
Master of Science Thesis

Aero-elastic analysis of a large airborne wind
turbine

Prediction of divergence, control reversal and effectiveness, and
flutter of a tethered wing

J. Wijnja B.Sc.

December 18, 2013

Faculty of Aerospace Engineering · Delft University of Technology





Aero-elastic analysis of a large airborne wind
turbine

Prediction of divergence, control reversal and effectiveness, and
flutter of a tethered wing

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

J. Wijnja B.Sc.

December 18, 2013

Faculty of Aerospace Engineering · Delft University of Technology



Copyright© J. Wijnja B.Sc.
All rights reserved.



Delft University Of Technology
Department Of

Aerodynamics & Wind Energy

The undersigned hereby certify that they have read and recommend to the Faculty of Aerospace Engi-
neering for acceptance a thesis entitled “Aero-elastic analysis of a large airborne wind turbine” by J.
Wijnja B.Sc. in partial fulfillment of the requirements for the degree of Master of Science.

Dated: December 18, 2013

Head of Wind Energy section:
Prof.dr. G.J.W. van Bussel

Supervisor TU Delft:
Dr.-Ing. R. Schmehl

Supervisor TU Delft:
Dr.ir. R. De Breuker

Chief Technical Engineer Google[x] Makani Power:
D. Vander Lind B.Sc.

Supervisor Google[x] Makani Power:
Dr. K. Jensen





Abstract

The objective of this research is the simulation of aero-elastic behaviour of Makani’s large airborne wind
turbine. This tethered wing operates in crosswind motion, and is equipped with on-board wind turbines.
The tether-bridle system attaches the energy generating system to the ground station. It is likely that the
structure of this, 28m span, carbon fibre, high aspect ratio wing, will deform considerable under aerody-
namic loads. In the worst case scenario, static and/or dynamic aero-elastic effects cause destructive failure.

The aero-elastic simulation program ASWING is used for the analysis. This program uses a fully non-
linear Bernoulli-Euler beam representation for structural modelling in combination with a lifting line-
representation for aerodynamic modelling. Linearised unsteady analyses are derived for the Eigenmode
analysis. Since the tether-bridle system cannot be modelled in the current program version, an additional,
ASWING compatible, module is written. The tether is modelled as a spring with user defined characteris-
tics for the spring stiffness, mass and aerodynamic drag area. The bridle lines are assumed massless and
perfectly rigid. The tether and bridle forces are dependent on the wing flexibility, and wing position and
orientation. The tether-bridle module is verified against analytical expressions and by using MATLAB. A
wind tunnel test validates the dynamic aero-elastic responses.

For the Makani wing, divergence, aileron effectiveness and reversal, and flutter behaviour is analysed.
Divergence and aileron reversal are no critical modes. However, aileron effectiveness is critical. The re-
quirements state a minimum aileron effectiveness of 75% at 95m/s flight speed. The program calculated
this minimum aileron effectiveness at 92m/s flight speed. These problems can be resolved by a 10% in-
crease in the wing’s torsional stiffness or a 10% increase of lift force increment with aileron deflection. The
Eigenmode results showed a critical flutter mode at flight speeds higher than 90m/s, whereas the design
flutter speed is equal to 120m/s. This susceptibility to flutter can be resolved by (1) a 50% increase in
torsional stiffness, (2) a 50% increase in in-plane-bending stiffness or (3) a 10cm upstream shift in center
of gravity. A 50cm upstream shift of bridle-wing attachment location increases the flutter speed to 110m/s.

It was found that the effects, of tether aerodynamic drag and tether weight, are negligible for the aero-elastic
behaviour. Also, in the analysis for the Makani wing, the tether spring constant does not contribute to the
static and dynamic aero-elastic effects. The position of the bridle-wing attachments influences the twist
angles and tip deflections of the wing. These results are useful in case maximum twist angles and/or wing
tip deflections are critical. For the dynamic aero-elastic behaviour the wing-bridle attachment positions
can be adjusted to decrease the susceptibility to flutter.
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Chapter 1

Introduction

This Master’s thesis is a collaboration between academia and industry with the aim of developing an aero-
elastic model for a large scale airborne wind turbine. From the academic side the faculty aerospace engi-
neering of the Delft University of Technology (TU Delft) is involved and from the industry side Google[x]
Makani Power is involved. Google[x] Makani Power is a pioneer in the airborne wind energy sector. It
is the goal of this introductory chapter to introduce the airborne wind energy (AWE) concept and to set-
up a framework for the Master’s thesis. In section 1.1 the thesis relevance is given. Section 1.2 aims to
briefly introduce the airborne wind energy concept and to list the key research and development players.
Special attention is given for the TU Delft and Makani Power AWE concept. Many different aerodynamic
and structural simulations programs are available for aero-elastic simulation. In section 1.3 a deliberate
choice is made for the optimum aero-elastic simulation program for this thesis. Finally the main research
question is defined in section 1.4, which also outlines the structure of the report.

1.1 Thesis relevance

The global demand for electricity has increased by 80% over the last 20 years. And is expected to rise
by an additional 76% in the coming 20 years (U.S. Department of Energy; International Energy Agency).
The energy reserves from oil, coal and gas are 35, 107 and 37 years, respectively (Shahriar and Erkan,
2009). The rising energy demand in combination with the depleting fossil fuels make sustainable energy
sources a necessity already in the near future. With increasing scarcity of fossil reserves, prices increase
and sustainable energy resources become more attractive for consumers. Whereas conventional wind tur-
bines are reaching their structural and economic limits, a new technology is rising: airborne wind energy.
Airborne wind turbines (AWTs) are a promising innovative technology in the field of sustainable energy,
which could be economically advantageous with respect to other sustainable energy resources (Zillmann
and Hach, 2013).

1.2 Airborne wind energy

Airborne wind energy systems harvest winds at higher altitudes, which generally contain higher energy
density winds (Archer, 2013). In comparison with conventional horizontal axis wind turbines, the tower is
substituted by a tether. The wing flies crosswind and mimics the highly efficient outer part of the turbine
blades, see Figure 1.1. Generally bridles are attached at several locations on the wing and come together at
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the tether-bridle attachment to connect the kite with the tether.

Figure 1.1: Windturbine versus airborne wind turbine (Diehl, 2013)

The AWE concept is nothing new; already in 1820s, the transportation with kite systems was explored and
a kite coach was developed. This is a small vehicle powered by a kite (Pocock, 1827). Next to land trans-
port, kite systems were applied to transport ships overseas. In the early 1900s kite research was booming
and the first man lifting kites were developed. In these decades at the dawn of air transportation technology,
kites were a serious competitor for airplanes. Since powered aircraft are more versatile and independent
of wind, the kite systems lost this competition and the research stagnated (Breukels, 2010; Ahrens et al.,
2013).

Serious interest in airborne wind energy arose again in 1980 with a publication of Loyd (1980), which
describes the concept of kites for large scale wind energy production. A C-5A aircraft is simulated as a
kite to demonstrate a theoretical power output of 6.7MW. Loyd’s theory was further developed by several
academics, and currently principles of crosswind power generation are well understood (Argatov et al.,
2009; Breukels, 2010; Williams et al., 2008).

Airborne wind energy uses a flying vehicle to extract energy from air. The tether allows for higher altitudes
compared to conventional wind turbines. The kinetic energy of a certain mass of air is equal to:

Ekin =

∫
1
2

v2
wdm =

∫
1
2

v2
wd(Avwρt) =

∫
1
2

Aρv3
wdt (1.1)

In this equation Ekin is the kinetic energy, dm the air mass, vw the wind velocity, ρ the air density, A the
area and t the time. The associated wind power is equal to the time rate of change of this kinetic energy.

P =
dEkin

dt
=

1
2

Aρv3
w (1.2)

This equation illustrates that wind velocity is a very important parameter, because wind power is propor-
tional to its cube. Generally, wind velocity is positively related to altitude as shown in Figures 1.2a and
1.2b. These Figures show the 20 year average wind profile for De Bild, the Netherlands. This wind profile
differs from location to location, but generally, wind velocity increases with altitude, up to a certain limit.
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Figure 1.2: 20 year average wind velocity versus altitude, retrieved from KNMI station De Bild, the Nether-
lands (Ockels et al., 2004)

1.2.1 AWE concepts

Ahrens et al. (2013) give an overview of the field of airborne wind energy. In 2000 about 3 institutions
were actively involved in AWE. Over the following years significant interest in AWE arose and as of 2013
about 50 institutions are actively involved in AWE. Most of the research and development activities are
concentrated in Europe and Northern America as illustrated in Figure 1.3. From the 50 AWE institutions,
a classification in on-board power generation and ground-based power generation is made. These concepts
will be explained next.

On-board power generation

Most on-board power generating systems apply an energy generating system, which is is tethered to the
ground. One way to generate power is by attaching wind turbines to a crosswind flying kite to extract wind
energy from the high relative air velocity. The energy is transmitted to the ground station by a high voltage
power line. Google[x] Makani Power uses this concept, which is explained in more detail in section 1.2.3.
Another technique that uses on-board power generation relies on lighter than air material to lift a rotor or
another device to generate power in the medium to high altitude winds (Diehl, 2013). These are almost all
‘non-crosswind’ systems.

Ground-based power generation

Most ground-based power generation systems are based on a cross-wind flying kite that creates tether
tension to unroll the tether from a drum to drive the generator at the ground. For continuous operation
a so-called ‘pumping cycle’ is used. In the reel-out phase the kite is flying at its optimum lift and drag
coefficient to create maximum tether force. This high tether force drives the drum and creates a significant
amount of power. In the reel-in phase the kite is de-powered to create a low tether force. Therefore, the
motor reels in using a fraction of the energy that was extracted in the reel-out phase. A battery network is
used to buffer the energy over the cycles.

Ground-based power generation concepts have been devised with with rigid or flexible wings, such as
the TU Delft concept explained in section 1.2.2. Many flexible kite systems exist, however Ahrens et al.
(2013) lists few rigid wing ground-based power generation concepts. AmpyxPower is probably in the
furthest state of development. AmpyxPower deploys a 5.5m span plane with an aspect ratio of 10. This
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Figure 1.3: Airborne wind energy institutions worldwide (Ahrens et al., 2013)

plane could possibly feature similar aero-elastic behaviour with respect to the Makani wing. Agten (2012)
and Bontekoe (2010) analyse the aerodynamics and launch and retrieval system, but no documentation is
present about aero-elastic simulation programs developed by AmpyxPower.

1.2.2 TU Delft pumping cycle power system

Meijaard et al. (1999) describe the laddermill concept with rigid wings. In a subsequent paper, this concept
is explored for kites and Ockels (2001) states A laddermill is a self-supporting system that consists of an
endless cable connected to a series of high-lifting wings or kites moving up in a linear fashion, combined
with a series of low-lifting wings or kites going down. The cable drives an energy generator placed on the
ground. The concept is elaborated further and it is proposed, on the basis of theoretical analysis, that a sin-
gle standalone laddermill could generate 50MW (Ockels et al., 2004). This would be equal to 10 currently
available large offshore wind turbines with 120m rotor diameter. This potential in energy production leads
to the installation of the kite lab at the faculty aerospace engineering and the set-up of a dedicated research
group for kite power. In 2012, the team consists of 20-25 staff members and students.

However, the laddermill concept relies on many kites and faces many technical challenges. Hence, research
is currently focused on single kite systems to establish a body of knowledge about controlled and reliable
operation of kites for energy generation. Since January 2010, TU Delft AWE uses a 25m2, 20kW tech-
demonstrator, which is fully instrumented and with cameras mounted at several positions. This kite is
used for experimental purposes and validating theoretical results with measurement data. In June 2010, the
automatic generation of the power generating kite was demonstrated over extended periods of time (van
der Vlugt et al., 2013).



1.2 Airborne wind energy 5

1.2.3 Makani Power airborne wind turbine

This section describes a brief history of Makani Power followed by an introduction into the working prin-
ciple and development plan.

Company history

Makani Power was founded in 2006 by Saul Griffith, Corwin Harham and Don Montague. The first 6
years of development were supported by Google and the U.S. Department of Energy. From 2006 to 2009
the concept of a soft textile kite powering a generator on the ground was used. In 2009 a revolutionary
change of concept took place; from a soft kite to a rigid wing with on-board power generation. In 2010
the first wing with on-board power generation was built in combination with autonomous control. In 2011
Makani designed a new airframe, which was the first wing to launch and land from a perch. In 2012 a
full autonomous flight was performed including launching and landing. The kite took off from a perch,
hovered while the tether reeled out, transitioned to a crosswind flight mode, an finally transitioned back to
a hovering flight mode and landed. In 2013 Google[x] acquired Makani Power (Makani Power, 2012a).

Working principle and development plan

The working principle of Makani’s current airborne wind turbine is similar to the TU Delft AWE concept
in that both systems harvest high energy dense winds from high altitudes with the absence of a tower.
However, the TU Delft pumping cycle system, is based on ground-based power generation and a flexible
kite, whereas the Makani principle is based on on-board power generation and a rigid wing. Makani’s
current AWT prototype consists of a tethered wing outfitted with wind turbines as shown in Figure 1.4.

Figure 1.4: Makani AWT (Makani Power, 2012b)

This AWT and a conventional wind turbine operate on the same aerodynamic principles. A wind turbine
rotates because the airflow through the blades creates local lift forces that make the blades turn. The lift
forces created by the shape of the wind turbine blade can be broken into two components: one that rotates
the blades and one that pushes against the tower. The shape of the AWT’s wing creates lift in a similar way
as shown in Figure 1.5 (Vander Lind, 2013c).

By tethering the wing to the ground it becomes a kite. The aerodynamic forces are balanced by the tether.
The traction force at the tether is not used to generate power, but allows fast crosswind flight. Energy is
extracted from the wind using small on-board turbines driving high-speed, direct drive generators. The
electricity is transmitted to the ground via a conducting tether, where it is fed into the grid (Makani Power,
2012c).
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Figure 1.5: Makani’s aerodynamic principle (Vander Lind, 2013c). L is the lift force, FP the force used for
power generation, D the drag force, FT the tether force, Va the apparent wind velocity, Vw the wind
velocity and Vk the flight velocity of the wing/kite.

The on-board avionics computer guides the wing along a circular path. Due to its speed, the tip of conven-
tional wind turbine blades is the most effective part. In some cases the last 25% of the blade is responsible
for 75% of the energy generated. The Makani wing mimics the path and speed of these blade tips, captur-
ing all of the benefits using only a fraction of the materials. At scale, the entire span of the Makani wing
operates at the speed of the aerodynamically effective tip of the wind turbine.

Next to the generation of wind energy the on-board turbines at the blade serve a second purpose in the
launch stage. They act as propellers to launch the AWT using energy from the grid. When reaching the
target altitude, the wing is operated crosswind in a circular pattern. The turbines now act as a wind turbine
and energy is created by driving a generator. To land the system, the wing is transitioned into hover mode,
by using the turbines as propellers, and slowly descended to the perch.

Currently, Makani has developed ‘Wing7’, an 8m wing span prototype with 30kW rated power. Makani
aims to scale this system to a 600kW system within the next two years. This carbon fibre M600 has a full
rated power wind speed vrated = 11.5m/s, will operate at altitudes 140 − 310m, has a wing span of about
b = 28m, a characteristic chord c̄ = 1.30m and a lift to weight ratio of 10.

The 8m span Wing7 did not experience any serious aero-elastic effects. However, by increasing the span
width and the aspect ratio, the susceptible for static and dynamic aero-elastic effects is increased. In the
worst case scenario, this will lead to destructive failure. By including the aero-elastic analysis, the struc-
tural changes can be implemented in an early design stage.

To determine the most appropriate aero-elastic design method, several methods and programs are analysed
in the next section.

1.3 Aero-elasticity simulation models

Aero-elastic behaviour of structures can be modelled by a combination of an aerodynamic model and a
structural deformation model. Consider an arbitrary non-rigid body in an airflow. The airflow over the
body creates certain distributed aerodynamic forces. These distributed loads deform the body. Subse-
quently, the aerodynamic model calculates the distributed forces over the deformed body, which in turn,
again, deform the body. The coupling between the aerodynamic model and the structural deformations
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model is a challenging problem and generally referred to as fluid-structure interaction (FSI).

Three different FSI approaches are considered: (1) ANSYS: full Finite Element Methods (FEM)-Computational
Fluid Dynamics (CFD) coupling, (2) NASTRAN: FEM coupled to a more simple aerodynamic model with
respect to CFD and (3) ASWING: structural beam representation coupled to a more simple aerodynamic
model with respect to CFD.

In the subsonic flow regime, NASTRAN combines the doublet-lattice subsonic lifting surface theory with
subsonic wing body interference theory. For supersonic speeds the Mach Box method, Piston Theory and
the ZONA51 are used to determine aerodynamic forces. NATRAN’s aero-elastic module is capable of
static aero-elastic analysis as well as flutter analysis (MSC, 2004).

ASWING, is especially developed for static and dynamic aircraft aero-elastic analysis. An integrated
aerodynamic and structural simulation code allows for arbitrary large deformation. The structural analysis
consists of non-linear Bernoulli-Euler beams for fuselage and surface structures. The aerodynamic analysis
is performed with a lifting line model with wing-aligned trailing vorticity, a Prandtl-Glauert compressibil-
ity transformation and local-stall lift coefficient (Drela, 1999).

ANSYS’ main advantage with respect to NASTRAN is its increased accuracy in aerodynamic modelling
using a CFD method. The main disadvantage of CFD with respect to more simplified aerodynamic models
is its high computational time. In this conceptual/preliminary design stage, a low computational time is
more important then increased accuracy and hence CFD/ANSYS is not the preferred option. The main
advantage of NASTRAN with respect to ASWING is its increased accuracy in both aerodynamic and
structural modelling. Additionally the aerodynamic modelling is more versatile with its supersonic model.
ASWING’s main advantage with respect to NASTRAN is its lower computational time, due to a more
simplified approach in both aerodynamic and structural modelling. Additionally ASWING comes with its
source code, which could possibly be adjusted for tethered flight.

In summary: both NASTRAN and ASWING could be used for effective static and dynamic aero-elastic
analysis. However in this early design stage a low computational time is more beneficial than high accu-
racy. Therefore ASWING is most beneficial for this design stage. With low computational time the design
space can be explored quickly and serve as the basis for subsequent detailed design at with NASTRAN
could be the preferred analysis program.

1.4 Thesis goal and structure

The M600 is a relatively large, lightweight and high aspect ratio wing. Wing such as these are notorious
for their aero-elastic susceptibility. In the worst case, static and/or dynamic aero-elasticity effects cause de-
structive failure and hence an aero-elastic analysis is critical in the design process. Currently no aero-elastic
module for rigid airborne wind turbines is available. This leads to the goal of this graduation research:

‘Design an aero-elastic module for rigid airborne wind turbines and analyse the M600 aero-elastic
design boundaries’

In this preliminary design stage, ASWING is the most suitable aero-elastic program to simulate aero-
elastic behaviour of rigid tethered wings. The program combines low computational time with reasonable
accuracy. Makani’s M600 will be main subject of this thesis. However it is the aim of this research to
create a more generic aero-elasticity program, which is suitable for tethered flight in general. A more
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generic aero-elasticity program could be used in the future development of the Makani wing and other
rigid airborne wind turbines, such as AmpyxPower. To accomplish the main research goal, four steps are
taken:

1. To analyse the M600’s static and dynamic aero-elastic behaviour, first a proper understanding of
ASWING is built by simulating benchmark models and testing the output. The M600 is under
constant development. Therefore the other design scripts (aerodynamic shape, structural stiffnesses,
weight distribution, etc.) should be linked to ASWING.

2. Next a mechanism is developed to simulate the tether and bridle lines,

3. This tether-bridle model should be verified and validated with wind tunnel tests,

4. Finally the parameter space is explored to determine the aero-elastic design boundaries of

This report is structured to answer the research question in a consecutive manner. Each part of the report
aims to finalize one the above mentioned steps.

• In part I; first a description of ASWING is given in chapter 2, next the inputs are described in chapter
3 and finally, the output is presented and verified in chapter 4. From these chapters follow ASWING’s
capabilities and limitations and a deliberate decision can be made on the method to implement the
tether-bridle system.

• In part II; the tether-bridle module is explained in chapter 5. From this tether-bridle system the
Jacobian entries follow, which are described in chapter 6. Finally in chapter 7 the tether induced
aerodynamic and gravitational loads are calculated.

• In part III; the tether-bridle module is verified in chapter 8 and validated with wind tunnel data in
chapter 9.

• In part IV; in chapter 10 the modified ASWING version is used to analyse the M600’s static and
dynamic aero-elastic behaviour.

• Finally in chapter 11 the conclusions and recommendations for future research are given.
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Chapter 2

Description ASWING 5.96

ASWING is an aero-elastic simulation code written in FORTRAN77 which applies a fully non-linear
Bernoulli-Euler beam representation to model structural deformations in combination with a lifting line-
representation to model the aerodynamic surface characteristics. Linearised unsteady analyses are derived
for the Eigenmode analysis. It is the goal of this chapter to briefly describe ASWING 5.96 and focus on the
functionalities which could be useful for the modelling of the tether-bridle system. For a complete descrip-
tion, see Drela (2009) and Drela (2008a). In section 2.1 equilibrium flight is described and in section 2.2
the Eigenmode computational method is introduced. Finally in section 2.3 the conclusions of this chapter
are drawn.

2.1 Equilibrium flight

In this section first the main program structure is presented followed by a brief description of its main
functionalities: the reference frames, the aerodynamic principles and the structural equations. A brief
description of the strut definition is given as well, because, at first, the mechanical behaviour of a strut
seems similar to a tether-bridle system.

2.1.1 Program structure

This section describes the relevant user choices and program units (subroutines) to determine equilibrium
flight. In this state the static aero-elastic effects such as divergence and control reversal and effectiveness
can be analysed. In a subsequent analysis, this equilibrium is used for flutter analysis.

After start of the program, the user defined data for an aircraft (xxx.asw) is loaded into the system. This
includes the aircraft geometrical, structural and aerodynamic parameters. Next, the atmospheric conditions
are set and nodes are distributed which finalizes the zero load state definition. The state of the aircraft at
which no external forces are applied. The geometrical, structural and aerodynamic parameters can be ad-
justed within the program to redefine the aircraft properties. The flow chart of this program part and the
subsequent parts is given in Figure 2.1. Several different menus can be entered such as the plot routine,
OPER menu at which the operating points can be calculated, MODE menu at which the eigenmodes can
be calculated, the BODE menu at which the frequency responses can be calculated and the EDIT menu at

11
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Figure 2.1: Flowchart ASWING for equilibrium solutions

which the structural distributions can be edited.

Assume the operational menu (OPER) is entered at which the constraints and flight conditions for each
operating point can be defined. The structural solution is initialized and the Newton system of discrete
equations in set-up followed by the Newton iterations to calculate a state (converged) solution. These
Newton iterations include the calculations of velocities and accelerations, the set-up of loads and moment
due to struts, joints and engines, aerodynamic loads and moments, gravitational loads and moment and
impose kinematic constraints due to grounds.

In case the solution has converged the operating point conditions are given in tabular form and standard
three plots emerge: (1) the twist angle distribution for all surface beams (2) the lift coefficient distribution
for all surface beam and (3) the lift distribution for all surface beams. The user can request other plots for
all beam elements such as the force and moment distributions, bending plots and curvature strain plots.

2.1.2 Reference frames

Different reference frames are applied at many subroutines to determine the equilibrium solution and its
use will become more clear in the remaining of this Master’s thesis when the tether-bridle system is added
to ASWING.

Three different reference frames are used in ASWING, the inertial reference frame is denoted as ~R =

{X Y Z}T , the Cartesian body reference frame ~r = {x y z}T and a local beam-element ~ri = {c s n}T . The
reference frames are visualized in Figure 2.2.

The transformation from xyz-body axes to the Earth reference frame is via Euler angles, ~Θ = {Φ Θ Ψ}T

with transformation tensor ¯̄TE as:
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Figure 2.2: Reference frames as used in ASWING (Drela, 2008a)

¯̄TE =

 cos Ψ sin Ψ 0
− sin Ψ cos Ψ 0

0 0 1


 cos Θ 0 sin Θ

0 1 0
− sin Θ 0 cos Θ


 1 0 0

0 cos Φ sin Φ

0 − sin Φ cos Φ

 (2.1)

¯̄TE =

 cos Θ cos Ψ − sin Φ sin Θ cos Ψ + cos Φ sin Ψ cos Φ sin Θ cos Ψ + sin Φ sin Ψ

− cos Θ sin Ψ sin Φ sin Θ sin Ψ + cos Φ cos Ψ − cos Φ sin Θ sin Ψ + sin Φ cos Ψ

− sin Θ − sin Φ cos Θ cos Φ cos Θ

 (2.2)

The transformation from the xyz-airplane body axes to the local csn beam element axis is via Euler angles
~θi = {ϕ ϑ ψ}T .

¯̄T =

 cosϑ 0 − sinϑ
0 1 0

sinϑ 0 cosϑ


 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


 1 0 0

0 cosϕ sinϕ
0 − sinϕ cosϕ

 (2.3)

¯̄T =

 cosϑ cosψ cosϑ sinψ cosϕ + sinϑ sinϕ cosϑ sinψ sinϕ − sinϑ cosϕ
− sinψ cosψ cosϕ cosψ sinϕ

sinϑ cosψ sinϑ sinψ cosϕ − cosϑ sinϕ sinϑ sinψ sinϕ + cosϑ cosϕ

 (2.4)

The beam curvature tensor ¯̄κ is related to the rate of change of transformation tensor ¯̄T and this tensor is
singular at sweep angles ψ = ±90◦. For surface beams 90◦ sweep angles are unlikely, but fuselage beams
are generally aligned with the x axis. This problem is eliminated by switching the order of the ϕ and ψ
rotations.
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2.1.3 Aerodynamic principles

ASWING’s aerodynamic model is based on a lifting line model, which employs wind-aligned trailing vor-
ticity, a Prandtl-Glauert compressibility transformation and local-stall lift coefficients. In this section the
aerodynamic principles are briefly introduced. For a more detailed description, see Drela (2009) and Drela
(2008a).

The aerodynamic lift vector ( ~flift) for surface beams is determined from the Kutta-Joukowsky theorem:

~flift = ρΓ~V × ŝ (2.5)

In this equation ρ is density, Γ is the local circulation and ~V the local velocity relative to the beam section
at location ~r:

~V
(
~r
)

= ~V∞ − ~Ω × ~r + ~Vind
(
~r
)

+ ~Vgust
(
~r
)

(2.6)

In this equation ~V∞ is the undisturbed flight velocity, ~Ω is the rotational velocity at location ~r, ~Vind is the
induced velocity and ~Vgust the gust velocity.

The aerodynamic drag force vector is a combination of the friction and pressure drag components:

~fdrag =
1
2
ρ
∣∣∣∣~V ∣∣∣∣ ~Vc̄cd, f +

1
2
ρ
∣∣∣∣~V⊥∣∣∣∣ ~V⊥c̄cd, p + 2ρ

~V⊥∣∣∣∣~V⊥∣∣∣∣
(
~V · n̂

)2

c.p.
c̄ (2.7)

In this equation c̄ is the characteristic chord, cd, f is the friction drag coefficient, cd, p is the pressure drag
coefficient, ~V⊥ is the velocity perpendicular to the wing’s spanwise axis and n̂ is the normalized n.

The aerodynamic profile moment vector is calculated as:

~mlift =
(
c̄/4 − ~x0

)
ĉ × ~flift +

1
2
ρ
∣∣∣∣~V⊥∣∣∣∣2 c̄2cm ŝ (2.8)

In this equation ~mlift is the moment due to the lift force, ~x0 is the chordwise location of the csn origin, cm is
the moment coefficient, and ĉ and ŝ are respectively the normalized c and s.

The moments due to friction forces are generally negligible (Drela, 2009).

2.1.4 Structural equations

The ASWING structural equations are based on a fully non-linear Bernouilli-Euler beam representation
for all surface and fuselage structures. This section introduces the basic structural equations of this beam
theory.

The total extensional strain at arbitrary location c, n is:

ε = εs + c (κn − κn0) − n (κc − κc0) (2.9)
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In this equation κ is the curvature and a subscript ()0 denotes the unloaded beam. The relations of local
forces ( ~Fi) and moments ( ~Mi) with beam strains (γ and ε) and curvatures are now determined with the
stiffness matrix:



Fc

Fs

Fn

Mc

Ms

Mn


=



ε11 ε12 ε13 ε14 ε15 ε16
· ε22 ε23 ε24 ε25 ε26
· · ε33 ε34 ε35 ε36

· · · ε44 ε45 ε46
· · · · ε55 ε56
· · · · · ε66





γc

εs

γn

κc − κc0
κs − κs0
κn − κn0


(2.10)

Each entry of the stiffness matrix ε denotes a stiffness. The top 3 rows of the stiffness matrix are assumed
the restricted form written in terms of shear stiffness (GKc and GKn), extensional stiffness (EA), elastic
axis (cea and nea) and the tensile axis (cta and nta):



ε11 ε12 ε13 ε14 ε15 ε16
· ε22 ε23 ε24 ε25 ε26
· · ε33 ε34 ε35 ε36

· · · ε44 ε45 ε46
· · · · ε55 ε56
· · · · · ε66


→



GKc 0 0 0 GKcnea 0
· EA 0 −EAnta 0 EActa

· · GKn 0 −GKncea 0
· · · ε44 ε45 ε46
· · · · ε55 ε56
· · · · · ε66


(2.11)

The lower right quadrant of the stiffness matrix is defined as a function of the bending stiffness moment of
inertia (EIcc and EInn), the bending stiffness product of inertia (EIcn), the bending/torsion coupling stiffness
(EIcs and EIsn) and the torsional stiffness (GJ):

 ¯̄E

 =

 EIcc EIcs EIcn

· GJ EIsn

· · EInn

 =

 ε44 − ε22 − n2
ta ε45 ε46 + ε22ctanta

· ε55 − ε11n2
ea − ε33c2

ea ε56
· · ε66 − ε22c2

ta


(2.12)

With equation 2.11 and 2.12 equation 2.10 can be rewritten as:


γc

εs

γn

 =


Fc/GKc

Fs/EA
Fn/GKn

 +

 0 −nea 0
nta 0 −cta

0 cea 0


 ¯̄E




M′c
M′s
M′n

 (2.13)


κc − κc0
κs − κs0
κn − κn0

 =

 ¯̄E




M′c
M′s
M′n

 (2.14)

In this equation ~M′ is the moment translated to the tension and elastic axis:


M′c
M′s
M′n

 =


Mc

Ms

Mn

 +

 0 nta 0
−nea 0 cea

0 −cta 0




Fc

Fs

Fn

 (2.15)
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Figure 2.3: Strut as used in ASWING (Drela, 2008a)

2.1.5 Struts

The ASWING strut is assumed perfectly flexible in bending, but has a finite extensional stiffness, which
allows the strut to change its length in response to extensional or compressive loads. One end is attached at
the aircraft, whereas the other end is fixed in the aircraft reference frame. A representation of an ASWING
strut connection is given in Figure 2.3.

The strut forces and moments are determined as:

∆ ~Fst = EAst


∣∣∣∣~Lst

∣∣∣∣∣∣∣∣~Lst

∣∣∣∣
0

− 1


∣∣∣∣~Lst

∣∣∣∣∣∣∣∣~Lst

∣∣∣∣
0

(2.16)

∆ ~Mst = ∆~rp × ∆ ~Fst (2.17)

In these equation EAst is the strut extensional stiffness,
∣∣∣∣~Lst

∣∣∣∣ is the strut length,
∣∣∣∣~Lst

∣∣∣∣
0

is the strut zero load
length and ∆~rp is the rigid pylon offset from the attachment location at the wing.

2.2 Eigenmode analysis

This section first briefly explains the ASWING Eigenmode analysis (MODE) with a flowchart and next a
concise description of the equation set-up for Arnoldi iterations.

2.2.1 Program structure

ASWING’s linearised unsteady natural response is based on the Fortran77 compatible Arnoldi package
(ARPACK). In OPER the equilibrium solutions are determined and the trimmed aircraft is entered into
the Eigenmode analysis. In this module the loads and moments due to engines are determined first. Next
the Newton system of the discrete equation set are determined for each beam and operating point. Then
the loads, moments and Jacobians due to aerodynamics, gravity, joints, struts and point masses are in-
cluded into the Newton system as well as the kinematic constrains due to grounds. This Newton system is
completed with the unsteady equations.
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Figure 2.4: Flowchart ASWING Eigenmode analysis

The stiffness and mass matrices are combined into one complex system matrix and rewritten for ARPACK
compatibility. Next the eigenvalues are calculated and ASWING plots a root locus plot: a plot with fre-
quencies at one axis and growth rate at the other. Modes with a negative growth rate are stable, whereas
a positive growth rate indicates an unstable mode. The Eigenmode analysis is visualized in a flowchart in
Figure 2.4. This flowchart includes only the main calculation steps.

2.2.2 Equations set-up

Drela (2008a) gives the equation system as a function of a state vector x, its time rate of change ẋ and
commanded variables u :

x =
(
~ri ~θi ~Mi ~Fi ~ui ~ωi (2.18)

∆~rJ ∆~θJ ∆ ~MJ ∆ ~FJ A1 A2 . . . AK ~RE ~Θ ~U ~Ω ~a0 ~α0

δF1 δF2 . . . δe1 δe2 . . . δg1 δg2 . . . e
)

ẋ =

(
~̇ri ~̇θi ~̇ui ~̇ωi (2.19)

Ȧ1 Ȧ2 . . . ȦK ~̇RE ~̇Θ ~̇U ~̇Ω ė
)

u =
(
Vc αc βc Φc Θc Ψc δF1, c δF2, c . . .

)
(2.20)

The first row of the variables listed at state vector x are local variables, the second global variables and the
third row user defined variables. In this equation set up ~ri is the local csn coordinate for a beam element, ~θi

the deflection angles, ~Fi the forces, ~Mi the moments, ~ui the linear velocities and ~ωi the angular velocities.
A1 A2 . . . AK are the vortex strengths, ~RE is the Earth reference frame, ~Θ are the roll, pitch and yaw angle,
~U the linear flight velocity, ~Ω the angular flight velocity, ~a0 the linear accelerations and ~α0 the angular
accelerations. The flap deflections, engine settings and gust input is given by respectively δF , δe and δg.
The error-integral vector is denoted as e. The commanded variables u are user inputs and subscript ()c
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denotes control.

The general solution is written in the residual form:

r(x, ẋ,u) = 0 (2.21)

The general perturbation of the system of equations is linearised via three Jacobian matrix terms.

δr =

[
∂r
∂x

]
δx +

[
∂r
∂ẋ

]
δẋ +

[
∂r
∂u

]
δu (2.22)

This equation forms the foundation of Eigenmode analysis. For a converged solution with state x and
prescribed state u, the the sum of residuals remain zero and equation 2.22 can be rewritten as:

−

[
∂r
∂ẋ

]
δẋ =

[
∂r
∂x

]
δx +

[
∂r
∂u

]
δu (2.23)

This equation is only valid for a converged solution in the trimmed state, which has time-invariant Jacobian
matrices. The simplest case is straight and level flight with zero climb rate and zero bank angle.

Assume a perturbation solution of the form:

δx(t) = x̂eλt (2.24)

Eigenmode analyses concern the unforced case at which δu = 0. Substitute equation 2.24 in equation 2.23
to get a solution of the form:

[
∂r
∂x

]
x̂ = −

[
∂r
∂ẋ

]
x̂λ (2.25)

Eigenvalues (λk) and eigenvector (vk) are defined as the nontrivial solutions to the unforced perturbed
system:

[
∂r
∂x

]
vk = −

[
∂r
∂ẋ

]
vkλk (2.26)

2.3 Conclusions

The structure of ASWING allows for adding multiple subroutines for several concentrated applied loads
such as struts, point masses and engine loads. The strut module can model bracing wires, which are at-
tached by one end at the aircraft and at the other end fixed in the aircraft reference frame. However these
struts cannot be attached to each other and additionally one strut end (the tether) should be fixed in the
Earth reference frame. Therefore the strut module lacks the ability to simulate a tether-bridle system.



Chapter 3

Input ASWING

The goal of this chapter is to (1) describe the parameters needed in an ASWING input file (xxx.asw), (2)
for surface and fuselage beams, calculate the aerodynamic and structural parameters and (3) to verify
the structural parameters with FEM data. In this chapter the M600 characteristics are used as sample
input. The resulting ASWING input file is used in the aero-elastic analysis in chapter 10. A more detailed
description of ASWING input files can be found at Drela (2008b). In section 3.1, the M600 geometry is
defined, in section 3.2 the aerodynamic properties are defined, in section 3.3 the structural properties and
in section 3.4 the engine properties. In section 3.5 the conclusions of this chapter are drawn.

3.1 Geometry of the M600

In ASWING, the geometry can be specified with the parameters listed in Table 3.1. The location of the
distance to the c, n origin (x0/c) is dependent on the structural properties of the wing and explained in
section 3.3. The remaining parameters are described in this section.

A top-view and side-view of the M600 geometry are respectively given in Figure 3.1 and 3.2. The full
wingspan, b = 28m, the characteristic chord, c̄ = 1.40m and hence the wing’s aspect ratio is equal to
A = 20. From the wing root to half-way span, the chord is constant. From the bridle-wing attachment
towards the tip, the chord tapers off, because structural moment loads are significantly reduced. Flaps are
attached at the rear of the wing. These flaps create extra lift when needed and de-power the wing in case
of high flight speeds. The flaps at the tips control the roll motion. The rudder and horizontal stabilizer are
attached to the 8 meter long fuselage for yaw and pitch stability. The rudder has an additional flap for yaw
control. The entire horizontal stabilizer is hinged for pitch control.

Table 3.1: ASWING geometry inputs

ASWING keyword Symbol Description Unit
x, y, z ~r0 location with respect to s-axis of unloaded beam [m]
twist ~θ0 twist angle of unloaded beam [deg]
chord c wing chord [m]
Xax (x0/c) distance/chord from leading edge to s axis (c, n origin) [−]

19
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Figure 3.1: M600 geometry, top-view

The main wing is outfitted with eight motors, best shown in Figure 3.2. Each motor has a 75kW rated
power output.

Figure 3.2: M600 geometry, side-view

3.2 Aerodynamic properties

The aerodynamic properties for the lifting surfaces; the main wing, the horizontal stabilizer, the rudder and
the motor pylons are characterized with specific characteristic properties. The method for defining these
properties in an xxx.asw input file is similar and is described for the main wing first.

3.2.1 Aerodynamic properties of the M600 main wing

ASWING has a specific set-up for the aerodynamic properties. For each lifting surface the aerodynamic
properties are given in Table 3.2.

All of the properties given in Table 3.2 are determined from the lift curve, the drag polar and the moment
coefficient curve. For the main wing these aerodynamic properties are given in Figure 3.3.
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Table 3.2: ASWING aerodynamic inputs

ASWING keyword Symbol Description Unit
Cdf cd, f section profile friction drag coefficient [-]
Cdp cd,p section profile pressure drag coefficient [-]
alpha αAo angle of zero-lift line above c-axis [◦]
Cm cm section pitching moment coefficient about chord/4 [-]
CLmax cl, max section maximum lift coefficient [-]
CLmin cl, min section minimum lift coefficient [-]
dCLda clα section lift-curve slope [1/rad]
dCLFi clδ lift coefficient increment with flap deflection [1/deg]
dCMdFi cmδ

moment coefficient increment with flap deflection [1/deg]
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Figure 3.3: Aerodynamic properties M600 main wing

The aerodynamic data is available for an angle-of-attack range between 7◦ ≤ α ≤ 24◦, at which cl > 1.5.
At greater angles-of-attack, the airfoil is in a deep stall regime. This regime is outside the M600’s flight
envelope. However at high flight speeds, a lower lift coefficient than cl = 1.5 is likely. Therefore, the
lift curve is interpolated up to cl = 0. For 0◦ and 10◦ flap deflection, the lift curve slope is respectively
clα = 1.97π and clα = 1.92π, which is close to the theoretical lift curve slope for a two dimensional flat
plate, clα = 2.00π.

ASWING assumes a moment coefficient which is independent of angle-of-attack. From Figure 3.3a follows
that the moment coefficient increases slightly with angle-of-attack. This occurs in the deep stall regime
during which the flow separates from the airfoil. The angle-of-attack at design lift coefficient, cl, design =

2.1, is equal to αdesign = 12.4◦. The difference in moment coefficients from αdesign − 4◦ ≤ α ≤ αdesign + 4◦

is about 2%. Hence the constant moment coefficient assumption is valid in this flight regime.
Flap deflection shifts the lift- and moment coefficient curves. This effect is determined in the linear part of
the lift curve.

clδ =
∆cl

∆δ
, cmδ

=
∆cm

∆δ
(3.1)

The total drag is determined as the sum of profile, friction and induced drag. According to Drela (2009)
the sum of the profile and friction drag is the drag polar lower limit, which follows from Figure 3.3b.
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3.2.2 Aerodynamic properties of the M600 surface areas excluding the main wing

For the the horizontal stabilizer, rudder and the motor pylons, the aerodynamic properties are determined
with the method described in section 3.2.1. Each of these aerodynamic surfaces has its own characteristics
which will be explained in this section.

Aerodynamic properties of the M600 horizontal stabilizer

Unlike the main wing, the horizontal stabilizer has no high maximum lift coefficient design requirement.
According to Vander Lind (2013a) ‘every moderately thin and low drag airfoil has the same change in lift
force with angle-of-attack and thus the same contribution to stability of the flight vehicle.’. The horizontal
stabilizer has no separate control surface, because the whole surface is hinged for control. In this design
stage, the relatively thin NACA0012 airfoil is chosen. The aerodynamic characteristics for a specific
Reynolds number are determined with Javafoil (Hepperle, 2006). The Reynolds number Re is calculated
as:

Re =
Vc
ν

(3.2)

With V = 50m/s, c = 1.00m and ν = 10−5m2/s, the Reynolds number is Re = 3.75 · 106. The aerodynamic
properties are given in Figure 3.4.
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Figure 3.4: Aerodynamic properties M600 horizontal stabilizer

Aerodynamic properties of the M600 rudder

The aerodynamic design of the M600 rudder is optimized for control effectiveness by increasing control
authority for a given rudder force (Vander Lind, 2013a). For the rudder, only the lift curve data is available.
The moment and drag coefficient need to be derived. The rudder camber is very small and hence the
moment coefficient is very close to cm = 0.0, in the case of zero flap deflection. The flap deflection
increases camber and shift the center of pressure forward resulting in a pitching down moment. In this
design stage, it is assumed that the moment coefficient change with flap deflection, cmδ

of the rudder is
equal to cmδ

of the main wing. The minimum vertical tail drag coefficient is assumed to be equal to the
horizontal tail drag coefficient.
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Figure 3.5: Aerodynamic properties M600 rudder

Aerodynamic properties of the M600 motor pylons

The aerodynamic design of the motor pylons is optimized for high maximum lift coefficient, benign stall,
low drag and negative lift capability (Vander Lind, 2013a). The resulting lift- and moment coefficient
curves are shown in Figure 3.6a. The drag polar is given in Figure 3.6b. With respect to the other lifting
surfaces, this surface is characterized with the lowest drag coefficients.
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Figure 3.6: Aerodynamic properties M600 motor pylons

3.3 Structural properties

ASWING needs specific input to define structural properties of support beams (fuselages) and surface
beams (lifting surfaces). These properties are derived from geometrical and material properties. As with
the aerodynamic properties, the structural properties for the M600 are used as sample input. ASWING
allows for the structural properties given in Table 3.3. All of these listed structural beam properties are
covered in the next sections, but the extensional and shear-extensional damping time. In case a parameters
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is excluded from asw.xxx its default value is applied. For stiffnesses EIcc, EInn, GJ, EA, GKc and GKn

the default value is infinity. For all other structural properties the default is zero.

Table 3.3: ASWING structural inputs

ASWING keyword Symbol Description Unit
mg µ1g first section weight/length [N/m]
Dmg µ2g second section weight/length [N/m]
Ccg ccg1 c-location of section mass centroid [m]
Ncg ncg1 n-location of section mass centroid [m]
DCcg ccg2 c-location of additional-mass centroid [m]
DNcg ncg2 n-location of additional-mass centroid [m]
Cea cea c-location of elastic axis [m]
Nea nea n-location of elastic axis [m]
Cta cta c-location of tension axis [m]
Nta nta n-location of tension axis [m]
EIcc EIcc bending stiffness about c-axis [Nm2]
EInn EInn bending stiffness about n-axis [Nm2]
EIcn EIcn bending cross-stiffness [Nm2]
GJ GJ torsional stiffness [Nm2]
EA EA extensional stiffness [N]
GKc GKc c-shear stiffness [N]
GKn GKn n-shear stiffness [N]
mgcc ιcc1 g weight-inertia/span about c-axis [Nm]
mgnn ιnn1 g weight-inertia/span about n-axis [Nm]
Dmgcc ιcc2 g additional weight-inertia/span about c-axis [Nm]
Dmgnn ιnn2 g additional weight-inertia/span about n-axis [Nm]
tdeps tε extensional-strain damping time [s]
tdgam tγ shear-strain damping time [s]

Most structural properties listed in Table 3.3, are dependent on the c,n-axis definition. In Drela (2009) three
different representations of the airfoil geometric and structural properties are defined as given in Figure 3.7.

According to (Drela, 2009) the first representation is the best choice if the principal bending axis angle is
known by inspection from symmetry. The second representation is usually the best choice if the principal
axis is not obvious from inspection, so the principal bending axis is not immediately available. The third
choice may be the most convenient if all the section quantities are to be computed in the global aircraft
axes xyz.

For the design of the M600 wing the principal bending axis is not directly obvious from inspection, section
quantities are not to be computed in the global aircraft axis. Hence representation 2 is chosen for further
analysis.

3.3.1 Structural properties of the main wing

The geometrical and material properties for the M600 main wing are mostly available and hence the struc-
tural properties can be determined. Each wing half can be divided into two separate parts:

• Root to half-way span; the chord and spar position is constant. Material layers are removed step-
wise and hence the skin and spar thickness is decreased stepwise with increased distance from the
root.
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Figure 3.7: Airfoil representations (Drela, 2009)

• Half-way span to wing tip; the chord at the wing tip is half of the chord with respect to the chord at
half way span. Forward sweep is applied to keep the leading edge and the front spar straight. Again,
material layers are removed stepwise.

The root and tip airfoil geometry are respectively given in Figure 3.8a and 3.8b. The flap contribution to
structural properties is discarded. First the weight properties will be determined followed by the stiffness
properties.

Weight properties of the main wing

The weight properties of the main wing are the weight per unit length (µg), the center of gravity (~rcg) and
the weight inertia per unit span (ιg). To determine those parameters, firs the wing weight per unit span is
determined by discretization of the airfoil and the spars. The airfoil is split in several parts, with a unique
fibre lay-up; the front skin, the top cap, the bottom cap, the shear-webs, the rear skin and the trailing edge
cap. The top cap, bottom cap and the shear-webs form a torsion box and are designed to take most of the
loads. The skin will take some part of the loads, but is mainly intended to maintain the aerodynamic shape
of the airfoil.

Weight per unit length of the main wing(µg)
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(a) root airfoil, including spars

(b) win tip airfoil, including spars

Figure 3.8: Airfoils of the main wing

The total mass per unit length is now determined as.

µ1g =
∑

∆µg (3.3)

The weight per unit length for each airfoil segment is given in Figure 3.9a. From the root up to half-way
span, weight is stepwise decreasing, because the chord is constant and material layers are removed step-
wise. From half-way span to the tip, the weight is stepwise and linearly decreasing, because the chord is
linearly decreasing and material layers are removed stepwise. The motors and bridles are attached from the
root to half-way span and hence this is a high load regime. In this regime relatively thick top and bottom
caps are used. After half-way span only aerodynamic loads need to be transferred and hence the thickness
of stiffeners is decreased significantly. Figure 3.9b shows the weight impact of the torsion box (top cap,
bottom cap and shear-webs), the skin and the trailing edge cap. For the final 3.00 meter towards the tip, the
skin weight is higher than the weight of the torsion box. With respect to FEM results the weight per unit
length is underestimated; at the root, at half-way span and at the tip the determined weight is 96%, 94%
and 93% with respect to FEM determined numbers.

Center of gravity of the main wing (~rcg)
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Figure 3.9: Main wing airfoil weights

The airfoil center of gravity is is determined as

~rcg =

∫
r ~rdm∫
r dm

≈

n∑
i=0

~ri∆µg

n∑
i=0

∆µg

(3.4)

The airfoil center of gravity is shown in Figures 3.8a and 3.8b. At the root the weight contributions of the
torsion box and hence the center of gravity is shifted forward with respect to the tip center of gravity.

Weight inertia per unit span (ι)

With the center of gravity the next property can be determined; the weight inertia per unit span. The weight
inertia is a measure of the tendency to resist any change in motion and is defined by (Drela, 2009) as:

ιccg = g
∫ (

n − ncg

)2
dµ (3.5)

ιnng = g
∫ (

c − ccg

)2
dµ (3.6)

ιssg = g
∫ [(

n − ncg

)2
+

(
c − ccg

)2
]

dµ = g (ιcc + ιnn) (3.7)

The weight inertia about the s-axis is the sum of the weight inertia about the c- and n-axis and there is need
to specify this property separately in xxx.asw as ASWING will determine this ιssg from ιccg and ιnng.

Stiffness properties of the main wing

The stiffness properties of the main wing are, the extensional stiffness (EA), the bending stiffness (EI),
the shear stiffness (GK), the torsional stiffness (GJ), the tensile axis (~rta) and the elastic axis (~rea). The
extensional stiffness with its related tensile axis, the uncoupled bending stiffness and the torsional stiffness
are determined with a discretized system. For coupled bending stiffnesses, shear stiffnesses and the elastic
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axis a finite element program is used.

Calculation method to determine stiffnesses

Several principles exist to determine E-moduli, such as the Rule of Mixtures (ROM), the Hart-Smith 10%
rule and the classical laminate analysis (CLA) (Richardson, 2013). All theories agree that material stiff-
ness decreases rapidly with increasing inclination angle, but differ considerably about the rate of decrease
as shown in Figure 3.10.
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Figure 3.10: E-modulus with inclination angle for ROM, Hart-Smith and CLA

In general, CLA is considered as the most accurate method. As shown in Figure 3.10 the Hart-Smith 10%
rule correlates well with CLA in case the lay-up consists of only 0/90 and 45/45 layers. The main advan-
tage of the Hart-Smith 10% rule method with respect to CLA is its simplicity. For the M600, only 0/90 and
45/45 material layers are used and therefore the Hart-Smith method is considered as most appropriate.

Hart-Smith states that each 45◦ and 90◦ ply contributes to 10% of the stiffness of a 0◦ ply:

E11 = E f V f + EmVm (3.8)

Ecc = E11

(
0.1 + 0.9

V0◦

V f

)
(3.9)

Enn = E11

(
0.1 + 0.9

V90◦

V f

)
(3.10)

Ess = E11

(
0.1 + 0.9

V0◦

V f

)
(3.11)

G = E11

(
0.028 + 0.234

V45◦

V f

)
(3.12)

In these equations EI11 is the composite E-modulus in fibre direction, E f is the fibre E-modulus, V f is the
fibre volume fraction, Em is the resin E-modulus and Vm is the resin volume fraction.
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Extensional stiffness (EA) an tensile axis (r̃ta)
As with weight calculations, the airfoil skin and the stiffeners are discretized into multiple elements. The
contribution of each element to the extensional stiffness, and the tensile axis is determined as:

EssA =

"
Ess dcdn ≈

∑∑
Ess ∆c∆n (3.13)

cta =
1

EssA

"
Ess c dcdn ≈

∑∑ 1
EssA

Ess c ∆c∆n (3.14)

nta =
1

EssA

"
Ess n dcdn ≈

∑∑ 1
EssA

Ess n ∆c∆n (3.15)

The extensional stiffness over the wingspan is given in Figures 3.11a and 3.11b. The calculated extensional
stiffnesses at the root, at half-way span and at the wing tip are respectively 95%, 89% and 86% with respect
to FEM.
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(a) EA per airfoil segment over the wingspan
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(b) EA for torsionbox, skin, trailing edge cap and total

Figure 3.11: Main wing airfoil EA

The location of the tensile axis is given in Figures 3.8a and 3.8b.

Bending stiffness of the main wing EI

With this tensile axis the bending stiffness is determined as:

EIcc =

"
Ecc(n − nta)2 dcdn ≈

∑∑
Ecc(n − nta)2 ∆c∆n (3.16)

EInn =

"
Enn(c − cta)2 dcdn ≈

∑∑
Enn(c − cta)2 ∆c∆n (3.17)

EIcn =

"
−Enn(c − cta)Ecc(n − nta) dcdn ≈

∑∑
−Enn(c − cta)Ecc(n − nta) ∆c∆n (3.18)

The EIcc and EInn stiffness contributions for each airfoil segment are given in Figures 3.12a and 3.12b.
The relatively stiff top and bottom caps are a relatively large distance away n from the tensile axis nta. Ad-
ditionally these caps are designed to take the loads. Therefore the stiffness contribution of these stiffeners
is 97.0% at the root at which the moment loads are maximum. Towards the tip, moment loads decrease and
less strength and stiffness is required. The total bending stiffness about the c-axis at the tip is only 0.7%
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with respect to the root. The trailing edge cap contributes significantly to the bending stiffness about the n
axis, because the distance c from this stiffener to cta is relatively large.

At the root, at halfway span and at the tip the calculated EIcc is respectively 117%, 86% and 86% with
respect to the bending stiffness determined with FEM. For EInn, the determined stiffnesses are respectively
93%, 86% and 70% with respect to FEM.
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(a) EIcc per airfoil segment over the wingspan
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(b) EInn per airfoil segment over the wingspan

Figure 3.12: Main wing airfoil EI

Torsional stiffness (GJ)

The torsional stiffness for closed shells is given by Peery and Azar (1982) as:

GJ =
4A2

enc∮
dl/Gt

(3.19)

In this equation Aenc is the enclosed area, which is determined as:

Aenc =

n−1∑
i=1

(ci+1 − ci)
∣∣∣∣∣ni+1 + ni

2

∣∣∣∣∣ (3.20)

The upper and lower spars contribute greatly to the torsional stiffness as a result of the increased thickness
as compared to the front and the rear skin. Additionally these stiffeners have a significant proportion of bi-
directional fibres oriented in the 45/45 direction. These layers contribute mostly to the torsional stiffness.
The torsional stiffness of the torsion box, the front part of the airfoil and the rear part are given in Figure
3.13. At the root, at halfway span and at the tip, the torsional stiffness is respectively 154%, 93% and 60%
with respect to the torsional stiffness determined from FEM. The method described in this thesis is not very
accurate for determining the torsional stiffness. Therefore the interpolated torsional stiffnesses from FEM
are used in the ASWING input file.

Elastic axis (r̃ea)

The elastic axis is defined as the axis at which rotation will occur in case the wing is loaded in pure torsion.
For a wing with uniform cross section over the entire span, the elastic axis is a straight line. The shear
center of an airfoil is the point at which the resultant shear load must act to produce a wing deflection with
no rotation. If the wing is an elastic structure then elastic axis coincides with the line joining the shear
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Figure 3.13: GJ per airfoil section over the wingspan

centres of the various cross-sections. The shear center is calculated as the position of the resultant shear
force which yields a zero angle of twist: (Peery and Azar, 1982).

N∑
i=1

qi∆liL
2AtiG

= 0 (3.21)

The shear flow is calculated as the product of shear stress and the thickness of the web. Open sections are
able to resist shear forces applied at the shear center, but are unstable under torsional loads. Closed section
box beams are able to resist these torsional loads. Peery and Azar (1982) describe analysis methods for
single and multiple enclosed areas for thin airfoils with stiffeners. In this analysis the skin is assumed to
transfer shear forces in between stiffeners, which take the axial loads. In this simplification the shear flow
is written as a function of the shear flow in an arbitrary web, web 1.

qN = q1 +

N∑
i=1

∆Fi (3.22)

In the analysis of the M600 airfoil, the top-, bottom and trailing edge cap contribute to both, the transfer
of shear forces and additional take the loads. Close to the wing tip the skin is designed to take part of the
loads and transfer the shear forces. Hence the shear flow analysis as described by Peery and Azar (1982)
is not appropriate for elastic axis calculations. Therefore, the elastic axis determined from FEM is used in
the ASWING input file. The horizontal stabilizer and rudder weight distribution are given in Figure 3.14a,
the fuselage weight and motor pylon weight distribution in Figure 3.14b.

3.4 Engines

ASWING provides three different engine models, with increasing complexity; the simple proportional en-
gine model, an actuator-disk model and an extended actuator-disk model with P-factor terms for propeller
whirl prediction. The simple proportional model assumes that thrust and moment forces are directly pro-
portional to the engine power parameter. Both actuator disk models determine the thrust and moment as
a result of air density and the axial air velocity component. The side forces and moment as a results of
the remaining velocity and rotation rate are referred to as the ‘P-factor’. All models take the downstream
rotor effects into account. Propeller whirl prediction is outside the scope of this thesis, hence the actuator
disk model is chosen as most appropriate. The parameters which need to be specified are listed in Table 3.4.
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Figure 3.14: Fuselage, tail and motor pylons µg

Table 3.4: ASWING engine inputs

ASWING keyword Symbol Description Unit
Tx, Ty, Tz ~Tspec engine axis vector [−]
Rdisk Re engine disk radius [m]
Omega Ωe rotational speed [rad/s]
cdA (CDA)e total effective blade drag area [m2]
Weight meg weight of the motor [N]
Hxo, Hyo, Hzo ~He, 0 angular momentum in the undeformed state [N · m · s]

The engine axis vector (~Tspec) in the undeformed state is assumed parallel to the x-axis of the aircraft. The
total effective blade drag area is determined as:

(CDA)e = BRec̄c̄d (3.23)

In the configuration that the engine axis vector is aligned with the x-axis, the angular momentum about the
y- and z-axis is equal to zero. The angular momentum about the x-axis is determined as the product of the
area moment of inertia about the x-axis and its angular velocity about the x-axis:

Hxx = Ixxωx (3.24)

With these parameters, ASWING is able to calculate the engine power. For conventional aircraft the
engines are designed to create thrust. However a negative power corresponds to an engine in windmill
state. The minimum power corresponds to the Betz limit:

(Pi)min = −
8
27
ρV3

r Ar (3.25)

Pi is the net inviscid power, the subscript ()r corresponds to the rotor.

3.5 Conclusions

In this chapter the geometrical, aerodynamic and structural parameters of each M600 surface and fuselage
beam element is calculated as well as the ASWING input parameters for the engines. The aerodynamic
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properties of the main wing, horizontal stabilizer, rudder and motor pylons are determined from the lift and
moment coefficient curves and the drag polars. The structural properties of the main wing are determined
with a simplified discretized model and compared with FEM results. The weight, extensional stiffness and
the out-of-plane bending stiffness are within 15% range of FEM results. The torsional stiffness, the elastic
axis, coupled bending and torsional stiffnesses and shear stiffnesses are not determined accurately with the
simplified model and hence the FEM results will be used. The contribution of each airfoil segment on the
stiffnesses is determined and these results can be used in a later design stage.

The input is automated with a MATLAB routine; the motor properties, the geometrical properties, the
stiffnesses, elastic axis, the aerodynamic properties and the mass properties are automatically combined
in this MATLAB script to set-up an ASWING input file. This allows the constant design changes to be
immediately implemented in the latest aero-elastic analysis. The set-up of this MATLAB routine is given
in Appendix A. The M600 input file (M600.asw) is given in Appendix B.1.





Chapter 4

Output ASWING

The goal of this chapter is (1) to present the ASWING output and (2) to verify this output. A subset of
ASWING’s capabilities have been verified against other calculation methods and flight data, such as: (1)
for rigid structures the data is verified with lifting-line, vortex lattice, panel methods and classical flight
dynamic analysis, (2) with no aerodynamic forces, the elasticity module is verified against NASTRAN, (3)
high aspect ratio wing with simple elasticity flutter predictions are verified with Theodorsen theory and
(4) the aileron and divergence speeds are verified with NASTRAN. However the results are as good as the
user’s understanding. In this chapter the linear and non-linear elastic response with no aerodynamic forces
is respectively verified against analytical calculations and NASTRAN in section 4.1. The aerodynamic
forces for the rigid structure are verified against the lifting line theory and XFLR5 in section 4.2. The
flutter response is verified against Drela’s test case and Jensen (2010) in section 4.3 and finally in section
4.4, the conclusions of this chapter are drawn.

4.1 Deflections

A 10 meter, solid, massless, squared beam is simulated. The beam is fixed at the root, no degrees of freedom
in rotation and translation. The other end is free. The free end is loaded with respectively Ftip = 1, 000N,
Ftip = 5, 000N and Ftip = 7, 500N. In case deflections are smaller than 10% with respect to beam length,
linear deflections are assumed and analytical expressions are valid. In case deflections are larger than
10%, the linear relations are no longer valid and NASTRAN is used to verify the non-linear deflections
determined from ASWING.

4.1.1 Linear deflections

The linear deflections of a cantilevered beam are determined as:

δy =
Fy3

3EIxx
+

My2

2EIxx
(4.1)

In this equation δy is the deflection at arbitrary y, L is the beam length, E is the modulus of elasticity and
Ixx the area moment of inertia about the x-axis. For a solid rectangular block Ixx is calculated as:

Ixx =
bh3

12
(4.2)
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For a cantilevered beam loaded at its tip, the moment at the tip is Mtip = 0 and is linearly increasing towards
to root to Mroot = FtipL. The maximum deflection (δymax ) is the deflection at the tip and is calculated as:

δymax =
FtipL3

3EIxx
(4.3)

With Ftip = 1000N, E = 70GPa, b = h = 0.10m and L = 10m, the tip deflection is equal to δymax = 0.57m.
The tip deflection is 5.7% with respect to the length, hence the linear deflection assumption is valid. The
beam deflection versus beam length is given in Figure 4.1. The ASWING tip deflection is 99.59% with
respect to the tip deflection determined with the analytical method.

Figure 4.1: Deflected beam ASWING versus analytical method

An increase of tip load to Ftip = 5, 000N, while other parameters kept constant, the tip deflection deter-
mined with the analytical expressions are equal to δymax = 2.85m. This is 28.5% with respect to the beam
length. For this analysis, the assumption of linear deflection is no longer valid.

4.1.2 Non-linear deflections

The ASWING non-linear deflections are verified against NASTRAN. A beam, with equal specifications as
the beam used for linear deflections, is loaded with Ftip = 5, 000N and Ftip = 7, 500N. For the NASTRAN
calculations the beam is split into 10 equally sized elements. ASWING has its own built-in routine to
split the beam into element and there is no need to specify the number of elements. The beam deflections
determined with ASWING and NASTRAN are shown in Figure 4.2. The tip deflection determined with
ASWING is 99.59% with respect to the tip deflections determined with NASTRAN.

4.2 Lift forces

In ASWING the lift forces are determined with the theory from the lifting line theory. In this section,
the lift forces are verified against the lifting line theory described by Van Garrel (2003) and XFLR5. Van
Garrel (2003) and XFLR5 assume a perfectly rigid wing. This is modelled in ASWING as well.

4.2.1 Description of Van Garrel (2003) lifting line model

The lifting line theory is based on the theory that a flowfield around a wing can be described by sources
and vortices as shown in Figure 4.3.

Van Garrel (2003): ‘As the flow over an airfoil is started, the large velocity gradients at the sharp trailing
edge result in the formation of a region of intense vorticity which rolls up downstream of the trailing edge,
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Figure 4.2: Deflected beam ASWING versus NASTRAN

Figure 4.3: Flowfield representation (Van Garrel, 2003)

forming the starting vortex. This starting vortex has associated with it a counterclockwise circulation.
Therefore, as an equal-and-opposite reaction, a clockwise circulation around the airfoil is generated. As
the starting process continues, vorticity from the trailing edge is constantly fed into the starting vortex,
making it stronger with a consequent larger counterclockwise circulation. In turn, the clockwise circula-
tion around the airfoil become stronger, making the flow at the trailing edge more closely approach the
Kutta condition, thus weakening the vorticity shed from the trailing edge. Finally, the starting vortex builds
up to just the right strength such that the equal-and-opposite clockwise circulation around the airfoil leads
to smooth flow from the trailing edge. When this happens, the vorticity shed from the trailing edge becomes
zero, the starting vortex no longer grows in strength, and a steady circulation exist around the airfoil . ’

For the panel method, all vorticity and source singularities are distributed on the configuration surface and
in the wake. In the lifting surface method, no thickness effects are modelled and all surface vorticity is
transferred to the mean line of the configuration. Lumping this mean line vorticity to a single point at
quarter chord results in the lifting line method. The different methods are visualized in Figure 4.3.

The principle of the lifting line model originates from the conservation of circulation (Kelvin’s theorem
and Kutta condition) and the relation between circulation and lift per unit span (Kutta-Joukowski theorem):

L′ = ρ∞V∞Γ∞ (4.4)

The initial lift and circulation are determined as:
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L′ = 2πα0
1
2
ρ∞V2

∞c (4.5)

Γ =
L′

ρ∞V∞
(4.6)

In these equations, L′ is the lift per unit span, α0 is the initial angle-of-attack, ρ∞ is the undisturbed air
density, V∞, is the undisturbed flow velocity and Γ is the vortex strength.

The induction velocity at control point cp is determined as:

~uΓ(~xcp) =
Γ

2π
(r1 + r2)(~r1 × ~r2)

r1r2(r1r2 + ~r1 · ~r2)
(4.7)

In this equation ~r1, is the vector of the point of a vortex line element and r1 is the magnitude of the vector.
The induction velocity together with the wind velocity set the total velocity at the point of interest on the
wing (xcp). This velocity ( ~ucp) defines the new angle-of-attack as:

αcp = arctan
(
~ucp · ~a3

~ucp · ~a1

)
(4.8)

Figure 4.4: Wing strip geometry definitions (Van Garrel, 2003)

The wing strip geometry definitions are given in Figure 4.4. With the angle-of-attack the lift coefficient is
determined from the lift curve and next the vortex strength is calculated as:

Γcl = Cl

(
αcp

) 1
2

((
~ucp · ~a1

)2
+

(
~ucp · ~a3

)2
)

dA√((
~ucp × d~l

)
· ~a1

)2
+

((
~ucp × d~l

)
· ~a3

)2
(4.9)

At this point the difference between the old and the new rotation is calculated and an average is taken to
increase the efficiency of the iteration process. These calculations are repeated in an iterative process until
the maximum difference between two subsequent calculation circulations is smaller than ε = 10−6. At this
point the result has converged. For a more detailed description, see Van Garrel (2003).

4.2.2 Lift forces against Van Garrel (2003)

A straight, rigid, single airfoil NACA0012 wing is simulated. This wing is characterized with a wingspan
b = 20.0m and chord c = 0.50cm. The flight speed is set at VIAS = 100m/s with α = 4◦. For this small
angle-of-attack, a linear relation Cl = 2πα is used. The lift force distribution against Van Garrel (2003) is
given in Figure 4.5. Both
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Figure 4.6: ASWING lift coefficient compared to XFLR5

4.2.3 ASWING lift forces compared to XFLR5

XFLR5 is an analysis tool for airfoils, wings and planes. Again a straight, rigid, single airfoil NACA0012
wing is analysed. This wing is characterized with a wingspan b = 20.0m and chord c = 2.00cm. Again the
flight speed is set at VIAS = 100m/s with α = 4◦.

The lift coefficient distribution against XFLR5 is given in Figure 4.6. The ASWING lift coefficients at the
root are equal to the lift coefficients determined with XFLR5. Closer to the wing-tips, a slight difference is
shown between both analysis tools. This difference is only present at one wing-tip and therefore assumed
to be caused by discretization errors.

4.3 Wing7 aero-elastic analysis

A subset of ASWING’s capabilities have been presented and verified. The next step is the steady and and
unsteady aero-elastic analysis. Jensen (2010) describes the results of the Wing 7 (W7) aero-elastic analysis.
W7 is latest Makani Power prototype.

4.3.1 Wing7 divergence analysis

Jensen (2010) describes three different load cases to analyse W7 divergence: (1) tethered flight, (2) post-
release, hight-G flight and (3) free flight. In the divergence analysis presented in this section, the free
flight load cases are analysed. The wing is trimmed to steady, levelled flight for different flight speeds.
For each flight speed, the maximum wing twist angle is plotted in Figure 4.7a. The Figure shows that
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the same results are determined with respect to Jensen (2010). Additionally the Figure shows that twist
angles increase with flight speed. A sudden increase of twist angle with a small increment of flight speed
indicates that the wing is approaching its divergence speed. This behaviour is not present in the examined
flight speed regime and hence the same conclusion as Jensen (2010) is drawn: ‘divergence does not appear
to be an issue with W7’.
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Figure 4.7: Wing7 aero-elastic analysis

4.3.2 Wing7 flutter analysis

The ASWING Eigenmode analysis is performed with a root locus plot. Each mode is plotted against its
frequency and growth rate. A negative growth rate (σ) indicates positive damping and hence a stable
motion.

This ASWING version does not allow the input of a flexible tether-bridle system. Therefore Jensen (2010)
analyses the limiting cases:

1. Infinitely soft tether, the tether is spring constant, kt = 0N/m,

2. Infinitely stiff tether, the tether is spring constant, kt = ∞N/m.

In this section, the results for an infinity stiff tether are analysed. The root locus plot is given in Figure 4.7b.
This root locus plot is identical, and shows all modes which are also given in Jensen (2010). Dutch roll
and phugoid are the modes close to the origin. These flight-modes also occur for a perfectly rigid aircraft.
Further from the origin the short period, in-plane and out-of-plane bending modes, torsion modes and a
bending/torsion mode are present. All modes are stable for the examined flight speeds, 40m/s ≤ VIAS ≤

160m/s.

4.4 Conclusions

In this chapter a subset of ASWING’s output is presented and verified; the linear and non-linear deflections
are verified against respectively an analytical method and NASTRAN. ASWING’s lift is verified against a
lifting line method and XFLR5 and finally ASWING’s steady and unsteady aero-elastic analysis is verified
against Jensen (2010). All verification results are satisfactory.
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ASWING’s limitations for bridled flight appear in the verification case against Jensen (2010). This version
of ASWING lacks the input of a flexible tether-bridle system and hence Jensen (2010) modelled the tether
as perfectly rigid and infinitely soft. It is the goal of this thesis to solve this limitation of the current
program and build an additional module that allows the input of a more realistic tether-bridle system.
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Chapter 5

Tether-bridle system

The goal of this chapter is to (1) determine the most appropriate method to define the tether-bridle system
in ASWING and (2) to describe the tether-bridle system with its corresponding equations. In section 5.1
the approach to set-up the tether-bridle system is explained. In section 5.2 the tether-bridle model is
explained. In section 5.3 the location of the tether-bridle attachment point is analytically derived. In
section 5.4 the equations are set to calculate tether and bridle forces. In section 5.5 the constraints to
set-up the equilibrium equations are explained and finally in section 5.6 the conclusions of this chapter are
given.

5.1 Approach tether and bridle set-up

In the current ASWING version the most appropriate method to define the tether-bridle system is inves-
tigated. The use of existing ASWING routines to simulate the tether-bridle system is most time-efficient
and investigated first. In case this approach is infeasible, the next step is examining the possibilities of
modifying (part of) the routines. In case this is impossible, the final step is writing a new routine, which is
compatible with ASWING.

5.1.1 Simulate the tether-bridle system with available routines

A possibly accurate tether-bridle system would contain a tether and multiple bridles like struts are defined
in ASWING. These struts are assumed perfectly flexible in bending, but have a finite extensional stiffness,
which allow the strut to change its length in response to extensional or compressive loads. Some issues
are related with this strut; one strut end is attached at the aircraft, whereas the other is fixed in the aircraft
reference frame. This definition does not allow (1) a moving tether-bridle attachment point and (2) multiple
struts attached to each other. Hence the current strut definition does not allow the simulation of a tether-
bridle system.

5.1.2 Simulate the tether-bridle system with adjusted routines

The strut definition could be adjusted. This adjusted model should allow a moving tether-bridle attachment
point and multiple strut-strut connections. At the tether-bridle attachment location (explained in section

45



46 Tether-bridle system

5.2) a minimum of three struts (two bridles and one tether) are connected. Drela (2009) discourages such
a connection with:

if the beam has finite bending and extensional stiffness, it is permissible to have more than one #2
joints per beam, but this can give numerical difficulties and should be avoided if at all possible.
In contrast, a beam can have an arbitrary number of #1 joint points with no ill effects, since these
merely receive applied forces rather than kinematic constraints.

Each connection always contains one #1 and one #2 joint. Load resultants of a #1 joint are given by Drela
(2009) as:

∆ ~F joint = ~FJ , ∆ ~M joint = ~MJ , (5.1)

A #2 joint implies kinematic constraints in lieu of moment equations:

~ri = ~r0i + ∆~rJ , ~θi = ~θ0i + ∆~θJ (5.2)

Figures 5.1a and 5.1b show the #1 and #2 joint in case the wing is respectively grounded1 with the aircraft
and to the tether attachment at the ground-station. In case the aircraft is grounded, the tether has two #2
joints. In case the tether attachment to the ground-station is grounded, the aircraft wing has two #2 joints.
Hence this approach, with tether and bridles simulated as adjusted struts, will not work properly.

Ground

#1#1

#2 #2

#1 #1

#2#2

#1

(a) Joint connections with grounded wing

#2#2

#1 #1

#2 #2

#1#1

Ground

(b) Joint connections with grounded tether attachment
to the ground-station

Figure 5.1: Joint connections tether-bridle system

5.1.3 Simulate tether-bridle system with a new routine

The available routines are unusable to simulate the tether-bridle system. Next three different options for
the tether-bridle simulation are investigated, implemented and tested. The simulation of - (1) bridle forces
with weights, (2) tether forces with a straight, massless, zero drag, axial stretchy tether, (3) the tether-bridle
system with rigid bridles and a straight, axial stretchy tether.

1a ground joint is a joint to a fixed point in the xyz-axis. It serves to restrain the aircraft’s rigid-body translation and rotation
modes (Drela, 2009)
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Simulation of bridle forces with weights

The forces at the bridles are simulated with the available point masses routine. In general the gravitational
forces is aligned with ZE . However this alignment does not hold for bridle forces. Therefore a new routine
is written with a user defined gravity vector. The point mass simulation of bridle forces yields reasonable
estimates for the bridled aircraft’s static aero-elastic behaviour. For flutter analyses this approach is un-
usable, because (1) point masses are added to the mass inertia matrix and (2) the flexible dynamic tether
behaviour is taken outside the analysis. The simulation of bridle forces with weights is concluded to be
too inaccurate for the aero-elastic analyses for tethered flight. However, the routine, at which the user can
modify the gravity direction, is used in the final program version to simulate tethered fight. This routine is
explained in section 7.3.

Massless, zero drag, axial stretchy tether simulation

Next the tether is simulated with a spring system. One end of the tether is fixed in the Earth-reference
frame and the other end is connected at one arbitrary aircraft location. In this model, no mass is added to
the mass inertia matrix and the flexible dynamic tether behaviour is within the analysis. Hence the tether
Jacobian need to be specified. With this representation the tether is attached to one point at the aircraft. In
reality, the bridles are generally attached along the span, which tend to bend and twist the wing. This effect
cannot be simulated with a massless, zero drag, flexible tether.

This system could give some valuable information about the flexible tether dynamic interaction with the
wing. Therefore, the equations to calculate the tether force and its Jacobians are set-up. These equations
are used in the final program version as well, and explained in respectively section 5.4 and 6.2.

Rigid bridles and a straight, axial stretchy tether

Finally the flexible tether is connected to the wing via two rigid bridles, which are free to rotate about all
axis. This models couples the tether forces and Jacobian entries to the bridle forces and Jacobian entries.
A detailed description is given in the next sections. This new tether-bridle routine is added in the original
ASWING as shown in Figure 5.2. In the Eigenmode analysis, the new routine is added in a similar manner
and given in the next chapter.

5.2 Description of tether-bridle model

As the point mass and the strut, the bridles are cantilevered from the beam’s structural axis by a rigid pylon
with geometric dimensions cp, sp, np. These pylon dimensions are determined via the transformation
tensor.

{
cp, b sp, b np, b

}T
= ¯̄T0

{
∆~rp, b

}
0

(5.3)

The ()0 subscript denotes the undeformed state, which is known a priori, such that cp, sp, np are in effect
fixed constants (Drela, 2009).

The location of the bridle attachment in airplane axes is given as:

∆~rp, b = ¯̄T T
{
cp, b sp, b np, b

}T
= ¯̄T T ¯̄T0∆~rp0, b (5.4)

= ¯̄Tnet∆~rp0, b (5.5)
~rap = ~ri, b + ∆~rp, b (5.6)
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Figure 5.2: Flowchart ASWING including the tether-bridle routine

The set-up of the tether-bridle system is visualized in Figure 5.3. The offset between the aircraft reference
frame and the Earth Reference frame is denoted as ~R. The bridle 1 and bridle 2 attachment points to the
wing are respectively called ~ri, b1 and ~ri, b1. The subscript ()i denotes the node i at which the bridle is
attached to the main wing. The location of the fixed attachment point to the ground-station is denoted as
~RT .

The tether force is dependent on the tether vector ~rt. With respect to the zero load length of the tether an
extension of the tether results in a positive tether force. From Figure 5.3 follows that tether vector can de
determined as

~rt = ¯̄T T
E
~RT − ~rtba (5.7)

With:

~rtba = ~rap, b + ~rb (5.8)

With:

~rap, b = ri, b +
( ¯̄Tnet∆~rp0

)
b

+ ¯̄T T
E
~R (5.9)

Of these equation (~rap, b is determined with current ASWING version. However the bridle vector ~rb and
the tether-bridle attachment vector ~rtba need to be calculated.
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∆~rp, b2

~rap, b2

~ri, b2

~RT

~rt

~rb2

~rtba
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~rb1

~ri, b1

~rap, b1

∆~rp, b1

Figure 5.3: Tether-bridle system set-up

5.3 Definition of the tether-bridle attachment location ~rtba

To determine the tether-bridle attachment point, the bridles are assumed perfectly rigid. The bridle attach-
ment points to the wing are known in priori and the bridles are free to rotate about all axis. Hence both
bridle ends create a sphere as shown in Figure 5.4.

The intersection of both spheres is a circle. The tether-bridle attachment location is a specific point at this
circle. The next sections will first determine the sphere-sphere intersection circle. Subsequently the point
at this circle, which is the tether-bridle attachment point is analytically derived.

5.3.1 Sphere-sphere intersection circle created by two bridles

The intersection circle of both spheres represents all possible tether-bridle attachment points. Any arbitrary
radii (bridle lengths) for both spheres can be chosen as long as both spheres intersect.

The circle midpoint and the radius are determined from geometrical relations. The distance between the
bridle points

(
db1, b2

)
is calculated first. Figure 5.5 is used to clarify equations 5.10 - 5.12. The distance

between the bridle attachment point (~rap, b and the midpoint of the sphere-sphere intersection circle ~rssic is
called db. The length of the bridles are denoted as Lb. The radius of the sphere-sphere intersection circle is
denoted as Rsiic.

R2
ssic + d2

b1 = L2
b1 (5.10)

R2
ssic + d2

b2 = L2
b2 (5.11)

db1 + db2 = db1, b2 (5.12)

=

√(
~rap, b1 − ~rap, b2

)
·
(
~rap, b1 − ~rap, b2

)
This set of equations is solved to determine the radius of the circle (Rssic),

Rssic =

√(
Lb1 + Lb2 + db1, b2

) (
Lb1 + Lb2 − db1, b2

) (
Lb1 − Lb2 + db1, b2

) (
Lb2 − Lb1 + db1, b2

)
2db1, b2

(5.13)
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Figure 5.4: Sphere-sphere intersection circle created by two bridles

Substituting Rssic in equation 5.10, the distance between ~rsiic and ~rb1 is determined and hence the location
of the sphere-sphere intersection midpoint follows from the geometrical relation.

~rssic = ~rap, b1 +
db1

db1, b2

(
~rap, b1 − ~rap, b2

)
(5.14)

5.3.2 Exact location tether-bridle attachment point

The point at this circle that is the position of the tether-bridle attachment point
(
~rtba

)
is based on the physical

relation that the sum of forces is equal to zero at this node. In three dimensional space, three equilibrium
equations exist with two unknowns. These are the equilibrium equations in x, y and z-direction and the
unknown magnitude of both bridle forces:

~Ft +
~rb1

lb1
|Fb1| +

~rb2

lb2
|Fb2| = 0 (5.15)

With:

~rb1 =
(
~rap, b1 − ~rtba

)
, ~rb2 =

(
~rap, b2 − ~rtba

)
(5.16)

With two unknown ((|Fb1| and |Fb2|) and three equations, this is an overdetermined set of linear equations.
Therefore another constraint is used: the tether and bridle forces need to be aligned. To solve this, the
tether attachment point at the ground is projected in the plane of the sphere-sphere intersection circle. The
following steps are taken:
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~rssic

Lb1
Lb2

~rap, b2

~rap, b1

Rssic

db2
db1

Figure 5.5: Geometrical parameters used in equations 5.10 - 5.12

1. Calculate the plane of the sphere-sphere intersection circle,

2. project the tether ground attachment point to this plane,

3. ‘draw’ a line from the midpoint of the sphere-sphere intersection circle to the projected tether ground
attachment point point,

4. determine the point at which this line intersects with the sphere-sphere intersection circle.

Calculate the plane of the sphere-sphere intersection circle

The plane of the sphere-sphere intersection circle is determined from the sphere:

(
x − xap, b1

)2
+

(
y − yap, b1

)2
+

(
z − zap, b1

)2
= L2

b1 (5.17)(
x − xap, b2

)2
+

(
y − yap, b2

)2
+

(
z − zap, b2

)2
= L2

b2 (5.18)

Subtract equation (5.18) from (5.17) to get the equation for the plane of the sphere-sphere intersection
circle:

− 2x
[
xap, b1 − xap, b2

]
+ x2

ap, b1 − x2
ap, b2

− 2y
[
yap, b1 − yap, b2

]
+ y2

ap, b1 − y2
ap, b2

− 2z
[
zap, b1 − zap, b2

]
+ z2

ap, b1 − z2
ap, b2 = L2

b1 − L2
b2 (5.19)

Project the tether ground attachment point to this plane

For ease of notation, equation 5.19 is rewritten in terms of coefficients ~C = {C1 C2, C3} and D:

C1x + C2y + C3z + D = 0 (5.20)
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with:

C1 = −2
[
xap, b1 − xap, b2

]
C2 = −2

[
yap, b1 − yap, b2

]
C3 = −2

[
zap, b1 − zap, b2

]
D = x2

ap, b1 − x2
ap, b2 + y2

ap, b1 − y2
ap, b2 + z2

ap, b1 − z2
ap, b2 − L2

b1 + L2
b2 (5.21)

The tether ground point is projected in this plane as:

(
~Rt

)∗
= ~Rt − ~C

~C · ~R + D
~C · ~C

(5.22)

In these equations the projection is denoted with superscript ()∗. The location of the bridle attachment point
in the aircraft reference axis ~Rt is determined from the location of the bridle attachment point in the Earth
reference axis ~RT as:

~Rt = ¯̄T T
E
~RT (5.23)

‘Draw’ a line from the midpoint of the sphere-sphere intersection circle to the projected tether
ground attachment point

The projected tether ground attachment point is connected to the midpoint of the sphere-sphere intersection
circle by the projected tether vector r∗t . This vector is determined as:

(
~rt
)∗

=
(
~Rt

)∗
− ~rssic (5.24)

Determine the point at which this line intersects with the sphere-sphere intersection circle

The position of the tether-bridle attachment point now determined as:

~rtba = ~rssic +
Rssic∣∣∣(~rt

)∗∣∣∣ ((~Rt

)∗
− ~rssic

)
(5.25)

With

∣∣∣(~rt
)∗∣∣∣ =

√(
~rt
)∗
·
(
~rt
)∗ (5.26)

Figure 5.6 gives an overview of the steps taken to determine the tether-bridle attachment point.
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Figure 5.6: Visualization of the tether-bridle point determination

5.4 Tether and bridle Forces

The tether is simplified as a spring with spring constant kt. Hookes law states that the reaction force
is linearly proportional to the length of the spring minus the unstressed length. All input variables for the
tether vector

(
~rt
)
, equation 5.8, are known and the stressed tether length is calculated with the inner product

of the tether vector.

lt =
√
~rt · ~rt (5.27)

According to Hooke’s law the magnitude of the tether force is equal to

|Ft | = kt (lt − lt0) (5.28)

In this equation |Ft | is the magnitude of the tether force, kt is the spring constant, lt is the stressed tether
length and lt0 in the unstressed tether length. The tether cannot withstand any bending, hence the tether
force vector

(
~Ft

)
is aligned with the tether direction vector. The tether force vector is calculated as:

~Ft =
~rt

lt
|Ft | = ~̂rt |Ft | (5.29)

With the tether force vector and force equilibrium equations at the tether-bridle attachment point, the
bridle forces follow from any two of the three equilibrium equations (equation 5.15). Any two equilibrium
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equations calculate equal bridle force. However in case xb1 = xb2 = xtba = 0 the solution is singular.
This holds for y- and z-direction as well. This occurrence is less likely, because, in general, the bridles
are attached along the wing span and the tether-bridle attachment point is generally located with an offset
in z-direction with respect to the bridle attachment points at the wing. However at large Euler angles the
same singularity in y- or z-direction can occur. In a bridle design at which the two bridles are not aligned, a
simultaneous singularity in two direction cannot occur. To exclude the possibility of singularities the rules
of equations 5.30 and 5.31 are applied.

|Fb2| =



Ftz +~̂zb1
Ftz +Fty
~̂zb1−~̂yb1

~̂zb1

(
~̂zb2−~̂yb2
~̂zb1−~̂yb1

)
−~̂zb2

xb1 = xb2 = xtba = 0

Ftx +~̂xb1
Ftx +Ftz
~̂xb1−~̂zb1

~̂xb1

(
~̂xb2−~̂zb2
~̂xb1−~̂zb1

)
−~̂xb2

yb1 = yb2 = ytba = 0

Ftx +~̂xb1
Ftx +Fty
~̂xb1−~̂yb1

~̂xb1

(
~̂xb2−~̂yb2
~̂xb1−~̂yb1

)
−~̂xb2

zb1 = zb2 = ztba = 0

(5.30)

|Fb1| =



−
Ftz +~̂zb2 |Fb2 |

~̂zb1
xb1 = xb2 = xtba = 0

−
Ftx +~̂xb2 |Fb2 |

~̂xb1
yb1 = yb2 = ytba = 0

−
Fty +~̂yb2 |Fb2 |

~̂yb1
zb1 = zb2 = ztba = 0

(5.31)

Finally the bridle forces are calculated as:

~Fb =
~rap, b − ~rtba

lb
|Fb| = ~̂rb |Fb| (5.32)

5.5 Tether force constraint

In the low speed flight regime, the wing is flying at its design lift coefficient
(
CLdesign

)
. The aerodynamic

loads are balanced with the tether force. At high wind speeds these forces can increases the tether force
to a value higher than the maximum tether design load. In this flight regime the lift coefficient should be
decreased. For example, by decreasing the aircraft angle-of-attack or decreasing the flight speed. An extra
module is created in the ASWING constraints GUI to allow an user defined maximum tether forcer. All
ASWING variables are available to realize a stable flight with this maximum tether force. These variables
include, but are not limited to: flight speed (VIAS ), angle-of-attack

(
αre f

)
, linear accelerations

(
~a0

)
and

angular accelerations
(
~α0

)
.

5.6 Conclusions

In this chapter several methods were analysed to simulate the tether-bridle system. The most appropriate
feasible option is to assume perfectly rigid bridles which are free to rotate about all axes. The tether is
simulated as a massless spring with zero drag area. The tether and bridle forces are analytically derived and
these equation are implemented in a new ASWING subroutine. The analytical expressions in this chapter
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are used in the next chapter to determine the corresponding Jacobian entries. The tether-bridle additions are
programmed in FORTRAN77. This ASWING compatible subroutines are calculated in subroutine SETTET
(set tether) and subroutine SETBRI (set bridle). The code can be found in Appendix C. The flowchart of its
main functionalities is given in Figure 5.7.

Figure 5.7: Flowchart ASWING tether-bridle routine

In this chapter the tether force as a result of spring forces are calculated. In chapter 7, the tether aerody-
namic and gravitational forces are implemented in the system of equations.





Chapter 6

Bridle force Jacobian entries

It is the goal of this chapter to determine the ASWING compatible Jacobian entries for the tether-bridle sys-
tem. Section 2.2 described that flutter modes are determined from Jacobian matrices ∂r

∂x and ∂r
∂ẋ . ASWING

is written in the character-based program language FORTRAN77 at which the initial state variables and
the Jacobian entries need to be specified separately. The initial state variables were discussed in chapter
5. This chapter will determine the Jacobian entries analytically. The bridle force Jacobian entries tend to
become comprehensive and hence the calculation of Jacobian entries in split into several parts. In section
6.1 the bridle force derivatives are written as a function of the tether force and its derivatives. In section
6.2 these tether force derivatives are determined. Finally in section 6.3 the conclusions of this chapter are
drawn.

Figure 6.1: Flowchart Eigenmode analysis including the tether-bridle routine

57
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6.1 Bridle force derivatives as a function of the tether

From equation 5.32, bridle force partial derivatives with respect to an arbitrary variable Vi are determined
as:

∂~Fb

∂Vi
=
∂~̂rb

∂Vi
|Fb| + ~̂rb

∂ |Fb|

∂Vi
(6.1)

The bridle force magnitude partial derivatives
(
∂|Fb |

∂Vi

)
are determined next in section 6.1.1 and 6.1.2. The

partial derivatives of the normalized bridle vector is expanded as:

∂~̂rb

∂Vi
=

∂~rap, b

∂Vi
−

∂~rtba
∂Vi

Lb
(6.2)

These partial derivatives,
(
∂~rap, b

∂Vi

)
and

(
∂~rtba
∂Vi

)
, determined in section 6.2.1.

6.1.1 Bridle 2 derivatives as a function of the tether

The derivatives of the magnitude of bridle force 2, |Fb2|, with respect to an arbitrary variable Vi is deter-
mined with the quotient rule:

|Fb2| =
|Fb2|

T P

|Fb2|
BT (6.3)

∂ |Fb2|

∂Vi
=

∂|Fb2 |
T P

∂Vi
|Fb2|

BT − |Fb2|
T P ∂|Fb2 |

BT

∂Vi(
|Fb2|

BT
)2 (6.4)

In this equation, the superscript ()T P denotes the top part of the equation, and superscript ()BT denotes the
bottom part of the equation. Substitute equation 5.30 into equation 6.4. The bridle 2 force magnitude
partial derivatives as a function of tether force and its derivatives are calculated as:

∂ |Fb2|

∂Vi
=
∂Ft, z

∂Vi
−
∂
(
ẑb1

Ft, z−Ft, y

(ẑb1−ŷb1)

)
∂Vi

(6.5)

=
∂Ft, z

∂Vi
−

[
∂ẑb1
∂Vi

(
Ft, z − Ft, y

)
+ ẑb1

(
∂Ft, z

∂Vi
−

∂Ft, y

∂Vi

)]
(ẑb1 − ŷb1) −

(
ẑb1

(
Ft, z − Ft, y

)) [
∂ẑb1
∂Vi
−

∂ŷb1
∂Vi

]
(ẑb1 − ŷb1)2 (6.6)

6.1.2 Bridle 1 derivatives as a function of the tether

Substitute equation 5.31 into equation 6.4. The bridle 1 partial derivatives as a function of tether force and
its derivatives are determined as:

∂ |Fb1|

∂Vi
=
∂
(
−Ft, y−ŷb2 |Fb2 |

ŷb1

)
∂Vi

(6.7)

=

[
−
∂Ft, y

∂Vi
−

∂ŷb2
∂Vi
|Fb2| − ŷb2

∂|Fb2 |

∂Vi

]
ŷb1 −

[
−Ft, y − ŷb2 |Fb2|

]
∂ŷb1
∂Vi

(ŷb1)2 (6.8)
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The bridle force magnitudes partial derivatives are determined as a function of the tether force and its
derivatives. The tether force is calculated in section 5.4 and in the next section the tether force partial
derivatives are determined.

6.2 Tether force partial derivatives

The partial derivatives of the tether force vector are determined from equation 5.29 as:

∂~Ft

∂Vi
=
∂~Ft

∂~rt

∂~rt

∂Vi
+
∂~Ft

∂lt

∂lt
∂Vi

+
∂~Ft

∂ |Ft |

∂ |Ft |

∂Vi
(6.9)

In this equation ∂~Ft
∂~rt

, ∂~Ft
∂lt

and ∂~Ft
∂|Ft |

are termed the ‘tether force general partial derivatives’, because these
derivatives are general for each derivative with respect to the tether force. These tether force general partial
derivatives are equal to:

∂~Ft

∂~rt
=
|Ft |

lt
,

∂ ~Ft

∂lt
= −

~rt

l2t
|Ft | ,

∂ ~Ft

∂ |Ft |
=
~rt

lt
(6.10)

Next the specific partial derivatives, the derivatives with respect to a specific variable Vi, are determined(
∂~r
∂Vi

)
,
(
∂lt
∂Vi

)
and

(
∂|Ft |

∂Vi

)
.

6.2.1 Tether position vector

The partial derivative of the tether vector with respect to an arbitrary variable is equal to the sum of the
partial derivative of the tether attachment to the ground-station and the tether-bridle attachment location:

∂~rt

∂Vi
=
∂
( ¯̄T T

E
~RT

)
∂Vi

−
∂~rtba

∂Vi
(6.11)

This partial derivative equation contains two parts, (1) the tether attachment point to the ground-station

partial derivative
(
∂
( ¯̄T T

E
~RT

)
∂Vi

)
and (2) the tether-bridle attachment point partial derivative

(
∂~rtba
∂Vi

)
. Both partial

derivatives are determined next.

Tether attachment point to the ground-station

The position of the ground attachment point is fixed in the Inertial reference frame. Hence the partial
derivative of ~RT with respect to any arbitrary variable is zero, ∂~RT

∂Vi
= 0. The tether force partial derivatives

with respect to the tether attachment point to the ground-station is reduced to:

∂
( ¯̄T T

E
~RT

)
∂Vi

=
∂ ¯̄T T

E

∂Vi

~RT +
∂~RT

∂Vi

¯̄T T
E =

∂ ¯̄T T
E

∂Vi

~RT (6.12)

The transformation tensor ¯̄T T
E is solely dependent on the Euler angles ~Θ = {Φ Θ Ψ}T , hence:

∂ ¯̄T T
E

∂Vi
=
∂ ¯̄T T

E

∂~Θ
(6.13)
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As a final partial derivative for this part of the equation, the transformation tensor partial derivatives with
respect to ~Θ = {Φ Θ Ψ}T are derived from equation 2.2 as:

d ¯̄T T
E

dΦ
=

 0 0 0
− cos Φ sin Θ cos Ψ − sin Φ sin Ψ sin Φ sin Θ cos Ψ − cos Φ cos Ψ − cos Φ cos Θ

− sin Φ sin Θ cos Ψ + cos Φ sin Ψ sin Φ sin Θ sin Ψ + cos Φ cos Ψ − sin Φ cos Θ

 (6.14)

d ¯̄T T
E

dΘ
=

 − sin Θ cos Ψ sin Θ sin Ψ − cos Θ

− sin Φ cos Θ cos Ψ sin Φ cos Θ sin Ψ sin Φ sin Θ

cos Φ cos Θ cos Ψ − cos Φ cos Θ sin Ψ − cos Φ sin Θ

 (6.15)

d ¯̄T T
E

dΨ
=

 − cos Θ sin Ψ − cos Θ cos Ψ 0
sin Φ sin Θ sin Ψ + cos Φ cos Ψ sin Φ sin Θ cos Ψ − cos Φ sin Ψ 0
− cos Φ sin Θ sin Ψ + sin Φ cos Ψ − cos Φ sin Θ cos Ψ − sin Φ sin Ψ 0

 (6.16)

Tether-bridle attachment point

The tether-bridle attachment point partial derivatives follow from equation 5.25 as:

∂~rtba

∂Vi
=
∂~rssic

∂Vi
+

∂
[

Rssic

|(~rt)∗|
((
~Rt

)∗
− ~rssic

)]
∂Vi

(6.17)

This partial derivative equation contains two distinct parts, the first being the sphere-sphere intersection
circle partial derivatives

(
∂~rssic
∂Vi

)
, which is determined next.

First part derivative equations ∂r̃tba
∂Vi

The sphere-sphere intersection circle partial derivatives
(
∂~rssic
∂Vi

)
follow from equation 5.14 as:

∂~rssic

∂Vi
=
∂~rap, b1

∂Vi
+
∂
[

db1
db1, b2

(
~rap, b1 − ~rap, b2

)]
∂Vi

(6.18)

Again this equation contains two distinct parts. The derivative of the attachment point of bridle 1 follows
from equation 5.9 as:

∂~rap, b1

∂Vi
=
∂ri, b1

∂Vi
+
∂
( ¯̄Tnet∆~rp0

)
b1

∂Vi
+
∂
( ¯̄T T

E
~R
)

∂Vi
(6.19)

In this equation the pylon-offset
(
∆~rp0

)
is constant; independent of any variable. Equation 6.19 is written

as:

∂~rap, b1

∂Vi
=
∂ri, b1

∂Vi
+
∂
( ¯̄Tnet

)
b1

∂Vi
∆~rp0b1 +

∂ ¯̄T T
E

∂Vi

~R +
∂~R
∂Vi

¯̄T T
E (6.20)

Note that ~ri, ¯̄Tnet and ∆~rp0 are denoted with subscript ()b1, because these are local beam coordinates and
hence dependent on the state of the beam. ~R and ¯̄T T

E are variables in the Inertial reference frame and inde-
pendent on the local beam coordinate system.
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The partial derivative of the bridle attachment location of the wing is only dependent on ri. The derivative
∂ri, b1

∂Vi
=

∂ri, b1

∂~ri
is given in matrix form as:

∂ri, b1

∂Vi
=
∂ri, b1

∂ri
=


∂x
∂x

∂y
∂x

∂z
∂x

∂x
∂y

∂y
∂y

∂z
∂y

∂x
∂z

∂y
∂z

∂z
∂z

 =

 1 0 0
0 1 0
0 0 1

 (6.21)

The partial derivatives of the local net transformation tensor
∂
( ¯̄Tnet

)
b1

∂Vi
is a function of the local Euler beam

transformation tensor and the Euler transformation tensor for the undeformed state, which is constant.

Hence the partial derivatives of the local net transformation tensor
∂
( ¯̄Tnet

)
b1

∂Vi
follow from equations 5.4 and

5.5 as:

∂
( ¯̄Tnet

)
b1

∂Vi
=
∂
( ¯̄T T ¯̄T0

)
b1

∂Vi
=
∂
( ¯̄T T

)
b1

∂Vi

¯̄T0 (6.22)

The Euler transformation tensor is dependent on ~θ = {ϕ ϑ ψ}T . The transformation tensor partial derivatives
with respect to ϕ, ϑ and ψ are derived from equation 2.4 as:

∂ ¯̄T T

∂ϕ
=

 0 0 0
− cosϑ sinψ sinϕ + sinϑ cosϕ − cosψ sinϕ − sinϑ sinψ sinϕ − cosϑ cosϕ
cosϑ sinψ cosϕ + sinϑ sinϕ cosψ cosϕ sinϑ sinψ cosϕ − cosϑ sinϕ

 (6.23)

∂ ¯̄T T

∂ϑ
=

 − sinϑ cosψ 0 cosϑ cosψ
− sinϑ sinψ cosϕ + cosϑ sinϕ 0 cosϑ sinψ cosϕ + sinϑ sinϕ
− sinϑ sinψ sinϕ − cosϑ cosϕ 0 cosϑ sinψ sinϕ − sinϑ cosϕ

 (6.24)

∂ ¯̄T T

∂ψ
=

 − cosϑ sinψ − cosψ − sinϑ sinψ
cosϑ cosψ cosϕ − sinψ cosϕ sinϑ cosψ cosϕ
cosϑ cosψ sinϕ − sinψ sinϕ sinϑ cosψ sinϕ

 (6.25)

The partial derivatives of the Earth transformation tensor are derived at equations 6.14, 6.15 and 6.16.
Next the derivatives of the aircraft coordinate system with respect to the Inertial reference frame (~R) is
determined. This partial derivative of ~R is solely dependent on ~R:

∂~R
∂Vi

=
∂~R

∂~R
=


∂X
∂Z

∂Y
∂X

∂Z
∂X

∂X
∂Y

∂Y
∂Y

∂Z
∂Y

∂X
∂Z

∂Y
∂Z

∂Z
∂Z

 =

 1 0 0
0 1 0
0 0 1

 (6.26)

This equation finalizes the input for the derivative ∂~rap, b1

∂Vi
(equation 6.20) and the first part of ∂~rssic

∂Vi
(equation

6.18). The second part of ∂~rssic
∂Vi

is derived as:

∂
[

db1
db1, b2

(
~rap, b1 − ~rap, b2

)]
∂Vi

=
∂
(

db1
db1, b2

)
∂Vi

(
~rap, b1 − ~rap, b2

)
+

db1

db1, b2

∂
(
~rap, b1 − ~rap, b2

)
∂Vi

(6.27)
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From equation 5.12 follows that the term
(

db1
db1, b2

)
is solely dependent on ~rap, b1 and ~rap, b2. Therefore the

derivatives given in equation 6.27 are a function of the ~rap, b and its partial derivatives only:

∂
(

db1
db1, b2

)
∂Vi

=

∂(~rap, b1−~rap, b2)
∂Vi

(
~rap, b1 − ~rap, b2

)
√(
~rap, b1 − ~rap, b2

)
·
(
~rap, b1 − ~rap, b2

) (6.28)

These partial derivatives are derived in section 6.2.1. This finalizes the derivative equation with respect
to the sphere-sphere intersection circle vector, which is the first part of the tether-bridle attachment point
partial derivative equation.

Second part derivative equations ∂r̃tba
∂Vi

The second part of these ~rtba derivative equations is given as:

∂
[

Rssic

|(~rt)∗|
((
~Rt

)∗
− ~rssic

)]
∂Vi

=

∂
(

Rssic

|(~rt)∗|

)
∂Vi

((
~Rt

)∗
− ~rssic

)
+

Rssic∣∣∣(~rt
)∗∣∣∣ ∂

((
~Rt

)∗
− ~rssic

)
∂Vi

(6.29)

In this equation:

∂
(

Rssic

|(~rt)∗|

)
∂Vi

=

∂Rssic
∂Vi

∣∣∣(~rt
)∗∣∣∣ − Rssic

∂|(~rt)∗|
∂Vi∣∣∣(~rt

)∗∣∣∣2 (6.30)

The partial derivative equations ∂Rssic
∂Vi

, ∂|(~rt)∗|
∂Vi

and
∂
(
~Rt

)∗
∂Vi

follow from respectively equation 5.13, 5.24 and
5.22:

∂Rssic

∂Vi
=

∂(Rssic)TP

∂Vi
db1, b2 − (Rssic)TP db1, b2

2
(
db1, b2

)2 (6.31)

With the top part of the equation for the sphere-sphere intersection circle equation denoted as:

(Rssic)TP =

√(
Lb1 + Lb2 + db1, b2

) (
Lb1 + Lb2 − db1, b2

) (
Lb1 − Lb2 + db1, b2

) (
Lb2 − Lb1 + db1, b2

)
(6.32)

The partial derivative of the projected tether attachment point to the ground is equal to:

∂ (Rt)∗

∂Vi
=
∂Rt

∂Vi
−
∂ ~C
∂Vi

~C · ~Rt + D
~C · ~C

− ~C ·

(
∂ ~C
∂Vi
· ~Rt + ~C · ∂

~Rt
∂Vi

+ D
)
~C · ~C − 2

(
~C · ~Rt + D

)
∂ ~C
∂Vi
· ~C(

~C · ~C
)2 (6.33)

The partial derivative of the projected tether vector is given as:

∂~r∗t
∂Vi

=
∂ (Rt)∗

∂Vi
−
∂~rssic

∂Vi
(6.34)
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Finally ∂|(~rt)∗|
∂Vi

is determined as:

∂
∣∣∣(~rt

)∗∣∣∣
∂Vi

=

∂(~rt)∗
∂Vi
·
(
~rt
)∗√(

~rt
)∗
·
(
~rt
)∗ (6.35)

This equation concludes the derivation of the tether position vector and next the tether length and force
partial derivatives can be determined.

6.2.2 Tether length and force

The tether length partial derivatives follow from the tether location vector partial derivatives and equation
5.27 as:

∂lt
∂Vi

=

∂~rt
∂Vi
· ~rt√

~rt · ~rt

(6.36)

The tether force magnitude is a function of the tether length (lt) a constant initial tether length
(
lt0

)
and a

constant spring constant (kt). The tether force is linearly related to the tether length, hence the tether force
magnitude derivatives are linearly related to the tether length partial derivatives as:

∂ |Ft |

∂Vi
= kt

∂lt
∂Vi

(6.37)

6.3 Conclusions

This chapter showed that ASWING compatible bridle force Jacobian entries can be determined analytically
as a function of (1) the local beam location at which the bridle is attached ~ri = {x y z}T , (2) the local beam
Euler angles, ~θi = {ϕ ϑ ψ}T , (3) the distance from the aircraft reference frame with respect to the Inertial
reference frame, ~R = {X Y Z}T and (4) the roll, pitch and yaw angles ~Θ = {Φ Θ Ψ}T .

The ASWING Jacobian matrix already defied entries for state vector derivatives with respect to ~ri, ~θi, ~R
and ~Θ and hence the tether-bridle Jacobian entries will be added to this Jacobian matrix. These ASWING
compatible subroutines are calculated in subroutine SETTET and subroutine SETBRI, which can be found
at Appendix C. These subroutines exclude the aerodynamic and gravitational tether contributions. These
are determined in the next chapter.





Chapter 7

Tether aerodynamic and gravitational
loads

The goal of this chapter is to include the aerodynamic and gravitational loads into the tether-bridle system.
The relative small bridles have a negligible contribution to the drag and weight of the system. However
the tether weight and drag are responsible for about one-third of the total weight and drag of the system
(wing+tether). In this chapter the tether gravitational and aerodynamic forces are derived, such that these
forces can be implemented in ASWING. The tether path and gravitational loads are determined first in
section 7.1. In section 7.2 the tether aerodynamic loads are calculated. In section 7.3 the routine to change
gravity direction is explained and finally in section 7.4 the conclusions of this chapter are drawn.

7.1 Tether gravitational loads

The tether sag is solved analytically by Noom (2013). In this model a uniform distributed load is consid-
ered. A dynamic discretized system such as described by Leuthold (2013) are more accurate. However
to gain full benefits of the dynamic discretized approach, wind shear should be taken into account. In the
current version of ASWING, wind shear is not (yet) implemented. Therefore a dynamic discretized tether
system is considered outside the scope of this thesis. First the tether path is defined and next the tether
gravitational loads are implemented in the system of equations.

7.1.1 Tether path

The tether sag model of Noom (2013) is based on distributed gravitational loads. In that case the tether path
is a function of the tether loading constant; the tether weight divided by the force in horizontal direction:

ct =
ρtπr2

t g
Ft,x

(7.1)

Where ct is the tether loading constant, ρt is the density of the tether, rt is the tether radius and Ft, x is the
tether force in x-direction. For an elevation angle βt = 30◦, the tether sag for various loading constants is
given at Figure 7.1.

65



66 Tether aerodynamic and gravitational loads

Figure 7.1: Tether sag for various ct

In this Master’s thesis, Makani Power’s M600 system is analysed. For this system the tether length is
typically 420 meter, tether force in x-directional is Ft,x > 10kN and hence the tether loading constant,
ct < 0.1. From Figure 7.1 follows that the straight tether assumption can be applied with acceptable error.

7.1.2 Tether gravitational loads implementation

With the straight tether assumptions and a constant weight distribution, the tether center of gravity is half-
way the tether length. This center of gravity position (~rt, cog)is determined as:

~rt, cog =
1
2

[
~rtba + ¯̄TE

(
~Rt − ~R

)]
(7.2)

Airborne wind systems with rigid wings, such as AmpyxPower and Makani Power, are characterized by
high lift over weight ratios (L/W) in the order of, L/W = 10 − 20 (Agten, 2012). In flight conditions
with a typical lift over weight ratio, (L/W) = 15 and a tether weight, which is half the weight of wing
(Wt = 0.5Ww), the tether weight is 2.2% with respect to the total tether force. Hence it is assumed that the
tether-bridle attachment location remains unchanged. The forces are added to the tether force as:

~Ft, new = ~Ft, old + ~Wt (7.3)

With the tether weight defined as:

~Wt = ~gmt (7.4)

7.2 Tether aerodynamic loads

The flight velocity along the tether differs along the tether length. Two initial conditions are known (1) at
the ground, the tether velocity is ~vt = 0 and at the attachment location to the wing the tether velocity is
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close to the flight velocity of the wing, ~vt ≈ ~vwing. Noom (2013) derives the tether drag analytically with
the assumptions from Argatov et al. (2009) that:

1. the apparent wind velocity experienced at the tether ~va, t increases linearly along the tether from zero
at the ground station to the magnitude of the apparent wind velocity at the kite

2. the direction of ~va, t is constant along the tether and equals the direction of ~va, t at the kite

These assumptions are valid for the straight tether and hence the tether drag is derived as:

Dt = CD,t
1
4

ltdt
1
2
ρ~v2

a (7.5)

The drag force for a point mass is determined in a similar way in ASWING. Drela (2009) gives the aero-
dynamic drag force for a point mass with effective drag area (CDA)pm as:

Dpm =
1
2
ρ
∣∣∣∣~Vpm

∣∣∣∣ ~Vpm (CDA)pm (7.6)

The subscript ()pm denotes a point mass. The effective drag area (CDA) can be written as a function of
the tether diameter, length and drag coefficient. Note the factor (1/4), between both drag equations. This
factor is related to the flight velocity along the tether. With exception to the tether attachment point to the
wing, the wind velocity experienced by the tether is lower than the wind velocity experienced by the wing.
Therefore, aerodynamic forces are reduced. The point mass routine is adjusted to include the tether drag:

Dt =
1
2
ρ
∣∣∣~va

∣∣∣~va

(CDA
4

)
t

(7.7)

In flight conditions with a typical lift over drag ratio, (L/D) = 10 and a tether drag, which is half the drag
of wing (Dt = 0.5Dw), the tether drag is 3.3% with respect to the total tether force. As with the tether
gravitational force it is assumed that the tether-bridle attachment location remains unchanged. The forces
are added to the tether force as:

~Ft, new = ~Ft, old + ~Dt (7.8)

7.3 Gravitational change

With respect to the tether and lift forces, the gravitational forces are relatively low. However, the gravity
forces are in the drag force order of magnitude. With respect to the flight velocity the tethered wing gravity
directional vector constantly changes over the flight loop. Hence, it would be useful to adjust the gravity
directional vector for each flight regime. The adjusted gravity force vector is always given in the Inertial
reference frame, hence the gravitational vector in the aircraft reference frame is determined as:


gx

gy

gz

 =

 ¯̄T T
E




gX

gY

gZ

 (7.9)

With this system the user can manipulate the direction of the gravity vector and hence simulate the flight
at which the gravity force is aligned with the flight velocity vector.
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7.4 Conclusions

In the typical M600 flight regime, the straight tether assumption is valid for tether weight and aerodynamic
forces. Readily available routines are adjusted to determine the drag forces and finally a method is imple-
mented to change the direction of gravity. With these modifications the flight along the entire flight loop
can be simulated.

In this system, the tether force is first calculated with a massless, drag-less spring as explained in chapter
5. Next the tether gravitation and aerodynamic loads are added. This finalizes the tether-bridle routine.
The modified ASWING will be termed ASWINGb, with a b for ‘bridled’. The tether aerodynamic and
gravitational force additions are programmed in subroutine SETWGTTET and can be found at Appendix C.



Part III

Model Verification and Validation
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Chapter 8

Tether and bridle force verification

It is the goal of this chapter (1) to verify the tether and bridle force magnitudes and their position in the
state matrix x and (2) to verify the Jacobian entries and its position in the Jacobian matrix. In section 8.1
the ASWINGb bridle force additions are verified by simulating the bridle force with weights in the original
program ASWING. Next a more quantitative approach is taken in section 8.2 by setting up the force and
moment equilibrium equations. In section 8.3 tether force constraint is verified. These verifications all
assume that tether force and bridle force are determined appropriately in ASWINGb. The verification of
the tether and bridle force and the Jacobian entries are given in section 8.4. Section 8.5 and 8.6 respectively
verify that the tether aerodynamic and gravitational loads are appropriately determined in ASWINGb.

8.1 Bridle force verification with ASWING weights

For this analysis the ASWING standard input file hawk.asw is used to verify that bridle forces follow
correctly from the tether forces and additionally verify that the bridle forces are implemented at the right
position in the Newton system of the discrete equation set; that is, the position in state matrix x. The un-
modified ASWING program will be used in this verification case. The input file hawk.asw can be found
in Appendix B.2.

In ASWING the standard hawk.asw file is adjusted by adding two equal point mass weights of (Wpm =

150N) at about half-span location. These weights simulate the bridle forces.

Additionally, in ASWINGb the hawk.asw input file is adjusted by attaching two bridles at the same lo-
cation as the point masses. These bridles have a length equal to four times the full span of the aircraft to
ensure that the bridle force vector and the gravity vector are nearly aligned. With this set-up the bridle
forces in gravitational direction is Fb, ZE = 0.992 |Fb|. Next the tether force is increased to |Ft | = 300N
with the constraint in the ASWINGb constraint GUI. For this symmetrical aircraft with symmetrical tether-
bridle system, the tether force is equally divided over both bridles such that Fb1, z = Fb2, z ≈ |Fb| ≈ 0.5 |Ft |.
For both aircraft set-ups (hawk.asw with point masses and hawk.asw with bridles) the aircraft flight speed
is VIAS = 0m/s, hence aerodynamic forces are negligible1.

1ASWING and ASWINGb always set the initial airspeed to a minimum VIAS = 10−6m/s to avoid numerical errors. However for
VIAS = 10−6m/s aerodynamic forces are negligible
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For both set-ups the deflection of the main wing is measured and given in Figure 8.1. In this Figure y is
the wing span location and δ is the deflection. The deflections due to point masses in ASWING and bridle
forces in ASWING are equal.

Figure 8.1: Bending of hawk’s main wing for a wing loaded with point masses and with bridles

8.2 Force and moment additions to x

The bridle forces and derivatives are added in the Newton system of the discrete equation set. To verify
this part of the code the sum of forces and moments are determined for two cases.

1. An anchored flying wing with no tether and bridle forces and moments,

2. an anchored flying wing with tether and bridle forces and moments.

In case 2 the sum of forces and moments should be equal to the case 1 sum of forces and moments plus the
forces and moments induces by the bridles. The force and moment equations are verified with analytical
equations at which the bridle forces are input values determined with ASWINGb. This sum of forces or mo-
ments should be equal to the the sum of forces and moments of the unbridled wing plus the bridle additions.

A variety of tests cases is run with different wind velocities, angles-of-attack, center of gravity of the
aircraft and Euler angles. These characteristics are given in Table 8.1.

Table 8.1: Flight parameters for ASWINGb bridle force verification for analytical determined force and mo-
ment equilibria

VIAS [m/s] α [deg] X [m] Y [m] Z [m] Φ [deg] Θ [deg] Ψ [deg]
1 50.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0
2 50.0 5.0 0.0 5.0 0.0 0.0 0.0 0.0
3 50.0 5.0 10.0 5.0 0.0 0.0 0.0 0.0
4 60.0 5.0 10.0 5.0 1.0 0.0 0.0 0.0
5 60.0 5.0 10.0 5.0 1.0 10.0 0.0 0.0
6 60.0 5.0 10.0 5.0 1.0 10.0 5.0 0.0
7 60.0 5.0 10.0 5.0 1.0 10.0 5.0 12.0

8.2.1 Force additions to x

The sum of forces for the bridled case is equal to the sum of forces of the unbridled case plus the bridle
additions:

∑
~Fb f =

∑
~Fu f +

∑
~Fb (8.1)
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In this equation, ()b f denotes bridled flight, ()u f unbridled flight and ()b bridle forces and moments.

For these seven cases the sum of forces in x, y and z-direction are determined for the unbridled case and
the bridled case. The results in y-direction are visualized with a bar-chart in Figures 8.2a and 8.2b.
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Figure 8.2: Comparison sum of forces in y-direction for the unbridled and bridled case

In the first 4 test cases the sum of forces in y-direction for the unbridled case is close to zero. In case
5-7 a roll angle Φ = 10◦ is applied and forces in y-direction increase. The bridle y-forces are opposite in
direction and different in magnitude. Therefore the total sum of forces for the bridled wing is different with
respect to the unbridled wing. The sum of forces for the unbridled flying wing plus the additional bridle
forces is equal to the ASWINGb determined sum of forces in y-direction for the bridled case as shown in
Figure 8.2b.

The force equilibrium graphs in x and z-direction show equal results and can be found in Appendix D.1.
This verifies that the forces in x, y and z-direction are appropriately added to the Newton system of equa-
tions.

8.2.2 Moment additions to x

The sum of moments for the bridled case is equal to the sum of moments for the unbridled case plus the
moments induced by the bridles. These moments are split in two parts; (1) the first part ~Mb contains the
moments induced at the bridle attachment point of the wing. This moment is created by the bridle force in
combination with the rigid pylon offset to the wing. The second part ~Fb × ~rbi is the moment induced due
to bridle force and the offset between the wing attachment point and the location at which the moment is
determined.

In an equation:

∑
~Mb f =

∑
~Mu f +

∑
~Mb +

∑
~Fb × ~ri, b (8.2)

To determine the correct moments: (1) the moments induced by the bridles ~Mb should be properly loaded
into the Newton system, (2) the bridle forces ~Fb should be properly loaded into the system of equations
and (3) these bridle forces should be loaded at the proper location into the Newton system

(
~ri, b

)
. The

components of the moments about the z-axis are given in Figures 8.3a and 8.3b. The moments of test case
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Figure 8.3: Comparison sum of moments about z-axis for the unbridled and bridled case

2 and test case 3 are split into the components given at equation 8.2. The moments about the z-axis are
mainly a results of bridle components.

From Figure 8.3b follows that the sum of moments determined by ASWINGb is equal to the sum of
moments about the z-axis determined analytically. The moment equilibrium graphs about the x and y-axis
show equal results and can be found in Appendix D.1. This verifies that the forces and moments in x, y
and z-direction are appropriately added to the Newton system of equations.

8.3 Tether force constraint and equilibrium set-up

The previous section verified that the bridle forces are appropriately loaded into the Newton system of
equations. The next step is verifying the tether force constraint and resulting force and moment equilib-
rium equations. For this verification the ASWING standard file for a flying wing (fw.asw) is adjusted for
tethered flight. This input file can be found in Appendix B.3.

The ASWING module for force equilibrium equations is modified, such that bridle forces are included as
well. In this verification case, three different flight modes are used: anchored mode with zero tether force
|Ft | = 0.0N, the anchored mode with tether force |Ft | = 4000.0N and force equilibrium mode with

∑ ~F = 0
and |Ft | = 4000.0N. In ASWINGb the anchored mode means that linear and angular accelerations are re-
spectively ~a0 = 0 and ~α0 = 0 and sum of force is not necessarily zero. Anchored mode is best comparable
with a wind tunnel test in which the model is fixed.

For all three flight modes, the flying wing flight speed is VIAS = 30m/s, with angle-of-attack αre f = 2◦.
The tether spring constant is kt = 100N/m. The bridles are symmetrically attached at half wing span
(b = 24m). The tether is attached to the ground at ~RT = [0.0 0.0 − 75.0]. The aircraft reference frame is
located at ~R = [0.0 0.0 0.0].

For the second mode (anchored mode with |Ft | = 4000.0N) the ASWINGb constraint GUI is used with
constraint |Ft | = 4000.0N → ZE . This means that ASWINGb calculates a solution at which |Ft | = 4000.0N
by changing ZE (the Z-coordinate of the aircraft reference frame). From Table 8.2 follows that ZE = 40.0m.
This corresponds to Ft = kt∆Z.
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For the third mode
(∑ ~F = 0.0N, |Ft | = 4000.0N

)
the force equilibrium is given as:

∑
~F = ~Faero + ~Fmass + ~Ft + ~Facc (8.3)

In this equation, ~Faero are forces due to aerodynamic loads, ~Fmass are forces due to mass, ~Ft are tether
forces and ~Facc are forces induced by accelerations. The sum of forces is evaluated in x, y and z-direction.

With the ASWINGb determined forces (Table 8.2) and ASWINGb determined components: L = 9857.0N,
L/D = 32.65, α = 2◦, U̇x = −0.07040m/s2 and U̇z = −0.06154m/s2, the sum of forces equals:

∑
Fx =

D
L

L − sinα (W + |Ft |) − U̇x
W
g

= −1.3 (8.4)∑
Fy = 0.0 (8.5)∑
Fz = − cosα (W + |Ft |) + L − U̇z)

W
g

= 0.0 (8.6)

The sum of forces in x-direction is unequal to zero due to rounding errors. The lift drag ratio is given with
an 0.01 accuracy. Hence the drag force is determined with an error ∆D of

D = D ± ∆D =
D
L

L ± 0.005L = D ± 49.3N (8.7)

Table 8.2: ASWINGb tether force verification with sum of forces

ZE [m]
∑

Fx [N]
∑

Fy [N]
∑

Fz [N]
Anchored mode, |Ft | = 0.0N 0.0 -42.73 0.00 3997.0
Anchored mode, |Ft | = 4000.0N 40.0 -42.33 0.00 -38.43∑ ~F = 0.0N |Ft | = 4000.0N 40.0 0.00 0.00 0.00

From equation 8.4 - 8.7 follows that the force equilibrium equations are properly set-up with the newly
implemented tether and bridle forces, and hence the tether force constraint and the force and moment
equilibrium set-up is verified.

8.4 Verification tether and bridle force calculation

The previous sections verified that bridle forces are appropriately loaded into the Newton system of equa-
tions for a given tether force. This section will verify that tether forces and Jacobian entries are calculated
correctly by ASWINGb.

The bridle forces are a function of the distance between the aircraft - and Inertial reference frame
(
~R
)
, the

roll, pitch and yaw angles
(
~Θ
)
, the location of the attachment point of the bridles

(
~ri
)

and the local beam

Euler angles
(
~θi

)
. With two bridle attachment locations, 18 variables will influence the Jacobian entries.

Three variables from ~R and ~Θ and six variables from ~ri and ~θi. Each variable contributes to the force in x,
y and z direction. Hence 18 · 3 = 54 different Jacobian entries are specified in ASWINGb. From chapters
5 and 6 follow that these 54 Jacobian entries are dependent on the tether force and its derivatives. For a
given tether force and its derivatives the bridle forces and the bridle Jacobian entries are determined with
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the same equations.

In this section first the tether force and its derivatives with respect to ~R, ~Θ, ~ri and ~θ are verified. Next the
general equations are verified, which calculate the bridle forces and their derivatives from the tether force
and its derivatives.

To verify the output an independent MATLAB program is written. The integrated MATLAB routine solve
calculates the bridle forces from equation 5.15. The integrated MATLAB routine diff calculates the
Jacobian entries which are explained in chapter 6.

8.4.1 Tether forces as a function of ~R

The influence of the distance between the aircraft - and Inertial reference frame ~R with respect to the
tether force and its derivatives is determined with the ASWING standard hawk.asw input file. This file
can be found in Appendix B.2. To determine only the ~R influence the tethered aircraft has an infinitely
stiff main wing, and additionally the roll, pitch and yaw angles are equal to zero

(
~Θ = 0

)
. The bridles are

attached at about half-way span at ~rap, b1 = {0.00, −12.40, 0.00}T and ~rap, b2 = {0.00, 12.40, 0.00}T .
The tether-bridle attachment point with zero tether force is equal to ~rtba = {0.00, 0.00, −10.00}T . The
tether attachment point to the groundstation is ~RT = {0.00, 0.00, −300.00}T , hence the unstressed tether
lengths is lt, 0 = 290.00m. The tether spring constant used in this verification case is kt = 100N/m.

With these simplifications the tether locational vector follows from equations 5.7 - 5.9 as:

~rt = ~RT − ~R − ~rtba (8.8)

Note that the Earth transformation tensors are left outside equation 8.8, because the Euler angles are zero
and hence the Earth transformation tensor is a unity matrix.

Another simplification is needed to determine the influence of ~R analytically. The tether-bridle attachment
point is fixed in the aircraft reference frame and assumed independent of ~R. With these simplifications the
tether force is solely a function of a constant ~RT , a constant ~rtba and a varying ~R. The tether force is now
determined as:

|Ft | = kt

(√(
~C − ~R

)
·
(
~C − ~R

)
− lt, 0

)
(8.9)

With constant ~C as:

~C = ~RT − ~rtba (8.10)

Tether force as a function of X

The ASWINGb, MATLAB and analytically calculated tether force and its derivative with respect to X are
given in Figures 8.4a and 8.4b.

At X = 0.0m, |Ft | = 0.0N, the analytical results are equal to the MATLAB and ASWINGb results, because
equal ~rtba is used. At X = 100.0m the hand calculated tether force |Ft | = 1, 675.7N, whereas ASWINGb
and MATLAB determine both |Ft | = 1, 6228N; a 3.3% difference. The tether-bridle attachment point deter-
mined by ASWINGb and MATLAB is ~rtba = {−3.16 0.00 − 9.49}, whereas the analytical method applied
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Figure 8.4: Tether force and its derivative versus X

~rtba = {0.00 0.00 −10.00}.

The tether force derivatives with respect to X are given in Figure 8.4b. This Figure shows that the ASWING
Jacobian

(
∂|Ft |

∂X

)
is equal to the Jacobian determined with the MATLAB integrated diff routine.

Tether force as a function of Y

The ASWINGb calculated tether force and its derivative with respect to Y are given in Figures 8.5a and
8.5b. The analytical results are equal to the MATLAB and ASWINGb results, because a shift of Y does
not change the position of ~rtba.
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Figure 8.5: Tether force and its derivative versus Y

Tether force as a function of Z

The ASWINGb calculated tether force and its derivative with respect to Z are given in Figures 8.6a and
8.6b. The analytical results are equal to the MATLAB and ASWINGb results, because a shift of Z does
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not change the position of ~rtba.
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Figure 8.6: Tether force and its derivative versus Z

The tether force |Ft | and Z are positively linearly related, because the tether positional vector xt = yt = 0
and tether force is given as:

|Ft | = kt

( √
(ZT − Z − ztba) · (ZT − Z − ztba) − lt, 0

)
= kt

(
ZT − Z − ztba − lt, 0

)
(8.11)

In this verification case ZT , ztba and lt, 0 are kept constant and hence the tether force is linearly related with
respect to position Z. In this case the tether force derivative with respect to Z is equal to the spring constant
kt = 100N/m.

∂ |Ft |

∂Z
= kt (8.12)

8.4.2 Tether forces as a function of Euler angles
(
~Θ
)

For the verification analyses for the roll, pitch and yaw angles the ASWING input file for the rigid hawk
is used (Appendix B.2). The rigid hawk is applied to ensure zero wing bending and torsion. The wing
flexibility does not influence the tether force and its derivative and hence the Euler angles’ influences can
be determined independently. As with the verification for ~R the MATLAB integrated solve and diff
routines are used to determine tether forces and derivatives. With an analytical method a more intuitive
approach is added.

Tether force as a function of bank angle (Φ)

For the analytical method the tether-bridle attachment point ~rtba depends on the bank angle transformation
tensor as:


xtba

ytba

ztba

 =

 1 0 0
0 cos Φ sin Φ

0 − sin Φ cos Φ




xtba, 0
ytba, 0
ztba, 0

 (8.13)
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In this equation the subscript ()0 denotes the zero tether force case. The ASWINGb, MATLAB and analyt-
ically calculated tether force and its derivative with respect to the bank angle are given in Figures 8.7a and
8.7b.
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Figure 8.7: Tether force and its derivative versus Φ

For bank angles |Φ| < ±90◦, the analytically calculated tether force and its derivative are close to the tether
force calculated by ASWINGb and MATLAB. For increasing bank angles the tether-bridle attachment
points determined by equation 8.13 are not between the aircraft and the tether-bridle attachment point,
whereas ASWINGb and MATLAB determine the tether-bridle attachment point between the aircraft and
the tether attachment to the ground. Hence for |Φ| > ±90◦ the analytical method is invalid. In the ex-
treme case Φ = ±180◦, the aircraft is flipped upside-down and hence the tether-bridle attachment point
determined with equation 8.13 is mirrored with respect to the zero bank angle case and also mirrored with
respect to the tether-bridle attachment point determined with MATLAB and ASWINGb. The tether-bridle
attachment points as determined with equation 8.13 are visualized in Figure 8.8.

(a) Φ = 0◦ (b) 45◦ (c) 90◦ (d) 135◦ (e) 180◦

Figure 8.8: Position of the analytically determined tether-bridle attachment point for various bank angles Φ

From this Figure follows that the tether forces determined analytically for |Φ| < ±90◦ are physically impos-
sible. Most important, the ASWINGb and MATLAB calculated tether force and its derivative with respect
to the bank angle are equal.
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Tether for as a function of elevation angle (Θ)

For the analytical method, assume that the tether-bridle attachment point ~rtba will change according to:


xtba

ytba

ztba

 =


xtba, 0
ytba, 0
ztba, 0

 +

 cos Θ 0 sin Θ

0 1 0
− sin Θ 0 cos Θ




xi + ∆xp

0
zi + ∆zp

 (8.14)

In this equation~ri +∆~rp is the distance from the aircraft reference frame R to the bridle attachment locations
(Euler angles relative to ~R). The tether-bridle attachment y-position is assumed independent of the elevation
angle. Figures 8.9a and 8.9b show the tether force and its derivative with respect to the elevation angle.
From these Figures follow that the ASWINGb and MATLAB calculated tether force and its derivatives
are equal and analytical results are slightly off with respect to the ASWINGb and MATLAB determined
values.
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Figure 8.9: Tether force and its derivative versus Θ

Tether force as a function of yaw angle (Ψ)

For the analytical method, assume that the tether-bridle attachment point ~rtba will change with the yaw
angle transformation tensor as:


xtba

ytba

ztba

 =

 cos Ψ sin Ψ 0
− sin Ψ cos Ψ 0

0 0 1




xtba, 0
ytba, 0
ztba, 0

 (8.15)

The tether force and its derivative with respect to the yaw angle are given in Figures 8.10a and 8.10b.
For large positive or negative yaw angles (|Ψ| > ±90◦) the analytically calculated tether forces are slightly
different with respect to the ASWINGb and MATLAB calculated tether forces, because the tether-bridle
attachment location is slightly different than proposed by equation 8.15. Most important, the ASWINGb
and MATLAB calculated tether force and its derivative with respect to the yaw angle are equal.

8.4.3 Tether forces as a function of local beam variables ~ri and ~θi

For this analysis the standard ASWING input for a flying wing is adjusted for tethered flight. This
ASWINGb input file can be found in Appendix B.3. The tether-bridle characteristics are given in Table
8.3.
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Figure 8.10: Tether force and its derivative versus Ψ

Table 8.3: Tether-bridle characteristics for flying wing (Appendix B.3)

~ri, b1 = {0.0, −6.0, 0.0}T [m]
~rap, b1 = {−6.0, −12.0, 6.0}T [m]
∆~rp, b1 = {−6.0, −6.0, 6.0}T [m]
lb1 = 22.4 [m]

~ri, b2 = {0.0, 6.0, 0.0}T [m]
~rap, b1 = {12.0, 12.0, −12.0}T [m]
∆~rp, b1 = {12.0, 6.0, −12.0}T [m]
lb2 = 17.0 [m]

~RT = {0.0, 0.0, 75}T [m]
kt = 100.0 [N/m]
lt, 0 = 63.0 [m]

In the previous sections each individual parameter could be varied independently to determine its effect
on the tether force. Unfortunately this approach is impossible for a flexible wing and each beam variable
is dependent on wing bending flexibility effects and thus airspeed. To verify the tether force for the local
beam variables ~ri and ~θi the wing is flown at different airspeeds. The tether force as a function of flight
speed is given in Figure 8.11. These tether forces are determined with constant ~R and ~Θ. Next the tether
force derivatives with respect to local beam coordinates

(
~ri
)

and local beam Euler angles
(
~θi

)
are determined

.

Tether force derivatives with respect to local beam coordinates ~ri

With increasing airspeed, the lift force increases, which increases wing flexibility effects. This wing bend-
ing influences the tether force. Recall that the tether force is determined from the locational difference
between the tether-bridle attachment point and the tether attachment at the ground. The wing bending and
torsion influence the position of the tether-bridle attachment point. The tether force derivatives with respect
to the local beam coordinates ~ri, b1 and ~ri, b2 are given in Figures 8.12a, 8.12b and 8.12c.

Bridle 1 is attached at negative xi, b1 and yi, b1, whereas bridle 2 is attached at positive xi, b2 and yi, b2. The
tether-bridle attachment point is in between these bridle attachment points at the wing. Moving a bridle
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Figure 8.11: Tether force versus air speed for flexible flying wing

attachment point towards the tether-bridle attachment point will decrease the tether force and vice versa.
This is shown in Figures 8.12a and 8.12b; bridle 1 is characterized by a negative ∂|Ft |

∂xi, b1
and ∂|Ft |

∂yi, b1
, whereas

bridle 2 is characterised by a positive ∂|Ft |

∂xi, b2
and ∂|Ft |

∂yi, b2
. For bridle 1 the partial derivative with respect to

zi, b1 is close to the spring constant, which means that a difference in zi, b1, will results in an almost equal
difference in ztba. It is interesting to note that the tether force derivative with respect to zi, b2 is close to
zero. The bridle 2 attachment z-position is close to the tether-bridle attachment z-position. The x and y
differences between ~rap, b2 and ~rtba are relatively large and hence an increment in zi, b2 has a small influence
on ztba.

Most important: for all points the MATLAB determined Jacobians are equal to values determined by
ASWINGb.

Tether force derivatives with respect to local beam Euler angles ~θi

The bridle-attachment location is determined as: (1) determine local attachment location at the wing
(
~ri
)
,

and next (2) multiply local Euler angles with the rigid pylon offset
(
∆rp

)
. This rigid pylon dimensions are

given in Table 8.3 and the tether force derivatives with respect to the local beam Euler angels are given in
Figure 8.13a, 8.13b and 8.13c.

For all points the MATLAB determined derivatives are equal to the derivatives calculated with ASWINGb.

8.4.4 Bridle forces as a function of tether force

The previous sections verified that the tether force magnitude and its derivatives are determined correctly
by ASWINGb. This section will verify that the bridle forces and their derivatives follow correctly from the
tether force.

The tether force vector is determined from the tether positional vector and the tether force magnitude, see
equation 5.29. This tether force vector is an input for the bridle force magnitude and subsequently for bri-
dle force vectors, see equations 5.30, 5.31 and 5.32. To verify that these calculation steps are appropriately
implemented in the ASWINGb code, the bridle force vectors as a function of the tether force magnitude
are given in Figures 8.14a, 8.14b and 8.14c.
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Figure 8.12: Tether force derivative with respect to local beam coordinates

From these figures follows that the tether x and y forces are relatively small compared to the tether force in
z-direction. This is caused by the small x and y directional components of the tether; the aircraft is almost
straight above the tether attachment at the ground station. The bridle force in x and y direction are almost
equal in magnitude, but opposite in direction. The bridle 2 z-component is relatively small compared to the
bridle 1 and tether force component in z-direction, because the z-difference between the bridle attachment
point and the tether-bridle attachment location is relatively small. Hence bridle 1 takes most of tether loads.

The sum of forces in x, y and z are all equal to zero and most important, the tether and bridle force
components determined with ASWINGb are equal to the force components determined with MATLAB.

8.4.5 Bridle force Jacobian entries

The bridle Jacobian entries are a function of tether force
(
~Ft

)
, the tether force derivatives

(
∂~Ft
∂Vi

)
, the bridle

attachment point
(
~rap

)
and the tether-bridle attachment point

(
~rtba

)
. The individual input is all verified

in the previous sections. Finally the equations are verified to determine the bridle force derivatives from
all individual components (equations 6.1, 6.2, 6.6 and 6.8). The derivative with respect to any arbitrary
variable, ~R, ~Θ, ~ri, b1, ~ri, b2, ~θi, b1 or ~θi, b2, can be used to verify this part of the ASWINGb code. The bridle
force derivatives with respect to the bridle 1 x position at the wing

(
xi, b1

)
are given in Figures 8.15a, 8.15c

and 8.15c.
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Figure 8.13: Tether force derivative with respect to local beam Euler angles

These Figures show the bridle force derivatives determined with ASWINGb are equal to the values deter-
mined with MATLAB and hence this final part of the code is verified as well. For redundancy the other
bridle force Jacobian entries are verified as well. These results can be found in Appendix D.2.

8.5 Implementation of tether aerodynamic drag force

For the verification of the tether aerodynamic drag the M600 configuration is used as given in Appendix
B.4. For a M600 representative tether with tether diameter dt = 25mm, tether length lt = 400m and tether
effective drag area (CDA)t = 8.00m2 the drag force is determined with equation 7.7 as Dt = 4410.0N.

In ASWINGb the analysis is run twice. Once excluding the tether drag and once with tether drag included.
The difference in the sum of forces in x-direction (∆

∑
Fx) should be equal to tether drag force. The sum

of forces in x-direction are determined by ASWINGb as: ∑
Fx

(CDA)t = 0.00m2 8,582.0
(CDA)t = 8.00m2 12,990.0
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Figure 8.14: Tether and bridle force vector verification

The difference in sum of forces in x-direction is ∆
∑

Fx = 4408.0N, which is 99.95% with respect to the
hand calculated drag force.

8.6 Implementation of tether gravity

In case Euler angles are equal to zero,
(
~Θ = 0

)
, gravitational forces are aligned with the aircraft z-axis. The

ASWINGb simulation is run with and without tether weight. The tether-bridle connection and the bridle
wing connection is free to rotate around all axis, hence the additional tether weight does not create any
moments. Only the tether force in z-direction is changed as:

Ft, z

Wt = 0.00N -154,600.0
Wt = 4, 000N -150,600.0

The tether force difference in z-direction is ∆Ft, z = 4000N, which is equal to the tether weight. The
negative tether force is less, because part of the aerodynamic lift forces are balanced with the tether weight.
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Figure 8.15: Verification bridle force Jacobian entries

8.7 Conclusions

The bridle force magnitudes and position in the state matrix are verified. Additionally the Jacobian entries
are verified for all independent variables which influence the bridle force. Also the tether-force constraint
and the implementation of the tether aerodynamic and gravitational loads are verified. These verification
cases give confidence in the program and to increase confidence more, wind tunnel tests are used for
validation.



Chapter 9

Wind tunnel test

It is the goal of this chapter to validate the dynamic aero-elastic modes of the ASWING tether-bridle
addition with a wind tunnel test. Many different dynamic aero-elastic modes exist and the validation of
all individual modes with wind tunnel data is outside the scope of this research. The tether and bridles
influences of one relatively simple wing configuration are examined. As a benchmark, first this model is
tested without the tether-bridle system. Second the bridles and tether are attached. The wind tunnel results
are compared to the ASWING and ASWINGb results. In section 9.1 the wind tunnel is briefly described.
The design of the wind tunnel model is explained in section 9.2. The wind tunnel model weights and
stiffnesses are validated in section 9.3. In section 9.5 the results of the wind tunnel test are given and
finally in section 9.6 the conclusions are drawn.

9.1 Wind tunnel description

The Delft University of Technology (TU Delft) low speed low turbulence wind tunnel (LLT) has a test
section of 1.80 meter wide, 1.25 meter high and 2.60 meters long. The low turbulence intensity ( 0.015%
at 20 m/s to 0.07% at 75 m/s (Aerodynamics Research Group)) make this wind tunnel very suitable to
determine 2D airfoil lift curve slopes. Hence wind turbine blade and airfoil design are an ongoing research
at this wind tunnel. A picture of this wind tunnel is shown in Figure 9.1.

The TU Delft focusses on many field of research, such as but not limited to: ‘research on laminar air-
foils for sail planes and wind turbines’, ‘boundary layer suction’, ‘flow control of separation on wing-flap
systems’ and ‘education: analysis on airfoils, wings and aircraft models with propeller propulsion’ (Aero-
dynamics Research Group).

This wind tunnel is chosen, because of its relative high maximum velocity (Vmax, LLT = 100m/s) and
additionally two movable wing tip constraints can be added. These constraints limit the vibrational motion
to about 5mm and hence will prevent the wing from destructive failure. The wind tunnel width, which is
1.80m should be sufficiently large for the wind tunnel model.

9.2 Design of the wind tunnel model

The design requirement for the wind tunnel model are summarized as:

87
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Figure 9.1: TU Delft LLT with 2D test set-up

The model

1. should be able to resist the loads at VIAS = 80m/s with α = 10◦,

2. may not cause any damage to the wind tunnel in case flutter strikes,

3. should show aero-elastic modes at low wind speeds,

4. should be easy to build,

5. should be easily transportable from California to Delft.

To satisfy requirement 4, a straight, symmetrical, single airfoil, 1.20m span wing is chosen as a starting
point. Requirement 1 and 3 are a possible set of conflicting requirements; a stiff and strong wing can cope
with the loads, but is less susceptible for aero-elastic modes. To satisfy both requirement a specific airfoil
design and fibre lay-up are designed as described in the next section.

9.2.1 Airfoil design

In general; long, slender, thin wings with a center of gravity either aft or forward the aerodynamic center
are more susceptible to any dynamic or static aero-elastic modes. With these considerations and to satisfy
the easy to build requirement, a relatively thin off the shelf available NACA0012 airfoil profile is chosen,
see Figure 9.2. The lift and drag curve for Reynolds numbers 150,000 - 350,000 are created with the Java-
foil web applet (Hepperle, 2006) and given in Figure 9.3. With a characteristic chord c̄ = 3” (76.2mm),
these Reynolds numbers correspond to a wind velocity range Vw = 30m/s − 65m/s.

Fiber lay-up

In section 3.3.1 several different methods are explained to determine material stiffnesses for given fibre
lay-up. To calculate the stiffnesses for the wind tunnel model, the Hart-Smith method is considered the
most appropriate method, because of its simplicity with respect to CLA and its accuracy in case the lay-up
consists of only 0/90 and 45/45 layers, which is the case for the wind tunnel model.
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Figure 9.2: NACA0012 airfoil
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Figure 9.3: Aerodynamic characteristics NACA0012 airfoil

Airfoil Properties

The wind tunnel model should not break in case of flutter. To satisfy this requirement the wing tip move-
ment is restricted by thin walled airfoil shaped steel constraints. The wing tip upward - and downward
movement is restricted to a few millimetre. However in case of unexpected destructive failure, this should
cause the minimum damage possible. Highly brittle carbon fibres will splinter. Glass fibre as well, how-
ever in a less extend. Kevlar fibres are ductile and hence will not splinter apart after destructive failure.
A lightweight wing is more susceptible to aero-elastic modes, and hence the main disadvantage of Kevlar
with respect to carbon fibre is its lower stiffness-density. To satisfy the safety and the susceptibility to
aero-elastic modes a hybrid lay-up is chosen. From the surface to the foam:

For y = 0.0b − 0.6b For y = 0.6b − 1.0b
- 2 layers 0.0889 mm Kevlar 0/90 - 2 layers 0.0889 mm Kevlar 0/90
- 2 layers 0.2000 mm Carbon unidirectional - 1 layer 0.2000 mm Carbon unidirectional
- 2 layers 0.0889 mm Kevlar 0/90 - 2 layers 0.0889 mm Kevlar 0/90
- 1 layer Glass - 1 layer Glass

Kevlar is abrasive resistant. The outermost thin Glass layer is (easier) sand-able and added for a smooth
surface finish and a solid glue connection with the rods (explained in section 9.2.2). This Glass layer is
thin and no additional stiffness/strength is assumed from this layer. Two unidirectional carbon fibres add
strength to the wing from the root to the bridle connection at about half-way span, whereas one layer unidi-
rectional layer is sufficient from about half-way span towards the tip. These carbon layers are sandwiched
between two layers Kevlar 0/90.

This fibre lay-up results from the combination of requirement 1 ‘the model should be able to resist the
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loads at VIAS = 80m/s with α = 10◦’ requirement 2 ‘the model may not cause any damage to the wind
tunnel in case flutter strikes’ and requirement 3 ‘The model should show aero-elastic modes at low wind
speeds’. The unidirectional Carbon and the 0/90 Kevlar add strength to take up bending loads, whereas
these layers minimally increase the torsional stiffness. Additionally the ductile Kevlar fibres keep the wing
together in case of destructive failure. The resulting properties are summarized in Table 9.2. The relevant
material characteristics are given in Table 9.1 (NorthwestFoam.com, 2007; AircraftSpruce; FlyingFoam).

Table 9.1: Material properties used for wind tunnel model

Symbol Description Kevlar Carbon surfboard Unit
ρ density 1,373.0 1,271.1 35.2 [kg/m3]
E Youngs modulus of elasticity 131.0 230.3 <0.01 [GPa]

Table 9.2: Airfoil characteristics wind tunnel model

Symbol Description Value Unit
y = 0.0(b/2) − 0.6(b/2) y = 0.6(b/2) − 1.0(b/2)

W weight per unit span 1.6843 1.2968 [N/m]
ncg n-position center of gravity 0.0000 0.0000 [m]
ccg c-position center of gravity 0.0370 0.0369 [m]
nea n-position elastic center 0.0000 0.0000 [m]
cea c-position elastic center 0.0376 0.0376 [m]
EInn bending stiffness about n-axis 1,349.9 1,171.8

[
N/m2

]
EIcc bending stiffness about c-axis 103.8 63.1940

[
N/m2

]
GJ torsional stiffness 11.4 7.6040

[
N/m2

]
EA extensional stiffness 9.1477·106 5.5692 ·106 [N]
iccg weight-inertia/span about c-axis 1.6913·10−4 1.2599·10−4 [N · m]
inng weight-inertia/span about n-axis 0.0074 0.0055 [N · m]

9.2.2 Weight-rod design

The straight, symmetrical, single airfoil, 1.20m span wing is stable in case no modifications are made.
Therefore aero-elastic modes are induced by (1) shifting the airfoil center of gravity aft and (2) placing
mass inertia behind the wing’s aerodynamic center. The mass (inertia) is induced with a glued rod at the
wing, which is oriented towards the aft. As a second purpose the bridles could be attached to these rods.
This section describes this weight-rod design, which should decrease the flutter speed. The number of
weights, the magnitude of the weights and the location of the weights are determined in this section.

Number of weights

The number of weights along the wing span is varied between 38 and 2. In the 38 weights case the weights
are evenly distributed along the span. The weights are removed from the root of the wing. Hence in the 2
weights case there is one weight at each wing tip. The flutter speed as a function of the number of weights
is given in Figure 9.4a. In each case, the magnitude of each point mass weight is Wpm = 0.12N and located
at xpm = 15cm from the airfoil aerodynamic center.

As shown in Figure 9.4a the flutter speed is slightly dependent on the number of weights. For ease of
manufacturing a design with four weights is used. The analyses of the remaining of this chapter are
performed for a wing with four point mass weights.
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Figure 9.4: Flutter speed as a function of the weights

Position of weights

The wing is more susceptible to flutter the further aft the weights are attached. The x-position of the
weights is varied from xpm = 10cm to xpm = 35cm behind the quarter chord line. The flutter speed as a
function of the position of the weights is given in Figure 9.4b.

As shown in Figure 9.4b, the further aft the weights, the lower the flutter speed. Hence the weights should
be positioned as far aft as practically possible.

Magnitude of weights

Without weight no flutter will occur for this specific wind tunnel model. With (too) heavy weights; (1) the
wing may break due to its own weight and (2) the high wing mass inertia stabilizes the wing and hence
increases the flutter speed. The magnitude of each weight is varied from Wpm = 0.01N to Wpm = 0.30N.
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Figure 9.5: Flutter speed as a function of the magnitude of weights

Figure 9.5 shows that small magnitude weights result in the lowest flutter speeds. These small weights are
practically impossible, because the rod should be able to transport the bridle forces to the wing.
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A lightweight, strong, thin and stiff carbon rod is chosen as the optimum. The carbon rod is 30cm long and
weights about 20g. In ASWINGb this rod is simulated as a 0.2N point mass at xb = 15cm.

9.2.3 Tether-bridle system

The tether is simulated with a spring scale and the bridles are made from nylon strings. The two bridles
can be attached to multiple locations at the wing. At each wing-half one rod is glued at half-way span and
another close to the wing tip. The bridles can be attached to multiple locations at these rods.

The tether is simulated with a spring scale, which is set to a certain pre-stress to simulate the tether forces.
The initial pre-stress is varied from Ft, ini = 25N to Ft, ini = 75N. For these initial spring forces the ini-
tial wing bending is acceptable. The main requirement for the spring stiffness is its sensitivity to linear
deflections. A spring scale is chosen with a spring stiffness equal to kt = 1000N/m and a maximum lin-
ear deflection equal to ∆xt, max = 20cm. For the initial spring forces the linear deflections will vary from
∆xt = 2.5cm to ∆xt = 7.5cm.

This finalizes the design of the wind tunnel model. A picture of this model is given in Figure 9.6.

Figure 9.6: Wind tunnel model in the TU Delft LLT

9.3 Stiffness and weight validation

In this section the two most important inputs of the stiffness matrix are determined from static tests. First
the bending stiffness, EIcc is analysed, second the torsional stiffness GJ and finally the weight of the wing
is determined.
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9.3.1 Bending stiffness EIcc

The test set-up is rather simple; a series of 500g (= 4.9N) weights are placed at the connection rods close
to the wing tips and the z-deflection is measured. The measurement tool is calibrated for zero deflections
at the zero load case. The test set-up is shown in Figure 9.7.

Figure 9.7: Test set-up deflection measurements

In ASWING, the deflections for the same load cases are determined. The measured and the ASWING
calculated deflections are plotted as a function of the load in Figure 9.8a. The slope of the curves represent
the stiffness. The offset of the measured deflections with respect to the ASWING calculated deflections can
be explained by (1) deflections due to the weight of the wing and (2) imperfections in the manufacturing
process. This offset does not influence the stiffness parameters of the wing. The slope of the ASWING
deflection line and the offset are modified to fit the experimental data. With respect to the original deter-
mined bending stiffness, the real stiffness is 17.7% lower. The difference in stiffness is explained by the
sensitivity to fibre orientation.

9.3.2 Torsional stiffness GJ

The angle of twist and the torsional stiffness are linearly related; a measurement of the angle of twist
represents the torsional stiffness. A torsional load is induced by weights attached to the outer most edge
of the carbon connection rods at x = 25cm and y = ±55cm from the quarter chord line. Again the same
load cases are evaluated with ASWING. The twist angles as a function of torsional load are given in Figure
9.8b. Due to imperfections in the manufacturing process, the zero load angle of twist is unequal at the wing
tips. To fit the experimental data, the ASWING torsional stiffnesses are adjusted with respectively a factor
1.06 and 0.99. Hence the torsional stiffness is on average 3% lower with respect to the torsional stiffness
determined with the model.

9.3.3 Weight and weight inertia

The real weight of the wing excluding the carbon struts is Wwing = 2.45N. In ASWING the total wing
weight is determined as Wwing = 1.84N. To account for this difference a weight and weight inertia correc-
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Figure 9.8: Measured deflection and twist compared to ASWING

tion factor γw, µ = 1.33 is applied. The weight difference is explained by the manufacturing process; extra
epoxy is added to the foam to ensure a solid fibre-foam connection.

9.4 Test set-up

First the model is attached in the wind tunnel as shown in Figure 9.6. Next the bridles are attached to a
certain position at the wing. Subsequently the spring is pre-stressed to a certain force. Due to the spring
force the wing bends downward, and a positive real angle-of-attack is induced by the twist angle. The
thin walled airfoil shaped steel constraints cover about 1cm of the wing tips. This is the starting point
for each test case. Next the wind velocity is gradually increased. The aerodynamic loads bend the wind
upward and additionally increase the real angle-of-attack. The wing-tip constraints are constantly adjusted
to ensure that the wing-tips are free to translate and rotate in all directions. The flutter speed is defined
as the minimum wind speed at which the model constantly flickers against the constraints. The tests are
repeated for:

• spring forces, Ft, ini = 25N − 100N

• bridles attached to half-way span and at the wing tips

• bridles attached to the carbon connection rod, xb = 1.0cm − 22.5cm

• tether angle with the ground, β = 0.0◦ − 30.0◦

The complete test schedule can be found in Appendix E.

9.5 Results wind tunnel test

To get benchmark results, this model is first tested without the tether-bridle system. Second the bridles are
attached to about half-way wing span. In the last analysis case the bridles are attached to the wing-tips.

For all cases the wind tunnel results are compared to the ASWING and ASWINGb results.
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9.5.1 ASWING benchmark run

With the original, unmodified ASWING the flutter speed for the wind tunnel model is calculated as V f =

47.5m/s. The wind tunnel tests showed a flutter speed V f = 58m/s. The difference can be explained
by imperfections in the airfoil shape resulting in a difference in aerodynamic center, center of gravity,
aero-elastic axis, distributed weight inertia and measurement errors determining the torsional and bending
stiffness. The ASWING root locus plot of the four most interesting modes is given in Figure 9.9. The two
lower frequency modes get unstable and cross the σ = 0 line at about equal velocity.
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Figure 9.9: Root locus plot unbridled flight with original ASWING

9.5.2 Bridles at halfway span

The bridles are attached to the carbon fibre rods at half-way span and this bridle attachment point is varied
in x-direction between xb = 0.0 − 22.5cm. For each attachment point the initial spring (tether) force is
adjusted between Ft, ini = 25N − 75N. For the first set of measurements the tether angle is set to βt = 0◦.
For the second set βt = 30◦. Independent of the tether angle, an interesting phenomenon occurred. At
xb ≤ 9cm the wing is very stable up to the flutter speed and flutter strikes ‘suddenly’. At higher xb ≥ 9cm
the wing starts to wiggle, starts to hit the constraints when trying to get into full flutter mode and finally hits
full flutter mode. In case of an unconstrained wing it is likely that the initial wiggling is the first unstable
flutter mode and hence this first flutter speed is shown in Figure 9.10.
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Figure 9.10: Wind tunnel results bridles half-way span
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Comparison wind tunnel results with ASWINGb

For bridle attachment points xb = 17.5cm and xb = 22.5cm the wind tunnel results show that flutter
speed decreases with tether force, whereas this phenomenon does not occur at bridle attachment points
xb = 1.0cm and xb = 9.0cm. The next section will explain these results with the results from ASWINGb.

For increasing xb and constant Ft, the ASWINGb root locus plots change in a repetitive pattern, see Figure
9.11.
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Figure 9.11: Root locus plot with modified ASWINGb

In case the bridles are attached close to the airfoil aero-dynamic center the root locus plot is similar to
the unbridled root locus plot (Compare the bridled case (Figure 9.11a) to the unbridled case (Figure 9.9).
Increasing the distance of the bridle attachment point from the airfoil aero-dynamic center toward the rear
changes the root locus plot first to Figure 9.11b and subsequently to Figure 9.11c. These two root locus
plots correspond to slightly higher flutter speeds, in the order of 10 − 20%. Increasing the bridle attach-
ment point further aft results in root locus plots given in Figure 9.11d. At first glance this root locus plot
is similar to Figure 9.11c, however the flutter speed has decreased with 40% with respect to the unbridled
flutter speed.

The flutter speed as a function of bridle attachment point and tether force is given in Figure 9.12a. From
this Figure follows that the flutter speed suddenly decreases for specific xb and Ft combinations. This
‘sudden’ drop occurs at about the xb−Ft combinations at which the real angle-of-attack is close to the stall
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angle-of-attack, see Figure 9.12b. These results suggest that stall flutter strikes. A sudden drop of flutter
speed due to stall effects is in consensus with the research from Yung (2002). Stall flutter phenomena occur
due to the stall induced vortices.
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Figure 9.12: Flutter speed as a function of bridle attachment point and tether force, the bridles are attached
halfway span

As an example take the the xb = 22.5cm case. The ASWINGb calculated flutter speed decreased from
V f = 50m/s to V f = 20m/s with a tether force increase from Ft = 32N to Ft = 57N. The wind tunnel
results show decreasing flutter speed with increasing tether tension for this case as well. However the drop
is less severe. Yung (2002) found that stall flutter usually decreases flutter speed to a minimum and then
rises again as the wing is completely stalled. ASWING is unreliable in this full stall region and no mod-
ifications are made with respect to this aspect in ASWINGb. The slight increase in flutter speed between
Ft = 20N to Ft = 32N is shown in both, the wind tunnel and the ASWINGb results and is explained by
the decreasing lift curve slope in the cl − α region.

To compare the wind tunnel results with ASWINGb results, Figure 9.15a plots the wind tunnel results in a
contour plot of Figure 9.12a. An equal trend is shown; higher Ft and xb result in lower V f . However not
all wind tunnel data points correspond well with the model. This could possibly be caused by a difference
in aerodynamic properties, a difference in torsional and bending stiffness or wing shape. Another possible
explanation is found in the non-perfect alignment of the model, resulting in an initial angle-of-attack. A
change from cl, max = 1.0 to cl, max = 0.9 results in the contour plot given in Figure 9.13b which fits the
measured wind tunnel data. Taken the manufacturing process errors into account this 10% decrease of
aerodynamic performance is likely and in the remaining of this chapter, cl, max = 0.9 is used for further data
analysis.

9.5.3 Bridles at wing tips

The wind tunnel results again follow the trend; more tether tension (and thus bridle tension) and the further
behind the quarter chord line the bridles are attached, the lower the flutter speed. In some specific cases the
flutter speed is considerably higher with respect to the unbridled flutter speed. The results are summarized
in Figure 9.14.
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Figure 9.13: Contour plot ASWINGb flutter speed and wind tunnel results, bridles attached halfway span
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Figure 9.14: Wind tunnel results bridles at wing-tips

Comparison wind tunnel results with ASWINGb

The general flutter behaviour is equal to the ‘bridles at half-way span’-case; the change of ASWINGb root
locus plots with Ft and xb is equal to the change given in Figure 9.11. The main difference is the magnitude
of Ft and xb at which the changes of root locus plots occur. For constant xb, a lower Ft results in a change
of root locus plot. The change of root locus plots is physically a change of aerodynamic state of the wing;
a change from a non-stalled to a semi-stalled to a fully-stalled mode. For constant Ft and xb, more wing
twist is induced in the ‘bridles at the wing tips’-case with respect to the ‘bridles at half-way span’-case.
The flutter speed as a function of Ft and xb is given in Figure 9.15a.

In Figure 9.15b the wind tunnel results are plotted in a contour plot. Valuable information is given by
the measurements at xb = 9cm. Between Ft = 75 − 90N the transition between non-stalled flutter and
stalled flutter occurs. The measurements and the ASWINGb results correspond well except one wind
tunnel measurement. ASWINGb determined no significant decrease of flutter speed, whereas the wind
tunnel measurements show that a significant decrease of flutter speed has occurred. This measurement is
relatively close to the edge at which stall flutter occurs. Measurement errors are the a plausible explanation
of this discrepancy.
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Figure 9.15: Flutter speed as a function of bridle attachment point and tether force, bridles attached to wing
tips

9.6 Conclusions

The wind tunnel test showed decreasing flutter speed with increasing tether force and increasing bridle
x-attachment. ASWINGb calculated similar results and flutter speed decreased dramatically after the stall
angle-of-attack has reached, which suggests stall flutter has occurred. Wind tunnel tests which include lift
and drag measurement devices as well as angle-of-attack measurements could give valuable information
about this phenomenon. Additionally flutter mode frequencies could be measured to validate the flutter
mode frequencies determined with ASWINGb.

Despite the limitations of the wind tunnel test, this test validated that the tether-bridle addition is imple-
mented correctly in ASWING. The equations are implemented appropriately and ASWINGb appropriately
calculates deflections which could case divergence and influence the control effectiveness. Additionally
ASWINGb calculates flutter modes, as a results of the tether-bridle system.
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Chapter 10

Results M600 aero-elastic analysis

The goal of this chapter is to (1) present the results of the M600 aero-elastic analysis and (2)ti give design
recommendations based on the aero-elastic analysis. The M600 input file as described in chapter 3 was
used for the analysis. Three different aero-elastic phenomena are examined; torsional divergence, control
effectiveness and reversal and flutter. For each aero-elastic phenomenon the effect of the main wing’s
stiffness parameters, the bridle attachment point and wing geometry is examined. In section 10.1 the M600
main wing torsional divergence is analysed, in section 10.2 aileron effectiveness and reversal and in section
10.3 the M600 susceptibility to flutter. In section 10.4 the conclusions are drawn.

10.1 Main wing torsional divergence

This section examines the divergence effects of several different main wing parameters. With an analytical
expression, the torsional divergence speed is derived as a function of the main wing parameters. Next the
effect of these parameters is examined in more detail. Also the effect of bridle location is examined. The
results from ASWINGb are compared with the analytical expression.

For the M600, the maximum flight speed at cut-out wind speed is specified as Vmax = 95m/s (Vander Lind,
2013b). In the torsional divergence analysis a maximum flight speed of VIAS = 130/s is used.

10.1.1 Analytical torsional divergence speed

For an unswept, rectangular wing, the torsional divergence dynamic pressure is given by Jensen (2010) and
Hulshoff (2011) as:

qdiv =


Kθ

CLα ecS Hulshoff (2011)

π2

4
GJ

l2ec2CLα
Jensen (2010)

(10.1)

In this equation, Kθ is the torsional stiffness, CLα the lift curve slope, e the eccentricity factor, c the wing
chord, S the wing surface and l the half-span length. The eccentricity factor is defined as the normalized
distance between the aerodynamic center and the elastic axis:

e =
cac − cea

c
(10.2)
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From these equations follow that the torsional stiffness and elastic axis are linearly related to the torsional
divergence dynamic pressure.

In a subsequent section the torsional stiffness parameter is used. This stiffness is defined from equation
10.1 as:

Kθ = π2 GJ
b

(10.3)

10.1.2 Benchmark run

In the benchmark case, the M600 geometrical, aerodynamic and structural parameters are used, as defined
is chapter 3. For all operating points The aircraft is trimmed for straight, horizontal and steady flight. At
each individual operating point the airspeed, the main wing flap deflections and the angle-of-attack are
variable. Eight flaps ( f1 − f8) are attached at the main wing, which can deflect independently of each other.
The flaps at the wing tips (the ailerons) trim the aircraft in roll motion.

For all operating point the lift and drag forces are balanced with the tether force. In the low flight speed
regime, the wing is flying with zero flap deflections and zero angle-of-attack. At about VIAS = 65m/s, the
tether force reaches its maximum allowable value, Ft, max = 250kN. Increasing the flight speed further,
with constant flap deflection and angle-of-attack, would increase the tether force to an unacceptable high
value. Hence aerodynamic forces need to be decreased. First negative flap deflections de-power the main
wing. The flap deflections range from from ∆ f1 − ∆ f8 = 0.00◦ at VIAS = 65m/s to its minimum value
∆ f1 − ∆ f8 = −30.00◦ at VIAS = 95m/s. For higher flight speeds, the main wing is de-powered with nega-
tive angles-of-attack.

The secondary effect of negative flap deflections, is an upstream shift of aerodynamic center. This induces
a nose-up pitching moment. Negative angles-of-attack of the main wing do not significantly influence the
aerodynamic center position.

For this benchmark run, the airspeed versus wing twist angle and the airspeed versus tip deflection are
given in respectively Figure 10.1a and 10.1b.
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Figure 10.1: Divergence benchmark run

A sudden increase in twist angle with a small increment of airspeed indicates that the flight speed is close
to the divergence speed. From Figure 10.1a follows that divergence is not a problem for flight speeds up
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to VIAS = 130m/s. However some interesting phenomena can be described in three different flight speed
regimes:

• Flight regime 1: VIAS ≤ 65m/s: flap deflections and angle-of-attack are equal to zero.

– The bridle forces act at the bridle attachments at the wing, that is, at half-way span,

– as a result of wing taper, the wing’s net aerodynamic force acts closer to the root with respect
to the bridle forces,

– aerodynamic and tether forces increase quadratically with flight speed,

– the balance of forces results in negative wing tip deflection, which increase with velocity,

– the increase in force magnitudes increase the twist angle.

• Flight regime 2: 65m/s > VIAS ≤ 95m/s: constant tether force and main wing flap deflections
increase linearly with airspeed.

– About constant tether and aerodynamic force magnitudes,

– towards the tip, lower torsional stiffness and hence twist angles increase,

– lift force distribution shift towards the tips,

– less negative flap deflections,

– flap deflections shift the aerodynamic center upstream,

– increase of twist angle and tip deflection with flight speed.

• Flight regime 3: VIAS > 95m/s: constant flap deflections at ∆ f = ∆ fmin = −30.00◦, decreasing
angle-of-attack with flight speed.

– About constant tether and aerodynamic force magnitudes,

– towards the tip, lower torsional stiffness and hence twist angles increase,

– lift force distribution shifts towards the tips,

– with increasing flight speed, the difference between the root and tip angle-of-attack is increas-
ing,

– increase of twist angle and tip deflection with flight speed.

In the remaining of this chapter, the benchmark run is denoted with subscript ()0.

10.1.3 Torsional stiffness effects

The effect of torsional stiffness on divergence speed is examined by scaling the benchmark torsional stiff-
ness. The torsional stiffness is increased to 200% and decreased to 75% with respect to its benchmark
value. The maximum twist angles as a function of flight speed is given in Figure 10.2.

None of the examined flight cases show a sudden increase in twist angle. Hence the flight speed is not
close to its divergence speed. However the graph shows higher maximum twist angles for lower torsional
stiffness and lower maximum twist angles for higher torsional stiffness. Compare the results with the
perfect linear twisting model. In that case, the bending twist angles, of the GJ = 0.75GJ0 and GJ =

2.00GJ0 case, are respectively 133% and 50%, with respect to the benchmark case. The calculated results
range from respectively 128 − 137% and 44 − 54%. Calculated twist angles are fairly close to the linear
twisting model.
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(b) GJ effect on tip deflection

Figure 10.2: The effect of torsional stiffness with respect to the divergence speed; subscript ()0 denotes the
benchmark run

10.1.4 Elastic axis effects

The benchmark elastic axis is scaled to determine its effects on divergence speed. The effect of the elastic
axis cea position with respect to the maximum twist angle and wing tip deflection are given in Figures 10.3a
and 10.3b. For a conventional (untethered) aircraft, an elastic axis shift further away from the aerodynamic
center will increase the aerodynamic moment about the elastic axis and hence increase the twist angle.
However for tethered flight, not only the distance from the aerodynamic center and the elastic axis is
increased, but also the distance from the bridle force vector and the elastic axis. The magnitude the bridle
forces are about equal to the aerodynamic forces, but opposite in direction. Hence the effect, of increasing
twist angles with increasing cea, is diminished.
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Figure 10.3: The effect of the location of the elastic axis with respect to the divergence speed; subscript ()0

denotes the benchmark run

10.1.5 Bridle attachment effects

The bridle attachment point along the chord determines moment arm between the bridle force and the elas-
tic axis. For the benchmark run, the bridle is attached 6.91cm upstream of the main wing quarter-chord
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line. This bridle forces result in a nose-down pitching moment. In case the bridle attachment points are
moved further downstream, higher twist angles are expected at equal force (and thus flight velocity). An
opposite effect is expected in case the bridle points are attached further upstream. These effect are shown
in Figure 10.4a. Large twist angles, up to θmax = 19◦ are present in case the bridle attachment point is
moved 20cm upstream. However there is no indication that the wing is close to divergence.

An upstream shift of bridle attachment position, results in a twist angle increase. This increase in real
angle-of-attack increases aerodynamic forces and thus tip deflection. This effect is shown in Figure 10.4b.
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Figure 10.4: The effect of the location of bridle attachment point with respect to the divergence speed; sub-
script ()0 denotes the benchmark run

10.1.6 The effect of other main wing parameters

The effect of bending stiffness EIcc and EInn, center of gravity position ccg and ncg and the elastic axis
nea are examined. These parameters are outside the analytical divergence speed expression. As expected,
these parameters have no significant effect on maximum twist angles and thus divergence speed. For these
parameters, the flight speed versus maximum twist angle and flight speed versus tip deflection are shown
in Appendix F.1.

10.2 Control effectiveness and reversal

Control reversal is the phenomenon that the effect of the deflection of an arbitrary control area is actually
reversed. The horizontal and vertical tail plane are assumed perfectly rigid. Therefore the effect of rudder
and elevator control reversal and effectiveness is left outside this analysis. The control surface efficiency
(ηcs) is defined by Bisplinghoff et al. (1996) as the fraction of the control surface lift force with respect to
the rigid control surface lift force:

ηcs =
L
LR (10.4)

Vander Lind (2013b) specifies a minimum control effectiveness of 75% for all flight speeds. For the M600,
the maximum flight speed at cut-out wind speed is specified as Vmax = 95m/s.
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A downward deflection of the aileron increases the ‘real’ camber of the airfoil, increasing the lift coeffi-
cient and hence the lift per unit span over that part of the wing. To roll, one aileron is deflected upwards
and the other is deflected downwards. This induces a rolling moment about the aircraft’s x-axis. For the
aileron deflected downwards, the produced moment tends to twist the airfoil more nose down, reducing
the angle-of-attack and thereby the lift. The twisting moments of the wing increase with the square of the
speed, whereas the elastic restoring torques remain constant with speed. Hence at higher speeds the rolling
moments decrease up. The speed at which aileron deflections do not produce any net rolling moment is
called the aileron reversal speed. Beyond this speed a deflection of ailerons results in a rolling moment
opposite than that of a rigid wing (Bisplinghoff et al., 1996). According to Bisplinghoff et al. (1996) the
wing’s torsional stiffness should be increased in case the aileron reversal speed is lower than the operational
flight speed.

10.2.1 Analytical control reversal speed

The control reversal dynamic pressure is given by Hulshoff (2011):

qrev = −
CLδKθ

CLαCMacδ
cS

(10.5)

In this equation CLδ is the change of lift coefficient with flap deflection δ and CMacδ
is the change of moment

coefficient with flap deflection. Recap that the torsional stiffness Kθ is dependent on the torsional stiffness
and the wingspan, see equation 10.3. In the next sections the effect of the parameters listed in equation
10.5 will be analysed in more detail.

10.2.2 Benchmark run

The M600 main wing is equipped with four control surfaces at each side. These control surfaces can be
moved independently of each other. For this analysis the outer control surface is used as the aileron. In
ASWING the aileron reversal speed is calculated for a fixed lift force, a fixed aileron deflection angle and
a fixed rolling moment

∑
Mx = 0N · m. ASWING’s solution converges to a steady state roll rate Ωx to

balance the moment. This approach is in consensus with the linear control, which states that the roll rate is
linearly related to the airspeed:

Ωx = CVIAS (10.6)

In this equation Ωx is the roll rate, C is an arbitrary constant and VIAS is the indicated air speed.

Initially this roll rate will increase linearly with speed, then round over and eventually go to zero at the
aileron reversal speed (Drela, 2008b).

The roll rate increases linearly with the control surface lift force. Therefore the control efficiency is defined
as the fraction of the flexible wing roll rate and the infinitely stiff roll rate. First the M600 rigid wing roll
rate is determined. This roll rate is independent of lift and tether forces in case the aircraft is operating in
the linear lift curve slope regime. In case the aircraft is operating with a lift coefficient relatively close to
the maximum lift coefficient, a flap deflection results in a lower increment of lift with respect to the aircraft
operating in the linear lift curve slope regime. This smaller increment in lift results in a smaller increment in
roll rate. Tether forces are balanced with aerodynamic forces and vice versa. Hence, for relatively low flight
speeds in combination with a high tether force, the aircraft is operating close to its maximum lift coefficient
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and the roll rate for given flap deflection is decreased. This effect is shown in Figure 10.5a. At flight
speed VIAS = 70m/s, compare the roll rate for user defined tether force Ft, max = 300N, Ft, max = 250N
and Ft, max = 200N. The M600 maximum allowable tether force is equal to Ft, max = 250N, hence this
maximum tether force will be used in the remaining of this section.
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Figure 10.5: Benchmark results control reversal analysis

Figure 10.5b shows that the control efficiency is 72% at VIAS = 95m/s, which is slightly lower than the
requirements from Vander Lind (2013b).

10.2.3 Torsional stiffness effect

A more torsionally flexible wing is more susceptible to wing twist. Hence a decrease in torsional stiffness
will decrease the control effectiveness. To visualize the torsional stiffness effect on control effectiveness, the
torsional stiffness is decreased to 50% and increased to a maximum of 200% with respect to the benchmark
GJ.
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Figure 10.6: GJ effect on control effectiveness; subscript ()0 denotes the benchmark run

From Figure 10.6 follows an increase of torsional stiffness, increases the control effectiveness. This effect
is more apparent with increasing velocity. At VIAS = 75m/s, the control effectiveness for GJ = 0.50GJ0
and GJ = 2.00GJ0 are respectively 71.5% and 91.0%. At VIAS = 130m/s, the control effectiveness for
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GJ = 0.50GJ has decreased to 5.9%, whereas the control effectiveness for the GJ = 2.00GJ0 case is
71.7%. A slight increase of GJ = 1.10GJ0 will satisfy the control effectiveness requirement, ηcs = 75% at
VIAS = 75m/s.

10.2.4 Flap aerodynamics effect

The pitching moment caused by the flap deflection is the main reason for wing twist which results in a loss
of control effectiveness and eventually control reversal. A decrease of pitching moment should increase
the control effectiveness and vice versa. This intuitive approach is in accordance with equation 10.5. The
roll rate versus airspeed is plotted for varying flap moment coefficients in Figure 10.7.
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Figure 10.7: Flap Cmacδ
effect on control effectiveness; subscript ()0 denotes the benchmark run
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Figure 10.8: Flap Clδ effect on control effectiveness; subscript ()0 denotes the benchmark run

For a flap moment coefficient which is equal to twice the benchmark flap moment coefficient the control
reversal speed is about Vrev = 130m/s. That is, control effectiveness is 0%. A decrease to Cmacδ

= 0.50Cmacδ

increases the control effectiveness from 46.3% to 67.7% at VIAS = 130m/s.

In an ideal case a downward flap deflection solely increases the lift forces at the aileron, with no result-
ing pitching moment which could twist the wing. Hence an increase of resultant lift force for given flap
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deflection should increase aileron efficiency. For an infinitely stiff wing, the roll rate increases linearly
with aileron lift force and hence with Clδ . To analyse the roll rate versus airspeed, for varying Clδ , the flap
deflection is scaled with Clδ . That is; in case Clδ is increased with a factor 2, the flap deflection is divided
with a factor 2 and vice versa. The resulting roll rate versus airspeed for varying Clδ is shown in Figure 10.8.

Note the similarity in control effectiveness effect for Cmacδ
and Clδ . Those two Figures suggest what also

equation 10.5 suggests; the factor
(
Clδ/Cmacδ

)
is most important. An increase of Clδ with a factor 2 has the

same effect as dividing Cmacδ
with a factor 2. That is; for a given Cmacδ

and flap deflection, a certain pitching
moment twists the wing and thereby decreases the angle-of-attack. In case Clδ is increased, a smaller flap
deflection results in equal lift increment and roll rate. Keeping Cmacδ

constant, the smaller flap deflection
results in a smaller pitching moment, wing twist and thus change of angle-of-attack.

An optimization of flap aerodynamics in the order
(
Clδ/Cmacδ

)
= 1.10

(
Clδ/Cmacδ

)
0
, will satisfy the control

effectiveness requirements.

10.2.5 The effect of other main wing parameters

From the theory for an unswept, straight rectangular wing follows that control reversal and effectiveness is
solely dependent on aerodynamic properties and the torsional stiffness GJ. However the M600 is a swept
forward, tapered wing at which bridles are attached. Therefore the effect of the center of gravity ccg and ncg,
bending stiffness, EIcc and EInn and bridle attachment point xb is analysed as well. It is concluded that these
parameters only have a minor effect and do not significantly influence the aileron control effectiveness. See
Appendix F.2 for more details.

10.3 Flutter

The flutter point is defined by Hulshoff (2011) as the point at which the self-sustained oscillation transitions
from convergent to divergent motion. In general flutter occurs when the frequencies of two modes interact
with each other1. Many modes exist which could possibly interact and start a flutter mode. The description
and analytical derivation of all modes is outside the scope of this thesis. However some valuable insight is
gained with the classical bending-torsion flutter mode. This example is used to explain the effect of certain
parameters on flutter behaviour.

10.3.1 Analytical torsion-bending flutter mode

In the classical torsion-bending flutter mode, the twisting mode is coupled to the out-of-plane bending
mode. First examine stable flight: aerodynamic torsional forces, twist the wing. This twist increases the
real angle-of-attack and the wing gains lift which bends the wing upward. This upward motion decreases
the effective angle-of-attack and stabilizes the wing.

In an unstable torsion-bending mode, the phases of one of the modes is shifted with respect to the other
mode. The twist induced angle-of-attack occurs simultaneously with the wing downward motion, which
increases the angle-of-attack further. This dynamic motion, increases its amplitude at each oscillation and
is dynamically unstable.

1Hulshoff (2011) lists some control surface, single degree of freedom flutter modes. These modes are in the transonic flight regime
and not expected in this analysis.
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For a straight wing with a simple, uncambered airfoil, the equation of motion for this two degree of freedom
system is given by Hulshoff (2011) as:

[
m mxθb

mxθb Iθ

] {
ẍ
θ̈

}
+

([
Kh 0
0 Kθ

]
− q

[
0 −S CLα
0 2S ebCLα

]) {
x
θ

}
=

{
0
0

}
(10.7)

In this equation m is the mass, xθ is the displacement of the center of gravity from the elastic axis, Iθ is
the mass moment of inertia with respect to the elastic axis, ẍ is the linear acceleration, θ̈ is the angular
acceleration, Kh is the bending stiffness and Kθ is the torsional stiffness.

From this simplified equation for one mode follows that the mass distribution, the mass inertia, the tor-
sional stiffness, the bending stiffness, the center of gravity positions, the elastic axis position, the wing’s
geometrical properties and the wing’s aerodynamic properties all influence the flutter behaviour.

10.3.2 Benchmark run flutter

In ASWING the effect of flutter is investigated with root locus plots. The two axis of the root locus plot
define (1) the growth rate σ and (2) the frequency ω. A non-zero frequency and a negative growth rate
indicate positive, converging damping and thus a stable mode. A positive growth rate in combination with
a non-zero frequency indicate unstable, diverging mode.

Vander Lind (2013b) specifies a minimum apparent wind speed at which flutter is predicted Vflutter ≥

120m/s.

For the benchmark case, first the wing is trimmed with the same constraints as in the divergence case. The
benchmark root locus plot is given in Figure 10.9a. The root locus plot shows two different unstable modes;
one unstable motions close to ω < 2Hz and an unstable mode at about ω ≈ 42Hz. The unstable mode at
ω < 2Hz is an unstable flight mode and not a structural flutter mode. The analysis of unstable flight modes
is not a structural, but a control problem and therefore left outside the scope of this research. However, the
unstable mode at ω ≈ 42Hz is an unstable flutter mode. To examine this mode in more detail, Figure 10.9b
zooms into this part of the root locus plot. From this Figure follows that flutter strikes at an unacceptable
flight speed, at about VIAS = V f lutter ≈ 90m/s. This flutter mode is a combination of in-plane-bending,
out-of-plane bending and torsion modes.
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Figure 10.9: Flutter benchmark run
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10.3.3 Center of gravity effect

The immediate effect on the overall flutter speed does not follow directly from equation 10.7. However this
equation indicates that the center of gravity position can have a significant effect on the flutter behaviour.

ccg effect

The root locus plots with shifting center of gravity are given in Figure 10.10a. From these Figures follows
that an upstream center of gravity shift will increase the stability of the wing; all flutter modes move toward
a more negative growth rate. To indicate the effect of the center of gravity shift on the mode which was
unstable in the benchmark run, Figure 10.10b zooms in on the interesting part. From this Figure follows
that this mode can be stabilized with a 10cm upstream center of gravity shift. The stability can be increased
further by increasing the center of gravity further upstream. Moving the center of gravity downstream will
decrease the stability of the system.
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Figure 10.10: ccg effect on flutte; a shift in negative c direction indicates an upstream shift and vice versa
; subscript ()0 denotes the benchmark run

ncg effect

The root locus plot with changing ncg is given in Figure 10.11a, zooming in at the interesting part in Figure
10.11b. These Figures suggest that an upward shift of the center of gravity has a stabilizing effect. At a
point between 25cm and 50cm, above the benchmark center of gravity location, the motion is stabilized.
However the wing is only about 20cm thick.

10.3.4 Elastic axis effect

The position of the elastic axis can have a significant effect on the flutter behaviour as shown in equation
10.7. As with the center of gravity the quantitative effect on the overall flutter behaviour does not follow
from this equation, but this equation suggest that the elastic axis position can influence the flutter behaviour.

cea effect

The overall root locus plot with varying cea is given in Figure 10.12a and Figure 10.12b zooms in to the
most interesting part; the part of the plot with an unstable flutter mode. The effect of a 20cm shift either
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Figure 10.11: ncg effect on flutter; subscript ()0 denotes the benchmark run

upstream or downstream is not significant. A 50cm shift upstream, significantly increases the stability and
thus flutter speed.
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(a) Root locus with varying cea
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Figure 10.12: cea effect on flutter, a shift in negative c direction indicates an upstream shift and vice versa;
subscript ()0 denotes the benchmark run

nea effect

The overall root locus plots with varying nea are given in Figure 10.13. Note the similarities with Figure
10.11 at which the center of gravity n position is varied. An elastic axis n shift, is similar with respect to
a center of gravity n shift, but has an opposite effect; a downward nea shift increases flutter speed and vice
versa.

10.3.5 Bending stiffness effect

The bending stiffness influences the degree of bending for a given load case and from equation 10.7 follows
that bending stiffness has an influence on the classical bending-torsion flutter example and it expected to
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(a) Root locus with varying nea
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Figure 10.13: nea effect on flutter; subscript ()0 denotes the benchmark run

influence the other modes as well.

EIcc effect

The effect of bending stiffness about the c axis on the flutter behaviour is given in Figures 10.14a and
10.14b. For increasing EIcc, the wing is destabilized and flutter speed is decreasing. In case EIcc is
increased by a factor 10, flutter occurs already at very low flight speeds. This behaviour is counter intuitive
at first, but can be explained by the nature of the flutter mode. The flutter mode is a combination of in-
plane-bending, out-of-plane-bending and a torsion mode. An increase of EIcc will decrease effect of the the
out-of-plane mode. The results suggest that this mode damps the coupling between the in-plane-bending
and torsion mode and hence an increase of EIcc will decrease this damping.
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(a) Root locus with varying EIcc
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Figure 10.14: EIcc effect on flutter; subscript ()0 denotes the benchmark run
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EInn effect

The effect of bending stiffness about the n axis on the flutter behaviour is given in Figures 10.15a and
10.15b. With increasing stiffness EInn the flutter speed is increased, which is intuitively correct. An
increase of 50% with respect to the benchmark EInn vanishes the susceptibility to flutter to at least VIAS =

130m/s. Although the data is not available, the Figures suggest that the critical flutter mode is stabilized
for higher flight speeds as well. In case EInn ≥ 1.50EIcc, 0, the critical mode growth rate is decreasing with
increasing flight speeds.
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(a) Root locus with varying EInn
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(b) Zoom in interesting points root locus with varying
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Figure 10.15: EInn effect on flutter; subscript ()0 denotes the benchmark run

10.3.6 Torsional stiffness effect

As with the torsional divergence and control effectiveness, the torsional stiffness (GJ) usually greatly
influence the flutter behaviour. This is in consensus with the classical torsion-bending flutter equation
10.7. From Figure 10.16b follows that an increase of torsional stiffness increases the flutter speed for the
critical mode. An increase with 50% with respect to the benchmark GJ increases the flutter speed to at
least 130m/s. Despite the lack of data Figure 10.16b suggest that the flutter speed is about 140m/s for this
case.

10.3.7 Flap deflection effect

At high flight speeds, negative flap deflections, δF , depower the main wing. See section 10.1.2 for more
details. Next to depowering the wing, negative flap deflections shift the aerodynamic center aft and hence
influence flutter behaviour. The root locus plot for zero negative flap deflections and the benchmark case
are shown in Figure 10.18. Recall from section 10.1.2 that flap deflections can be as low as δF = −30◦.
This Figure shows two modes which are highly influenced by the flap deflections. One mode at about
ω = 32Hz and another mode at about ω = 45Hz. Figures 10.18a and 10.18b zoom in these two modes.
Figure 10.18a shows a shift from a stable mode with flap deflections to an unstable flutter mode without
flap deflections. Figure 10.18b shows an unstable mode with flap deflections to a stable mode without flap
deflections. The nature of the critical mode has changed, but the magnitude of the flutter speed remain
unchanged at V f lutter = 90m/s.
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(a) Root locus with varying GJ
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Figure 10.16: GJ effect on flutter; subscript ()0 denotes the benchmark run
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Figure 10.17: δF effect on flutter

10.3.8 Bridle attachment effects

The bridle attachment point in x-direction (xb), determines the moment arm between the aerodynamic
center and the bridle forces. The bridle forces are at the same order of magnitude with respect to the
aerodynamic forces and it is likely that a change of moment arm influences the wing flutter behaviour.
The bridle attachment point is shifted up to 70cm upstream and 20cm downstream with respect to the
benchmark case. Figure 10.19 shows two interesting areas at which Figures 10.20a and 10.20b zoom in.

The mode given in Figure 10.20a is stabilized with an upstream shift of bridle attachment point, whereas
the mode given in Figure 10.20b is destabilized with an upstream shift of bridle attachment point. With
a 50cm upstream shift of xb with respect to the benchmark xb, 0, the mode given in Figure 10.20b is still
stable and the mode given in Figure 10.20a gained stability up to VIAS ≈ 110m/s. Hence a shift of bridle
attachment location could stabilize the wing.

10.3.9 Fuselage stiffness effect

In the previous simulations the fuselage was simplified as perfectly rigid, because of lack of stiffness
information. However a flexible fuselage could influence flutter behaviour, because (1) the vertical and
horizontal tail mass influence the system mass and mass inertia matrix and (2) the aerodynamic effect of



118 Results M600 aero-elastic analysis

 

 

No Flap Deflection

With Flap Deflection

ω
[1
/s
]

σ [1/s]

−3 −2 −1 0 1 2

70m/s

80m/s

90m/s

100m/s

110m/s

120m/s

130m/s

30.5

31

31.5

32

32.5

33

33.5

34

34.5

35

35.5

(a) Zoom in interesting area root locus with varying δF
(1)

 

 

No Flap Deflection

With Flap Deflection

ω
[1
/s
]

σ [1/s]

−1 −0.5 0 0.5 1

70m/s

80m/s

90m/s

100m/s

110m/s

120m/s

130m/s

42.5

43

43.5

44

44.5

45

45.5

46

46.5

(b) Zoom in interesting area root locus with varying δF
(2)

Figure 10.18: Zoom in interesting area root locus with varying δF
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Figure 10.19: xb effect on flutter

the vertical and horizontal tail influence the overall flight performance and could induce Body Freedom
Flutter (BBF) at which a flight mode interacts with a structural mode.

The fuselage stiffness is decreased from infinitely stiff to a minimum acceptable stiffness parameter. That
is, the minimum fuselage stiffness at which the flutter speed is not influenced by fuselage flexibility.

The fuselage thickness is assumed constant and the fuselage radius is assumed to vary linearly from its
maximum at the wing attachment to its minimum at the tail attachment. From thin wall theory follows that
the stiffness is proportional to:

EIcc = EInn = πr3t (10.8)

In this equation r is the fuselage radius and t is the material thickness. The fuselage-tail connection
and wing-tail connection fuselage radii are respectively 28.11cm and 16.87cm, hence the stiffness at the
fuselage-tail connection as a function of the stiffness at the wing-tail connection is calculated as:
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Figure 10.20: Zoom in interesting area root locus with varying xb; subscript ()0 denotes the benchmark run

EI f , tail =

(
r f , tail

r f , wing

)3

EI f , wing = 0.216EI f , wing (10.9)

In this equation EI f , tail is the fuselage bending stiffness at the fuselage-tail connection, EI f , wing is the
fuselage bending stiffness at the fuselage-wing connection, r f , tail is the fuselage radius at the fuselage-tail
conncetion, r f , wing is the fuselage radius at the the fuselage-wing connection.

The maximum and minimum root stiffnesses applied in this analysis are respectively EI f , wing = 108N · m2

and EI f , wing = 106N ·m2. The root locus plot with varying fuselage stiffness is given in Figure 10.21. Four
interesting areas are distinguished and zoomed in in Figures 10.22a - 10.22d.
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Figure 10.21: EI f effect on flutter

The mode given in Figure 10.22c shows an interesting phenomenon; for an infinite stiff fuselage the flutter
speed is about V f lutter ≈ 90m/s. With increasing flexibility the mode gains stability and is completely
stabilized in case the fuselage stiffness at the fuselage-wing connection is as low as EI f , wing = 5 ·106N ·m2.
Decreasing the stiffness below EI f , wing = 5 · 106N · m2 decreases the stability of this mode again. Hence
there is only a small range of fuselage stiffnesses at which this mode is stabilized.
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Figure 10.22: Zoom in interesting area root locus with varying EI f

Figures 10.22a, 10.22b and 10.22d show flutter modes, which are stable in the rigid fuselage case. With
decreasing fuselage stiffness, the stability of these modes is decreasing as well. A fuselage stiffness of at
least EI f , wing ≥ 107 stabilizes these modes.

10.3.10 The effect of other main wing and tether parameters

The flutter behaviour for the tether stiffness, kt, the effective tether drag area (CDA)t, bridle attachment
point zb the mass inertia ιccg and ιnng and engine settings ∆E is investigated as well. From the analyses
follow that these parameters have no significant effect on flutter behaviour. The root locus plots with these
varying parameters can be found in Appendix F.2.

10.4 Conclusions

The M600 divergence speed is beyond the flight speed regime. Destabilizing the wing with a decrease of
torsional stiffness or a shift of the elastic axis does not results in divergence. Hence divergence is not a
critical mode for the M600.
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Control reversal is not a critical mode for the M600. Even in case the torsional stiffness or the ratio(
Clδ/Cmacδ

)
is decreased with 50%, the control reversal speed is still Vrev = 130m/s.

However the control effectiveness is critical. A slight increase in torsional stiffness of GJ ≈ 1.10GJ0 will
satisfy this requirement. Increasing the torsional stiffness to gain control effectiveness is in consensus with
Hulshoff (2011) and Drela (2008b). Alternatively the flap aerodynamics could be optimized for higher(
Clδ/Cmacδ

)
.

The analyses showed an unacceptably low flutter speed. The critical flutter mode is an in-plane, out-of-
plane, torsion mode, which strikes at 90m/s. Several approaches are feasible to increase the flutter speed.
The flutter speed can be increased by an:

1. upstream center of gravity shift. This approach is in consensus with Jensen (2010). A 10cm shift
upstream will stabilize the critical flutter mode.

2. increase of in-plane-bending stiffness. An increase of EInn = 1.50EInn, 0 stabilizes the critical mode;
this modes gains negative growth rate with increasing velocity.

3. increase of torsional stiffness. An increase of GJ = 1.50GJ0 stabilizes the wing up to about Vflutter =

140m/s

4. upstream shift of bridle attachment point. A 50cm shift upstream will stabilize the wing up to a
flutter speed Vflutter = 110m/s

The effect of tether drag and spring constant on flutter behaviour is examined as well. In the analysis for
the M600 these parameters do not significantly influence the flutter speed.

Tail flutter does not influence the flutter speed in case the bending stiffness at the wing-tail connection is
EI f , wing ≥ 107.





Chapter 11

Conclusions and recommendations

11.1 Conclusions

The objective of this research is to analyse the aero-elastic behaviour of the next generation airborne wind
turbine designed by Makani Power. The M600, which is currently in the planning stage, uses a tethered
wing of 28m span with wing mounted small on-board turbines to harvest the kinetic energy of the relative
wind during crosswind flight manoeuvres. Due to the large size and the lightweight constructing, fluid-
structure interaction with considerable deformation can play a decisive role.

The analysis is based on computational simulation as well as wind tunnel measurements. An existing
software framework, ASWING, is extended with a sub-module for the tether and bridle line system. This
module is based on a straight, axial stretchy tether with user defined mass, aerodynamic drag properties
and spring constant. The bridle lines are assumed massless and perfectly rigid. The tether and bridle forces
are dependent on the wing flexibility as well as its orientation in space. The dynamic aero-elastic response
(flutter) is investigated by means of an Eigenmode analysis. In this analysis, the initial state vector and its
derivatives influence the flutter modes. To include the tether-bridle system in the eigenvalue problem, the
state derivatives are added. The wind tunnel test at TU Delft validated the tether-bridle system induced
static elasticity effects as well as the flutter modes.

The M600 torsional divergence, aileron reversal and effectiveness, and flutter behaviour are analysed for
flight speeds to to 130m/s. In this first design iteration, the turn rate is left outside the analysis and hence
constant apparent wind velocity over the span is assumed. The maximum flight speed at cut-out wind speed
is equal to 95m/s. The requirements state a minimum apparent wind speed, at which flutter is predicted,
of 120m/s. From these analyses follow that,

• divergence and aileron reversal are no critical modes. Not even in case of (1) a 50% decrease in
torsional stiffness, (2) a 20cm upstream or downstream shift of elastic axis, or (3) a 50% decrease in
the aileron, lift-moment ratio.

• the minimum 75% control efficiency is reached at 92m/s. A 10% increase in torsional stiffness or a
10% increase in lift-moment ratio with aileron deflection, will satisfy this requirement.

• the predicted flutter speed is equal to 90m/s. This susceptibility can be reduced by various design
and construction measurements such as, (1) a 50% increase in torsional stiffness, (2) a 50% increase
in in-plane-bending stiffness or (3) a 10cm upstream shift of the center of gravity.
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The M600 carbon fibre design allows for stiffness adjustments with fibre lay-up. A torsional stiffness
increase can be realized with the addition of bi-directional carbon fibre in the 45/45 orientation. The in-
plane-bending stiffness can be increased with the addition of extra fibres oriented in the chord direction.
The center of gravity shift can be realized by adding more material in the nose of the wing, for example
cabling. Alternatively the position of the motor pylons could be shifted further upstream.

The effects of the tether-bridle system on the static and aero-elastic effects are summarized as:

• the tether aerodynamic drag and gravity loads are respectively 3.3% and 2.2% with respect to the
tether force and hence do not significantly contribute to the M600’s static and dynamic aero-elastic
behaviour.

• it is likely that the tether spring constant could induce tether-wing modes. However in the specific
M600 case the effect of the spring constant on flutter behaviour is minor.

• the chord-wise position of the bridle-wing attachment location,

– is linearly related to the distributed and maximum wing twist angles. These angles influence the
real angles-of-attack, subsequently the aerodynamic forces and finally the wing deflections. A
change of chord-wise attachment is useful is case maximum wing twist angle or tip deflection
are a serious design consideration.

– does not significantly influence the aileron control effectiveness,

– can change the nature of the Eigenmode responses. In the M600 case, an unstable flutter mode
transitioned to a stable mode and vice versa. For a 50cm upstream shift, the flutters speed was
increased from 90m/s to 110m/s.

The developed aero-elastic modelling program for AWE systems is one of the first to determine the tether-
bridle effects on aero-elastic behaviour of a rigid with AWT. The program demonstrated that the tether-
bridle system significantly contributes to the wing twist and bending behaviour in case of static aero-
elasticity. Additionally the bridle attachment position significantly influences the dynamic aero-elastic
behaviour.

11.2 Recommendations for future research

Over the last decade, the average size of wind turbines has doubled. In the future, it is expected that wind
turbine size will increase further. The airborne wind energy industry seems to follow this trend. In example,
in the future, Makani aims to develop a 5MW system with a 65m wing span. With this ever increasing size,
a realistic aero-elastic modelling tool will be ever more important. The current program can be improved
by increasing its validity, by increasing its applicability and by increasing its computational accuracy. The
aero-elastic analysis of the M600 can be improved by including more accurate structural design parameters
and flight characteristics.

11.2.1 Validation

Ground vibration tests (GVTs) are applied to experimentally determine the aero-elastic behaviour and can
be used to validate the structural frequency responses. For a ground vibration set-up shakers are used to
realize structural vibrations and accelerometers to measure the wing response (Dunbar).
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The performed wind tunnel tests validated the working principle of the developed tether-bridle system.
Both, the outcome of the wind tunnel tests and the program, suggest that stall flutter strikes for certain
combinations of tether force and bridle attachment position. However measurement data is unavailable for
flutter frequencies and aerodynamic forces. Therefore hard conclusions cannot be drawn. Wind tunnel tests
at which these measurements are included could further validate the program. Additionally wind tunnel
tests with a free flying wing could validate the body freedom flutter modes.

11.2.2 Applicability increase

In the current program, any wing with a tether-bridle system with two bridle lines can be modelled. The
generalisability of the program could be improved by allowing more than two bridle lines. In case three
or more lines are used, the tether-bridle node is a statically overdetermined system. The laws of displace-
ment compatibility could be used to solve the system of equations for force equilibrium. This addition is
not compatible with the current ASWING version, which strongly discourages the use of overdetermined
systems and hence a new module should be developed.

11.2.3 Accuracy increase

The implementation of flexible bridle lines would increase the accuracy of the system. It is questionable if
this upgrade significantly increases the aero-elastic modelling behaviour, because the bridle lines are rela-
tively short and stiff with respect to the tether. Additionally it is likely that flexible bridle lines contribute
to a significant increase of computational time, which is disadvantageous.

The straight tether assumptions is applied. The tether aerodynamic drag and weight each account for
respectively 3.3% and 2.2% with respect to the tether force. This deviates the tether from a straight line.
To improve the current system, a discretized tether could be applied as described by Breukels (2010) and
Leuthold (2013). In continuation to this improvement, wind shear could be included to determine a more
realistic wind velocity at each discretized tether element, and hence determine aerodynamic drag more
accurately.

11.2.4 Aero-elastic analysis M600

The structural design properties of the fuselage, the horizontal stabilizer and the rudder were unavailable
when this research was performed. Therefore these systems were modelled as perfectly rigid 1. The M600
is under constant development and it is expected that more structural design properties become available
in the near future. This will improve the quality of the analyses.

In this first design iteration, a constant apparent wind speed over span width is assumed. In crosswind
flight, the flight loop radius is about 150m. From wing tip to wing tip, the apparent wind speed can deviate
with almost 20%. This asymmetry in wind speed will result in an asymmetric aerodynamic force distri-
bution, which could influence the aero-elastic effects. The accuracy of the analyses can be improved by
including the turn rate of the wing.

1The effect of fuselage stiffness is explored in section 10.3.9, but for the remaining of the analyses the fuselage was simulated as
perfectly rigid.
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Appendix B

ASWING and ASWINGb input files

B.1 Input File ASWING

#============

Name

M600

End

#============

Units

L 1.0 m

T 1.0 s

F 1.0 N

End

#============

Constant

# g rho v_sound

9.81 1.225 340.29

End

#============

Reference

# Sref Cref Bref

38.4450 1.3865 27.7290

End

#============

Ground

# Nbeam t Kground

2 0.0 0

End

#============

Joint

#

# nBeam1 nBeam2 t1 t2

131
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2 1 0.0000 0 ! main wing to fuselage

2 4 6.9323 0.0000 ! fuselage to vertical tail

4 3 4.8540 0.0000 ! vertical tail to horizontal tail

1 5 1.6922 0.0508 ! main wing to star inner motor pylon

1 6 -1.6922 0.0508 ! main wing to port inner motor pylon

1 7 5.0766 0.1523 ! main wing to star outer motor pylon

1 8 -5.0766 0.1523 ! main wing to port outer motor pylon

End

#============

Weight

# nBeam t X0 Y0 Z0 weight CDA Vol Hxo Hyo Hzo

* 1.0 1.0 1.0 1.0 100 0.1 1.0 1.0e3 1.0e3 1.0e3

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.0 0.0 0.0 0.0 2500.0 0.0 0.0 0.0 0.0 0.0

7 1.6922 -1.5251 5.0766 1.6922 1.2979 6.2652 0.0 0.4834 0.0 0.0

5 1.6922 -1.5251 1.6922 1.6922 1.2979 6.2652 0.0 0.4834 0.0 0.0

6 1.6922 -1.5251 -1.6922 1.6922 1.2979 6.2652 0.0 0.4834 0.0 0.0

8 1.6922 -1.5251 -5.0766 1.6922 1.2979 6.2652 0.0 0.4834 0.0 0.0

8 -1.6922 -1.5251 -5.0766 -1.6922 1.2979 6.2652 0.0 0.4834 0.0 0.0

6 -1.6922 -1.5251 -1.6922 -1.6922 1.2979 6.2652 0.0 0.4834 0.0 0.0

5 -1.6922 -1.5251 1.6922 -1.6922 1.2979 6.2652 0.0 0.4834 0.0 0.0

7 -1.6922 -1.5251 5.0766 -1.6922 1.2979 6.2652 0.0 0.4834 0.0 0.0

End

#============

Beam 1

main Wing

#

t x y z chord twist Xax

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0000 -0.3961 0.0000 0.0000 1.5845 13.0000 0.25

6.9323 -0.3961 6.9323 0.0000 1.5845 13.0000 0.25

14.2804 -0.1981 13.8645 0.4159 0.7923 3.0000 0.25

14.2804 -0.1981 13.8745 0.4159 0.7923 3.0000 0.25

15.5977 -0.0990 13.8845 1.7132 0.3961 -2.0000 0.25

#

#Aerodynamic Properties

t alpha Cm Cdf CLmax CLmin dCLda

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0000 7.0712 -0.1900 0.0185 2.6252 -1.0000 6.1850

15.5977 7.0712 -0.1900 0.0185 2.6252 -1.0000 6.1850

#

#Control settings

t dCLdF1 dCMdF1

* 1.0 0.01 0.01

+ 0.0 0.0 0.0

-15.5977 0.0 0.0

-14.2804 0.0 0.0

-14.2804 -4.972 0.829

0.0 -4.972 0.829

0.0000 4.9720 -0.8290

14.2804 4.9720 -0.8290
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14.2804 0.0 0.0

15.5977 0.0 0.0

#

#Structural properties

t EIcc EInn EIcn GJ EA

* 1.0 1.e6 1.e7 1.e6 1.e6 1.e8

0.0000 26.0304 15.3760 8.0742 6.7718 11.1924

6.9323 26.0304 15.3760 8.0742 6.7718 11.1924

14.2804 3.2544 1.9224 1.0095 0.8466 5.5966

14.2904 3.2544 1.9224 1.0095 0.8466 5.5966

15.5977 0.4066 0.2402 0.1261 0.1058 2.7979

#

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 10.0 10.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0

0.0000 5.1132 8.2888 0.2631 1.6116

0.3183 5.1132 8.2888 0.2631 1.6116

0.6366 5.1132 8.2888 0.2631 1.6116

0.9550 5.1132 8.2888 0.2631 1.6116

1.2733 5.1132 8.2888 0.2631 1.6116

1.5916 5.1132 8.2888 0.2631 1.6116

1.9099 5.1132 8.2888 0.2631 1.6116

2.2282 5.1132 8.2888 0.2631 1.6116

2.5466 5.1132 8.2888 0.2631 1.6116

2.8649 5.1132 8.2888 0.2631 1.6116

3.1832 5.1132 8.2888 0.2631 1.6116

3.5015 5.1132 8.2888 0.2631 1.6116

3.8198 5.1132 8.2888 0.2631 1.6116

4.1382 5.1132 8.2888 0.2631 1.6116

4.4565 5.1132 8.2888 0.2631 1.6116

4.7748 5.1132 8.2888 0.2631 1.6116

5.0931 5.1132 8.2888 0.2631 1.6116

5.4114 5.1132 8.2888 0.2631 1.6116

5.7298 5.1132 8.2888 0.2631 1.6116

6.0481 5.1132 8.2888 0.2631 1.6116

6.3664 5.1132 8.2888 0.2631 1.6116

6.6847 5.1132 8.2888 0.2631 1.6116

7.0030 5.1132 8.2888 0.2631 1.6116

7.3214 5.1118 8.2444 0.2631 1.6116

7.6397 5.1042 8.1614 0.2631 1.6116

7.9580 4.5747 8.0785 0.2631 1.6116

8.2763 4.2826 7.9612 0.2631 1.6116

8.5947 4.0189 7.7953 0.2631 1.6116

8.9130 3.7650 7.6294 0.2631 1.6116

9.2313 3.5172 7.4635 0.2631 1.6116

9.5496 3.2758 7.2974 0.2631 1.6116

9.8679 3.0411 7.1314 0.2631 1.6116

10.1863 2.8135 6.9653 0.2631 1.6116

10.5046 2.5932 6.7994 0.2631 1.6116

10.8229 2.3806 6.6335 0.2631 1.6116

11.1412 2.1761 6.4676 0.2631 1.6116

11.4595 1.9801 6.3018 0.2631 1.6116
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11.7779 1.7930 6.1359 0.2631 1.6116

12.0962 1.6152 5.9700 0.2631 1.6116

12.4145 1.4472 5.8040 0.2631 1.6116

12.7328 1.2895 5.6379 0.2631 1.6116

13.0511 1.1424 5.4718 0.2631 1.6116

13.3695 1.0066 5.3059 0.2631 1.6116

13.6878 0.8827 5.1400 0.2631 1.6116

14.0061 0.7712 4.9741 0.2631 1.6116

14.3244 0.6728 4.8082 0.2631 1.6116

14.6427 0.5881 4.6423 0.2631 1.6116

14.9611 0.5181 4.4764 0.2631 1.6116

15.2794 0.4635 4.3116 0.2631 1.6116

#

End

#============

Beam 2

fuselage

#

t x y z radius mg

* 1.0 1.0 1.0 1.0 1.0 10.0

0.0 0.0 0.0 0.0 0.2811 14.3711

6.9323 6.9323 0.0 0.4853 0.1687 8.6226

End

#============

Beam 3

horziontal tail

#

t x y z chord Xax

* 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0

0.0000 6.7243 0.0000 4.8540 0.8319 0.25

2.7729 6.7243 2.7729 4.8540 0.8319 0.25

#

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0

0.0000 0.0 43.5167 0.0 0.0

2.7729 0.0 43.5167 0.0 0.0

#

#Aerodynamic Properties

t alpha Cm Cdf CLmax CLmin dCLda

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.0000 0.0000 0.0000 0.0058 1.5000 -1.5000 6.1184

2.7729 0.0000 0.0000 0.0058 1.5000 -1.5000 6.1184

#

#Control settings

t dCLdF3 dCMdF3

* 1.0 1.0 0.00

+ 0.0 0.00 0.00

0.0000 0.1068 -0.3917

2.7729 0.1068 -0.3917

#
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End

#============

Beam 4

vertical tail

#

t x y z chord Xax

* 1.0 1.0 1.0 1.0 1.0 1.0

+ 1.0 0.0 0.0 0.0 0.0 0.0

0.0000 6.8611 0.0000 0.4853 0.7972 0.25

1.4562 6.8611 0.0000 1.9415 0.7972 0.25

4.3687 6.8611 0.0000 4.8540 0.7972 0.25

#

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0

0.4853 0.0 41.7015 0.0 0.0

1.9415 0.0 59.5728 0.0 0.0

4.8540 0.0 41.7015 0.0 0.0

#

#Aerodynamic Properties

t alpha Cm Cdf CLmax CLmin dCLda

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.0000 0.0000 0.0000 0.0058 1.5000 -1.5000 6.1184

4.3687 0.0000 0.0000 0.0058 1.5000 -1.5000 6.1184

#

#Control settings

t dCLdF2 dCMdF2

* 1.0 0.02 0.10

0.0000 -2.3500 0.3917

4.3687 -2.3500 0.3917

#

End

#============

Beam 5

Motor Pylons

t x y z chord twist Xax

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.6922 -1.1438 1.6922 1.6922 0.7087 0.0000 0.2500

0.0423 -1.1543 1.6922 0.0423 0.7087 0.0000 0.2500

0.0423 -1.1543 1.6922 0.0423 0.7087 0.0000 0.2500

0.0000 -1.1543 1.6922 0.0000 1.5009 0.0000 0.2500

0.0000 -1.1543 1.6922 0.0000 1.5009 0.0000 0.2500

-1.9742 -1.1438 1.6922 -1.9742 0.7087 0.0000 0.2500

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 1.0 1.0 1.0 1.0

+ 0.0 10.0 10.0 0.0 0.0

1.6922 3.7072 1.8536 0.0 0.0

0.0423 3.7072 1.8536 0.0 0.0

0.0423 3.7072 1.8536 0.0 0.0

0.0000 7.8515 3.9257 0.0 0.0



136 ASWING and ASWINGb input files

0.0000 7.8515 3.9257 0.0 0.0

-1.9742 3.7072 1.8536 0.0 0.0

#

End

#============

Beam 6

Motor Pylons

t x y z chord twist Xax

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.6922 -1.1438 -1.6922 1.6922 0.7087 0.0000 0.2500

0.0423 -1.1543 -1.6922 0.0423 0.7087 0.0000 0.2500

0.0423 -1.1543 -1.6922 0.0423 0.7087 0.0000 0.2500

0.0000 -1.1543 -1.6922 0.0000 1.5009 0.0000 0.2500

0.0000 -1.1543 -1.6922 0.0000 1.5009 0.0000 0.2500

-1.9742 -1.1438 -1.6922 -1.9742 0.7087 0.0000 0.2500

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 1.0 1.0 1.0 1.0

+ 0.0 10.0 10.0 0.0 0.0

1.6922 3.7072 1.8536 0.0 0.0

0.0423 3.7072 1.8536 0.0 0.0

0.0423 3.7072 1.8536 0.0 0.0

0.0000 7.8515 3.9257 0.0 0.0

0.0000 7.8515 3.9257 0.0 0.0

-1.9742 3.7072 1.8536 0.0 0.0

#

End

#============

Beam 7

Motor Pylons

t x y z chord twist Xax

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.6922 -1.1438 5.0766 1.6922 0.7087 0.0000 0.2500

0.0423 -1.1543 5.0766 0.0423 0.7087 0.0000 0.2500

0.0423 -1.1543 5.0766 0.0423 0.7087 0.0000 0.2500

0.0000 -1.1543 5.0766 0.0000 1.5009 0.0000 0.2500

0.0000 -1.1543 5.0766 0.0000 1.5009 0.0000 0.2500

-1.9742 -1.1438 5.0766 -1.9742 0.7087 0.0000 0.2500

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 1.0 1.0 1.0 1.0

+ 0.0 10.0 10.0 0.0 0.0

1.6922 3.7072 1.8536 0.0 0.0

0.0423 3.7072 1.8536 0.0 0.0

0.0423 3.7072 1.8536 0.0 0.0

0.0000 7.8515 3.9257 0.0 0.0

0.0000 7.8515 3.9257 0.0 0.0

-1.9742 3.7072 1.8536 0.0 0.0

#

End

#============
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Beam 8

Motor Pylons

t x y z chord twist Xax

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.6922 -1.1438 -5.0766 1.6922 0.7087 0.0000 0.2500

0.0423 -1.1543 -5.0766 0.0423 0.7087 0.0000 0.2500

0.0423 -1.1543 -5.0766 0.0423 0.7087 0.0000 0.2500

0.0000 -1.1543 -5.0766 0.0000 1.5009 0.0000 0.2500

0.0000 -1.1543 -5.0766 0.0000 1.5009 0.0000 0.2500

-1.9742 -1.1438 -5.0766 -1.9742 0.7087 0.0000 0.2500

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 1.0 1.0 1.0 1.0

+ 0.0 1 10.0 10.0 0.0 0.0

1.6922 3.7072 1.8536 0.0 0.0

0.0423 3.7072 1.8536 0.0 0.0

0.0423 3.7072 1.8536 0.0 0.0

0.0000 7.8515 3.9257 0.0 0.0

0.0000 7.8515 3.9257 0.0 0.0

-1.9742 3.7072 1.8536 0.0 0.0

#

End

#============

B.2 ASWINGb input file rigid hawk.asw

#============

Name

Light Hawk

End

#============

Units

L 1.0 ft

T 1.0 s

F 1.0 lb

End

#============

Constant

# g rho_SL V_sound

32.18 0.002378 1115.0

End

#============

Reference

# Sref Cref Bref

125.0 3.0 49.2

#

# Xmom Ymom Zmom

-0.40 0.0 0.0

-0.40 0.0 0.0

-0.40 0.0 0.0
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End

#============

Joint

# Nbeam1 Nbeam2 t1 t2

4 1 0.0 0.0

4 3 11.4 1.0

3 2 6.0 0.0

End

#============

Ground

# Nbeam t Kground

! 1 0.0 0

! 2 0.0 0

! 3 0.0 0

4 0.0 0

End

#======================

Weight

# Nbeam t Xp the constraints are adjusted suchYp Zp Mg CDA Vol Hx Hy Hz

* 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

# 4 -1.83 -2.83 0.0 0.0 225.0 0.0 0.0 0.0 0.0 0.0

4 -1.83 -2.83 0.0 0.0 160.0 0.0 0.0 0.0 0.0 0.0

# 4 -1.83 -2.83 0.0 0.0 140.0 0.0 0.0 0.0 0.0 0.0

4 0.00 0.00 0.0 -1.0 4.0 0.0 0.0 0.0 0.0 0.0

4 0.00 0.00 0.0 +0.5 15.0 0.0 0.0 0.0 0.0 0.0

4 0.00 1.50 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0

# 4 11.40 11.40 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0

4 11.40 11.40 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0

End

#======================

Sensor

# KS Nb t Xp Yp Zp Vx Vy Vz Ax Ay Az

* 1. 1. 1. 0.0412 1. 1. 1. 1. 1. 1.

1 1 -19.7 -1.40 -19.7 19.7 1.0 0.0 0.0 0.0 0.0 1.0

2 1 -8.01 -1.40 -8.0 8.0 1.0 0.0 0.0 0.0 0.0 1.0

3 1 0.0 -1.40 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0

4 1 8.01 -1.40 8.0 8.0 1.0 0.0 0.0 0.0 0.0 1.0

5 1 19.7 -1.40 19.7 19.7 1.0 0.0 0.0 0.0 0.0 1.0

6 4 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0

!

! 1 1 -24.0 -1.40 -24.0 24.0 1.0 0.0 0.0 0.0 0.0 1.0

! 2 1 -20.0 -1.40 -20.0 20.0 1.0 0.0 0.0 0.0 0.0 1.0

! 3 1 -16.0 -1.40 -16.0 16.0 1.0 0.0 0.0 0.0 0.0 1.0

! 4 1 -12.0 -1.40 -12.0 12.0 1.0 0.0 0.0 0.0 0.0 1.0

! 5 1 -8.01 -1.40 -8.01 8.0 1.0 0.0 0.0 0.0 0.0 1.0

! 6 1 -4.0 -1.40 -4.0 4.0 1.0 0.0 0.0 0.0 0.0 1.0

!

! 7 1 4.0 -1.40 4.0 4.0 1.0 0.0 0.0 0.0 0.0 1.0

! 8 1 8.01 -1.40 8.01 8.0 1.0 0.0 0.0 0.0 0.0 1.0

! 9 1 12.0 -1.40 12.0 12.0 1.0 0.0 0.0 0.0 0.0 1.0

! 10 1 16.0 -1.40 16.0 16.0 1.0 0.0 0.0 0.0 0.0 1.0
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! 11 1 20.0 -1.40 20.0 20.0 1.0 0.0 0.0 0.0 0.0 1.0

! 12 1 24.0 -1.40 24.0 24.0 1.0 0.0 0.0 0.0 0.0 1.0

End

#============

Engine

# KPeng IEtyp Nbeam t Xp Yp Zp Tx Ty Tz dFdPe dMdPe Rdisk Omega cdA

1 1 4 1.0 -6.975 0. 0. -1. 0. -.1 1.0 1.0 3.0 100. 0.0

1 0 4 1.0 -6.975 0. 0. -1. 0. -.1 1.0 0.01 0.0 100. 0.0

2 0 1 6.0 -0.30 6. -3. 0. 0. 1. 1. 0. 0.0 0.0 0.0

End

#============

tether

# Nbeam t xt yt zt Xe Ye Ze Dl Kspr Wtet CDA

1 0. 5.000 0.the constraints are adjusted such0 -10. 5.000 0. -300.0 0.0 100

0.0 0.00

end

#============

bridle

# Nbeam t xb yb zb xt yt zt

1 -12.40 5.0 -12.40 -0.0 5.000 0.0 -10.

1 12.40 5.0 12.40 -0.0 5.000 0.0 -10.

end

#============

Beam 1

Wing

t x y z chord alpha

* 1. 1.0 1. 0.0412 1.0 5.0

!* 1. 1.0 1. 0.0 1.0 5.0

0.00000 0.00000 0.00000 0.00000 3.00000 1.00000

1.81241 -0.06198 1.81241 1.81241 2.99672 1.00000

3.61364 -0.12086 3.61364 3.61364 2.98667 1.00000

5.39259 -0.17600 5.39259 5.39259 2.96923 1.00000

7.13829 -0.22665 7.13829 7.13829 2.94344 1.00000

8.83999 -0.27193 8.83999 8.83999 2.90807 1.00000

10.48718 -0.31090 10.48718 10.48718 2.86169 1.00000

12.06972 -0.34263 12.06972 12.06972 2.80287 1.00000

13.57784 -0.36626 13.57784 13.57784 2.73027 1.00000

15.00225 -0.38102 15.00225 15.00225 2.64283 1.00000

16.33417 -0.38637 16.33417 16.33417 2.53992 1.00000

17.56538 -0.38202 17.56538 17.56538 2.42157 1.00000

18.68830 -0.36806 18.68830 18.68830 2.28864 1.00000

19.69599 -0.34502 19.69599 19.69599 2.14306 1.00000

20.58225 -0.31276 20.58225 20.58225 1.99172 1.00000

21.34162 -0.27222 21.34162 21.34162 1.84220 1.00000

21.96941 -0.22670 21.96941 21.96941 1.70013 1.00000

22.46175 -0.18081 22.46175 22.46175 1.57303 1.00000

22.81560 -0.14051 22.81560 22.81560 1.47041 1.00000

23.02879 -0.11245 23.02879 23.02879 1.40278 1.00000

23.10000 -0.10233 23.10000 23.10000 1.37903 1.00000

! 23.10000 -0.10233 23.10000 23.10000 1.37903 1.00000

23.17427 -0.09133 23.17427 23.17427 1.35359 1.00000

23.38238 -0.05779 23.38238 23.38238 1.27810 1.00000

23.68311 -0.00043 23.68311 23.68311 1.15535 1.00000
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24.01689 0.08177 24.01689 24.01689 0.99057 1.00000

24.31762 0.18842 24.31762 24.31762 0.79199 1.00000

24.60000 0.31657 24.60000 24.60000 0.55000 1.00000

! 24.60000 0.46037 24.60000 24.60000 0.34120 1.00000

t Cshell Nshell Atshell

* 1. 0.35 0.09 0.0001

0.00000 3.00000 3.00000 3.00000

1.81241 2.99672 2.99672 2.99672

3.61364 2.98667 2.98667 2.98667

5.39259 2.96923 2.96923 2.96923

7.13829 2.94344 2.94344 2.94344

8.83999 2.90807 2.90807 2.90807

10.48718 2.86169 2.86169 2.86169

12.06972 2.80287 2.80287 2.80287

13.57784 2.73027 2.73027 2.73027

15.00225 2.64283 2.64283 2.64283

16.33417 2.53992 2.53992 2.53992

17.56538 2.42157 2.42157 2.42157

18.68830 2.28864 2.28864 2.28864

19.69599 2.14306 2.14306 2.14306

20.58225 1.99172 1.99172 1.99172

21.34162 1.84220 1.84220 1.84220

21.96941 1.70013 1.70013 1.70013

22.46175 1.57303 1.57303 1.57303

22.81560 1.47041 1.47041 1.47041

23.02879 1.40278 1.40278 1.40278

23.10000 1.37903 1.37903 1.37903

! 23.10000 1.37903 1.37903 1.37903

23.17427 1.35359 1.35359 1.35359

23.38238 1.27810 1.27810 1.27810

23.68311 1.15535 1.15535 1.15535

24.01689 0.99057 0.99057 0.99057

24.31762 0.79199 0.79199 0.79199

24.60000 0.55000 0.55000 0.55000

! 24.60000 0.34120 0.34120 0.34120

# t mg mgnn EIcc EInn GJ EIcs EIsn

#* 1. 0.9 0.9 1.0E5 5.0E6 1.0E5 4.0E4 0.0E5

#* 1. 0.9 0.9 1.0E5 5.0E6 1.0E5 0. 0.

# -24.6 1.2 1.2 0.005 0.1 0.05 -0.005 -0.1

# -24.0 1.21 1.21 0.006 0.105 0.0505 -0.006 -0.105

# -20.0 1.5 1.5 0.04 0.20 0.12 -0.04 -0.20

# -10.0 3.0 3.0 0.65 0.75 0.5 -0.65 -0.75

# 0.0 5.0 5.0 2.0 2.0 1.0 -2.0 -2.0

# 0.0 5.0 5.0 2.0 2.0 1.0 2.0 2.0

# 10.0 3.0 3.0 0.65 0.75 0.5 0.65 0.75

# 20.0 1.5 1.5 0.04 0.20 0.12 0.04 0.20

# 24.0 1.21 1.21 0.006 0.105 0.0505 0.006 0.105

# 24.6 1.2 1.2 0.005 0.1 0.05 0.005 0.1
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t Ccg

* 1. 0.

0.0 1.0

10.0 1.0

20.0 1.0

24.0 1.0

24.6 1.0

t CLmax CLmin Cdf Cdp

* 1. 1. 1. 1. 1.

0.0 2.1 -1.0 0.006 0.004

10.0 2.1 -1.0 0.0064 0.0044

20.0 2.1 -1.0 0.0068 0.0048

24.0 2.1 -1.0 0.009 0.006

24.6 2.1 -1.0 0.012 0.008

! t dCLdF4 dCLdF1 dCMdF4 dCMdF1 Cm

!* 1. 1. 1. -0.25 -0.25 1.0

! -24.6 0.0 0.0 0.0 0.0 -0.19

! -24.0 0.0 0.0 0.0 0.0 -0.19

! -24.0 0.04 0.03 0.04 0.03 -0.19

! -16.0 0.04 0.03 0.04 0.03 -0.19

! -16.0 0.06 0.02 0.06 0.02 -0.19

! -8.01 0.06 0.02 0.06 0.02 -0.19

! -8.01 0.07 0.01 0.07 0.01 -0.19

! 0.0 0.07 0.01 0.07 0.01 -0.19

! 0.0 0.07 -0.03 0.07 -0.03 -0.19

! 8.01 0.07 -0.03 0.07 -0.03 -0.19

! 8.01 0.06 -0.06 0.06 -0.06 -0.19

! 16.0 0.06 -0.06 0.06 -0.06 -0.19

! 16.0 0.04 -0.09 0.04 -0.09 -0.19

! 24.0 0.04 -0.09 0.04 -0.09 -0.19

! 24.0 0.0 0.0 0.0 0.0 -0.19

! 24.6 0.0 0.0 0.0 0.0 -0.19

t dCLdF4 dCLdF1 dCMdF4 dCMdF1 Cm

* 1. 1. 1. -0.25 -0.25 1.0

-24.6 0.0 0.0 0.0 0.0 -0.19

-24.0 0.0 0.0 0.0 0.0 -0.19

-24.0 0.04 0.06 0.04 0.06 -0.19

-16.0 0.04 0.06 0.04 0.06 -0.19

-16.0 0.06 0.04 0.06 0.04 -0.19

-8.01 0.06 0.04 0.06 0.04 -0.19

-8.01 0.07 0.02 0.07 0.02 -0.19

0.0 0.07 0.02 0.07 0.02 -0.19

0.0 0.07 -0.02 0.07 -0.02 -0.19

8.01 0.07 -0.02 0.07 -0.02 -0.19

8.01 0.06 -0.04 0.06 -0.04 -0.19

16.0 0.06 -0.04 0.06 -0.04 -0.19

16.0 0.04 -0.06 0.04 -0.06 -0.19

24.0 0.04 -0.06 0.04 -0.06 -0.19

24.0 0.0 0.0 0.0 0.0 -0.19

24.6 0.0 0.0 0.0 0.0 -0.19
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End

#===========

Beam 2

Horizontal Stab

t x y z chord alpha

+ 0. 11.4 0. 5.0 0. -0.0

* 1.0 1.0 1.0 1.0 1.0 1.0

0.00000 0.24000 0.00000 0.00000 1.40000 0.00000

0.78316 0.24254 0.78316 0.00000 1.39275 0.00000

1.55291 0.25036 1.55291 0.00000 1.37041 0.00000

2.29610 0.26404 2.29610 0.00000 1.33132 0.00000

3.00000 0.28443 3.00000 0.00000 1.27306 0.00000

3.65257 0.31244 3.65257 0.00000 1.19302 0.00000

4.24264 0.34888 4.24264 0.00000 1.08898 0.00000

4.76012 0.39665 4.76012 0.00000 0.96666 0.00000

5.19615 0.45761 5.19615 0.00000 0.83173 0.00000

5.54328 0.53104 5.54328 0.00000 0.68599 0.00000

5.79556 0.61538 5.79556 0.00000 0.53243 0.00000

6.00000 0.70823 6.00000 0.00000 0.37513 0.00000

! 6.00000 0.80662 6.00000 0.00000 0.21892 0.00000

t mg mgnn

* 1. 1.2 1.0

0.0 0.80 0.10

3.0 0.55 0.04

6.0 0.40 0.015

t CLmax CLmin Cm dCLdF2 dCMdF2

* 1. 1. 1. 1. 1. 1.

0.0 1.2 -1.2 0.0 0.05 -0.03

6.0 1.2 -1.2 0.0 0.05 -0.03

t EIcc EInn GJ

* 1.0 1.0E4 1.0E5 4.0E4

0.0 1.0 1.0 1.0

3.0 0.4 0.6 0.8

6.0 0.2 0.2 0.6

End

#===========

Beam 3 2

Vertical Stab

t x z chord Xax

+ 1. 11.4 0.0 0. 0.0

* 1. 1. 1. 1. 1.

0.0000 0.40 0.0 3.0 0.80

2.5000 0.40 2.5 2.25 0.7333

4.0000 0.40 4.0 1.8 0.6667

5.0000 0.40 5.0 1.5 0.60

t mg mgnn

+ 1. 0.0 0.0

* 1. 1.0 1.0

0.0000 1.5 0.20
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2.5000 1.25 0.12

4.0000 1.1 0.07

5.0000 1.0 0.04

t CLmax CLmin Cm dCLdF3 dCMdF3

+ 1. 0.0 0.0 0. 0. 0.

* 1. 1. 1. 1. 1. 1.

0.0 1.2 -1.2 0.0 -0.05 0.03

5.0 1.2 -1.2 0.0 -0.05 0.03

t EIcc EInn GJ

* 1.0 3.0E4 3.0E5 3.0E4

0.0 1.0 1.0 1.0

2.5 0.9 0.7 0.8

5.0 0.8 0.4 0.6

End

#===========

Beam 4

Fuselage

t x radius mg

* 1.0 1.0 1.0 1.5

-7.5000 -7.5000 0.07680 0.07680

-7.4797 -7.4797 0.09301 0.09301

-7.4000 -7.4000 0.15360 0.15360

-7.2751 -7.2751 0.23941 0.23941

-7.0000 -7.0000 0.38981 0.38981

-6.5866 -6.5866 0.54262 0.54262

-6.0000 -6.0000 0.70361 0.70361

-5.0000 -5.0000 0.92558 0.92558

-4.0000 -4.0000 1.05922 1.05922

-2.0000 -2.0000 1.17204 1.17204

0.0000 0.0000 1.09189 1.09189

3.0000 3.0000 0.70182 0.70182

5.0000 5.0000 0.49062 0.49062

8.0000 8.0000 0.29618 0.29618

11.4000 11.4000 0.19990 0.19990

t EIcc EInn GJ

* 1.0 1.0E5 1.0E5 1.0E5

-7.5 0.6 0.6 0.3

-6.0 0.9 0.9 0.5

-3.0 1.5 1.5 0.8

0.0 1.5 1.5 0.8

6.0 0.9 0.9 0.6

11.4 0.4 0.4 0.4

t Cdf Cdp

* 1. 1. 1.

-7.5 0.003 0.3

-6.0 0.003 0.3

-3.0 0.003 0.3

0.0 0.003 0.3

6.0 0.003 0.3
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11.4 0.003 0.3

End
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B.3 ASWINGb input file for flying wing

#============

Name

Swept Flying Wing METRIC

End

#============

Units

L 1.0 m

T 1.0 s

F 1.0 N

End

#============

Constant

9.81 1.225 340.29

End

#============

Reference

# Sref Cref Bref

24.0 1.00 24.0

#

# Xmom Ymom Zmom

# 3.26 0.0 0.125

0.0 0.0 0.0

End

#======================

#Weight

# Nbeam t Xp Yp Zp Mg CDA Vol Hx Hy Hz

#* 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. 1. 1.

# 1 0.0 2.20 0.0 0.0 150.0 0. 0. 0.0 0.0 0.0

#End

#============

Ground

# Nbeam t Kground

1 0. 0

End

#============

tether

# Nbeam t xt yt zt Xe Ye Ze Dl Kspr

1 0. 0.0 0.0 -12. 0. 0. -75. 0.0 100

end

#============

bridle

# Nbeam t x y z xt yt zt

1 -5. -6.0 -12.0 6.0 0. 0. -12.

1 5. 12.0 12.0 -12.0 0. 0. -12.

end

#============

Beam 1

Wing

#

t chord x y z

#* 1.0 1.0 1.0 1.0 1.0
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# 0.0 3.00 0.0 0.0 0.0 !Original

# 10.0 2.10 8.0 40.0 0.5 !Original

# 10.0 2.10 8.0 40.0 0.5 !Original

# 12.0 1.20 8.2 39.2 3.0 !Original

0.0 1.00 0.0 0.0 0.0 !Adjusted

10.0 1.00 0.0 12.0 0.0 !Adjusted

# 10.0 3.00 0.0 40.0 0.0 !Adjusted

# 12.0 1.20 8.2 39.2 3.0 !Adjusted

#

t Cshell Nshell Atshell

* 1.0 0.0021 0.0021 1.524e-5

0.0 0.50 0.50 0.025

3.0 0.50 0.50 0.015

3.0 0.375 0.375 0.015

10.0 0.375 0.375 0.010

# 10.0 0.375 0.375 0.010

# 11.5 0.375 0.375 0.010

#

t alpha Cm Cdf

* 1.0 1.0 1.0 1.0

0.0 6.0 0.05 0.015

10.0 6.0 0.05 0.015

# 10.0 2.0 0.0 0.015

# 11.5 2.0 0.0 0.015

#

t twist

* 1.0 0.5 !Original

#* 1.0 0.0 !Adjusted

0.0 0.0

2.0 0.0

5.0 -0.2

7.0 -1.0

8.5 -2.4

10.0 -5.0

# 10.0 -0.0

# 11.5 -0.0

#

t dCLdF1 dCMdF1

* 1.0 1.0 1.0

#-11.5 0.0 0.0

#-10.0 0.0 0.0

-10.0 0.07 -0.03

-9.0 0.07 -0.03

-6.0 0.07 -0.03

-6.0 0.0 0.0

6.0 0.0 0.0

6.0 -0.07 0.03

9.0 -0.07 0.03

10.0 -0.07 0.03

# 10.0 0.0 0.0

# 11.5 0.0 0.0

#
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t dCLdF2 dCMdF2

* 1.0 1.0 1.0

0.0 0.07 -0.01

4.0 0.07 -0.01

4.0 0.0 0.0

10.0 0.0 0.0

# 10.0 0.0 0.0

# 11.5 0.0 0.0

#

t dCLdF3 dCMdF3

* 1.0 1.0 1.0

#-11.5 0.07 -0.03

#-10.0 0.07 -0.03

-10.0 0.0 0.0

-9.0 0.0 0.0

-6.0 0.0 0.0

-6.0 0.0 0.0

6.0 0.0 0.0

6.0 0.0 0.0

9.0 0.0 0.0

10.0 0.0 0.0

# 10.0 -0.07 -0.03

# 11.5 -0.07 -0.03

#

t dCLda

* 1.0 1.0

0.0 6.2

10.0 6.2

# 10.0 6.2

# 11.5 6.2

#

t CLmax CLmin

* 1.0 5.0 5.0

0.0 1.1 -1.1

10.0 1.1 -1.1

# 10.0 1.1 -1.1

# 11.5 1.1 -1.1

#

t Xax Ccg Cea Cta

* 1.0 1.0 0.03 0.03 0.03

0.0 0.35 3.00 3.00 3.00

10.0 0.35 0.70 0.70 0.70

# 10.0 0.35 2.10 2.10 2.10

# 11.5 0.35 1.40 1.40 1.40

#

t EIcc EInn GJ

* 1.0 6e4 25e7 40e3

#* 1.0 0. 0. 0. !Adjusted for rigid wing

#-10.0 0.0 0. 0. !Adjusted to make one side of the wing rigid

#0.0 0.0 0. 0. !Adjusted to make one side of the wing rigid

0.0 180.0 1.0 40.0

2.0 120.0 0.7 36.0

4.0 70.0 0.38 30.0
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7.0 33.0 0.17 16.0

10.0 20.0 0.08 5.0

# 10.0 20.0 0.08 5.0

# 11.5 5.0 0.02 2.0

#

t mg mgnn

* 1.0 400. 0.08

#* 1.0 0.0 0.0 !adjusted for rigid wing

0.0 0.95 1.0

1.0 0.95 1.0

1.0 0.75 1.0

7.5 0.50 1.0

10.0 0.40 1.0

#10.0 0.40 1.0

# 11.5 0.10 1.0

End

#============
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B.4 ASWINGb input M600 with bridles

#============

Name

M600

End

#============

Units

L 1.0 m

T 1.0 s

F 1.0 N

End

#============

Constant

# g rho v_sound

9.81 1.225 340.29

End

#============

Reference

# Sref Cref Bref

32.9285 1.2831 25.6626

End

#============

Ground

# Nbeam t Kground

1. 0.0 0

End

#============

Gravity

# Gx Gy Gz

0. 0. -1.

End

#============

tether

# Nbeam t xt yt zt Xe Ye Ze Dl Kspr Wtet CDA

1 0. 0.000 0.0 -4.6188 0.000 0. -300.0 -2.0 6.e4 4000.0 8.00 !Original

# 1 0. 0.000 0.0 -4.6188 0.000 0. -300.0 -2.0 12.e4 4000.0 8.00 !Adjusted

end

#============

bridle

# Nbeam t xb yb zb xt yt zt

1 -6.4157 -0.0691 -6.4157 -0.2961 0.000 0.0 -4.6188 !Original

1 6.4157 -0.0691 6.4157 -0.2961 0.000 0.0 -4.6188 !Original

# 1 -6.4157 -0.4691 -6.4157 -0.2961 0.000 0.00 -4.6188 !Adjusted for experiment

# 1 6.4157 -0.4691 6.4157 -0.2961 0.000 0.00 -4.6188 !Adjusted for experiments

end

#============

Joint

#

# nBeam1 nBeam2 t1 t2

1 2 0.0000 0.0000 ! main wing to fuselage

2 4 7.0572 1.4500 ! fuselage to vertical tail
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4 3 3.5958 0.0000 ! vertical tail to horizontal tail

1 5 -3.6393 0.0364 ! main wing to star inner motor pylon

1 6 3.6393 0.0364 ! main wing to port inner motor pylon

1 7 -1.2131 0.1092 ! main wing to star outer motor pylon

1 8 1.2131 0.1092 ! main wing to port outer motor pylon

End

#============

Weight

# nBeam t X0 Y0 Z0 weight CDA Vol Hxo Hyo Hzo

* 1.0 1.0 1.0 1.0 100 1.0 1.0 1.0e3 1.0e3 1.0e3

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 1.3142 -1.6424 -1.2131 1.3142 0.7847 0.0000 0.0 0.3385 0.0 0.0 !motor

7 1.3142 -1.6424 -1.2131 1.3142 4.2244 0.0000 0.0 0.0000 0.0 0.0 !generator

5 1.3142 -1.6424 -3.6393 1.3142 0.7847 0.0000 0.0 0.3385 0.0 0.0 !motor

5 1.3142 -1.6424 -3.6393 1.3142 4.2244 0.0000 0.0 0.0000 0.0 0.0 !generator

6 1.3142 -1.6424 3.6393 1.3142 0.7847 0.0000 0.0 0.3385 0.0 0.0 !motor

6 1.3142 -1.6424 3.6393 1.3142 4.2244 0.0000 0.0 0.0000 0.0 0.0 !generator

8 1.3142 -1.6424 1.2131 1.3142 0.7847 0.0000 0.0 0.3385 0.0 0.0 !motor

8 1.3142 -1.6424 1.2131 1.3142 4.2244 0.0000 0.0 0.0000 0.0 0.0 !generator

8 -1.3142 -1.6424 1.2131 -1.3142 0.7847 0.0000 0.0 0.3385 0.0 0.0 !motor

8 -1.3142 -1.6424 1.2131 -1.3142 4.2244 0.0000 0.0 0.0000 0.0 0.0 !generator

6 -1.3142 -1.6424 3.6393 -1.3142 0.7847 0.0000 0.0 0.3385 0.0 0.0 !motor

6 -1.3142 -1.6424 3.6393 -1.3142 4.2244 0.0000 0.0 0.0000 0.0 0.0 !generator

5 -1.3142 -1.6424 -3.6393 -1.3142 0.7847 0.0000 0.0 0.3385 0.0 0.0 !motor

5 -1.3142 -1.6424 -3.6393 -1.3142 4.2244 0.0000 0.0 0.0000 0.0 0.0 !generator

7 -1.3142 -1.6424 -1.2131 -1.3142 0.7847 0.0000 0.0 0.3385 0.0 0.0 !motor

7 -1.3142 -1.6424 -1.2131 -1.3142 4.2244 0.0000 0.0 0.0000 0.0 0.0 !generator

# 1 0. 0. 0. 0. 0. 2.0000 0.0 0.0000 0.0 0.0 !added to simulate tether drag

# 1 0.0000 0.0 0.0 -150. 32. 2.00 0. 0. 0. 0.

End

#============

Engine

# Keng IEtyp Nbeam t Xo Yo Zo Tx Ty Tz dFdPe dMdPe Rdisk Omega cdA

* 1.0 1.0 1.0 1.0 1.0 1. 1.0 1. 1. 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0.

1 1 7 1.3142 -1.6424 -1.2131 1.3142 -1. 0.0 0.0 1.0 1.0 1.03 120. 0.0089

2 1 5 1.3142 -1.6424 -3.6393 1.3142 -1. 0.0 0.0 1.0 1.0 1.03 120. 0.0089

3 1 6 1.3142 -1.6424 3.6393 1.3142 -1. 0.0 0.0 1.0 1.0 1.03 120. 0.0089

4 1 8 1.3142 -1.6424 1.2131 1.3142 -1. 0.0 0.0 1.0 1.0 1.03 120. 0.0089

5 1 8 -1.3142 -1.6424 1.2131 -1.3142 -1. 0.0 0.0 1.0 1.0 1.03 120. 0.0089

6 1 6 -1.3142 -1.6424 3.6393 -1.3142 -1. 0.0 0.0 1.0 1.0 1.03 120. 0.0089

7 1 5 -1.3142 -1.6424 -3.6393 -1.3142 -1. 0.0 0.0 1.0 1.0 1.03 120. 0.0089

8 1 7 -1.3142 -1.6424 -1.2131 -1.3142 -1. 0.0 0.0 1.0 1.0 1.03 120. 0.0089

End

#============

Beam 1

main Wing

#

t x y z chord twist Xax

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0000 -0.3636 0.0000 0.0000 1.4543 12.0000 0.25

# 6.4157 -0.3636 6.4157 0.0000 1.4543 12.0000 0.25
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6.4157 -0.3636 6.4157 0.0000 1.4543 12.0000 0.25

9.6235 -0.2780 9.6235 0.1925 1.1120 8.2500 0.25

12.8313 -0.1924 12.8313 0.3849 0.7696 4.5000 0.25

12.8313 -0.1924 12.8313 0.3849 0.7696 4.5000 0.25

13.0228 -0.0962 12.8513 1.4546 0.3848 -5.5000 0.25

# 9.6235 -0.4636 9.6235 0.1925 1.1120 8.2500 0.25 !forward sweep values, straight leading edge

# 12.8313 -0.5636 12.8313 0.3849 0.7696 4.5000 0.25 !forward sweep values, straight leading edge

# 12.8313 -0.5636 12.8313 0.3849 0.7696 4.5000 0.25 !forward sweep values, straight leading edge

# 13.0228 -0.5636 12.8513 1.4546 0.3848 -5.5000 0.25 !forward sweep values, straight leading edge

#

#Stifnesses and FEM properties

t EIcc EInn EA GJ Cta Nta Cea Nea

* 1.0 1.0e6 1.0e6 1.0e8 1.0e6 1.0 1.0 1.0 1.00

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

# 0. 10.7 27.9 8.73 1.37 0.404 0.033 0.404 0.033 !original values Gregor

# 7.1 5.11 14.4 4.13 1.15 0.4 0.045 0.4 0.045 !original values Gregor

# 13.0228 0.104 0.816 0.588 0.09 0.24 0.026 0.24 0.026 !original values Gregor

0. 10.7 27.9 8.73 1.37 0.0404 0.033 0.0404 0.033 !change of elastic axis (actually account for c=@0.25chord)

7.1 5.11 14.4 4.13 1.15 0.0404 0.045 0.0404 0.045 !change of elastic axis (actually account for c=@0.25chord)

# 7.1 5.11 14.4 4.13 1.15 0.0404 0.045 0.0404 0.045 !change of elastic axis (actually account for c=@0.25chord)

12.8313 0.104 0.816 0.588 0.09 0.0476 0.026 0.0476 0.026 !change of elastic axis (actually account for c=@0.25chord)

12.8313 0.104 0.816 0.588 0.09 0.0476 0.026 0.0476 0.026 !change of elastic axis (actually account for c=@0.25chord)

13.0228 0.104 0.816 0.588 0.09 0.0476 0.026 0.0476 0.026 !change of elastic axis (actually account for c=@0.25chord)

#

# 0. 13.3750 34.8750 10.9125 1.7125 0.404 0.033 0.404 0.033 !new airfoil 16aug2013 Damon

# 7.1 6.3875 17.4240 5.45 1.426 0.4 0.045 0.4 0.045 !new airfoil 16aug2013 Damon

# 13.0228 0.09256 0.49931 0.588 0.08271 0.24 0.026 0.24 0.026 !new airfoil 16aug2013 Damon

# 0. 0.0 0.0 0.0 0.0 0.404 0.033 0.404 0.033 !infinitely stiff

# 7.1 0.0 0.0 0.0 0.0 0.4 0.045 0.4 0.045 !infinitely stiff

# 13.0228 0.0 0.0 0.0 0.0 0.24 0.026 0.24 0.026 !infinitely stiff

#

#Aerodynamic Properties

t alpha Cm Cdf CLmax CLmin dCLda

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0000 10.0712 -0.1900 0.0185 3.4252 -1.0000 6.1850

12.8313 10.0712 -0.1900 0.0185 3.4252 -1.0000 6.1850

12.8313 0.0 -0.000 0.0185 1.00 -1.0000 6.1850

13.0228 0.0 -0.000 0.0185 1.00 -1.0000 6.1850

#

#Control settings

t dCLdF9 dCMdF9

* 1.0 0.01 0.01

+ 0.0 0.0 0.0

-13.0228 0.0000 0.0000

-12.8313 0.0000 0.0000

-12.8313 -5.888 0.829

-11.8813 -5.888 0.829

-11.8813 0.0000 0.0000



152 ASWING and ASWINGb input files

0.0000 0.0000 0.0000

11.8813 0.0000 0.0000

11.8813 5.888 -0.829

12.8313 5.888 -0.829

12.8313 0.0000 0.0000

13.0228 0.0000 0.0000

t dCLdF1 dCMdF1

* 1.0 0.01 0.01

+ 0.0 0.0 0.0

# -12.8313 0.0000 0.0000

-13.0228 0.0000 0.0000

-11.8813 0.0000 0.0000

-11.8813 5.888 -1.0

-9.6813 5.888 -1.0

-9.6813 0.0000 0.0000

0.0000 0.0000 0.0000

13.0228 0.0000 0.0000

# 12.8313 0.0000 0.0000

t dCLdF2 dCMdF2

* 1.0 0.01 0.01

+ 0.0 0.0 0.0

-13.0228 0.0000 0.0000

# -12.8313 0.0000 0.0000

-9.6813 0.0000 0.0000

-9.6813 5.888 -1.0

-6.4813 5.888 -1.0

-6.4813 0.0000 0.0000

0.0000 0.0000 0.0000

13.0228 0.0000 0.0000

# 12.8313 0.0000 0.0000

#

t dCLdF3 dCMdF3

* 1.0 0.01 0.01

+ 0.0 0.0 0.0

-13.0228 0.0000 0.0000

# -12.8313 0.0000 0.0000

-6.4813 0.0000 0.0000

-6.4813 5.888 -1.0

-3.2813 5.888 -1.0

-3.2813 0.0000 0.0000

0.0000 0.0000 0.0000

13.0228 0.0000 0.0000

# 12.8313 0.0000 0.0000

t dCLdF4 dCMdF4

* 1.0 0.01 0.01

+ 0.0 0.0 0.0

-13.0228 0.0000 0.0000

# -12.8313 0.0000 0.0000

-3.2313 0.0000 0.0000

-3.2313 5.888 -1.0
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0.0000 5.888 -1.0

0.0000 0.0000 0.0000

13.0228 0.0000 0.0000

# 12.8313 0.0000 0.0000

t dCLdF5 dCMdF5

* 1.0 0.01 0.01

+ 0.0 0.0 0.0

-13.0228 0.0000 0.0000

# -12.8313 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 5.888 -1.0

3.2313 5.888 -1.0

3.2313 0.0000 0.0000

13.0228 0.0000 0.0000

# 12.8313 0.0000 0.0000

t dCLdF6 dCMdF6

* 1.0 0.01 0.01

+ 0.0 0.0 0.0

-13.0228 0.0000 0.0000

# -12.8313 0.0000 0.0000

0.0000 0.0000 0.0000

3.2813 0.0000 0.0000

3.2813 5.888 -1.0

6.4813 5.888 -1.0

6.4813 0.0000 0.0000

13.0228 0.0000 0.0000

# 12.8313 0.0000 0.0000

t dCLdF7 dCMdF7

* 1.0 0.01 0.01

+ 0.0 0.0 0.0

-13.0228 0.0000 0.0000

# -12.8313 0.0000 0.0000

0.0000 0.0000 0.0000

6.4813 0.0000 0.0000

6.4813 5.888 -1.0

9.6813 5.888 -1.0

9.6813 0.0000 0.0000

13.0228 0.0000 0.0000

# 12.8313 0.0000 0.0000

t dCLdF8 dCMdF8

* 1.0 0.01 0.01

+ 0.0 0.0 0.0

-13.0228 0.0000 0.0000

# -12.8313 0.0000 0.0000

0.0000 0.0000 0.0000

9.6813 0.0000 0.0000

9.6813 5.888 -1.0

11.8813 5.888 -1.0

11.8813 0.0000 0.0000
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13.0228 0.0000 0.0000

# 12.8313 0.0000 0.0000

#

#

#Mass properties

t Ccg Ncg mg mgcc mgnn Dmg DCcg DNcg !Dmg represent the servo mass

* 1.0 1.0 1.0 9.81 1.0 1.0 9.81 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0000 0.3968 0.0348 14.9734 1.9472 5.6514 1.0 1.2 0.0348

7.1000 0.3981 0.0427 9.3642 1.0806 4.3344 1.0 1.2 0.0427

12.8313 0.2308 0.0215 2.7845 0.0562 0.4332 1.0 0.5 0.0215

# 13.0228 0.2308 0.0215 2.7845 0.0562 0.4332 1.0 0.5 0.0215

#

End

#============

Beam 2

fuselage

#

t x y z radius mg EIcc EInn

* 1.0 1.0 1.0 1.0 1.0 10.0 2.5e6 2.5e6

0.0 0.0 0.0000 0. 0.2811 14.3711 1. 1.

1.0000 6.9933 0.0000 1.45000 0.1687 8.6226 0.216 0.216

End

#============

Beam 3

horizontal tail

#

t x y z chord Xax

* 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0

-1.0 7.1309 -2.3484 3.5958 0.4423 0.25

0.0000 6.9933 0.0000 3.5958 1.0319 0.25

1.0 7.1309 2.3484 3.5958 0.4423 0.25

#

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0

-1.0 0.0 21.4114 0.0 0.0

0.0 0.0 49.9579 0.0 0.0

1.0 0.0 21.4114 0.0 0.0

#

#Aerodynamic Properties

t alpha Cm Cdf CLmax CLmin dCLda

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

-1.0 0.0000 0.0000 0.0058 1.5000 -1.5000 6.1184

0.0000 0.0000 0.0000 0.0058 1.5000 -1.5000 6.1184

1.0 0.0000 0.0000 0.0058 1.5000 -1.5000 6.1184

#

#Control settings
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t dCLdF10 dCMdF10

* 1.0 1.0 0.01

+ 0.0 0.00 0.00

-1.0 0.1068 -0.3917

0.0000 0.1068 -0.3917

1.0 0.1068 -0.3917

#

End

#============

Beam 4

vertical tail

#

t x y z chord Xax

* 1.0 1.0 1.0 1.0 1.0 1.0

+ 1.0 0.0 0.0 0.0 0.0 0.0

0.0000 6.9933 0.0000 0.0000 0.7164 0.25

1.4383 6.6862 0.0000 1.4383 1.0235 0.25

3.5958 6.9933 0.0000 3.5958 0.7164 0.25

#

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0

0.0000 0.0 34.6849 0.0 0.0

1.4383 0.0 49.5512 0.0 0.0

3.5958 0.0 34.6849 0.0 0.0

#

#Aerodynamic Properties

t alpha Cm Cdf CLmax CLmin dCLda

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.0000 0.0000 0.0000 0.008 2.000 -1.3000 6.1184

3.5958 0.0000 0.0000 0.008 2.000 -1.3000 6.1184

#

#Control settings

t dCLdF11 dCMdF11

* 1.0 1.0 0.01

0.0000 -0.80 0.3917

3.5958 -0.80 0.3917

#

End

#============

Beam 5

Motor Pylons

t x y z chord twist Xax

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.6142 -1.2318 -3.6393 1.6142 0.7805 0.0000 0.2500

1.3142 -1.6318 -3.6393 1.3142 1.7805 0.0000 0.2500

1.3142 -1.6318 -3.6393 1.3142 1.7805 0.0000 0.2500

1.0142 -1.2318 -3.6393 1.0142 0.7805 0.0000 0.2500

1.0142 -1.2318 -3.6393 1.0142 0.7805 0.0000 0.2500

0.0329 -1.1869 -3.6393 0.0329 0.7805 0.0000 0.2500

0.0329 -1.1869 -3.6393 0.0329 0.7805 0.0000 0.2500
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0.0000 -1.1869 -3.6393 0.0000 1.5077 0.0000 0.2500

0.0000 -1.1869 -3.6393 0.0000 1.5077 0.0000 0.2500

-1.2164 -1.2318 -3.6393 -1.2164 0.7805 0.0000 0.2500

-1.2164 -1.2318 -3.6393 -1.2164 0.7805 0.0000 0.2500

-1.5164 -1.6318 -3.6393 -1.5164 1.7805 0.0000 0.2500

-1.5164 -1.6318 -3.6393 -1.5164 1.7805 0.0000 0.2500

-1.8164 -1.2318 -3.6393 -1.8164 0.7805 0.0000 0.2500

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 10.0 10.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0

1.6142 3.7787 1.8894 0.0 0.0

1.3142 8.6200 4.3100 0.0 0.0

1.3142 8.6200 4.3100 0.0 0.0

1.0142 3.7787 1.8894 0.0 0.0

1.0142 3.7787 1.8894 0.0 0.0

0.0329 3.7787 1.8894 0.0 0.0

0.0329 3.7787 1.8894 0.0 0.0

0.0000 7.2993 3.6497 0.0 0.0

0.0000 7.2993 3.6497 0.0 0.0

-1.2164 3.7787 1.8894 0.0 0.0

-1.2164 3.7787 1.8894 0.0 0.0

-1.5164 8.6200 4.3100 0.0 0.0

-1.5164 8.6200 4.3100 0.0 0.0

-1.8164 3.7787 1.8894 0.0 0.0

#Aerodynamic Properties !rh8

t alpha Cm Cdf CLmax CLmin dCLda

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.6142 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

0.0000 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

-1.8164 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

#

End

#============

Beam 6

Motor Pylons

t x y z chord twist Xax

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.6142 -1.2318 3.6393 1.6142 0.7805 0.0000 0.2500

1.3142 -1.6318 3.6393 1.3142 1.7805 0.0000 0.2500

1.3142 -1.6318 3.6393 1.3142 1.7805 0.0000 0.2500

1.0142 -1.2318 3.6393 1.0142 0.7805 0.0000 0.2500

1.0142 -1.2318 3.6393 1.0142 0.7805 0.0000 0.2500

0.0329 -1.1869 3.6393 0.0329 0.7805 0.0000 0.2500

0.0329 -1.1869 3.6393 0.0329 0.7805 0.0000 0.2500

0.0000 -1.1869 3.6393 0.0000 1.5077 0.0000 0.2500

0.0000 -1.1869 3.6393 0.0000 1.5077 0.0000 0.2500

-1.2164 -1.2318 3.6393 -1.2164 0.7805 0.0000 0.2500

-1.2164 -1.2318 3.6393 -1.2164 0.7805 0.0000 0.2500

-1.5164 -1.6318 3.6393 -1.5164 1.7805 0.0000 0.2500

-1.5164 -1.6318 3.6393 -1.5164 1.7805 0.0000 0.2500
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-1.8164 -1.2318 3.6393 -1.8164 0.7805 0.0000 0.2500

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 10.0 10.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0

1.6142 3.7787 1.8894 0.0 0.0

1.3142 8.6200 4.3100 0.0 0.0

1.3142 8.6200 4.3100 0.0 0.0

1.0142 3.7787 1.8894 0.0 0.0

1.0142 3.7787 1.8894 0.0 0.0

0.0329 3.7787 1.8894 0.0 0.0

0.0329 3.7787 1.8894 0.0 0.0

0.0000 7.2993 3.6497 0.0 0.0

0.0000 7.2993 3.6497 0.0 0.0

-1.2164 3.7787 1.8894 0.0 0.0

-1.2164 3.7787 1.8894 0.0 0.0

-1.5164 8.6200 4.3100 0.0 0.0

-1.5164 8.6200 4.3100 0.0 0.0

-1.8164 3.7787 1.8894 0.0 0.0

#

#Aerodynamic Properties !rh8

t alpha Cm Cdf CLmax CLmin dCLda

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.6142 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

0.0000 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

-1.8164 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

#

End

#============

Beam 7

Motor Pylons

t x y z chord twist Xax

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.6142 -1.2318 -1.2131 1.6142 0.7805 0.0000 0.2500

1.3142 -1.6318 -1.2131 1.3142 1.7805 0.0000 0.2500

1.3142 -1.6318 -1.2131 1.3142 1.7805 0.0000 0.2500

1.0142 -1.2318 -1.2131 1.0142 0.7805 0.0000 0.2500

1.0142 -1.2318 -1.2131 1.0142 0.7805 0.0000 0.2500

0.0329 -1.1869 -1.2131 0.0329 0.7805 0.0000 0.2500

0.0329 -1.1869 -1.2131 0.0329 0.7805 0.0000 0.2500

0.0000 -1.1869 -1.2131 0.0000 1.5077 0.0000 0.2500

0.0000 -1.1869 -1.2131 0.0000 1.5077 0.0000 0.2500

-1.2164 -1.2318 -1.2131 -1.2164 0.7805 0.0000 0.2500

-1.2164 -1.2318 -1.2131 -1.2164 0.7805 0.0000 0.2500

-1.5164 -1.6318 -1.2131 -1.5164 1.7805 0.0000 0.2500

-1.5164 -1.6318 -1.2131 -1.5164 1.7805 0.0000 0.2500

-1.8164 -1.2318 -1.2131 -1.8164 0.7805 0.0000 0.2500

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 10.0 10.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0

1.6142 3.7787 1.8894 0.0 0.0
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1.3142 8.6200 4.3100 0.0 0.0

1.3142 8.6200 4.3100 0.0 0.0

1.0142 3.7787 1.8894 0.0 0.0

1.0142 3.7787 1.8894 0.0 0.0

0.0329 3.7787 1.8894 0.0 0.0

0.0329 3.7787 1.8894 0.0 0.0

0.0000 7.2993 3.6497 0.0 0.0

0.0000 7.2993 3.6497 0.0 0.0

-1.2164 3.7787 1.8894 0.0 0.0

-1.2164 3.7787 1.8894 0.0 0.0

-1.5164 8.6200 4.3100 0.0 0.0

-1.5164 8.6200 4.3100 0.0 0.0

-1.8164 3.7787 1.8894 0.0 0.0

#

#Aerodynamic Properties !rh8

t alpha Cm Cdf CLmax CLmin dCLda

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.6142 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

0.0000 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

-1.8164 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

#

End

#============

Beam 8

Motor Pylons

t x y z chord twist Xax

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.6142 -1.2318 1.2131 1.6142 0.7805 0.0000 0.2500

1.3142 -1.6318 1.2131 1.3142 1.7805 0.0000 0.2500

1.3142 -1.6318 1.2131 1.3142 1.7805 0.0000 0.2500

1.0142 -1.2318 1.2131 1.0142 0.7805 0.0000 0.2500

1.0142 -1.2318 1.2131 1.0142 0.7805 0.0000 0.2500

0.0329 -1.1869 1.2131 0.0329 0.7805 0.0000 0.2500

0.0329 -1.1869 1.2131 0.0329 0.7805 0.0000 0.2500

0.0000 -1.1869 1.2131 0.0000 1.5077 0.0000 0.2500

0.0000 -1.1869 1.2131 0.0000 1.5077 0.0000 0.2500

-1.2164 -1.2318 1.2131 -1.2164 0.7805 0.0000 0.2500

-1.2164 -1.2318 1.2131 -1.2164 0.7805 0.0000 0.2500

-1.5164 -1.6318 1.2131 -1.5164 1.7805 0.0000 0.2500

-1.5164 -1.6318 1.2131 -1.5164 1.7805 0.0000 0.2500

-1.8164 -1.2318 1.2131 -1.8164 0.7805 0.0000 0.2500

#Mass properties

t mg Dmg mgcc mgnn

* 1.0 10.0 10.0 1.0 1.0

+ 0.0 0.0 0.0 0.0 0.0

1.6142 3.7787 1.8894 0.0 0.0

1.3142 8.6200 4.3100 0.0 0.0

1.3142 8.6200 4.3100 0.0 0.0

1.0142 3.7787 1.8894 0.0 0.0

1.0142 3.7787 1.8894 0.0 0.0

0.0329 3.7787 1.8894 0.0 0.0

0.0329 3.7787 1.8894 0.0 0.0
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0.0000 7.2993 3.6497 0.0 0.0

0.0000 7.2993 3.6497 0.0 0.0

-1.2164 3.7787 1.8894 0.0 0.0

-1.2164 3.7787 1.8894 0.0 0.0

-1.5164 8.6200 4.3100 0.0 0.0

-1.5164 8.6200 4.3100 0.0 0.0

-1.8164 3.7787 1.8894 0.0 0.0

#

#Aerodynamic Properties !rh8

t alpha Cm Cdf CLmax CLmin dCLda

* 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.6142 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

0.0000 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

-1.8164 1.5000 0.0500 0.0058 1.8000 -1.000 6.1184

#

End

#============





Appendix C

FORTRAN77 source code additions
to ASWING

C.1 Tether-bridle subroutine

1

SUBROUTINE SETTET ( IS , IPNT , RTBA)
3 INCLUDE ’ASWING. INC ’

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 c

c Th i s s u b r o u t i n e a c c o u n t s f o r a l l l o a d s and and damping as a
7 c r e s u l t i n g from t h e t e t h e r . One t e t h e r end i s f i x e d a t t h e ’ a i r c r a f t ’

c and t h e o t h e r end i s f i x e d i n t h e Ear th − r e f e r e n c e f rame ( t h e
9 c ground ) .

c
11 c The p a r a m e t e r s l i s t e d below a r e new p a r a m e t e r s which a r e c r e a t e d

c f o r SUBROUTINE SETTET .
13 c

c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 c

c NBRID = number o f b r i d l e s
17 c NCBRID = b r i d l e number

c TETR ( 3 , 3 ) = TE t r a n s p o s e m a t r i x
19 c ( . . . ) ANG = d e r i v a t i v e wr t t o a i c r a f t E u l e r a n g l e s

c ( . . . ) ANGE = d e r i v a t i v e wr t t o E a r t h E u l e r a n g l e s
21 c ( . . . ) R = d e r i v a t i v e wr t a i r c r a f t COG p o s i t i o n

c DRPBR(NBRID , 3 ) = py lon o f f s e t v e c t o r d r p
23 c RBRI (NBRID , 3 ) = r e a l a t t a c h m e n t o f t h e b r i d l e r b i

c LBRID (NBRID) = b r i d l e l e n g t h
25 c RE0TET ( 3 ) = t e t h e r ground a t t a c h m e n t p o i n t , E a r t h c o o r d i n a t e s

c TETMASS = t e t h e r mass
27 c CDA = d rag a r e a c o e f f i c i e n t

c RTET ( 3 ) = t e t h e r v e c t o r
29 c LTET = t e t h e r l e n g h t

c KSPR = s p r i n g c o n s t a n t
31 c TETF = t e t h e r f o r c e magn i tude

c TETFOR ( 3 ) = t e t h e r f o r c e v e c t o r
33 c RBRIST (NBRID , 3 ) = n o r m a l i z e d r b r i

c BRIDF ( 2 ) = b r i d l e f o r c e magn i tude
35 c BRIDFOR ( 2 , 3 ) = b r i d l e f o r c e v e c t o r s

c SUMFXTBA = sum f o r f o r c e s i n x a t t e t h e r − b r i d l e a t t a c h m e n t

161
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37 c SUMFYTBA = sum f o r f o r c e s i n y a t t e t h e r − b r i d l e a t t a c h m e n t
c SUMFZTBA = sum f o r f o r c e s i n z a t t e t h e r − b r i d l e a t t a c h m e n t

39 c RTBA( 3 ) = p o s i t i o n v e c t o r t e t h e r − b r i d l e a t t a c h m e n t
c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

41 REAL XYZ( 3 ) , ANG( 3 ) , POS ( 3 ) ,
& T0 ( 3 , 3 ) , T ( 3 , 3 ) , T ANG ( 3 , 3 , 3 ) ,

43 & TNET( 3 , 3 ) , TNET ANG( 3 , 3 , 3 )
c

45 REAL DRP( 3 ) , DRP ANG( 3 , 3 ) , RP ( 3 ) , RE0TET ( 3 )
c

47 REAL TE ( 3 , 3 ) , TE A ( 3 , 3 , 3 ) , TETR ( 3 , 3 ) , TETR ANGE ( 3 , 3 , 3 )
c

49 REAL RTET ( 3 ) , RTET POS ( 3 , 3 ) , TETFOR LTET ( 3 ) , TETFOR TETF ( 3 ) ,
& RTET RTET ( 3 , 3 ) , RTET ANG ( 2 , 3 , 3 ) , RTET ANGE ( 3 , 3 ) ,

51 & LTET RTET ( 3 ) , TETF RTET ( 3 ) , LTET ANG ( 2 , 3 ) ,
& TETF ANG ( 2 , 3 ) ,

53 & LTET POS ( 3 ) , TETF POS ( 3 ) , LTET ANGE ( 3 ) , TETF ANGE ( 3 ) ,
& TETFOR RTET ( 3 , 3 ) , TETFOR ANG ( 2 , 3 , 3 ) , TETFOR POS ( 3 , 3 ) ,

55 & TETFOR ANGE ( 3 , 3 ) , DRTET( 3 ) ,DRP ANGE( 3 , 3 ) ,
& TNET ANGE( 3 , 3 , 3 ) , RTE ( 3 ) , RTE TEA ( 3 , 3 ) , RTET TEA ( 3 , 3 )

57

REAL DRPBR ANG(NBRID , 3 , 3 ) , BRIDF (NBRID) , ALPHA(NBRID) ,
59 & DRPBR(NBRID , 3 ) , RBRI R (NBRID , 3 , 3 ) , BRIDFOR(NBRID , 3 ) ,

& RBRI ANG (NBRID , 3 , 3 ) , RBRI Q (NBRID , 3 , 3 ) , RTBA ANG( 2 , 3 , 3 ) ,
61 & RBRIST (NBRID , 3 ) , RTBA R ( 2 , 3 , 3 )

63 REAL RBRI TETFOR (NBRID , 3 , 3 ) , BRIDFOR POS (NBRID , 3 , 3 ) ,
& BRIDFOR TETFOR (NBRID , 3 , 3 ) , BRIDF TETFOR (NBRID , 3 ) ,

65 & BRIDFOR ANGE(NBRID , 3 , 3 ) , BRIDFOR R (NBRID , 3 , 3 ) ,
& BRIDFOR ANG(NBRID , 3 , 3 )

67

69 REAL LTET R ( 2 , 3 ) , TETF R ( 2 , 3 ) ,TETFOR R ( 2 , 3 , 3 ) , EUL( 3 )

71 INTEGER IEB (NBRID) , NBRI

73 DIMENSION F ( 3 ) , F Q ( 3 , 1 8 ) , F GL ( 3 , 0 :NGLX) , F FRP ( 3 , 0 :NFRLX) ,
& M( 3 ) , M Q( 3 , 1 8 ) , M GL ( 3 , 0 :NGLX) , M FRP ( 3 , 0 :NFRLX) ,

75 & F QT ( 3 , 6 ) , F GLT ( 3 , 0 :NGLX) ,
& M QT( 3 , 6 ) , M GLT ( 3 , 0 :NGLX) ,

77 & FK QO ( 1 8 ) , FK QP ( 1 8 ) ,FK GL (NGLX) , FK GLT (NGLX) ,
& MK QO( 1 8 ) ,MK QP( 1 8 ) ,MK GL(NGLX) , MK GLT(NGLX) ,

79 & FK QTO ( 6 ) , FK QTP ( 6 ) , FK FRP (NFRLX) ,
& MK QTO( 6 ) ,MK QTP( 6 ) ,MK FRP(NFRLX)

81 c
REAL KSPR , LTET , DLEN, LTET0 , TETFOR RTETK , TETF TEST , RTET1 PSI ,

83 & RTET2 PSI , RTET3 PSI , SUMFXTBA, SUMFYTBA, SUMFZTBA

85 REAL BRIDFTOP ( 2 ) , VARA, VARATOP, VARATOP R( 3 ) , VARABOT,
& VARABOT R( 3 ) , VARA R( 3 ) , VARBTOP, VARBTOP R ( 3 ) , VARBBOT,

87 & VARBBOT R( 3 ) , VARB R ( 3 ) , BRIDFTOP R ( 2 , 3 ) , BRIDFBOT R ( 2 , 3 ) ,
& BRIDF R ( 2 , 3 ) , RBRIST R ( 2 , 3 , 3 ) , BRIDFBOT ( 2 ) , BRIDFOR1 R ( 2 , 3 , 3 ) ,

89 & TEMPRBRI R ( 2 , 3 , 3 ) , TEMPRBRI ANG ( 2 , 3 , 3 ) , BRIDFOR2 R ( 2 , 3 , 3 ) ,
& RBRIST POS ( 2 , 3 , 3 ) , VARATOP POS ( 3 ) , VARABOT POS( 3 ) , VARA POS ( 3 ) ,

91 & VARBTOP POS ( 3 ) , VARBBOT POS ( 3 ) , VARB POS ( 3 ) , BRIDFTOP POS ( 2 , 3 ) ,
& BRIDFBOT POS ( 2 , 3 ) , BRIDF POS ( 2 , 3 ) , BRIDFOR1 POS ( 2 , 3 , 3 ) ,

93 & TEMPRBRI POS ( 2 , 3 , 3 ) , BRIDFOR2 POS ( 2 , 3 , 3 ) , RTBA POS ( 2 , 3 , 3 ) ,
& VARATOP ANG( 3 ) , VARABOT ANG( 3 ) , VARA ANG( 3 ) , VARBTOP ANG( 3 ) ,

95 & VARBBOT ANG( 3 ) , VARB ANG( 3 ) , BRIDFTOP ANG ( 2 , 3 ) ,BRIDFBOT ANG ( 2 , 3 ) ,
& BRIDF ANG ( 2 , 3 ) , RBRIST ANG ( 2 , 3 , 3 ) , BRIDFOR1 ANG ( 2 , 3 , 3 ) ,

97 & BRIDFOR2 ANG ( 2 , 3 , 3 )

99 DIMENSION ICRS ( 3 ) , JCRS ( 3 )

101 REAL RBRIST ANGE ( 2 , 3 , 3 ) , VARATOP ANGE( 3 ) , VARABOT ANGE( 3 ) ,
& VARA ANGE( 3 ) , VARBTOP ANGE( 3 ) , VARBBOT ANGE( 3 ) , VARB ANGE( 3 ) ,

103 & BRIDFTOP ANGE ( 2 , 3 ) , BRIDFBOT ANGE ( 2 , 3 ) , BRIDF ANGE ( 2 , 3 ) ,
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& BRIDFOR1 ANGE ( 2 , 3 , 3 ) , TEMPRBRI ANGE ( 2 , 3 , 3 ) ,
105 & BRIDFOR2 ANGE ( 2 , 3 , 3 ) , RTBA ANGE( 2 , 3 , 3 ) , IB ( 2 )

107 REAL DRPBR ANGE( 2 , 3 , 3 )

109 REAL TEMPRE0TET ( 3 ) , TEMPPOS( 3 )

111 REAL TETMASS, CDA

113 c
DATA ICRS / 2 , 3 , 1 / , JCRS / 3 , 1 , 2 /

115

DATA DEGREES / 0.0174532925 /

117 c

119 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c Dete rmine t h e t r a n s f o r m a t i o n t e n s o r and t h e p a r t i a l d e r i v a t i v e s .

121 c Th i s p a r t i s main ly c o p i e d from o t h e r s u b r o u t i n e s and can be found
c i n t h e t h e o r y document a t . . . .

123 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
BANK = PARAM(KPBANK, IPNT )

125 ELEV = PARAM(KPELEV, IPNT )
HEAD = PARAM(KPHEAD, IPNT )

127

DO K = 1 , 3
129 POS(K) = PARAM(KPPOS(K) , IPNT )

TEMPPOS(K) = POS(K)
131 IF (POS(K) . EQ . 0 ) THEN

POS(K) = 1e−10
133 ENDIF

ENDDO
135

ANG( 1 ) = BANK
137 ANG( 2 ) = ELEV

ANG( 3 ) = HEAD
139

CALL ROTENS3(ANG, TE , TE A )
141

EUL( 1 ) = ANG( 1 )
143 EUL( 2 ) = ANG( 2 )

EUL( 3 ) = ANG( 3 )
145

DO K = 1 ,3
147 DO L = 1 ,3

TETR(K, L ) = TE ( L ,K)
149 ENDDO

ENDDO
151

DO J =1 ,3
153 DO L=1 ,3

DO K=1 ,3
155 TETR ANGE(K, L , J ) = TE A ( L , K, J )

ENDDO
157 ENDDO

ENDDO
159

NCBRID = 0
161

DO 200 KP=1 , NPYLO
163 IF (KPTYPE(KP) . NE. 4 .OR.

& ISPYLO (KP) . NE . IS ) GO TO 200
165

NCBRID = NCBRID+1
167

C−−−− i n t e r v a l where py lon i s a t t a c h e d
169 IEB (NCBRID) = IPYLO (KP)

C
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171 C−−−− node t o which py lon i s e f f e c t i v e l y a t t a c h e d
IB (NCBRID) = MIN( MAX( IEB (NCBRID) , IFRST ( IS ) ) , ILAST ( IS ) )

173

IEQ = IEB (NCBRID)
175 I = IB (NCBRID)

177 c−−−− s e t t e t h e r f o r c e d e r i v a t i v e s t o z e r o
DO L = 1 , 18

179 TETF Q ( L , I ) = 0
ENDDO

181

DO L= 1 ,6
183 TETF UT ( L , I ) = 0

ENDDO
185

DO L=1 , NRHS
187 TETF GL ( L ) = 0

TETF GLT ( L ) = 0
189 ENDDO

C
191 C−−−− s e t l o c a l E u l e r a n g l e s and t r a n s f o r m a t i o n t e n s o r f o r undeformed s t a t e

ANG( 1 ) = Q0 ( 4 , I )
193 ANG( 2 ) = Q0 ( 5 , I )

ANG( 3 ) = Q0 ( 6 , I )
195 CALL ROTENS(ANG, T0 , T ANG , KBTYPE( IS ) )

C
197 C−−−− s e t l o c a l E u l e r a n g l e s and t r a n s f o r m a t i o n t e n s o r

ANG( 1 ) = Q( 4 , I , IPNT )
199 ANG( 2 ) = Q( 5 , I , IPNT )

ANG( 3 ) = Q( 6 , I , IPNT )
201 CALL ROTENS(ANG, T ,T ANG , KBTYPE( IS ) )

203 C
C t

205 C−−−− s e t T To m a t r i x
DO K = 1 , 3

207 DO L = 1 , 3
TNET(K, L ) = T ( 1 ,K) *T0 ( 1 , L )

209 & + T ( 2 ,K) *T0 ( 2 , L )
& + T ( 3 ,K) *T0 ( 3 , L )

211

DO J = 1 , 3
213 TNET ANG(K, L , J ) = T ANG( 1 ,K, J ) *T0 ( 1 , L )

& + T ANG( 2 ,K, J ) *T0 ( 2 , L )
215 & + T ANG( 3 ,K, J ) *T0 ( 3 , L )

217 ENDDO
ENDDO

219 ENDDO
C

221 C−−−− s e t py lon v e c t o r and l o c a t i o n o f py lon end
DO K = 1 , 3

223 DRPBR(NCBRID ,K) = TNET(K, 1 ) * (QPYLO( 1 ,KP)−Q0 ( 1 , I ) )
& + TNET(K, 2 ) * (QPYLO( 2 ,KP)−Q0 ( 2 , I ) )

225 & + TNET(K, 3 ) * (QPYLO( 3 ,KP)−Q0 ( 3 , I ) )

227 DO L = 1 , 3
DRPBR ANG(NCBRID , K, L ) = TNET ANG(K, 1 , L ) * (QPYLO( 1 ,KP)−Q0 ( 1 , I ) )

229 & + TNET ANG(K, 2 , L ) * (QPYLO( 2 ,KP)−Q0 ( 2 , I ) )
& + TNET ANG(K, 3 , L ) * (QPYLO( 3 ,KP)−Q0 ( 3 , I ) )

231

DRPBR ANGE(NCBRID , K, L ) = TE A (K, 1 , L ) * (QPYLO( 1 ,KP) )
233 & + TE A (K, 2 , L ) * (QPYLO( 2 ,KP) )

& + TE A (K, 3 , L ) * (QPYLO( 3 ,KP) )
235 ENDDO

ENDDO
237
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c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
239 c = c

c d e t e r m i n e t h e b r i d l e v e c t o r ( r b r i = r i + T n e t Dr b0 ) and t h e c
241 c d e r i v a t i v e s o f t h e b r i d l e v e r c t o r wi th r e s p e c t t o r and t h e t a . c

c c
243 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

245 DO K =1 , 3
RBRI (NCBRID ,K) = Q(K, I , IPNT ) + DRPBR(NCBRID ,K)

247

DO L =1 ,3
249 RBRI ANG (NCBRID , K, L ) = DRPBR ANG(NCBRID , K, L )

251 IF (K . EQ . L ) THEN
RBRI R (NCBRID , K, L ) = 1

253 ELSE
RBRI R (NCBRID , K, L ) = 0

255 ENDIF
ENDDO

257 ENDDO

259 c−−− d e t e r m i n e t h e l e n g h t o f t h e b r i d l e s . The b r i d l e s a r e assumed r i g i d
c and hence g o t a c o n s t a n t l e n g t h

261 LBRID (NCBRID) = SQRT ( (QPYLO( 1 ,KP)−QPYLO( 4 ,KP) ) **2 +

& (QPYLO( 2 ,KP)−QPYLO( 5 ,KP) ) **2 +

263 & (QPYLO( 3 ,KP)−QPYLO( 6 ,KP) ) **2 )

265 IF (NCBRID . EQ . NBRID) THEN

267 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c d e t e r m i n e some b r i d l e p a r a m e t e r s needed i n t h e t e t h e r loop

269 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

271 DO K = 1 , NPYLO
IF (KPTYPE(K) . EQ . 3 ) THEN

273 RE0TET ( 1 ) = QPYLO( 4 ,K)
RE0TET ( 2 ) = QPYLO( 5 ,K)

275 RE0TET ( 3 ) = QPYLO( 6 ,K)
TETMASS = QPYLO( 9 ,K)

277 CDA = QPYLO( 1 0 ,K)
ENDIF

279 ENDDO

281 DO L = 1 ,2
DO K =1 ,3

283 TEMPRE0TET(K) = RE0TET (K)
TEMPPOS (K) = POS (K)

285 ENDDO
ENDDO

287

c−−− s e t t h e b r i d l e p o s t i o n and d e t e r m i n e b r i d l e d e r i v a t i v e s
289 CALL SETBRI ( RBRI , LBRID , IS , EUL, POS , RTBA, RE0TET , RBRI ANG ,

& RBRI R , RTBA ANG, RTBA R , RTBA POS , RTBA ANGE, DRPBR ANGE)
291

293 c−−− s e t p o s i t i o n RE0TET back a g a i n
DO K = 1 , NPYLO

295 IF (KPTYPE(K) . EQ . 3 ) THEN
RE0TET ( 1 ) = QPYLO( 4 ,K)

297 RE0TET ( 2 ) = QPYLO( 5 ,K)
RE0TET ( 3 ) = QPYLO( 6 ,K)

299 ENDIF
ENDDO

301

c−−− d e t e r m i n e RBRI d e r i v a t i v e s wr t t o l o c a l p a r a m e t e r s
303 DO N=1 ,2

DO K=1 ,3
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305 DO L=1 ,3
RBRI ANG (N, K, L ) = DRPBR ANG(N, K, L )

307

IF (K . EQ . L ) THEN
309 RBRI R (N, K, L ) = 1

ELSE
311 RBRI R (N, K, L ) = 0

ENDIF
313 TEMPRBRI R (N, K, L ) = RBRI R (N, K, L )

TEMPRBRI ANG(N, K, L ) = RBRI ANG (N, K, L )
315 ENDDO

ENDDO
317 ENDDO

319 c−−−− d e r i v a t i v e s RTET wi th r e s p e c t t o RTET(K)
DO K =1 ,3

321 DO J =1 ,3
IF (K . EQ . J ) THEN

323 RTET RTET (K, J ) = 1
ELSE

325 RTET RTET (K, J ) = 0
ENDIF

327 ENDDO
ENDDO

329

331 c−−− d e t e r m i n e t h e l e n g h t o f t h e t e t h e r i n a i r c r a f t xyz c o o r d i n a t e s
DO K =1 ,3

333 RTET(K) = ( TE ( 1 ,K) * (TEMPRE0TET ( 1 ) − TEMPPOS( 1 ) ) )
& + ( TE ( 2 ,K) * (TEMPRE0TET ( 2 ) − TEMPPOS( 2 ) ) )

335 & + ( TE ( 3 ,K) * (TEMPRE0TET ( 3 ) − TEMPPOS( 3 ) ) ) − RTBA(K)

337 ENDDO

339 LTET = SQRT(RTET ( 1 ) **2+RTET ( 2 ) **2+RTET ( 3 ) **2)

341 c−−− g e t t h e u n s t r e s s e d t e t h e r l e n g t h and s p r i n g c o n s t a n t
DO K = 1 , NPYLO

343 IF (KPTYPE(K) . EQ . 3 ) THEN
LTET0 = SQRT ( (QPYLO( 1 ,K)−QPYLO( 4 ,K) ) **2 +

345 & (QPYLO( 2 ,K)−QPYLO( 5 ,K) ) **2 +

& (QPYLO( 3 ,K)−QPYLO( 6 ,K) ) **2)
347 ENDIF

ENDDO
349

c−−− d e t e r m i n e t e t h e r f o r c e magn i tude and v e c t o r
351 TETF = KSPR*(LTET−LTET0 )

353 WRITE ( * , * ) ’ASWINGb . TETF ( i ) = ’ , TETF , ’ ; ’

355 DO K = 1 ,3
TETFOR(K) = (RTET(K) / LTET) * TETF

357 ENDDO

359 c−−− i n c l u d e t e t h e r w e i gh t and d rag
CALL SETWGTTET( IS , IPNT , TETMASS, CDA, TE , TEMPRE0TET , TEMPPOS,

361 & RTBA ANG, RTBA, TETFOR)

363 c−−− d e t e r m i n e t e t h e r f o r c e magn i tude and v e c t o r
TETF =SQRT(TETFOR ( 1 ) **2+TETFOR ( 2 ) **2+TETFOR ( 3 ) **2)

365 PARAM(KPTETF , IPNT ) = TETF

367 c *
c−−− d e t e r m i n e r b r i ; n o r m a l i z e d r b r i

369 IF ( TETF . NE . 0 ) THEN
DO K = 1 ,2

371 DO L = 1 ,3
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DO N = 1 ,3
373 RBRIST (K, L ) = ( RBRI (K, L )−RTBA( L ) ) / LBRID (K)

375 RBRIST R (K, L ,N) = ( RBRI R (K, L ,N)−RTBA R (K, L ,N) )
& / LBRID (K)

377 RBRIST ANG (K, L ,N) = ( RBRI ANG (K, L ,N)−RTBA ANG(K, L ,N) )
& / LBRID (K)

379

ENDDO
381 ENDDO

ENDDO
383

c−−− d e t e r m i n e magn i tude o f b r i d l e f o r c e s
385 BRIDF ( 2 ) = (TETFOR ( 1 ) − ( RBRIST ( 1 , 1 ) * (TETFOR ( 1 )−TETFOR ( 2 ) ) /

& ( RBRIST ( 1 , 1 )−RBRIST ( 1 , 2 ) ) ) ) / ( ( RBRIST ( 1 , 1 ) * ( RBRIST ( 2 , 1 )−
387 & RBRIST ( 2 , 2 ) ) / ( RBRIST ( 1 , 1 )−RBRIST ( 1 , 2 ) ) ) − RBRIST ( 2 , 1 ) )

389 BRIDF ( 1 ) = −(TETFOR ( 2 ) + ( ( ( RBRI ( 2 , 2 )−RTBA( 2 ) ) / LBRID ( 2 ) )
& *BRIDF ( 2 ) ) ) /

391 & ( ( RBRI ( 1 , 2 )−RTBA( 2 ) ) / LBRID ( 1 ) )

393 ELSE
BRIDF ( 1 ) = 0

395 BRIDF ( 2 ) = 0
ENDIF

397

c−−− d e t e r m i n e b r i d l e f o r c e v e c t o r
399 DO K = 1 ,2

DO L = 1 ,3
401 BRIDFOR(K, L ) = RBRIST (K, L ) *BRIDF (K)

ENDDO
403 ENDDO

405 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c

407 c d e r i v a t i v e s wi th r e s p e c t t o t h e t e t h e r f o r c e v e c t o r .
c

409 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

411 c−−−− d e r i v a t i v e o f RTET wr t POS and ANGE
DO K = 1 ,3

413 DO L = 1 , 3
RTET POS (K, L ) = −TETR( L ,K)

415

RTET ANGE(K, L ) =

417 & ( ( ( TEMPRE0TET ( 1 )−TEMPPOS( 1 ) ) *TE A ( 1 ,K, L ) )+

& ( ( TEMPRE0TET ( 2 )−TEMPPOS( 2 ) ) *TE A ( 2 ,K, L ) )+

419 & ( ( TEMPRE0TET ( 3 )−TEMPPOS( 3 ) ) *TE A ( 3 ,K, L ) ) ) − RTBA ANGE( 1 ,K, L )

421 ENDDO
ENDDO

423

c−−− d e r i v a t i v e s o f LTET wr t POS and ANGE
425 DO K = 1 ,3

427 LTET POS (K) = ( ( RTET POS ( 1 ,K) *RTET ( 1 ) )
& + ( RTET POS ( 2 ,K) *RTET ( 2 ) ) + ( RTET POS ( 3 ,K) * RTET ( 3 ) ) ) / LTET

429

LTET ANGE(K) = ( ( RTET ANGE( 1 ,K) *RTET ( 1 ) )
431 & + (RTET ANGE( 2 ,K) *RTET ( 2 ) ) + (RTET ANGE( 3 ,K) * RTET ( 3 ) ) ) / LTET

433 c−−− d e r i v a t i v e s TETF wr t POS and ANGE
TETF POS (K) = KSPR * LTET POS (K)

435 TETF ANGE(K) = KSPR * LTET ANGE(K)

437 c−−− s e t t h e d e r i v a t i v e s TETF wr t POS i n t o a more a p p r o p r i a t e a r r a y
TETF GL (LPOS(K) ) = TETF POS (K)
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439

ENDDO
441

c−−− s e t t h e d e r i v a t i v e s TETF wr t ANGE i n t o a more a p p r o p r i a t e a r r a y
443 TETF GL (LBANK) = TETF ANGE ( 1 ) ! PHI

TETF GL (LELEV) = TETF ANGE ( 2 ) !THETA
445 TETF GL (LHEAD) = TETF ANGE ( 3 ) ! PSI

447 c−−− d e r i v a t i v e o f RBRI wi th r e s p e c t t o r and ANG

449 DO N=1 ,2

451 DO NBRI=1 ,2
DO K =1 ,3

453 DO L=1 ,3
RBRI R ( NBRI , K, L ) = TEMPRBRI R ( NBRI , K, L )

455 RBRI ANG ( NBRI , K, L ) = TEMPRBRI ANG( NBRI , K, L )
ENDDO

457 ENDDO
ENDDO

459

IF (N. EQ . 1 ) THEN
461 DO K=1 ,3

DO L =1 ,3
463 RBRI ANG ( 2 ,K, L ) = 0

RBRI R ( 2 ,K, L ) = 0
465 ENDDO

ENDDO
467 ELSEIF (N. EQ . 2 ) THEN

DO K=1 ,3
469 DO L =1 ,3

RBRI ANG ( 1 ,K, L ) = 0
471 RBRI R ( 1 ,K, L ) = 0

ENDDO
473 ENDDO

ENDIF
475

c−−−− d e r i v a t i v e o f RBRIST
477 DO NBRI = 1 ,2

DO K = 1 ,3
479 DO L = 1 ,3

RBRIST ( NBRI ,K ) = ( RBRI ( NBRI ,K )−RTBA (K ) )
481 & / LBRID ( NBRI )

483 RBRIST R ( NBRI , K, L ) = ( RBRI R ( NBRI , K, L )−RTBA R (N, K, L ) )
& / LBRID ( NBRI )

485 RBRIST ANG ( NBRI , K, L ) = ( RBRI ANG ( NBRI , K, L )−RTBA ANG(N, K, L ) )
& / LBRID ( NBRI )

487

RBRIST POS ( NBRI , K, L ) = ( ( −1) *RTBA POS (N, K, L ) ) / LBRID ( NBRI )
489

RBRIST ANGE ( NBRI , K, L ) = ( ( −1) *RTBA ANGE(N, K, L ) )
491 & / LBRID ( NBRI )

493 ENDDO
ENDDO

495 ENDDO

497 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c t e t h e r f o r c e magn i tude d e r i v a t i v e s wr t R and ANG

499 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DO K= 1 ,3

501 LTET R (N,K) =−((RTBA R(N, 1 ,K) *RTET ( 1 ) )
& +(RTBA R(N, 2 ,K) *RTET ( 2 ) )

503 & +(RTBA R(N, 3 ,K) *RTET ( 3 ) ) ) / LTET

505 LTET ANG(N,K)= −( (RTBA ANG(N, 1 ,K) *RTET ( 1 ) )
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& +(RTBA ANG(N, 2 ,K) *RTET ( 2 ) )
507 & +(RTBA ANG(N, 3 ,K) *RTET ( 3 ) ) ) / LTET

509 TETF R (N,K) = KSPR * LTET R (N,K)
TETF ANG(N,K) = KSPR * LTET ANG(N,K)

511

TETF Q (K, I ) = TETF R (N,K) !R
513 TETF Q (K+3 , I ) = TETF ANG(N,K) !THETA

515 ENDDO

517 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c s e t t e t h e r f o r c e d e r i v a t i v e s

519 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

521

c−−−− g e n e r a l p a r t i a l d e r i v a t i v e s
523 DO K = 1 ,3

525 TETFOR RTETK = TETF / LTET
TETFOR LTET (K) = ( −1) * (RTET(K) / LTET**2) *TETF

527 TETFOR TETF (K) = RTET(K) / LTET

529 ENDDO

531 c−−−− a v o i d s i n g u l a r i t i e s
DO K = 1 , 3

533 IF (RTET(K) . EQ . 0 ) THEN
RTET(K) = 1e−12

535 ENDIF
ENDDO

537

DO K = 1 ,3
539 DO L = 1 ,3

541 TETFOR R (N, L ,K) = ( ( −1) *TETFOR RTETK * RTBA R(N, L ,K) )
& + ( TETFOR LTET ( L ) * LTET R (N,K) )

543 & + ( TETFOR TETF ( L ) * TETF R (N,K) )

545 TETFOR ANG(N, L ,K) = ( ( −1) *TETFOR RTETK * RTBA ANG(N, L ,K) )
& + ( TETFOR LTET ( L ) * LTET ANG(N,K) )

547 & + ( TETFOR TETF ( L ) * TETF ANG(N,K) )

549 TETFOR POS ( L ,K) = (TETFOR RTETK * ( RTET POS ( L ,K) −
& RTBA POS (N, L ,K) ) )

551 & + ( TETFOR LTET ( L ) * LTET POS (K) )
& + ( TETFOR TETF ( L ) * TETF POS (K) )

553

TETFOR ANGE( L ,K) = (TETFOR RTETK * (RTET ANGE( L ,K) ) )
555 & + ( TETFOR LTET ( L ) * LTET ANGE(K) )

& + ( TETFOR TETF ( L ) * TETF ANGE(K) )
557

ENDDO
559 ENDDO

561 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c d e t e r m i n e t h e d e r i v a t i v e s o f t h e b r i d l e f o r c e s . Th i s p a r t o f t h e

563 c code i s l e s s i n t u i t i v e t o f o l l o w w i t h o u t any r e f e r e n c e . P l e a s e
c use p a r t . . . o f r e p o r t . . . a s a r e f e r e n c e .

565 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

567 DO K =1 ,3

569 c−−− d e r i v a t i v e s o f b r i d l e 2
BRIDFTOP ( 2 ) = (TETFOR ( 3 ) − ( RBRIST ( 1 , 3 ) * (TETFOR ( 3 )−TETFOR ( 2 ) )

571 & / ( RBRIST ( 1 , 3 )−RBRIST ( 1 , 2 ) ) ) )
BRIDFBOT ( 2 ) = ( ( RBRIST ( 1 , 3 ) * ( RBRIST ( 2 , 3 )−RBRIST ( 2 , 2 ) )
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573 & / ( RBRIST ( 1 , 3 )−RBRIST ( 1 , 2 ) ) ) − RBRIST ( 2 , 3 ) )

575

VARA = RBRIST ( 1 , 3 ) * (TETFOR ( 3 )−TETFOR ( 2 ) )
577 & / ( RBRIST ( 1 , 3 ) − RBRIST ( 1 , 2 ) )

579 VARATOP = RBRIST ( 1 , 3 ) * (TETFOR ( 3 )−TETFOR ( 2 ) )

581 VARATOP R(K) = ( RBRIST R ( 1 , 3 ,K) *
& (TETFOR (3 )−TETFOR (2 ) ) )

583 & + ( RBRIST ( 1 , 3 )
& * ( TETFOR R (N, 3 ,K)−TETFOR R (N, 2 ,K) ) )

585

VARATOP ANG(K) = ( RBRIST ANG ( 1 , 3 ,K) *
587 & (TETFOR (3 )−TETFOR (2 ) ) )

& + ( RBRIST ( 1 , 3 )
589 & * (TETFOR ANG(N, 3 ,K)−TETFOR ANG(N, 2 ,K) ) )

591 VARATOP POS(K) = ( RBRIST POS ( 1 , 3 ,K) *
& (TETFOR (3 )−TETFOR (2 ) ) )

593 & + ( RBRIST ( 1 , 3 )
& * ( TETFOR POS ( 3 ,K)−TETFOR POS ( 2 ,K) ) )

595

VARATOP ANGE(K) = ( RBRIST ANGE ( 1 , 3 ,K) *
597 & (TETFOR (3 )−TETFOR (2 ) ) )

& + ( RBRIST ( 1 , 3 )
599 & * (TETFOR ANGE( 3 ,K)−TETFOR ANGE( 2 ,K) ) )

601 VARABOT = RBRIST ( 1 , 3 ) − RBRIST ( 1 , 2 )

603 VARABOT R (K) = RBRIST R ( 1 , 3 ,K) − RBRIST R ( 1 , 2 ,K)
VARABOT ANG (K) = RBRIST ANG ( 1 , 3 ,K) − RBRIST ANG ( 1 , 2 ,K)

605 VARABOT POS (K) = RBRIST POS ( 1 , 3 ,K) − RBRIST POS ( 1 , 2 ,K)
VARABOT ANGE(K) = RBRIST ANGE ( 1 , 3 ,K) − RBRIST ANGE ( 1 , 2 ,K)

607

VARA R(K) = ( ( VARATOP R(K) *VARABOT) −(VARATOP*VARABOT R(K) ) )
609 & / VARABOT**2

VARA ANG(K) = ( (VARATOP ANG(K) *VARABOT)
611 & −(VARATOP*VARABOT ANG(K) ) ) / VARABOT**2

613 VARA POS(K) = ( ( VARATOP POS(K) *VARABOT)−
& (VARATOP*VARABOT POS(K) ) ) / VARABOT**2

615

VARA ANGE(K) = ( ( VARATOP ANGE(K) *VARABOT)−
617 & (VARATOP*VARABOT ANGE(K) ) ) / VARABOT**2

619

VARB = ( RBRIST ( 2 , 3 )−RBRIST ( 2 , 2 ) )
621 & / ( RBRIST ( 1 , 3 )−RBRIST ( 1 , 2 ) )

623 VARBTOP = RBRIST ( 2 , 3 )−RBRIST ( 2 , 2 )
VARBTOP R (K) = RBRIST R ( 2 , 3 ,K)−RBRIST R ( 2 , 2 ,K)

625 VARBTOP ANG (K) = RBRIST ANG ( 2 , 3 ,K)−RBRIST ANG ( 2 , 2 ,K)
VARBTOP POS (K) = RBRIST POS ( 2 , 3 ,K)−RBRIST POS ( 2 , 2 ,K)

627 VARBTOP ANGE(K) = RBRIST ANGE ( 2 , 3 ,K)−RBRIST ANGE ( 2 , 2 ,K)

629

VARBBOT = RBRIST ( 1 , 3 )−RBRIST ( 1 , 2 )
631 VARBBOT R (K) = RBRIST R ( 1 , 3 ,K)−RBRIST R ( 1 , 2 ,K)

VARBBOT ANG (K) = RBRIST ANG ( 1 , 3 ,K)−RBRIST ANG ( 1 , 2 ,K)
633 VARBBOT POS (K) = RBRIST POS ( 1 , 3 ,K)−RBRIST POS ( 1 , 2 ,K)

VARBBOT ANGE(K) = RBRIST ANGE ( 1 , 3 ,K)−RBRIST ANGE ( 1 , 2 ,K)
635

VARB R(K) = ( ( VARBTOP R(K) *VARBBOT) −(VARBTOP*VARBBOT R(K) ) )
637 & / VARBBOT**2

VARB ANG(K) = ( ( VARBTOP ANG(K) *VARBBOT)−
639 & (VARBTOP*VARBBOT ANG(K) ) ) / VARBBOT**2
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641 VARB POS(K) = ( ( VARBTOP POS(K) *VARBBOT)−
& (VARBTOP*VARBBOT POS(K) ) ) / VARBBOT**2

643

VARB ANGE(K) = ( ( VARBTOP ANGE(K) *VARBBOT)−
645 & (VARBTOP*VARBBOT ANGE(K) ) ) / VARBBOT**2

647 BRIDFTOP R ( 2 ,K) = TETFOR R (N, 3 ,K) − VARA R (K)
BRIDFTOP ANG ( 2 ,K) = TETFOR ANG (N, 3 ,K) − VARA ANG (K)

649 BRIDFTOP POS ( 2 ,K) = TETFOR POS ( 3 ,K) − VARA POS (K)
BRIDFTOP ANGE ( 2 ,K) = TETFOR ANGE( 3 ,K) − VARA ANGE(K)

651

BRIDFBOT R ( 2 ,K) = RBRIST R ( 1 , 3 ,K) *VARB + RBRIST ( 1 , 3 ) *VARB R(K)
653 & − RBRIST R ( 2 , 3 ,K)

BRIDFBOT ANG( 2 ,K) = RBRIST ANG ( 1 , 3 ,K) *VARB
655 & + RBRIST ( 1 , 3 ) *VARB ANG(K) − RBRIST ANG ( 2 , 3 ,K)

BRIDFBOT POS ( 2 ,K) = RBRIST POS ( 1 , 3 ,K) *VARB +

657 & RBRIST ( 1 , 3 ) *VARB POS(K) − RBRIST POS ( 2 , 3 ,K)
BRIDFBOT ANGE( 2 ,K) = RBRIST ANGE ( 1 , 3 ,K) *VARB +

659 & RBRIST ( 1 , 3 ) *VARB ANGE(K) − RBRIST ANGE ( 2 , 3 ,K)

661

BRIDF R ( 2 ,K) = ( BRIDFTOP R ( 2 ,K) *BRIDFBOT (2 )
663 & − BRIDFTOP (2 ) *BRIDFBOT R ( 2 ,K) ) / BRIDFBOT ( 2 ) **2

BRIDF ANG ( 2 ,K) = (BRIDFTOP ANG ( 2 ,K) *BRIDFBOT (2 )
665 & − BRIDFTOP (2 ) *BRIDFBOT ANG( 2 ,K) ) / BRIDFBOT ( 2 ) **2

667 BRIDF POS ( 2 ,K) = ( BRIDFTOP POS ( 2 ,K) *BRIDFBOT (2 )
& − BRIDFTOP(2 ) *BRIDFBOT POS ( 2 ,K) ) / BRIDFBOT ( 2 ) **2

669 BRIDF ANGE ( 2 ,K) = (BRIDFTOP ANGE ( 2 ,K) *BRIDFBOT (2 )
& − BRIDFTOP(2 ) *BRIDFBOT ANGE( 2 ,K) ) / BRIDFBOT ( 2 ) **2

671

c−−− d e r i v a t i v e s o f b r i d l e 1
673 BRIDFTOP ( 1 ) = −(TETFOR ( 2 ) + ( RBRIST ( 2 , 2 ) *BRIDF ( 2 ) ) )

BRIDFBOT ( 1 ) = RBRIST ( 1 , 2 )
675

BRIDFTOP R ( 1 ,K) = −(TETFOR R (N, 2 ,K) +(RBRIST R ( 2 , 2 ,K) *BRIDF ( 2 ) )
677 & + ( RBRIST ( 2 , 2 ) *BRIDF R ( 2 ,K) ) )

BRIDFTOP ANG ( 1 ,K) = −(TETFOR ANG(N, 2 ,K) +(RBRIST ANG ( 2 , 2 ,K)
679 & *BRIDF ( 2 ) )

& + ( RBRIST ( 2 , 2 ) *BRIDF ANG ( 2 ,K) ) )
681 BRIDFTOP POS ( 1 ,K) = −(TETFOR POS ( 2 ,K)+

& ( RBRIST POS ( 2 , 2 ,K) *BRIDF ( 2 ) ) + ( RBRIST ( 2 , 2 ) *BRIDF POS ( 2 ,K) ) )
683 BRIDFTOP ANGE ( 1 ,K) = −(TETFOR ANGE( 2 ,K)+

& ( RBRIST ANGE ( 2 , 2 ,K) *BRIDF ( 2 ) ) + ( RBRIST ( 2 , 2 ) *BRIDF ANGE ( 2 ,K) ) )
685

BRIDFBOT R ( 1 ,K) = RBRIST R ( 1 , 2 ,K)
687 BRIDFBOT ANG ( 1 ,K) = RBRIST ANG ( 1 , 2 ,K)

BRIDFBOT POS ( 1 ,K) = RBRIST POS ( 1 , 2 ,K)
689 BRIDFBOT ANGE( 1 ,K) = RBRIST ANGE ( 1 , 2 ,K)

691 BRIDF R ( 1 ,K) = ( BRIDFTOP R ( 1 ,K) *BRIDFBOT (1 )
& − BRIDFTOP (1 ) *BRIDFBOT R ( 1 ,K) ) / BRIDFBOT ( 1 ) **2

693 BRIDF ANG ( 1 ,K) = (BRIDFTOP ANG ( 1 ,K) *BRIDFBOT (1 )
& − BRIDFTOP (1 ) *BRIDFBOT ANG( 1 ,K) ) / BRIDFBOT ( 1 ) **2

695 BRIDF POS ( 1 ,K) = ( BRIDFTOP POS ( 1 ,K) *BRIDFBOT (1 )
& − BRIDFTOP (1 ) *BRIDFBOT POS ( 1 ,K) ) / BRIDFBOT ( 1 ) **2

697 BRIDF ANGE ( 1 ,K) = (BRIDFTOP ANGE ( 1 ,K) *BRIDFBOT (1 )
& − BRIDFTOP (1 ) *BRIDFBOT ANGE( 1 ,K) ) / BRIDFBOT ( 1 ) **2

699

ENDDO
701

DO K=1 ,3
703 DO L=1 ,3

BRIDFOR1 R (N, K, L ) = BRIDF R ( 1 , L ) * RBRIST ( 1 ,K) +

705 & BRIDF ( 1 ) * RBRIST R ( 1 ,K, L )
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707 BRIDFOR1 ANG(N, K, L ) = BRIDF ANG ( 1 , L ) * RBRIST ( 1 ,K) +

& BRIDF ( 1 ) * RBRIST ANG ( 1 ,K, L )
709 BRIDFOR1 POS (N, K, L ) = BRIDF POS ( 1 , L ) * RBRIST ( 1 ,K) +

& BRIDF ( 1 ) * RBRIST POS ( 1 ,K, L )
711 BRIDFOR1 ANGE(N, K, L ) = BRIDF ANGE ( 1 , L ) * RBRIST ( 1 ,K) +

& BRIDF ( 1 ) * RBRIST ANGE ( 1 ,K, L )
713

BRIDFOR2 R (N, K, L ) = BRIDF R ( 2 , L ) * RBRIST ( 2 ,K) +

715 & BRIDF ( 2 ) * RBRIST R ( 2 ,K, L )

717 BRIDFOR2 ANG(N, K, L ) = BRIDF ANG ( 2 , L ) * RBRIST ( 2 ,K) +

& BRIDF ( 2 ) * RBRIST ANG ( 2 ,K, L )
719 BRIDFOR2 POS (N, K, L ) = BRIDF POS ( 2 , L ) * RBRIST ( 2 ,K) +

& BRIDF ( 2 ) * RBRIST POS ( 2 ,K, L )
721 BRIDFOR2 ANGE(N, K, L ) = BRIDF ANGE ( 2 , L ) * RBRIST ( 2 ,K) +

& BRIDF ( 2 ) * RBRIST ANGE ( 2 ,K, L )
723

ENDDO
725 ENDDO

727 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c s e t t h e t e t h e r f o r c e d e r i v a i v e s i n an a p p r o p r i a t e way

729 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

731 DO K=1 ,3
DO L = 1 , 18

733 F Q (K, L ) = 0 .
ENDDO

735 DO L = 1 , 6
F QT (K, L ) = 0 .

737 ENDDO
DO L = 1 , NRHS

739 F GL (K, L ) = 0 .
F GLT (K, L ) = 0 .

741 ENDDO
DO L = 1 , NFRP

743 F FRP (K, L ) = 0 .
ENDDO

745 ENDDO

747 DO K =1 , 3
F (K) = ( −1) *BRIDFOR(N,K) ! Fb ( )

749

IF (N. EQ . 1 ) THEN
751 F Q (K, 1 ) = ( −1) *BRIDFOR1 R (N, K, 1 ) ! x

F Q (K, 2 ) = ( −1) *BRIDFOR1 R (N, K, 2 ) ! y
753 F Q (K, 3 ) = ( −1) *BRIDFOR1 R (N, K, 3 ) ! z

755 F Q (K+3 ,1) = ( −1) *BRIDFOR1 ANG(N, K, 1 ) ! p h i
F Q (K+3 ,2) = ( −1) *BRIDFOR1 ANG(N, K, 2 ) ! t h e t a

757 F Q (K+3 ,3) = ( −1) *BRIDFOR1 ANG(N, K, 3 ) ! p s i

759 F GL (K, LPOS ( 1 ) ) = ( −1) *BRIDFOR1 POS (N, K, 1 ) !X
F GL (K, LPOS ( 2 ) ) = ( −1) *BRIDFOR1 POS (N, K, 2 ) !Y

761 F GL (K, LPOS ( 3 ) ) = ( −1) *BRIDFOR1 POS (N, K, 3 ) ! Z

763 F GL (K,LBANK) = ( −1) *BRIDFOR1 ANGE(N, K, 1 ) ! PHI
F GL (K, LELEV) = ( −1) *BRIDFOR1 ANGE(N, K, 2 ) !THETA

765 F GL (K,LHEAD) = ( −1) *BRIDFOR1 ANGE(N, K, 3 ) ! PSI

767 ELSE
F Q (K, 1 ) = ( −1) *BRIDFOR2 R (N, K, 1 ) ! x

769 F Q (K, 2 ) = ( −1) *BRIDFOR2 R (N, K, 2 ) ! y
F Q (K, 3 ) = ( −1) *BRIDFOR2 R (N, K, 3 ) ! z

771

F Q (K+3 ,1) = ( −1) *BRIDFOR2 ANG(N, K, 1 ) ! p h i
773 F Q (K+3 ,2) = ( −1) *BRIDFOR2 ANG(N, K, 2 ) ! t h e t a
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F Q (K+3 ,3) = ( −1) *BRIDFOR2 ANG(N, K, 3 ) ! p s i
775

F GL (K, LPOS ( 1 ) ) = ( −1) *BRIDFOR2 POS (N, K, 1 ) !X
777 F GL (K, LPOS ( 2 ) ) = ( −1) *BRIDFOR2 POS (N, K, 2 ) !Y

F GL (K, LPOS ( 3 ) ) = ( −1) *BRIDFOR2 POS (N, K, 3 ) ! Z
779

F GL (K,LBANK) = ( −1) *BRIDFOR2 ANGE(N, K, 1 ) ! PHI
781 F GL (K, LELEV) = ( −1) *BRIDFOR2 ANGE(N, K, 2 ) !THETA

F GL (K,LHEAD) = ( −1) *BRIDFOR2 ANGE(N, K, 3 ) ! PSI
783 ENDIF

785 ENDDO

787 C−−−− s e t moment v e c t o r DRP x FW and d e r i v a t i v e s
c t h e s e a r e assumed t o be

789 DO K=1 , 3

791 IC = ICRS (K)
JC = JCRS (K)

793

M(K) = DRPBR(N, IC ) *F ( JC )
795 & − DRPBR(N, JC ) *F ( IC )

797 TETMNT(K) = M(K)

799 DO L=1 , 18
M Q(K, L ) = DRPBR(N, IC ) *F Q ( JC , L )

801 & − DRPBR(N, JC ) *F Q ( IC , L )
ENDDO

803 DO L=1 , 6
M QT(K, L ) = DRPBR(N, IC ) *F QT ( JC , L )

805 & − DRPBR(N, JC ) *F QT ( IC , L )
ENDDO

807 DO L=1 , NRHS
M GL(K, L ) = DRPBR(N, IC ) *F GL ( JC , L )

809 & − DRPBR(N, JC ) *F GL ( IC , L )
C

811 M GLT(K, L ) = DRPBR(N, IC ) *F GLT ( JC , L )
& − DRPBR(N, JC ) *F GLT ( IC , L )

813 ENDDO
DO L=1 , NFRP

815 M FRP (K, L ) = DRPBR(N, IC ) *F FRP ( JC , L )
& − DRPBR(N, JC ) *F FRP ( IC , L )

817 ENDDO
DO L=1 , 3

819 M Q(K, L+3) = M Q(K, L+3)
& + DRPBR ANG(N, IC , L ) *F ( JC )

821 & − DRPBR ANG(N, JC , L ) *F ( IC )
ENDDO

823 ENDDO

825

IEQ = IEB (N)
827 I = IB (N)

829 C−−−− add r e s i d u a l and J a c o b i a n changes t o a p p r o p r i a t e s l o t s
DO K = 1 , 3

831 C−−−−−− s e t row−major i n d e x e d a r r a y s f o r c a l l i n g EQNADD
F (K) = ( −1) *BRIDFOR(N,K)

833

IF ( IEQ . EQ . IFRST ( IS ) −1) THEN
835 KEQF = KEQ0(K+9 , IS )

KEQM = KEQ0(K+6 , IS )
837 DO L = 1 , 18

FK QO( L ) = F Q (K, L )
839 FK QP ( L ) = 0 .

MK QO( L ) = M Q(K, L )
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841 MK QP( L ) = 0 .

843 ENDDO
DO L = 1 , 6

845 FK QTO( L ) = F QT (K, L )
FK QTP ( L ) = 0 .

847 MK QTO( L ) = M QT(K, L )
MK QTP( L ) = 0 .

849

ENDDO
851 ELSE

KEQF = KEQ(K+9 , IEQ )
853 KEQM = KEQ(K+6 , IEQ )

DO L = 1 , 18
855 FK QO( L ) = 0 .

FK QP ( L ) = F Q (K, L )
857 MK QO( L ) = 0 .

MK QP( L ) = M Q(K, L )
859

ENDDO
861 DO L = 1 , 6

FK QTO( L ) = 0 .
863 FK QTP ( L ) = F QT (K, L )

MK QTO( L ) = 0 .
865 MK QTP( L ) = M QT(K, L )

867 ENDDO
ENDIF

869 C
DO L = 1 , NRHS

871 FK GL ( L ) = F GL (K, L )
MK GL( L ) = M GL(K, L )

873

875 FK GLT ( L ) = F GLT (K, L )
MK GLT( L ) = M GLT(K, L )

877 ENDDO
DO L = 1 , NFRP

879 FK FRP ( L ) = F FRP (K, L )
MK FRP( L ) = M FRP (K, L )

881 ENDDO

883 CALL EQNADD(K+9 , IEQ , KEQF, F (K) , FK QO , FK QP ,
& FK QTO , FK QTP ,

885 & FK GL ,FK GLT , FK FRP )
CALL EQNADD(K+6 , IEQ , KEQM, M(K) , MK QO, MK QP,

887 & MK QTO, MK QTP,
& MK GL ,MK GLT, MK FRP)

889

ENDDO
891

C−−−− a l s o add t o r e a c t i o n − f o r c e a c c u m u l a t o r s
893 CALL FMDEL(NRHS, NFRP , 1 . 0 , Q( 1 , I , IPNT ) ,

& F , F Q , F QT , F GL ( 1 , 1 ) , F GLT ( 1 , 1 ) , F FRP ( 1 , 1 ) ,
895 & M, M Q, M QT, M GL( 1 , 1 ) , M GLT( 1 , 1 ) , M FRP ( 1 , 1 ) ,

& RFORCE, RFOR Q ( 1 , 1 , I ) ,RFOR UT ( 1 , 1 , I ) ,RFOR GL ( 1 , 1 ) ,RFOR GLT ( 1 , 1 ) ,
897 & RFOR FRP ( 1 , 1 ) ,

& RMOMNT,RMOM Q( 1 , 1 , I ) ,RMOM UT( 1 , 1 , I ) ,RMOM GL( 1 , 1 ) ,RMOM GLT( 1 , 1 ) ,
899 & RMOM FRP( 1 , 1 ) )

901 C−−−− i f t h i s i s a l s o a ground p o i n t , a l s o add t o ground− f o r c e a c c u m u l a t o r s
DO KG=1 , NGROU

903 IF ( IS . EQ . ISGROU(KG) .AND. IEQ . EQ . IGROU(KG) ) THEN
CALL FMDEL(NRHS, NFRP , 1 . 0 , Q( 1 , I , IPNT ) ,

905 & F , F Q , F QT , F GL ( 1 , 1 ) , F GLT ( 1 , 1 ) , F FRP ( 1 , 1 ) ,
& M, M Q, M QT, M GL( 1 , 1 ) , M GLT( 1 , 1 ) , M FRP ( 1 , 1 ) ,

907 & GFORCE, GFOR Q( 1 , 1 , I ) ,GFOR UT ( 1 , 1 , I ) ,GFOR GL ( 1 , 1 ) ,GFOR GLT ( 1 , 1 ) ,
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& GFOR FRP ( 1 , 1 ) ,
909 & GMOMNT,GMOM Q( 1 , 1 , I ) ,GMOM UT( 1 , 1 , I ) ,GMOM GL( 1 , 1 ) ,GMOM GLT( 1 , 1 ) ,

& GMOM FRP( 1 , 1 ) )
911 ENDIF

ENDDO
913

915

ENDDO !N
917

ENDIF
919

200 CONTINUE
921

RETURN
923 END ! SETTET

/Aswing/src/sloads.f
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C.2 Tether-bridle attachment subroutine

SUBROUTINE SETBRI ( RBRI , LBRID , IS ,ANG, POS , RTBA, RE0TET ,
2 & RBRI ANG , RBRI R , RTBA ANG, RTBA R , RTBA POS ,

& RTBA ANGE, DRPBR ANGE)
4

INCLUDE ’ASWING. INC ’
6

8 REAL ANG( 3 ) , POS ( 3 ) , RCIRC ( 3 ) , DCIRC ( 3 ) ,
& RETET ( 3 ) , TE ( 3 , 3 ) , TE A ( 3 , 3 , 3 ) , Y R ( 3 ) , Y ANG( 3 ) ,

10 & Z1TOP ANG ( 2 , 3 ) , Z1TOP R ( 2 , 3 ) , Z1BOT ANG ( 2 , 3 ) , Z1BOT R ( 2 , 3 ) ,
& Z2TOP ANG ( 2 , 3 ) , Z2TOP R ( 2 , 3 ) , Z2BOT ANG ( 2 , 3 ) , Z2BOT R ( 2 , 3 ) ,

12 & RCIRC2TOP ANG ( 2 , 3 ) , RCIRC2TOP R ( 2 , 3 ) , RCIRC2BOT ANG ( 2 , 3 ) ,
& RCIRC2BOT R ( 2 , 3 ) , RCIRC2 ANG ( 2 , 3 ) , RCIRC2 R ( 2 , 3 ) , X ANG( 3 ) ,

14 & X R ( 3 ) , ZRT ANG ( 2 , 3 ) , ZRT R ( 2 , 3 ) , Z1 ANG ( 2 , 3 ) , Z1 R ( 2 , 3 ) ,
& Z2 ANG ( 2 , 3 ) , Z2 R ( 2 , 3 ) , RCIRC ANG ( 2 , 3 , 3 ) , RCIRC R ( 2 , 3 , 3 ) ,

16 & RCIRCMIN ANG ( 2 , 3 , 3 ) , RCIRCMIN R ( 2 , 3 , 3 ) , RE0TET ( 3 )

18 REAL DOTDCIRC, MINDOTCIRC, ZRT , Z 1 , Z 2 , X 1 , X 2 , Z1TOP , Z2TOP ,
& RCIRC2TOP , RCIRC2BOT , RBRI ANG ( 2 , 3 , 3 ) , RBRI R ( 2 , 3 , 3 ) ,

20 & TEMPRBRI ( 2 , 3 ) , TETR ( 3 , 3 ) , RCIRCMINTEMP ( 3 ) ,TEMPRBRI R ( 2 , 3 , 3 ) ,
& TEMPRBRI ANG ( 2 , 3 , 3 ) , Z1BOT , Z2BOT , TEMPX R ( 3 ) , TEMPY R ( 3 ) ,

22 & TEMPZ R ( 3 ) , TEMPX ANG( 3 ) , TEMPY ANG( 3 ) , TEMPZ ANG( 3 )

24 INTEGER M, NBRI

26 REAL TheTerm

28 REAL DISTB1B2 , RSSIC , DISTB1CC , DISTB2CC , COEFA, COEFB, COEFC,
& COEFD, RETETS ( 3 ) , LRESCC , CIRCCENT ( 3 ) , DISTRESCC ( 3 )

30

REAL DISTB1B2 ANG ( 2 , 3 ) , DISTB1B2 R ( 2 , 3 ) , RSSICTOP , RSSICBOT ,
32 & RSSICTOP ANG ( 2 , 3 ) , RSSICTOP R ( 2 , 3 ) , RSSICBOT ANG ( 2 , 3 ) ,

& RSSICBOT R ( 2 , 3 ) , RSSIC ANG ( 2 , 3 ) , DISTB1CC ANG ( 2 , 3 ) ,
34 & DISTB1CC R ( 2 , 3 ) , DISTB2CC ANG ( 2 , 3 ) , DISTB2CC R ( 2 , 3 ) ,

& CIRCCENTTOP ( 3 ) , CIRCCENTBOT ( 3 ) , CIRCCENTTOP ANG ( 2 , 3 , 3 ) ,
36 & CIRCCENTTOP R ( 2 , 3 , 3 ) , CIRCCENTBOT ANG ( 2 , 3 ) ,

& CIRCCENTBOT R ( 2 , 3 ) , CIRCCENT ANG ( 2 , 3 , 3 ) , CIRCCENT R ( 2 , 3 , 3 ) ,
38 & COEF ( 4 ) , COEF ANG( 2 , 4 , 3 ) , COEF R ( 2 , 4 , 3 ) , RETETSTOP ( 3 ) ,

& RETETSBOT , RETETSTOP ANG ( 2 , 3 , 3 ) , RETETSTOP R ( 2 , 3 , 3 ) ,
40 & RETETSBOT ANG ( 2 , 3 ) , RETETSBOT R ( 2 , 3 ) , RETETS ANG ( 2 , 3 , 3 ) ,

& RETETS R ( 2 , 3 , 3 ) , DISTRESCC ANG ( 2 , 3 , 3 ) , DISTRESCC R ( 2 , 3 , 3 ) ,
42 & LRESCC ANG ( 2 , 3 ) , LRESCC R ( 2 , 3 ) , RTBA ANG( 2 , 3 , 3 ) , RTBA R ( 2 , 3 , 3 ) ,

& RSSIC R ( 2 , 3 )
44

REAL DISTB1B2 POS ( 2 , 3 ) , RSSICTOP POS ( 2 , 3 ) , RSSICBOT POS ( 2 , 3 ) ,
46 & RSSIC POS ( 2 , 3 ) , DISTB1CC POS ( 2 , 3 ) , DISTB2CC POS ( 2 , 3 ) ,

& CIRCCENTTOP POS ( 2 , 3 , 3 ) , CIRCCENTBOT POS ( 2 , 3 ) ,
48 & CIRCCENT POS ( 2 , 3 , 3 ) , COEF POS ( 2 , 4 , 3 ) , RETETSTOP POS ( 2 , 3 , 3 ) ,

& RETETSBOT POS ( 2 , 3 ) , RETETS POS ( 2 , 3 , 3 ) , DISTRESCC POS ( 2 , 3 , 3 ) ,
50 & LRESCC POS ( 2 , 3 ) , RTBA POS ( 2 , 3 , 3 ) , RBRI POS ( 2 , 3 , 3 ) ,

& RETET POS ( 2 , 3 , 3 )
52

REAL DISTB1B2 ANGE ( 2 , 3 ) , RSSICTOP ANGE ( 2 , 3 ) , RSSICBOT ANGE ( 2 , 3 ) ,
54 & RSSIC ANGE ( 2 , 3 ) , DISTB1CC ANGE ( 2 , 3 ) , DISTB2CC ANGE ( 2 , 3 ) ,

& CIRCCENTTOP ANGE ( 2 , 3 , 3 ) , CIRCCENTBOT ANGE ( 2 , 3 ) ,
56 & CIRCCENT ANGE ( 2 , 3 , 3 ) , COEF ANGE( 2 , 4 , 3 ) , RETETSTOP ANGE ( 2 , 3 , 3 ) ,

& RETETSBOT ANGE ( 2 , 3 ) , RETETS ANGE ( 2 , 3 , 3 ) , DISTRESCC ANGE ( 2 , 3 , 3 ) ,
58 & LRESCC ANGE ( 2 , 3 ) , RTBA ANGE( 2 , 3 , 3 ) , RBRI ANGE ( 2 , 3 , 3 ) ,

& RETET ANGE ( 2 , 3 , 3 ) , TETR ANGE ( 3 , 3 , 3 )
60

REAL DRPBR ANGE( 2 , 3 , 3 )
62

REAL TEMPRETET( 3 ) , TEMPRE0TET ( 3 ) , TEMPPOS( 3 )
64
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66 c−−− d e t e r m i n e E a r t h t r a n s f o r m a t i o n t e n s o r and d e r i v a t i v e
CALL ROTENS3(ANG, TE , TE A )

68

c−−−− s e t t h e RBRI
70 DO L = 1 ,2

DO K =1 ,3
72 TEMPRE0TET(K) = RE0TET (K)

TEMPPOS (K) = POS (K)
74

ENDDO
76 ENDDO

78 c−−− s e t t h e t r a n s p o s e o f t h e E a r t h t r a n s f o r m a t i o n t e n s o r
DO K =1 ,3

80 DO L =1 ,3
TETR(K, L ) = TE ( L ,K)

82 ENDDO
ENDDO

84

86 DO J =1 ,3
DO L=1 ,3

88 DO K=1 ,3
TETR ANGE(K, L , J ) = TE A ( L , K, J )

90 ENDDO
ENDDO

92 ENDDO

94 c−−− s e t POS and RE0TET i n a i r c r a f t c o o r d i n a t e s
DO N=1 ,2

96 DO K =1 ,3
POS(K) = TEMPPOS( 1 ) * TE ( 1 ,K) + TEMPPOS( 2 ) * TE ( 2 ,K)

98 & + TEMPPOS( 3 ) * TE ( 3 ,K)

100 RE0TET (K) = TEMPRE0TET ( 1 ) *TE ( 1 ,K) + TEMPRE0TET ( 2 ) *TE ( 2 ,K)
& + TEMPRE0TET ( 3 ) *TE ( 3 ,K)

102

DO L=1 ,3
104 RBRI POS (N, K, L ) = 0

RETET POS (N, K, L ) = −TETR( L ,K)
106

RBRI ANGE (N, K, L ) = 0
108

RETET ANGE(N, K, L ) =

110 & ( ( ( TEMPRE0TET ( 1 )−TEMPPOS( 1 ) ) *TE A ( 1 ,K, L ) )+

& ( ( TEMPRE0TET ( 2 )−TEMPPOS( 2 ) ) *TE A ( 2 ,K, L ) )+

112 & ( ( TEMPRE0TET ( 3 )−TEMPPOS( 3 ) ) *TE A ( 3 ,K, L ) ) )

114 ENDDO
ENDDO

116 ENDDO

118

DO N=1 ,2
120 DO M =1 ,3

DO K=1 ,3
122

TEMPRBRI R (N,M,K) = RBRI R (N,M,K)
124 TEMPRBRI ANG(N,M,K) = RBRI ANG (N,M,K)

126 ENDDO
ENDDO

128 ENDDO

130

DO KP = 1 , NPYLO
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132 IF (KPTYPE(KP) . EQ . 3 ) THEN
TEMPRETET( 1 ) = QPYLO( 4 ,KP) − TEMPPOS( 1 )

134 TEMPRETET( 2 ) = QPYLO( 5 ,KP) − TEMPPOS( 2 )
TEMPRETET( 3 ) = QPYLO( 6 ,KP) − TEMPPOS( 3 )

136 ENDIF
ENDDO

138

DO K=1 ,3
140 RETET(K) = TEMPRETET( 1 ) *TE ( 1 ,K) + TEMPRETET( 2 ) *TE ( 2 ,K)

& + TEMPRETET( 3 ) *TE ( 3 ,K)
142 ENDDO

144 DO N=1 ,2
DO M =1 ,3

146 DO L=1 ,3
RBRI R (N,M, L ) = TEMPRBRI R (N,M, L )

148 RBRI ANG (N,M, L ) = TEMPRBRI ANG(N,M, L )
ENDDO

150 ENDDO

152 IF (N. EQ . 1 ) THEN
DO M=1 ,3

154 DO L =1 ,3
RBRI ANG ( 2 ,M, L ) = 0

156 RBRI R ( 2 ,M, L ) = 0
ENDDO

158 ENDDO
ELSE

160 DO M=1 ,3
DO L =1 ,3

162 RBRI ANG ( 1 ,M, L ) = 0
RBRI R ( 1 ,M, L ) = 0

164 ENDDO
ENDDO

166 ENDIF

168

170 c−−−− d i s t a n c e between bo th b r i d l e p o i n t s and t h e d e r i v a t i v e s
DISTB1B2 = SQRT ( ( RBRI ( 1 , 1 ) − RBRI ( 2 , 1 ) ) **2

172 & +(RBRI ( 1 , 2 ) − RBRI ( 2 , 2 ) ) **2
& +(RBRI ( 1 , 3 ) − RBRI ( 2 , 3 ) ) **2)

174

DO K=1 ,3
176 DISTB1B2 ANG (N,K) =

& ( ( ( RBRI ( 1 , 1 ) − RBRI ( 2 , 1 ) ) * (RBRI ANG ( 1 , 1 ,K) − RBRI ANG ( 2 , 1 ,K) ) ) +

178 & ( ( RBRI ( 1 , 2 ) − RBRI ( 2 , 2 ) ) * (RBRI ANG ( 1 , 2 ,K) − RBRI ANG ( 2 , 2 ,K) ) ) +

& ( ( RBRI ( 1 , 3 ) − RBRI ( 2 , 3 ) ) * (RBRI ANG ( 1 , 3 ,K) − RBRI ANG ( 2 , 3 ,K) ) ) ) /

180 & DISTB1B2

182 DISTB1B2 R (N,K) =

& ( ( ( RBRI ( 1 , 1 ) − RBRI ( 2 , 1 ) ) * ( RBRI R ( 1 , 1 ,K) − RBRI R ( 2 , 1 ,K) ) ) +

184 & ( ( RBRI ( 1 , 2 ) − RBRI ( 2 , 2 ) ) * ( RBRI R ( 1 , 2 ,K) − RBRI R ( 2 , 2 ,K) ) ) +

& ( ( RBRI ( 1 , 3 ) − RBRI ( 2 , 3 ) ) * ( RBRI R ( 1 , 3 ,K) − RBRI R ( 2 , 3 ,K) ) ) ) /

186 & DISTB1B2

188 DISTB1B2 POS (N,K) =

& ( ( ( RBRI ( 1 , 1 ) − RBRI ( 2 , 1 ) ) * ( RBRI POS ( 1 , 1 ,K) − RBRI POS ( 2 , 1 ,K) ) ) +

190 & ( ( RBRI ( 1 , 2 ) − RBRI ( 2 , 2 ) ) * ( RBRI POS ( 1 , 2 ,K) − RBRI POS ( 2 , 2 ,K) ) ) +

& ( ( RBRI ( 1 , 3 ) − RBRI ( 2 , 3 ) ) * ( RBRI POS ( 1 , 3 ,K) − RBRI POS ( 2 , 3 ,K) ) ) ) /

192 & DISTB1B2

194 DISTB1B2 ANGE (N,K) =

& ( ( ( RBRI ( 1 , 1 ) − RBRI ( 2 , 1 ) ) * (RBRI ANGE ( 1 , 1 ,K)−RBRI ANGE ( 2 , 1 ,K) ) ) +

196 & ( ( RBRI ( 1 , 2 ) − RBRI ( 2 , 2 ) ) * (RBRI ANGE ( 1 , 2 ,K)−RBRI ANGE ( 2 , 2 ,K) ) ) +

& ( ( RBRI ( 1 , 3 ) − RBRI ( 2 , 3 ) ) * (RBRI ANGE ( 1 , 3 ,K)−RBRI ANGE ( 2 , 3 ,K) ) ) ) /

198 & DISTB1B2
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ENDDO
200

202 c−−−− r a d i u s o f t h e sphe re − s p h e r e i n t e r s e c t i o n c i r c l e
RSSIC = SQRT ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *

204 & ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *
& ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *

206 & ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) / (2* DISTB1B2 )

208 RSSICTOP = SQRT ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
& ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

210 & ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
& ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) )

212

RSSICBOT = 2*DISTB1B2
214

DO K=1 ,3
216 RSSICTOP ANG (N,K) = ( ( DISTB1B2 ANG (N,K) *

& ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *
218 & ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *

& ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) −

220 & ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
& ( DISTB1B2 ANG (N,K) ) *

222 & ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
& ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) +

224 & ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
& ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

226 & ( DISTB1B2 ANG (N,K) ) *
& ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) +

228 & ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
& ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

230 & ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
& ( DISTB1B2 ANG (N,K) ) ) ) / ( 2 * RSSICTOP )

232

RSSICTOP R (N,K) = ( ( DISTB1B2 R (N,K) *
234 & ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

& ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
236 & ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) −

& ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
238 & ( DISTB1B2 R (N,K) ) *

& ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
240 & ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) +

& ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
242 & ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

& ( DISTB1B2 R (N,K) ) *
244 & ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) +

& ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
246 & ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

& ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
248 & ( DISTB1B2 R (N,K) ) ) ) / ( 2 * RSSICTOP )

250 RSSICTOP POS (N,K) = ( ( DISTB1B2 POS (N,K) *
& ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

252 & ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
& ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) −

254 & ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
& ( DISTB1B2 POS (N,K) ) *

256 & ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
& ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) +

258 & ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
& ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

260 & ( DISTB1B2 POS (N,K) ) *
& ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) +

262 & ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
& ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

264 & ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
& ( DISTB1B2 POS (N,K) ) ) ) / ( 2 * RSSICTOP )
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266

RSSICTOP ANGE (N,K) = ( ( DISTB1B2 ANGE (N,K) *
268 & ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

& ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
270 & ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) −

& ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
272 & ( DISTB1B2 ANGE (N,K) ) *

& ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
274 & ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) +

& ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
276 & ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

& ( DISTB1B2 ANGE (N,K) ) *
278 & ( LBRID ( 2 ) − LBRID ( 1 ) + DISTB1B2 ) ) +

& ( ( LBRID ( 1 ) + LBRID ( 2 ) + DISTB1B2 ) *
280 & ( LBRID ( 1 ) + LBRID ( 2 ) − DISTB1B2 ) *

& ( LBRID ( 1 ) − LBRID ( 2 ) + DISTB1B2 ) *
282 & ( DISTB1B2 ANGE (N,K) ) ) ) / ( 2 * RSSICTOP )

284 RSSICBOT ANG (N,K) = 2*DISTB1B2 ANG (N,K)
RSSICBOT R (N,K) = 2*DISTB1B2 R (N,K)

286 RSSICBOT POS (N,K) = 2*DISTB1B2 POS (N,K)
RSSICBOT ANGE(N,K) = 2*DISTB1B2 ANGE (N,K)

288

RSSIC ANG (N,K) = ( ( RSSICTOP ANG (N,K) *RSSICBOT ) −

290 & (RSSICBOT ANG(N,K) *RSSICTOP ) ) / RSSICBOT**2

292 RSSIC R (N,K) = ( ( RSSICTOP R (N,K) *RSSICBOT ) −

& ( RSSICBOT R (N,K) *RSSICTOP ) ) / RSSICBOT**2
294

RSSIC POS (N,K) = ( ( RSSICTOP POS (N,K) *RSSICBOT ) −

296 & ( RSSICBOT POS (N,K) *RSSICTOP ) ) / RSSICBOT**2

298 RSSIC ANGE (N,K) = ( ( RSSICTOP ANGE (N,K) *RSSICBOT ) −

& (RSSICBOT ANGE(N,K) *RSSICTOP ) ) / RSSICBOT**2
300

ENDDO
302

304 c−−−− d i s t a n c e between t h e b r i d l e p o i n t s and t h e c e n t e r o f t h e sphe re −
c s p h e r e i n t e r e s e c t o i n c i r c l e

306 DISTB1CC = SQRT( LBRID ( 1 ) **2 − RSSIC **2)
DISTB2CC = SQRT( LBRID ( 2 ) **2 − RSSIC **2)

308

DO K=1 ,3
310 DISTB1CC ANG (N,K) = ( −1) *RSSIC*RSSIC ANG (N,K) / DISTB1CC

DISTB2CC ANG (N,K) = ( −1) *RSSIC*RSSIC ANG (N,K) / DISTB2CC
312

DISTB1CC POS (N,K) = ( −1) *RSSIC*RSSIC POS (N,K) / DISTB1CC
314 DISTB2CC POS (N,K) = ( −1) *RSSIC*RSSIC POS (N,K) / DISTB2CC

316 DISTB1CC ANGE (N,K) = ( −1) *RSSIC*RSSIC ANGE (N,K) / DISTB1CC
DISTB2CC ANGE (N,K) = ( −1) *RSSIC*RSSIC ANGE (N,K) / DISTB2CC

318

DISTB1CC R (N,K) = ( −1) *RSSIC*RSSIC R (N,K) / DISTB1CC
320 DISTB2CC R (N,K) = ( −1) *RSSIC*RSSIC R (N,K) / DISTB2CC

322 ENDDO

324 c−−−− c e n t e r o f t h e i n t e r s e c t i o n c i r c l e
DO K =1 ,3

326 CIRCCENT(K) = RBRI ( 1 ,K) + ( ( ( DISTB1CC / DISTB1B2 ) *
& ( RBRI ( 2 ,K)−RBRI ( 1 ,K) ) ) )

328

CIRCCENTTOP(K) = ( ( DISTB1CC *( RBRI ( 2 ,K)−RBRI ( 1 ,K) ) ) )
330

CIRCCENTBOT(K) = DISTB1B2
332
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DO L=1 ,3
334 CIRCCENTTOP ANG(N, K, L ) =

& ( DISTB1CC ANG (N, L ) * ( RBRI ( 2 ,K )−RBRI ( 1 ,K ) ) ) +

336 & ( DISTB1CC *(RBRI ANG ( 2 ,K, L )−RBRI ANG ( 1 ,K, L ) ) )

338 CIRCCENTTOP POS (N, K, L ) =

& ( DISTB1CC POS (N, L ) * ( RBRI ( 2 ,K )−RBRI ( 1 ,K ) ) ) +

340 & ( DISTB1CC *( RBRI POS ( 2 ,K, L )−RBRI POS ( 1 ,K, L ) ) )

342 CIRCCENTTOP ANGE(N, K, L ) =

& ( DISTB1CC ANGE (N, L ) * ( RBRI ( 2 ,K )−RBRI ( 1 ,K ) ) ) +

344 & ( DISTB1CC *(RBRI ANGE ( 2 ,K, L )−RBRI ANGE ( 1 ,K, L ) ) )

346 CIRCCENTBOT ANG(N, L ) = DISTB1B2 ANG (N, L )

348 CIRCCENTBOT POS(N, L ) = DISTB1B2 POS (N, L )

350 CIRCCENTBOT ANGE(N, L ) = DISTB1B2 ANGE (N, L )

352 CIRCCENT ANG(N, K, L )= RBRI ANG ( 1 ,K, L ) +

& ( ( CIRCCENTTOP ANG(N, K, L ) * CIRCCENTBOT(K) )
354 & − (CIRCCENTBOT ANG(N, L ) * CIRCCENTTOP(K) ) )

& / CIRCCENTBOT(K) **2
356

CIRCCENT POS (N, K, L )= RBRI POS ( 1 ,K, L ) +

358 & ( ( CIRCCENTTOP POS (N, K, L ) * CIRCCENTBOT(K) )
& − (CIRCCENTBOT POS(N, L ) * CIRCCENTTOP(K) ) )

360 & / CIRCCENTBOT(K) **2

362 CIRCCENT ANGE(N, K, L )= RBRI ANGE ( 1 ,K, L ) +

& ( ( CIRCCENTTOP ANGE(N, K, L ) * CIRCCENTBOT(K) )
364 & − (CIRCCENTBOT ANGE(N, L ) * CIRCCENTTOP(K) ) )

& / CIRCCENTBOT(K) **2
366

CIRCCENTTOP R (N, K, L ) =

368 & ( DISTB1CC R (N, L ) * ( RBRI ( 2 ,K )−RBRI ( 1 ,K ) ) ) +

& ( DISTB1CC *( RBRI R ( 2 ,K, L )−RBRI R ( 1 ,K, L ) ) )
370

CIRCCENTBOT R(N, L ) = DISTB1B2 R (N, L )
372

CIRCCENT R (N, K, L ) = RBRI R ( 1 ,K, L ) +

374 & ( ( CIRCCENTTOP R (N, K, L ) *CIRCCENTBOT(K) )
& − (CIRCCENTBOT R(N, L ) *CIRCCENTTOP(K) ) )

376 & / CIRCCENTBOT(K) **2

378

ENDDO
380 ENDDO

382

c−−−− p r o j e c t t h e t e t h e r ground a t t a c h m e n t p o i n t i n t o t h e p l a n e o f
384 c i n t e r s e c t i o n c i r c l e

COEF ( 1 ) = ( −2) * ( RBRI ( 1 , 1 )−RBRI ( 2 , 1 ) )
386 COEF ( 2 ) = ( −2) * ( RBRI ( 1 , 2 )−RBRI ( 2 , 2 ) )

COEF ( 3 ) = ( −2) * ( RBRI ( 1 , 3 )−RBRI ( 2 , 3 ) )
388 COEF ( 4 ) = RBRI ( 1 , 1 ) **2 − RBRI ( 2 , 1 ) **2 + RBRI ( 1 , 2 ) **2

& − RBRI ( 2 , 2 ) **2 + RBRI ( 1 , 3 ) **2 − RBRI ( 2 , 3 ) **2
390 & − LBRID(1 ) **2 + LBRID(2 ) **2

392 DO L =1 ,3
RETETS( L ) = RETET( L ) − (COEF( L ) *

394 & (COEF ( 1 ) *RETET ( 1 ) +COEF ( 2 ) *RETET ( 2 ) +COEF ( 3 ) *RETET ( 3 ) +COEF ( 4 ) )
& / ( COEF ( 1 ) **2+COEF ( 2 ) **2+COEF ( 3 ) **2) )

396

398 DO K=1 ,3
COEF ANG (N, L ,K) = ( −2) * (RBRI ANG ( 1 , L ,K)−RBRI ANG ( 2 , L ,K) )
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400 COEF POS (N, L ,K) = ( −2) * ( RBRI POS ( 1 , L ,K)−RBRI POS ( 2 , L ,K) )
COEF ANGE(N, L ,K) = ( −2) * (RBRI ANGE ( 1 , L ,K)−RBRI ANGE ( 2 , L ,K) )

402 COEF R (N, L ,K) = ( −2) * ( RBRI R ( 1 , L ,K)−RBRI R ( 2 , L ,K) )

404 COEF ANG(N, 4 ,K) =

& RBRI ( 1 , 1 ) *2*RBRI ANG ( 1 , 1 ,K) − RBRI ( 2 , 1 ) *2*RBRI ANG ( 2 , 1 ,K)
406 & + RBRI ( 1 , 2 ) *2*RBRI ANG ( 1 , 2 ,K) − RBRI ( 2 , 2 ) *2*RBRI ANG ( 2 , 2 ,K)

& + RBRI ( 1 , 3 ) *2*RBRI ANG ( 1 , 3 ,K) − RBRI ( 2 , 3 ) *2*RBRI ANG ( 2 , 3 ,K)
408

COEF POS (N, 4 ,K) =

410 & RBRI ( 1 , 1 ) *2*RBRI POS ( 1 , 1 ,K) − RBRI ( 2 , 1 ) *2*RBRI POS ( 2 , 1 ,K)
& + RBRI ( 1 , 2 ) *2*RBRI POS ( 1 , 2 ,K) − RBRI ( 2 , 2 ) *2*RBRI POS ( 2 , 2 ,K)

412 & + RBRI ( 1 , 3 ) *2*RBRI POS ( 1 , 3 ,K) − RBRI ( 2 , 3 ) *2*RBRI POS ( 2 , 3 ,K)

414 COEF ANGE(N, 4 ,K) =

& RBRI ( 1 , 1 ) *2*RBRI ANGE ( 1 , 1 ,K)−RBRI ( 2 , 1 ) *2*RBRI ANGE ( 2 , 1 ,K)
416 & + RBRI ( 1 , 2 ) *2*RBRI ANGE ( 1 , 2 ,K)−RBRI ( 2 , 2 ) *2*RBRI ANGE ( 2 , 2 ,K)

& + RBRI ( 1 , 3 ) *2*RBRI ANGE ( 1 , 3 ,K)−RBRI ( 2 , 3 ) *2*RBRI ANGE ( 2 , 3 ,K)
418

COEF R (N, 4 ,K) =

420 & RBRI ( 1 , 1 ) *2*RBRI R ( 1 , 1 ,K) − RBRI ( 2 , 1 ) *2*RBRI R ( 2 , 1 ,K)
& + RBRI ( 1 , 2 ) *2*RBRI R ( 1 , 2 ,K) − RBRI ( 2 , 2 ) *2*RBRI R ( 2 , 2 ,K)

422 & + RBRI ( 1 , 3 ) *2*RBRI R ( 1 , 3 ,K) − RBRI ( 2 , 3 ) *2*RBRI R ( 2 , 3 ,K)

424

RETETSTOP( L ) = ( −1) *COEF( L ) * (COEF ( 1 ) *RETET ( 1 ) +COEF ( 2 )
426 & *RETET ( 2 ) +COEF ( 3 ) *RETET ( 3 ) +COEF ( 4 ) )

428 RETETSBOT = COEF ( 1 ) **2+COEF ( 2 ) **2+COEF ( 3 ) **2
ENDDO

430 ENDDO

432 DO L =1 ,3
DO K=1 ,3

434

RETETSTOP ANG(N, L ,K) = ( ( −1) *COEF ANG(N, L ,K) * ( ( COEF ( 1 )
436 & * RETET ( 1 ) )

& + (COEF ( 2 ) *RETET ( 2 ) ) +(COEF ( 3 ) *RETET ( 3 ) )+COEF ( 4 ) ) )
438 & − (COEF( L ) * ( ( COEF ANG(N, 1 ,K) *RETET ( 1 ) )

& + (COEF ANG(N, 2 ,K) *RETET ( 2 ) )
440 & + (COEF ANG(N, 3 ,K) *RETET ( 3 ) )+COEF ANG(N, 4 ,K) ) )

442

RETETSBOT ANG(N,K) = COEF ( 1 ) *2*COEF ANG(N, 1 ,K)
444 & + COEF ( 2 ) *2*COEF ANG(N, 2 ,K)

& + COEF ( 3 ) *2*COEF ANG(N, 3 ,K)
446

RETETS ANG(N, L ,K) = ( ( RETETSTOP ANG(N, L ,K) * RETETSBOT )
448 & − (RETETSBOT ANG(N,K ) * RETETSTOP( L ) ) )

& / RETETSBOT**2
450

RETETSTOP POS (N, L ,K) = ( ( −1) *COEF POS (N, L ,K) * ( ( COEF ( 1 )
452 & * RETET ( 1 ) )

& + (COEF ( 2 ) *RETET ( 2 ) ) +(COEF ( 3 ) *RETET ( 3 ) )+COEF ( 4 ) ) )
454 & − (COEF( L ) * ( ( COEF POS (N, 1 ,K) *RETET ( 1 ) )

& + ( COEF POS (N, 2 ,K) *RETET ( 2 ) )
456 & + ( COEF POS (N, 3 ,K) *RETET ( 3 ) )+COEF POS (N, 4 ,K)

& + (COEF ( 1 ) *RETET POS (N, 1 ,K) )
458 & + (COEF ( 2 ) *RETET POS (N, 2 ,K) )

& + (COEF ( 3 ) *RETET POS (N, 3 ,K) ) ) )
460

RETETSBOT POS (N,K) = COEF ( 1 ) *2*COEF POS (N, 1 ,K)
462 & + COEF ( 2 ) *2*COEF POS (N, 2 ,K)

& + COEF ( 3 ) *2*COEF POS (N, 3 ,K)
464

RETETS POS (N, L ,K) = RETET POS (N, L ,K)
466 & + ( ( ( RETETSTOP POS (N, L ,K) * RETETSBOT )
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& − ( RETETSBOT POS (N,K ) * RETETSTOP( L ) ) )
468 & / RETETSBOT**2)

470

RETETSTOP ANGE(N, L ,K) = ( ( −1) *COEF ANGE(N, L ,K) * ( ( COEF ( 1 )
472 & * RETET ( 1 ) )

& + (COEF ( 2 ) *RETET ( 2 ) ) +(COEF ( 3 ) *RETET ( 3 ) )+COEF ( 4 ) ) )
474 & − (COEF( L ) * ( ( COEF ANGE(N, 1 ,K) *RETET ( 1 ) )

& + (COEF ANGE(N, 2 ,K) *RETET ( 2 ) )
476 & + (COEF ANGE(N, 3 ,K) *RETET ( 3 ) )+COEF ANGE(N, 4 ,K)

& + (COEF ( 1 ) *RETET ANGE(N, 1 ,K) )
478 & + (COEF ( 2 ) *RETET ANGE(N, 2 ,K) )

& + (COEF ( 3 ) *RETET ANGE(N, 3 ,K) ) ) )
480

RETETSBOT ANGE(N,K) = COEF ( 1 ) *2*COEF ANGE(N, 1 ,K)
482 & + COEF ( 2 ) *2*COEF ANGE(N, 2 ,K)

& + COEF ( 3 ) *2*COEF ANGE(N, 3 ,K)
484

RETETS ANGE(N, L ,K) = RETET ANGE(N, L ,K)
486 & + ( ( ( RETETSTOP ANGE(N, L ,K) * RETETSBOT )

& − (RETETSBOT ANGE(N,K ) * RETETSTOP( L ) ) )
488 & / RETETSBOT**2)

490

RETETSTOP R (N, L ,K) = ( ( −1) *COEF R (N, L ,K) * ( ( COEF ( 1 ) *RETET ( 1 ) )
492 & + (COEF ( 2 ) *RETET ( 2 ) ) +(COEF ( 3 ) *RETET ( 3 ) )+COEF ( 4 ) ) )

& − (COEF( L ) * ( ( COEF R (N, 1 ,K) *RETET ( 1 ) )
494 & + ( COEF R (N, 2 ,K) *RETET ( 2 ) )

& + ( COEF R (N, 3 ,K) *RETET ( 3 ) )+COEF R (N, 4 ,K) ) )
496

498 RETETSBOT R (N,K)= COEF ( 1 ) *2*COEF R (N, 1 ,K)
& + COEF ( 2 ) *2*COEF R (N, 2 ,K)

500 & + COEF ( 3 ) *2*COEF R (N, 3 ,K)

502 RETETS R (N, L ,K) = ( ( RETETSTOP R (N, L ,K) * RETETSBOT )
& − ( RETETSBOT R (N,K ) * RETETSTOP( L ) ) )

504 & / RETETSBOT**2

506 ENDDO !K
ENDDO ! L

508

510

c−−−− v e c t o r from t h e p r o j e c t e d t e t h e r a t t a c h m e n t p o i n t l o c a t i o n t o t h e
512 c c e n t e r o f t h e sphe re − s p h e r e i n t e r s e c t i o n c i r c l e

DO K =1 ,3
514 DISTRESCC (K) = RETETS(K) − CIRCCENT(K)

516 DO L =1 ,3

518 DISTRESCC ANG (N, K, L ) = RETETS ANG (N, K, L )−CIRCCENT ANG (N, K, L )
DISTRESCC POS (N, K, L ) = RETETS POS (N, K, L )−CIRCCENT POS (N, K, L )

520 DISTRESCC ANGE(N, K, L ) = RETETS ANGE(N, K, L )−CIRCCENT ANGE(N, K, L )
DISTRESCC R (N, K, L ) = RETETS R (N, K, L )−CIRCCENT R (N, K, L )

522

ENDDO
524

ENDDO
526

LRESCC = SQRT( DISTRESCC ( 1 ) **2+DISTRESCC ( 2 ) **2+ DISTRESCC ( 3 ) **2)
528

DO K=1 ,3
530 LRESCC ANG(N,K) = ( DISTRESCC ( 1 ) *DISTRESCC ANG (N, 1 ,K)

& + DISTRESCC ( 2 ) *DISTRESCC ANG (N, 2 ,K)
532 & + DISTRESCC ( 3 ) *DISTRESCC ANG (N, 3 ,K) ) / LRESCC
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534 LRESCC POS (N,K) = ( DISTRESCC ( 1 ) *DISTRESCC POS (N, 1 ,K)
& + DISTRESCC ( 2 ) *DISTRESCC POS (N, 2 ,K)

536 & + DISTRESCC ( 3 ) *DISTRESCC POS (N, 3 ,K) ) / LRESCC

538 LRESCC ANGE(N,K) = ( DISTRESCC ( 1 ) *DISTRESCC ANGE(N, 1 ,K)
& + DISTRESCC ( 2 ) *DISTRESCC ANGE(N, 2 ,K)

540 & + DISTRESCC ( 3 ) *DISTRESCC ANGE(N, 3 ,K) ) / LRESCC

542 LRESCC R (N,K) = ( DISTRESCC ( 1 ) *DISTRESCC R (N, 1 ,K)
& + DISTRESCC ( 2 ) *DISTRESCC R (N, 2 ,K)

544 & + DISTRESCC ( 3 ) *DISTRESCC R (N, 3 ,K) ) / LRESCC
ENDDO

546

c−−− d e t e r m i n e t h e l o c a t i o n o f t h e t e t h e r b r i d l e a t t a c h m e n t p o i n t
548 DO K=1 ,3

RTBA(K) = CIRCCENT(K) + ( ( RSSIC / LRESCC) *DISTRESCC (K) )
550

552 DO L =1 ,3
RTBA ANG(N, K, L ) = CIRCCENT ANG(N, K, L )

554 & + ( ( ( ( ( RSSIC ANG (N, L ) *DISTRESCC (K) )
& + ( RSSIC* DISTRESCC ANG (N, K, L ) ) ) *LRESCC)

556 & − (LRESCC ANG(N, L ) * RSSIC*DISTRESCC (K) ) ) / LRESCC**2)

558 RTBA POS (N, K, L ) = CIRCCENT POS (N, K, L )
& + ( ( ( ( ( RSSIC POS (N, L ) *DISTRESCC (K) )

560 & + ( RSSIC* DISTRESCC POS (N, K, L ) ) ) *LRESCC)
& − ( LRESCC POS (N, L ) * RSSIC*DISTRESCC (K) ) ) / LRESCC**2)

562

RTBA ANGE(N, K, L ) = CIRCCENT ANGE(N, K, L )
564 & + ( ( ( ( ( RSSIC ANGE (N, L ) *DISTRESCC (K) )

& + ( RSSIC* DISTRESCC ANGE(N, K, L ) ) ) *LRESCC)
566 & − (LRESCC ANGE(N, L ) * RSSIC*DISTRESCC (K) ) ) / LRESCC**2)

568 RTBA R(N, K, L ) = CIRCCENT R (N, K, L )
& + ( ( ( ( ( RSSIC R (N, L ) *DISTRESCC (K) )

570 & + ( RSSIC* DISTRESCC R (N, K, L ) ) ) *LRESCC)
& − ( LRESCC R (N, L ) * RSSIC*DISTRESCC (K) ) ) / LRESCC**2)

572

ENDDO
574 ENDDO

576 ENDDO

578 RETURN
END

/Aswing/src/sloads.f
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C.3 Aerodynamic and gravitational tether force subroutine

1 SUBROUTINE SETWGTTET( IS , IPNT , TETMASS, CDA, TE , TEMPRE0TET , TEMPPOS,
& RTBA ANG, RTBA, TETTFOR)

3 INCLUDE ’ASWING. INC ’
C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 C Imposes a p p l i e d l o a d s and moments due t o t e t h e r mass .
C The l o a d s a r e a p p l i e d on ly t o beam IS a t o p e r a t i n g p o i n t IPNT .

7 C
C Thi s v e r s i o n a p p l i e s i n e r t i a l − r e a c t i o n , g r a v i t y , a e r o d rag l o a d s :

9 C − −

C F = m ( g − a ) + 0 . 5 rho V V CDA
11 C − −

C M = dr x F
13 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

DIMENSION XYZ( 3 ) , ANG( 3 ) , UVW( 3 ) , OMG( 3 ) , UVWT( 3 ) , OMGT( 3 ) ,
15 & T0 ( 3 , 3 ) , T ( 3 , 3 ) , T ANG ( 3 , 3 , 3 ) ,

& TNET( 3 , 3 ) , TNET ANG( 3 , 3 , 3 )
17 DIMENSION VEL( 3 ) , VAC( 3 ) , ROT( 3 ) , RAC( 3 )

DIMENSION DRP( 3 ) , DRP ANG( 3 , 3 ) , XYZP( 3 ) ,
19 & HAP( 3 ) , HAP ANG( 3 , 3 )

C
21 DIMENSION VG( 3 ) , VG POS ( 3 , 3 ) , POS ( 3 ) ,

& VG HEAD( 3 ) ,VG ELEV ( 3 ) ,VG BANK( 3 ) ,
23 & VG XYZP ( 3 , 3 )

C
25 DIMENSION DV( 3 ) , DV DRP ( 3 , 3 ) , DV OMG( 3 , 3 ) , DV ROT( 3 , 3 ) ,

& DA( 3 ) , DA DRP ( 3 , 3 ) , DA OMG( 3 , 3 ) , DA ROT( 3 , 3 ) ,
27 & DA OMGT( 3 , 3 ) ,DA RAC( 3 , 3 )

C
29 DIMENSION VR( 3 ) , VR XYZ( 3 , 3 ) , VR UVW( 3 , 3 ) , VR ROT ( 3 , 3 ) ,

& AR( 3 ) , AR XYZ( 3 , 3 ) , AR UVW( 3 , 3 ) , AR ROT ( 3 , 3 ) ,
31 & AR UVWT( 3 , 3 ) ,AR RAC ( 3 , 3 ) ,

& VE( 3 ) ,
33 & VR Q ( 3 , 1 8 ) ,VR GL ( 3 , 0 :NGLX) ,

& AR Q ( 3 , 1 8 ) ,AR GL ( 3 , 0 :NGLX) ,AR QT ( 3 , 6 ) ,AR GLT ( 3 , 0 :NGLX) ,
35 & VG Q( 3 , 1 8 ) ,VG GL ( 3 , 0 :NGLX) ,VG FRP ( 3 , 0 :NFRLX) ,

& VE Q ( 3 , 1 8 ) ,VE GL ( 3 , 0 :NGLX) , VE FRP ( 3 , 0 :NFRLX)
37 C

DIMENSION GV( 3 ) , GV ELEV ( 3 ) , GV BANK( 3 )
39 C

DIMENSION VF ( 3 , 4 ) ,
41 & VF XYZ ( 3 , 3 , 4 ) ,

& VF POS ( 3 , 3 , 4 ) ,
43 & VF HEAD ( 3 , 4 ) ,

& VF ELEV ( 3 , 4 ) ,
45 & VF BANK( 3 , 4 ) ,

& VF AK ( 3 , 3 , 4 ) ,
47 & VF AL ( 3 , 3 , 4 )

C
49 DIMENSION F VE ( 3 )

DIMENSION F ( 3 ) , F Q ( 3 , 1 8 ) , F GL ( 3 , 0 :NGLX) , F FRP ( 3 , 0 :NFRLX) ,
51 & M( 3 ) , M Q( 3 , 1 8 ) , M GL ( 3 , 0 :NGLX) , M FRP ( 3 , 0 :NFRLX) ,

& F QT ( 3 , 6 ) , F GLT ( 3 , 0 :NGLX) ,
53 & M QT( 3 , 6 ) , M GLT ( 3 , 0 :NGLX) ,

& FK QO ( 1 8 ) , FK QP ( 1 8 ) ,FK GL (NGLX) , FK GLT (NGLX) ,
55 & MK QO( 1 8 ) ,MK QP( 1 8 ) ,MK GL(NGLX) , MK GLT(NGLX) ,

& FK QTO ( 6 ) , FK QTP ( 6 ) , FK FRP (NFRLX) ,
57 & MK QTO( 6 ) ,MK QTP( 6 ) ,MK FRP(NFRLX)

C
59 DIMENSION ICRS ( 3 ) , JCRS ( 3 ) , TETTFOR ( 3 )

61 DATA ICRS / 2 , 3 , 1 / , JCRS / 3 , 1 , 2 /

63 REAL TETMASS, TE ( 3 , 3 ) , TEMPRE0TET ( 3 ) , TEMPPOS( 3 ) , RTBA ANG( 3 , 3 )
C
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65 RHO = PARAM(KPDENS, IPNT )
VSO = PARAM(KPVSOU, IPNT )

67 C
HEAD = PARAM(KPHEAD, IPNT )

69 ELEV = PARAM(KPELEV, IPNT )
BANK = PARAM(KPBANK, IPNT )

71

DO K=1 , 3
73 VAC(K) = PARAM(KPVAC(K) , IPNT )

RAC(K) = PARAM(KPRAC(K) , IPNT )
75 VEL(K) = PARAM(KPVEL(K) , IPNT )

ROT(K) = PARAM(KPROT(K) , IPNT )
77 POS(K) = PARAM(KPPOS(K) , IPNT )

ENDDO
79 C

81 GEE = PARAM(KPGRAV, IPNT )
C

83 C−−−− s e t g r a v i t y v e c t o r x , y , z components GV ( . )
CALL GVCALC(GEE, ELEV,BANK, HEAD, GV, GV ELEV , GV BANK, GV HEAD,

85 & GRAVDIR)
C

87 C
C==== add l o a d s due t o p o i n t w e i g h t s

89

DO 200 KP=1 , NPYLO
91 IF (KPTYPE(KP) . NE. 3 .OR.

& ISPYLO (KP) . NE . IS ) GO TO 200
93 C

C−−−− i n t e r v a l where py lon i s a t t a c h e d
95 IEQ = IPYLO (KP)

97 C−−−− node t o which py lon i s e f f e c t i v e l y a t t a c h e d
I = MIN( MAX( IEQ , IFRST ( IS ) ) , ILAST ( IS ) )

99 C

101 C−−−− s e t l o c a l E u l e r a n g l e s and t r a n s f o r m a t i o n t e n s o r f o r undeformed s t a t e
ANG( 1 ) = Q0 ( 4 , I )

103 ANG( 2 ) = Q0 ( 5 , I )
ANG( 3 ) = Q0 ( 6 , I )

105 CALL ROTENS(ANG, T0 , T ANG , KBTYPE( IS ) )
C

107 C−−−− s e t l o c a l E u l e r a n g l e s and t r a n s f o r m a t i o n t e n s o r
ANG( 1 ) = Q( 4 , I , IPNT )

109 ANG( 2 ) = Q( 5 , I , IPNT )
ANG( 3 ) = Q( 6 , I , IPNT )

111 CALL ROTENS(ANG, T ,T ANG , KBTYPE( IS ) )
C

113 C t
C−−−− s e t T To m a t r i x

115 DO K = 1 , 3
DO L = 1 , 3

117 TNET(K, L ) = T ( 1 ,K) *T0 ( 1 , L )
& + T ( 2 ,K) *T0 ( 2 , L )

119 & + T ( 3 ,K) *T0 ( 3 , L )
DO J = 1 , 3

121 TNET ANG(K, L , J ) = T ANG( 1 ,K, J ) *T0 ( 1 , L )
& + T ANG( 2 ,K, J ) *T0 ( 2 , L )

123 & + T ANG( 3 ,K, J ) *T0 ( 3 , L )
ENDDO

125 ENDDO
ENDDO

127 C
C−−−− s e t py lon o f f s e t v e c t o r d r p

129 DO K = 1 , 3

131 DRP(K) = 0
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133 DO L = 1 , 3
DRP ANG(K, L ) = RTBA ANG(K, L ) / 2

135 ENDDO
ENDDO

137

C
139 C−−−− s e t beam p o s i t i o n r

XYZ( 1 ) = Q( 1 , I , IPNT )
141 XYZ( 2 ) = Q( 2 , I , IPNT )

XYZ( 3 ) = Q( 3 , I , IPNT )
143

C−−−− s e t beam v e l o c i t y u
145 UVW( 1 ) = Q( 1 3 , I , IPNT )

UVW( 2 ) = Q( 1 4 , I , IPNT )
147 UVW( 3 ) = Q( 1 5 , I , IPNT )

C
149 C−−−− s e t beam r o t a t i o n a l r a t e w

OMG( 1 ) = Q( 1 6 , I , IPNT )
151 OMG( 2 ) = Q( 1 7 , I , IPNT )

OMG( 3 ) = Q( 1 8 , I , IPNT )
153 C .

C−−−− s e t beam a c c e l e r a t i o n u
155 UVWT( 1 ) = UDOT( 1 , I )

UVWT( 2 ) = UDOT( 2 , I )
157 UVWT( 3 ) = UDOT( 3 , I )

C .
159 C−−−− s e t beam a n g u l a r a c c e l e r a t i o n w

OMGT( 1 ) = UDOT( 4 , I )
161 OMGT( 2 ) = UDOT( 5 , I )

OMGT( 3 ) = UDOT( 6 , I )
163 C

C−−−− s e t beam ’ s v e l o c i t i e s VR and a c c e l e r a t i o n s AR
165 CALL VACALC(XYZ, UVW, ROT, UVWT, RAC,

& VR, VR XYZ, VR UVW, VR ROT ,
167 & AR, AR XYZ, AR UVW, AR ROT , AR UVWT, AR RAC )

C
169 C−−−− s e t a d d i t i o n a l v e l o c i t y and a c c e l e r a t i o n due t o DRP o f f s e t

CALL VDCALC( DRP, OMG, ROT, OMGT, RAC,
171 & DV, DV DRP , DV OMG, DV ROT,

& DA, DA DRP , DA OMG, DA ROT, DA OMGT, DA RAC )
173 C

C−−−− s e t l o c a l g u s t v e l o c i t y
175 XYZP( 1 ) = XYZ( 1 ) + DRP( 1 )

XYZP( 2 ) = XYZ( 2 ) + DRP( 2 )
177 XYZP( 3 ) = XYZ( 3 ) + DRP( 3 )

CALL VGUST(XYZP, POS , HEAD, ELEV, BANK,
179 & VG, VG XYZP , VG POS , VG HEAD, VG ELEV ,VG BANK )

C
181 C−−−− s e t s e n s i t i v i t i e s wr t l o c a l and g l o b a l v a r i a b l e s

DO K=1 , 3
183 DO L = 1 , 18

VR Q(K, L ) = 0 .
185 AR Q(K, L ) = 0 .

VG Q(K, L ) = 0 .
187 ENDDO

DO L = 1 , 6
189 AR QT(K, L ) = 0 .

ENDDO
191 DO L=0 , NRHS

VR GL(K, L ) = 0 .
193 AR GL(K, L ) = 0 .

VG GL(K, L ) = 0 .
195 AR GLT(K, L ) = 0 .

ENDDO
197 DO L = 0 , NFRP

VG FRP (K, L ) = 0 .
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199 ENDDO
C

201 VR(K) = VR(K) + DV(K)
AR(K) = AR(K) + DA(K)

203 DO L=1 , 3
VR Q(K, L ) = VR XYZ(K, L )

205 VR Q(K, L+12) = VR UVW(K, L )
VR Q(K, L+15) = DV OMG(K, L )

207 VR Q(K, L+3) = DV DRP(K, 1 ) *DRP ANG( 1 , L )
& + DV DRP(K, 2 ) *DRP ANG( 2 , L )

209 & + DV DRP(K, 3 ) *DRP ANG( 3 , L )

211 AR Q(K, L ) = AR XYZ(K, L )
AR Q(K, L+12) = AR UVW(K, L )

213 AR Q(K, L+15) = DA OMG(K, L )
AR Q(K, L+3) = DA DRP(K, 1 ) *DRP ANG( 1 , L )

215 & + DA DRP(K, 2 ) *DRP ANG( 2 , L )
& + DA DRP(K, 3 ) *DRP ANG( 3 , L )

217 C
VG Q(K, L ) = VG XYZP(K, L )

219 VG Q(K, L+3) = VG XYZP(K, 1 ) *DRP ANG( 1 , L )
& + VG XYZP(K, 2 ) *DRP ANG( 2 , L )

221 & + VG XYZP(K, 3 ) *DRP ANG( 3 , L )
C

223 AR QT(K, L ) = AR UVWT(K, L )
AR QT(K, L+3) = DA OMGT(K, L )

225 ENDDO
DO L=1 , 3

227 VR GL(K, LROT( L ) ) = VR ROT(K, L ) + DV ROT(K, L )
C

229 AR GL(K, LROT( L ) ) = AR ROT(K, L ) + DA ROT(K, L )
AR GL(K,LRAC( L ) ) = AR RAC(K, L ) + DA RAC(K, L )

231 C
VG GL(K, LPOS( L ) ) = VG POS (K, L )

233 C
c c AR GLT(K,LRAC( L ) ) = AR RAC(K, L ) + DA RAC(K, L )

235 ENDDO
VG GL(K,LHEAD) = VG HEAD(K)

237 VG GL(K, LELEV) = VG ELEV(K)
VG GL(K,LBANK) = VG BANK(K)

239 ENDDO
C

241 C−−−− s e t l o c a l f r e q u e n c y −g u s t u n i t v e l o c i t y
IF (LFGUST) THEN

243 DO KG = 1 , NFGUST
CALL VFREQ(XYZ, POS , HEAD, ELEV, BANK,

245 & AKGUST( 1 ,KG) ,
& ALGUST( 1 ,KG) ,

247 & VFGUST( 1 , 1 ,KG) ,
& VF ,

249 & VF XYZ ,
& VF POS ,

251 & VF HEAD ,
& VF ELEV ,

253 & VF BANK,
& VF AK ,

255 & VF AL )
DO K = 1 , 3

257 VG FRP (K, LGUS1F(KG) ) = VG FRP (K, LGUS1F(KG) ) + VF(K, 1 )
VG FRP (K, LGUS2F(KG) ) = VG FRP (K, LGUS2F(KG) ) + VF(K, 2 )

259 VG FRP (K, LGUS3F(KG) ) = VG FRP (K, LGUS3F(KG) ) + VF(K, 3 )
VG FRP (K, LGUS4F(KG) ) = VG FRP (K, LGUS4F(KG) ) + VF(K, 4 )

261 ENDDO
ENDDO

263 ENDIF
C

265
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PMASS = TETMASS /GEEW
267 C −

C−−−− s e t w e i gh t f o r c e v e c t o r F = m( g−a ) + a p p l i e d − f o r c e
269 DO K=1 , 3

F (K) = PMASS*(GV(K) −AR(K) − VAC(K) )
271 DO L=1 , NRHS

F GL (K, L ) = PMASS*( −AR GL(K, L ) )
273 F GLT (K, L )= PMASS*( −AR GLT(K, L ) )

ENDDO
275 DO L=1 , 18

F Q (K, L ) = PMASS*( −AR Q(K, L ) )
277 ENDDO

DO L=1 , 6
279 F QT (K, L ) = PMASS*( −AR QT(K, L ) )

ENDDO
281 C

F GL (K, LELEV) = F GL (K, LELEV) + PMASS*GV ELEV(K)
283 F GL (K,LBANK) = F GL (K,LBANK) + PMASS*GV BANK(K)

F GL (K,LVAC(K) ) = F GL (K,LVAC(K) ) − PMASS
285 C

DO L=1 , NFRP
287 F FRP (K, L ) = 0 .

ENDDO
289 ENDDO

291 DO K=1 ,3
TETTFOR(K) = TETTFOR(K) − F (K)

293 ENDDO

295

C
297 C−−−− s e t w e i gh t moment v e c t o r DW x F and p r e c e s s i o n moment

DO K=1 , 3
299 IC = ICRS (K)

JC = JCRS (K)
301 M(K) = 0

DO L=1 , NRHS
303 M GL(K, L ) = 0

M GLT(K, L )= 0
305 ENDDO

DO L=1 , 18
307 M Q(K, L ) = 0

ENDDO
309 DO L=1 , 6

M QT(K, L )= 0
311 ENDDO

C
313 M GL(K, LROT( JC ) ) = 0

M GL(K, LROT( IC ) ) = 0
315 M Q (K, JC +15) = 0

M Q (K, IC +15) = 0
317 DO L=1 , 3

M Q(K, L+3) = 0
319 ENDDO

C
321 DO L=1 , NFRP

M FRP (K, L ) = 0 .
323 ENDDO

ENDDO
325 C

C−−−− add r e s i d u a l and J a c o b i a n changes t o a p p r o p r i a t e s l o t s ,
327 DO K = 1 , 3

C−−−−−− s e t row−major i n d e x e d a r r a y s f o r c a l l i n g EQNADD
329 IF ( IEQ . EQ . IFRST ( IS ) −1) THEN

KEQF = KEQ0(K+9 , IS )
331 KEQM = KEQ0(K+6 , IS )

DO L = 1 , 18
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333 FK QO( L ) = 0 .
FK QP ( L ) = F Q (K, L )

335 MK QO( L ) = 0 .
MK QP( L ) = M Q(K, L )

337 ENDDO
DO L = 1 , 6

339 FK QTO( L ) = 0 .
FK QTP ( L ) = F QT (K, L )

341 MK QTO( L ) = 0 .
MK QTP( L ) = M QT(K, L )

343 ENDDO
ELSE

345 KEQF = KEQ(K+9 , IEQ )
KEQM = KEQ(K+6 , IEQ )

347 DO L = 1 , 18
FK QO( L ) = F Q (K, L )

349 FK QP ( L ) = 0 .
MK QO( L ) = M Q(K, L )

351 MK QP( L ) = 0 .
ENDDO

353 DO L = 1 , 6
FK QTO( L ) = F QT (K, L )

355 FK QTP ( L ) = 0 .
MK QTO( L ) = M QT(K, L )

357 MK QTP( L ) = 0 .
ENDDO

359 ENDIF
C

361 DO L = 1 , NRHS
FK GL ( L ) = F GL (K, L )

363 MK GL( L ) = M GL(K, L )
C

365 FK GLT ( L ) = F GLT (K, L )
MK GLT( L ) = M GLT(K, L )

367 ENDDO
DO L = 1 , NFRP

369 FK FRP ( L ) = F FRP (K, L )
MK FRP( L ) = M FRP (K, L )

371 ENDDO

373 ENDDO

375 C======================================================================

C==== add on a e r o d rag on p o i n t mass
377 C======================================================================

379 C−−−− s k i p a e r o f o r c e c a l c u l a t i o n s i f p o i n t mass has z e r o d rag a r e a
IF (CDA. EQ . 0 . 0 ) GO TO 200

381 C
C−−−− s e t l o c a l e f f e c t i v e f r e e s t r e a m v e l o c i t y v e c t o r VE i n body axes

383 DO K=1 , 3
VE(K) = VG(K) − VR(K) − VEL(K) + VIP (K, KP)

385 & + WIP(K, KP)
& + VEP(K, KP)

387

DO L=1 , 18
389 VE Q (K, L ) = VG Q(K, L ) − VR Q(K, L )

ENDDO
391 DO L=1 , NRHS

VE GL (K, L ) = VG GL(K, L ) − VR GL(K, L ) + VEP GL (K, L , KP)
393 ENDDO

DO L=1 , NFRP
395 VE FRP (K, L )= VG FRP (K, L )

ENDDO
397 C

VE GL (K, LVEL(K) ) = VE GL (K, LVEL(K) ) − 1 . 0
399 C
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DO N = 1 , NNTOT
401 VE GL (K,LAN(N) ) = VE GL (K,LAN(N) ) + VIP AN (K, N, KP)

ENDDO
403 C

DO L = 1 , 3
405 VE GL (K, LVEL( L ) ) = VE GL (K, LVEL( L ) ) + VIP AL (K, KP) *ALW VEL( L )

& + VIP BE (K, KP) *BEW VEL( L )
407 & + WIP VI (K, KP) *VIW VEL( L )

& + WIP AL (K, KP) *ALW VEL( L )
409 & + WIP BE (K, KP) *BEW VEL( L )

& + VEP AL (K, KP) *ALW VEL( L )
411 & + VEP BE (K, KP) *BEW VEL( L )

ENDDO
413 ENDDO

C
415 VSQ = VE( 1 ) **2 + VE( 2 ) **2 + VE( 3 ) **2

C
417 C−−−− a v o i d n u m e r i c a l 0 /0 e r r o r below f o r s t a t i o n a r y c a s e s ( f o r V = 0)

IF (VSQ . EQ . 0 . 0 ) VSQ = 0 .000001
419 C

DO K=1 , 3
421 F (K) = 0 . 5 *RHO*SQRT(VSQ) *VE(K) *CDA

DO L=1 , 3
423 F VE ( L ) = 0 . 5 *RHO*VE( L ) / SQRT(VSQ) *VE(K) *CDA

ENDDO
425 F VE (K) = 0 . 5 *RHO*SQRT(VSQ) *CDA + F VE (K)

C
427 C

DO L=1 , 18
429 F Q (K, L ) = F VE ( 1 ) *VE Q ( 1 , L )

& + F VE ( 2 ) *VE Q ( 2 , L )
431 & + F VE ( 3 ) *VE Q ( 3 , L )

ENDDO
433 DO L=1 , 6

F QT (K, L ) = 0 .
435 ENDDO

DO L=1 , NRHS
437 F GL (K, L ) = F VE ( 1 ) *VE GL ( 1 , L )

& + F VE ( 2 ) *VE GL ( 2 , L )
439 & + F VE ( 3 ) *VE GL ( 3 , L )

F GLT (K, L ) = 0 .
441 ENDDO

DO L=1 , NFRP
443 F FRP (K, L )= F VE ( 1 ) *VE FRP ( 1 , L )

& + F VE ( 2 ) *VE FRP ( 2 , L )
445 & + F VE ( 3 ) *VE FRP ( 3 , L )

ENDDO
447 ENDDO

449 C
DO K=1 , 3

451 IC = ICRS (K)
JC = JCRS (K)

453 M(K) = 0
C

455 DO L=1 , 18
M Q(K, L ) = 0

457 ENDDO
DO L=1 , 6

459 M QT(K, L )= 0
ENDDO

461 DO L=1 , 3
M Q(K, L+3) = 0

463 ENDDO
DO L=1 , NRHS

465 M GL(K, L ) = 0
C
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467 M GLT(K, L ) = 0
ENDDO

469 DO L=1 , NFRP
M FRP (K, L ) = 0

471 ENDDO
C

473 ENDDO
C

475 C−−−− add r e s i d u a l and J a c o b i a n changes t o a p p r o p r i a t e s l o t s
DO K = 1 , 3

477 C−−−−−− s e t row−major i n d e x e d a r r a y s f o r c a l l i n g EQNADD
IF ( IEQ . EQ . IFRST ( IS ) −1) THEN

479 KEQF = KEQ0(K+9 , IS )
KEQM = KEQ0(K+6 , IS )

481 DO L = 1 , 18
FK QO( L ) = 0 .

483 FK QP ( L ) = F Q (K, L )
MK QO( L ) = 0 .

485 MK QP( L ) = M Q(K, L )
ENDDO

487 DO L = 1 , 6
FK QTO( L ) = 0 .

489 FK QTP ( L ) = F QT (K, L )
MK QTO( L ) = 0 .

491 MK QTP( L ) = M QT(K, L )
ENDDO

493 ELSE
KEQF = KEQ(K+9 , IEQ )

495 KEQM = KEQ(K+6 , IEQ )
DO L = 1 , 18

497 FK QO( L ) = F Q (K, L )
FK QP ( L ) = 0 .

499 MK QO( L ) = M Q(K, L )
MK QP( L ) = 0 .

501 ENDDO
DO L = 1 , 6

503 FK QTO( L ) = F QT (K, L )
FK QTP ( L ) = 0 .

505 MK QTO( L ) = M QT(K, L )
MK QTP( L ) = 0 .

507 ENDDO
ENDIF

509 C
DO L = 1 , NRHS

511 FK GL ( L ) = F GL (K, L )
MK GL( L ) = M GL(K, L )

513 C
FK GLT ( L ) = F GLT (K, L )

515 MK GLT( L ) = M GLT(K, L )
ENDDO

517 DO L = 1 , NFRP
FK FRP ( L ) = F FRP (K, L )

519 MK FRP( L ) = M FRP (K, L )
ENDDO

521

523 CALL EQNADD(K+9 , IEQ , KEQF, F (K) , FK QO , FK QP ,
& FK QTO , FK QTP ,

525 & FK GL ,FK GLT , FK FRP )
CALL EQNADD(K+6 , IEQ , KEQM, M(K) , MK QO, MK QP,

527 & MK QTO, MK QTP,
& MK GL ,MK GLT, MK FRP)

529 ENDDO

531

533 CALL FMDEL(NRHS, NFRP , 1 . 0 , Q( 1 , I , IPNT ) ,
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& F , F Q , F QT , F GL ( 1 , 1 ) , F GLT ( 1 , 1 ) , F FRP ( 1 , 1 ) ,
535 & M, M Q, M QT, M GL( 1 , 1 ) , M GLT( 1 , 1 ) , M FRP ( 1 , 1 ) ,

& AFORCE, AFOR Q( 1 , 1 , I ) ,AFOR UT ( 1 , 1 , I ) ,AFOR GL ( 1 , 1 ) ,AFOR GLT ( 1 , 1 ) ,
537 & AFOR FRP ( 1 , 1 ) ,

& AMOMNT,AMOM Q( 1 , 1 , I ) ,AMOM UT( 1 , 1 , I ) ,AMOM GL( 1 , 1 ) ,AMOM GLT( 1 , 1 ) ,
539 & AMOM FRP( 1 , 1 ) )

C
541 C−−−− i f t h i s i s a l s o a ground p o i n t , a l s o add t o ground− f o r c e a c c u m u l a t o r s

DO KG=1 , NGROU
543 IF ( IS . EQ . ISGROU(KG) .AND. IEQ . EQ . IGROU(KG) ) THEN

CALL FMDEL(NRHS, NFRP , 1 . 0 , Q( 1 , I , IPNT ) ,
545 & F , F Q , F QT , F GL ( 1 , 1 ) , F GLT ( 1 , 1 ) , F FRP ( 1 , 1 ) ,

& M, M Q, M QT, M GL( 1 , 1 ) , M GLT( 1 , 1 ) , M FRP ( 1 , 1 ) ,
547 & GFORCE, GFOR Q( 1 , 1 , I ) ,GFOR UT ( 1 , 1 , I ) ,GFOR GL ( 1 , 1 ) ,GFOR GLT ( 1 , 1 ) ,

& GFOR FRP ( 1 , 1 ) ,
549 & GMOMNT,GMOM Q( 1 , 1 , I ) ,GMOM UT( 1 , 1 , I ) ,GMOM GL( 1 , 1 ) ,GMOM GLT( 1 , 1 ) ,

& GMOM FRP( 1 , 1 ) )
551 ENDIF

ENDDO
553 C

200 CONTINUE
555 C

RETURN
557 END ! SETWGTTET

/Aswing/src/sloads.f





Appendix D

Verification plots

D.1 Force and moment equilibrium
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Figure D.1: Comparison sum of forces in x and z-direction for the unbridled and bridled case
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196 Verification plots

D.1.1 Moment additions to the Newton system
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Figure D.3: Verification bridle force Jacobian entries for local beam coordinates
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Figure D.4: Verification bridle force Jacobian entries for Earth coordinates



Appendix E

Wind tunnel test schedule

Table E.1: Test schedule

run# Ft, ini [N] βt [deg] xb [cm] yb

1 25.0 0.0 1.0 half-way span
2 50.0 0.0 1.0 half-way span
3 75.0 0.0 1.0 half-way span

4 25.0 30.0 1.0 half-way span
5 50.0 30.0 1.0 half-way span
6 75.0 30.0 1.0 half-way span

7 25.0 0.0 9.0 half-way span
8 50.0 0.0 9.0 half-way span
9 75.0 0.0 9.0 half-way span

10 25.0 30.0 9.0 half-way span
11 50.0 30.0 9.0 half-way span
12 75.0 30.0 9.0 half-way span

13 25.0 0.0 17.5 half-way span
14 50.0 0.0 17.5 half-way span
15 75.0 0.0 17.5 half-way span

16 25.0 30.0 17.5 half-way span
17 50.0 30.0 17.5 half-way span
18 75.0 30.0 17.5 half-way span

19 25.0 0.0 22.5 half-way span
20 50.0 0.0 22.5 half-way span
21 75.0 0.0 22.5 half-way span

22 25.0 30.0 22.5 half-way span
23 50.0 30.0 22.5 half-way span
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24 25.0 0.0 1.0 half-way span
25 50.0 0.0 1.0 half-way span
26 75.0 0.0 1.0 half-way span

27 25.0 30.0 1.0 wing-tips
28 50.0 30.0 1.0 wing-tips
29 75.0 30.0 1.0 wing-tips
30 100.0 30.0 1.0 wing-tips

31 25.0 0.0 9.0 wing-tips
32 50.0 0.0 9.0 wing-tips
33 75.0 0.0 9.0 wing-tips

34 25.0 30.0 9.0 wing-tips
35 50.0 30.0 9.0 wing-tips
36 75.0 30.0 9.0 wing-tips
37 100.0 30.0 1.0 wing-tips

38 25.0 0.0 13.0 wing-tips
39 50.0 0.0 13.0 wing-tips
40 75.0 0.0 13.0 wing-tips

41 25.0 30.0 13.0 wing-tips
42 50.0 30.0 13.0 wing-tips
43 75.0 30.0 13.0 wing-tips



Appendix F

Results M600 aero-elastic analysis

F.1 Results M600 torsional divergence analysis
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Figure F.1: Figure will continue on next page

F.2 Results M600 control reversal and effectiveness analysis
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Figure F.1: Continued Figure: Other main wing parameters’ effects on divergence

F.3 Results M600 flutter analysis
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Figure F.2: Figure will continue on next page
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Figure F.3: Other parameter effect on flutter; subscript ()0 denotes the benchmark run
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