method helps to express the boundary 

shape of normal stress summation. After that the membrane analogy is completed. Therefore the 

in – plane model will follow the below computation procedure. 

 

- In – Plane Model 

 

Since the boundary conditions have been set, the edges parallel to x – axis are loaded boundary, 

others are fixed edges. The only input of the component is the magnitude of the acting loads. 

Next chapter is to present the calculation theory of the force density component. 

5.5.2. Basic Equations 

The formula below is derived from the equation in the thesis of H. Schek (1973). 

 

The free nodes are interpreted as points Pi-free with coordinates (xi-free, yi-free, zi-free), I = 1, …, n, and 

the boundary nodes are as Pi-fixed with coordinates (xi-fixed, yi-fixed, zi-fixed), I = 1, …, n. 

BCs Φ n wm 
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The coordinates of all the free nodes form the nfree – vector xfree, yfree, zfree and the nfixed – vector 

xfixed, yfixed, zfixed for all the boundary nodes. 

 

Since the previous chapter has stated the theory of force density method, the later part will skip 

the introduction of this method. 

 

Force Density: 

- Equilibrium Formula 

     
                   

                      

The C is the branch – node matrix indicates the connectivity of network system. 

And Q is the force density matrix. In minimal surface all the force density should be equal to one. 

Therefore, the matrix Q equal to unit matrix E. 

And rephrase the formula: 

     
                  

                     

For simplicity, set: 

           
       

            
        

Then: 

                                

With 

   
      
     

  

For further explanation the formula is rewritten into other symbols: 

                             

The theories that are applied to the force density component are as follows. 

 

Plate Theory: 

- Stress Function 

   

   
 
   

   
   

- Stress Summation 

   

   
 
   

   
   

- Loaded Edge 

   

   
     

   

    
     

- Boundary Edge 

     

Lead to 
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In here the double membrane analogy is presented. The equations below are the theories that 

combined with finite difference method. Since the expression of boundary conditions is 

complicate, the following nodes distributions will be used. The free nodes are called Mid Point. 

The edges nodes are distributed to Bound Point. According to finite difference method, there are 

hidden nodes. Those nodes are called Outer Point. The Bound Points are exactly lined on the 

edges of plate. The Outer Points are the imaged points located outside the plate’s boundaries. 

The existing of the Outer Points is only used for boundary condition calculation. 

 

Figure 5.3: Points classification 

 

Finite Difference Method: 

- Stress Function 

   

   
 
   

   
   

Rewrite into finite difference method manner: 

                                                                         

- Stress Summation 

   

   
 
   

   
   

Rewrite into finite difference method manner: 

                                                                          

Lead to 

          
                 

Then equation (5.9) is: 

                             
                                        

The above equation is the double membrane analogy. By using this equation the membrane 

shape will be generated. The next part is implementing the boundary for membrane form finding. 
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- Loaded Boundary Condition (5.5) 

   

   
       

Rewrite into finite difference method manner: 

                

Then 

             
                                                                     

The N is the applied load matrix. And Ibound is the difference finite operator matrix for second 

order differential in one direction. 

Another loaded boundary condition (5.6) is the shear stress is zero.   

   

    
       

Rewrite into finite difference method manner: 

                                                                              

By replacing equation (5.12) into equation (5.11) the formula will be: 

                       
          

                 

And equation (5.13) is: 

                       
                     

Then 

              
                           

                                       

 

- Fixed Boundary Condition (5.8) 

   

   
     

   

  
   

By using finite difference method: 

                                        

Using the same equation (5.12) to replace Φbound: 

                       
                     

Lead to 

              
                           

                                      

 

- Boundary Condition Combination 

Here the different types of boundary conditions (5.14) and (5.15) are combined into a single 

formula. 

              
                           

      

              
                           

      

Combine the above two equations: 

      
       

                           
     

       
                           

     
  

For simplicity assume: 
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Then 

                             
                                            

 

Now the equation to calculate Φout has been defined. Here the nbound also align with membrane 

analogy. 

   

   
 
   

   
   

This equation is translated in the language of finite difference method. 

                              
               

 

The matrices K are the finite difference operator matrices. Then by applied equation (5.16): 

                              
                                  

      

                                                        
     

 

The component calculates the value based on the following equation (applied equation (5.11)): 

          
                                

              
                                      

     

 

                
                           

  
             

         

                             
     

The above equation is applied to the component to calculate the stress function. 

5.6. Finite Difference Component (Displacement) 

In this component the computation procedure of normal stresses and shear forces is similar to 

the out – of – plane program. But for the outputs of displacement, the process to achieve the 

results needs to be introduced. 

 

According to the plate theory (with zero Poisson’ ratio assumption) the constitutive equations: 

    
   
  

 
 

  
    

    
   

  
 

 

  
    

    
   
  

 
   
  

 
 

  
    

 

  
    

Transfer the equations with finite difference method manner: 

          

          

                 

The stiffness 1 / Et is a parameter that can be imported later. 

 

By applied the finite difference method, the in – plane stresses nxx, nyy and nxy are obtained. With 

known values of nxx, nyy and nxy, using the equations above the displacements ux and uy can be 
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computed. However based on the degree of freedom, there are only two independent variables 

which are ux and uy. Therefore, the stresses resultants are not fully independent. An inner 

relation occurs to describe the connection of the stresses, and it is the equation of strain 

compatibility. By looking a way to reduce three equations into two, the calculation process 

become linear, and then the displacements value will be generated. 

 

Now the question goes to how to determine these two equations. Implementing the 

compatibility formula into constitutive equations is not easy. By taking into account the structure 

of the constitutive equations, one can find out that, nxx can only be used to determine ux; and nyy 

is for uy. To fully describe the plate displacement, the nxy needs to be applied to determine the 

relation between ux and uy.  

 

But due to the nature of the membrane analogy, at the boundaries, the value did not fit the 

strain compatibility very well. Errors happen along the boundaries nodes. Therefore, introducing 

the nxy to determine the displacement at the boundaries will lead to inaccurate results. In 

computation process, it should try to avoid using nxy in the boundaries nodes. Then the 

calculation procedure is as follows: 

 

 

Figure 5.4: Nodes classification for displacements 

 

The nodes distribution is as the figure shows. In fact the chosen Center X and Center Y points are 

not necessary to be exactly at the center lines. The only consideration is to avoid the chosen 

points closing to the boundaries. Otherwise the errors of the calculation become obvious. And 

these chosen points are used as datum marks for computation. 

 

Only in the Center X and Center Y points the nxy will be used at the rest Normal points, the 

displacements are only computed by nxx and nyy. 

In Center X Points: 

 
   
    

   
  
  
   

   
   

  

In Center Y Points: 
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In Normal Points: 

 
   
   

   
  
  
   

   
   

  

In calculating the displacement another aspect needs to be considered that is the rigid body 

movement. During the process, the hypothesis is to assume the displacements ux and uy at point 

A are zero, and the horizontal displacement ux at point B is also zero. After the computation, the 

whole deformed plate can be modified according to the boundaries conditions with correct rigid 

body movement to get the correct deformation. 
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6. In – Plane Result Verification 

6.1. Introduction 

After building up the program, the next step is to check the validation of the tool. As the same for 

out – of – plane verification, the produced values for comparison are come out with FEM (finite 

element method) program TNO Diana.  

 

The analysis case is one edge loading. On the other loaded edges, there is no load acting. It is free 

edge. In line with Grasshopper model, the mesh space is square with dimension of 1m x 1m. The 

mesh type for structure calculation in Diana model is CQ16M. 

 

The properties of the analysis model are: 

1)          

2)          

3)           

4)     

5)              

The results for some special points are subtracted to check whether the program calculation is 

valid. The long edge points are defined as Bound X; and short edge points are Bound Y. For better 

verification, another two series of nodes are also used for result comparison which is Center X 

and Center Y. The geometry of the plate and the definition of nodes location are showed below. 

 

Figure 6.1: Nodes classification 

 

Not only the Diana results will be provided to valid the model, there are two other research 

materials are presented. One is from the book that is written by ir. W. J. Beranek (Toegepaste 

Mechanica K-3). The stress function and stress results are recorded in the book. However, the 

results are not fully correct. The stress function does not fulfill the strain compatibility equation, 
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and also the fixed boundary results do not align with the real condition. Another is from J. Barber 

(Elasticity). These results are widely used in plate mechanics, although they are not 100% correct. 

In this verification section, the comparison for these results is also made to find the differences. 

 

- The formulas from Toegepaste Mechanica K-3: 

 

Figure 6.2: Analysis case in Toegepaste Mechanica K-3 (Picture from W. J. Beranek [5]) 

 

  
 

   
                      

    
   

   
 

  

   
               

    
   

   
  

 

  
              

    
   

    
  

  

  
        

 

- The formulas from Elasticity: 

 
Figure 6.3: Analysis case in Elasticity (Picture from J. Barber [7]) 
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The formula in this book, the boundary conditions at the left and right side are so called “weak 

boundary condition”. 

 

This boundary conditions only require the summation of the value to satisfy the stated 

requirements. Like the situation in this load case, in the fixed end the stress nxx should be zero at 

each point. But the weak condition only demands the summation of nxx is equal to zero. It does 

not matter whether all the point is equal to zero.  

 

There is only one load case for the next chapter of verification.  

 

Figure 6.4: Analysis case 
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6.2. Verification 

6.2.1. Qualitative Verification 

In qualitative manner, the form finding result of stress function will be presented, and also the 

results of structural evaluation. The figures of normal stress, shear stress and plate displacement 

are the content. 

 

- Result of stress function: 

 

Figure 6.5: Stress function from Grasshopper model 

 

Figure 6.6: Beranek’s stress function result      Figure 6.7: Barber’s stress function result 

 

- Result of normal stress nxx: 

 

Figure 6.8: Nxx Stress from Grasshopper model 
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Figure 6.9: Beranek’s Nxx stress result          Figure 6.10: Barber’s Nxx stress result 

 

- Result of normal stress nyy: 

 

Figure 6.11: Nyy Stress from Grasshopper model 

 

Figure 6.12: Beranek’s Nyy stress result          Figure 6.13: Barber’s Nyy stress result 

 

- Result of normal stress nxy: 

 

Figure 6.14: Nxy Stress from Grasshopper model 
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Figure 6.15: Beranek’s Nxy stress result          Figure 6.16: Barber’s Nxy stress result 

 

- Result of displacement: 

 
Figure 6.17: Plate deformation from Grasshopper model 

 

Figure 6.18: Plate deformation from Diana model 

6.2.2. Quantitative Verification 

In the table the (Diana) is the results which are calculated in TNO Diana FEM program. And (GH) 

is the value of Rhino Grasshopper model. The ratio is the number of (Diana) divided by those 

with (GH). The figure shows the shape of the results. 

 

The following results are chosen to compare:                   
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- Bound X (The unit of Node X is m, and Nxx, Nyy and Nxy is N/m) 

Diana               

Node X 0 1 2 3 4 5 6 

Nxx -0.0257 -0.1365 -0.1675 -0.201 -0.231 -0.257 -0.2795 

Nyy -0.0254 -0.1235 -0.09785 -0.1015 -0.1 -0.1 -0.1 

Nxy 0 0 0 0 0 0 0 

GH 
       

Nxx 0 -0.1071 -0.1597 -0.1962 -0.2263 -0.2522 -0.274 

Nyy 0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 

Nxy 0 0 0 0 0 0 0 

Ratio 
       

Nxx 1 1.27451 1.048842 1.024465 1.020769 1.019033 1.020073 

Nyy 1 1.235 0.9785 1.015 1 1 1 

Nxy 1 1 1 1 1 1 1 

 

Diana               

Node X 7 8 9 10 11 12 13 

Nxx -0.297 -0.311 -0.318 -0.321 -0.318 -0.311 -0.297 

Nyy -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 

Nxy 0 0 0 0 0 0 0 

GH 
       

Nxx -0.2914 -0.304 -0.3118 -0.3143 -0.3118 -0.304 -0.2914 

Nyy -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 

Nxy 0 0 0 0 0 0 0 

Ratio 
       

Nxx 1.019218 1.023026 1.019885 1.021317 1.019885 1.023026 1.019218 

Nyy 1 1 1 1 1 1 1 

Nxy 1 1 1 1 1 1 1 

 

Diana               

Node X 14 15 16 17 18 19 20 

Nxx -0.2795 -0.257 -0.231 -0.201 -0.1675 -0.1365 -0.0257 

Nyy -0.1 -0.1 -0.1 -0.1015 -0.09785 -0.1235 -0.0254 

Nxy 0 0 0 0 0 0 0 

GH 
       

Nxx -0.274 -0.2522 -0.2263 -0.1962 -0.1597 -0.1071 0 

Nyy -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0 

Nxy 0 0 0 0 0 0 0 

Ratio 
       

Nxx 1.020073 1.019033 1.020769 1.024465 1.048842 1.27451 1 

Nyy 1 1 1 1.015 0.9785 1.235 1 

Nxy 1 1 1 1 1 1 1 
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- Bound X 

 

Figure 6.19: Normal Stress in X – Direction 

 

 

Figure 6.20: Normal Stress in Y – Direction 

 

From the figure of normal stress in x – direction, the results from Grasshopper model fits the 

results from Diana better than the other two. It indicates that the model has high accuracy. Then 

in figure of normal stress in y – direction, the reason of why the end point has this huge 

difference is those end points are the intersection points of loaded edge and fixed edges. In 

discrete model these corner points cannot fulfill the conditions of both edges. So in here, I only 

applied the fixed boundary condition to the corner points. That is why in GH, the value is zero. 
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- Center X (The unit of Node X is m, and Nxx, Nyy and Nxy is N/m) 

Diana               

Node X 0 1 2 3 4 5 6 

Nxx 0 0.004775 0.00785 0.00875 0.00805 0.006575 0.004925 

Nyy 0 -0.01785 -0.03338 -0.04263 -0.04848 -0.05138 -0.0525 

Nxy 0.133 0.129 0.12 0.10675 0.091675 0.07635 0.0609 

GH 
       

Nxx 0 0.00453 0.00738 0.00823 0.00765 0.00637 0.00492 

Nyy 0 -0.0176 -0.0319 -0.0418 -0.0477 -0.0508 -0.0522 

Nxy 0.1279 0.1245 0.1155 0.1031 0.089 0.0742 0.0593 

Ratio 
       

Nxx 1 1.054084 1.063686 1.063183 1.052288 1.032182 1.001016 

Nyy 1 1.014205 1.046238 1.019737 1.016247 1.011319 1.005747 

Nxy 1.039875 1.036145 1.038961 1.035403 1.030056 1.028976 1.026981 

 

Diana               

Node X 7 8 9 10 11 12 13 

Nxx 0.00355 0.0025 0.0019 0.0017 0.0019 0.0025 0.00355 

Nyy -0.05275 -0.0526 -0.05245 -0.05235 -0.05245 -0.0526 -0.05275 

Nxy 0.04555 0.0303 0.01515 0 -0.01515 -0.0303 -0.04555 

GH 
       

Nxx 0.00364 0.00268 0.00209 0.0019 0.00209 0.00268 0.00364 

Nyy -0.0526 -0.0526 -0.0525 -0.0525 -0.0525 -0.0526 -0.0526 

Nxy 0.0444 0.0296 0.0148 0 -0.0148 -0.0296 -0.0444 

Ratio 
       

Nxx 0.975275 0.932836 0.909091 0.894737 0.909091 0.932836 0.975275 

Nyy 1.002852 1 0.999048 0.997143 0.999048 1 1.002852 

Nxy 1.025901 1.023649 1.023649 1 1.023649 1.023649 1.025901 

 

Diana               

Node X 14 15 16 17 18 19 20 

Nxx 0.004925 0.006575 0.00805 0.00875 0.00785 0.004775 0 

Nyy -0.0525 -0.05138 -0.04848 -0.04263 -0.03338 -0.01785 0 

Nxy -0.0609 -0.07635 -0.09168 -0.10675 -0.12 -0.129 -0.133 

GH 
       

Nxx 0.00492 0.00637 0.00765 0.00823 0.00738 0.00453 0 

Nyy -0.0522 -0.0508 -0.0477 -0.0418 -0.0319 -0.0176 0 

Nxy -0.0593 -0.0742 -0.089 -0.1031 -0.1155 -0.1245 -0.1279 

Ratio 
       

Nxx 1.001016 1.032182 1.052288 1.063183 1.063686 1.054084 1 

Nyy 1.005747 1.011319 1.016247 1.019737 1.046238 1.014205 1 

Nxy 1.026981 1.028976 1.030056 1.035403 1.038961 1.036145 1.039875 
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- Center X 

 

Figure 6.21: Normal Stress in X – Direction 

 

 

Figure 6.22: Normal Stress in Y – Direction 
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Figure 6.23: Shear stress 

 

 

There is further explanation of the nxx figure. Although the number is quiet small, the GH results 

still line with the Diana model very well. This is a convincing figure to prove the parametric tool is 

in high accuracy. For the result from W. J. Beranek and J. Barber, because the basic assumption 

for the formula is symmetric and according to this assumption the Center X is where the neutral 

line is. Therefore there is no stress at those points. 
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- Bound Y (The unit of Node Y is m, and Nxx, Nyy and Nxy is N/m) 

Diana               

Node Y 0 1 2 3 4 5 6 

Nxx 0 0 0 0 0 0 0 

Nyy 0 0 0 0 0 0 0 

Nxy 0.0341 0.1037 0.118 0.129 0.134 0.133 0.124 

GH 
       

Nxx 0 0 0 0 0 0 0 

Nyy 0 0 0 0 0 0 0 

Nxy 0 0.0746 0.1064 0.1222 0.1288 0.1279 0.1198 

Ratio 
       

Nxx 1 1 1 1 1 1 1 

Nyy 1 1 1 1 1 1 1 

Nxy 1 1.39008 1.109023 1.055646 1.040373 1.039875 1.035058 

 

Diana         

Node Y 7 8 9 10 

Nxx 0 0 0 0 

Nyy 0 0 0 0 

Nxy 0.108 0.0834 0.04865 0.0012 

GH 
    

Nxx 0 0 0 0 

Nyy 0 0 0 0 

Nxy 0.1041 0.0801 0.0461 0 

Ratio 
    

Nxx 1 1 1 1 

Nyy 1 1 1 1 

Nxy 1.037464 1.041199 1.055315 1 
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- Bound Y 

 

Figure 6.24: Normal Stress in X – Direction 

 

 

Figure 6.25: Normal Stress in Y – Direction 
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Figure 6.26: Shear stress 

 

As the article mentioned before, the solution from J. Barber is not fully correct. The first 

figure shows the problem of weak boundary condition. In weak boundary condition, only the 

summation of the whole edge fulfills the condition requirement. It does not matter whether 

all the points are satisfied. From the chart, one can see that in reality, it should be no stress 

at each point. But from the results from book, only the summation is equal to zero. 
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- Center Y (The unit of Node Y is m, and Nxx, Nyy and Nxy is N/m) 

Diana               

Node Y 0 1 2 3 4 5 6 

Nxx -0.321 -0.243 -0.173 -0.1105 -0.0529 0.0017 0.05565 

Nyy -0.1 -0.09785 -0.09085 -0.08025 -0.0671 -0.05235 -0.03725 

Nxy 0 0 0 0 0 0 0 

GH 
       

Nxx -0.3143 -0.2374 -0.1692 -0.1078 -0.0515 0.0019 0.0546 

Nyy -0.1 -0.0974 -0.0905 -0.0801 -0.0671 -0.0525 -0.0375 

Nxy 0 0 0 0 0 0 0 

Ratio 
       

Nxx 1.021317 1.023589 1.022459 1.025046 1.027184 0.894737 1.019231 

Nyy 1 1.00462 1.003867 1.001873 1 0.997143 0.993333 

Nxy 1 1 1 1 1 1 1 

 

Diana         

Node Y 7 8 9 10 

Nxx 0.1115 0.172 0.24 0.318 

Nyy -0.02295 -0.01095 -0.00265 0 

Nxy 0 0 0 0 

GH 
    

Nxx 0.1091 0.168 0.2342 0.3105 

Nyy -0.0234 -0.0115 -0.0032 0 

Nxy 0 0 0 0 

Ratio 
    

Nxx 1.021998 1.02381 1.024765 1.024155 

Nyy 0.980769 0.952174 0.828125 1 

Nxy 1 1 1 1 
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- Center Y 

 

Figure 6.27: Normal Stress in X – Direction 

 

 

Figure 6.28: Normal Stress in Y – Direction 
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- Bound X (The unit of Node X is m, and DispX and DispY is mm) 

Diana               

Node X 0 1 2 3 4 5 6 

DispX 0.665 0.628 0.579 0.517 0.444 0.363 0.273 

DispY 0 0.286 0.509 0.703 0.872 1.02 1.14 

GH 
       

DispX 0.635 0.635 0.564 0.529 0.433 0.378 0.265 

DispY 0 0.281 0.503 0.694 0.867 1.01 1.132 

Ratio 
       

DispX 1.047244 0.988976 1.026596 0.977316 1.025404 0.960317 1.030189 

DispY 1 1.017794 1.011928 1.012968 1.005767 1.009901 1.007067 

 

Diana               

Node X 7 8 9 10 11 12 13 

DispX 0.177 0.0752 -0.0299 -0.137 -0.244 -0.349 -0.45 

DispY 1.23 1.3 1.34 1.36 1.34 1.3 1.23 

GH 
       

DispX 0.195 0.071 -0.007 -0.137 -0.267 -0.345 -0.469 

DispY 1.219 1.296 1.328 1.353 1.328 1.296 1.219 

Ratio 
       

DispX 0.907692 1.059155 4.271429 1 0.913858 1.011594 0.959488 

DispY 1.009024 1.003086 1.009036 1.005174 1.009036 1.003086 1.009024 

 

Diana               

Node X 14 15 16 17 18 19 20 

DispX -0.547 -0.636 -0.718 -0.79 -0.852 -0.901 -0.939 

DispY 1.14 1.02 0.872 0.703 0.509 0.286 0 

GH 
       

DispX -0.539 -0.652 -0.707 -0.803 -0.838 -0.909 -0.909 

DispY 1.132 1.01 0.867 0.694 0.503 0.281 0 

Ratio 
       

DispX 1.014842 0.97546 1.015559 0.983811 1.016706 0.991199 1.033003 

DispY 1.007067 1.009901 1.005767 1.012968 1.011928 1.017794 1 
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- Bound X 

  

Figure 6.29: Displacement X-Direction 

 

 

Figure 6.30: Displacement Y-Direction   
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- Center X (The unit of Node X is m, and DispX and DispY is mm) 

Diana               

Node X 0 1 2 3 4 5 6 

DispX -0.153 -0.152 -0.15 -0.147 -0.145 -0.142 -0.14 

DispY 0 0.2 0.393 0.574 0.737 0.88 1 

GH 
       

DispX -0.1535 -0.154 -0.151 -0.149 -0.145 -0.144 -0.141 

DispY 0 0.197 0.39 0.566 0.732 0.868 0.993 

Ratio 
       

DispX 0.996743 0.987013 0.993377 0.986577 1 0.986111 0.992908 

DispY 1 1.015228 1.007692 1.014134 1.006831 1.013825 1.007049 

 

Diana               

Node X 7 8 9 10 11 12 13 

DispX -0.139 -0.138 -0.137 -0.137 -0.136 -0.135 -0.134 

DispY 1.1 1.16 1.21 1.22 1.21 1.16 1.1 

GH 
       

DispX -0.14 -0.138 -0.138 -0.137 -0.136 -0.136 -0.134 

DispY 1.081 1.158 1.19 1.215 1.19 1.158 1.081 

Ratio 
       

DispX 0.992857 1 0.992754 1 1 0.992647 1 

DispY 1.017576 1.001727 1.016807 1.004115 1.016807 1.001727 1.017576 

 

Diana               

Node X 14 15 16 17 18 19 20 

DispX -0.133 -0.131 -0.129 -0.126 -0.123 -0.121 -0.12 

DispY 1 0.88 0.737 0.574 0.393 0.2 0 

GH 
       

DispX -0.133 -0.13 -0.129 -0.1253 -0.1234 -0.1204 -0.1204 

DispY 0.993 0.868 0.732 0.566 0.39 0.197 0 

Ratio 
       

DispX 1 1.007692 1 1.005587 0.996759 1.004983 0.996678 

DispY 1.007049 1.013825 1.006831 1.014134 1.007692 1.015228 1 
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- Center X 

  

Figure 6.31: Displacement X-Direction 

 

 

Figure 6.32: Displacement Y-Direction   
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- Bound Y (The unit of Node Y is m, and DispX and DispY is mm) 

Diana               

Node Y 0 1 2 3 4 5 6 

DispX 0.665 0.415 0.235 0.0893 -0.0371 -0.153 -0.266 

DispY 0 0 0 0 0 0 0 

GH 
       

DispX 0.635 0.401 0.226 0.084 -0.04 -0.154 -0.264 

DispY 0 0 0 0 0 0 0 

Ratio 
       

DispX 1.047244 1.034913 1.039823 1.063095 0.9275 0.993506 1.007576 

DispY 1 1 1 1 1 1 1 

 

Diana         

Node Y 7 8 9 10 

DispX -0.384 -0.512 -0.659 -0.833 

DispY 0 0 0 0 

GH 
    

DispX -0.379 -0.504 -0.648 -0.818 

DispY 0 0 0 0 

Ratio 
    

DispX 1.013193 1.015873 1.016975 1.018337 

DispY 1 1 1 1 
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- Bound Y 

  

Figure 6.33: Displacement X-Direction 

 

 

Figure 6.34: Displacement Y-Direction   
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- Center Y (The unit of Node Y is m, and DispX and DispY is mm) 

Diana               

Node Y 0 1 2 3 4 5 6 

DispX -0.137 -0.137 -0.137 -0.137 -0.137 -0.137 -0.137 

DispY 1.36 1.32 1.29 1.26 1.24 1.22 1.2 

GH 
       

DispX -0.137 -0.137 -0.137 -0.137 -0.137 -0.137 -0.137 

DispY 1.353 1.32 1.288 1.26 1.235 1.215 1.2 

Ratio 
       

DispX 1 1 1 1 1 1 1 

DispY 1.005174 1 1.001553 1 1.004049 1.004115 1 

 

Diana         

Node Y 7 8 9 10 

DispX -0.137 -0.137 -0.137 -0.137 

DispY 1.19 1.19 1.19 1.19 

GH 
    

DispX -0.137 -0.137 -0.137 -0.137 

DispY 1.19 1.184 1.182 1.182 

Ratio 
    

DispX 1 1 1 1 

DispY 1 1.005068 1.006768 1.006768 
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- Center Y 

  

Figure 6.35: Displacement X-Direction 

 

 

Figure 6.36: Displacement Y-Direction 

6.3. Conclusion 

According to the evaluation of different points with results comparison, the Grasshopper model 

shows good calculation performance of in – plane mechanic analysis.  
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7. Reinforcement Calculation 

7.1. Introduction 

The foremost purpose of the thesis program is for plate structural analysis. The outputs are 

mainly focus on mechanic behavior descriptions like normal stresses, bending moments, shear 

and deflections. Since these results have been generated by the parametric tool, the program can 

incorporate with them for further applications. Base on this, the program can be upgraded to be 

more practical. 

 

Then the first idea is the reinforcement calculation. Plate structures are normally made of 

concrete, and reinforcements should be introduced to satisfy the safety requirement. To obtain 

the reinforcement bars layout in plate structures, the mechanic analysis results need to be known 

first. One of the advantages of the program is that the tool is real-time. It means the structural 

analysis can be achieved immediately. Utilized the results, the reinforcement design application is 

easier to be realized. 

  

The inputs of the program are plate thickness and the design steel strength. The outputs are 

reinforcement area ratios in the corresponding points. 

7.2. Methods 

The design solution of reinforcement calculation is the Wood & Armer method, which is also 

recommended in Dutch code NEN 6720. The concept is to determine equivalent moments and 

normal stresses for reinforcement calculation. And the formulas are presented below. 

 

- Plate subjected to simple bending: 

For a selected directions x and y, two types of design moments are computed: 

The lower moments Mxd and Myd (positive, causing tension in the bottom parts of plate)  

              

              

The upper moments Mxg and Myg (negative, causing tension in the upper parts of plate) 

              

              

Then the ratio can be computed. 

The lower ratios: 

    
   

       
 

   

          
 

    
   

       
 

   

          
 

The upper ratios: 
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The internal lever arm z is assumed to be z = 0.9d (d is the thickness of plate). The exact ratio 

between z and d depends on the reinforcement ratio. However, the ratio of 0.9 is most often 

accurate. 

 

- Plate subjected to simple in – plane stresses: 

For a selected directions x and y, the design normal stresses are computed: 

The normal stress Nxr and Nyr (positive, causing tension in the plate)  

              

              

Then the ratio can be computed. 

The reinforcement ratios: 

    
   
     

 

    
   

     
 

 

According to the equations above, the ratios of reinforcement are obtained. 

7.3. Verification 

Imaging a one direction spanned concrete slab subjected uniformed distributed load of 10kN/m2 

perpendicular to mid – plane. The boundary is simple supported, and it is spanned in y – 

direction. Thickness of plate is 200mm and the steel design strength is 435N/mm2. The 

dimensions of the plate are showed below. 

 

Figure 7.1: Dimensions of the plate 
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Calculation result of the reinforcement ratio in mid - span: 

     
 

       
 

 
 
     

         
 

 
 
              

            
                       

Calculation result of the reinforcement ratio in Grasshopper program: 

 

Figure 7.2: Overall value of plate reinforcement ratios 

 

Figure 7.3: The ratios in mid – span 

 

It can be seen that the ratio value is the same. In both hand calculation and Grasshopper model, 

the result is 0.19955%. It means that the reinforcement calculation component is also with high 

accuracy. 
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8. Conclusion & Recommendation 

8.1. Introduction 

The master thesis is an extension of a recently developed parametric design tool for thin plates 

loaded out – of – plane, and establishment of program for thin plates loaded in – plane. One of 

the goals is implementing the theories into visualization computer program to gain visual 

representation and real – time result. The statement of this objective is as: 

 

“Develop a structural design tool for architects and engineers, based on simple analytical 

structural analysis methods, which gives both quantitative and qualitative (real time) insight in 

the flow and magnitude of forces within a specific structure during a conceptual design stage.”  

 

The out – of – plane and in – plane calculation models are based on preceding developed 

program (M. Oosterhuis, 2010). The final goal is to generate a sophisticate computational 

program for freeform structural computation. This project requires a long period to complete. 

This thesis is just one step for the structural calculation program. 

 

The scope of the thesis has been confined. 

- For out – of – plane program, the load is added perpendicular to the plane. The boundary 

conditions of each edge can be simple supported, fixed edge and free edge. 

- For in – plane program, load will be presented parallel to the plane and acting on the 

boundary. The boundary conditions are two parallel sides loaded and two parallel sides fixed 

in vertical direction. 

- For practical demand, the program will be able to calculate the reinforcement for plate 

structure. 

8.2. Conclusion 

The following conclusions can be drawn with respect to the analysis sequences. 

 

Out – of – plane program: 

a) The boundary component can generate the boundary shape for membrane analogy. The 

types of the conditions can be simple supported, fixed edge and free edge. Four edges do not 

need to be the same type of boundary condition. All the mentioned supported edges can be 

combined randomly for the edges.  

b) Elastic membrane analogy integrated with force density method can determine the shape of 

bending moment summation, based on the boundary which is set by the boundary 

component. 

c) The numerical finite difference method can be used in calculating the displacements. And by 

combining finite difference method, the displacement shape can be used to determine the 

stress results like bending moment, torsions and boundary shear forces, based on different 
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type of boundary conditions.  

 

In – plane program: 

a) The stress function shape can be computed by double elastic membrane analogy with assist 

of force density method. The determined shape is used for further structural evaluation. 

b) The stress results can be computed by numerical finite difference method. Also the 

displacement of the plate. 

 

Reinforcement component: 

a) The reinforcement component fulfills the demand to compute the reinforcement ratio for 

steel bar design in plate structure.   

 

Regarding the performance of the models, the defined theories provide a strong foundation of 

structural calculation. The results are compatible with those values from FEM program. It means 

the models are with high accuracy. It can be said that the parametric design tool, at this stage, 

can deliver the highly qualitative and quantitative insight for plate structural mechanic analysis.   

8.3. Recommendation 

Since the thesis is just a small step for generating freeform structural analysis program, there are 

some recommendations are defined for further research. 

 

a) The program now is only valid for rectangular shape. It needs to be developed to satisfy 

different structure geometry. Also the program should be developed from 2D structure to 3D 

(from plate to shell). 

b) Further research is needed to extend the program into more different types of boundary 

condition. For out – of – plane behavior, like elastic bearing, for in – plane, the fully fixed 

boundary can be developed. Another is different types of loading. 

c) To fulfill the analysis of freeform, the out – of – plane and in – plane programs need to be 

combined. 

8.4. Summary 

Reflecting on the main objective for the thesis, the goals are successfully achieved. The goal to 

make a parametric structural design tool of plates is gain by implementing the theories into 

Grasshopper model. With different structural calculation component, the insightful results with 

high quality are obtained. 
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List of Symbols 

   Length 

   Width 

   Thickness 

     Angle 

      Coordinates 

 

   Poisson’s ratio 

   Young’s modulus 

   Stiffness 

 

    Displacement in X - direction 

    Displacement in Y – direction 

   Displacement in Z - direction 

   Normal strain 

   Shear strain 

   Extrinsic curvature 

   In – plane stress 

   In – plane force 

   Out – of – plane Moment 

   Out – of – plane shear 

     Distributed load 

   Stress function 

   Membrane force 

 

     Branch – node matrix 

   Force density matrix 

   Finite difference matrix for curvature 

   Finite difference matrix for concentrated shear force (bending moment terms) 

   Finite difference matrix for concentrated shear force (torsion terms) 

   Finite difference matrix for bending moment 

       Finite difference matrix for edge loads 

   Edge loads matrix 

   Finite difference matrix for external shear loads 

   Finite difference matrix for fixed boundary 
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