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Preface 
This thesis report ‘Tender Price Predictor: Predicting Tender Prices of Dutch Infrastructure Projects with 

Machine Learning’ has been written as the final component of the MSc. ‘Construction Management and 
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the right people for my research. Also, I would like to thank everyone that contributed to the research, 

both interviewees and colleagues from the risk management department.  

Secondly, I would like to thank my supervisors of the Delft University of Technology for their input and 

the monitoring of my research process. The support and feedback from Marian Bosch-Rekveldt during 

the bi-monthly meetings have been valuable and highly appreciated. Furthermore, I would like to thank 

Jeroen Delfos for sharing his knowledge on the topic of Machine Learning and contributing to the 

development of my model. His help on my graduation research went beyond the expected input of a 

second supervisor. Also, I would like to thank Hans Bakker for his insights, feedback and for the 

supervision of my progress meetings. 

Finally, I would like to thank my dear friends, family and roommates for the necessary distractions and 

support. Thank you for a listening ear when I had to complain when things were not going as planned, 

and for joining my celebrations when the model started working.  

Bent Schleipfenbauer  
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Executive Summary 
The Dutch public procurement market is a multi-billion industry, with a total value of 73 billion euros per 

year. Competitive tendering is the most popular method of selecting a supplier for the required 

construction services. The realisation of a tender bid is an expensive and complex process, established on 

the intersection of various disciplines e.g. safety, constructability, finance, cost estimation and risk 

management.  

Machine Learning has been a popular method in various industries to predict future outcomes and 

uncover patterns in historical data but remains a rather novel phenomenon in the construction industry. 

Machine Learning models have been developed in the past to aid tender management, but not with a 

focus on predicting the contractor’s tender price.  

The objective of this research is to develop a Machine Learning tool that is able to predict the tender price 

of infrastructure projects accurately and is able to assist the contractor’s tender professionals in their 

decision to tender. In order to achieve this objective, the following research question was formulated: 

How can a Machine Learning algorithm, predicting the tender’s price using tender project data, 

be developed to support the contractor’s decision to tender? 

The research framework, developed to answer the main research question, is based on the design 

methodology for new engineering systems (Roozenburg and Eekels 1995). First, a literature study is 

conducted to explore the state-of-the-art developments of Machine Learning within construction tender 

management, discover what the most popular regression algorithms are and what the most important 

tender features are that influence the tender price. 

Based on the most important tender features and interviews with tender professionals of a Dutch 

contractor, an extensive list of 93 tender features is filtered until a final set of tender features remains. 

Data on these tender features are collected in order to be used as input for the Machine Learning model. 

After cleaning the raw dataset and applying outlier detection, only 222 tenders could be used as input for 

the ML model. This is less than 10% of the initial raw dataset, mainly caused by improbable estimations, 

no documented tender prices in the database or no initial start/end dates provided. 

 

Causes Dropped Tenders, Source: Own Image 

After obtaining and cleaning the tender dataset, three regression algorithms are developed with the 

purpose to predict the tender’s price using the selected features. The main criteria used to select the 

algorithms are ‘interpretability’ and ‘accuracy’. The models scoring best on these criteria are Linear 

Regression, Decision Tree Regression and Support Vector Regression. Linear Regression and DTR are 
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the easiest to interpret by deriving the feature coefficients, while SVRs tend to provide the highest 

accuracy while retaining the interpretability according to literature. 

The SVR model performed the best with an R-Squared of 0.846, implying that 84.6% of the variance of 

the tender’s price could be explained by the model. The SVR model includes an optimised set of features, 

which is a subset of the initial dataset. The initial estimate is considered to be significantly more important 

than the other features, as illustrated in the table below: 

Optimised Subset of Features 

Feature Name Feature Importance 

Estimate 0.866 

Sqrt_Duration 0.051 

Contract_RAW 0.053 

Procurement_Price-Only -0.088 
 

Comparing the model’s predictions to the actual tender price, a mean absolute percentage error (MAPE) 

of 23.5% is obtained which is equivalent to an accuracy of 76.5%. This value is marginally lower than the 

MAPE of the experts’ estimations, which obtain a MAPE of 23.3 %. This appears to be caused by an 

incorrectly categorised datapoint. Modifying this datapoint improves the model’s MAPE from 23.5 % to 

22.0 %. Although the absolute mean deviation of the model’s predictions is larger than the experts’ 

estimations, the majority of the model’s predictions are more accurate than the expert’s estimations 

(53,6% vs 46,4%). Also, the average absolute price deviation in € of the model is lower than the experts’ 

estimations (125.581 € vs 141.964 €).  

During the validation interview, interviewees agreed that contractors may benefit from the Tender Price 

Predictor when it is possible to achieve predictions with a maximum error of 10% - 30 % of the winning 

tender price. The use-case of the Tender Price Predictor may be improved when project-specific or 

industry-specific characteristics would be used in order to meet the demands of more specialised 

industries within BAM. Also, the EMVI-component and complexity feature could be improved upon by 

including more quality-plan components and replacing the tender category feature with more specific 

complexity variables. 

In order to implement the Tender Price Predictor in the organization of a Dutch contractor, attention 

should be paid to the required effort of the users and to ensuring a high quality of tender data. Requiring 

too much effort from tender managers entering the input data into the database may result in worse 

quality of data. Both the users of the model and the managers submitting tender data should be trained 

accordingly in order to obtain maximum effectiveness. 

It should be noted that some important features, according to practice and literature, are omitted from the 

final dataset. Although the final set of features complies with the requirements of generic features and 

sufficient occurrences in either literature or the interviews, they were not present in the database of the 

contractor. These omitted features are: ‘Project team experience’ and ‘Location’.  

Invalid data and outlier detection resulted in a significant decrease (± -90%) of the useable dataset size. As 

a result, the ML models have used data on relative small-sized tenders due to large tenders not being 

represented in the dataset. In order to incorporate large tenders in the model’s predictions, either missing 

data should be restored accordingly or larger tenders should be divided into smaller modules. Invalid data 

could have been checked manually by analysing project documents or by interviewing the responsible 

tender managers, but this has not been attempted due to time constraints. 
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1. Introduction 
This chapter provides an introduction to the graduation research’s topic. This graduation research is 

conducted in order to complete the MSc ‘Construction Management & Engineering’ programme at the 

Delft University of Engineering. The function of the introduction is to familiarise the reader with the 

topic of the graduate’s research, its objective and the relevance of the thesis. 

1.1. Background Information 
This section provides background information regarding tenders within the Dutch construction industry 

and the potential role of AI within tender management. 

1.1.1 Forms of Procurement 

Directive 2014/24/EU of the European Parliament on public procurement defines ‘Procurement’ as 
follows: “(Procurement) is the acquisition by means of a public contract of works, supplies or services by 
one or more contracting authorities from economic operators chosen by those contracting authorities, 
whether or not the works, supplies or services intended for a purpose.” Procurement involves the 
organizational process of acquiring works, supplies or services between the contracting or client party and 
the supplier or contractor (Kerzner, 2003). The shape of the procurement process itself, the decision of 
executing project works internally or externally, depends on the make-or-buy analysis of the works, 
supplies, services or deliverables (Nicholas & Steyn, 2017). More detailed information on ‘European 
Procurement Directives’ and Dutch procurement law can be found in Appendices A&B. 

The Dutch public procurement market is a multi-billion industry, with a total value of 73 billion € per year 

(Ministry of Economic Affairs and Climate Policy 2018). Clients, such as the Dutch government, have 

four ways to procure construction services (Winch 2020a): procure in-house, appoint a service supplier, 

launch a concours or issue an invitation for a competitive tender. Competitive tendering is the most 

popular method of selecting a supplier for the required construction services (Winch 2020a). In total, 

more than 80% of construction projects in the Netherlands are tendered competitively (Van de Rijt, 

Hompes, and Santema 2010). 

The exact contents of competitive tendering activities depend on the project’s aspects and the 

circumstances of the project (Agerberg 2012). One of the disadvantages of competitive tendering in the 

construction industry is the high tendering costs, estimated at 10% of the turnover (Winch 2020a). 

Insufficient time for the cost estimation process, poor analysis of cost data and lack of data processing 

techniques are among the most common causes of inaccurate tender cost estimating (Akintoye and 

Fitzgerald 2000). Depending on the contract’s agreements between client and contractor and the nature of 

the incremental costs, either party may be accounted for the overrun resulting in smaller profit margins. 

1.1.2 Cost Estimating within the Construction Industry 
Project cost is one of the three important drivers of project success and together with time and quality 

forms the so-called ‘Iron Triangle’ of Project Management (Atkinson 1999; Pollack, Helm, and Adler 

2018). The performance of a project on these success criteria denotes the degree of success or failure of a 

construction project. According to Flyvbjerg et al., 90% of all infrastructure projects exceed their budgets 

with an average overrun between 20-45%, depending on the purpose of the infrastructure (Flyvbjerg, 

Skamris, and Buhl 2004). Cost overruns may be caused by poor project descriptions or lack of scope, 

resulting in increasing costs eventually exceeding the initial budget (Nicholas & Steyn, 2017, p.282).  

A contractor benefits from accurate tender estimating. If the contractor’s tender team underestimates the 

tender’s costs, the organization wins the tender but will end up with red figures due to higher actual costs 

than initially estimated. If the contractor’s tender team would overestimate the tender’s price, the 

organization would end up losing the tender indefinitely. An overview of the composition of a tender’s 

estimated costs is given in figure 1.  
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Figure 1 Tender Price Composition, Source: (Hashemi, Ebadati, and Kaur 2020) 

Tender price estimating is an extensive process that could take up various months, with entire tender 

teams devoted to the tender process in order to acquire the project. Not winning the tender would result 

in losing potential turnover in the form of the contract’s value and losing the investment in the tender 

team. After the contractor has considered aspects like project risk, tender costs, potential competitors, 

experience with both winning the tender as the construction of the project, a decision-to-bid is made 

(Brook 2008).  

Cost estimating is defined by the PMBoK as the “process of developing an approximation of the cost of 

resources needed to complete project work” (“PMBOK 6th Edition,” 2017, p.206). These estimations are 

made to determine what the budget is for a project and can be used to measure the actual performance of 

a project by comparing the actual costs to the estimated costs (Nicholas & Steyn, 2017, p.282). Traditional 

cost estimations are made by calculations of cost engineers, either by analogous estimating or parametric 

estimating. Analogous estimating is the process of projecting a future project’s costs by direct comparison 

to similar projects (“PMBOK 6th Edition,” 2017, Ch. 7.2.2.2). Parametric estimates are based on 

mathematical relationships between projects’ parameters (Nicholas & Steyn, 2017). Mathematical 

relationships are derived from multivariate regression methods or extensive data analyses. 

1.1.3 Machine Learning and Opportunities for Tender Management 
With the large technological advances of the past decades, forms of AI are blossoming in countless 

disciplines within the scientific field and in business practices. For example, applications of Machine 

Learning can be found in many different scientific domains including bioinformatics, computer science, 

statistics, surveillance, speech recognition and as tool in many data-intensive disciplines like finance and 

astronomy (Baştanlar and Özuysal 2014; Emerson et al. 2019; Mitchell 1997; 2006). Seemingly, the 

construction industry lags behind these industries with a lack of data-driven Machine Learning 

developments (Gondia et al. 2020; Hussain et al. 2018).  

The foundation of ML and AI in general originates from the late fifties and early sixties of the previous 

century. Frank Rosenblatt programmed a machine that recognised the different letters of the alphabet 

(Fradkov 2020). Rosenblatt’s aim was to mimic the human brain or human intelligence perceptron. The 

work of Rosenblatt initiated the global boom of AI development by inspiring scientists, professionals and 

computer enthusiasts to develop their own imitations of human intelligence (Haykin 2009).  

ML algorithms are a form of AI which uses ‘simulated experiences’ to make predictions based on 

historical data. The objective of ML is defined as the following: 

“A computer program is said to learn from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, improves with experience 

E.”(Mitchell 1997). 
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Given this underlying relationship, ML is defined as a subset of AI (figure 2). 

 

Figure 2 Relationship AI and Machine Learning, Source: (Singh, 2018) 

Within ML, three main types of learning can be distinguished: ‘Unsupervised Learning’, ‘Reinforcement 

Learning’ and ‘Supervised Learning’. The purpose of unsupervised learning is to find structure and 

relationships behind data classes without knowing the context of the data entries (Jain, Murty, and Flynn 

1999), while reinforcement Learning does not concern the unravelling of structures within data but 

concerns maximisation of an agent’s rewards by means of trial and error (Sutton and Barto 2014). These 

types of ML do not fit the problem of tender price estimating as well as supervised learning does. This 

research focuses on the application of supervised learning, namely regression analysis. Regression analyses 

are used for numerical, labelled outputs (Metwalli 2020) such as the tender’s price. 

The objective of supervised learning is to analyse data in order to simulate relationships and dependencies 

between input features and output variables (Fumo 2017). Supervised learning is characterised by the 

labelling of data entries which are categorized in advance by knowledgeable human experts, therefore the 

adjective ‘Supervised’. 

Supervised Learning algorithms can be used to solve two types of problems: regression problems or 

classification problems. Regression problems may be solved to predict real-valued outcomes based on 

underlying interrelationships. Classification problems relate to the prediction of a discrete output based on 

a collection of input data. 

Historical data on previous construction projects may be of use to predict the tender’s price to gain an 

edge in the market. Traditionally, data is used implicitly in the form of an expert’s experience, but this may 

also be employed by ML algorithms to support the contractor in their decision-to-bid based on previous 

performances on tenders. 

1.2. Research Gap 
Several studies noticed that the construction industry lags behind, compared to other scientific and 

business disciplines, with respect to the development of AI or ML (Seidu et al. 2020; Gondia et al. 2020; 

Hussain et al. 2018). However, some models have been developed to aid cost estimating within the 

construction industry. 

ML models have been developed in the past to predict prices within the construction industry but with a 

different focus. For example, ML models have been designed with the objective to aid either the client by 

evaluating submitted bids (Zhang, Luo, and He 2015) or to support subcontracted engineering consultants 

to provide the client with a quotation (Matel et al. 2019). Using respectively regression analysis and ANNs, 
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bids were predicted for the corresponding parties. The contractor’s perspective has not been represented 

in these studies.  

Some predictive models have been designed for contractors in the infrastructure construction industry, 

but these do not focus on the tender’s price. The model designed by Kultin and his co-authors attempted 

to predict the winning probability of the contractor (Kultin, Kultin, and Bauer 2021). The ANN model 

designed by Elhag and Boussabaine aim to predict the lowest price i.e. winning tender price (Elhag and 

Boussabaine 1998). The model, however, does not focus on the infrastructure industry but focuses on the 

building of schools.  

It can be concluded from state-of-the-art developments that ML models have been applied in case studies 

with success. It remains unknown how effective similar models are in predicting tender prices of 

infrastructure projects and how these could be implemented in the contractor’s tender business. 

1.3. Problem Statement 
The realisation of a tender bid is an expensive and complex process, established on the intersection of 

various disciplines e.g. safety, constructability, finance, cost estimation and risk management. While ML 

has been a hot topic within science and engineering during the 21st century, it remains a rather novel 

phenomenon in the construction- and quantity surveying industries (Seidu et al. 2020; Gondia et al. 2020; 

Hussain et al. 2018).  

The tender characteristics that can be collected are endless. This is a result of the multidisciplinary 

character, size and complexity of construction projects. What the most influential variables are that 

determine the tender’s price is unclear.  

Machine Learning remains a relatively unknown topic within the contractor’s tender industry 

while its application may potentially improve the contractor’s decision-making regarding tender 

bids. 

1.4. Research Objective 
To develop a Machine Learning tool that is able to predict the tender price of infrastructure projects 

accurately and is able to assist the contractor’s tender professionals in their decision to tender. 

1.5. Research Question 
How can a Machine Learning algorithm, predicting the tender’s price using tender project data, be 

developed to support the contractor’s decision to tender? 

Subquestions (SQ) 
1) What tender price features influence the tender’s price? 

2) What Machine Learning algorithms are most suitable, taking into account the available data of the 

contractor? 

3) How accurate are tender price predictions by applying Machine Learning algorithms using 

historical project data? 

4) How can the Tender Price Predictor effectively be used within Dutch tender practices? 
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1.6. Research Scope 
The following sections will explain the scope of this research by introducing the graduation company and 

its previous attempt of applying ML within tender management. 

1.6.1. Graduation Company: Dutch Contractor 

The graduation thesis is written in collaboration with the ‘risk management’-department of a Dutch 

contractor. The contractor, one of the largest European contracting firms active in construction and civil 

engineering with operations across the world, facilitates knowledge and data in order to design and train 

the Tender Price Predictor. 

1.6.2. Implementation Phase ML Model  

Three main steps exist within competitive tendering: preparation of documents, the start of the tender 

phase and the execution of works or services. The tender phase itself can be divided into parts as well, and 

differ from contractor to contractor. The contractor has divided its tender procedure into the following 

so-called ‘Stage Gates’, illustrated in figure 3. Each stage-gate has its own specific activities and documents 

which are required to submit according to internal policies. 

 

Figure 3 Tender Phasing Contractor, Source: BAM Infra 

The ML model is designed to support the contractor in its decision to tender. Early implementation can 

prevent the waste of money as a result of bid preparation on tenders that the contractor has not 

performed well on historically. If the contractor does not decide to make a bid, corresponding tender 

costs and design costs are saved. The view on this choice of this implementation phase is shared by 

employees of the Dutch contractor during informal meetings. 

After deciding whether to tender or not, much more time and costs are invested by the company and its 

employees to win the tender. Depending on the size and complexity of the tender this may take multiple 

months of exploring the risks and opportunities, costs, bills of quantities and planning.  

1.6.3. Initial Attempt Tender Price Predictor Contractor 
The research contributes to contractor’s practices by the development of the Tender Price Predictor. 

Tender data is used in order to train the algorithm, with the aim to assist the contractor’s tender 

professionals in their decision-making processes.  

In 2019, an ML model was designed by the contractor to make predictions of the tender’s price, 

discounted tender prices and EMVI-scores for tenders larger than 30.000.000 €. The feature used to make 

these predictions were solely based on the ceiling price as set by the client. Data on 27 tenders were used 

as input for the model.  

The initial attempt by the contractor is used as inspiration for this research topic. The focus of this study 

is to expand the number of features used, beyond the ceiling price, increase the dataset and create an ML 

model that can be used as a tool by tender professionals themselves to make predictions of the tender’s 

price. 
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1.7. Research Relevance 
ML algorithm-based tender price predictors by means of multivariate regression or classification are not 

new. Various studies have attempted to predict prices within (construction) procurement by means of ML 

(Zhang, Luo, and He 2015; Kultin, Kultin, and Bauer 2021; Matel et al. 2019; Wang, Yu, and Chan 2012; 

Stiti and Yape 2019).  

Where some authors focus on the probability of winning the tender (Wang, Yu, and Chan 2012; Kultin, 

Kultin, and Bauer 2021) or the forecasting of tender bids or construction prices (Stiti and Yape 2019; 

Matel et al. 2019; Zhang, Luo, and He 2015), this study differentiates itself from the latter by focusing on 

infrastructure contractor’s perspective of predicting tender prices. 

1.8. Reading Guide 
Chapter 2 presents the methodology of the research study. 

Chapter 3 provides the literature study of this research. The purpose of the literature study is to become 

more familiar with relevant topics. 

Chapter 4 contains the selection process of tender features for the ML models’ input. The most important 

tender features are identified through literature studies and interviews with tender professionals. 

Subquestions 1 is answered in this chapter. 

Chapter 5 explores the preprocessing phase of the data and the steps that are undertaken in order to clean 

the raw data. Based on the literature study of Chapter 3 and the available tender data, three algorithms are 

selected as potential Tender Price Predictor candidates. Subquestion 2 is answered in this chapter. 

Chapter 6 revolves around the development of the Tender Price Predictor. An overview of the separate 

development steps is provided. Furthermore, the performance of the ML algorithms is compared to select 

the optimal Tender Price Predictor. Subquestion 3 is answered in this chapter. 

Chapter 7 includes the evaluation of the designed Tender Price Predictor by means of interviews with 

tender professionals. The purpose of this chapter is to evaluate the potential impact of the Tender Price 

Predictor, and investigate how useful such an ML model may be in Dutch Tender Practice. Subquestion 4 

is answered in this chapter 

Chapter 8 consists of the discussion and limitations. 

Chapter 9 contains the conclusion and recommendations of the research. The research question is 

answered in this chapter. 
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2. Research Methodology 
The research design aims to answer the main research question by modularly breaking it down into 

smaller parts. The research methodology is based on the development method for new engineering 

systems of Roozenburg and Eekels (Roozenburg and Eekels 1995). The methodology is presented in 

figure 4 and elaborated below. 

 

 

Figure 4 Research Methodology ‘Tender Price Predictor ', Source: Own Image 
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2.1. Step 1: Preliminary Analysis 
The preliminary analysis consists of a background study on both the problem and on tender price 

influencing features. The objective of this analysis is to improve the understanding of what the 

engineering system, the Tender Price Predictor, is designed for. A combination of literature study and 

expert interviews is conducted to collect data on the most important tender features and to better 

understand their influences on the tender price. 

Semi-structured interviews are conducted to benefit from the advantages of both unstructured as 

structured interviews. According to the study of Alsaawi (2016), semi-structured interviews are most 

suitable for interviews where the researcher already has an overview of the to-be-discussed subjects but 

where the depth of the interview is not restricted by the format as the interviewees can extend the scope 

of the topic (Alsaawi, 2016, p.151). This approach is fitting, given that the interviews are a follow-up of 

the literature study on the tender features. 

The intended result of the preliminary analysis is an ordered overview of the most important tender 

features according to both literature and practice. The purpose of the collected tender price features is a 

proposal of the ideal variables to use as input for the ML model.  

2.2. Step 2: Needs Analysis 
An exploration of needs is conducted to explore the exact needs of the potential users, the tender 

professionals. Needs analyses are used to investigate if an operational need exists, and whether the 

conceptualised engineering system fulfils this gap (Kossiakoff et al., 2011, p.139). 

The needs are based on the findings in the first round of semi-structured interviews. The intended result 

of the needs analysis is an overview of the needs of the user. With the needs of the user clear, it is possible 

to construct the requirements of the ML model. 

2.3. Step 3: Definition of Requirements of the ML Model  
The needs analysis makes it possible to define the requirements of the ML model. The requirements of 

the ML model have the purpose transform the needs into tangible criteria of the model’s performance. 

2.4. Step 4: Choice of ML Model 
In order to select the most appropriate ML model, an analysis of the strengths and weaknesses of popular 

regression techniques is conducted. The most suitable ML algorithms, based on the strengths and 

weaknesses, requirements and the type of data available are developed into Tender Price Predictors. 

2.5. Step 5: Development Process of the ML Model 
It is possible to start the development process of the ML model with the set of most suitable algorithms 

determined and the tender data collected. The development of an ML model is an extensive, iterative 

process with various loops between the development of the model and the dataset. The performances of 

the ML models are evaluated to determine which model is most suitable for the prediction of tender 

prices. 

The model will be programmed using Python, based on prior knowledge and coding documentation 

found online. Within the SciKit-Learn, a popular library of Python containing various state-of-the-art 

learning models, it is possible to compare the performance of separate ML algorithms rather quick and 

easy with much less code required compared to non-dedicated libraries (Brownlee 2020a) (Pedregosa et al. 

2011). 

2.6. Step 6: Verification Process 
With the ML model designed, it is checked whether the previously set requirements of the model have 

been met. The model’s design should be modified accordingly if the output of the model does not meet 
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the requirements which initiate a new loop until all requirements are satisfied, or this cannot be 

accomplished at all. 

2.7. Step 7: Validation Process 
The validation process is the final component of the Tender Price Predictor design. In the validation 

process, the model’s performance and functioning are validated by means of a set of interviews with 

Dutch tender professionals. The interviews are conducted to check if the Tender Price Predictor model 

could fit in construction tender management practices and whether tender managers would use such 

algorithmic tools. The purpose of the second round of interviews is to investigate how usable the Tender 

Price Predictor is in practice. 
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3. Literature Review 
The purpose of this chapter is to improve the understanding of subjects relevant to the development of 

the Tender Price Predictor. The following subjects are studied in the literature review: 

• Section 3.1 explains the competitive tendering procedures in the Netherlands. 

• Section 3.2 introduces the most tender price influencing features, according to literature. 

• Section 3.3 explores the state-of-the-art ML applications within Tender Management. 

• Section 3.4 introduces the most popular regression techniques, the math behind the algorithms 

and how these interact with the data.  

• Section 3.5 provides the conclusion. 

Section 3.2 and 3.3 have another purpose besides familiarizing with tender price features. The literature 

study on tender price features is used together with the interview results of section 4.2 to identify which 

features to use in the ML model.  

3.1. Competitive Tendering in the Netherlands 
Within competitive tendering, the client party issues a description with selection criteria and requirements 

and the contracting party is selected on basis of their submitted description of the to-be-constructed 

works, supplies or goods (Winch 2020b). The tender proposal describes the project plan of what is to be 

done during the project’s contract timespan e.g. what works and activities are executed, planning of the 

described activities, an estimation of the costs and a risk management plan (Nicholas & Steyn, 2017, p. 

132). Competitive tendering is characterised by its transparent selection criteria and open market 

competition and therefore stimulating production efficiency (Winch 2020b). Different national and 

European procurement procedures are possible for the contracting authority to follow.  

Contracting authorities should take into account the following aspects for every contract in order to 

decide on which procurement procedure to follow (Chao-Duivis 2019): 

1. Size of contract 

2. Transaction costs for contracting authority and tenderers 

3. Number of potential tenderers 

4. Desired result 

5. The complexity of the contract 

6. Type of contract 

Public procurement by means of competitive tendering consists of three steps. The first step is the 

preparation of the assignment of works or services (PIANOO 2021a). During this part of the 

procurement process, the client determines what its desires are, what European and national rules apply 

and draws up the description of to-be-delivered works or services.  

The second step entails the start of the tender phase. The tender phase commences when the contracting 

authority announces the tender to the market and potential tenderers sign-up for the tender (PIANOO 

2021b). The credentials and references of the tenderers are checked to verify whether the candidates 

satisfy the suitability requirements.  

The final step of the public procurement process is the execution of the works or the delivery of services 

as described in the contract (PIANOO 2021c). The contractor and contracting authority both comply 

with the agreements made in the contract. The contracting party or client provides details on the works 

and location, the form of contract and specific requirements on the works and services to be executed by 

the potential tenderers (Brook, 2008, p.51).  
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Specification of the award criteria should be provided to the potential tenderers together with the tender 

details. The winner of the tender is the bid that scores best according to the award criteria. The tender 

winner selection procedure is illustrated in figure 5 on the next page (Dreschler 2009).  

 

Figure 5 Tender Award Mechanism, Source: (Dreschler, 2009) 

Three award mechanisms are commonly accepted within the Netherlands, all following the procurement 

principles (Overheid.nl, n.d., Article 2.114): 

1. Best Price-Quality Ratio 

2. Lowest Costs Based on Cost-Effectiveness 

3. Lowest Price 

Best Price-Quality Ratio is better known in the Netherlands as ‘Economisch Meest Voordelige 

Inschrijving’ or EMVI. The EMVI method is the most common procurement procedure for large tenders 

such as infrastructure projects (Overheid.nl 2012). Both the quality and the price of the tender play a role 

in EMVI in order to select the winning bid. Potential tenderers may achieve ‘fictional discounts’ when the 

description of works perform well on criteria like Sustainability, Nuisance and many more. The fictional 

discount for the specific tender component may be larger than the added costs of the component, 

resulting in a smaller ‘final’ tender price.  

3.2. Tender Price Features in Construction Tender Estimating 
This section is devoted to the literature study of exploring what tender price estimating features are the 

most influential in construction tender estimating according to the classical price estimating industry.  

Odusami & Onukwubu devoted their study to the accuracy of cost estimates (compared to the lowest 

acceptable tender of the tender competition) in Nigeria, and what factors are most influential (Odusami 

and Onukwube 2008). The authors distinguish responses on the respective years of experience of the 

responders on their 6-page questionnaire (n=50), dividing the respondents into groups of ‘less 

experienced’, ‘moderately experienced’ and ‘most experienced’ respondents 

Elhag et al. (2005) identified 67 features, grouped into six different categories, that play a role in building 

cost models of both quantity surveyors as contractors (Elhag, Boussabaine, and Ballal 2005). The features 

have been collected by means of a survey study across the quantity surveying discipline in the United 

Kingdom, with the surveyors ranking the separate features in order of importance. These features were 

divided into six different categories: Client characteristics, Consultant/design parameters, Contractor 

attributes, Project characteristics, Contract procedure/procurement method and Market conditions. 

Akintoye (1999) conducted an empirical study on cost estimating influencing factors of construction 

contractors in the United Kingdom (A. S. Akintoye 1999). The author identified the 23 most influential 

factors among a large number of influencing factors by means of a survey sent to small, medium and large 

contractors based on annual turnover. 

Elhag (2002) concluded that within its regression model a strong relationship exists between the tender’s 

price and the gross area, no specific relationship between tender price and the total duration (Elhag, 2002, 

p.267). Interestingly, when comparing multiple estimation models, both regression analyses and ANNs, 
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Elhag discovered that models using two cost factors (duration and gross floor area) are more accurate 

than models utilising 13 cost factors (Elhag, 2002, p.269-270).  

Combining the results of the tender price feature study results in an extensive list of 77 different features. 

An overview of these features can be found in Appendix E.1.  

3.3. ML within Tender Management 
This section is devoted to the literature study of exploring which ML algorithms have been applied in 

construction tender management in the past. The used input features by the authors are presented in 

Appendix E.2. 

Zhang et al. (2015) used ML algorithms to evaluate construction element pricings during the bid 

submission (Zhang, Luo, and He 2015). The result is a pricing range for the construction items discussed 

in the conducted system analysis. The authors identified features like excavation depth, shape, hydrological 

conditions, soil conditions and surrounding environment as important project features. The reasoning for 

the particular set of project data is not provided. 

Elhag and Boussabaine (1998) produced two ANN construction cost estimation models which are 

designed to predict the lowest tender price of schools (Elhag and Boussabaine 1998). Model II uses 13 

selected cost determinant factors whereas model I only applies 4 input features: type of building, gross 

floor area, number of stories and project duration. The features used are numerical or categorized features. 

Model I and model II had corresponding accuracies of 79.3% and 82.2%. The authors concluded that 

“The more significant factors contributed in developing an ANN model, the better the outcomes” (Elhag 

and Boussabaine 1998, p.226) In total 30 projects were used in the dataset.  

A recent study by Kultin et al. describes how a binary classification algorithm analyses the probability of 

successfully winning the tender for a construction project (Kultin, Kultin, and Bauer 2021). The authors 

compared the performance of two models, logistic regression and SVMs. SVMs are supervised learning 

algorithms that can be used to identify relations in large datasets and have a high generalization ability 

(Cortes and Vapnik 1995). SVM algorithms classify data by determining which data points are the 

supporting vectors within the training data set, and form the hyperplane or distinction within the dataset 

to classify the different data classes (Cheng and Wu 2009).  

The algorithms designed by Kultin et al. assign a binary value to each project, either “prospective” (1) or 

“unpromising” (0), based on the project’s performance on corresponding Tender features (Kultin, Kultin, 

and Bauer 2021). A set of 11 attributes is used to assess the probability of winning the tender. Examples 

are ‘Type of Work’, ‘Preliminary budget’ and ‘Number of Contracts Accepted by the Manager’. This case 

shows that ML algorithms can be used in complex cases like the estimation of tender prices, but a 

substantiation for the Tender features selection is not provided by the authors. 

An ML model was developed by Matel et al. to predict the total cost of engineering services provided by 

an engineering consultancy firm (Matel et al. 2019). Based on information collected during the tender 

phase, the authors discovered that the features that were thought to be most influential according to the 

expert panel differed from the outcome of the model. Although the provided rankings of the authors 

differ from the ranking of the model, the features collected through the interviews are not of lesser 

importance as a result. The most relevant tender features for cost estimating according to the model are: 

1) Intensity (average hours spend per week per project team member), 2) Number of project team 

members, 3) Project duration, 4) Collaboration disciplines, 5) Contract type, 6) Project phases and 7) scale 

of work. An ANN model was used to achieve the engineering services’ costs, with an average correlation 

coefficient of 0.99 between the inputs and the test set while achieving a MAPE of 13.65%. 

A model that estimates both the construction costs and the scheduling success was designed by Wang et 

al. using neural networks and SVM to compare the corresponding efficiencies (Wang, Yu, and Chan 
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2012). The SVM model was proven to be more accurate (92%) than its neural network counterpart (80%). 

The author collected data by scoring 92 construction projects for 64 separate elements on a 0-5 scale. 

3.4. Popular Regression Algorithms 
This section is devoted to the introduction of popular regression techniques in ML. A short description of 

the algorithm, its inner workings and its ideal properties are provided below. The purpose of this section 

is to become more familiar with popular regression algorithms used in ML.  

3.4.1. Linear Regression 
Linear regression is the most simple form of parametric regression and is widely used to predict 

continuous outputs, even in cases when the problem is non-linear (Bonaccorso 2017). Linear regression 

attempts to fit independent input variables X by means of a linear model. Within linear regression, it is 

assumed that a linear correlation exists between the independent variables X and the dependent variable 

Y. In the equation below, the predicted dependent variable ŷ depends on the linear combination of set X 

and the coefficient factors i . The equation for a linear model is shown in equation 5. 

0 0 1

1

ˆ ,{ , ,..., }
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i i i m

i

y x R     
=

= + +   
 
(1) 

By minimising the error of the equation, the ideal linear equation may be found which approximates the 

data the most (Pant 2019). It performs best when linear relationships exist between the various features 

(Elite Data Science 2019). 

 

 

Figure 6 Linear Regression in 2 dimensions, Source: (Bonaccorso, 2017, p.129) 

Advantages 

• Simple and easy to interpret, especially when visualised in two dimensions like in figure 3. 

• Coefficients of each feature may be acquired, providing insights into the sensitivities of the 

model. 

Disadvantages 

• Lacks the ability to make relationships of more complex problems or non-linear relationships 

(Elite Data Science 2021). Non-linear features should be re-engineered into linear features. 

• Input data should be independent, and the algorithm’s sensitivity to outliers (Flom 2018). 

3.4.2. Ridge Regression 
Ridge regression is a modified linear regression algorithm. The purpose of this algorithm is to normalize 

the weights of the features to prevent the overfitting of the model. As explained above, linear regression 
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aims to minimise the error or ‘cost function’ of the algorithm. The equation for the cost function can be 

found in equation 2 (Bhattacharyya 2018a). 

2
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ˆ( ) ( ( * ))
pm m

i i i j ij

i i j

y y y x
= = =

− = −    
 
(2) 

Ridge Regression adds an extra term to the cost function, an extra penalty, which decreases the value of 

coefficients αi or αj. The modified ‘ridge cost function’, which is to be minimized in ridge regression, is 

illustrated in equation 7. 
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Given that equation 3 is to be minimised and penalty term λ > 0, a linear equation with smaller 

coefficients is opted over equations with larger coefficients. This is called L1 regularization, the penalty 

function which characterizes Ridge Regression.  

For λ 
2 2 2

1 1 0 0 1 0

ˆ0 : ( ) ( ( * )) 0 ( ( * ))
p p pm m m

i i i j ij j i j ij

i i j j i j

y y y x y x  
= = = = = =

 − = − + = −       
 
(4) 

Advantages 

• Ridge regression can be used when many input features are used when the features are strongly 

correlated while preventing overfitting at the same time (Sneiderman 2020).  

Disadvantages 

• Increased bias. 

• Complex and harder to interpret than ordinary linear regression. 

• While linear regression tends to underfit data, polynomial regression has the tendency to overfit 

the data when the dimension of the regression line increases. This means that the equation has 

low bias, fitting the problem’s data well, but has high variance as the equation will only fit the 

current training set well. When data is implemented from outside the training set, for example, a 

new testing (data)set, it would most likely not lay on the overfitting equation. 

3.4.3. Lasso Regression 
The LASSO regression algorithm functions like ridge regression but uses a different penalty function. 

LASSO minimizes the absolute magnitude of coefficients instead of squaring them (Bhattacharyya 2018b). 

The cost function of LASSO regression can be found in equation 5. 
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The addition of this penalty statement is called L2 regularization. L2 differs from L1 in that some feature 

coefficients may converge to zero resulting in lesser important features being left out of the regression 

equation (Taunk 2020).  

Advantages 

• LASSO regression can be used when many input features are used when the features are strongly 

correlated while preventing overfitting at the same time (Sneiderman 2020).  

• LASSO’s specific main strength over Ridge regression is that LASSO is able to reduce the 

number of features (Elumalai 2019). 

Disadvantages 
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• Increased bias over linear regression. 

• Worse performance than Ridge regression. 

• While linear regression tends to underfit data, polynomial regression has the tendency to overfit 

the data when the dimension of the regression line increases. This means that the equation has a 

low bias, fitting the problem’s data well, but has high variance as the equation will only fit the 

current training set well. When data is implemented from outside the training set, for example a 

new testing (data)set, it would most likely not lay on the overfitting equation. 

3.4.4. Polynomial Regression 
Polynomial regression builds upon the same principle of multivariate linear regression, but the data points 

are fitted with a polynomial instead of fitting the data with a linear equation. Polynomial regression is 

preferred over linear regression when the data’s relationship with the dependent variable is too complex 

for a linear equation. An exemplary polynomial regression algorithm is provided in equation 6. 
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(6) 

The first three terms can be recognised from equation 4. The 4th term denotes the addition of polynomial 

functions to the linear combination while 
JPf denotes a polynomial function (Bonaccorso 2017). 

Polynomial regression may offer a solution in cases where linear regression underfits the data and 

therefore is unable to capture the different patterns of the data. More accurate fits can be made by adding 

polynomials to the equation, increasing the complexity of the model in the process. An example of a 

polynomial fit can be found in figure 7. 

 

Figure 7 Polynomial Regression Fit, Source: (Agarwal, 2018) 

Advantages 

• The strength of polynomial regression is that it can fit more complex data relationships better 

than its linear counterpart.  

Disadvantages 

• The downside is that polynomial regression is harder to understand and more time-consuming 

(Elite Data Science 2021). 

• While linear regression tends to underfit data, polynomial regression tends to overfit the data 

when the dimension of the regression line increases. This means that the equation has a low bias, 

fitting the problem’s data well, but has high variance as the equation will only fit the current 

training set well. When data is implemented from outside the training set, for example a new 

testing (data)set, it would most likely not lay on the overfitting equation. 
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3.4.5. Support Vector Regression (SVR) 

Support Vector (Machine) Regression (SVR) is derived from its classifier counterpart, the SVM. SVMs are 

popular algorithms in classification problems that are designed to classify classes based on an optimal 

hyperplane (Cortes and Vapnik 1995). An impression of such a hyperplane can be found in figure 8: 

 

Figure 8 SVM Hyperplane, Source: (Cortes and Vapnik 1995) 

While the classification model returns a value from a finite set, namely one of the several classes addressed 

in the problem, its regression algorithm aims to predict a “continuous-valued multivariate function” 

(Awad and Khanna 2015, p.67). In SVM, the algorithm aims to find the hyperplane that can distinguish 

the most amount of data points correctly in the training set. SVR also aims to create this hyperplane but 

aims to fit a hyperplane through the “maximum number of points” (Raj 2020a). 

Besides the input data, the algorithm makes use of a set of hyperparameters that may be tuned, as finding 

the optimal configuration may improve the model’s performance significantly. SVR’s Python 

documentation in SciKit-Learn makes use of various hyperparameters (“SciKit-Learn 1.0.1 | 

Sklearn.Svm.SVR” 2021): 

1. C: A regularization penalty, like in LASSO and Ridge regression. 

2. Gamma (for ‘rbf’, sigmoid and precomputed kernels): indicates the amount of spread or curvature 

of the boundaries. 

3. Kernel: Various kernels, types of functions, may be used depending on the type of problem. A 

linear kernel may be selected when a linear relationship may be identified between input and 

output. Popular options are linear, polynomial, ‘rbf’, sigmoid and precomputed. 

4.  : Distance around the hyperplane make up the margin between the datapoints. 

Advantages 

• SVR is expected to perform better in cases with many input features, or high dimensional space 

(Drucker et al. 1996). 

• Provides high prediction accuracy, while being implemented rather easily (Raj 2020b). 

• Flexible in a variety of problem cases given its various kernels. 

• Less sensitive to outliers compared to linear or polynomial regression (Raj 2020b). 

Disadvantages 

• SVR tends to be less accurate given large datasets, or when the data is rather noisy (Raj 2020b). 

• The algorithm underperforms when the amount of features exceeds the size of the dataset (Raj 

2020b). 
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3.4.6. Decision Tree Regressor (DTR) 

Decision trees have been applied in various disciplines. Examples of such applications are risk 

management, finance, option pricing, and many more. Similar to its more traditional counterpart, Decision 

Tree Regressor (DTR) makes use of branches and ‘Interior nodes’ where classically a decision was made. 

At the top of the tree resides the ‘root node’, which resembles the entire dataset (Awad and Khanna 2015, 

p.15). Each node is split into two new nodes, either a new interior node or a leaf node. The leaf node 

resembles the “average of the value of the dependent variable in that particular leaf node” (Gurucharan 

2020). An exemplary DTR algorithm is illustrated in figure 9. It should be noted that small sample size is 

illustrated in the figure, resulting in an MSE=0 for all leaf nodes.  

 

 

Figure 9 DTR Example, Source: (“Geeks for Geeks | Decision Tree Regression Using SKLearn” 2021) 

DTR Python documentation in SciKit-Learn makes use of various hyperparameters(“SciKit-Learn 1.0.1 | 

Sklearn.Tree.DecisionTreeRegressor” 2021). Not all used criteria are equally relevant, the most relevant 

ones are discussed below:  

1. Max_features: The maximum amount of features evaluated at each new split. 

2. Max_depth: The maximum depth of the tree, therefore an indication of the number of splits. 

3. Min_samples_leaf: Minimum sample size for each leaf node. 

4. Max_leaf_nodes: The maximum amount of leaf nodes. 

Advantages 

• Easy to understand and less data cleaning required (Gurucharan 2020). Given that the decisions 

of the algorithm are visualised clearly, makes it easy to be interpreted by non-specialists (Lewis, 

Ph, and Street 2000) (Morgan 2014). 

• Almost no hyper-parameter tuning is required, and able to solve non-linear problems 

(Gurucharan 2020). 

• Requires less effort for data preparation (Dhiraj 2019). 

 

Disadvantages 

• Tends to overfit data (Gurucharan 2020). 

• Predictions of individual DTRs have relatively high variance and bias (Awad and Khanna 2015a). 

• Less accurate as regressor compared to other regression algorithms (Morgan 2014) (Dhiraj 2019). 
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3.4.7. Random Forest Regression 

An RFR is a collection of relatively shallow, uncorrelated DTRs (Awad and Khanna 2015a). By averaging 

the set of uncorrelated DTRs the amount of variance compared to a single DTR is reduced. This process 

is illustrated in figure 10 below. 

 

Figure 10 Random Forest Consisting of 600 DTRs, Source: (Bakshi 2020) 

Whereas a single DTR is highly interpretable as a result of the clear visualization of the algorithm’s 

workings, this is not the case for RFRs. An RFR consisting of n-trees has n-visualizations. As a trade-off, 

it does increase the performance of the estimator. 

RFR’s Python documentation in SciKit-Learn makes use of hyperparameters similar to DTRs (“SciKit-

Learn 1.0.1 | Sklearn.Tree.DecisionTreeRegressor” 2021).  

Advantages 

• RFR are better predictors than DTRs as they are less likely to overfit (Breiman 2019). This is a 

result of averaging a set of uncorrelated DTRs.  

• Similarly to DTRs, less effort is required for the pre-processing of data. This is a result of DTRs, 

and Random Forests subsequently, being able to work around missing values. 

• Random Forests can perform a form of feature prioritization, outputting the relative importance 

of each input feature for the output variable (Dhiraj 2020a). 

Disadvantages 

• Random Forests are better classifiers than regressors (Breiman 2019). 

• Random Forests, both classifiers and regressors, become rather complex (Dhiraj 2020b). 

Consequently, Random Forests also take up more training time. 

• Less interpretable than DTRs. 
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3.5. Conclusion 
A broad variety of topics has been discussed in the literature study. Each of the subsections contributes to 

the research study but in different ways. 

The purpose of section 3.2 was to discover what tender price influencing features have been identified by 

previous researchers. Over 77 features have been identified by the cited authors. An overview of the 

extensive list of features can be found in Appendix E.1 due to the size of the table. 

Section 3.3 illustrates what ML models have been developed in construction tender management before. 

The features used to create the models can be found in Appendix E.2. Two of the ML models in section 

3.3. make use of regression algorithms to predict the price of construction projects. The models of Elhag 

and Boussabaine can predict the construction prices of schools with corresponding accuracies of 79.3 % 

and 82.2 %. The model of Matel et al. can predict the costs of engineering consultancy services with a 

mean absolute error of 13.65 %, i.e. an accuracy of 86.35%. 

Section 3.4 provides an overview of the most popular regression techniques in ML. A shortlist of 

regressions algorithms can be found below: 

1) Linear Regression 

2) Ridge Regression 

3) Regression 

4) Polynomial Regression 

5) Support Vector Regression 

6) Decision Tree Regression 

7) Random Forest Regression 
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4. Selecting Tender Price Features for Model Input 
Appropriate tender features are selected for the ML model input in this chapter. The set of tender features 

as found in literature and illustrated in Appendix E is used as a starting point. However, not all features 

can be taken into account as input for the ML model. Given that the used tender database is rather small 

(<1000 projects), it is necessary to filter the set of tender price features even more through expert 

interviews and check whether the features are suitable to be used as input.  

• Section 4.1 describes what requirements are considered to filter the features. 

• Section 4.2 provides an overview of the most relevant tender price features according to Dutch 

tender practice. 

• Section 4.3 contains a synthesis of all features found in literature or found during the first round 

of interviews, complying with the selection requirements.  

4.1. Feature Requirements 
This section is devoted to the construction of feature requirements. The requirements are used to 

determine whether features are suitable to use as input for the model. These requirements are applied to 

the features found both in literature and during the first round of interviews with Dutch Tender practice.  

An overview of the set of requirements used to filter the features can be found in table 1. 

Table 1 Feature Selection Requirements 

Requirement 
No. 

Requirement description Explanation 

1 The feature is mentioned at least twice in 
literature or during the interviews. 

By requiring the feature to be 
mentioned at least four times in either 
literature or during the interviews, it is 
guaranteed that multiple authors or 
tender professionals share the 
viewpoint. 

2 The selected feature is generic and applicable 
to all sectors within the civil infrastructure 
industry. 

Data on civil engineering tenders is 
collected from the database. The choice 
is made to include tenders of all 
sectors. Object-specific features may 
not be represented in other civil 
engineering sectors. For example, the 
length of the rail track is irrelevant for a 
real estate tender. 

3 Numerical or categorical data on the feature is 
present in the tender database 

If there is not suitable data present in 
the tender database, it is not possible to 
include the corresponding feature as 
model input.  

 

It is verified in section 4.3 whether features comply with the requirements of table 1. If features comply 

with requirements 1&2, it is checked whether the features are present in the database of tenders.  
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4.2. Tender Price Features in Dutch Tender Practice 
Besides the tender features identified in the literature study of section 3.2, expert sessions are held to 

check what different features are most dominant in the current Dutch infrastructure tender market. This is 

done to complement the identified tender features, all originating from papers published between 1998 

and 2005 in foreign markets. 

The objective of the interviews is to become more familiar with the Dutch tender practices and investigate 

which input features are most important to use for the ML model. Besides investigating which input 

features are most important, questions are asked with regards to the most desirable output of the model.  

A consent form is sent to the individual interviewees before the interviews. The form provides 

information on the content of the interview and how the privacy of the interviewees is safeguarded during 

the process of the graduation research. An exemplary consent form can be found in Appendix C. The 

consent form and the data gathering process is conform to the Human Research Ethics Committee 

(HREC) regarding the storage of interview data. 

A template for the (Dutch) interviews is provided in Appendix E. As stated before, the main objective of 

the interviews is to discover which tender features are most important to predict the tender’s price, what 

type of output is most desirable and where in the tender process the Machine Model may be most 

beneficial to the contractor’s organization. A selection of the most important questions asked to progress 

is provided below: 

1) ‘Where in the tender process do you see an opportunity for ML?’ 

2) ‘Currently, the output variable of the ML model is the tender price in €. Would you prefer a different 

output variable?’ 

3) ‘Could you provide a selection of the most influential tender price factors?’ 

Six interviews were held with tender professionals from the Dutch contractor with various roles to 

become acquainted with the tenders in the Dutch construction market. The purpose of the varying roles is 

to collect insights from a broad set of tender-related disciplines. The interviewees had the following roles: 

Table 2 Roles Interviewees  

Tender Professional (TP) No. Role Experience 

TP 1 Management Trainee 0-2 years 
TP 2 Management Trainee 0-2 years 
TP 3 Design Manager (Tenders) 20+ years 
TP 4 Tender Manager (Rail) 20+ years 
TP 5 Risk Manager (Tenders) 10-20 years 
TP 6 Tender Board 20+ years 

 

The tender professionals are denoted by TP1-TP6 (Tender Professional 1 – Tender Professional 6) to 

ensure the privacy of the interviewees. Features that have been mentioned in the interview with the two 

management trainees are considered as a single mention. Transcriptions of the interviews with the 

contractor’s tender professionals are included in Appendix D (CONFIDENTIAL). The transcriptions 

are not included in the public thesis repository.  

It was mentioned by some tender professionals that the ratio between the winning tender price and the 

contractor’s tender price could be interesting to predict as an output variable of the model. This was 

attempted in parallel with the development of the tender price models, but the designed ‘tender price 

ratio’-model was not able to make accurate predictions (R-Squared < 0) with regards to this variable. A 

negative value for the R-Squared metric implies that the average value is a better prediction than the 

predictions provided by the model. 
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4.3. Final Selection of Features 
With the most relevant tender price features according to Dutch tender professionals found, it is possible 

to combine the findings into a final set of tender features. Within this final set of tender features, three 

different origins are taken into account. First of all, tender features from traditional price estimating 

research are considered (Appendix E.1). Second of all, features used as input of previous ML models 

(Appendix E.2). Third, the tender price features according to Dutch tender practice are used (Appendix 

E.3). 

It is verified whether the tender price features comply with the suitability requirements of table 1 to assess 

which tender price features are suitable to be used as input. Features are considered as input only if the 

variable complies with all three requirements. If this is not the case, the feature is dropped from the final 

set of features. 

An overview of the final set of features, including the scores on the requirements and a description of the 

available data, is provided in table 3. An assessment of all features mentioned in Appendix G can be found 

in Appendix F. 

Table 3 Overview Selected Features 

 
Feature No. 

 
Feature name 

 
No. of 

occurrences 
 

Generic feature 
 
 

Data type 
 
 

Data type available 
 
 

6 Complexity 

 
 
8 

 
 

Yes Categorical 

 

• ‘Tender Category’ 

9 
Form of 

procurement 

8 Yes Categorical • EMVI or Price-
only 

11 Project size  

8 Yes Numerical • Ballpark estimate 
(€) 

12 Duration 9 Yes Numerical • Duration (months) 

14 Type of object 9 Yes Categorical • Type of object 

17 Type of client 4 Yes Categorical • Type of client 

4 
Number of 

tenderers 

5 Yes Numerical • Total No. of 
tenderers (n) 

63 Type of contract 

 
7 

 
Yes 

 
Categorical 

• Type of contract 

• Contract scope 
 

For all features, except ‘Complexity’, the available data is rather straightforward. Each of these features is 

represented explicitly within the tender database provided by the contractor. The feature ‘Complexity’, 

however, is rather ambiguous. Complexity can be interpreted in various ways. As a result, the so-called 

‘Tender Category’ of the corresponding projects is taken into account. 

The ‘Tender Category’ is a qualitative label given to categorise potential projects. Tenders may be given 5 

different types of labels, from ‘Category E’ up until ‘Category A’. Category A is given to the largest, most 

complex tenders while Category E is given to small, non-complex tenders. The following criteria are taken 

into account: 

• Order Value • Region • Ground conditions 

• Contract Type • Logistics • Client Track Record 
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• Contract Experience • Organization Complexity • Client Relationship 

• Risks • Technological Complexity 
 

 

The variable Tender Category is taken into account as a degree of total project complexity, as the separate 

scores on the criteria are not provided in the database. Ideally, technological/organizational are taken into 

account as stand-alone features but these are not found explicitly in the database. 

4.4. Conclusion 
With the results of chapter 4, it is possible to answer the first subquestion: 

1) What tender price features influence the tender’s price? 

Appropriate tender features have been discussed in both literature and within the interviews. The main 

addition of the interviews is to get an insight into the Dutch tender practices. Taking into account the 

availability of the data, whether the features are generic and the number of occurrences in both literature 

and interviews and quantifiability of data, the tender features of table 8 have been selected to use as input 

for the ML model.  

Table 4 Final Set of Tender Features 

 
Feature name 

Complexity 

Form of procurement 

Project size  

Duration 

Type of object 

Type of client 

Number of tenderers 

Type of contract 
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5. Preparation Model Development 
This chapter is devoted to the preparation of the ML development. The main purpose of the coming 

sections is to make sure both the data and the models are prepared in the right manner to start predicting 

tender prices.  

• Section 5.1 is devoted to the construction of the requirements of the ML model. 

• Section 5.2 introduces the data preparation steps which need to be completed in order to obtain a 

dataset useable as model input. 

• Section 5.3 investigates the quality and the size of the tender dataset used as input for the model. 

• Section 5.4 contains a comparison of the possible algorithms, with the purpose to select the three 

most suitable algorithms. 

• Section 5.5 discusses the findings. 

• Section 5.6 presents the conclusion. 

5.1. Requirements ML Model 
The requirements of the ML model are based on the needs of the user, as explained in chapter 2. The 

needs of the users are collected during the exploratory interviews with the tender professionals to 

determine what they would like to see in an ML model supporting their daily practices. 

An overview of the collected needs can be found in table 5:  

Table 5 Overview Users' Needs 

Need No.  Description 

1 The ML model should be able to 
predict tender prices accurately. 

2 EMVI-tenders should be discounted 
by their fictional discounts. 

3 The ML model should be designed to 
be implemented in an early stage of 
the tender process, to support the 
decision to tender. 

The identified needs of table 5 are transformed into measurable requirements to evaluate the model’s 

performance in table 6. 

Table 6 Requirements ML Model 

Requirement 
No.  

Description Test Method Source 

1 The model can predict the 
tender price with an accuracy 
of at least 70%. 

Comparing the model’s 
predictions with the actual 
tender prices. 

Appendix H 

2 All EMVI-tenders are 
discounted by their fictional 
discounts. 

Check whether all EMVI-
tenders are fictionally 
discounted. 

Appendix D 

3 The input data of the ML 
model is available before the 
decision to tender.  

Check whether all input 
data is available before the 
decision to tender. 

Appendix D 

 

After the development of the ML model, it is verified whether the Tender Price Predictor complies with 

the requirements of table 6. 
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5.2. Data Preparation 
The data preparation phase entails preparing the collected data in useable input for the algorithm. A set of 

activities is conducted to achieve this (Brownlee 2020c, p.17):  

1. Cleaning the Data 

2. Feature Selection 

3. Data Transformation 

4. Feature Engineering 

5. Dimensionality Reduction 

Data Cleaning 

The raw data initially derived from the database may be polluted; i.e. may consist of duplicate rows, wrong 

entries and errors. The ‘Data Cleaning’ step consists of investigating and modifying the data in such a way 

that clean data remains. As a result, the final dataset is much smaller in size and dimension than the 

original ‘raw’ dataset. 

The following data cleaning steps are considered (Brownlee 2020c, p.18): 

1. Identifying outliers through statistics 

2. Removing duplicate columns 

3. Removing duplicate data points or rows 

4. Marking missing values 

5. Replacing or deleting missing values 

A rule of thumb for the amount of data required in regression analyses is as follows: per predictor/type of 

variable, 10 occurrences should be in the dataset (Mitsa 2019).  

After the raw data has been cleaned, features are selected. 

Feature Selection 

Feature selection entails decreasing the number of dimensions of the data matrix. Dimension reduction 

implies that unnecessary features, which may strongly correlate with other features or weakly influence the 

tender’s price, are omitted from the dataset to reduce the computational costs. Feature selection can be 

done manually, based on the underlying relationships of input features with the output variable. This 

feature selection method is called ‘feature filtering’ (Brownlee 2020c). Feature filtering results in a smaller 

subset of more relevant features for the output variable. 

Data Transformation 

Data transformation entails changing the form of the input feature or output variable. Two forms of data 

are desired, either categorical or numerical values, for the use of ML modelling. The raw input variables 

need to be transformed as such that either categorical values or numerical values are obtained. 

Numerical values 

Numerical values may be obtained by changing the data type of numerical input to integers or floats. 

When transformed, the numerical values may be ‘scaled’ to increase the performance of the ML model. 

The two most popular types of scaling are ‘normalizing’ and ‘standardizing’ 

Normalizing entails the rescaling of a numerical feature to a range between 0 and 1 (Brownlee 2020c, 

p.215): 

x Min
y

Max Min

−
=

−
 

(7) 
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 With y being the newly normalized value of x, given Min and Max being the lowest and highest values of 

the numerical feature. 

Standardizing entails the rescaling of data by using the statistical properties of the numerical column. The 

use-case of either standardizing or normalizing depends on the distribution of values. Standardizing is 

applicable when the data tends to fit a normal distribution: 

x

x

x
y





−
=  

(8) 

With 
x and 

x  being the mean and standard deviation of x respectively. 

Categorical values 

To assess categorical features in a regression algorithm, the textual inputs should be transformed into 

numerical values. The three main options to translate categorical values to numerical inputs are (Brownlee 

2020c, p.21): 

1. Encoding categorical features as ordinal integer feature 

2. One-Hot-Encoding (OHE) 

Ordinal Transformation 

Ordinal transformation concerns the transformation of a categorical feature into an ordinal integer 

feature. An example of such transformation is the following:  

 

Table 7 Example Ordinal Transformation 

Feature name Column Name Range values 

Temperature (Categorical) Temperature Freezing, cold, neutral, warm, hot 

Temperature (Transformed) Temperature 1, 2, 3, 4, 5, 
 

Ordinal transformation mainly works when order is present within the feature. Examples are 

temperatures, seniority within jobs, income, education, etc. Ordinal transformation doesn’t work when 

there is no clear order for example colour or, more appropriate for this study, types of contract or types of 

client. For such features, OHE provides a solution. 

OHE 

OHE makes it able to transform non-ordinal categorical features into binary entries. A categorical feature 

(single column), with n-unique entries, is transformed into n-1 columns with binary entries. An example is 

provided in table 8. 

Table 8 OHE-Example 

Feature name Column Name Range values 

Type of Contract (Categorical) Contract UAV, RAW, UAV-GC, Other, 
Bespoke_(Custom) 

Type of Contract (Categorical) Contract_UAV, (…) 
Contract_Other 

0, 1  
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When the contract of use is equal to ‘UAV’, the transformed feature will score 0 in all ‘Contract_’ columns 

except for a 1 in the ‘Contract_UAV’ column. OHE will increase the dimensionality of the dataset, but 

does make it able to incorporate non-ordinal categorical features.  

Feature Engineering 
Feature engineering entails the modification of input features into new input features by means of 

mathematical operations. This may be done based on the context of certain variables, for example raising 

certain variables to the power of n or deriving the distance between two date-time inputs. 

Dimensionality Reduction 
Dimensionality reduction entails reducing the number of features (columns) of the dataset, without losing 

any information. This may be useful when some features are highly correlated, reducing the complexity of 

the matrix by the removal of linear independencies (Brownlee 2020b, p.23). 

Feature selection can also be automated based on the predictive model’s performance. A popular example 

of such a method of feature optimization is ‘Recursive Feature Elimination’ (RFE) (Vickery 2020). RFE is 

a feature selection method that gradually decreases the set of features, optimizing the subset of features 

for which the prediction accuracy is maximised. The procedure of RFE is conceptualised in figure 11 

(Chen et al. 2018).  

 

Figure 11 Conceptualised Procedure of Recursive Feature Elimination, Source: (Chen et al., 2018) 

Another form of dimensionality reduction is ‘Principle Component Analysis’ (PCA). The purpose of PCA 

is to reduce the dimensionality of the dataset by combining some non-correlating features into a linear 

combination of the original features (Awad and Khanna 2015b, p.31). The result is a so-called principle 

component (PC), with the original features being omitted from the dataset. This reduces the amount of 

noise and improves the computational speed of the model. 

When the data has been pre-processed, it is possible to initiate the model training phase. The prepared 

dataset may now be used for the training and testing of the ML model. Of course, this may not be 

successful in a single iteration. Multiple iterations between training, testing, evaluating and back to data 

preparation may be required before a final model is obtained. 
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5.2. Tender Dataset 
This section provides more information on the dataset on tenders used as input for the ML models. 

Ensuring the quality of the data is very important, as ‘polluted data’ results in worse predictions by the 

model.  

• Subsection 5.2.1 provides background on the used data. 

• Subsection 5.2.2 investigates the quality of the data and the causes of omitted tenders. 

• Subsection 5.2.3 describes the final tender dataset. 

5.2.1. Background on Used Data 

Data on the selected tender features have been retrieved from the databases of the Dutch contractor. 

Within the database, information has been collected on the entire lifecycle of tenders since 2017. Tenders 

that the contractor did not participate in are tracked as well. The raw data consists of manual inputs, 

which can either be selected from a drop-down menu by the user or be documented freely (qualitatively or 

quantitatively) by the user. The inputs are provided by tender managers or tender project team members 

working on the project. Currently, the purpose of the database is to aid the tender process by keeping 

track of progress on tenders and their performance in order to improve the decision-making of future 

tenders.  

5.2.2. Data Quality 
With the use of Python’s ‘Pandas’ library, data is extracted from the exports of the database. The exports 

have been provided after consulting an export responsible for the back-end system, taking into account 

the desired features. The resulting raw dataset consisted out of 12.000 data points on the performances of 

the contractor and competitors on over 2.700 tenders over the years. In order to convert the raw data into 

a useable dataset, the data-cleaning steps described in section 5.1 have been completed. The data-cleaning 

process can be found in Appendix G. 

It appeared that the majority of the dataset is unusable as input for the ML model as a result of the 

cleaning of the data. Figure 12 illustrates that almost 90% per cent of the tender of the initial dataset have 

been dropped as a result of the data-cleaning process. Upon closer investigation, it appears that the main 

cause of the invalid data entries is caused by mistakes in the input. Data that has been dropped from the 

initial dataset has been logged to measure the exact size of invalid data. Figure 12 provides an overview of 

the separate causes of tenders being dropped from the dataset. 

 

Figure 12 Causes Dropped Tenders, Source: Own Image 
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A small percentage of the dropped tenders, 1,5%, is caused by extremely low initial estimations of the 
tender. 37 Tenders have been estimated at prices of 0, 1 or 30 €. These estimated tender prices are 
extremely unlikely, given that the size of actual tender prices is often multiple millions €. 

The majority of the dropped tenders, 42,8%, is caused by unlikely accurate estimations. In these cases, the 

winning tender price is equal to the estimated tender price. As the estimate in the database is an initial 

figure to provide a general idea of the size of the project, it is extremely unlikely that this figure is equal to 

the winning tender price. Including these tenders would have biased the model, by giving the impression 

that the model is able to provide more accurate predictions than it actually does. 

A small part, 5,1%, of the dropped tenders is due to duplicate rows in the database. This could be caused 

by manual mistakes or duplicate savings of tenders. 27,1% of the dropped tenders is caused by the 

omission of tenders’ prices, while it is known that the tenders are submitted and won or lost. This should 

mean that a result should be known, but is nevertheless not present within the database. Without a 

winning tender price, the desired output to predict, it is not possible to take into account these features.  

A relatively small part, 3,7%, is dropped as a result of the contractor’s ranking of the tender missing. The 

rank is taken into account to determine whether the contractor has won the tender or not. 

Almost 20% of the tender has been dropped due to a missing start or end date of the project. These dates 

are used to determine the duration of the project. Without one of these two dates, it is not possible to 

determine the value of this feature. 

The resulting 320 tenders are tenders with no missing values for the corresponding features. Tenders with 

missing values for quantitative features have been omitted from the dataset while missing values for 

categorical features have been replaced with the value ‘Unknown’.  

The last applied data preprocessing step which filters the data is detecting and deleting outliers from the 

dataset, reducing the number of tenders to 222, which make up the input for the model. These steps are 

described in Appendix G.4. Cases of extreme values for quantitative features or low-frequency values for 

categorical features negatively influence the accuracy of the predictive model.  

5.2.3. Overview Final Dataset 

In total, the dataset used as input consists of 222 tenders with 8 features in total, of which 3 numerical 

features and 5 categorical features. The distributions of the numerical features and the output variable, the 

tender price, can be found in figure 13. 
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Figure 13 Boxplot Distributions of Numerical Features, Source: Own Image 

It should be noted that the feature ‘Duration’ has been transformed by taking the square root of the initial 

duration of the project. An explanation for this transformation can be found in Appendix G.4. The 

categorical features with the corresponding value frequencies are provided in table 9. 

Table 9 Overview Categorical Features 

Feature Name Feature’s Values Value Frequencies 

Type of Object Roads  
Unknown 

119 (53, %) 
103 (46,4 %) 

Contract Scope Build-Only 
DBFMO 
Build&DE 
Build&M 

208 (93,7 %) 
6 (2,7 %) 
5 (2,3 %) 
3 (1,4 %) 

Type of Contract UAV 
RAW 
Other 

147 (66,2 %) 
73 (32,9 %) 
2 (0,9 %) 

Type of Client Municipalities 
Government 
Province 
‘Construction’ 
Unknown 

116 (52,3 %) 
64 (28,8 %) 
25 (11,3 %) 
12 (5,4 %) 
5 (2,3 %) 

Tender Category Unknown 
Category D 
Category E 

153 (68,9 %) 
45 (20,3 %) 
24 (10,8 %) 

Procurement Form Price-only 
EMVI 

176 (79,3 %) 
46 (20,7 %) 

5.3. Selection Algorithm 
Numerous ML models exist, each with its strengths and weaknesses. A preliminary shortlist of popular 

regression algorithms and their strengths and weaknesses are provided in section 3.4. This list is non-
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exhaustive. In general, four selection criteria are used to choose the most suitable ML model (Metwalli 

2020): 

1. The data 

The choice of supervised learning, regression algorithms to be exact, was driven by the type of 

data and the desired output variable of the tender’s price in €. 

2. Required accuracy 

Not all models are equally accurate, with a trade-off between accuracy and the speed of the 

model. The accuracy of the models is considered to be one of the most important aspects of the 

Tender Price Predictor. 

3. The speed of the model 

The time it takes to make n-predictions is not of great importance, as the model is expected not 

to run continuously but only to make predictions on demand. 

4. Features and parameters 

The more parameters are used within a model, the more time is needed to train an ML model. 

The parameters do improve the flexibility of the corresponding algorithm. 

Of these four criteria, just the second criterium ‘Accuracy’ is considered to be relevant to the problem of 

this research. Besides these criteria, the aspect ‘Interpretability’ is taken into account to select the most 

suitable algorithms. It should be noted that a trade-off exists between these two aspects: the more 

interpretable a model is, the less accurate its predictions are and vice-versa (Sajee 2020). Table 10 provides 

a short explanation of the algorithm selection criteria. 

Table 10 Algorithm Selection Criteria 

Criteria Explanation 

Accuracy The accuracy is one of the most important aspects of 
the Tender Price Predictor, as its accuracy should be of 
an adequate level in order to substantiate tender related 
decisions within the process.  

Interpretability The interpretability of the results and the model are 
important to consider, as the user should understand 
how the model works and how input relates to output. 

  
The advantages and disadvantages of the previously introduced regression algorithms, regarding these 

criteria, are summarised in table 11 on the next page.  
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Table 11 Accuracy and Interpretability of Regression Algorithms 

Model Accuracy Interpretability 

Linear 
Regression 

The simplest form of regression, but lacks 
the ability to make relationships between 
more complex problems (Elite Data Science 
2021). 

High interpretability: coefficients of the 
input features can be acquired to 
illustrate how these influence the output 
variable. 

Ridge 
Regression 

Ridge regression is able to better fit more 
complex data than linear regression as a 
result of its L2-regularization. However, 
regularization of the penalty function does 
increase the complexity of the model and 
increase the bias of the model. 

Model interpretability of Ridge is low, as 
the method does not provide feature 
optimization. 

LASSO 
Regression 

LASSO’s L1-regularization decreases the 
number of features, resulting in a simpler 
model (Krueger 2021). However, LASSO 
tends to perform worse than Ridge 
regression. 

LASSO regression is more interpretable 
than Ridge regression, as the algorithm 
is able to optimize the subset of features 
used (Krueger 2021). 

Polynomial 
Regression 

Polynomial regression is able to fit more 
complex data relationships than linear 
regression but tends to overfit the data at 
the same time. 

Polynomial regression is harder to 
understand than linear regression (Elite 
Data Science 2021). 

SVR SVR provides high prediction accuracy 
while being implemented rather easily (Raj 
2020b). 

Generally, Support-Vector algorithms 
tend to be less interpretable than the 
average regression algorithm. But by 
using the ‘linear’-kernel or ‘poly’-kernel, 
it is possible to derive the coefficients of 
the features. 

DTR Less accurate as regressor compared to 
other regression algorithms (Morgan 2014) 
(Dhiraj 2019) 

DTR’s decisions are visualized and easy 
to understand (Morgan 2014) 
(Gurucharan 2020). 

RFR RFRs are better predictors than DTRs as 
they are less likely to overfit (Breiman 2019) 

RFRs are not easy to interpret, as a RFR 
consists of a large amount of DTR’s. 

 

Both ‘Kernel-Based Methods’, implying the SVR, and DTRs are close to an optimum of both accuracy 

and interpretability (Rane 2018). Besides the advantages and disadvantages of algorithms, figure 15 on the 

next page further illustrates the trade-off between interpretability and accuracy and how the algorithms’ 

performances on these criteria relate. 
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Figure 14 Interpretability – Accuracy Trade-off, Source: (Rane 2018) 

Taking into account the criteria of table 8, algorithms are selected to be developed into tender price 

predicting models. The selected models including substantiations for the selection are illustrated in table 

12. 

Table 12 Explanation of Algorithm Selection 

Model Explanation 

Linear Regression Linear regression is selected over 
its polynomial or L-regularization 
counterparts due to lower 
interpretability and increased 
complexity of the models. 

DTR DTRs decisions are visualized 
and easy to understand although 
worse predictors compared to 
other regressors (Morgan 2014) 
(Gurucharan 2020). 
DTRs are preferred over RFRs as 
RFRs are hard to interpret (Rane 
2018). 

SVR SVRs appear to provide the 
highest accuracy of all the models 
while retaining interpretability by 
selecting its ‘linear’-kernel or 
‘poly’-kernel. 

 

The three selected regression algorithms are developed into tender price predicting models, using the 

dataset of section 5.2 as input. 
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5.4. Conclusion 
With the results of chapter 5, it is possible to answer the second subquestion: 

 

2) What Machine Learning algorithms are most suitable, taking into account the available data of the 

contractor? 

Three algorithms are used to develop three separate ‘Tender Price Predictor’ models. Tender data from a 

Dutch contractor is used as input for the models. Initially, the tender dataset consisted of 2796 individual 

tenders. After data-cleaning and outlier detection only 222 tenders were deemed as usable input for the 

ML model, with three numerical features and six categorical features per tender. An overview of the 

causes of dropped tenders can be found in figure 16 below. 

 

Figure 15 Causes Dropped Tenders, Source: Own Image 

The main criteria used to select the algorithms are ‘interpretability’ and ‘accuracy’. The models scoring best 

on these criteria are Linear Regression, DTR and SVR. Linear Regression and DTR are easy to interpret 

by deriving the feature coefficients, SVR should provide the highest accuracy of the three according to 

literature. 
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6.  Development ‘Tender Price Predictor’ Machine Learning 

Models 
Chapter 6 is devoted to the development of the three regression models to predict the winning tender 

price. With the dataset completely cleaned and preprocessed it is possible to start developing the ML 

models to make predictions on the two output variables. 

• Section 6.1 describe the ML development steps which are followed in order to design an ML 

model. 

• Section 6.2 provides the results of the three developed ML models. 

• Section 6.3 contains an evaluation of the models’ performances. 

• Section 6.4 compares the model’s predictions and the tender price estimations by the contractor’s 

experts. 

• Section 6.5 discusses the findings. 

• Section 6.6 contains the conclusion. 

6.1. Overview Development Steps 
Subsections 6.1.1-6.1.5 provide an overview of the separate optimization steps that are followed to 

develop and optimise the ML Models. The models are optimised to reduce the amount of overfitting 

while increasing the accuracy of the model.  

6.1.1. Model Training and Testing 
The ‘Model training’ part of the development of an ML model revolves around the simulation of the 

model’s experience. Training the model involves entering a large portion of the total dataset, its features 

and the corresponding values of the output variable, and running the model. The majority of the dataset is 

used to train the algorithm, with most ML models using between 75% and 80% of the dataset for training 

purposes (Kamiri and Mariga 2021).  

The trained ML algorithm is tested on the remaining 20% - 25% in the model testing phase. Based on the 

trained ML model, the output variables of the unseen test set are predicted based on the configuration of 

input features. In the case of small datasets, it is possible to apply the k-fold cross-validation approach to 

prevent overfitting (Mitchell, 1997, p.111).  

6.1.2. Tuning hyperparameters 
Hyperparameters are algorithmic parameters that influence how the models learn. The hyperparameters 

are tuned via the GridSearchCV library (“SciKit-Learn 1.0.1 | Sklearn.Model_selection.GridSearchCV” 

2021). Not every algorithm, however, has the same hyperparameters. GridSearchCV finds the optimal 

combination of the hyperparameters which optimizes the performance of the model when provided with 

the set of hyperparameters and a provided regression metric. After optimization, the set of 

hyperparameters is implemented to improve the performance of the model. 

6.1.3. Recursive Feature Elimination 
Optimal feature selection is achieved through cross-validated RFE, as explained in section 5.1. RFE is 

performed on both DTR and Linear Regression, but cannot be performed on all SVR-hyperparameter 

combinations. This is only the case for a ‘linear’-kernel, as the hyperplane is constructed in the same 

dimensional space while this is not the case for the other kernels. Based on the outcome of the 

hyperparameter tuning, RFE is applied to all models or just DTR and Linear Regression. 

6.1.4. K-Fold Cross-Validation 

K-fold cross-validation is a way of ‘shuffling’ the initial test and train sets to get a better indication of how 

well the model predicts. K-fold cross-validation helps negate the luck effect of random set selection. 
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Randomly selecting the ‘right’ test split may provide a biased view of a good fit, whereas selecting the 

‘wrong’ test fold may result in low scores on the evaluation metrics. Cross-validation helps to negate this 

luck effect by using every train fold also as a test fold (Müller and Guido 2017, p.261). Besides reducing 

the model’s bias, fewer information leaks compared to singular test and train sets as the entire dataset are 

used for the training and testing of the model. 

In k-fold cross-validation, the total dataset is split into ‘K-folds’ as suggested by its name (“SciKit-Learn 

1.0.1 | Cross-Validation” 2021). k-1 splits are used as training sets, while 1 split is used as the test set. A k-

amount of training sets results in a k-amount of separate performances, as the test-split rotates for each 

fold. This process for a 5-fold cross-validation is illustrated in figure 17 (“SciKit-Learn 1.0.1 | Cross-

Validation” 2021). 

 

Figure 16 Illustration K-Fold Cross-Validation, Source: (“SciKit-Learn 1.0.1 | Cross-Validation” 2021) 

The final evaluation is based on the average performance of the k-folds. In the case of figure 7, the output 

of the 5-fold cross-validation process is an array of five performance evaluations. This should provide a 

more robust indication of the model’s performance than a single model’s testing. The optimal value of k 

may be determined by means of a sensitivity analysis compared to the average performance of the 

corresponding k-fold (Brownlee 2020b). This analysis is performed for the hyperparameter-tuned models 

to inspect how the model’s performance is affected by the number of folds.  

6.1.5. Model Evaluation 

The model’s predictive performance is analysed in the model evaluation phase. For regression models it is 

possible to determine the error or deviation by using regression metrics. In general, three metrics are 

considered to be the most suitable to evaluate regression models (Wu 2020): 

1. Mean Absolute Error (MAE) 

2. Mean Squared Error (MSE) / Root Mean Squared Error (RMSE) 

3. R-Squared (R2)  

Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) measures the average total error of the model’s predictions. The MAE 

score provides an indication of how large the average error is over an n-amount prediction, taking the 

absolute value of the error (Wu 2020). The MAE is calculated as follows: 
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The MAE may be used to compare similar algorithms predicting the same values, given an equal test size. 

The weight of the error of each prediction is equal, namely 1/N.  

Mean Squared Error (MSE) / Root Mean Squared Error (RMSE) 

The Mean Squared Error (MSE) / Root Mean Squared Error (RMSE) is similar to the MAE but penalizes 

errors that are large i.e. huge mispredictions. Instead of taking the absolute value, MSE squares the error 

of each prediction: 
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The Root Mean Squared Error, as expected, is the rooted MSE: 
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Both metrics explain something about the averaged error of each prediction but do differ in context. Both 

RMSE and RME are more sensitive to individual higher errors in predictions, while MAE is not. This 

means that outliers are penalized more severely by RMSE and RME than by MAE (Akhilendra 2021). 

R-Squared 

The R-Squared, or R2 metric, is better known as the Correlation Coefficient. The R2 score of a model 

provides a degree of how well the regression model fits the data points by determining how much of the 

variance of the output variable may be simulated by the ML model. The R2 score of the model is 

determined by the following equation: 
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Where ŷ is the predicted output variable, yi is the actual output variable and y is the mean value. If the 

model perfectly predicts the actual output variable, a R2 score of 1 is obtained. Usually, the R2 score is 

between 0 and 1, with the R2 score being the degree of output variable variance explained by the model 

(Wu 2020). It is, however, possible to obtain negative values for the R2 score. This implies that the 

denominator is larger than the numerator, i.e. that the mean value of yi a better predictor is than the 

predicted value.  

The R-squared performance of the different models may be compared to decide which of the models fits 

the data best. The R2 score is a rather objective metric, not looking at the context or amount of data, 

which makes it easier to compare regression models. The R-squared metric is used as the optimization 

metric, as it can be seen as the most “intuitive metric to evaluate regression models” (Müller and Guido 

2017, p.306). The error metrics may be used to compare the separate models with each other on which 

models manage to obtain the smallest error compared to the actual values. 

6.1.6. Results 
The predictive performance of the model is illustrated by means of a scatter plot, which visualizes the 

actual output variable of each data point and the predicted value for the output variable. Besides a 

visualization, the evaluation metrics are calculated for the hyperparameter tuned, cross-validated ML 

model and compared to the performance of the baseline model. 



  

38 
 
 

 

6.2. Results ‘Tender Price Predictor’ Models 
This section is devoted to the results of the development of the three ML Models. The features that 

influence the tender features most, according to the model, are determined and used to optimise the 

models. 

The performance of the models is determined after the k-fold cross-validation of the optimised models, 

increasing the robustness of the predictor. The results are illustrated in a scatter-plot to illustrate how each 

separate prediction relates to the actual tender price. 

• Subsection 6.2.1 describes the development of the ‘Linear Regression’ -model. 

• Subsection 6.2.2 describes the development of the ‘DTR’-model. 

• Subsection 6.2.3 describes the development of the ‘SVR’-model. 

6.2.1. Linear Regression 
Optimized Set of Features 

Recursive Feature Elimination (RFE), as explained in subsection 6.1.3., is performed to determine the 

ideal configuration of features. The RFE library of SciKit-Learn is used to optimise the value for the R-

Squared evaluation metric. An overview of the results can be found in figure 18. 

 

Figure 17 Linear Regression Feature Optimization (Tender Price), Source: Own Image 

The maximum R-Squared value of 0.8197, achieved by selecting 4 features, indicates that there is a good 

fit between the predicted tender price and the actual tender price. An overview of the selected subset of 

features and their corresponding importance is provided in table 13. The higher the absolute value of the 

importance, the more impact the specific feature has on the output variable. 
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Feature Name Feature Importance 

Estimate 0.84 

Sqrt_Duration 0.082 

Contract_RAW 0.079 

Procurement_Price-Only -0.101 
Table 13 Optimal Feature Combination Linear Model (Tender Price) 

From table 13 it can be concluded that the initial estimate is considered to be the dominant factor in 

predicting the tender price, whereas the three other features have an importance of ±0.10. The positive 

sign implies that a higher value for ‘Estimate’, ’Sqrt_Duration’ and ‘Contract_RAW’ results in a higher 

tender price and the ‘Procurement_Price-Only’ feature implies that price only tenders tend to have lower 

winning tender prices. 

Results 

As the estimate is considered to be the most influential feature, a k-fold cross-validation sensitivity analysis 

is conducted for two different models: for the model with the four selected features, and the model with 

just the initial estimate as input. The results of this sensitivity analysis are shown in figure 19. 

 

Figure 18 Cross-Validation Sensitivity Analysis (LR) Source: Own Image 

The ‘Estimate’-only model appears to perform almost as good as the Linear Regression model. The 

consistency in performance implies that although the folds are reshuffled, in either larger or smaller folds, 

the model does not appear to be sensitive to changes to its training or testing sets. The scatterplot in 

figure 20 visualizes how the predicted tender price and the winning tender price relate. 

 

Figure 19 Scatter Plot Predictions Linear Regression, Source: Own Image 
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6.2.2. DTR 

Optimized Set of Features 

The result of the feature optimization by RFE has been illustrated in figure 21. 

 

Figure 20 DTR Feature Optimization (Tender Price), Source: Own Image 

The maximum R-Squared value of 0.806 is achieved at 4 features, and remains constant after adding more 

features. An R-Squared value of 0.806 may be considered as a good fit, but worse than the Linear 

Regression Model. The selected features and their corresponding importance are provided in table 14. 

Table 14 Optimal Feature Combination DTR (Tender Price) 

Feature Name Feature Importance 

Estimate 0.977 

No_Tenderers 0.008 

Deliverable_Unknown 0.008 

Procurement_Price-Only 0.008 
It appears that the tender price predictions of the DTR-model are almost solely based on the ‘Estimate’ 

feature, given its importance of 0.977. Compared to the other features, the ‘Estimate’ feature is rather 

dominant with importance greater than 100 times. 

Results 

The dominance of the ‘Estimate’-feature is also seen in the k-fold cross-validation sensitivity analysis of 

figure 22. Again, as the estimate is considered to be the most influential feature, a k-fold cross-validation 

sensitivity analysis is conducted for both the model with the four selected features and the model with just 

the initial estimate as input.  
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Figure 21 Cross-Validation Sensitivity Analysis (DTR) Source: Own Image 

Both models appear to achieve R-Squared scores of ± 0.80, with the ‘Estimate’-only model slightly 

outperforming the DTR model. 

The scatterplot in figure 23 visualizes how the predicted tender price and the winning tender price relate.  

 

Figure 22 Scatter Plot Predictions DTR, Source: Own Image 

Most of the projects appear to centre around the perfect fit line, except for larger tender prices. 

Horizontal lines can be recognised within the distributions of the data points. This is a consequence of the 

decision tree method, where multiple projects may end up at the same leaf node resulting in an identical 

predicted value for all tenders. The decision tree corresponding to the DTR-model is visualised in 

Appendix I. 
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6.2.3. SVR 

Optimized set of features 

The result of the feature optimization by RFE for the SVR-model has been illustrated in figure 24.  

 

Figure 23 K-Fold Cross-Validation Sensitivity SVR (Tender Price), Source: Own Image 

The SVR-model predicting the winning tender price seems to perform better than the previous price 

predictors. The maximum R-Squared of 0.846 is achieved for a subset of 4 features, illustrated in table 15. 

Table 15 Optimal Feature Combination SVR (Tender Price) 

Feature Name Feature Importance 

Estimate 0.866 

Sqrt_Duration 0.051 

Contract_RAW 0.053 

Procurement_Price-Only -0.088 
 

The selected features are identical to the features of the Linear Regression Model, with slightly different 

feature importance values. Compared to the linear model, the importance values of ‘Duration’ and 

‘Contract’ are lower while the importance values of the ‘Estimate’ and ‘Procurement’ features roughly stay 

the same. 
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Results 

Just like the previous models, the ‘Estimate’-feature is considered to be the most influential feature. a k-

fold cross-validation sensitivity analysis is conducted for both the model with the four selected features 

and the model with just the initial estimate as input.  

 

 

Figure 24 Cross-Validation Sensitivity Analysis (SVR), Source: Own Image 

The SVR-model scores better than the ‘Estimate’-only predictive model, indicating that the inclusion of 

the ’Sqrt_Duration’ ‘Contract_RAW’ and ‘Procurement_Price-Only’ features do improve the accuracy of 

the predictions. 

The scatterplot in figure 26 visualizes how the predicted tender price and the winning tender price relate.  

 

Figure 25 Scatter Plot SVR (Tender Price), Source: Own Image 

Similarly to the Linear Model, the SVR-model is capable of fitting the best fit close to the perfect fit. The 

larger the tenders become, the more the data points seem to differ from the ‘perfect fit’ line. 
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6.3. Evaluation of Machine Learning Models 
This section contains a final evaluation of the three models, for each of the predicted output variables. 

Table 16 Evaluation Tender Price Predictors 

Model R-Squared MAE MSE RMSE 

Linear Regression 0.8197 0.265 0.185 0.430 

DTR 0.806 0.275 0.202 0.525 

SVR 0.846 0.247 0.159 0.400 

Both the Linear Regressor and the SVR have high R-Squared scores while maintaining low errors. 

Regarding performance, the SVR algorithm outscores the Linear Regressor slightly on all three regression 

metrics. The SVR-model is considered to be the model with the highest quality predictions as the model 

provides the highest goodness-of-fit, given the high R-Squared value, and the lowest errors  

6.4. Model Predictions versus Expert Estimations 
This section is devoted to a comparison between the model’s predictions and the initial estimations of the 

contractor’s experts. Using the cross-validated SVR model, it’s possible to predict the tender price for 

every data point included in the dataset. Given that each datapoint comes with an initial estimate and the 

winning tender price, it is possible to compare deviation from the tender price estimations and the final 

tender price. These results can be found in table 17. 

Table 17 Comparison Model's Predictions versus Experts' Estimations 

 Model’s 
Predictions 

Experts’ Estimations 

MAPE [%] 23,5 % 23,3 % 

Std. Abs. Price Error [%] 29,21 % 19,0 % 

Min Abs. Price Error [%] 0,390 % 0,742 % 

25% Value 8,00 % 8,20 % 

50% Value 14,5 % 18,9 % 

75% Value 27,6 % 32,4 % 

Max Abs. Price Error [%] 308,3 % 97,0 % 

Avg. Abs. Price Error [€] 125.581 € 141.964 € 

Percentage of Closest Tender 
Price Estimation [%] 

53,6 % 46,4 % 

 

The experts’ estimations closely outperform the model’s predictions, with a mean absolute percentage 

error (MAPE) of 23.3% of the winning tender price compared to the model’s MAPE of 23.5%. These 

figures imply that the expert’s estimations, on average, are slightly more accurate than the model’s 

predictions. However, when investigating the distribution functions of both tender price approximations, 

the model’s predictions appear to be more accurate than the expert’s estimations given that the model 

P75-value of the SVR model is over 20% smaller than the P75-value of the expert’s estimations: 75% of 

the model’s values have a relative error of max 27.6% compared to a max relative error of 32.4% of the 

expert’s estimations. 

However, the maximum absolute error of the tender price of the model is much larger than the maximum 

price error of the expert’s estimations. To be precise, one tender is predicted to deviate 308.3 % from the 

actual winning tender price, compared to a max value of 97.0 % for the expert’s estimations. The boxplots 

of both distributions are provided in figure 27. 
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Figure 26 Boxplot Errors Model vs Estimates, Source: Own Image 

Apart from the detected outlier, most of the model’s predictions are of higher accuracy compared to the 

experts’ estimations. This is can be derived from the lower errors up to the P75 value of the boxplot.  

In order to investigate what may have caused to the outlier, details of the project’s features have been 

analysed. The actual tender price is equal to 58.800 €, while the predicted tender price is 240.060 €. The 

size of the tender is considered to be very small. Suspecting that the size of the tender may have 

influenced the error, table 18 exhibits the features of tenders of a size smaller than 100.000 €. 

Table 18 Outlier Analysis 

Tender Price MAPE Sqrt_Duration Contract_RAW Procurement_Price-Only 

53195 93 % 1.71 0 1 

35700 94 % 1.42 0 1 

58800 308 % 1.42 1 0 

62000 112 % 0.61 0 1 

74800 4.00 % 1.11 0 1 

80700 25 % 1.21 0 1 

52900 120 % 0.91 1 1 

88675 81 % 2 0 1 
It appears that the model is bad in predicting tenders of very small sizes given the high values for MAPE. 

Illustrated in bold, the outlier scores a ‘1’ on ‘Contract_RAW’ and a ‘0’ on Procurement_Price-only, 

implying that the tender contains both a RAW-contract while being procured through EMVI which both 

have positive coefficients resulting in higher tender prices. This explains why the predicted tender price is 

308 % higher than the actual tender price. This appears to be a mistake, given that tenders are procured 

through EMVI only given a large project size. It may be the case that the tender is only a small part of a 

larger project. Modifying this datapoint improves the model’s MAPE from 23.5 % to 22.0 %.  
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6.5. Conclusion 
With the results of chapter 6, it is possible to answer the third subquestion: 

3) How accurate are tender price predictions by applying ML algorithms using historical project 

data? 

Three ML models have been developed to predict the tender’s price. Of the three models, the SVR-model 

performed the best with an R-Squared of 0.846. The SVR model includes an optimised set of features, 

which is a subset of the initial dataset. The model has included 4 features with the following feature 

importance values: 

Table 15 Optimal Feature Combination SVR (Tender Price) 

Feature Name Feature Importance 

Estimate 0.866 

Sqrt_Duration 0.051 

Contract_RAW 0.053 

Procurement_Price-Only -0.088 
Noticeably, the ‘Estimate’-feature has a larger importance value than the other values. This indicates that 

the initial estimate influences the tender price more than the duration, type of contract and procurement 

form. 

Comparing the model’s predictions to the actual tender price, a mean absolute percentage error (MAPE) 

of 23.5 % is obtained which is equivalent to an accuracy of 76.5%. This value is marginally lower than the 

MAPE of the experts’ estimations, which obtain a MAPE of 23.3 %. Although the absolute mean 

deviation of the model’s predictions is larger than the experts’ estimations, the majority of the model’s 

predictions are more accurate than the expert’s estimations (53,6% vs 46,4%). Also, the average absolute 

price deviation in € of the model is lower than the experts’ estimations (125.581 € vs 141.964 €).  
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7. Evaluation of the Tender Price Predictor 
The purpose of this chapter is to validate whether the ML model could be used in Dutch tender practices. 

Tender professionals of a Dutch contractor have been interviewed to investigate how such models could 

be used in practice and determine which obstacles still need to be cleared in order to implement the tender 

price predictor.  

• Section 7.1 contains the verification of the ML model requirements. 

• Section 7.2 presents the results of the validation interview. 

• Section 7.3 concludes the findings. 

7.1. Verification ML Model Requirements 
The constructed ML model requirements are evaluated in table 19. 

Table 19 Verification ML Model Requirements 

Requirement 
No.  

Description Test Method Test Score Fulfilled 
(yes/no) 

1 The model can 
predict the tender 
price with an 
accuracy of at least 
70%. 

Comparing the model’s 
predictions with the 
actual tender prices. 

76.5% Yes 

2 All EMVI-tenders 
are discounted by 
their fictional 
discounts. 

Check whether all 
EMVI-tenders are 
fictionally discounted. 

Fictional discounts 
of EMVI-tender are 
included in the 
tender price. 

Yes 

3 The input data of 
the ML model is 
available before the 
decision to tender.  

Check whether all input 
data is available before 
the decision to tender. 

All data is available 
before the decision 
to tender. 

Yes 

 

As the ML model passed all requirements, interviews are conducted to verify whether and how the Tender 

Predictor may be used in practice. 

7.2. Interview Results 
The objective of the validation interview is to get an impression of how effective the developed Tender 

Price Predictor is, and how Dutch tender professionals could apply the tool in practice.  

In order to determine how the Tender Price Predictor may effectively be used in Dutch tender practices, a 

set of questions are asked to some of the contractor’s employees which are active in the tender industry. 

The interviews are planned to take 30 minutes to complete, consisting of a 10-minute introduction to the 

research and its results so far, with 15-20 minutes room for a discussion and questions. The questions 

asked to the interviewees are the following: 

1) What is the desired accuracy for a usable, predictive model in tender management? 

2) What attributes of the Tender Price Predictor do you deem unnecessary, and what has been missed? 

3) How can the Tender Price Predictor be used to support the tender professional’s decision-making? 

4) What are the obstacles for the Tender Price Predictor? 

5) How could the quality of the input data be improved? 
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Noticeably, the first four questions are regarding the potential use of the Tender Price Predictor and its 

shortcomings. The final question concerns the quality of data as this has proven to be a bottleneck with 

the majority of the database unusable due to missing or incorrect values. 

Five interviews were held to investigate if and how the tender price predictor may be used in practice. 

Seven professionals were interviewed in five sessions, with interviewees 5-6-7 clustered in the fifth 

interview. All interviewees either worked on tenders themselves or are directors of regional departments. 

Selecting not only potential users, the tender managers, but also the management of regional departments 

of the contractor have been invited to check whether a support base exists to trust on relatively new 

technological advancements.  

 

The roles of the interviewees are provided in table 20. It should be noted that two interviewees of the first 

interview round have also been interviewed for the validation round. IV2 and IV4 have been selected 

given their roles within specific engineering branches in tenders. 

Table 20 Roles Interviewees Validation Interview 

Interviewee 
Validation (IV) 

Role Experience 

IV1 Tender Manager 5-10 years 
IV2 Tender Manager (Rail) 20+ years 
IV3 Regional Director East 10-20 years 
IV4 Design Manager (Tenders) 20+ years 
IV5 Regional Director East (Tenders) 20+ years 
IV6 Regional Director East 20+ years 
IV7 Chief Office East (Cost Estimating) 40+ 

The transcriptions of the interviews can be found in Appendix I (CONFIDENTIAL). 

7.2.1. Desired Accuracy of Tender Price Predictor 
The interviewees state that the accuracy of the Tender Price Predictor depends on when the tool is 

supposed to support the decisions of the tender manager. Two main implementation phases are identified: 

both early in the tender process to substantiate the decision to tender or to support the tender team 

during the tender itself. Predictions of the tender price predictor in an early stage of the tender process are 

not required to be as exact as they would be in a later stage.  

Regarding estimates of the desired accuracy, a minimum of 30% deviation from the winning tender price 

is required to seriously weigh in its predictions. Interviewees IV5, IV6 and IV7 state that a deviation of ± 

10% from the winning tender price should be the minimum accuracy of the predictor. IV2, IV3 and IV4 

state that it is difficult to provide an exact figure, but an accuracy north of 70% should be appropriate in 

order to be considered in the decision making.  

7.2.2. Missing Attributes of the Tender Price Predictor according to Practice 

A broad set of features are identified by the interviewees that haven’t been included in the Tender Price 

Predictor. The purpose of identifying what features are missed or could have been improved is to take 

note for further exploitations of the Tender Price Predictor.  

According to the interviewees with a background in writing EMVI-plans, IV1 and IV2, more emphasis 

should be put on the EMVI-criteria of the tenders. Instead of focusing on whether tenders are procured 

via the EMVI-procedure, the explicit tender components should be included to identify which tenders the 

contractor performs best on, and which tenders the contractor doesn’t perform well on. 
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The majority of tenderers agree that the selected features are very generic, and more industry-specific 

components i.e. the amount of rails or volumes of concrete could improve the accuracy. These remarks 

may be considered for further expansion of a similar predictor within the appropriate industries.  

The complexity feature, assessed by the type of tender category, should be determined more explicitly. 

Currently, the complex components of the ‘tender category’ assessment cover a smaller part with criteria 

changing over time. Taking into account multi-disciplinarity by identifying the amount of collaborating 

business units may be interesting according to IV4, whereas IV2 states that complexity should be included 

explicitly as the tender category feature also weighs in a rough estimate of the tender. 

One important aspect that hasn’t been considered before is the time frame of the tenders. IV6 states that 

tenders should be considered within a maximum time window of 4 years. Tender results older than 4 years 

may not be relevant anymore due to a changing market and trends changing over time. This requires the 

dataset to be refreshed from time to time, with tenders deemed ‘too old’ to be dropped from the database.  

7.2.3. Use-Case of Tender Price Predictor within Tender Management 
The interviewees agree that the Tender Price Predictor may be beneficial to the tender professionals’ 

decision-making process but modified to the demands of more specific industries i.e. rail tenders for 

‘department Rail’ or civil tenders for ‘department Civil’. More project element specific attributes like type 

of competitors, amount of concrete, km of road could improve the model’s usability in tender practices of 

the corresponding sectors. 

IV1 and IV4 endorse this, adding that the tool may also be used by tender teams to reflect and brainstorm 

upon. Tender teams could use predictions to substantiate their quality plans to adjust the tender price, 

focus more on quality plans or stop the tender. Within larger tenders, a better explanation could be 

provided to the tender desk by providing more objective figures to substantiate choices made by the 

tender team. 

IV5 states that the predictor may be useful to substantiate the decision to tender in an early tender phase. 

If the predicted tender price seemingly exceeds the ceiling price set by the client, it may be decided to stop 

with the tender early on. Currently, IV5 and IV7 make similar decisions daily. Objective models like the 

predictor may be of added value to their decision-making processes. At this moment, this mainly happens 

on basis of experience and gut feeling. 

7.2.4. Tender Price Predictor Implementation Obstacles 
The obstacles for the Tender Price Predictor may be divided into two categories, its usability or users and 

the quality of data. 

Besides the accuracy of the tender, the process and its users are key to the success of such predictive 

models. According to IV2, IV3 and IV4 the human factor of managers providing input to the database 

and operating the model itself should be weighed in. Users may be sceptical against predictive models 

states IV3. This is proposed by IV5, who thinks that improving the data and more sector-specific options 

may result in more accurate predictions. These predictions would co-exist with the work of cost 

estimators, creating a synergy with human work and artificial predictions. 

IV2 and IV4 emphasize that the predictor may not perform accordingly when either too much input is 

required from the user at the same moment resulting in worse data, or when the purpose of the input data 

is unclear. Without training, knowing the purpose of the data’s quality and the model users may result in 

less useable data. 

7.2.5. Improving Data Quality 
IV3 suggests to create control queries that analyse whether data is documented in wrong fields or whether 

the data is correct. This can be seen as an automated approach to checking the input. Back-end wise, it 
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could be considered to make certain input fields mandatory to fill in from a database perspective. This 

could solve the problem of empty fields for certain features.  

Front-end wise, the threshold should be minimized to submit the data itself. IV7 supports this by stating 

that if the tender manager has to fill in 20 fields at the end of every tender he might rush these 

submissions and therefore affect the data quality. IV4 states that up to a year after the completion of a 

tender, tender managers are asked to retroactively submit figures on tenders. The quality of the data could 

be improved by defining what data is required or important, and what the rationale behind the data quality 

is. 

7.3. Conclusion 
The results of section 7.2 are used to answer subquestion 4: 

4) How can the Tender Price Predictor effectively be used within the tender practices of Dutch 

contractors? 

Generally speaking, the interviewees agree that contractors may benefit from the Tender Price Predictor 

when it is possible to accurately predict, within a relative maximum deviation of ±30% (subsection 7.2.1), 

the winning tender price. The use-case of the Tender Price Predictor may be improved when project-

specific or sector-specific characteristics would be used in order to meet the demands of a more 

specialised sector within the contractor’s organization (subsection 7.2.3). Also, the EMVI-component and 

complexity feature could be improved upon by including more quality-plan components and replacing the 

tender category feature with more specific complexity variables (subsection 7.2.2). 

The Tender Price Predictor could encounter obstacles upon implementation. Requiring too much effort 

from the users may result in worse quality of data. Both the users of the model and the managers 

submitting tender data should be trained accordingly in order to obtain maximum efficiency (subsection 

7.2.4).  
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8. Discussion 
Sections 8.1-8.5 contain the discussion of the findings of this research. Section 8.6 highlights the 

limitations. 

8.1. Desired Output Variable of the Tender Price Predictor 
The EMVI component of tenders should be taken into account besides the tender price only. This is a 

derivative of the Dutch tender market’s procurement method, as introduced in section 3.1. The EMVI-

orientated answers are not strange, given that some interviewees have experience in the writing of EMVI 

related quality plans for tenders. The focus of the output variable, the tender’s price, shall not be changed 

as an ‘EMVI-predictor’ is another model on its own. EMVI is a relatively new procurement procedure as 

it was introduced in 2014 by the European Parliament. This also explains why the quality plans of this 

procurement procedure are not mentioned in previous studies on price-influencing factors (Odusami and 

Onukwube 2008; Elhag and Boussabaine 1998; Elhag, Boussabaine, and Ballal 2005; A. S. Akintoye 1999). 

Regarding previous literature, some studies catch on with the decision to predict the decisive tender price. 

For example, both Zhang et al. (2015) and Matel et al. (2019) modelled these tender prices but for other 

parties than the contractor (Zhang et al., 2015. Zhang et al. designed a model that evaluates the tender 

bids from the client’s perspective. So instead of predicting a tender’s price for the contractor, it evaluates 

whether the received bids fall between or outside a reasonable range for bidding quotation. This study, 

interestingly, has the same output variable but is designed for the client party. The fact that tender price 

predictions are sought after for both ends of the tender process confirms that predicting a tender’s price, 

disregarding for which party, may be beneficial to either party. The study of Matel et al. concerns the 

development of an ANN model to predict the project costs of engineering services of a construction 

project. The study is similar in its choice of the output variable, but differs in scope: instead of focusing on 

its application for a contractor’s tender phasing, it focuses on the tender estimating activities of 

engineering consultancy firms. The activities, therefore, differ, with more focus on engineering design and 

project teamwork than on the actual realisation of the project. 

Two other studies, the ‘Tender win probability’ model of Kultin et al. (2021) and the ‘Project success 

predictor’ of Wang et al. (2012), are in line with the objective of this research but predict a different 

output variable. Both studies aim to predict whether success can be achieved during different phases of 

the project’s lifecycle. In the case of Wang et al. (2012), to predict project success, the differences between 

the actual and estimated values for cost and scheduling are measured (Wang, Yu, and Chan 2012). These 

values are, together with scope, part of the iron triangle of project management which indicate project 

success (Atkinson 1999; Pollack, Helm, and Adler 2018). The selected time and cost performance 

components by the authors are, to predict project success, logical. Similarities between the discussed 

output variable lies in the cost or price component of projects. Predicting the planning overrun this early 

on during the tender may not seem desirable, given that a tender is won on price or EMVI. 

8.2. Implementation Phase of the Tender Price Predictor 
The implementation of the ML model in the tender process is not discussed explicitly, but the ML models 

predicting tenders found in the literature point towards the results of the interviews implicitly. The authors 

of the models used to make predictions in tender management, appear to assume that an early tender stage 

suits price predictions the most where budgeting and tender selection are key activities. 

The tender interviewees unanimously agree that the best fit for ML integration in the tender’s processes is 

during its earliest stage. The purpose of early integration is to support the decision-to-tender, to prevent 

the waste of money by tendering on projects that the cont has not been successful with. Given that all 

interviewees are, or have been, active in the tender stages of a project it is not unlikely that they share this 

opinion. If calculators or engineers of later phases would have been interviewed, they might have 

suggested a stage where they take part in.  
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The studies of Matel et al. (2019) and Kultin et al. (2021) concerned tools which are to be used during the 

early tender stages, confirming this viewpoint. Kultin et al (2021). designed a model that attempts to assess 

the degree of the prospect of tenders, i.e. the probability of winning a tender (Kultin, Kultin, and Bauer 

2021). The model is designed to be used within a pre-project tender stage, similar to the proposition of the 

interviewees.  

The ‘Engineering services’ costs predictor’ of Matel et al. (2019). attempts to predict the engineering costs 

before an engineering project is started. The engineering service costs are used to provide a quotation for 

the client. This study has similarities with this graduation thesis, but instead of a contractor’s operations 

focuses on the consultation of engineering firms. The tender implementation phase draws parallels with 

the early tender phase as stated by the interviewees, but then for the tender phase of engineering services. 

The studies of Zhang et al. (2015) and Wang et al. (2012) are not necessarily in line with the findings of 

the interviews, but do not contradict them at the same time. The developed system by Zhang et al. is 

implemented after the tender bid. This is a logical follow-up given the system’s objective, namely the 

evaluation of tender bids (Zhang, Luo, and He 2015). The purpose of the model of Wang et al. is to 

investigate whether the project definition in an early stage of the planning process leads to project 

success(Wang, Yu, and Chan 2012). This is based on the results of a preliminary literature study which 

showed that early planning improves profitability and affects cost and scheduling process. The authors 

attempt to make predictions based on initial cost and schedule estimates in the early stage of the project’s 

operations, while this is outside the scope of the tender phasing as defined earlier in this study. 

8.3. Feature Selection Process 
Three requirements are set to filter the extensive lists of features, with over 90+ different features 

mentioned in both literature and interviews. Various features that do strongly influence the tender price 

are omitted from the final list as a result of these filters. Requirement no.2, ‘The selected feature is generic 

and applicable to all sectors within the civil infrastructure industry’, makes it able to compare tenders of 

different sectors but has the consequence that project-specific variables like material quantities and 

dimensions of the objects are not useable as input for the model.  

Of the selected features, ‘Complexity’ may be considered an ambiguous feature. In the case of complexity, 

the ‘Tender Category’-variable was selected to represent the project’s complexity, as no explicit generic 

complexity variable was found in the contractor’s database. However, it is debatable whether the selected 

feature is a good placeholder, backed by the model not selecting the feature for the optimal subset of 

selected features. 

8.4. Data Preprocessing and Algorithm Selection 
The data-cleaning process significantly decreased the size of the tender dataset. Deleting unusable data 

from the dataset resulted in 88.2 % of the tenders being left out. Of the remaining 11.8 %, approximately 

30 % of the data was omitted due to outlier detection. Outliers on both numerical and categorical features 

have been omitted, but this is the consequence of a lack of data points representing the corresponding 

features. 

Large parts of both the ‘Type of Object’ and ‘Tender Category’ features consist of ‘Unknown’ values. This 

affects the performance of the predictive models, as projects with missing values for these features are 

collected under the umbrella value ‘Unknown’. As a result, the corresponding features may be of lesser 

importance according to the model than they could have been when enough tenders with non-missing 

values would be present in the dataset. 

The algorithm selection is based on the prioritization of two trade-off criteria, interpretability and 

accuracy, applied on a shortlist of regression algorithms. The shortlist of regression algorithms is non-

exhaustive, as other more suitable regression algorithms may have been missed during the initial 
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exploratory phase. It may also be possible that the most suitable algorithm has not been selected during 

the process. This may be caused by either misinterpreting information on the algorithms, incorrectly 

assessing the algorithms’ advantages and disadvantages or by the omission of relevant algorithms in the 

overview of regression models.  

8.5. Predictions of ‘Tender Price Predictor’-Models 
Overall, the ‘Estimate’-feature is considered to be the most influential feature of all. In the case of the 

most accurate model, the initial estimate of the experts is considered to have an impact of 10 times the 

second-most influential factor. The impact of the feature could be explained by the inclusion of project-

specific aspects like materials, risks and other quantifications by the cost experts which are not covered by 

the generic features as selected in chapter 4. It is unknown what the ‘Estimate’ exactly contains, only that 

the value is determined in an early stage of the tender process. 

Two features that were expected to impact the tender’s price are ‘Tender Category’, as a factor of 

complexity, and the ‘Type of Object’. However, these features were not represented in the optimised 

subset of tender features as selected through RFE. It appears that there are two possible causes for this: 

Firstly, it may be the case that these features simply do not affect the tender’s price as much as initially 

expected. Secondly, both of these categorical features consist of mostly ‘Unknown’ values due to missing 

cells in the dataset. These ‘Unknown’-values make it hard to determine the exact effect of these features 

on the tender’s price due to highly homogeneous data. 

Given the results of the scatterplot in figure 25 on p.42, it appears that the model is less able to correctly 

predict the tender’s price for larger tenders compared to smaller tenders. This is contributed to a smaller 

representation of these tenders in the dataset. Also, the majority of tenders have been dropped due to 

outlier detection and the preprocessing of the dataset: projects of enormous sizes or very specific 

contracts are dropped due to an underrepresentation of these values in the dataset, resulting in even fewer 

tenders of such sizes. 

Previous studies regarding the development of ML within tender management have prioritised accuracy 

over interpretability. The developed models of Elhag and Boussabaine (Elhag and Boussabaine 1998) and 

Matel et al. (Matel et al. 2019) make use of ANNs to predict the project’s costs. These neural networks 

have improved accuracy over the selected algorithms but tend to be less interpretable. The ANNs of 

Elhag and Boussabaine predicting construction costs of schools managed to achieve accuracies of 79.3 % 

and 82.2 %, while the developed ANN of Matel et al. achieved a MAPE of 13.65 % i.e. accuracy of 86.35 

%. These accuracies are higher than the achieved MAPE of the model. This can be explained by the 

inclusion of more project-specific components, the use of ANNs over interpretable regression algorithms 

or by a difference in objective. The achieved R-Squared of Matel’s model, 0.99, could be caused by the 

objective of the model, predicting the costs of engineering services of an engineering firm compared to 

the model’s objective of predicting tender prices. An R-Squared of 0.99 is extremely high, implying that 

99% of the output variable’s variance is explained by the model. 
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8.6. Limitations 

8.6.1. Limitations ‘Tender Feature’-Literature 
Literature on price influencing factors in construction price estimating has been studied to collect the 

most influential features. The papers have been published between 1998 and 2005, which means that the 

sources are between 17-24 old at the time of writing. Certain trends in the construction industry may not 

be covered, and therefore not be included in the set of tender features. Also, the studied tender price 

influencing features cover foreign markets like Nigeria and the UK, with no literature on the Dutch 

market. Specific Dutch social, economic and geolocational aspects are therefore not included in the 

literature study. As a result, the only Dutch-specific input comes from the interviewees.  

Given the small sample size of interviews (n=7), it may be the case that relevant features have not been 

included in the final list as a result of the mismatch between the Dutch market and foreign markets. To 

ensure this, extra interviews could have been conducted to include more tender professionals with varying 

roles and sectors to provide a more holistic view on the most important general tender features. This was 

not possible due to time constraints.  

During the interviews, both tender managers and (local) management were interviewed. This was done to 

explore the support base for the implementation of predictive models within tender management. Cost 

estimators or cost engineers, however, have not been interviewed. Their views regarding the most 

important tender features could have provided new insights regarding the Tender Price Predictor’s 

objective, implementation or different features than previously identified. 

8.6.2. Limitations Data Availability 
It should be noted that some important features, according to practice and literature, are omitted from the 

final dataset. Although the final set of features complies with the requirements of generic features and 

sufficient occurrences in either literature or the interviews, they were not present in the database of the 

contractor. These omitted features are: ‘Project team experience’ and ‘Location’.  

Invalid data and outlier detection resulted in a significant decrease (± -90%) of the useable dataset size. As 

a result, the ML models have used data on relative small-sized tenders due to large tenders not being 

represented in the dataset. To incorporate large tenders in the model’s predictions, either missing data 

should be restored accordingly or larger tenders should be divided into smaller modules. Invalid data 

could have been checked manually by analysing project documents or by interviewing the responsible 

tender managers, but this has not been attempted due to time constraints. 

Interviewees proposed to include more EMVI-criteria in the development of future models. The purpose 

of adding more EMVI-criteria is to investigate how certain EMVI-components influence the winning 

tender price. Knowing what tenders suit the contractor best could drive the organization to pursue certain 

tenders more than others. Currently, the only EMVI-aspects taken into account are the amount of total 

fictional discount and whether the tender was procured through the EMVI-procedure or not. 

8.6.3. Limitations Similar Studies 
A lack of similar studies makes it hard to compare the results of the models. The developed models of 

Elhag and Boussabaine (Elhag and Boussabaine 1998) and Matel et al. (Matel et al. 2019) make use of 

ANNs to predict the project’s costs, but do not focus on the contractor’s perspective of infrastructure 

projects. The performances of both models have been compared by the findings of this study, but the 

different scopes make it hard to well-founded conclusions. 
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9. Conclusion & Recommendations 
This chapter concludes the research’s findings and provides recommendations for further use. 

Recommendations for both the Dutch contractor as well as recommendations for further research are 

provided in this section. 

• Section 9.1 answers the research question. 

• Section 9.2 contains recommendations for the Dutch contractor. 

• Section 9.3 provides recommendations for further research. 

• Section 9.4 contains a reflection on the research process. 

9.1. Conclusion 
This section will answer the research question: 

How can a Machine Learning algorithm, predicting the tender’s price using tender project data, 

be developed to support the contractor’s decision to tender? 

Four subquestions are answered in order to provide a conclusion on the main research question. The 

following subquestions have been constructed: 

1) What tender price features influence the tender’s price? 

2) What Machine Learning algorithms are most suitable, taking into account the available data of the 

contractor? 

3) How accurate are tender price predictions by applying Machine Learning algorithms using 

historical project data? 

4) How can the Tender Price Predictor effectively be used within the tender practices of Dutch 

contractors? 

9.1.1. SQ1: What Tender Price Features Influence the Tender’s Price? 
Appropriate tender features have been discussed in both literature and within the interviews. The main 

addition of the interviews is to get an insight into the Dutch tender practices. Taking into account the 

availability of the data, whether the features are generic and the number of occurrences in both literature 

and interviews and quantifiability of data, the tender features in table 15 below have been selected to use 

as input for the ML model.  

Table 15 Causes Dropped Tenders, Source: Own Image 

Feature name 

Complexity 

Form of procurement 

Estimate of Project 
size  

Duration 

Type of object 

Type of client 

Number of tenderers 

Type of contract 
 

Using the model’s predictions, it has been possible to determine which features influence the tender price 

the most. The number of features used as input is optimised, to determine the optimal configuration of 

input features.  
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9.1.2. SQ2: What Machine Learning Algorithms are Most Suitable, Taking into 

Account the Available Data of the Contractor? 
Three algorithms are used to develop three separate ‘Tender Price Predictor’ models. Tender data from a 

Dutch contractor is used as input for the models. Initially, the tender dataset consisted of 2796 individual 

tenders. After data-cleaning and outlier detection only 222 tenders were deemed as usable input for the 

ML model, with three numerical features and six categorical features per tender. An overview of the 

causes of dropped tenders can be found in figure 12 below. 

 

Figure 12 Causes Dropped Tenders, Source: Own Image 

The main criteria used to select the algorithms ‘interpretability’ and ‘accuracy’. The models scoring best on 

these criteria are Linear Regression, DTR and SVR. Linear Regression and DTR are easy to interpret by 

deriving the feature coefficients, SVR should provide the highest accuracy of the three according to 

literature. 

9.1.3. SQ3: How Accurate Are Tender Price Predictions by Applying Machine 

Learning Algorithms Using Historical Project Data? 

Three ML models have been developed to predict the tender’s price. Of the three models, the SVR model 

performed the best with an R-Squared of 0.846. The SVR model includes an optimised set of features, 

which is a subset of the initial dataset. The following features influence the tender’s price the most: 

Table 15 Optimal Subset of Features 

Feature Name Feature Importance 

Estimate 0.866 

Sqrt_Duration 0.051 

Contract_RAW 0.053 

Procurement_Price-Only -0.088 
 

The initial estimate is considered to be significantly more important than the other features. This indicates 

that the initial estimate influences the tender price more than the duration, type of contract and 

procurement form. The positive signs for the duration and type of contract state that an increase of the 

duration or the inclusion of a RAW-contract increase the tender’s price compared to projects where this is 
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not the case. The negative sign for ‘Procurement_Price-Only’ implies that tenders that are procured only 

on the lowest price, tend to have a lower tender price compared to EMVI-tenders. 

Comparing the model’s predictions to the actual tender price, a mean absolute percentage error (MAPE) 

of 23.5 % is obtained which is equivalent to an accuracy of 76.5%. This value is marginally lower than the 

MAPE of the experts’ estimations, which obtain a MAPE of 23.3 %. Although the absolute mean 

deviation of the model’s predictions is larger than the experts’ estimations, the majority of the model’s 

predictions are more accurate than the expert’s estimations (53,6% vs 46,4%). Also, the average absolute 

price deviation in € of the model is lower than the experts’ estimations (125.581 € vs 141.964 €).  

9.1.4. SQ4: How Can the Tender Price Predictor Be Used Effectively Within the 

Tender Practices of Dutch Contractors? 

Generally speaking, the interviewees agree that contractors may benefit from the Tender Price Predictor 

when it is possible to accurately predict, within a relative maximum deviation of ±30% (subsection 7.2.1), 

the winning tender price. The use-case of the Tender Price Predictor may be improved when project-

specific or sector-specific characteristics would be used in order to meet the demands of more specialised 

sectors within the contractor’s organization(subsection 7.2.3). Also, the EMVI-component and complexity 

feature could be improved upon by including more quality-plan components and replacing the tender 

category feature by more specific complexity variables (subsection 7.2.2). 

The Tender Price Predictor could encounter obstacles upon implementation. Requiring too much effort 

from the users may result in worse quality of data. Both the users of the model and the managers 

submitting tender data should be trained accordingly in order to obtain maximum efficiency (subsection 

7.2.4).  

  



  

58 
 
 

 

9.1.5. RQ: How Can a Machine Learning Algorithm, Predicting the Tender’s 

Price Using Tender Project Data, Be Developed to Support the Contractor’s 

Decision to Tender? 

ML models may aid the contractor during the tender procedure of infrastructure projects at two given 

moments, according to the interviewed professionals. Besides substantiating the decision-to-tender during 

the first stage gate, ML models may also aid tender managers during later stages of the tender. For 

example, proposed implementations are during the design of the plans, fuelling brainstorms or by 

substantiating decision-making by objective predictions instead of relying on gut feeling or experience of 

tender professionals.  

Three models have been selected as potential Tender Price Predictors: Linear Regression, DTR and SVR. 

The models have been trained to predict the winning tender price in euros, using 222 tenders with 8 

tender features per tender as input: 1) Complexity, 2) Form of Procurement, 3) Estimate of Project Size, 

4) Duration, 5) Type of Object, 6) Type of Client, 7) Number of Tenderers and 8) Type of Contract. 

Of the three models, the SVR model performed the best with an R-Squared of 0.846. The SVR model 

includes an optimised set of features, which is a subset of the initial dataset. The SVR model outperforms 

both the Linear Regression model and the DTR model.  

Comparing the model’s predictions to the actual tender price, a mean absolute percentage error (MAPE) 

of 23.5% is obtained which is equivalent to an accuracy of 76.5%. This value is marginally lower than the 

MAPE of the experts’ estimations, which obtain a MAPE of 23.3 %. This appears to be caused by an 

incorrectly categorised datapoint. Modifying this datapoint improves the model’s MAPE from 23.5 % to 

22.0 %. Although the absolute mean deviation of the model’s predictions is larger than the experts’ 

estimations, the majority of the model’s predictions are more accurate than the expert’s estimations 

(53,6% vs 46,4%). Also, the average absolute price deviation in € of the model is lower than the experts’ 

estimations (125.581 € vs 141.964 €).  

The model could be improved in the future by modifying the model into a sector-specific Tender Price 

Predictor, e.g. focusing on solely road construction, rail infra or other civil engineering disciplines. To 

achieve this, more sector-specific features should be accounted for as input. 

In order for Dutch contractors to start considering predictive models like the Tender Price Predictor, 

plans should be worked out on who will be using to use the tool, where will the data come from and how 

can a high quality of data be guaranteed. Lots of useful information on tenders has been deemed unusable 

due to missing values, wrong input and features not being represented in databases.  

Predictive models like the Tender Price Predictor may aid contractors in the near future by improving the 

quality and accuracy of tender price estimating by incorporating objective data on relevant projects of the 

past. However, in order for such models to be used effectively, a higher quality of data on tenders should 

be guaranteed in the contractor’s information systems. 
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9.2. Recommendations for Practice 
 

The majority of the initial tender dataset was deemed unusable, with barely 10% making the final dataset. 

This was caused by a variety of reasons, but the main causes are improbable estimations (42.8 %), no start 

date or end date submitted (19.9 %) and no tender price submitted (27.1 %). All three causes may be fixed 

by a higher quality of input contributions of the responsible tender managers. Improbable estimations are 

initial estimations that are equal to the final tender price, which is highly unlikely given that the estimations 

are made in an earlier stage of the tender process. It seems that these values are entered after completing 

the tender. This may be prevented by obliging the responsible tender professionals to fill the cells during 

the specified tender stages. Also, it should be emphasized that the quality of these entered values do 

impact the usability of the data to prevent the inputs are rushed. 

It was surprising to discover that it was unclear who kept track of what data upon investigating where data 

on tenders could be found. Eventually, data was derived from the central database mainly used by the 

contractor’s tender board. At the same time, tender strategists kept track of similar data on tenders they 

had worked on in the past. It would be more efficient for the organization to centralise these databases 

and be more transparent to reduce these inefficiencies. Also, in order to improve the contractor’s 

understanding of how their data may be used to improve their tender process, it is recommended to hire 

data analysts or data scientists. 

Taking this research as a proof of concept, focusing on specific sectors within the contractor’s 

organization instead of focusing on all infra projects in the database would improve the potential of a 

successful Tender Price Predictor. The current tender predictor makes use of various general, non-project-

specific features. BAM could benefit from investigating how such predictive models perform when 

modified such that it fits specific sectors or branches of the organization (e.g. road construction or rail 

construction). Such models are able to include more project-specific elements like material quantities, 

typical complexity elements inherently connected with the sector or other tender price influencing 

features. 

9.3. Recommendations for Further Research 
It would be interesting to investigate whether similar models could be designed for the prediction of the 

eventual project’s result after winning a tender, instead of the tender price. This could either be done by 

means of a regression model (to predict a numerical outcome) or by a classification algorithm predicting 

whether a tender may be profitable or not. Winning the tender itself does not produce a positive cash flow 

unless its actual costs remain lower than the budgeted costs, so focusing on this aspect would be of greater 

value than predicting the tender’s price. 

This research focused on predicting the tender’s price of Dutch infrastructure projects. Dutch 

infrastructure projects are characterised by the EMVI-procurement principle. It is recommended to 

replicate this research study for tender practices in foreign countries. The purpose of this replication is to 

see whether different tender features would be more dominant in such cases. 

The current models are designed to be generic, including tenders from all civil engineering sectors of the 

Dutch contractor. As a result, the tender feature ‘Estimate’ was included to have an initial indication of 

the size of the project. The ‘Estimate’-feature, however, appeared to be the most dominant tender feature 

of all upon the development of the model. To decide which tender features are most important, similar 

studies should be conducted in specific sectors instead of looking at all sectors at once to include sector-

specific elements like material quantities, typical complexity elements inherently connected with the sector 

or other tender price influencing features. 
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9.4. Reflection  
Working individually on a research topic for over 7 months was a new experience for me. Whereas I 

previously thought that writing a master thesis required the researcher to have a tunnel-focus on their 

thesis, I discovered that this is the complete other way around: besides the steps, you complete towards 

answering your research question, you also have to consider your planning and the planning of others in 

the organization into account. This research combines a number of different research methods, including 

a comparative literature study, two interview rounds with experts and the development of three Machine 

Learning models. All these aspects of research were new to me, and quite the challenge. 

This thesis embodies all the different types of new skills that I have acquired in the past seven months. As 

a ‘Construction Management and Engineering’-student with a fascination for data, the opportunity 

provided by BAM Infra to combine both data engineering and construction management was the perfect 

combination. From the start on I had the idea that I could completely lose myself in this topic, sometimes 

a bit too much in hindsight. 

Machine Learning and data engineering have been new topics for me. I learned basic programming in 

Matlab during my bachelor and chose an elective on Python programming last year to prepare myself on a 

coding-related master thesis. The research requiring me to learn plenty of new skills, combined with the 

COVID-pandemic, resulted in me losing the overview of my graduation thesis while surviving the 

lockdowns in my 9.0 m2 dorm. I am still very grateful to my supervisors for thinking along to improve my 

focus again, as being able to work again in BAM’s office or on the TU Delft campus improved my work 

ethic once again. 

One of the main aspects of my research process that I would have done differently with the knowledge of 

now is the collection of data and development of the Machine Learning model. The first 1.5 months of 

my research were devoted to literature study, and literature study only. Upon completion of my literature 

study and the expert interviews, it suddenly became clear to me that gathering data on the tender features 

was not as straightforward as I initially thought. This resulted in a delay of the model development, with 

about 2 months of data-cleaning and coding of the algorithms compared to the initial 4 months. So 

instead of focusing solely on single tasks, I would and should have conducted more research-related 

activities in parallel if could do it over again.  
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Appendices 

Appendix A – European Public Procurement Directives 
Several legal frameworks and regulations are in effect to regulate public procurement both nationally and 

internationally. Three European Directives on the subject of Public Procurement are currently active. EU 

Directives are legal frameworks that describe an objective set by the European Union but EU Member 

States are free to interpret them and to transpose the directives into national law (European Commission 

2021b). The European Commission is able initiate infringement procedures when Member States fails to 

transpose the European Directives into national law (European Commission 2021a).  

The EU Directives 2014/23/EU, 2014/24/EU and 2014/25/EU on Public Procurement make sure that 

public procurement within the European Union and its member states adheres to the general principles of 

free administration by public authorities and the principle of non-discrimination, equal treatment and 

transparency (European Union, 2014a, 2014b, 2014c). Active since 2014, all three directives follow 

European Public Procurement in essence but differ in their focus.  

EU Directive 2014/23/EU establishes rules on the award of concession contracts between contracting 

authorities and contracting entities which pursue rights of exploitation(European Union 2014a). EU 

Directives 2014/24/EU and 2014/25/EU both establish rules on procedures for public procurement and 

threshold values on works or services but differ in the involved type of sectors. EU Directive 

2014/24/EU applies to classical sectors like construction and infrastructure whereas EU Directive 

2014/25EU applies to the special sectors of water, energy and transport (European Union 2014b; 2014c). 

The Directives provide rules to ensure a transparent procurement process and high value contracts but 

also include an overview of threshold values. The European Directives apply to tenders or contracts when 

the value of works or services equal or exceed the thresholds as stated in the Directives or adjusted by the 

European Commission (European Union 2014b). National law applies if the value of the described works 

or services is lower than the European thresholds, nevertheless respecting the general principles as of the 

EU. The original threshold values and adjusted values as of January 1st 2020 can be found in table 21. The 

EU re-evaluates the threshold values every two years. 

Table 20 Procurement Threshold Values 

Contract type Original threshold value 
excluding VAT (European 
Union 2014b) 

2020-2021 threshold value 
excluding VAT (European 
Union 2021) 

Public works contract 5 186 000 5 350 000 € 

Public subsidised supply and 
service contract (Central 
governmental) 

134 000 € 139 000 € 

Public supply and service 
contract (sub-central 
governmental) 

207 000 € 214 000 € 

Public service contracts (Social 
services) 

750 000 € 750 000 € 

 

The value of the contract has consequences for the public procurement procedure. European 

procurement procedures have to be followed if the value of the public works or services contract exceeds 

the threshold value as stated in the European Directives (Rijksoverheid 2021).  
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Appendix B - Dutch National Public Procurement Law 
Besides the European Directives, Dutch Public Procurement is also regulated within Dutch national for 

works and services both below and above the European threshold value. The three previously mentioned 

European Directives regarding Public Procurement have been transposed to the Dutch ‘Aanbestedingswet 

2012’ or Dutch Public Procurement Act 2012 (PIANOO 2021d). Dutch National law includes threshold 

values on governmental contracts of 1.000.000 € excluding VAT for works and 80.000 € per subdivision 

of the works (Overheid.nl, n.d., Article 2.18). If contracts do not exceed the Dutch national threshold 

values, it is not mandatory to publicly procure the contracts. 

There are a couple of Dutch procurement documents that complement the Dutch Public Procurement 

Act. The ‘Aanbestedingsbesluit 2016’ or Dutch Public Procurement Decree 2016 elaborates further upon 

the articles of the Public Procurement Act 2012 (PIANOO 2021d). The Dutch Proportionality Guide or 

‘Proportionaliteitsgids’ can be consulted by contracting authorities to provide guidance for “a reasonable 

application of the principle of proportionality (…) every contracting authority must be able to present 

reasons for its choice to deviate from these rules, for example when selecting more requirements.” (Chao-

Duivis 2019). The Proportionality Guide functions as a reference book for contracting authorities on the 

principle of proportionality, as this has not been detailed in the European Directives. The final 

complementary procurement document is the Works Procurement Regulations 2016 or 

‘Aanbestedingsreglement Werken 2016’ (PIANOO 2021d). The Works Procurement Regulations 2016 

describes what types of procedures apply for contracts that are either below or above the European 

threshold value for contracts. 
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Appendix C – Consent Form Protocol 
 

Consent Form for ‘Interviews Master Thesis Bent Schleipfenbauer’ 

  

Please tick the appropriate boxes Yes No  

Taking part in the study    

I have read and understood the study information dated [XX-XX-XXXX], or it has been read to 

me. I have been able to ask questions about the study and my questions have been answered 

to my satisfaction. 

 

   

I consent voluntarily to be a participant in this study and understand that I can refuse to 

answer questions and I can withdraw from the study at any time, without having to give a 

reason.  

  

 

 

I understand that taking part in the study involves a video-recorded interview which is 

transcribed as text and anonymised in the graduation thesis. Video recordings are destroyed 

after transcription. 

 

 

 

 

 

 

Use of the information in the study 

   

I understand that information I provide will be used as input for the graduation thesis of Bent 

Schleipfenbauer of the TU Delft. 

 

 

 

 

 

 

I understand that personal information collected about me that can identify me, such as name 

and address, will not be shared beyond the study team.  

 

 

 

 

 

Future use and reuse of the information by others    

I give permission for the anonymised transcripts that I provide to be archived in OneDrive so it 

can be used for future research and learning. 

 

 

 

 

 

Signatures    

 

___________________  _________________  _________  

Name of participant [printed]  Signature   Date 

   

I have accurately read out the information sheet to the potential participant and, to the best 

of my ability, ensured that the participant understands to what they are freely consenting. 

 

 

 

_Bent Schleipfenbauer___  __________________   _______  

Researcher name [printed]  Signature     Date 
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Appendix D –Transcriptions Exploratory Interviews [CONFIDENTIAL] 

 

Appendix E – Tables of Tender Price influencing Features 

  Appendix E.1 – Tender Features in Price Estimating Literature 
A non-ordered overview of the most important tender price influencing features according to literature 

can be found in table 41. The columns denote the cited authors, while the rows present the names of 

tender price influencing features in order of appearance. The table includes the features that are 

represented in literature at least once. The number in the cell represents the order of importance 

appointed by the authors themselves. 

Table 21 Non-ordered overview of all tender features 

Feature 
no. 

Feature name. 
Odusami&Onukwube 
2008 

Elhag & 
Boussabaine 
1998 

Elhag et al. 
2005 Akintoye 1999 

Elhag 
Thesis 
2002 

1 Expertise of Consultants 1   23  

2 Information Quality 2  4,5 15  

3 Project team's experience 3  2 13  

4 
Tender market / no. of 

tenderers 4 (1-13) 9   

5 Pre-contract design 5  7 11  

6 Complexity (of D&C) 6  8 1  

7 Availability of supplies 7  17 10  

8 
Location (rural / urban / 

inner city / outskirts) 8  43 9  

9 Form of Procurement 9  21 16 x 

10 Method of construction 10  36 4  

11 Project size  11 (1-13) 30 2 1,5 

12 Duration 12 (1-13)  16 1,5 

13 
Anticipated frequency of 

variations 13  1 22  

14 Type of structure 14 (1-13) 44,5 12 (3-11) 

15 Client's financial situation 15  43 6  

16 Site constraints/access 16 (1-13)  6 5 
2*(3-
11) 

17 Type of client 17  16 7  

18 
Amount of specialist 

works 18   20  

19 Buildability 19  18 8  

20 
Expected project 

organization 20   19  

21 
Number of project team 

members 21   24  

22 Amount of floors  (1-13) 27  (3-11) 

23 Type of project  (1-13) 44,5   

24 Slope  (1-13) 26  (3-11) 
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25 
Start conditions (greenfield 

/ greyfield)  (1-13)    

26 Ground conditions  (1-13) 14  (3-11) 

27 Excavation conditions  (1-13)    

28 Stories / Basement levels   12  (3-11) 

29 Market condition    3  

30 
Project finance method / 

funding on time   28,5   

31 Partnering arrangements   41,5   

32 
Priority on deadline 

requirements   3   

33 
Clients experience of 

procuring construction   49   

34 
Clients requirements on 

quality   11   

35 Certainty of project brief   10   

36 
Relationship 

client/contractors   28,5   

37 
Variation orders and 

additional works   4,5   

38 

Toughness of requirements 
(inspection and approval 

of works)   58   

39 
Submission of early 

proposals   25   

40 Confidence in work force   22   

41 
Contractor's financial 

capability   34   

42 Experience similar projects   13   

43 Current work load   40   

44 
Communication levels 

contractor   49   

45 Estimation techniques   59   

46 Planning capability   20   

47 Productivity effects   35   

48 
% main work / % 

subcontracted work   61,5   

49 No. Subcontractors   64   

50 Mark-up %   66   

51 
Record of payments to 

contractor   66,5   

52 
Claims record of 

contractor   23   

53 
Present claims (size and 

quality)   41,5   

54 Accidents on site record   67   

55 Bond/warranty   63   
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arrangements 

56 CDM regulations   65   

57 Type of foundation   37,5  (3-11) 

58 Offsite pre-fabrication   52   

59 Cladding external walls   51   

60 
Complexity building 

services   6   

61 Phasing requirements   15   

62 Quality of finishing   47   

63 Type of contract   46  (3-11) 

64 
Payment type (fixed, cost 

plus, etc)   32   

65 
Tender selection ( open, 

negotiation, two-stage)   21   

66 

Spread of risk between 
parties (client, consultant, 

contractors)   31   

67 
Claims and disputes 
resolution methods   55   

68 
Interviewing of selected 
prospective contractors   57   

69 Labour prices/availability   19   

70 Plant prices/availability   39   

71 Weather conditions   56   

72 Government regulations   60   

73 Interest rate   54 (3-11)  

75 Stability   33   

76 Lead time for materials    18  

77 
Construction site activities 

sequencing    21  
 

Appendix E.2 – Tender Features in Machine Learning Models 
Feature 
no. 

Feature name. Zhang 
et al. 
2015  

Kultin et al. 
2021  

Matel et al. 
2019 

78 Type of station 1   

79 Excavation depth 2   

80 Flat shape 3   

81 Hydrological conditions 4   

26 
Soil conditions 
 5   

8 Surrounding environment 6   

82 Budget  1  

23 Type of work  2  
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12 Duration  3 3 

83 Number of contracts  4  

4 Number of applications  5  

6 Complexity  6  

84 Estimation of business expenses  7  

85 Estimation of project urgency  8  

86 Project intensity   1 

21 
Number of project team 
members   2 

63 Contract type   4 

87 Project phases   5 

11 Project scale   6 

Appendix E.3 – Tender Features in Dutch Tender Practice 
Feature 
No. 

Feature No. of 
Occurences 
(out of five) 

Description 

88 Need for work 2 Whether project teams of the organisation currently have no work, as 
this may drive the contractor to lower its price. 
 

89 Relationship 
with the client 

1 Whether the relationship between the contractor and the client 
considered to be pleasant, based on previous experiences. 

15 Financial status 
client 

1 The financial status of the client may indicate whether the client is able 
to fulfil its financial obligations. 

28 No. of expected 
competitors 

1 The number of expected tenderers increases the competitiveness, with 
more potential ‘prijsduikers’ in need of work. 

63 Type of contract 4 The type of contract, between client and contractor, of the project. 

 

90 Ceiling price 1 The ceiling price is the maximum tender price. This ceiling price is set 
by the client. 

14 Type of object 
 

3 The type of object; road infrastructure, rail infrastructure, real estate, 
tunnels, etc. 

17 Type of client 1 Whether the client is a governmental party or smaller. 

2 Quality of 
information 

1 The completeness and quality of the provided information. 

5 Precontract 
design provided 

1 Whether a preliminary design is provided, precontract, by the client. 

3 Experience of 
team. 

4 Less experienced of the tender team may win the tender, but may 

forget aspects resulting in higher actual expenses.  

 

6 Multidisciplinary 
/ complexity 

4 The complexity and multidisciplinary character of the project. How 
complex are the to-be-completed works, and are many disciplines 
involved? 

91 Cables 
underground 

2 Cable infrastructure underground of rail infra and tunnels. 

12 Planning 3 The expected duration of the project. 

9 Form of 
Procurement  

4 The form of procurement, EMVI or price-only. 

92 Indirect costs 
 

1 Indirect, non-material, costs: site costs, staff, design, risk, mark-up. 
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8 Location 2 The environment of the project, rural or urban. 

11 Project size 2 An estimate of the project in size. 

93 Product-Market-
Combination 

1 Whether the contractor has constructed a similar project for the same 
client before. 

Appendix F – Tender Feature Selection 
 
 
Feature 
no. 

 
 
Feature name. 

Occurences 
Requirement 
No. 1: 
Occurences 
(sum>5) 

Requirement 
No. 2: 
Generic 
Feature 
 

Requirement 
No 3: Data 
in Database 
 

Included in 
Final 
Dataset No. in 

Appendix 
G1 

No. in 
Appendix 
G2 

No. in 
Appendix 
G3 

1 
Expertise of 
Consultants 2   

No Yes No No 

2 Information Quality 3   No Yes No No 

3 
Project team's 

experience 3  4 
Yes Yes No No 

4 
Tender market / no. 

of tenderers 3 1 1 
Yes Yes Yes Yes 

5 Pre-contract design 3  1 No Yes No No 

6 Complexity  3 1 4 Yes Yes Yes Yes 

7 
Availability of 

supplies 3   
No Yes No No 

8 Location  3 1 2 Yes Yes No No 

9 
Form of 

Procurement 4  4 
Yes Yes Yes Yes 

10 
Method of 

construction 3   
No Yes No No 

11 Project size  5 1 2 Yes Yes Yes Yes 

12 Duration 4 2 3 Yes Yes Yes Yes 

13 

Anticipated 
frequency of 

variations 3   

No Yes No No 

14 Type of structure 5  3 Yes Yes Yes Yes 

15 
Client's financial 

situation 3  1 
No Yes No No 

16 
Site 

constraints/access 5   
Yes Yes No No 

17 Type of client 3  2 Yes Yes Yes Yes 

18 
Amount of specialist 

works 2   
No Yes No No 

19 Buildability 3   No Yes No No 

20 
Expected project 

organization 2   
No Yes No No 

21 
Number of project 

team members 2 1  
No Yes No No 

22 Amount of floors 3   No Yes No No 

23 Type of project 2 1  No Yes No No 

24 Slope 3   No No No No 

25 Start conditions  1   No Yes No No 
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26 Ground conditions 3 1  No Yes No No 

27 
Excavation 
conditions 1   

No No No No 

28 
Stories / Basement 

levels 2   
No No No No 

29 Market condition    No No No No 

30 

Project finance 
method / funding on 

time 1   

No Yes No No 

31 
Partnering 

arrangements 
1 

  
No Yes No No 

32 
Priority on deadline 

requirements 
1 

  
No Yes No No 

33 

Clients experience of 
procuring 

construction 

1 

  

No Yes No No 

34 
Clients requirements 

on quality 
1 

  
No Yes No No 

35 
Certainty of project 

brief 
1 

  
No Yes No No 

36 
Relationship 

client/contractors 
1 

  
No Yes No No 

37 
Variation orders and 

additional works 
1 

  
No Yes No No 

38 

Toughness of 
requirements 

(inspection and 
approval of works) 

1 

  

No Yes No No 

39 
Submission of early 

proposals 
1 

  
No Yes No No 

40 
Confidence in work 

force 
1 

  
No Yes No No 

41 
Contractor's financial 

capability 
1 

  
No Yes No No 

42 
Experience similar 

projects 
1 

  
No Yes No No 

43 Current work load 1   No Yes No No 

44 
Communication 
levels contractor 

1 
  

No Yes No No 

45 
Estimation 
techniques 

1 
  

No Yes No No 

46 Planning capability 1   No Yes No No 

47 Productivity effects 1   No Yes No No 

48 
% main work / % 

subcontracted work 
1 

  
No Yes No No 

49 No. Subcontractors 1   No Yes No No 

50 Mark-up % 1   No Yes No No 

51 
Record of payments 

to contractor 
1 

  
No Yes No No 

52 Claims record of 1   No Yes No No 
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contractor 

53 
Present claims (size 

and quality) 
1 

  
No Yes No No 

54 
Accidents on site 

record 
1 

  
No Yes No No 

55 
Bond/warranty 

arrangements 

1 

  

No Yes No No 

56 CDM regulations 1   No Yes No No 

57 Type of foundation 2   No Yes No No 

58 
Offsite pre-
fabrication 1   

No Yes No No 

59 
Cladding external 

walls 1   
No Yes No No 

60 
Complexity building 

services 1   
No Yes No No 

61 Phasing requirements 1   No Yes No No 

62 Quality of finishing 1   No Yes No No 

63 Type of contract 2 1 4 Yes Yes Yes Yes 

64 
Payment type (fixed, 

cost plus, etc) 1   
No Yes No No 

65 

Tender selection ( 
open, negotiation, 

two-stage) 1   

No Yes No No 

66 

Spread of risk 
between parties 

(client, consultant, 
contractors) 1   

No Yes No No 

67 
Claims and disputes 
resolution methods 1   

No Yes No No 

68 

Interviewing of 
selected prospective 

contractors 1   

No Yes No No 

69 
Labour 

prices/availability 1   
No Yes No No 

70 
Plant 

prices/availability 1   
No Yes No No 

71 Weather conditions 1   No Yes No No 

72 
Government 

regulations 1   
No Yes No No 

73 Interest rate 2   No Yes No No 

75 Stability 1   No Yes No No 

76 
Lead time for 

materials 1   
No Yes No No 

77 
Construction site 

activities sequencing 1   

No Yes No No 

78 Type of station  1  

No No No No 
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79 Excavation depth  1  

No No No No 

80 Flat shape  1  

No No No No 

81 
Hydrological 

conditions  1  

No Yes No No 

82 Budget  1  

No Yes No No 

83 Number of contracts  1  

No Yes No No 

84 
Estimation of 

business expenses  1  

No Yes No No 

85 
Estimation of project 

urgency  1  

No Yes No No 

86 Project intensity  1  

No Yes No No 

87 Project phases  1  

No Yes No No 

88 Need for work   2 No Yes No No 

89 Relationship with the 
client 

  1 No Yes No No 

90 Ceiling price  

 
1 
 

No Yes No No 

91 Cables underground  

 
2 
 

No No No No 

92 Indirect costs 

  
1 
 

No Yes No No 

93 
Product-Market-

Combinations   1 

No Yes No No 
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Appendix G –Data Cleaning Steps 
The data preparation steps as described in section 5.1 are followed in the upcoming subsections.  

• Appendix G.1 illustrates the dimensions of the database exports. 

• Appendix G.2 explains the context behind the selected variables. 

• Appendix G.3 provides an overview of the raw dataset. 

• Appendix G.4 explains the completed data cleaning steps and its results. 

Appendix G.1 - Raw Data from Tender Database 

Two different datasets of the tender database have been acquired to construct a dataset as input for the 

Tender Price Predictor. The most important features of each dataset need to be combined based on 

individual tender reference codes, as information on specific tenders and the performances of competitors 

are found in different databases. 

Export 1: Overview Tender Opportunities 

The first data export contains an overview of all potential tender opportunities. The dataset provides 

information on each potential tender, from small to large. Tender dataset 1 describes a total set of 12.681 

tenders on with 42 columns / variables. An overview of the most relevant variables is illustrated in table 9.  

Table 22 Overview Data Tender Opportunities 

Variables Dataset 1 (Dutch) Data Type Non-Empty Entries 

Referentie Numerical 12681 

Status Categorical 12681 

Start-Realisation Date 12265 

End-Project Date 12296 

Contract Scope Categorical 12626 

Contract Type Categorical 12608 

Main Deliverable Categorical 2597 

Business Type Categorical 11870 

Tender Category Categorical 1906 

Price / quality Categorical 12627 

Total Entries  12681 
 

Export 2: Overview Performances Tender Participants 

The second data export contains a more selective overview on the performance of each separate 

competitor per tender. Information is collected on the submitted tender prices per competitor, the 

submitted tender price of BAM and, in case of EMVI tenders, the fictive discounts provided per 

submitted tender. Tender dataset 1 describes a total set of 11.794 tenders on with 36 columns / variables. 

An overview of the most relevant variables is illustrated in table 24. 

Table 23 Overview Performances Tender Participants 

Variables Dataset 2 (Dutch) Data Type Non-Empty Entries 

Referentie Numerical 11794 

Estimate Numerical 11789 

Tenderer Categorical 11794 

Price Numerical 10403 

Fictive Discount Numerical 2729 

Total Entries  11794 
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Appendix G.2 - Raw Tender Data Explanation 

This section is devoted to the explanation of the tender variables, and how each variable relates to the 

tender features. The use of some variables as input data may be more straightforward than others, but 

which will be explained in subsections 5.2.1 – 5.2.15. The data-entries discussed in this section are raw 

datapoints, which means that the data is yet to be cleaned. As a result, the final dataset will be much 

smaller in size. This is a result of the tender features representing just a single column of the final dataset, 

while the final dataset consists of rows (representing the individual tenders) with no empty columns. 

Referentie (Data Type: Numerical) 

The ‘Referentie’ is the reference number of the tenders. This number is used throughout the information 

systems of BAM, and makes it able to combine the data throughout the datasets. With the use of the 

Pandas library it is possible to combine the datasets, and create a new dataset which solely includes entries 

that have values for these variables. 

Status Reden (Data Type: Categorical) 

Status refers to the current state of the tender process. This variable is used to exclude tenders which are 

either not finished yet, or have been missed by BAM. Tenders in which BAM did not participate are not 

useful to incorporate as BAM would not have a tender price for these selected tenders. Tenders which are 

either won or lost are included in the final dataset. 

Start-Realisatie / Einde-Project (Data Type: Date) 

Start-Realisation and End-Project, the expected dates of realisation and finalization of the project, are used 

to determine the expected duration of the project. The duration of the projects, not to be confused with 

the tender period, is estimated during the initial tender phase. The period is determined by the difference 

between the initial starting date and the completion date.  

Contract Scope / Type (Data Type: Categorical) 

Various types of contractual agreements have been made between BAM and the client for the works and 

services provided. Each type of contract has its own corresponding legal structure and implications, e.g. 

type of payments, responsibility and agreements. Therefore, the feature ‘Type of Contract’ has been split 

in two measurable variables; the scope of the contract, and the type of contract. The exact implications of 

the separate contracts are beyond the scope of this research study.  

Main Deliverable (Data Type: Categorical) 

‘Main deliverable’ denotes the type of object that is delivered for the tender, and is documented explicitly 

in the tender database. The feature has been added recently to the database, which results in a relatively 

large amount of missing values. 

Business Type (Data Type: Categorical) 

The ‘Business Type’ variable describes the origin of the business or client. What stands out, is that it 

appears that large public clients e.g. Rijkswaterstaat and Prorail appear to be missing from the data entries. 

This is most likely a mistake within the system itself, as he input is determined within a drop-down menu. 

This means that either the cells are missing, or Prorail and Rijkswaterstaat are logged as Governmental 

parties.  
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Tender Category (Data Type: Categorical) 

The ‘Tender Category’ is qualitative label given to tenders by BAM. Tenders may be given 5 different 

types of labels, from ‘Category E’ up until ‘Category A’. Category A is given to the largest, most complex 

tenders while Category E is given to small, non-complex tenders. The following criteria are taken into 

account: 

• Order Value • Region • Ground conditions 

• Contract Type • Logistics • Client Track Record 

• Contract Experience • Organization Complexity • Client Relationship 

• Risks • Technological Complexity 
 

 

The variable Tender Category is taken into account as a degree of total project complexity, as the separate 

scores on the criteria are not provided in BAM’s database. Ideally, technological / organizational are take 

into account as stand-alone features but this is not possible. 

Price / Quality (Data Type: Categorical) 

Price / quality denotes the form of procurement of the tender. Tenders are divided in two forms of 

procurement, either price only or quality i.e. EMVI tenders. In the case of EMVI tenders, fictive discounts 

are subtracted from the submitted tender price when certain quality criteria are met. This is an important 

metric to take into account, as the lowest price does not necessarily win the tender until the fictive 

discount is subtracted from the tender price. 

Estimate (Data Type: Numerical) 

An estimate of the size of the tender is provided during the early tender phase. This is not a final or 

conclusive estimate, but the ballpark estimate serves as a general indicator of how large the project is 

going to be. This tender features provides a starting point of the tender pricing.  

Tenderer (Data Type: Categorical) 

The tenderer is the name of the corresponding tenderer that submitted the bid. By determining the 

amount of unique participants that participate in a tender, it is possible to construct a numerical value 

which denotes the amount of tenderers per tender. In essence the data type is categorical, but this is 

changed to numerical by counting the amount of unique participants. 

Price (Data Type: Numerical) 

Price is the submitted tender price of each tenderer. The winning tender price depends on the bid of the 

competing tenderers, BAM, and the form of procurement. When tenders are procured through the 

EMVI-procedure, the discounted tender price is taken into account as this is the tender bid that closes the 

deal. In case of price-only tenders, no quality plans are taken into account resulting in no fictive discounts.  

Fictive Discount (Data Type: Numerical) 

Fictive discount awarded to tenderers in case of EMVI tenderers. By subtracting the discount of the 

submitted tender price it is possible to determine the definitive tender price. The tenderer with the lowest 

‘fictive’ tender price is awarded the tender. 
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Appendix G.3 - Overview Raw Dataset 

After selecting the most relevant columns of every dataset, a final dataset is constructed by combining the 

three dataset exports. The data exports are concatenated on the variable areferentie’. In this case, this 

means that information of data exports 1 and 3 are ‘glued’ on data export 2. This results in a dataset 

containing tender price information of every individual tenderer per tender, combined with more general 

information of the features in data exports 1 and 3. The final ‘raw dataset consists of 11.844 separate 

tenderers with 25 descriptive columns, of which some are temporary.  

As not all datapoints will have values for some columns, so-called ‘Not A Number’-values or NaNs for 

short are used to replace these empty cells. An final overview of the missing values is provided in table 25. 

Table 24 Missing Values Dataset 

Variable Name Raw Dataset Number of Missing Values 

Referentie 0 

Estimate 5 

Number of Tenderers 0 

Tenderer 0 

Price 1396 

Fictive Discount 9085 

Empirics 9094 

Status 6692 

Name Project 6692 

Business_Unit 6693 

Start Realisation 6946 

End Project 6819 

Contract_Scope 6696 

Contract_Type 6692 

Main_Deliverable 9499 

Price / Quality 6692 

OG_Type 7176 

Tender Category 10400 
 

How to cope with these missing values is discussed in subsection 5.3.3 and 5.3.4, as each variable requires 

its own type of strategy.  
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Appendix G.4 - Cleaning the Raw Tender Data 

The raw dataset as identified in the previous section is not ready to be used as input for the Tender 

Predictor. The raw dataset may contain various double entries, double columns, missing values and 

outliers which may strongly influence the quality of the model’s predictions. In order to cope with this, 

various data cleaning steps are undertaken to improve the quality of the dataset.  

Removing duplicate columns 

One pair of duplicate columns was found in the raw dataset: 

Table 25 Duplicate Columns 

Duplicate Column Name Amount of Missing Values 

Estimate_1 6375 

Estimate_2 5 
 

The ‘Estimate _x’ column denotes the estimated size of the tender in €. The large amount of missing 

values of ‘Estimate_1 is a consequence of the concatenation of data exports 1 on data export 2. 

Estimate_1is dropped from the initial dataset. 

Removing duplicate datapoints or rows 

For the removal of duplicate datapoints, a distinction has been made between two types of ‘duplicate 

datapoints’. First of all, all duplicate rows are dropped from the dataset. Duplicate rows implies that the 

entries for all columns of certain datapoints are equal, resulting in identical duplicates.  

Second of all, during closer investigation it appeared that some of the estimates in Estimate_2 were 

identical to the winning tender price. The probability of the early estimate being identical to the winning 

tender price is extremely low, and results in the Machine Learning model being more positively biased at 

first sight. This may be a result of the estimated size being filled in after completion of the tender. As this 

does strongly influence the model’s apparent accuracy, all double entries in these columns are dropped. 

This action significantly influences the size of the dataset, resulting in a decrease of 1189 tenders in which 

BAM participated. 

Besides double entries within the ‘Estimate’ column, a large number of project entries had unlikely low 

values. In total, 36 entries included a project estimation of either 0, 1 or 30 €. These values have been 

excluded from the dataset as well as these are not representative for the actual size of the project. 

Marking and Replacing Missing Values 

Two types of data are considered during the marking of missing values: numerical and categorical features. 

Each datatype has its own coping strategy, with numerous coping strategies being available for missing 

numerical entries. Missing categorical values may be replaced by ‘Unknown’, as all entries in the columns 

are strings i.e. in text form. Deleting the entire datapoint due to a missing description would be a waste of 

data 
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This differs when the missing values are of the numerical datatype, and depend on the context of the 

variable. An explanation of coping strategies for numerical features may be found below in table 27. 

Table 26 Coping Strategy Missing Values 

Feature Name Dataset Number of Missing 
Values 

Coping strategy Explanation 

Estimate 5 Dropping rows Rows without an estimate 
are dropped from the 
dataset. Replacing by 
another value, e.g. the mean, 
may influence the accuracy 
of the model. 

Number of Tenderers 0 - - 

Tender Price 1396 Dropping rows Rows without the tender 
price of the project are 
dropped from the dataset. 
Without a tender price to 
predict, it is impossible to 
include the datapoint in the 
dataset. 

Fictive Discount 9085 Filling with ‘0’ The absence of a fictional 
discount in the dataset is not 
necessarily a problem. Price-
only tenders do not have a 
fictional discount. 

Duration 6692 Dropping rows Rows without the duration 
of the project are dropped 
from the dataset. Replacing 
by another value, e.g. the 
mean, may influence the 
accuracy of the model. Rows 
are dropped without a start 
or final date, or when the 
duration is negative. 

The ‘Duration’ feature is engineered by taking the difference between ‘Start realisation’ and ‘End project’. 

If either column contained a missing value it was still possible to come up with a duration, which was 

either very large or negative. Rows with zero-entries in either column have been dropped. 

After replacing the identified missing values, it is possible to complete the final step of data cleaning.  
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Identifying outliers by means of statistics 

Outliers may influence the model’s accuracy, especially in cases of linear regression. To cope with this, 

statistics are used to identify the outliers. A statistical description of the cleaned numerical variables, 

including outliers, can be found in table 28. One proxy-variable is added to check whether there are 

anomalous ‘Estimate’-submissions compared to the winning tender price. 

Table 27 Stochastic Descriptions Numerical Features 

 No. of 
Tenderers 

Tender Price  Duration Estimate 
Estimate TenderPrice

Diff
TenderPrice

−
=  

Unit [n] [€] Months [€] [-] 

count 320 320 320 320 320 

mean 4.66 2433801.27 8.01 3500213.99 2.32 

std 3.12 15235174.63 10.38 26618710.64 -0.97 

std
CV

mean
=

 0,67 5,89 1,30 7,60 

 
5,53 

min 2.00 13900.00 0.03 8578.00 -0.97 

25% 3.00 309300.00 2.03 310750.00 -0.02 

50% 4.00 626500.00 4.12 630000.00 0.17 

75% 5.00 1161749.75 9.84 1046250.00 0.41 

max 28.00 259209545.00 85.20 447000000.00 39.82 

 

It is noticed that the coefficient of variation (CV) is relatively high for a number of numerical features. A 

high CV, the ratio between the standard deviation and the mean, implies that the distribution of the 

variable is rather skewed with long tails and therefore outliers. The proxy-variable appears to be rather 

skewed, which means that the ratio between estimate and tender price is extremely high which can also be 

derived from the max value of 39.82. A max value of 39.82 means that a specific project that the estimate 

in euros is 40 times as large as the final tender price. Such anomalies may be mistakes regarding input, or 
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extreme projects. Investigation of the cause remains outside the scope of this research but should be taken 

into account upon completion. 

To cope with these outliers, the Interquartile Range (IQR) method is applied. The IQR-method can 

applied to get rid of these outliers and decrease the skewness of the distributions. The distance between 

the first and third quartile of the data points in the datasets, also known as the interquartile range, is the 

namesake of the method and illustrated in figure 14. 

 

Figure 27 Interquartile Range illustrated, Source: (Chaudhary 2021) 

The distance between the Q1 and Q3 values is used to scale the lower and upper bounds of the final 

dataset to eliminate outliers (Chaudhary 2021). Usually, 1,5 * IQR is either subtracted from Q1 to 

determine the lower limit and 1,5*IQR is added to Q3 respectively to denote the upper limit of the 

dataset. After applying the ‘1,5-IQR method’, less skewed distributions for the separate features are 

obtained.  

Data Transformation 

The next step in the data preprocessing approach is the transformation of the cleaned variables. Based on 

the obtained probability density functions of the numerical, the standardization approach as explained in 

3.4.2 is chosen. Data transformations in general make for better model performances, when scaled to a 

similar interval. 

The standardization of the features resulted in new distribution functions and boxplots for the 

corresponding features. Given that the probability distribution functions appear to fit a normal 

distribution, it may be assumed that the use of the StandardScaler() function is justified. The values are 

scaled after all preprocessing steps. 

Correlation Tender Features and Feature Engineering 

Pairwise plots have been generated in order to determine whether features should be modified. These 

bivariate distributions visualize how the separate features relate to each other. The diagonal entries contain 

univariate distributions of the variable, as every feature is plotted on both axes. To provide more 

information to the plot, data-points are coloured based on whether BAM won the tender or not.  

Both SVRs and DTRs tend to perform well on non-linear problems. This is not necessarily the case for 

Linear Regression. The pairwise plot is investigated whether non-linear relations can be identified between 

the selected output variables and numerical values. This will not be considered for datapoints of one-hot-

encoded categorical features as these features have 4 possible locations (any combination of x and y being 

either 0 or 1). The pairwise plot of the numerical features ‘Number of Tenderers’, ‘Duration’ and 

‘Estimate’ together with the output variables of ‘Ratio’ and ‘Tender Price’ are provided in figure 15.  
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Figure 28 Pairwise Plots Numerical Features, Source: Own Image 

 It also appears that both the ‘Duration’ as the ‘Number of Tenderers’ bivariate distributions with the 

tender price appear to relate non-linearly. In order to test this, two new features are created by taking the 

square root of both ‘Duration’ as the ‘Number of Tenders’, and it is investigated how these corelate with 

the tender price. 

To investigate the impact of the engineered features, a correlation plot is generated to investigate how the 

newly constructed features interact with the tender price. Figure 16 on the next page illustrates how the 

separate features correlate with each other.  
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Figure 29 Correlation Plot Dataset, Source: Own Image 

Upon investigation, it is noticed that Sqrt_Duration has a stronger correlation with the tender price (0,43) 

than the original Duration (0,41). The Sqrt_NoTenderers has a slightly weaker correlation (0,44) with the 

tender price than the original feature (0,45), so the Number of Tenderers features is not modified. Strong 

correlations exist between the original and modified ‘Duration’ and ‘No_Tenderers’ respectively. The 

weaker correlating features with the TenderPrice are dropped from the dataset. 

Also, it should be noted that strong correlation exists between the ‘Estimate’ and ‘TenderPrice’ features. 

This could have been expected, but the correlation is stronger than initially assumed. Recursive Feature 

Elimination should point out whether the remaining features could improve the accuracy of the model 

compared to solely using the ‘Estimate’ feature.  

For the remainder, features that appear to have a weak relationship with the tender price are not omitted 

from the dataset. It may be the case that features one on one do not strongly correlate with the tender 

price, but they may strongly correlate when combined with other features. Feature set combinations are 

optimised in subsection 5.6.  
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Dimensionality Reduction 

As discussed in subsection 3.4.2, two popular methods of dimensionality reduction are RFE and PCA. 

Both types have been considered to reduce the amount of features used as input. 

In PCA, PCs are created by combining uncorrelated features and dropping these features from the 

columns. While it does improve the performance and reduces the computational costs, it does affect the 

interpretability of the problem. As the original features are combined into new ones, it becomes harder to 

understand how the original features affect the output variables. This increase in complexity, together with 

a lack of applicability for categorical features, results in PCA not being considered as an effective 

dimensionality reduction tool for this specific research. 

Recursive feature elimination is implemented in the optimization of hyperparameters. Within the 

hyperparameter optimization, the amount of selected features is taken into account. The results of this 

hyperparameter analysis are provided in chapter 6. 
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Appendix H –Transcriptions Validation Interviews [CONFIDENTIAL] 
 

Appendix I – Decision Tree Visualised (DTR) 

 

 


