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Abstract

Landslides pose a risks to the communities settled in their vicinity. They pose a threat
to human lives and significant economical damage to the affected communities. As the
scientific community agrees that the climate change will further increase the risks as-
sociated with landslides, it is important to develop a reliable, cost effective and widely
applicable technique to assess the stability of the potentially unstable slopes. Such a
technique could allow to create an early warning systems meant to help evacuate the
communities at risk before the landslide event happens. There have been many studies
applying different methods of achieving this goal. This study will apply electrical resis-
tivity tomography to investigate the subsurface and use machine learning methods in the
form of supervised and unsupervised learning to interpret the measurements. The elec-
trical resistivity tomography is a widely applied technique to investigate the stability of
slopes. It can determine the water table in the subsurface, which plays the crucial role in
the stability of the slopes. However, the manual interpretation of the electrical resistivity
tomography profiles is a time-consuming and cumbersome task. In order to develop a
reliable early warning system both the measurements and their interpretation have to
be automatized. The first one has been already achieved. There are systems available
that can perform electrical resistivity tomography automatically and continuously. In
order to automatize the second part, the following research investigated the capability
of machine learning to interpret resistivity profiles alongside with various methods of
improving the accuracy of the results. The results show that machine learning is ca-
pable of performing this task. Some limitations were identified and guidelines for the
preprocessing of the data were proposed. Several areas that require further investigation
were identified.
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Chapter 1

Introduction

1-1 Problem description

Landslides are a common and frequent natural hazard that causes destruction and
claims lives every year. The monitoring of the landslides and early warning of the
population are important issues. In the years 1995-2015, landslides have taken lives of
20 000 people [Wahlstrom M., Guha-Sapir D., 2015], while other studies suggest even
higher numbers of almost 60 000 fatalities from 2004 to 2016 [Froude and Petley, 2018].
On average landslides take 800 to 1 000 lives every year [Borgatti and Soldati, 2010].
Those numbers may actually grow in the future as research by [Gariano and Guzzetti,
2016] found that vast majority of researchers confirms a relationship between landslides
and climate change. However the exact effect of the climate change on the local risk of
a landslide is hard to evaluate.

In order to mitigate the risk posed by landslides, there is a need to actively monitor
the areas at risk of a landslide in real time. According to the United States Geological
Service (USGS), this is important both in terms of understanding this phenomenon
(which would benefit engineers designing structures to minimize the damage caused
by landslides or to prevent or limit their impact) and can be integrated with warning
systems to help protect the local population [Highland and Bobrowsky, 2008]. If the
dynamics of landslide systems are known there is a chance that early signs of the
landmass movement will be detected providing residents in the affected area with
enough time to evacuate.

There are different methods applied to study landslide areas, such as ground penetrating
radar (GPR) [Abolmasov et al., 2013], microseismics [Occhiena et al., 2013] and many
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2 Introduction

other geophysical techniques. Yet, the electrical resistivity tomography (ERT) is per-
haps the most frequently used technique due to its sensitivity to changes in soil moisture
content [Jongmans and Garambois, 2007; Whiteley et al., 2019]. Monitoring requires
continuous data acquisition and automatic operation. This can be achieved with several
methods. Some systems are based on the inclinometers installed in boreholes, weather
stations [Bednarczyk, 2013], extensiometers installed in cracks [Milenkovic et al., 2013],
or global navigation satellite system (GNSS) based systems [Thuro et al., 2013]. While
most of those techniques are cheap and easy to deploy, they often only provide measure-
ments of ongoing failure (i.e. active deformation) or provide data at a single point only.
This is often not sufficient to investigate the spatio-temporally heterogeneous processes
triggering landslides. Hence, geophysical monitoring, and geoelectrical monitoring in
particular, are often used to provide time-varying images of subsurface properties that
can be used to investigate those complex processes [Perrone et al., 2014; Uhlemann et al.,
2017]. Recently, developments in the geophysical hardware design allowed for low-cost,
remote deployment of geoelectrical monitoring systems, which can acquire and telemeter
data several times a day. While this is enabling monitoring at high spatial and temporal
resolution, the amount of data makes manual interpretation challenging. Hence there
is a need to develop automated processing techniques that can simplify the data analysis.

The ERT is a commonly used method (for example: [Reci et al., 2013]). It can delineate
between high and low resistivity zones [Reci et al., 2013]. It can be used as both an inde-
pendent method and together with other ones (for example with GPR [Abolmasov et al.,
2013]). It is a very good tool to investigate landslides but there are some disadvantages
to it too. One of them is complicated process of the data processing and interpreta-
tion. The measurement itself can be done automatically and continuously but deriving
actionable information from large amounts of monitoring data is cumbersome and time
consuming. It often makes the interpretation of the data in real-time impossible with the
conventional approaches such as manual processing and interpretation. Because of this
the processing and interpretation phases can create a bottleneck in the wide application
of the early warning systems. This problem could be solved by automatizing of the data
processing and interpretation phases. If the system operators were freed from the tasks
related to data processing and manual interpretation and were needed only to supervise
and do the quality control of the results it would lower the cost of the warning system
and increase its capacity. To address the need for an automated data interpretation,
recent studies have investigated the use of machine learning (ML) algorithms for the
extraction of actionable information from ERT monitoring data. [Ward et al., 2014]
uses ERT with computer vision methods to track flow of a plume of a tracer through
the subsurface. It proves that the ERT combined with computer vision tools can track
tracers movement through the subsurface in the presence of noise. It is shown that this
can be achieved without the need for manual fine tuning of the parameters. ERT can
also be combined with clustering methods to delineate various features in the time-lapse
ERT measurements [Delforge et al., 2021]. That study includes temporal changes to the
investigated profile which includes hydrological features that can vary over time. Both
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1-2 Motivation of this thesis 3

of those studies execute ERT measurements to obtain information about the subsurface
and apply ML methods to interpret those measurements.

1-2 Motivation of this thesis

In this project it will be investigated whether those methods (ERT and ML) are appli-
cable to an automatic and independent monitoring of subsurface features (i.e. variations
in water table) that affect the stability of slopes. As described above, water table or
soil moisture variations in slopes are critical for slope stability. Since the previous works
has shown that ERT is capable of providing subsurface thresholds to landslide initiation
[Perrone et al., 2014; Uhlemann et al., 2017], Hence, if ML can be used to automatically
extract changes in the subsurface, this information could eventually be used to inform
hydrological parameters of geomechanical models, which in turn would allow to pro-
vide real-time, robust estimates of slope stability assessments. This will further enable
the integration of ERT monitoring into landslide early warning systems. To assess the
applicability of ML, here I investigate the performance of clustering and classification
methods, but also investigate the impact of data preprocessing to the accuracy of the
ML prediction.
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Chapter 2

Theoretical Background

In this chapter the theory behind the tools used in this project will be explained and
discussed.

2-1 Geoelectrical forward modeling and inversion

The majority of the profiles used in this project (both for training and classification)
are synthetic. This has several advantages. The most important one is that the true
geometry and parameters of layers in the subsurface are known and can be used to
evaluate the accuracy of the predictions made by the classifiers. Since there is full
control of how the profiles are defined, they can be designed to test how the classifier
will perform when confronted with different subsurface scenarios.In order to generate
synthetic profiles, two steps were necessary: forward modeling and inversion. They will
be discussed in following section. PyGIMLi has been used to perform both of those steps
[Rücker et al., 2017]. For the parameters used to create each profile please see Section
3-2-1 and Tables 3-1 and 3-2.

ERT

In this project the ERT is used as a method to survey the subsurface. It is a method
commonly used in different areas including not only geophysics, but medicine as well
[Dyhoum et al., 2014]. There were many studies successfully applying this method
to similar problems (for example [Ward et al., 2014]). It can be applied in diverse
environments and is efficient in the terms of data acquisition. [Maurer, 2006].
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Figure 2-1.1: Dipole-Dipole array Butler, 2005. I - transmitter current; V - received volt-
age; a - dipole size; na - receiver-transmitter separation (multiple of dipole
size); h, i, j, k, l, m - intersections of the grid.

In principle the inversion of the measured voltages can be described with the following
equation: [

ln
(
Vobs

)
− ln

(
Vini

)]
= G

[
ln(ρ)− ln

(
ρmod

)]
(2-1)

where ρ is distribution of the resistivity in the subsurface, V is voltage measured at
electrodes (mod - modeled, obs - observed, measured) and G is the Jacobian matrix
[Maurer, 2006].
There are different electrode layouts available. They differ in their properties and can
be selected based on requirement of specific survey. The two commonly used layouts are
Wenner and Schlumberger [Butler, 2005], but for this project dipole-dipole was selected
because it is capable of delivering superior results compared to Wenner array [Chambers
et al., 2002]. With this survey layout, both penetration and horizontal resolution are
very good [Butler, 2005]. It makes this method suitable for this project as its aim is
to investigate the distribution of resistivity in the 2D subsurface profiles. Figure 2-1.1
shows a conceptual illustration of the dipole-dipole array. Two electrodes, spaced by a
are used to inject a current, and the resulting potential is measured using a second pair
of electrodes that is na from the injection dipole. [Reynolds, 2011]

Resistivity of the subsurface

An ERT survey aims to estimate the resistivity distribution of the subsurface using
voltage measurements at the surface or within boreholes. Based on this it allows to
delineate the interfaces between layers of different electrical properties (for example
between highly resistive sand and conductive water). The exact relationship between
different materials that can be found in the subsurface and the resistivity is complex
and depends on many variables. There are two ways of how electrical current can
be transported through the subsurface and both of them are associated with different
physical parameters: electronic process and electrolytic process [Philip Kearey, 2002].
The electronic process depends on electric capabilities of minerals (mostly metals) to
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2-1 Geoelectrical forward modeling and inversion 7

conduct electricity by passage of electrons. The electrolytic process depends on porosity
of the layer and the pore fluid to transport the ions through it. For the purposes of
this project the second one is more important. From the point of view of the process
the much more important parameter is the resistivity of the pore fluid (most commonly
water) than the parameter of the rock material. Both resistivities have to be recognized
in order to delineate between the subsurface material and the part of the subsurface that
is infiltrated by water. The presence of water will decrease the resistivity and create a
contrast that can be measured by ERT. To some extent a greater contrast will make
this task easier as there will be less doubt assigning points to either of those layers. The
resistivities of the rock, the pore fluid and the porosity are connected in the following
empirical formula:

ρ0 = a · φ−m ∗ S−n · ρf (2-2)

It was first introduced by Archie, 1942 and was modified by [W. O. Winsauer, 1952].
φ is the porosity of the layer, ρf the resistivity of the pore fluid. ”m” is a cementation
exponent, which is related to the effective grain size (connected with shape of the pores
and porosity) [Hubbard, 2005]. The constants ”a” and ”n” are empirical [Glover, 2016].
There are many papers, publications and research projects discussing the relationship
between the pore fluid, the porosity and the matrix material (e.g.: [Bai et al., 2013; Dat-
sios et al., 2017; Lech et al., 2020; Pandey et al., 2015]). This very complex phenomenon
plays a limited role in this project as the main contrast in the real data is known to be
related to changes in water content, and a lithological change. Additionally, the majority
of this thesis focuses on synthetic data. For this project two assumptions are important.
The first assumption is that in porous layers infiltration of water will strongly lower the
total resistivity of the infiltrated part of the layer, creating an interface between the
low and high resistivity areas. This is confirmed by different studies including [Delforge
et al., 2021; Goldman, 2010]. The second assumption is that there is a big (orders of
magnitude) difference between the conductive water and the resistive matrix material.
This is confirmed by many sources for example: [Reynolds, 2011].

2-1-1 Forward Modeling

After the geometry of the profile is defined, a simulation of an ERT survey is performed.
The positions of the electrodes can be defined manually and the type of ERT survey can
be selected. For details on the used survey configuration please refer to Chapter 3-1-1.
Figure 2-1.2a shows the defined geometry of the subsurface for an example profile. Mesh
and the environment model used for the forward modeling can be found in the Figure
2-1.2b.
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Finite Element

The ERT problems usually do not have a simple, closed form solution or have one only
under very restrictive assumptions or requirements [Dyhoum et al., 2014]. Therefore a
numerical solution has to be used [Ramirez et al., 2000]. There are two commonly used
methods to achieve this: finite elements (FE) and finite differences (FD). FD is more
efficient for regular geometry but FE offers more flexibility [Ramirez et al., 2000] which
can be beneficial for more complex topography and can improve both the computa-
tional efficiency and the quality of result [Günther et al., 2006a; Zienkiewicz et al., 2005].

PyGIMLi uses the finite element method (FE) for forward modelling (FM) [Günther
et al., 2006a]. The FE method originates from mechanical problems in which complex
structures have been reduced to the elements that behave in a similar way (for example
beams) [Igel, 2016]. In this project an irregular, triangular mesh with varying cell sizes
is used. It is generated automatically by PyGIMLi based on the specified geometry and
mesh quality parameters. Some tests have been performed using a regular grid, but it
increased the computational effort significantly and decreased the quality of the result.
This is consistent with observation made by [Günther et al., 2006a].

2-1-2 Inversion

PyGIMLi inverts the data using a Gauss-Newton scheme with the misfit defined as
[Günther et al., 2006b]:

Φd(m) =

N∑
i=1

∣∣∣∣di − fi(m)

εi

∣∣∣∣2 = ‖D(d− f(m))‖22 (2-3)

In this equation mj contains physical properties of each cell (in this case it will be
the logarithm of the resistivity of each cell), d is vector with data and D is defined as
D = diag (1/εi) where εi is an error associated with the data. The goal is to minimize
φd by minimizing the difference between the data d and the model response f(m). ε is
an error associated with each point and is used to weight the data. This is an ill posed
problem, so regularization has to be applied:

Φ = Φd + λΦm → min (2-4)

where λ is a regularization parameter that weights measurements and model [Jiang
et al., 2020]. The choice of its value has consequences. It is a trade-off between how
well the data is fitted and how smooth / rough the model is [Günther et al., 2006b],
[Tikhonov and Arsenin, 1977]. For more details on λ please see Section 4-1-3.

The methods described in this section apply to both synthetic and real data.
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2-2 Machine learning 9

(a) Geometry of the subsurface - colors indicate
different layers

(b) Mesh used for forward modeling and resistiv-
ity distribution

(c) Inverted result of the ERT measurement sim-
ulation

(d) Input model resampled to the inversion mesh

Figure 2-1.2: Sample of the synthetic profile created with PyGIMLi

2-2 Machine learning

In this section the different machine learning techniques used in this project will be
introduced and briefly discussed.

2-2-1 Supervised and unsupervised learning

The methods used in this project can be split into two groups based on how they learn
from the given data. There are different ways of learning but for this project only two are
important: supervised and unsupervised [Bishop, 2006]. The first one relies on features
in the provided dataset which contains information about the expected result of the
prediction (here it is an expected class) for each sample. Based on this given ”answer”
and the data itself, the classifiers will try to develop a way of assigning each sample to
one of the provided classes. The unsupervised learning requires no expected answers to
be provided. Instead unsupervised learning methods (clustering) will try to group points
into classes based on the self similarity of the samples in each class.

2-2-2 Clustering

Clusters can be defined in a very intuitive way: ”groups of data points whose inter-point
distances are small compared to points outside of the cluster” [Bishop, 2006]. Clustering
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represent an unsupervised way of learning. In this project, two clustering techniques
will be used: KMeans and Mean Shift. They will be discussed in following sections.

KMeans

KMeans is a simple and widely used technique. Its goal is to develop a set of cluster
centers that would represent subgroups in the data set [Müller, A. C., & Guido, S.,
2017]. Mathematically the principle of this technique can be described with the following
formulation:

J =
N∑
n=1

K∑
k=1

rnk ‖xn − µk‖
2 (2-5)

where x is the sample point and µk is an average of a cluster K; N and n indicate
the points and K and k indicate the specific cluster. rnk indicates whether the point
n belongs (1) or not (0) to the specific cluster k. This is a distortion measure, that
KMeans is minimizing [Bishop, 2006]. The selection of the positions of the clusters and
points belonging to each of them are changed iteratively. It uses euclidean distance to
measure the distances between samples [Hartigan, 1975]. Each iteration consists of two
phases: expectation and maximization. In the first one rnk is changed while µk is fixed,
in the second one it is reversed. In both phases J is minimized [Bishop, 2006].

MeanShift

The MeanShift is a centroids based method. In each iteration they are shifted towards
”a region with maximum density of points” based on the mean shift vector, which is
defined as follows [Pedregosa et al., 2011]:

m (xi) =

∑
xj∈N(xi)

K (xj − xi)xj∑
xj∈N(xi)

K (xj − xi)
(2-6)

where x indicate a centroid [Comaniciu and Peter, 2002] and K is defined as follows
[Cheng, 1995]:

K(x) =

{
1 if ‖x‖ ≤ ∆
0 if ‖x‖ > ∆

. (2-7)

where ∆ is defined as the characteristic function.

2-2-3 Classifiers

Classifiers are a ML techniques that belongs to the supervised learning group. In this
project the following classifiers will be used: k nearest neighbours (KNN), stochastic
gradient descent (SGD), support vector machines (SVM), deep neural networks (DNN),
adaptive boost (Adaboost) and gradient boosting classifier (GBC). They will be intro-
duced in following sections.
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2-2 Machine learning 11

K Nearest Neighbours

K Nearest Neighbours (KNN) is one of the simplest classifiers [Müller, A. C., & Guido,
S., 2017]. Nevertheless, it is widely applied to a wide range of different problems (e.g.:
hyperglicemia diagnosis [Sarwar, 2017] or spam detection [Salih and Dhannoon, 2021]).
In its basic form, this method is used to predict the probability density p(x) but it can
be extended to a classification problem [Bishop, 2006]. The principle of this algorithm
can be written mathematically as how probable it is that each point belongs to a specific
class. For the purpose of this project a simpler concept is sufficient. In the basic form of
one-nearest-neighbour each centroid will be matched with the closest point to it within
the data set. In the prediction phase, each new point given to the classifier will be
compared with all training points and it will be matched with the one that is the most
similar to it. Next, the point will be assigned the same class as the training point is
was matched to. However, if the decision is based only on one point from the training
dataset, the outcome of the prediction may not be reliable. For example the outliers
could strongly influence the result of the prediction. Consider a prediction of the class
of a single point that is surrounded by training points that belong to the same class but
the closes point to it is an outlier representing a different class. In this situation the
incorrect class might be assigned because the outlier is the closest training point to the
point for which the class is being predicted. In spite of multiple trainings point with
correct class being available in the vicinity of the point used for prediction. In order to
avoid this problem one neighbour can be replaced with any arbitrary number of them
indicated by k (hence the name - k nearest neighbours). The final class will be assigned
based on which class had the most occurrences among the k neighbour points. This
concept is illustrated in Figure 2-2.1
The KNN technique has several drawbacks. The KNN is a so called ”lazy learner”.
Unlike, for example SVM, it does not learn from the data by developing a margin
between classes or any new conclusion. Instead, its predictions are based purely on
comparing the new point with all samples used to train the classifiers. This means, that
it may be challenging for it to generalize. If the prediction dataset contains points, that
will differ from the training dataset the result may be inaccurate or incorrect. [Jivani
et al., 2016]

Support Vector Machines

Support vector machines (SVM) try to classify data by developing a margin. It can
be defined as a maximal distance between the decision boundary and any of the given
samples. There is penalty for the points that are left on the ”wrong side of the margin”
and the classifier tries to minimize it. [Boser et al., 1992] The strength of the idea of the
margin (or the optimal hyperplane as it was defined in the publication that introduced
this concept [Vapnik and Kotz, 2006]) is that it has to consider only a subsection of the
training samples in order to develop the margin. Those points are the support vectors
[Cortes and Vapnik, 1995]. A simple example of the margin in a 2D space can be found
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(a) . (b) Real measurements - classifiers.

Figure 2-2.1: KNN principle: (a) one-nearest-neighbour; (b) k-nearest-neighbours where
k = 3; illustration from Müller, A. C., & Guido, S., 2017

Figure 2-2.2: The idea of SVM margin from Cortes and Vapnik, 1995.

in the Figure 2-2.2.

The SVM directly supports only two class problems. For the purpose of this project
this is sufficient. They can be extended to support multiple classes with one-vs-the-rest
approach [Bishop, 2006]. Another strength of the SVM is their capability to identify
and eliminate outliers [Boser et al., 1992].

Stochastic Gradient Descent

The stochastic gradient descent (SGD) is based on a gradient descent algorithm. Its
strength is its efficiency. The computational effort associated with the standard gradient
descent algorithm increases with the number of samples. It can quickly become unfeasible
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2-2 Machine learning 13

to take the next step within the gradient if there are many samples available [Goodfellow
et al., 2016]. Another strength of the SGD is that it is a sequential learning algorithm.
It is not necessary to present the whole population of data at once to the classifier.
[Tsuruoka et al., 2009] This can be useful to monitoring projects as SGD can be updated
in real time.
Mathematically, the SGD classification is formulated in a following way (after [Pedregosa
et al., 2011]):

E(w, b) =
1

n

n∑
i=1

L (yi, f (xi)) + αR(w) (2-8)

with L indicating a loss function (measures errors, misfit) and R is a regularization
function that penalizes errors and complexity, x and y are training sets, and α is a hy-
perparameter controlling regularization strength (α > 0) and f(x) is a scoring function:

f(x) = wTx+ b (2-9)

where w is a vector containing model parameters and b is an intercept. The behaviour
of the SGD can be altered by selecting a different loss functions L. For example if L is
defined as soft-margin, SGD will behave like an SVM. At each iteration the parameter
vector w will be updated as follows [Bishop, 2006]:

w(τ+1) = w(τ) − η∇En (2-10)

with τ indicating the iteration number. η is a learning rate parameter, which has to
be selected carefully as setting it to a too large value will prevent it from converging
and selecting a too small value may increase the time required to converge. Scikit-learn
defines η for classification as follows:

η(t) =
1

α (t0 + t)
(2-11)

where t = nsamples ∗ niter and indicates the time step, t0 is determined by the algorithm
[Bishop, 2006].

Deep Neural Network

The Deep Neural Network classifer (NN) in scikit-learn uses multilayer perceptrons
(MLP) [Pedregosa et al., 2011]. In principle MLP consists of an input layer with
neurons representing the input features, multiple hidden layers and an output layer. In
each neuron in the network the transformed values are passed to it from a previous layer
based on weighted summation. Next, the values interact with an activation function.
Different types of them are available. Their purpose is to simulate the response of
neurons [Huang et al., 2020]. Those two steps are repeated in each layer. Finally the
output layer maps the values to the output features.
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A neural network with one hidden layer can be mathematically described as follows:

yk(x,w) = σ

 M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

 (2-12)

where yk is an output feature, σ is an activation function, w indicate weights of connec-
tions between neurons and x is a set of input values. The content of vector w (weights,
parameters) is what is developed during training. [Bishop, 2006] This is done by mini-
mizing an error function that depends on vector w:

E(w) =
1

2

N∑
n=1

{y (xn,w)− tn}2 (2-13)

its minimum can be found where:

∇E(w) = 0 (2-14)

as the dependence of E on w is usually highly non-linear, there may not be an analytical
solution. Therefore mathematical methods have to be used. [Bishop, 2006] In order to
reach a set of parameters that would fulfil equation 2-14 different methods can be used.
Scikit-learn implements three of them: SGD, Adam and L-BFGS. [Pedregosa et al.,
2011] The most appropriate one can be selected by a hyperparameter grid search (for
more details please see Section 3-3-7).

Adaboost

The Adaboost name originates from its capability to adapt to the errors of weak classi-
fiers. [Freund and Schapire, 1997] Adaboost belongs to the boosting algorithms. Boost-
ing is a process in which multiple prediction rules (rules of a thumb, weak classifiers)
that fail to deliver a reliable prediction on their own (but are better than random guess)
are combined to a rule that is very accurate. [Drucker, 1997; Freund and Schapire, 1997]

Adaboost is one of the best classifiers for two case problems, but this is not the case
anymore when extended to multicase problems. [Freund and Schapire, 1997] This limi-
tation is related to an assumption of the error of each weak classifier being smaller than
0.5. [J. Zhu et al., 2006] If a classifier has to decided whether a data point belongs to
class A or B, with no other option, as long as the data points are equally distributed
between classes, this condition will be satisfied. [Freund and Schapire, 1997] However,
when classes C, D and following are added, or when the data points belong predomi-
nantly to one of the two classes, this assumption may not be valid anymore. In multi
class problems the error rate associated with random guessing is defined as:

err = (K − 1)/K (2-15)
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where K is number of classes. [J. Zhu et al., 2006] In its original form the weighting
coefficient (β) is calculated with the following formulation:

β(m) = log(
1− err(wk)

err(wk)
) (2-16)

where wk indicates a weak classifier. In order to extend the Adaboost capabilities to a
multi class case, the following modification was introduced by [J. Zhu et al., 2006]:

β(m) = log(
1− err(wk)

err(wk)
) + log(K − 1) (2-17)

where K indicates the number of classes. This modified approach used by Scikit-learn
is called Stagewise Additive Modeling using a Multi-class Exponential loss function
(SAMME) [Pedregosa et al., 2011].

Gradient Boosting Classifier

Similarly to Adaboost, the gradient boosting classifier (GBC) belongs to a family of
ensemble methods which combine multiple weak classifiers to obtain better result than
any of them would achieve on their own. This is done by boosting - each next weak
classifier is given a chance to learn and improve from previous classifiers mistakes.

2-2-4 Committee

The aim of the committee is to combine predictions made by different clusters or classi-
fiers. It resembles to some extent council of precogs from ”Minority Report” by Phillip
K. Dick [Dick, 1956]. It is done by a democratic vote over predicted class for each point
separately. There is not a minimum vote threshold required to make a decision. The
prediction with the highest number of votes defines the assigned class prediction.
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Chapter 3

Experiment

3-1 Procedure and setup

3-1-1 Forward Modeling and inversion

In this Section I will discuss how synthetic data is being created and how real measure-
ments are inverted. For all steps discussed in this section PyGIMLi is used.

ERT survey simulation

The first step of forward modeling is to define the geometry of the environment in
which ERT survey will be simulated. In order to minimize boundary effects, the forward
modelling domain has to be significantly larger than the extent of the ERT survey.
In this project the environment has been defined without any topography (surface is
entirely flat and horizontal) and it is 400 meters long and 100 meters deep. The number
of interfaces and their positions are defined for each profile separately. The same applies
to the resistivities of layers.
After defining the environment, the survey itself has to be defined. It consists out of one
profile, that is 64 meters long and its center is placed in the middle of the environments
surface (profile reaches 32 meters to the left and to the right of the surface). The
estimated depth of investigation is between 18 to 20 meters. 44 electrodes are used, with
a spacing of 1.5 meters. Dipole-dipole has been selected as measurement scheme (please
see Section 2-1 for more details). Based on the geometry of the environment, mesh is
generated. Next step was to execute the ERT survey. In order to add some realism to
this simulation, artificial noise was added. Noise is controlled by two parameters: its
level (which was set to 1%) and absolute voltage error (set to 1−6 Volts).
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Inversion

The measurements obtained from the forward modeling (the simulated ERT survey)
now have to be inverted in order to obtain a resistivity profile. Choice of parameters
controlling the inversion is not trivial. The selected parameters for profiles can be found
in Table 3-1 and 3-2. Inverted data often contain some outlier, that can make it very hard
to interpret profile. In order to solve this problem, the result of the inversion is trimmed.
10% of highest and lowest vales are removed. This is an arbitrary threshold and it has
been selected experimentally. At this point the input model will be interpolated to the
inversion mesh in order to compare it with the result of the inversion.

Assignment of classes

This section will briefly discuss how classes are assigned. It is an important step as they
will be later used to train the classifiers. Classes are assigned based on the resistivity
values from the input model interpolated to the inversion mesh. The interpolation is
important, because it allows to match each cell in the inverted model to a resistivity
that it should have if there was no noise, the inversion was absolutely perfect and ERT
survey extracted all information from the subsurface about its true resistivity. This way
classifier can indirectly compare the imperfect data with a real model. It is important
that the classifiers learn to predict on imperfect data as real data will contain noise and
other imperfections.

Binary classes This approach is only appropriate for profiles with one interface and
two layers. Each layer (associated with its resistivity) was considered as one class and
assigned label 0 or 1, accordingly. Each point in the input model was assigned into the
class, that has identical resistivity. For points that have resistivity values different that
do not match any of the classes (due to inaccuracies introduced by interpolation), the
class with closest resistivity value will be assigned to the point.

Multiple classes If there are multiple layers in the profile, a multiple classes approach
is more suitable. However it can work as well if there are less layers than classes. Classes
were assigned using the normalized resistivity values. The range between 0 to 1 were
split into multiple subranges. The number of those subranges will match the number of
classes. Each point was assigned that class that matches its resistivity value. The values
at the boarder of the classes are always assigned to the higher class.

3-2 Data

In this Section data sets used for testing will be discussed. Overall the profiles used can
be split into two categories: synthetic and real. Most of this study has been performed
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(a) Example of a normal profile. (b) Example of inverted profile.

Figure 3-2.1: Example of the normal and inverted profiles.

with synthetic profiles as they are fully controlled and all of their parameters can be
defined, hence they are known and there is no uncertainty about them.

3-2-1 Synthetic data

Synthetic profiles can be split into two categories: normal and inverted. They differ in
the order of the layers. In normal profile less resistive layer is on top (just below the
subsurface, at the upper side of the interface). The inverted profiles are the opposite: less
resistive layer is at the bottom (further away from the subsurface, below the interface).
This is the naming convention used in following chapters. The profiles are summarized
in the Table 3-1 for the normal profiles and Table 3-2 for the inverted profiles.
There are three resistivity contrast in each group 50 vs 500 Ωm, 500 vs 5000 Ωm and 50
vs 5000 Ωm. For the inverted profiles those contrasts are inverted, with higher resistivity
being assigned to the upper layer (see Figure 3-2.1 for examples of both types of profiles).
For each contrast there are 14 depths of the interface ranging from 2 m below the surface
down to 15 m below the surface in intervals of 1 m. There are 42 profiles in each group,
making it 84 profiles in total. For more details on how they were generated please see
Sections 3-1-1, 2-1-1 and 2-1-2.

Overview of features of each profile

Each profile is stored in a csv file. It is an exported pandas dataframe in which each
row corresponds to a point (sample) and each column is a feature. Each point originates
from a cell in the inversion mesh. The most important features are resistivity (RES) and
normalized resistivity (RESN). Both are based on the resistivity distribution obtained
from inversion. To RES only decimal logarithm has been applied and RESN has been
additionally normalized. Additional features are sensitivity (SEN) and spatial position
of each point (X, Y and Z coordinates relative to the center of surface). They can be
used as input for both training and prediction.
In order to train supervised classifiers each point needs to have an expected class as-
signed. There are three values available for this purpose in each profile. CLASS is a
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Table 3-1: Overview of the parameters (resistivity and interface depth), that define syn-
thetic profiles used for training and prediction. Resistivity is given in Ω ∗ m
and depth is given as meters below the surface. ρ1 refers to upper layer in the
subsurface and ρ2 refers to lower layer.

Name Number of layers ρ 1 ρ 2 interface depth

Hor1 0001 1 50 500 2

Hor1 0002 1 50 500 3

Hor1 0003 1 50 500 4

Hor1 0004 1 50 500 5

Hor1 0005 1 50 500 6

Hor1 0006 1 50 500 7

Hor1 0007 1 50 500 8

Hor1 0008 1 50 500 9

Hor1 0009 1 50 500 10

Hor1 0010 1 50 500 11

Hor1 0011 1 50 500 12

Hor1 0012 1 50 500 13

Hor1 0013 1 50 500 14

Hor1 0014 1 50 500 15

Hor1 0015 1 500 5000 2

Hor1 0016 1 500 5000 3

Hor1 0017 1 500 5000 4

Hor1 0018 1 500 5000 5

Hor1 0019 1 500 5000 6

Hor1 0020 1 500 5000 7

Hor1 0021 1 500 5000 8

Hor1 0022 1 500 5000 9

Hor1 0023 1 500 5000 10

Hor1 0024 1 500 5000 11

Hor1 0025 1 500 5000 12

Hor1 0026 1 500 5000 13

Hor1 0027 1 500 5000 14

Hor1 0028 1 500 5000 15

Hor1 0029 1 50 5000 2

Hor1 0030 1 50 5000 3

Hor1 0031 1 50 5000 4

Hor1 0032 1 50 5000 5

Hor1 0033 1 50 5000 6

Hor1 0034 1 50 5000 7

Hor1 0035 1 50 5000 8

Hor1 0036 1 50 5000 9

Hor1 0037 1 50 5000 10

Hor1 0038 1 50 5000 11

Hor1 0039 1 50 5000 12

Hor1 0040 1 50 5000 13

Hor1 0041 1 50 5000 14

Hor1 0042 1 50 5000 15
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Table 3-2: Overview of the parameters (resistivity and interface depth), that define syn-
thetic profiles used for training and prediction. Resistivity is given in Ω ∗ m
and depth is given as meters below the surface. ρ1 refers to upper layer in the
subsurface and ρ2 refers to lower layer.

Name Number of layers Rho 1 Rho 2 interface depth

Hor1 inv 0001 1 500 50 2

Hor1 inv 0002 1 500 50 3

Hor1 inv 0003 1 500 50 4

Hor1 inv 0004 1 500 50 5

Hor1 inv 0005 1 500 50 6

Hor1 inv 0006 1 500 50 7

Hor1 inv 0007 1 500 50 8

Hor1 inv 0008 1 500 50 9

Hor1 inv 0009 1 500 50 10

Hor1 inv 0010 1 500 50 11

Hor1 inv 0011 1 500 50 12

Hor1 inv 0012 1 500 50 13

Hor1 inv 0013 1 500 50 14

Hor1 inv 0014 1 500 50 15

Hor1 inv 0015 1 5000 500 2

Hor1 inv 0016 1 5000 500 3

Hor1 inv 0017 1 5000 500 4

Hor1 inv 0018 1 5000 500 5

Hor1 inv 0019 1 5000 500 6

Hor1 inv 0020 1 5000 500 7

Hor1 inv 0021 1 5000 500 8

Hor1 inv 0022 1 5000 500 9

Hor1 inv 0023 1 5000 500 10

Hor1 inv 0024 1 5000 500 11

Hor1 inv 0025 1 5000 500 12

Hor1 inv 0026 1 5000 500 13

Hor1 inv 0027 1 5000 500 14

Hor1 inv 0028 1 5000 500 15

Hor1 inv 0029 1 5000 50 2

Hor1 inv 0030 1 5000 50 3

Hor1 inv 0031 1 5000 50 4

Hor1 inv 0032 1 5000 50 5

Hor1 inv 0033 1 5000 50 6

Hor1 inv 0034 1 5000 50 7

Hor1 inv 0035 1 5000 50 8

Hor1 inv 0036 1 5000 50 9

Hor1 inv 0037 1 5000 50 10

Hor1 inv 0038 1 5000 50 11

Hor1 inv 0039 1 5000 50 12

Hor1 inv 0040 1 5000 50 13

Hor1 inv 0041 1 5000 50 14

Hor1 inv 0042 1 5000 50 15
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Table 3-3: Split data for training and prediction

Training batches

Mixed
Normal Inverted

Normal Inverted

Hor1 0001 Hor1 inv 0001 Hor1 0001 Hor1 inv 0001

Hor1 0003 Hor1 inv 0003 Hor1 0003 Hor1 inv 0003

Hor1 0005 Hor1 inv 0005 Hor1 0005 Hor1 inv 0005

Hor1 0007 Hor1 inv 0007 Hor1 0007 Hor1 inv 0007

Hor1 0009 Hor1 inv 0009 Hor1 0009 Hor1 inv 0009

Hor1 0011 Hor1 inv 0011 Hor1 0011 Hor1 inv 0011

Hor1 0013 Hor1 inv 0013 Hor1 0013 Hor1 inv 0013

Hor1 0015 Hor1 inv 0015 Hor1 0015 Hor1 inv 0015

Hor1 0017 Hor1 inv 0017 Hor1 0017 Hor1 inv 0017

Hor1 0019 Hor1 inv 0019 Hor1 0019 Hor1 inv 0019

Hor1 0021 Hor1 inv 0021 Hor1 0021 Hor1 inv 0021

Hor1 0023 Hor1 inv 0023 Hor1 0023 Hor1 inv 0023

Hor1 0025 Hor1 inv 0025 Hor1 0025 Hor1 inv 0025

Hor1 0027 Hor1 inv 0027 Hor1 0027 Hor1 inv 0027

Hor1 0029 Hor1 inv 0029 Hor1 0029 Hor1 inv 0029

Hor1 0031 Hor1 inv 0031 Hor1 0031 Hor1 inv 0031

Hor1 0033 Hor1 inv 0033 Hor1 0033 Hor1 inv 0033

Hor1 0035 Hor1 inv 0035 Hor1 0035 Hor1 inv 0035

Hor1 0037 Hor1 inv 0037 Hor1 0037 Hor1 inv 0037

Hor1 0039 Hor1 inv 0039 Hor1 0039 Hor1 inv 0039

Hor1 0041 Hor1 inv 0041 Hor1 0041 Hor1 inv 0041

default class assigned to not normalized values (RES), CLASSN is assigned based on
normalized resistivity (RESN) and Labels are string classes based on CLASSN.

Split between training and prediction

Data is split between training and prediction as it is shown in Table 3-3. After training
of the classifiers with one of the training batches, all profiles that have not been used
for training will be used for prediction. In order to provide both training and prediction
phases with representative collection of profiles, the split is not made randomly. All
profiles with odd number in their name are used for training and all profiles with even
number are used for prediction.
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Figure 3-2.2: Procedure for training and prediction phases

3-2-2 Real data

14 profiles have been used. They were measured twice per month from November 2019
to June 2020 (apart of the first and last months from which only one measurement was
included). Those profiles have been measured as a part of an ongoing research project
at the Berkeley Lab. The profiles were measured in the San Francisco Bay area (west
side of the Berkeley Hills). The ERT survey was carried out with a dipole-dipole array.
112 electrodes at 0.6 meter separation has been used. The length of the profile is 66.6
meters. [Uhlemann et al., 2021]. All used measurements were run at 14:30. They were
inverted with λ 60 and z weight 0.2.

3-2-3 Classification

Figure 3-2.2 shows the workflow of the training and prediction phases. In principle the
training and prediction phases are very similar. Most of the steps are shared between
them.

Training

First the modelled and inverted profiles are read from the files. In the training phase
all profiles are combined and stored in a single dataframe. The classifiers require all
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the points to be given as input ”at once”. Before training or prediction is performed,
data has to be preprocessed. It includes different data manipulations, both using scikit-
learn tools and related to requirements of the classifiers and external data manipulation
focused on improving the performance of the classifiers by altering the available data.
Those steps and order in which they are performed will be briefly introduced in this
Section. For more details regarding each of those steps please see Section 3-3.
The first step of the prepossessing comprises deciding which features will be used for
the classifier (please see Section 3-3-8 for more details). This step has consequences for
both training and prediction as all selected features will be used for both training and
prediction and will influence the performance of the classifier.
Next, the input features have to be transformed according to their type (this applies to
both features and their labels). This is done with two scikit-learn functions ”Standard-
Scaler” and ”OneHotEncoder”. Please see Section 3-3-1 for more details about when
and how they are used). This step will be put into a pipeline together with the classifier.
Pipeline is a part of scikit-learn toolbox and ensures that all steps will be performed in
the same, reproducible way for all applications of the classifier. In the prediction phase
the same pipeline will be used, so steps discussed in this paragraph will be applied to
the prediction phase as well. The pipeline does not have to be passed directly (within
the same run of the script) to the prediction phase. After the training is completed the
pipeline will be saved using joblib [Joblib-Development-Team, 2020] and can be loaded
to be used in the prediction phase in another run of the script. Because of this, classifiers
can be reused for evaluation of multiple sets of profiles without a need to retrain them.
The following steps are optional, as they are not preparing the data to match the re-
quirements of the classifiers. However, they have some potential to improve the accuracy
of the results. Those steps will be applied to available data, one at time, and it will be
evaluated, whether the result benefits from them. The first step that can be taken is to
change the population of points in terms of their spatial distribution and other qualities.
This can be done by resampling the data (more details in Section 3-3-5). It will change
the spatial distribution of the points. Another possibility is to remove points with low
sensitivity (more details in Section 3-3-2). It is better to execute this step after resam-
pling, as the inaccuracies of the interpolation may increase if the spatial distribution of
points is less dense. Next step would be balancing the classes. For horizontally layered
profiles it is appropriate to run this step now, but for other types of profiles it may be
better if this step was delayed to after the next step (borehole simulation is applied).
Please see Section 3-3-3 for more details. All steps discussed in this steps are applied
to a dataframe containing all points from all profiles assigned to training, however those
steps are applied to each profile separately. Otherwise some information could be lost,
or get unproportionally boosted. Balancing of the classes can serve as a good example.
It should be done for each profile separately as the distribution of the points between
classes depends on the position of the interface. Therefore applying balancing to the
whole population of points at once, could change the weight of each profile within the
training dataset.
Next step, the borehole simulation, is applied only in the training phase. There are two
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reasons why it is beneficial to train on a subset of input data that resembles a borehole.
Firstly, it would be closer to a real world application if training was done on the borehole
data and prediction on the inverted ERT measurement (in form of a full profile). Sec-
ondly it reduces the computational cost significantly, without having a negative impact
on the result.
A last step that can be taken is to apply weights to data points of the training data
set. Here I have chosen to use the sensitivity, which is provided by PyGIMLi as part
of the synthetic modelling, to weight the data points, where small sensitivities relate
to small weights and large sensitivities to large weights. This was chosen because large
sensitivities relate to areas of the model that are well constrained by the data. For more
detail please see Section 3-3-2.
The final step, that can be performed only during the training phase, is hyperparameter
tuning (described with more detail in Section 3-3-7). It will deliver the best parameter
set for each classifier, which performed best while training. The classifiers with their
respective best set of parameters will be passed in form of a processing pipeline to the
prediction phase.
Last part of training phase is evaluation of the accuracy for each training profile sepa-
rately. Section 3-4 discusses how the accuracy is evaluated.

Prediction

In terms of data preprocessing and accuracy evaluation the prediction phase is similar
to the training phase. Therefore only the differences will be discussed in this Section.
The main difference is how the data is fed to the classifier. Unlike in the training phase,
prediction on each profile is performed separately. The steps, that are not bundled to-
gether in the pipeline are applied in the same way, but for one profile at time.
What is different is which steps are being applied. The borehole simulation and hyper-
parameter tuning are not used during prediction. Borehole simulation does not offer any
benefit to the prediction phase as discussed in previous Section. For the hyperparam-
eter tuning, it is already included in for of the optimized classifier contained inside of
pipeline, therefore there is no need to repeat this step again. In case the pipeline is not
passed directly between training and prediction phases, it will be loaded from one of the
previous training phases.
After the prediction, each profile is evaluated using the same techniques as in the training
phase (please see Section 3-4 for more detail).

3-3 Improvements to classification

3-3-1 Scikit-learn tools

First two techniques discussed in this section (Standard Scaler and One Hot Encoder) are
part of the scikit-learn package. The other ones have been developed and implemented
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as part of this project.

Standard scaler

Many classifiers require data to approximately resemble ”standard, normally distributed
data” [Pedregosa et al., 2011]. In order to achieve this a Standard Scaler is used. It is a
function from scikit-learn’s preprocessing toolbox and can be included in the processing
pipeline. It transformers numerical features by first subtracting their mean value and
than scales it by dividing each value with the standard deviation of the feature it belongs
to. Each feature is preprocessed separately.

One Hot Encoder

One Hot Encoder converts text labels into a form, that is more understandable to the
classifiers. It creates columns. Its number matches the amount of unique labels found in
the dataset. In each column there is a 0 or 1 value marking whether the label represented
by the column is assigned to the point or not.

3-3-2 Minimum sensitivity

The sensitivity of the the measurements varies throughout the profile. Due to this
variation, not all data points carry the same importance and quality of information with
them. PyGIMLi returns sensitivity as a float array with one entry for each cell. Because
of the decimal logarithm, the values can be both negative and positive. Therefore in
order to ensure, that the cut-off threshold is consistent between profiles with different
ranges of sensitivity values, it has to be normalized. This is done as follows:

sennorm =
abs(sen) + abs(min(sen))

abs(max(sen)) + abs(min(sen))
(3-1)

This step should be applied to both training and prediction steps. However intuitively,
it can be said, that it is more important for training. The idea is to avoid confusing the
classifier by removal of cells, that carry less information.
However selecting a threshold for the cut-off is not a trivial task. It will be discussed now,
by comparing two examples. In the Figure 3-3.1 two plots of accuracy of classification
depending on their sensitivity are shown. Subfigure 3-3.1a shows a plot for a profile, for
which there can be obtained a clear value for the cut-off sensitivity threshold. For this
specific profile it would be around 0.45. All lower values are miss-classified, therefore
they do not contain good enough information or the classifier is not capable of using
them. Subfigure 3-3.1b shows an example where the relationship between sensitivity
and training accuracy is complex and it is impossible to pick a unique cut-off value.
Incorrectly classified points are spread over the whole range of sensitivity values. All
correctly classified point have the sensitivity value below zero. This indicate generally a
poor performance of the classifier for this profile.
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(a) Correctness of classification for profile
Hor1 A 0011 with GBC classifier.

(b) Correctness of classification for profile
Hor3 C 0012 with SVM classifier.

Figure 3-3.1: Correctness of classification depending on sensitivity. On Y-axis 1 indicates,
that point is classified correctly and 0 indicates incorrectly classified points.

3-3-3 Class balancing

Imbalanced classes in the training data are a common problem of ML applications. There
are many papers discussing this problem, for example [T. Zhu et al., 2017]. Unfortunately
for the ERT profiles this is often not the case. First, consider the most basic geometry:
one horizontal interface in the whole subsurface with strong contrast between layers.
If the classifier is trained to identify two classes in this profile, a good result can be
expected. Even if amount of points in each class will differ, they both should be fairly
well represented. However it quickly gets more complicated if there are more classes or
more interfaces. Considering a case of a profile with one interface and 4 classes it is clear
that the two classes assigned to either of the two layer will have a population of points
much higher than two remaining classes assigned to the transition zone between layers.
If the interface is well resolved, the population difference between classes can even reach
multiple magnitudes. In this situation, it is possible, that for the less populated classes,
there may be not enough information available for the classifier. Further consequences
of this problem will be discussed in Section 3-4.
This problem can be solved in two ways: by up and downsampling. In upsampling, the
less abundant classes will be resampled to increase their population. Downsampling, will
reduce the population of the more abundant classes. Both solutions have some benefits
and disadvantages. Upsampling will interpolate new points between existing ones. This
may add some numerical errors to the dataset. However, if the data has been inverted
on relatively fine grid, the error should be acceptable. Downsampling will reduce the
pool of available data. In extreme case, downsampling may lead to using only a very
small fraction of the data.
In this project classes will be balanced by upsampling using scikit function ”resample”.
This decision can be justified for two reasons. The first one is how it would influence
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data if combined with other steps taken to improve the results. Downsampling combined
with simulation of the borehole measurement (please see Section 3-3-4 for more details)
could lead to only very few points being used for classification. Second reason, why
upsampling has been selected is related to what kind of data is used. Both training and
prediction will be using synthetic data calculated on fine grids. Therefore interpolation
between centers of the cells should not lead to strong numerical errors, as new points
will be generated very close to already existing ones.

3-3-4 Borehole simulation

This step can be used to simulate classifier training on data obtained from boreholes.
There are two reasons why this step should be applied. First one is related with what
kind of data can be obtained from the field measurements. The resistivity distribution
in the subsurface can be directly measured either during excavation, or by measurement
in boreholes. An example of this approach is discussed in [Ramirez et al., 2000].
Therefore verifying if this kind of training data (in terms of both number of the points
available for training and their spatial distribution) would suffice to achieve satisfying
accuracy is important. The other reason why this step is applied to all profiles is related
to computational effort. As discussed in Section 3-2-3, all points used for training have
to be delivered to the classifier ”at once” in one dataframe. Depending on how dense
the mesh in each profile is and how many profiles are supplied to the classifier, the
computational effort may quickly become unfeasible. With smaller training data sets
it is possible to use full profiles, but the amount of points that the classifier has to
process will quickly turn into a limiting factor. Limiting the number of points used, by
simulating borehole improves the performance significantly.
The borehole measurement will be simulated by limiting the population of points used
for training to those with two, thin, vertically elongated rectangles. One of them is
placed near the centre of the profile and the other one is closer to the left end of the
profile. Although the reduction of the computational effort is significant, this method
of training has its limitations and disadvantages as well. The main concern is how well
will the subset of data represent profiles with more complex structure? For profiles,
that have flat topography and horizontal layers, it may make little to no difference as
the subset of the points should look the same or very similar throughout the profile.
However if classifier was supposed to train using spatial parameters as well in order
to recognize tilted layers, or structures like folds, reducing the population of points to
those available in two narrow boreholes may make it impossible to deliver sufficient
information.

3-3-5 Resampling

The main goal of this step is not directly related with the accuracy of prediction, but
with computational effort of training. Dataset can be resampled in order to lower the
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amount of points and still give the classifier access to the whole profile. The exact way
of doing it can be adjusted according to the available information of the subsurface. For
example the points can be resampled with bigger spacing if it is know, that layers are
thick, or spacing can be increased only in one direction if the subsurface is known to be
layered horizontally.
However resampling has disadvantages. It has its own computational effort and in some
situation, this additional effort may consume the improvement of the computation time
of the training. Apart from this, if the resampled profile uses mesh with big cells, there
may be some inaccuracies introduced due to the interpolation between cells.

3-3-6 Weighting of samples

Some classifiers support passing sample weight as input. With those sensitivity can be
used to inform classifier how informative each sample should be.

3-3-7 Hyperparameters tuning

The behaviour and performance of each classifier is controlled by a set of hyperparam-
eters. They are specific to each type of classifiers. Choosing optimal ones requires a
good understanding of both the classifier itself and the dataset it will be trained on. As
a sufficient level of understating may not always be available, it is tempting to let the
parameters be selected automatically.
The scikit-learn package offers tools, that allow to automatize the selection of the param-
eters for each classifier. Function GridSearchCv will investigate performance of different
combinations of parameters within a range defined by the user.
For each classifier, only the best set of parameters set by GridSearchCV will be taken
into consideration and only its performance will be evaluated and compared with other
classifiers. It is important to notice, that the selected best combination of parameters
may differ between experiments run with different configurations and datasets used for
training.

3-3-8 Including additional information

Apart from resistivity, there are two more features on which classifiers could train and
make predictions: spatial position and sensitivity. Giving classifier access to spatial
position of each point can lead to a serious problem. Instead of classifying points mostly
by resistivity, the classifier may focus on its positions. In order to avoid this problem,
only depth will be used as feature. Some more details on this problem can be found
in Section 3-4-1. The reason to include sensitivity is to give the classifier access to
information how reliable each point is. Compared to the way of incorporating this value
into training discussed in Section 3-3-6, this approach gives more freedom to the classifier
in terms of how to use this information and what conclusions will be drawn from it. This
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freedom can actually turn into a problem when classifier decides to focus too much on
the sensitivity while making prediction. This will be discussed in later sections.

3-4 Evaluation of classification accuracy

In this Section various ways of evaluating accuracy, or more generally, quality of the
prediction made by clusters and classifiers is discussed. The choice of appropriate eval-
uation technique is crucial, as each of them answers a very specific question and some
may not be fit for evaluating the prediction, that is expected from the classifier.

3-4-1 Conventional techniques

Accuracy score

The most basic way of evaluating the prediction accuracy is the accuracy score. It counts
all the points which were assigned to the correct class and compares it to the whole
population of points. This technique is implemented in scikit-learn as ”accuracy score”
and is part of Scikit-learn’s metrics toolbox. It can be mathematically described (in it’s
default normalized form) as:

accuracy score(ypred, ytrue) = (
1

npoints

npoints−1∑
i=0

1 (ypred = ytrue)) ∗ 100% (3-2)

Where y pred indicates the array of predicted classes in form of a vector with size
of [n points, 1], y true is an array of true classes assigned to each point before the
classification.
This simple way of evaluating the quality of prediction, but it has numerous advantages
to it. It directly relates the content of the prediction to a summarized score. There is
no complicated algorithm or mathematical procedure behind it and it is easy and clear
in terms of interpretation. It directly answers question: ”What fraction of points has
been assigned to the correct class?”. The second advantage is, that it only depends on
one factor. Only points with correctly assigned classes influence the result. Therefore it
is easy to visualize how accurate the resulting value is.
The simplicity of this method results in some limitations as well. If the dataset is
strongly imbalanced. The accuracy score might be misleadingly high. As an example,
consider a subsurface model with one interface at a depth of 2 meters and total depth
of 20 meters, where the upper layer is assigned class 0 and the bottom one class 1. If
the classifier fails to recognize points belonging to the upper layer and it will instead
assign 100% of the points to class 1, it will still result in an accuracy of 90%. This
seemingly good result will completely hide, that 100% of the population of class 0 has
been incorrectly assigned to class 1. Furthermore for the specific goal of this project, the
accuracy of class assignment is not the most meaningful parameter. There are situations
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in which prediction with poor accuracy score can still achieve a very good result in terms
of detecting the interface. This problem will be discussed in more detail in Chapter 4.
This method will be used as supportive for the results interpretation in Chapter 4.

Confusion matrix

Unlike accuracy score, this method does not output one specific value. It returns a
matrix showing what fraction of points has been assigned to the correct classes, which
were assigned to the incorrect ones and to which class they were missassigned. In scikit-
learn convention the rows present the true classes, and the columns the predicted classes.
[Pedregosa et al., 2011], this is a notation found commonly in literature [Powers, 2008].
The biggest advantage of this evaluation method is that it offers more than just a single
number and can be used to identify which classes are most challenging for the classifier.
It delivers information about falsely assigned classes and how they relate to the real
ones. Two examples of confusion matrix can be found in the Figures 3-4.1. The Figure
3-4.1a shows an example of a confusion matrix describing the result of a test where all
points have been assigned correctly, the only non-zero values are found on the diagonal
from top-left to the bottom-right of the matrix. Values are normalized relatively to the
number of all points considered by the classifier. The Figure 3-4.1b shows an example
of a confusion matrix where numerous points have been assigned to incorrect classes.
The confusion matrix can be a very good, supportive metrics for the interpretation and
the evaluation of the result. Its limitation is similar to the one of accuracy score.

Feature importance

Feature importance is not strictly speaking a method of evaluation of the result. It can
be used to verify, whether classifier has made prediction based on correct features.
This method is simple and self explanatory. If the classifier has been trained and is
prediction on more than one feature (corresponding to the columns in pandas dataframe
used an input), this diagram will show how meaningful each feature was for the specific
prediction. It cannot be used a single technique to evaluate the quality of prediction,
but it can help to look critically at results. It can happen, that seemingly good result
has been achieved using mostly the information, that should not be the most important.
For example: for the classifier is given RES/RESN (RES - resistivity, RESN - resistiv-
ity normalized), SEN (SEN - sensitivity) and Y (Y - depth), the expected hierarchy of
those features is either RES-SEN-Y, or RES-Y-SEN (with preference for the first one).
Any other order will indicated, that resistivity is not the most meaningful feature, hence
the classification has occurred mostly on spatial position of the points (as SEN is re-
lated/dependent). This means even though the classifier may reach a high accuracy, it
was a conclusion based on wrong assumptions, hence the result cannot be considered as
trustworthy.
The Figure 3-4.2 compares an example of feature importance hierarchy of a trustworthy
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(a) Confusion matrix for test Cla-A14-
Hor1 0002

(b) Confusion matrix for test Cla-A11-
Hor1 0008

Figure 3-4.1: Two examples of the confusion matrix. On the vertical axis the true classes
are presented, and at the horizontal one the predicted ones. The value in each
cell indicates which part of the samples belongs to the specific true/predicted
class combination (range from 0 to 1, where 0 means that there are none
sample it that combination and 1 means that all samples belong to the
specific combination).

result (Figure 3-4.2a) and one in which classifier failed to obtain data in meaningful
proportions (Figure 3-4.2b).

3-4-2 Interface detection accuracy

Interface detection accuracy is not a part of scikit-learn. It has been designed and
implemented specifically for this project and with its goal in the focus. What this
project aims at is automatic detection of interfaces between layers in ERT profiles,
therefore accuracy of a classifier or influence of specific set of its parameter on it should
take this into consideration.
As discussed in previous Sections, a high score obtained with classical methods may not
always indicate, that the goal has been achieved. In some special cases it can even be
the opposite. Considering this, developing a tool, that will evaluate the prediction in
terms of its fitnes for the goal can be a good approach. Here we define the root mean
square error (RMSE) of the true and predicted interface as:

RMSE =

√√√√ 1

n

n∑
i=1

(
Yi − Ŷi

)2
(3-3)

where n indicates number of samples, Yi is value of a sample i and Ŷi is mean value.
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(a) Feature importance of Cla-A11-Hor1 0010 (b) Feature importance of Cla-A11-Hor1 0016

Figure 3-4.2: Two examples of the feature importance plots. On the vertical axis there are
feature acronyms (RES - resistivity; SEN - sensitivity, Y - depth). (a) shows
a feature importance plot for a prediction in which the hierarchy of features
is correct, the resistivity is recognized as the most important parameter as it
should be; (b) shows a feature importance plot for a prediction in which the
conclusions were drawn mostly from sensitivity feature, which is not correct
as it was supposed to be only a supportive information to the main one -
resistivity.

This introduces one significant difference between this method and the ones discussed
so far. Accuracy score, confusion matrix and feature importance considered the direct
output from the classifier and compared it with an expected answer. With ”interface
detection accuracy” there is an extra step between classification and interface detection.
The algorithm will try to find an interface using points with classes assigned by the
classifier and their spatial position. Than the depth of the detected interface will be
compared with true depth of the interface.
The strength of this method is that it directly evaluates the quality of the prediction with
respect to the goal of the project. The main goal of this project is to interpret where
is the interface in the ERT data and this scorer can evaluate how well this goal has
been achieved for each profile. On the other hand, identification of the interface is not
a trivial task. Geology in the subsurface can be diverse, topography may vary between
profiles. Hence, the performance of the detection algorithm may vary. It may introduce
additional error and noise to the results. Still, since each profile will be subjected to the
same interface detection procedure, with the same thresholds it can deliver a good way
of comparing different classifiers, as long as its limitations and assumptions are taken
into consideration while interpreting the result.

How is the interface detected?

As no interface detection function, package or toolbox has been found, that would fit
the needs of this project, it had to be developed. In this section the algorithm will be
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Figure 3-4.3: Overview of the interface detection algorithm

introduced and assumptions that it is based on will be discussed. A general outline of
the algorithm is illustrated in the Figure 3-4.3.

The first step is to resample data into a grid. Both forward modeling and inversion use
unstructured meshes (please see Section 2-1-1 for more details). Gridding the data can
be a computationally expensive for larger grids and could introduce some interpolation
errors. The latter problem can be ignored for the datasets used in this project as they
use very fine meshes. However in some cases it might have some impact on the overall
quality. Despite the disadvantages of gridding, it has to be performed because following
steps require matrix to be of a regular shape, specifically it is required that there are
vertical columns in the data structure. It is required in order to shift the matrix and
subtract it from the original one in one of the following steps.
This algorithm works with a 2D array of size [n different y values, n different x values]
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containing numerical class identifier in each cell (for binary class problems it would be 0
and one, for n-class problem it would be a collection of integers from 0 to n-1). In order
to ensure, that multiple interfaces within one profile can be detected, it is necessary
to change values within the array. As the next step relies on the difference between
values assigned to each class, interfaces between different classes should create different
values. Classes labeled with consecutive integer would not fulfil this requirement, e.g.:
the interface between classes 0 and 1 will result with a difference of 1 or -1 depending
on the position of each class, the interface between classes 1 and 2 will have the same
value.
Because of this, to each consecutive class number a ”difference factor” will be added. This
factor will depend on the desired difference between classes e.g.: the desired difference
between classes 0 and 1 is 1, so the ”difference factor will be zero”, for classes 1 and 2
the desired difference will be 2, so the ”difference factor” of 1 has to be added to class 2.
This array will be copied, shifted downward by one unit alongside the vertical axis and
subtracted from the original one. Now in the resulting array non zero values will be
found only there where cells [m, n] and [m+1, n] have different class assignments. All
other cells will contain zero.
At this point each non-zero cell (associated with its x and y coordinates) defines a point,
that could potentially be a part of the interface. With perfect data at this point a good
estimate of the interface would be available. Yet, as geophysical data is rarely perfect,
there are more steps, that need to be taken. The following steps will be performed
separately for each collection of points of the same value.
The first step is to fit a straight line through the points, this way both depth and
slope can be obtained (as this project considers mostly horizontal layers, slope will be
neglected). At this point the first check will be performed over the interface candidate
- the continuity check.
During the development of this algorithm it turned out, that in more complex profiles,
there may be multiple short and local interfaces detected. However it is assumed, that
a valid interface is continuous throughout the whole width of the profile. On the other
hand, there are some reasons, why even well detected interfaces may not be entirely
continuous, therefore a continuity threshold was defined. In order to pass as an interface,
at least 40% of the columns have to be identified as an interface. The value has been
selected in an experimental way. It is high enough, that erroneous, short and local
interface candidates are removed, but low enough that valid profiles are preserved.
In the next step each interface candidate will be compared with all other ones in order to
check if any pair violates the separation requirement. If the number of classes does not
match the number of layers there might occur a transition zone in which 3 classes will be
found simultaneously (two classes from neighbouring layers and one ”transitional” class),
this can be linked to smooth interfaces in the inverted data. Therefore a requirement of
minimum distance of 2 meters between two valid interfaces has been introduced. This
value has been selected experimentally and is arbitrary. If a pair of interface candidates
fails this test, their points will be combined and new interface candidate will be created
in their place. This step is repeated until all pairs of candidates pass the separation test.
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At this point interface candidates turn into detected interfaces.
The final step is to compare the points of the detected interfaces with the true depth (in
case there are multiple, the closest match will be taken into consideration). Next the
root mean squared error (RMSE) will be calculated. This value will be passed further
and will be used to compare performance of the classifier for prediction with different
profiles.
While interpreting accuracy estimation evaluated by this method its limitations have
to be taken into consideration. As this algorithm has been developed and implemented
strictly for the purposes of this project, it has not been tested on a wide range of profiles.
The interfaces detected by it may not be optimal ones. Due to this the potential for
error in this method is greater compared to the ones discussed in previous sections, as
it would combine errors of the classifier with errors of the interface detector. However
for the profiles tested it has proven to be reliable. An example of how accurately the
interface can be detected is shown in Figure 3-5.1.

3-5 Software and source code

The digital experiment performed in this project is implemented and executed using
following open source software: Python [Van Rossum and Drake Jr, 1995], PyGIMLi
[Rücker et al., 2017], Matplotlib [Hunter, 2007], Scikit-learn [Pedregosa et al., 2011],
Pandas [Reback, 2020], SciPy [Virtanen et al., 2020] and Joblib [Joblib-Development-
Team, 2020].
The source code developed to simulate the experiments and process the data can be
found here.
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Figure 3-5.1: An example of an accurately detected interface (Experiment U17, profile
Hor1 inv 0008, cluster: Mean Shift). The detected interface is marked by
blue crosses in ”Predicted classes” subplot. Red line indicates the true po-
sition of the interface.
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Chapter 4

Results and discussion

Different clusters and classifiers have been tested with many combinations of type of
training data and with different data processing methods disabled or enabled. For an
overview of the best and worst results for the cluster and classifier analysis please see
Table 4-1 and Table 4-2, respectively. Both of those tables contain results (evaluation of
training and prediction accuracies) and information about the configuration with which
those results have been achieved. The configuration is described in the tables with the
following convention: Yes indicates that the specified method or data type has been used
and No indicates the opposite. Column ”Ref” indicates the configuration that differs
by only one parameter (as a reference). It indicates that the configuration of specified
experiment has been used as as starting point to investigate another parameter. For
example experiment A36 is identical to experiment A21 in all parameters apart from
application of sample weight. Each experiment changed one parameter in order to make
an evaluation of the effect of this change. In order to reduce the amount of tests (per-
forming experiments with all possible parameter combinations would be not feasible in
terms of time and effort required to analyse and evaluate the results), specific variables
were tested one at a time, and the best result of this test was used in following tests of
a different parameter. The columns ”score” and ”interface” within the accuracy section
of the table refer to the accuracy estimation methods described in Sections 3-4-1 and
3-4-2, respectively. The tested parameters can be split in two categories: (1) related
to the input data, and (2) to data processing. The first ones define which features and
what type of data is given to the classifier. While resistivity is always given, the effect
of sensitivity and depth is tested. The resistivity can be normalized and/or have deci-
mal logarithm applied to it. The latter option is applied always by default. The data
processing option have been discussed in the previous chapter, and comprise: balancing,
minimum sensitivity, hyperparameter tuning, and sample weight. As described in Sec-
tion 3-2-1, ”training type” refers to the type of resistivity contrast in the model (either
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low to high, high to low, or mixed models).
In the next sections the following nomenclature will be used. The name of each ex-
periments consists of a letter indicating the group to which it belongs, followed by a
consecutive number of the experiment within each group. There are two groups of tests:
experiments run with classifiers and clusters. Experiments employing classifiers are in-
dicated by A (for clAssifiers), and experiments employing clusters with U (for clUsters).
For example, the name experiment name U25 indicates that this is the 25th experiment
employing cluster analysis. If two experiments are referred to as a ”pair”, this mean
that their configuration differs by one parameter only and that their comparison will
show the impact of this parameter on the accuracy of prediction. For example, pair
A14-A20 can be used to estimate influence of balancing on the result. In experiment
A14 balancing is not used (No), while in A20 it is used (Yes).

4-1 Synthetic data

4-1-1 Clusters

Overview of the performed experiments

In total 48 experiments with using different input data and preprocessing steps have
been conducted for the cluster analysis. An overview of the 10 best and the 10 worst
results and parameters can be found in Table 4-1. The accuracies of the prediction of
all experiments can be see in Figure 4-1.1.
It is important to consider that in cases with two classes, cluster have a strong tendency
to consistently assigned opposite classes. As the goal of this study is to detect the
interface in the subsurface the importance of correct class assignment is lesser than
the correct detection of the interface. The latter can be achieved with classes assigned
correctly and them being flipped. In first case the accuracy score will show high values
close to 100%, in the second case the accuracy score will be very low and close to 0%.
In both situations it is possible that the interface will be detected correctly hence both
very high scores and very low ones can be considered as good.
In the Figure 4-1.1, the right half of the diagram shows a repetitive, almost periodic
pattern. This seems to be correlate with the use of SEN (sensitivity) and Y (depth) as
features, where higher accuracy is achieved when those data are not used as features in
the training step.

4-1-2 Classifiers

Overview of the performed experiments

In total 42 experiments were conducted for the classifiers, testing the impact of different
parameters on the prediction accuracy. Table 4-2 shows an overview of the 10 best and
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4-1 Synthetic data 41

the 10 worst results and parameters. The prediction accuracies of all experiments is
shown in Figure 4-1.2.
As can be seen in Figure 4-1.2, experiments A13 to A25 generally provided the best
results. For those experiments the accuracy score, which indicates the fraction of points
that were classified correctly, is high, and interface detection accuracy shows the lowest
values.
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Figure 4-1.1: Accuracy of different experiments run with Clusters
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Table 4-1: Overview of 10 best and 10 worst experiments with clusters. Sorted by accuracy of interface detection. Bal.: balancing; Min. Sen.: minimum sensitivity;
Opti.: hyperparameter tuning; Sam. wght.: sample weight; P1: profiles with undetected interfaces; n test: number of tests (total); P2: profiles with
undetected interfaces. Line with ”-” indicate skipped experiments.

Test
name

Ref
Data Resistivity

type
Train.
type

Bal.
Min.
Sen.

Opti.
Sam.
wght.

Accuracy
(training)

Accuracy
(prediction)

Test
name

P1
n
tests

P2

SEN Y Norm log10 score interface score interface

U17 - No No Yes Yes Normal No Yes Yes No 2.57% 15.94% 2.28% 17.54% A17 1 126 0.79%

U29 U17 No No No Yes Normal No Yes Yes No 2.50% 14.85% 2.26% 17.54% A29 1 126 0.79%

U35 U17 No No No Yes Normal No Yes No No 2.57% 15.94% 2.28% 17.54% A35 2 126 1.59%

U41 U17 No No No Yes Normal No Yes Yes Yes 50.40% 16.97% 46.05% 17.80% A41 2 126 1.59%

U4 - No No No Yes Mix No Yes Yes No 24.01% 18.47% 23.90% 18.26% A4 21 84 25.00%

U10 - No No No Yes Mix Yes Yes Yes No 48.16% 22.77% 60.01% 18.90% A10 23 84 27.38%

U14 - No No Yes Yes Normal No No Yes No 48.75% 23.17% 46.71% 19.47% A14 0 126 0.00%

U12 - No No No Yes Inv Yes Yes Yes No 38.38% 18.14% 30.04% 20.22% A12 46 126 36.51%

U20 - No No Yes Yes Normal Yes No Yes No 95.32% 34.46% 95.43% 20.24% A20 2 126 1.59%

U23 - No No Yes Yes Normal Yes Yes Yes No 23.47% 6.98% 6.98% 20.82% A23 2 126 1.59%

- - - - - - - - - - - - - - - - - - -

U43 U37 Yes Yes Yes Yes Mix Yes Yes Yes Yes 51.87% 56.05% 54.44% 45.66% A43 2 84 2.38%

U37 U4 Yes Yes Yes Yes Mix No Yes Yes Yes 51.30% 53.50% 51.62% 47.80% A37 1 84 1.19%

U27 U6 Yes Yes Yes Yes Inv No Yes Yes No 49.86% 41.32% 53.48% 57.40% A27 0 126 0.00%

U33 U6 No No No Yes Inv No Yes No No 49.86% 41.23% 53.38% 57.40% A33 2 126 1.59%

U39 U6 Yes Yes Yes Yes Inv No Yes Yes Yes 51.11% 38.66% 51.46% 58.83% A39 0 126 0.00%

U45 U39 Yes Yes Yes Yes Inv Yes Yes Yes Yes 91.92% 42.33% 52.59% 59.95% A45 0 126 0.00%

U38 U5 Yes Yes Yes Yes Normal No Yes Yes Yes 51.44% 44.12% 49.09% 62.11% A38 0 126 0.00%

U32 U5 Yes Yes Yes Yes Normal No Yes No No 83.50% 39.54% 44.96% 62.28% A32 0 126 0.00%

U26 U5 Yes Yes Yes Yes Normal No Yes Yes No 83.44% 39.41% 44.97% 62.31% A26 0 126 0.00%

U44 U38 Yes Yes Yes Yes Normal Yes Yes Yes Yes 9.00% 38.75% 54.27% 62.91% A44 0 126 0.00%
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Figure 4-1.2: Accuracy of different experiments run with classifiers.
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Table 4-2: Overview of 10 best and 10 worst experiments with classifiers. Sorted by accuracy of interface detection. Bal.: balancing; Min. Sen.: minimum sensitivity;
Opti.: hyperparameter tuning; Sam. wght.: sample weight; P1: profiles with undetected interfaces; n test: number of tests (total); P2: profiles with
undetected interfaces. Line with ”-” indicate skipped experiments.

Test
name

Ref
Data Resistivity

type
Train.
type

Bal.
Min.
Sen.

Opti.
Sam.
wght.

Accuracy
(training)

Accuracy
(prediction)

Test
name

P1
n
tests

P2

SEN Y Norm log10 score interface score interface

A14 - No No Yes Yes Normal No No Yes No 99.98% 18.42% 99.97% 19.60% A14 6 378 1.59%

A20 - No No Yes Yes Normal Yes No Yes No 99.94% 25.86% 99.93% 19.62% A20 6 378 1.59%

A16 - Yes Yes Yes Yes Mix No No Yes No 99.90% 15.35% 99.77% 21.09% A16 6 252 2.38%

A19 - No No Yes Yes Mix Yes No Yes No 99.95% 20.69% 99.90% 21.12% A19 6 252 2.38%

A13 - No No Yes Yes Mix No No Yes No 99.97% 15.14% 99.96% 21.16% A13 6 252 2.38%

A22 - Yes Yes Yes Yes Mix Yes No Yes No 99.89% 20.69% 99.59% 21.29% A22 18 252 7.14%

A15 - No No Yes Yes Inv No No Yes No 99.94% 12.09% 99.80% 26.04% A15 0 378 0.00%

A21 - No No Yes Yes Inv Yes No Yes No 99.90% 18.01% 99.58% 26.37% A21 0 378 0.00%

A17 - Yes Yes Yes Yes Normal No No Yes No 99.86% 18.55% 96.38% 27.96% A17 18 378 4.76%

A23 - Yes Yes Yes Yes Normal Yes No Yes No 99.91% 25.90% 97.45% 28.62% A23 12 378 3.17%

- - - - - - - - - - - - - - - - - - -

A36 A21 No No Yes Yes Inv Yes No Yes Yes 91.94% 18.37% 76.55% 59.88% A36 74 378 19.58%

A33 A15 No No Yes Yes Inv No No Yes Yes 87.81% 32.98% 78.92% 59.91% A33 65 378 17.20%

A9 - No No No Yes Inv Yes No Yes No 91.30% 24.63% 76.71% 60.29% A9 71 378 18.78%

A27 A15 No No Yes Yes Inv No No No No 86.13% 29.93% 75.56% 61.26% A27 62 378 16.40%

A6 - Yes Yes No Yes Inv No No Yes No 96.78% 28.72% 56.35% 61.46% A6 24 378 6.35%

A30 A21 No No Yes Yes Inv Yes No No No 96.34% 41.24% 51.34% 61.87% A30 19 378 5.03%

A10 - Yes Yes No Yes Mix Yes No Yes No 91.83% 33.21% 76.85% 64.51% A10 12 252 4.76%

A12 - Yes Yes No Yes Inv Yes No Yes No 96.21% 45.04% 54.68% 67.82% A12 50 378 13.23%

A5 - Yes Yes No Yes Normal No No Yes No 97.92% 21.35% 50.97% 76.78% A5 40 378 10.58%

A11 - Yes Yes No Yes Normal Yes No Yes No 97.88% 28.37% 50.73% 81.41% A11 9 378 2.38%
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46 Results and discussion

4-1-3 Dependency on the inversion parameters

Inversion parameters have an impact on the results of the training and the prediction.
The inversion parameters matter because they control the quality and accuracy of the
inversion result, which can improve or limit the performance of the classifiers. For almost
any tool or procedure, it is a valid rule that the better the input data, the better the
result of it. From this a hypothesis can be drawn, that each profile should be inverted
with a specific set of parameters that will increase the accuracy of the inversion. How-
ever, there are some problems associated with this approach. The goal of this project
is to investigate capabilities of ML techniques to detect interfaces. Inversion is a part
of this study, but not the main one. As the duration of this project is limited, it is not
feasible to search for optimal set of parameters for each profile separately. On the other
hand, this kind of investigation may not be possible for real measurements because the
true subsurface is not always know. Therefore it may be impossible to make a conclusive
statement about which parameters fit a specific profile best. Keeping this in mind, it
seems reasonable to assume that not all profiles provided to the classifiers are going to
be inverted with the best possible set of parameters.
Nevertheless, to investigate the impact of various inversion parameters on the accuracy
of the classification, different parameters were tested. Figure 4-1.3 shows how different
combinations of the inversion parameters z weight and λ change the accuracy of the pre-
diction made by the same set of classifiers. Each experiment with one pair of z weight
and λ is represented in those diagrams by only one point. The value that it shows is
an average of the accuracy of each classifier and the accuracy of each classifier is an
average of the accuracy of the prediction made on all tested profiles, hence it shows
an aggregated response of various classifiers. The following classifiers were used in this
study: Adaboost, KNN, GBC, SGD, SVM and committee (see Section 2-2-4).
Comparing results shown in Figures 4-1.3a and 4-1.3b shows that the differences in the
accuracy score are very small. Between the highest and the lowest value there are less
than 5% difference. Still a slight preference for higher values for z weight and λ can
be inferred from these results. A potentail explanation for this might be an improved
continuity of more smoothed interfaces.
A similar tendency can be found in Figure 4-1.3b. It shows the interface detection accu-
racy. Better accuracies are focused to higher values for both z weight and λ. However
the range of the accuracy is significantly larger. With a difference between best and
worst score of around 10% it seems that the inversion parameters have a stronger influ-
ence over the accuracy of the interface detection compared to the accuracy score.
According to Figures 4-1.3a and 4-1.3b the best results are achieved with values of
z weight in the range between 0.7 to 1.0 and λ between 80 to 100.
Finally, for the following analysis two different pairs of z weight and λ have been selected
for the normal and inverse models. For the normal models it is 0.2 and 60, respectively,
and for inverted ones 0.4 and 40. Those pairs are not falling within the best range defined
by this parameter study, but they have shown a balance to provide detailed subsurface
models, while limiting artifacts.
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(a) Results of the sensitivity study evaluated
with accuracy score.

(b) Results of the sensitivity study evaluated
with interface detection accuracy.

Figure 4-1.3: Sensitivity study over influence of inversions parameter of z weight and λ
on accuracy of prediction. Evaluated by: (a) accuracy score (3-4-1) and (b)
accuracy of the interface detection (3-4-2).

4-1-4 Impact of the training data

The classifiers and clusters can be trained on normal, inverted or mixed data (please see
Section 3-2-1 and 3-2-1 for more details).
Experiments can be grouped into groups of three. Within each group there are ex-
periments run with clusters or classifiers trained on different sets of training profiles
(trained on mixed, normal, or inverse profiles) but with the same methods applied to
them (configuration). There are two full groups in the top 10 results: A13-A14-A15 and
A19-A20-A21. In terms of accuracy in those groups training on normal models results
in the best score and training on inverted models results in the worst score. Considering
all experiments and not considering differences resulting from other parameters, gener-
ally training on inverted models performs consistently worse than on normal or mixed
models, which tend to perform equally well.
Among experiments run with clusters the best results are achived when they are trained
on normal profiles (see Table 4-1). Using mixed types of profiles seems to deliver good
result as well, but is clearly outperformed by the normal models. Inverted training pro-
files are represented only by one good score.
This noticeable difference in preference between clustering and classification can be ex-
plained by differences in how the data is assessed and how classes are assigned within
the data set. For the classification, a lower class number is always assigned to an area
with lower resistivity, while clusters rely more on internal similarity and coherence of
the points contained in each cluster. Therefore, for the clusters there is only a small
difference between normal and inverted models. The points in the resistive and conduc-
tive layers will share the same similarity regardless of their spatial position. The only
difference can be related to the quality of the inversion. Lower layers will be resolved
more poorly compared to the upper ones due to a decreasing sensitivity with depth. It
may seem that this would suggest a preference for training on the mixed dataset. This
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may not necessarily be true, for two reasons. Using mixed datasets will include errors
specific to both normal and inverted profiles. To some extent it may be beneficial, as
the cluster or classifier will have a chance to learn those imperfections too and adjust to
them. But on smaller and more self similar datasets, this benefit may not outweigh the
complexity introduced by it. Considering normal and inverted profiles, normal models
provide better results than the experiments using inverted models. This is likely being
caused by the inversion process. For the inverted models the more resistive layer will be
on top. This may result in smaller sensitivity of cells deep in the profile (in lower more
conductive layer).
Classifiers face a different problem. Since the points are assigned to classes based on
their resistivity, not depth or spatial position, training them on mixed dataset may cre-
ate additional complexity. Especially if depth is included as a feature for both training
and prediction. Using only one type of data for training may result in clearer division
between classes and still provide enough generalization to assign points correctly. This
explanation seems to be supported by the higher accuracy that was achieved when using
resistivity as the only input feature, compared to the experiments when either or both
of depth and sensitivity were used.

4-1-5 Impact of number of parameters

The impact of the number of features included (whether SEN and Y are used) differs
between clusters and classifiers.
The clusters show a very well defined response. Among the best 10 results there are
none that would benefit from information given by SEN or/and Y. Rather on the
opposite, the accuracy may decrease significantly when SEN and Y are included as
features. For example, for pair U17-U26, the error of interface detection increased
from 17.56% to 62.31%. U17 can be found in Figure 4-1.13 and U 26 4-1.4. Inter-
estingly, the tendencies of accuracy achieved by U17 and U26 for the first 20 profiles
are exactly opposite. For U17 the accuracy increases with depth and for U26 it decreases.

A possible explanation to why clusters perform better using only resistivity as a feature
is that there is sufficient amount of similarity and coherence between points only in
terms of their resistivity. If this is the case, adding more information may create more
complexity. The clusters may try to bring together points that have similar SEN and
Y values but different RES, for example two points at similar depth. Those points
can seem similar in terms of those two parameters (SEN and Y), but strongly differ in
their resistivity if they are on different sides of an interface. In this situation one of
them may be misclassified, which would not have happened if only RES was taken into
consideration. A similar tendency, i.e. to prefer training and prediction on the resistivity
only, can be found among the classifiers. However unlike clusters, they have achieved
good accuracy scores with those features too. The third best result of classifiers have
been achieved using both SEN and Y. That experiment (A17, Figure 4-1.6) performed
significantly worse than its pair (A14, Figure 4-1.9). Different result can be found in
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(a) Clusters U26 - interface detection accuracy. (b) Clusters U26 - prediction accuracy.

Figure 4-1.4: Accuracy estimations for classifiers test U26: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On y-axis
there are names of profiles, the interface depths increases from left to right
(within both normal profiles and inverted ones (longer names with inv in it)).

the pair A13-A16. Their performance is very similar, the difference in the interface
detection accuracy is 0.07 percentage point. A far greater difference can be found in
pair A20-A23 (Figures 4-1.10 and 4-1.7 respectively). Generally the results achieved by
both of them are similar if not the same. The only difference is an outlier - KNN. It is
caused by misclassified points at the bottom of the profile that created a false interface.
But as Figure 4-1.8 shows, the depth of the true interface was estimated with a good
accuracy. Generally it can be said that classifiers have a preference for not including
SEN or Y features. This is similar to the results of clusters but contrary to them,
classifiers can achieve good results while including additional features. There are some
exceptions (e.g.: KNN in A13-A16 pair). But comparison of pairs shows clear preference.

4-1-6 Balancing

For both clusters and classifiers class balancing does not provide any benefit to the
learning.
This result may be slightly counter intuitive as the class inbalance is a common problem
in ML classification. However, after the training profiles are combined together, the
number of points in each class may be sufficient for the classifier to learn about all
classes. The profiles used in this project have diverse interface depths and since those
different depths are split evenly between training and prediction phases, the whole
collection of profiles may be balanced. Hence, balancing should not have a negative
effect on the overall accuracy, and we would predict that the best results should be
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(a) Classifiers A16 - interface detection accuracy. (b) Classifiers A16 - prediction accuracy.

Figure 4-1.5: Accuracy estimations for classifiers test A16: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On y-axis
there are names of profiles, the interface depths increases from left to right
(within both normal profiles and inverted ones (longer names with inv in it)).

(a) Classifiers A17 - interface detection accuracy. (b) Classifiers A17 - prediction accuracy.

Figure 4-1.6: Accuracy estimations for classifiers test A17: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On y-axis
there are names of profiles, the interface depths increases from left to right
(within both normal profiles and inverted ones (longer names with inv in it)).
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(a) Classifiers A23 - interface detection accuracy. (b) Classifiers A23 - prediction accuracy.

Figure 4-1.7: Accuracy estimations for classifiers test A23: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On y-axis
there are names of profiles, the interface depths increases from left to right
(within both normal profiles and inverted ones (longer names with inv in it)).

achieved either with or without class balancing. This is the case for the classifiers.
Exactly 5 out of 10 results do use balancing and they are spread evenly among the
best results. Table 4-2 highlights these results, as it shows pairs of experiments where
the only difference is whether or not class balancing was applied. Those pairs are:
A14-A20, A16-A22, A13-A19, A15-A21, A17-A23 (in each pair first experiment is
executed without the balancing and second with it). In all pairs but A13-A19, the
results obtained without balancing are slightly better. Those differences are small. They
range between 0.02 percentage points (A14-A20) to 0.2 percentage points (A16-A22).
Comparing in detail the accuracies of experiments A14 (Figure 4-1.9) and A20 (Figure
4-1.10) shows no visible difference for the interface detection accuracies. There are slight
differences between classifiers in terms of the accuracy score, but they have minimal
influence on the final, averaged score. Slightly easier to notice is the difference between
experiments A13 and A19. A19 (with balancing) detects interface more accurately
by 0.04 percentage points, which is almost negligible. Comparing Figures 4-1.11a
and 4-1.12a shows that for A19 the lines for different classifiers are less overlapping.
It can mean that balancing of classes introduced some degree of confusing as this
effect is not visible in experiment A13 run with the same configuration but without
balancing. This is specifically visible between profiles Hor1 0030 to Hor1 0034. Overall
the differences are minor. Regarding the accuracy score, in experiment A19 the average
value is slightly better compared to A13. Based on this it can be concluded that for
experiments with classifiers balancing has no influence. Neither positive nor negative one.

Whether balancing has a positive, negative, or no impact on clustering is more difficult
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(a) Classifiers A23 - Hor1 inv 0015.

(b) Classifiers A23 - Hor1 inv 0024.

Figure 4-1.8: Experiment A23: (a) profile Hor1 inv 0015 and (b) profile Hor1 inv 0024
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(a) Classifiers A14 - interface detection accuracy. (b) Classifiers A14 - prediction accuracy.

Figure 4-1.9: Accuracy estimations for classifiers test A14: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On y-axis
there are names of profiles, the interface depths increases from left to right
(within both normal profiles and inverted ones (longer names with inv in it)).

(a) Classifiers A20 - interface detection accuracy. (b) Classifiers A20 - prediction accuracy.

Figure 4-1.10: Accuracy estimations for classifiers test A20: (a) interface detection accu-
racy (lower value is better); (b) accuracy score (higher value is better). On
y-axis there are names of profiles, the interface depths increases from left
to right (within both normal profiles and inverted ones (longer names with
inv in it)).
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(a) Classifiers A13 - interface detection accuracy. (b) Classifiers A13 - prediction accuracy.

Figure 4-1.11: Accuracy estimations for classifiers test A13: (a) interface detection accu-
racy (lower value is better); (b) accuracy score (higher value is better). On
y-axis there are names of profiles, the interface depths increases from left
to right (within both normal profiles and inverted ones (longer names with
inv in it)).

(a) Classifiers A19 - interface detection accuracy. (b) Classifiers A19 - prediction accuracy.

Figure 4-1.12: Accuracy estimations for classifiers test A19: (a) interface detection accu-
racy (lower value is better); (b) accuracy score (higher value is better). On
y-axis there are names of profiles, the interface depths increases from left
to right (within both normal profiles and inverted ones (longer names with
inv in it)).
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to judge. 4 out of the 10 best results use balancing, but their results are worse than those
that are not using balancing (Please see Table 4-1). As for classifiers, we can compare
pairs of results with the only difference whether class balancing was applied. These pairs
are: U4-U10, U14-U20 and U17-U23. The differences in the accuracies within pairs are
larger than for classifiers. For the first pair it is 3.28 percentage points, which is the
largest difference. The smallest difference is for pair U29-U41 (0.26 percentage points).
In the first pair (U17-U23) it can be observed that adding balance has a strongly neg-
ative impact on MeanShift. Figures 4-1.12a and 4-1.14a show the decrease in interface
detection accuracy reaching up to 15%. There are some profiles for which the decrease
was negligible (for example profiles Hor1 0006 to Hor1 0018). Similar effects can be
observed for experiments U4 and U10 (Figures 4-1.15a and 4-1.16a). However, for some
profiles balancing actually improves the accuracy. For example, profile Hor1 0030 has a
better prediction with KMeans and MeanShift if balancing is applied. The improvement
is significantly stronger for the latter one. Applying balancing increased the number
of profiles with undetected interfaces by one for the prediction with KMeans and de-
creased it by one for MeanShift. Even harder to observe are differences in pair A14-A20.
There is no change to the result of KMeans, but the MeanShift result is better in the
experiment without balancing. Figures 4-1.20 shows one more interesting consequence
of applying balancing. In Figure 4-1.20b (experiment U20 - with balancing) the classes
have been assigned correctly contrary to the results from experiment U14, which ran
without balancing (Figure 4-1.20a). This is not a separate, exceptional case. Figures
4-1.18b and 4-1.19b show this as well. Figures 4-1.15a, 4-1.16a, 4-1.13a, 4-1.14a show
that inversion of the assigned classes is not a consistent result of applying balancing to
the data, though it happens in all of the pairs.
Overall it seems, that balancing does have a weak negative effect at the accuracy of
clusters prediction. This is specifically true for MeanShift. KMeans seems to be mostly
unaffected.

4-1-7 Minimum sensitivity

The application of minimum sensitivity threshold yields results that require careful in-
vestigation. The results for clusters and classifiers are the exact opposites.
Clusters clearly benefit from a minimum sensitivity threshold (Table 4-1). There are
two pairs in top 10 results: U14-U17 (Figures 4-1.18 and 4-1.13) and U20-U23 (Figures
4-1.19 and 4-1.14). In the first pair, better accuracy was achieved with minimum sensi-
tivity applied. Interestingly, minimum sensitivity has removed the problem of inverted
class assignment in experiment U14. This has improved the accuracies achieved by the
worst outliers and some of the relatively good profiles. The biggest improvements can be
found among the normal profiles. Two inverted profiles in which no interfaces has been
detected were improved enough to make detection possible. On the other hand, in one
of the normal profiles a previously detected interface was lost. Overall the difference in
accuracy between U14 and U17 is 1.93 percentage point. The opposite can be observed
in pair U20-U23. In this pair, U20, where no minimum sensitivity was applied, offers
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(a) Clusters U17 - interface detection accuracy. (b) Clusters U17 - prediction accuracy.

Figure 4-1.13: Accuracy estimations for clusters test U17: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On y-
axis there are names of profiles, the interface depths increases from left to
right (within both normal profiles and inverted ones (longer names with inv
in it)).

(a) Clusters U23 - interface detection accuracy. (b) Clusters U23 - prediction accuracy.

Figure 4-1.14: Accuracy estimations for clusters test U23: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On y-
axis there are names of profiles, the interface depths increases from left to
right (within both normal profiles and inverted ones (longer names with inv
in it)).
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(a) Clusters U4 - interface detection accuracy. (b) Clusters U4 - prediction accuracy.

Figure 4-1.15: Accuracy estimations for clusters test U4: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On
y-axis there are names of profiles, the interface depths increases from left
to right (within both normal profiles and inverted ones (longer names with
inv in it)).

(a) Clusters U10 - interface detection accuracy. (b) Clusters U10 - prediction accuracy.

Figure 4-1.16: Accuracy estimations for clusters test U10: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On y-
axis there are names of profiles, the interface depths increases from left to
right (within both normal profiles and inverted ones (longer names with inv
in it)).

August 6, 2021



58 Results and discussion

(a) Clusters U4 - interface detection - Hor1 0016.

(b) Clusters U10 - interface detection - Hor 0016.

Figure 4-1.17: Profile Hor 0016 prediction overview from experiments (a) U4 and (b) U10.
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(a) Clusters U14 - interface detection accuracy. (b) Clusters U14 - prediction accuracy.

Figure 4-1.18: Accuracy estimations for clusters test A14: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On y-
axis there are names of profiles, the interface depths increases from left to
right (within both normal profiles and inverted ones (longer names with inv
in it)).

(a) Clusters U20 - interface detection accuracy. (b) Clusters U20 - prediction accuracy.

Figure 4-1.19: Accuracy estimations for clusters test U20: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On y-
axis there are names of profiles, the interface depths increases from left to
right (within both normal profiles and inverted ones (longer names with inv
in it)).
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(a) Clusters U14 - interface detection - Hor1 0030.

(b) Clusters U20 - interface detection - Hor 0030.

Figure 4-1.20: Profile Hor 0030 prediction overview from experiments (a) A14 and (b)
A20.
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better a slightly better accuracy. Considering that between two pairs in top 10 only in
one of them experiment without minimum sensitivity delivered better results and other
8 experiments have pairs (experiments without minimum sensitivity applied) outside
of top 10 (worse performance) it can be said that clusters quite strongly benefit from
minimum sensitivity. A possible explanation for this is that if less informative values
(and less reliable ones) are removed it is easier for the cluster to group the remaining
points based on their self similarity. A similar explanation has been proposed in another
section discussing the influence of the number of features on the accuracy of clusters
(please see Section 4-1-5).
For experiments run with classifiers the influence of the minimum sensitivity threshold
is also clear. None of the experiments in top 10 applied minimum sensitivity. For the
top 10 results, pairs where the sensitivity threshold was applied performed significantly
worse. Investigation of pair A14-A38 shows clearly that applying minimum sensitivity
impacted performance of the classifiers in a negative way. SGD lost its capability of
detecting the interface almost in half of the profiles and all other classifiers accuracy
decreased.

4-1-8 Hyperparameter tuning

Tables 4-1 and 4-2 show clearly that hyperparameter tuning improves accuracy of the
prediction.
Comparing results achieved by pairs A14-A26, the error is reduced by more than half as
a result of hyperparameter tuning. It improves not only the chances of detection of the
interface and its accuracy, but also the consistency of the performance of the classifiers.
Figure 4-1.9 shows that the results achieved by the classifiers overlap.

The results achieved by clusters are similar. Hyperparameter tuning clearly improves
the accuracies of prediction with clusters. There is one outlier in the top 10 but it is
similar in its configuration to the best experiment. Apart from experiment U35, all other
ones run without hyperparameter tuning are scattered in the lower half of the ranking.
It is clear that hyperparameter tuning helps both clusters and classifiers achieve their
best performance.

4-1-9 Sample weighting

The influence of sample weighting is mostly negative on the accuracy of both clusters
and classifiers.
Among classifiers there is no experiment in the top 10 that benefited from applying
sample weighting.
For clusters, only one experiment achieved a high accuracy (U41), but it still performed
worse than its pair (U17), although the difference is very small (0.26 percentage point).
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(a) Clusters U41 - interface detection. (b) Clusters U41 - interface detection.

Figure 4-1.21: Accuracy estimations for clusters test U41: (a) interface detection accuracy
(lower value is better); (b) accuracy score (higher value is better). On y-
axis there are names of profiles, the interface depths increases from left to
right (within both normal profiles and inverted ones (longer names with inv
in it)).

Comparing results of U17 (Figure 4-1.13) and U41 (Figure 4-1.21) shows very little dif-
ference. Only two profiles have been predicted slightly better without sample weighting:
Hor1 inv 0024 and Hor1 inv 0026 but only for prediction with KMeans. For some pro-
files (e.g.: Hor1 inv 0004 to Hor1 inv 0010) applying sample weighting slightly decreased
the accuracy. But there are profiles which benefited from it: e.g. Hor1 0030.
Those local improvements are not enough to shift the results in favour of sample weight-
ing and it can be said that it consistently decreases the accuracy of both clusters and
classifiers.

4-1-10 Borehole simulation

The exact impact of the borehole simulation has not been tested. As it was discussed
in Section 3-3-4 the high computational cost of training on full datasets made it not
feasible to run experiments without borehole simulation applied. In earlier experiments,
run with far smaller data sets it was verified that applying borehole simulation has no
negative effect on the results of the experiments. In some cases it even improved them.
However there is a problem that should be taken into consideration.
The issue is the way how borehole is defined for the purpose of the simulation. In
a perfect situation, borehole would indeed be a rectangular, narrow and vertically
elongated rectangle. However, this is usually not the case. Boreholes are rarely
straight, there can be a difference between borehole depth and so called true ver-
tical depth (TVD) [Ellis and Singer, 2007]. This leads to a question how well can
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this simplified, perfect definition of a borehole approximate training on a data from a
real one, where there may be some inaccuracies in the depth of the measured resistivities.

4-1-11 Summary

It can be said that clusters and classifiers need to be handled slightly differently.
Starting with the similarities: both perform best if trained on mixed or normal profiles
and both benefit from hyperparameter tuning and perform worse when samples are
weighted with sensitivity. Both prefer to use only resistivity for training and prediction
but classifiers are less strict in this preference than clusters. For the latter ones it
has weak, negative influence on the results. The biggest differences has been observed
in two areas. Clusters clearly benefit from applying minimum sensitivity whereas it
decreases the accuracies achieved by classifiers. The normalization of the resistivity
has the opposite effect. A beneficial one for classifiers and negative cluster. In terms
of accuracy of the interface detection there is very little difference between classifiers.
Accuracy score shows more profound differences between performance of different
classifiers. Mostly negative outliers are Adaboost and KNN, but it has very limited
impact on their ability to detect the interfaces.
Comparing the best experiments in terms of interface detection accuracy leads to an
interesting observation. In all of them the results achieved by different classifiers/cluster
overlap. Locally the overlap may not be perfect, or there can be some singular outliers,
but those are rare exceptions. From this there can be a conclusion drawn that selecting
specific classifier/cluster type may be less important than processing and improving the
data in an optimal way and optimizing the selection of hyperparameters for the specific
classifier.

4-2 Real data

Only a limited subset of experiments was performed on real data. The selection of the
experiments configurations was based on the most promising parameter combinations
obtained from the synthetic data.
Experiments discussed in this section follow similar naming convention to the ones used
for the synthetic data. The difference is that the letter ”R” was added before the
experiment’s number to indicate that it uses data from real measurements, e.g.: UR1 -
first experiment with real measurements and clusters, AR1 - first experiment with real
measurements and classifiers.
For more details on the survey during which the profiles have been measured please see
Section 3-2-2. Figure 4-2.1 shows two examples of the inverted real profiles.

August 6, 2021



64 Results and discussion

(a) An example of an inverted real profile. Mea-
sured at 2020-04-30 at 14:30.

(b) An example of an inverted real profile. Mea-
sured at 2020-06-07 at 14:30.

Figure 4-2.1

4-2-1 Experiment results

Table 4-3 shows the results of experiments with real data using clustering, while Table
4-4 shows the results of experiments run with classifiers. Values in those tables are sorted
by the accuracy score of the prediction. This is different than in Tables 4-1 and 4-2 which
were sorted by accuracy of interface detection in the prediction phase. Here the accuracy
score is used because the interface detection score is a far less reliable metrics than for the
synthetic experiments. As discussed in Section 3-4-2, the interface detection currently
only supports horizontal interfaces and hence it is compared to a given value. Both of
those are limitations for the real data as the true depth of the interface is unknown
and interface is a slope. Still, this metrics can be used to compare experiments with
similar configurations that use classifiers or clusters. Figures 4-2.2a and 4-2.2b show an
overview of the achieved accuracies with cluster and classifiers respectively.
The results achieved by clusters have to be considered slightly differently as the ones
for classifiers. As clusters assign classes randomly, in a binary class problems accuracy
scores of 0% and 100% may be equally good in terms of the interface detection.

August 6, 2021



4
-2

R
e
a
l

d
a
ta

6
5

Table 4-3: Overview of experiments on real measurements with clusters. Sorted by accuracy of interface detection. Ref.: indicates which test from synthetic
experiments shares the same configuration; Bal.: balancing; Min. Sen.: minimum sensitivity; Opti.: hyperparameter tuning; Sam. wght.: sample weight;
P1: profiles with undetected interfaces; n test: number of tests (total); P2: profiles with undetected interfaces. Line with ”-” indicate skipped experiments.

Test
name

Ref
Data Res.

type
Train.
type

Bal.
Min.
sen.

Opti.
Sam.
wght.

Accuracy
(training)

Accuracy
(prediction)

Remarks

SEN Y Norm log10 score interface score interface

UR8 U17 No No Yes Yes Norm No Yes Yes No 0.64% 20.10% 1.85% 15%

UR23 U34 No No Yes Yes Norm No Yes No No 0.64% 20.10% 1.85% 15.00%

UR22 U33 No No Yes Yes Mix No Yes No No 1.12% 19.52% 3.43% 15.21%

UR13 U14 No No Yes Yes Mix No No Yes No 1.36% 12.75% 4.00% 14.59%

UR25 - No No Yes Yes Mix No No Yes Yes 1.39% 12.69% 4.07% 14.58%

UR15 U15 No No Yes Yes Inv No No Yes No 0.87% 15.32% 4.32% 14.98%

UR3 U18 No No Yes Yes Inv No Yes Yes No 21.04% 30.70% 13.84% 0% wrong contrast

UR18 U3 No No No Yes Inv No No Yes No 4.19% 14.71% 20.28% 14.91%

UR17 U2 No No No Yes Norm No No Yes No 13.79% 25.43% 22.36% 25.43%

UR16 U1 No No No Yes Mix No No Yes No 10.95% 21.19% 24.37% 14.80%

UR6 U11 No No Yes Yes Inv Yes Yes Yes No 66.26% 15.21% 35.96% 0% wrong contrast

UR20 A5 Yes Yes Yes Yes Norm No Yes Yes No 11.59% 20.75% 46.05% 0%

UR9 U18 No No Yes Yes Inv No Yes Yes No 49.13% 15.31% 49.13% 15.30%

UR14 U14 No No Yes Yes Norm No No Yes No 49.81% 14.25% 50.39% 14.58%

UR10 U9 No No Yes Yes Mix Yes No Yes No 49.67% 17.07% 50.84% 15.04%

UR01 U16 No No Yes Yes Mix No Yes Yes No 51.89% 16.81% 51.32% 0% wrong contrast

UR4 U9 No No Yes Yes Mix Yes Yes Yes No 48.45% 18.96% 51.32% 0% wrong contrast

UR5 U10 No No Yes Yes Norm Yes Yes Yes No 43.94% 19.31% 51.32% 0% wrong contrast

UR19 A4 Yes Yes Yes Yes Mix No Yes Yes No 49.33% 43.56% 51.32% 0.00%

UR21 A6 Yes Yes Yes Yes Inv No Yes Yes No 50.16% 22.05% 51.32% 0%

UR26 - No No Yes Yes Norm No No Yes Yes 50.41% 14.07% 52.45% 14.58%

UR02 U17 No No Yes Yes Norm No Yes Yes No 63.21% 23.52% 53.95% 0% wrong contrast

UR12 U11 No No Yes Yes Inv Yes No Yes No 49.24% 27.67% 54.10% 15.15%

UR27 - No No Yes Yes Inv No No Yes Yes 49.02% 15.28% 55.49% 14.96%

UR24 U35 No No Yes Yes Inv No Yes No No 49.13% 15.31% 56.69% 15.30%

UR7 U16 No No Yes Yes Mix No Yes Yes No 46.88% 19.52% 56.85% 15.21%

UR11 U10 No No Yes Yes Norm Yes No Yes No 64.16% 19.52% 70.23% 15.13%
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Table 4-4: Overview of experiments on real measurements with classifiers. Sorted by accuracy of interface detection. Ref.: indicates which test from synthetic
experiments shares the same configuration; Bal.: balancing; Min. Sen.: minimum sensitivity; Opti.: hyperparameter tuning; Sam. wght.: sample weight;
P1: profiles with undetected interfaces; n test: number of tests (total); P2: profiles with undetected interfaces. Line with ”-” indicate skipped experiments.

Test
name

Ref
Data Res.

type
Train.
type

Bal.
Min.
sen.

Opti.
Sam.
wght.

Accuracy
(training)

Accuracy
(prediction)

Remarks

SEN Y Norm log10 score interface score interface

AR6 A15 No No Yes Yes inv No No Yes No 99.99% 11.41% 99.81% 14.57%

AR4 A13 No No Yes Yes mix No No Yes No 100.00% 12.66% 99.80% 12.66%

AR9 A21 No No Yes Yes inv Yes No Yes No 99.99% 15.97% 99.74% 14.57%

AR16 A25 No No Yes Yes mix No No No No 99.96% 12.70% 99.63% 14.58%

AR10 A40 No No Yes Yes mix Yes Yes Yes No 99.99% 16.70% 99.56% 14.80%

AR5 A14 No No Yes Yes Normal No No Yes No 99.98% 13.90% 99.52% 14.58%

AR7 A19 No No Yes Yes mix Yes No Yes No 99.97% 17.10% 99.52% 17.10%

AR17 A26 No No Yes Yes Normal No No No No 99.96% 13.98% 99.50% 14.58%

AR18 A27 No No Yes Yes inv No No No No 99.90% 11.37% 99.48% 14.57%

AR11 A41 No No Yes Yes Normal Yes Yes Yes No 99.92% 19.15% 99.46% 14.80%

AR12 A42 No No Yes Yes inv Yes Yes Yes No 99.95% 13.76% 99.44% 14.81%

AR8 A20 No No Yes Yes Normal Yes No Yes No 99.91% 19.29% 99.13% 14.58%

AR19 A16 Yes Yes Yes Yes mix No No Yes Yes 99.97% 12.65% 93.32% 14.89%

AR13 A16 Yes Yes Yes Yes mix No No Yes No 99.97% 12.65% 89.28% 14.89%

AR15 A18 Yes Yes Yes Yes inv No No Yes No 99.94% 11.38% 83.80% 9.57%

AR20 A17 Yes Yes Yes Yes Normal No No Yes Yes 99.98% 13.98% 81.29% 11.75%

AR21 A18 Yes Yes Yes Yes inv No No Yes Yes 99.94% 11.38% 78.15% 10.24%

AR14 A17 Yes Yes Yes Yes Normal No No Yes No 99.91% 14.23% 73.44% 9.33%

AR2 A14 No No Yes Yes Normal No No Yes No 84.04% 33.07% 51.66% 0.00% wrong contrast

AR3 A15 No No Yes Yes inv No No Yes No 89.07% 23.85% 51.66% 0.00% wrong contrast

AR1 A13 No No Yes Yes mix No No Yes No wrong contrast
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4-2-2 Hyperparameter tuning

As discussed in one of the previous sections, the hyperparameter tuning is expected
to have a positive effect on the accuracy. However, for clusters, the best results were
achieved without hyperparameter tuning (UR22 and UR23). Their seemingly low scores
are actually related to flipped classes. On the other hand, the seemingly best score of
70.23% (which results in the worst accuracy) is achieved with no hyperparameter tuning
as well. There were no other experiments run without hyperparameter tuning, therefore
no strong conclusions can be drawn in regard to whether it benefits the clustering or
not. The hyperparameter tuning seem not to have as strong and beneficial impact at
the achieved accuracies as it was the case for the experiments with clusters run with the
synthetic data.
Classifiers have only three experiments run with no hyperparameter tuning as well. Un-
like by clusters, they don’t score the top score but their performance is above average.
Comparing this to the observations made for the clusters, it can be said that in ex-
periments with real measurements hyperparameter tuning has a stronger impact on the
classifiers than on clusters.

4-2-3 Sample weighting

In general the results are fairly comparable with synthetic experiments.
In synthetic experiments with cluster the experiments with sample weighting applied
were spread over the whole score table. There are not enough experiments with sample
weighting executed with real measurements to replicate this kind of distribution, but
two experiments in the top half of the score table and one in bottom part suggest that
with more similar experiments run, the tendency would be similar to one in synthetic
experiments.
Classifier experiments with real data shows a strong similarity to results of synthetic
experiments. Both with real and synthetic data the experiments with sample weighting
are clearly in the lower end of the results range. It can be said with some confidence
that the experiments with real measurements has confirmed the tendency observed in
synthetic ones.

4-2-4 Minimum sensitivity

The effects of applying the minimum sensitivity between experiments on synthetic and
real data are the most consistent and similar.
In experiments with clusters and real measurements the runs with minimum sensitivity
applied are spread over the whole results table. Generally the distribution of those ex-
periment in the classification results with real measurements is similar to the synthetic
experiments. The representation of the experiments executed with minimum sensitivity
is slightly higher among the results run with synthetic data compared to the ones with
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(a) .

(b) Real measurements - classifiers.

Figure 4-2.2: Real measurements - experiment results.
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real measurement. But this difference can be explained with different number of exper-
iments run with minimum sensitivity enabled or disabled with synthetic and real data.
In experiments with synthetic data, classifiers have a clear preference for not using min-
imum sensitivity. Predicting on real data provides the same result. It is less pronounced
as there are fewer experiments with it applied, but the best scores are achieved with-
out it. However, it should be stressed that comparing groups AR7-AR8-AR9 (without
sample weight applied) and AR10-AR11-AR12 (with sample weight applied) it is hard
to reach a strong conclusion. The accuracy scores order those test as follows (from best
to worst): AR9-AR10-AR7-AR11-AR12-AR8. No minimum sensitivity wins, but scores
the worst result as well. There may be a need for a more detailed investigation of this
parameter.

4-2-5 Balancing

The results of experiments run with real data and clusters are consistent. Experiments
without balancing perform better. Among the best scores are none that include this
step.
Classifiers reach the same conclusion as in the synthetic experiments, where the impact
of balancing on the result is limited. In experiments with real measurements the results
obtained with balancing applied are not spread as evenly as in synthetic ones but they
are very close to it. Comparing pairs (AR6-AR9, AR4-AR7 and other ones) shows
consistently that balancing lowers the achieved accuracy. However the differences are
rather small. In pair AR6-AR9 the accuracy with balancing is lower by 0.7 percentage
point.

4-2-6 Contrast in training data vs contrast in prediction data

At first the clusters and classifiers used to perform prediction on real measurements were
trained on the same datasets that were used for synthetic experiments. The training data
set included profiles with contrasts 50-5000 Ωm and 500-5000 Ωm. Whereas the profiles
on which prediction was performed had much lower contrast of 5-50 Ωm. This approach
turned out to lead to low accuracy scores as neither clusters nor classifiers were capable
of distinguishing between two classes after this training. Instead they assigned all points
in the profile to the same class. Hence, there were no interfaces detected.
The accuracies achieved in the experiments trained and predicted on different resistiv-
ity contrasts are low. There were six experiments with mismatching contrasts (between
training and prediction phases) run with clusters and three with classifiers. Their results
can be found in the result tables with a remark ”wrong contrast”. In order to mitigate
this problem and to verify whether the lack of matching contrast in the training data
set was the problem a special training dataset was prepared with the resistivity contrast
expected in the real profiles. This solved the problem of all points in the profiles being
assigned the same class. Thanks to this achieved results have improved from being very
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poor to being comparable with accuracies of the synthetic experiments. The results are
slightly lower compared to the results of experiments run with synthetic profiles. The
difference between best accuracy score of classifiers in experiments with synthetic and
real data is 0.16 percentage point. Considering the differences in topography between
synthetic and real profiles and the real interface being a slope, this is a promising result.
The improvement was so strong that experiments trained on mismatching resistivity
contrasts had to be removed from the overview figures in order to maintain their read-
ability.
There are two conclusions that can be drawn from those observations. First, there is
a limitation to what clusters and classifiers can achieve and it seems to be related to a
difference in the resistivity contrast between training and prediction data. Clusters and
classifiers perform poorly when they need to predict on data with contrasts they have
not been made familiar with. This is somewhat surprising, since the training was per-
formed on normalized resistivities, and hence a contrast of 5 Ωm - 50 Ωm should be the
same as a contrast of 50 Ωm - 500 Ωm. Yet, the results indicate that the correct order
of magnitude of the resistivity contrast is needed to achieve accurate results. Hence, the
approach has only limited generalizability, and hence prior information is required to
achieve good results. This will be further discussed in next Chapter. What is promising
is that neither the clusters nor classifiers seemed to be confused by difference in topog-
raphy and spatial orientation (slope) of the interface between profiles used for training
and prediction.

4-2-7 Other observations

The experiments with real measurements offer some insight to how clusters and classifiers
will react to differences between training and prediction data in terms of topography
and spatial orientation of the interface. The clusters and classifiers have been trained
on synthetic profiles with flat topography and flat horizontal interfaces. Those two are
strong assumptions that fail to reflect complexity of real measurements. Apart from
some very specific areas (like extremely flat salt plains) those assumptions will not hold.
It is very promising that even though the profiles have a noticeable topography and a
sloping interface the clusters and classifiers seem not to struggle with it. If this holds
true and spatial orientation of the interface and the overall topography play little role (or
their impact is limited) it may make training of the clusters and classifiers significantly
easier and computationally less expensive. Otherwise training datasets would have to
be diverse not only in terms of resistivity contrast or the position of the interface but
topography and orientation of the slope will add to it as well. Figure 4-2.3 shows that
even with topography and sloping interface the prediction can achieve a good result.

4-2-8 Relation with geology

The hydrogeological structure that can be observed in Figure 4-2.3 is called a perched
aquifer. It occurs when water from precipitation penetrates the subsurface and is stopped
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(a) Prediction made with clusters experiment UR23 measurement date: 2019-12-15.

(b) Prediction made with clusters experiment AR6 measurement date: 2019-05-15.

Figure 4-2.3: Example of prediction on real data with topography and sloping interface.
(a) Clustering, experiment UR23; (b) classification, experiment AR6. Due
to a bug plots showing input data (left column, middle row) are incorrect,
this has no impact on the prediction results as classes are assigned according
to the correct values. Red line shows an arbitrary interface depth and is
not related to the expected results in any way, its meaning is only as a
placeholder value (required by a script to run).
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at some point by an impermeable layer. It corresponds to the lower interfaces in the
mentioned figure. The upper interface is the perched water table. The high rainfall will
impact both of them. The deeper interface will become deeper as water will seep into
the subsurface until it reaches the impermeable layer where it accumulates. This will
move the bottom interface to the higher area in the subsurface. The top aquifer will
grow thicker with increased precipitation so its bottom boundary will move downwards.
Both of those processes are interconnected and show an increase of water saturation in
the subsurface which makes the slope less stable; a higher water table will rise pore pres-
sures, which in turn increases the effective stress and lowers the stability of the slopes
material. The top of the perched aquifer is more relevant to evaluation of the stability
of the slopes. But it is useful that ERT and ML together can track changes of both at
the same time.
The Figure 4-2.4 show the change of the interface depth (as a depth below the surface)
compared to rainfall and temperature at the profile site. The depth has been estimated
manually based on the inverted profiles. It was not done automatically due to a current
implementation of the interface detector that lacks support for slopes. However it has
been confirmed by comparison between the inverted profiles and result of the prediction
that with a interface detector that support slopes, they would be detected with high
accuracy.
What can be observed in the figure is that it takes about three months for the rainfall
water to change the water table. On the other hand it takes only two months to ob-
serve a strong decrease in the water in the ground. What can be concluded from those
observations is that an increase in the water level in the lower layer requires significant
rainfall and it takes time for water to infiltrate the subsurface deep enough to reach it.
On the other hand the response to the lack of rain is quicker.

4-2-9 Summary

There are many similarities between the results achieved by both clusters and classifiers.
Applying the sample weight decreases accuracies of both of them. The balancing of
classes seem not to benefit either but it performs slightly better with classifiers. Among
experiments run with clusters it is clear that none of the tests with balancing of the
classes applied achieved a good result. The minimum sensitivity method was more
beneficial for clusters than for classifiers.
Generally the results are promising and the achieved accuracies are high.

4-3 Summary and comparison of experiments with synthetic
and real profiles

To a big extent results are similar to ones obtained with synthetic data. As there are
fewer test executed (the focus was on trying the most promising configurations) the
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Figure 4-2.4: The depth of the interface below the surface compared to the rainfall and
temperature.

observations may not be as conclusive as they were for the synthetic experiments. Still,
some of the same tendencies can be confirmed for both synthetic and real data. The
similarities are strongest in relation to balancing, and minimum sensitivity. The first
one has a fairly limited impact on the accuracy of both clusters and classifiers, whereas
the latter one is clearly beneficial to the clusters but not for the classifiers. Neither
clusters nor classifiers benefited from weighting of the samples with sensitivity. This is
the case for experiments with synthetic data sets as well and this observation is valid for
both clusters and classifiers. Regarding the hyperparameter tuning there is a bit less of
similarity between experiments run with synthetic and real data. With synthetic data
hyperparameter tuning clearly had a positive impact on the results for both clusters
and classifiers but this is not the case for real profiles. The clusters managed to achieve
high accuracies while predicting on real profiles without hyperparameter tuning. The
classifiers still benefited from the tuning.
Generally, it can be said that the there are many similarities between the influence of
different preprocessing methods on the results achieved while prediction on synthetic
and real profiles. There are some differences as well but they are not strong enough
to conclude that prediction on different types of data requires significantly different
preprocessing. However the influence of some methods has been tested with limited set
of experiments and more detailed investigation might be required to draw strong and
general conclusions.
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Another important conclusion is that clusters and classifiers can achieve good accuracies
while prediction on both synthetic and real profiles.
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Chapter 5

Summary

Figure 5-0.1 shows an overview of a selected profiles from the experiments delivering the
best and worst results among experiments run with the classifiers and clusters. As it
can be seen in Figures 5-0.1a, 5-0.1c, 5-0.1e, and 5-0.1g, there is a significant difference
between interfaces detected by the best and worst in each category. This shows what a
wide range of results can be achieved with different configurations. The good results show
that ML techniques can be applied in a way that makes it possible to automatically detect
interfaces in the subsurface at an accuracy comparable to conventional techniques, such
as drilling, or manual picking. Comparison of results obtained by the steepest gradient
method and borehole drilling presented in paper: [Chambers et al., 2012] shows that
for many interfaces similar accuracy (difference between true and predicted depth lesser
than 0.5 meter) was achieved. This is a more accurate result, however in this study a
more general problem is investigated.

5-1 Limitations

There are two major factors that limit the prediction accuracy found in the experiments.
First one is the quality of the inversion. Comparing the accuracy of profiles between
the experiments some trends can be observed. For example, profile Hor1 0030 has
performed poorly independent of the configuration of the experiments. To some extent
it seems to correlate with either a too shallow or too deep position of the interface. Both
situations are challenging to the predict. If the interface is too shallow, there are very
few points representing the upper layer which may lower a chance of accurate prediction
for some classifiers. An unfavorable size and positions of the cells it can lead to large
relative errors. When the interface is too deep in the subsurface, the sensitivity can
play a significant role, where deeper parts of the subsurface are known to be less well
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(a) Classifiers best result - A14 - overview of the
prediction result.

(b) Classifiers best result - A14 - true vs pre-
dicted interface depth.

(c) Clusters best result - U17 - overview of the
prediction result.

(d) Clusters best result - U17 - true vs predicted
interface depth.

(e) Classifiers worst result - A11 - overview of
the prediction result.

(f) Classifiers worst result - A11 - true vs pre-
dicted interface depth.

(g) Clusters worst result - U44 - overview of the
prediction result.

(h) Clusters worst result - U44 - true vs predicted
interface depth.

Figure 5-0.1: Best results: an example for (a) classifiers - A11; (b) clusters - U55.
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resolved when using surface electrodes arrays. If the lower layer is placed in the part of
the profile with low resistivity, it may be challenging to extract sufficient information
to resolve it reliably. It can lead to a situation in which some points used for training
will be assigned incorrect classes due to errors in the result of the inversions for specific
points. Training clusters and classifiers on a dataset counting many of those points may
hinder their capabilities of generalizing.
As many of the experiments achieved fairly similar accuracies, it may suggest that
the clusters and classifiers have managed to reach their limits for the used datasets.
There are two potential conclusions that could be drawn from it. It is possible that
insufficient pre-processing was applied to the data that were used in the clustering and
classification. Scikit-learn contains many pre-processing tools that were not used in this
project. Perhaps additional techniques available in the toolbox and/or other external
preprocessing steps could be used to improve the results. The other direction that can
be taken in order to improve the results is related to the profiles. In this experiment
all profiles were inverted with the same parameters. This ”one-size-fits-all” approach
was taken in order to limit the amount of variables tested in the experiments, but it is
possible that with better parameter choices the quality of the inversion would improve.
The training and prediction accuracies would most probably benefit from it. Those two
ways to improve the results could be applied and validated simultaneously.
The second limiting factor seems to be the knowledge of the contrast in the subsurface.
Experiments run with real measurements have shown clearly that training classifiers
with the same contrast as present in the data will lead to a strong improvement of the
achieved accuracies in the class and interface prediction. Neither clusters nor classifiers
were capable of prediction accurately when they were given contrast of 5 − 50Ω ∗ m
when they were only trained on contrasts of 50− 500Ω ∗m and 500− 5000Ω ∗m. They
have consistently assigned all points to the same class, hence the identification of the
interface was not possible. After the classifiers and clusters have been trained on the
contrast matching the one in the profiles they were predicting on the accuracy increased
immensely. This made detection of the interfaces possible and in many cases accurate.
Normalizing and applying the decimal logarithm to the data did not mitigate this issue
sufficiently. Potentially this could be solved with bigger data sets, containing profiles
with more diverse contrasts in resistivity. But it will require additional investigation.
An alternative would be to prepare a synthetic dataset for training based on the
available knowledge about the subsurface structure in the surveyed area. It can be
based on other geological survey conducted in the region or on results from borehole
logging.

5-2 Applicability

Even though clustering and classification have some significant limitations, this study
showed that there is a lot of potential in applying ML techniques to ERT monitoring
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problems. It is possible to make reliable predictions with both classifiers and clusters.
However the experiments conclude that clusters and classifiers have to be trained for
each monitored area separately and that some prior knowledge about the geology and
the subsurface situation is required.

5-3 Outlook

The results and conclusions from this study show that ML should be applicable to ERT
data to automatically extract valuable information over space and time. However there
is still a lot of potential for improvements. Apart from this there remain many things
that need more detailed investigation.
First and the most obvious direction for further investigation and research is prediction
on profiles with more complex geology. Classifiers are partially capable of making use
of spatial information about the samples (in form of the depth Y and sensitivity SEN).
Will the importance of those features increase with flat but not horizontal layers? A
hint on this can be found in experiments with real measurements that include slopes
as interfaces. The experiments with real measurements were run with profiles that
showed a slope oriented towards the left end of the profile. Otherwise the surface and
interface were flat (following the surface slope). This is still a very simple topography
but it shows that clusters and classifiers can work correctly and deliver good results
with profiles that violate the assumptions with which the training profiles were created.
What requires further investigation is how strongly the topography and subsurface
structure can differ between training and prediction profiles. Another interesting
question is whether clusters and classifiers can include the Y and SEN features in their
prediction and if it can improve the accuracy of prediction performed on profiles with
complex structure and topography if trained on profiles with matching complexity.

Another interesting area that could be investigated is the performance of ML techniques
with profiles with more interfaces. There are many questions that could be asked
and answered in regard to them. How should the classifiers be trained? If there are
different contrasts within one profile should they be presented to classifiers in form of
examples with single interface or can they be combined? Throughout this project some
experiments were run with two interfaces in the subsurface but due to the limited time
they have been abandoned in favour of more detailed investigation of simpler problems
with only one interface. Introducing more interfaces in the subsurface not only increases
the complexity of the geology, but also increases the number of parameters and variables
that need to be investigated to fully understand the capabilities of ML to predict on
those kind of profiles.

Another area of potential improvements is related to the potential of generalization of
cluster and classifiers. In the experiments performed during this project the biggest
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limitation was related to the contrast of resistivities. Both clusters and classifiers seem
to struggle making predictions on profiles with resistivity contrast that they were not
trained to recognize. The capability of generalizing the clusters and classifiers to predict
on wider range of contrasts has to be investigated. Considering how some of them work
(for example KNN) exposure to more diverse contrast in the training phase should
mitigate this problem. On the other hand, presenting classifiers with too much diversity
may create confusion and decrease their performance. The exact impact of the size
and diversity of the training dataset has to be investigated further. Alternatively the
training can be executed specifically for each monitored area focusing on the resistivity
contrasts characteristic to that area. The needed prior knowledge can be extracted
from borehole or other methods that will likely be applied in order to validate the results.

Generally, the clusters and classifiers have proven to be capable of detecting the interfaces
between layers of different resistivities. The accuracy varies and there is a lot of space for
improvement but the results are promising. There is more research and testing required.
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Günther, T., Rücker, C., & Spitzer, K. (2006a). Three-dimensional modelling and inver-
sion of DC resistivity data incorporating topography - I. Modeling. Geophysical
Journal International, 166, 506–517.

Günther, T., Rücker, C., & Spitzer, K. (2006b). Three-dimensional modelling and inver-
sion of DC resistivity data incorporating topography - II. Inversion. Geophysical
Journal International, 166, 506–517.

Hartigan, J. A. (1975). Clustering algorithms [by] John A. Hartigan [Type: Book]. Wiley
New York.

Highland, L., & Bobrowsky, P. (2008). The Landslide Handbook – A Guide to Under-
standing Landslides [Publication Title: US Geological Survey Circular].

Huang, J., Zheng, J., Gao, S., Liu, W., & Lin, J. (2020). Grid text classification method
based on DNN neural network. MATEC Web of Conferences, 309, 03016. https:
//doi.org/10.1051/matecconf/202030903016

Hubbard, Y. R. S. S. (2005). Hydrogeophysics. Springer.
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment [Publisher: IEEE COM-

PUTER SOC]. Computing in Science & Engineering, 9 (3), 90–95. https://doi.
org/10.1109/MCSE.2007.55

Igel, H. (2016). Computational Seismology: A Practical Introduction. https://doi.org/
10.1093/acprof:oso/9780198717409.001.0001

Jiang, C., Igel, J., Dlugosch, R., Müller-Petke, M., Günther, T., Helms, J., Lang, J., &
Winsemann, J. (2020). Magnetic resonance tomography constrained by ground-
penetrating radar for improved hydrogeophysical characterization. Geophysics,
85 (6), JM13–JM26. https://doi.org/10.1190/geo2020-0052.1

Jivani, A., Shah, K., Koul, S., & Naik, V. (2016). The Adept K-Nearest Neighbour
Algorithm - An optimization to the Conventional K-Nearest Neighbour Algo-
rithm. Transactions on Machine Learning and Artificial Intelligence, 4. https:
//doi.org/10.14738/tmlai.41.1876

Joblib-Development-Team. (2020). Joblib: Running Python functions as pipeline jobs.
https://joblib.readthedocs.io/

Jongmans, D., & Garambois, S. (2007). Geophysical investigation of landslides: A review.
Bulletin de la Societe Geologique de France, 178. https : //doi . org/10 .2113/
gssgfbull.178.2.101

Lech, M., Skutnik, Z., Bajda, M., & Markowska-Lech, K. (2020). Applications of Elec-
trical Resistivity Surveys in Solving Selected Geotechnical and Environmental
Problems. Applied Sciences, 10 (7). https://doi.org/10.3390/app10072263

Maurer, S., Hansruedi; Friedel. (2006). Outer-space sensitivities in geoelectrical tomog-
raphy. Geophysics, 71 (3), 93–96. https://doi.org/10.1190/1.2194891G93

Milenkovic, S., Jelisavac, B., Vujanic, V., & Jotic, M. (2013). Monitoring of the “Razanj”
Landslide in Serbia. 2, 25–31. https://doi.org/10.1007/978-3-642-31445-2-3

Müller, A. C., & Guido, S. (2017). Machine Learning with Python: A Guide For Data
Scientists. O’Reilly Media Inc.

Occhiena, C., Pirulli, M., & Scavia, C. (2013). Application of a Multiplet-Location Cou-
pled Technique to Microseismic Data for Identification of Rock Slope Active Sur-

August 6, 2021

https://doi.org/10.1051/matecconf/202030903016
https://doi.org/10.1051/matecconf/202030903016
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1093/acprof:oso/9780198717409.001.0001
https://doi.org/10.1093/acprof:oso/9780198717409.001.0001
https://doi.org/10.1190/geo2020-0052.1
https://doi.org/10.14738/tmlai.41.1876
https://doi.org/10.14738/tmlai.41.1876
https://joblib.readthedocs.io/
https://doi.org/10.2113/gssgfbull.178.2.101
https://doi.org/10.2113/gssgfbull.178.2.101
https://doi.org/10.3390/app10072263
https://doi.org/10.1190/1.2194891 G93
https://doi.org/10.1007/978-3-642-31445-2-3


84 BIBLIOGRAPHY

faces [ISBN: 978-3-642-31444-5]. Landslide Science and Practice: Early Warning,
Instrumentation and Monitoring, 2, 101–107. https://doi.org/10.1007/978-3-
642-31445-2-13

Pandey, L. M., Shukla, S., & Habibi, D. (2015). Electrical resistivity of sandy soil.
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