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Chapter 22

The Next Frontier: Reliability of Complex
Systems

D. Schenkelaars, Willem Dirk van Driel, and R. Duijve

Abstract Traditional lighting is focused on the prevention of hardware failures.

With the trend toward controlled and connected systems, other components will

start playing an equal role in the reliability of it. Here reliability need to be replaced

by availability, and other modeling approaches are to be taken into account.

Software reliability can only be covered by growth models, with the Goel-Okumoto

as a promising candidate. System prognostics and health management is the next

step to service the connected complex systems in the most effective way possible.

In this chapter we highlight the next frontiers that will need to be taken in order to

move the traditional lighting catastrophic failure thinking into a thinking more

toward new ways how system (degraded) functions can fail or be compromised.

22.1 Introduction

Nowadays the lighting industry experiences an exponential increasing impact of

digitization and connectivity of its lighting systems [1]. The impact is far beyond

the impact on single products but extends to an ever larger amount of connected

systems. Continuously, more intelligent interfacing with the technical environment

and with different kind of users is being built-in by using more and different kinds

of sensors, (wireless) communication, and interacting or interfacing devices. Fig-

ure 22.1 gives two examples toward these controlled and connected systems, just to

highlight the scale of it.

When the number of components and their interactions significantly increase,

so-called large or complex systems are formed. The commonly used description of

a large or complex system is given as [2, 3]:

D. Schenkelaars (*) • R. Duijve

Philips Lighting, HTC45, 5656 AE, Eindhoven, The Netherlands

e-mail: dick.schenkelaars@philips.com; r.duijve@philips.com

W.D. van Driel

Philips Lighting, High Tech Campus, Eindhoven, The Netherlands

Delft University of Technology, EEMCS Faculty, Delft, The Netherlands

e-mail: willem.van.driel@philips.com

© Springer International Publishing AG 2018

W.D. van Driel et al. (eds.), Solid State Lighting Reliability Part 2, Solid State

Lighting Technology and Application Series 3, DOI 10.1007/978-3-319-58175-0_22

585

mailto:dick.schenkelaars@philips.com
mailto:r.duijve@philips.com
mailto:willem.van.driel@philips.com


A complex system: a system composed of interconnected parts that as a whole exhibit one
or more properties (behavior among the possible properties) not obvious from the proper-
ties of the individual parts.

With the increasing amount of complexity, it is imperative that the reliability of

such systems will enter a next frontier. In this chapter we will discuss the current

state of the art and challenges that are to be confronted in order to tackle this.

22.2 All Components Matter

The functions in a complex lighting product can be listed as four basic properties

[1, 3] being the (i) traditional lighting unit and its components, (ii) the software

needed for processing data, (iii) a monitoring function for getting this data, and

(iv) the communication to, for example, the user or the product. Examples of these

functions are listed below:

(i) Lighting unit components

• Hardware: electronics, LED, PCBs, optics, plastics, solders

• Connectors – indoor & outdoor – , rigid and flexible

• Other mechanical connectors (e.g. screws, clips)

• Moving parts

• Fans, SynJet, and motor drives (air cooling)

• Wires

• Batteries

• Sealants

(ii) Processing and storage

• Software

• Data storage

Fig. 22.1 Two examples of controlled and connected systems, with (a) >1000 connected

luminaires on one theater system and (b) >10,000 connected street luminaires in one city
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(iii) Monitoring

• Sensors – indoor and outdoor

• IoT – Internet of Things

(iv) Communication

• Sensors – indoor and outdoor

• Wireless/wired connectivity (including data integrity)

• IoT – Internet of Things

When processing and monitoring is added, one creates a so-called controlled

lighting system. By adding the communication part, the system further evolves into

a connected lighting system. Obviously, the system complexity increases in these

three steps, simply because more components are added (see the above definition).

Each of these systems has its own fingerprint when it concerns reliability, see

Table 22.1 for a high-level view. On the lowest level of complexity, catastrophic

failure of the sub-components determine the reliability and lifetime of the system.

When the system is controlled, more complex failure modes may occur, and

software failure is added to the equation. In the highest possible level of complex-

ity, a fully connected and controlled lighting system, it becomes more difficult to

predict the reliability performance, and here it is availability that come into play. In

order to capture the systems availability, it is essential to introduce data analytics. In

the following paragraphs, we will discuss these topics in more details.

22.3 Complex Systems: Availability Rather Than
Reliability

System availability is the degree to which a system is operational and accessible,

when required for use [4]. It can be defined as the part of a system that is functional

(over time) following the below equation:

A ¼ 1� # of failing components

total # components
ð22:1Þ

Table 22.1 Complexity level versus reliability fingerprint

System complexity High-level reliability fingerprint

Lighting unit

components

Catastrophic failures of sub-components, relative well known

Controlled systems More functions, more complex failure modes, software failure as

component

Connected lighting

systems

Degradation of system features and/or nuisance incidents with poor

predictability, strong impact of software, availability, and customer

experience
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When parts of a system are independent, availability does not scale with system

size. In general, a high reliability will always lead to a high availability, but a system

with low reliability can still have a very high availability. Reliability and availability

belong to the attributes of the system dependability as well as integrity and safety as

shown in Fig. 22.2 (input used from [5]). Dependability then is the ability of a

system to avoid failures that are more frequent and more severe than acceptable. A

dependable system is having all its required properties and does not show failures.

Typically for a networked and connected lighting system, this availability differs

from the classical definition of system availability where system availability is

defined as the fraction of time that a system provides the service for which it is

specified. Where for one light point, reliability states the probability for survival

after a specific period over time, for thousands of light points connected together

this claim as isolated statement is not useful anymore. When thousands of light

points are connected, it makes no sense to define system, or network failure, as

failure of just one single light point in the system. It makes more sense to define

Reliability

Robustness

Integrity

Safety

Fault
Prevention

Fault
Tolerance

Fault
Detection/Removal

Fault
Forecasting

Fault

Error

Failure

Attributes

MeansDependability

Threats

Availability

Fig. 22.2 Thedependability tree: ameasure of system’s availability, reliability, andmaintainability
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light point availability, indicating the fraction of light points operating in the

controlled network over time. Where the formal system availability depends on

planning and duration of repair, the availability of light points can be referred as

“without repair” or “including repair.” Repair here should be seen as system

maintenance. In connected lighting systems, the availability of light points not

only depends on the lighting units reliability but also on the reliability of sensors,

controllers, communication devices, gateways, routers, and any other component

that is in the system. Also it will depend on the robustness of software and on the

system architecture which can determine how “deep” a hardware unit failure or

software fault impacts the lighting system.

22.4 Testing and Validation

The creation of testing tools starts with a proper understanding of ways to quantify

and predict the reliability of these systems in various complex operating environ-

ments. There are different ways of testing the system, e.g.:

• System Testing: The process of testing an integrated hardware and software

system to verify that the system meets its specified requirements. It is conducted

by the testing teams in both development and target environment.

• Scalability Testing: Part of the battery of nonfunctional tests which tests a

software application for measuring its capability to scale up – be it the user

load supported, the number of transactions, the data volume, etc. It is conducted

by the performance engineer.

• Performance Testing: Functional testing conducted to evaluate the compliance

of a system or component with specified performance requirements. It is usually

conducted by the performance engineer.

• Compatibility Testing: Testing technique that validates how well software per-

forms in a particular hardware/software/operating system/network environment.

It is performed by the testing teams.

• Operational Testing: Testing technique conducted to evaluate a system or com-

ponent in its operational environment. Usually it is performed by testing teams.

• Model-Based Testing: The application of model-based design for designing and

executing the necessary artifacts to perform software testing. It is usually

performed by testing teams.

• Acceptance Testing: Formal testing conducted to determine whether or not a

system satisfies its acceptance criteria and to enable the customer to determine

whether or not to accept the system. It is usually performed by the customer.

• Inter-systems Testing: Testing technique that focuses on testing the application

to ensure that interconnection between application functions correctly. It is

usually done by the testing teams.

Testing is an essential part of any complex system that combines hardware with

software and connectivity. The test effort becomes harder with an increase of the

system complexity and with the number of variations that can be out in the field.
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Particularly if distributed connected systems reconfigure themselves in runtime,

this poses challenges. For example, in identifying the proper key performance

indicators (KPI) and collecting the respective critical to quality (CTQ) variables

that carry the information which will allow the system to perform according to

specification.

Following the approach from IEC62861, the work to create a so-called guide to

principal component reliability testing for LED light sources and LED luminaires

(see also Chap. 1 and [6]), new components have to be added that cover the

complexity of the connected lighting system. Figure 22.3 schematically shows the

added components, controls, software, and connectivity (including sensors). Test-

ing and validation on the highest possible system level is based on the demonstrated

behavior of its components. Note that also software should be seen as a component

and release as such.

22.5 Software Reliability

There are many differences between the reliability and testing concepts and tech-

niques of hardware and software. Software reliability or robustness is the probabil-

ity of failure-free software operation for a specified period of time and environment

Fig. 22.3 Adding to the complexity in lighting systems: controls, software, sensors, and

connectivity
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[7]. In this sense, software failures are considered a primary cause of product

reliability problems, and hence a reasonable KPI for testing the software reliability

is the number of software failures left in the system [8].

A software failure mode and effect analysis (FMEA) can determine the software

failure modes that are likely to cause failure events [9–11]. It determines what

single or multiple point failures could produce these top-level events. Software

FMEAs are useful when designing or testing the error handling part of your

software. Software FMEAs are also needed in order to develop inspection criteria

for requirements, design, and code that are geared toward the appropriate failure

modes. Design reviews are more effective when you know in advance the types of

failure modes that are most likely.

Unlike hardware failures, software systems do not degrade over time, unless

modified and software failures are not caused by faulty components, wear-out, or

physical environment stresses such as temperature and vibration [7]. Software

failures are caused by latent software defects that were introduced into the software

as it was being developed but were not detected and removed before the software

was released to customers. The best approach to achieving higher software reli-

ability is to reduce the likelihood that latent defects are in released software.

Unfortunately, even with the most highly skilled software engineers following

industry best practices, the introduction of software defects is inevitable due to

the inherent complexities of the software functionality and its execution

environment.

A comparison of software and hardware reliability is useful in developing

software reliability models. Table 22.2 (input used from [8]) shows the differences

and similarities between the two.

Software reliability growth models (SRGM) are mathematical functions that

describe fault detection and removal phenomenon [7, 8]. Some realistic issues such

as imperfect debugging and learning phenomenon of software developers are

incorporated in software reliability assessment. Among all SRGMs, a large class

of stochastic reliability models is based on a nonhomogeneous Poisson process.

These models are known as NHPP reliability models and have been widely used to

track reliability improvement during software testing. Another popular class is the

class of general order statistics, or GOS models. Goel-Okumoto is the most well-

known NHPP model. Due to the important role that this model has played on the

software reliability modeling history, it is often called “the” NHPP model. The

mean value function is given by below formula:

m tð Þ ¼ a 1� e�bt
� � ð22:2Þ

for all t � 0, where a > 0 and b > 0. The parameter a is the expected number of

failures to be eventually detected while b is the rate at which each individual failure

will be detected during testing. Following the sequence of software testing and
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faults found, one can derive the maturity growth of the software by following this

approach; Fig. 22.4 see for an example.

22.6 Reliability and Data Analytics

Traditional lighting is shifting toward connected lighting, and as a result companies

are also enabled to shift more toward an information-based environment [12]. The

use of information from connected sources can be described as a revolution named

big data. With big data, data analytics from live connections of “intelligent”

systems can be used to determine the system prognostics. Due to these changes in

technology, the next generation of product data will be much richer in information

[13, 14]. Reliability and availability will become enablers for product designs. Big

Table 22.2 Comparison between hardware and software reliability

Hardware Software

Hardware failures are induced by component

wear-out or stress invoked by thermal cycling,

surges, ESD etc.

Software failures are not introduced by wear-

out or stress. Software failures may be due to

errors, ambiguities, oversights, or misinter-

pretation of the specification that the software

is supposed to satisfy, carelessness or incom-

petence in writing code, inadequate testing,

incorrect or unexpected usage of the software,

or other unforeseen problems

Early failures Software reliability is not a function of time

Constant failure rate (FIT) No wear-out

End-of-life failures Software will not change in time

Environmental conditions can be specified

(indoor/outdoor, global area)

Errors will be induced by environments or

contexts unforeseen in the design

Failure rate has a bathtub curve Without considering program evolution, fail-

ure rate is statistically nonincreasing

Material deterioration can cause failures even

though the system is not used

Failures never occur if the software is not used

Failures are caused by material deterioration,

random failures, design errors, misuse, and

environment

Failures are caused by incorrect logic, incor-

rect statements, or incorrect input data. This is

similar to design errors of a complex hardware

system

Hardware reliability can be improved by better

design, better material, applying redundancy,

and accelerated life testing

Software reliability can be improved by

increasing the testing effort and by correcting

detected faults

Hardware repairs restore the original condition Software repairs establish a new piece of

software

Hardware failures are usually preceded by

warnings

Software failures are rarely preceded by

warnings

Hardware might fail due to unforeseen appli-

cation conditions

Software might (also) fail due to unforeseen

application conditions

592 D. Schenkelaars et al.



data will bring detailed understanding of failure mechanisms, usage scenarios,

technology, and optimal designs. For example, products can be outfitted with

sensors that can be used to capture information about how and when and under

what environmental and operating conditions products are being used. But the data

can also be used for pure reliability analysis. Examples are signal-detection algo-

rithms to detect unsafe operating conditions or precursors to system failure that can

be used to protect a system by shutting it down or by reducing load to safe levels.

And on top of this, there can be a need to predict the remaining life of the system

(or the remaining life of its most important life-limiting components). This topic is

named as prognostics and health monitoring (PHM). PHM refers to the process of

predicting the future reliability or determining the remaining useful lifetime of a

product by assessing the extent of deviation or degradation of a product from its

expected normal operating conditions [15]. Today, we predict failure rates on

system level following classical reliability approaches, where standardized testing

and experimental failure analysis are used in order to obtain conservative bounds

from the failure models. However, except in the case of reliability “incidents,” there

is only limited feedback with which we can judge the effectiveness of our reliability

approach. Prognostics and monitoring is not just about creating a more reliable

product: it is about creating a more predictable product based on real-world usage

conditions. Data analytics is a necessary part of this but, in itself, is not sufficient. In

order to add value, product insights need to be leveraged into the technologies that

are used in order to differentiate from others. Prognostics and monitoring is not

about troubleshooting reliability issues; rather, it is a new control point enabled by

the transition to a lighting services business. It is the combination of data and deep

physical (and technological) insight that will give a unique “right to win” in the

Fig. 22.4 Example of a maturity growth analysis for assessing the software reliability
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lighting industry. The future possibilities for using big connected data in reliability

applications are unbounded. Lifetime models that are based on this data have the

potential to explain much more variability in field data than has been possible

before.

22.7 Final Remarks

The discussion and thinking so far in the lighting industry is focused on hardware

failures. But controlled and/or connected lighting systems contain much more

components; they encompass a level of complexity that goes beyond the traditional

hardware thinking. Processing, monitoring, and communication functions are

added with software playing an increasingly important role. Correspondingly,

system reliability and availability will be increasingly dependent on the reliability

of software. On top of this, the requirement of prognostics and health management

is inevitable to be able to maintain and service the connected complex systems in

the most effective way possible.
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