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1 Introduction

During the past few years, financial markets have been a growing topic of discussion. There
is a large variety of financial instruments being traded on these markets of which stocks and
bonds are most generally known. Options are derivative products. The value of these products
is derived from another asset, usually referred to as the underlying asset. When options become
more complex and are not seen as “standard” they are referred to as exotic options. A specific
type of these is the barrier-option. This means that an option either becomes worth nothing
when the price of the underlying asset hits the value of the barrier, or that the option is worth
nothing unless the underyling asset hits the value of the barrier.

In this thesis the goal is to find a model that allows for pricing of options while allowing control
over the forward-start volatility and adhering to the market implied volatility. This is done by
using the Collocating Local Volatility (CLV) model and using this with two different implemen-
tations. First it is explained how options are priced in a basic way. After this, the Black-Scholes
model for options is derived. From this we see the Black-Scholes model does not incorporate the
implied volatility, thus another model is required. The local volatility model is then looked at
and derived. This model does not allow for control of the forward-start volatility so we turn to
the Collocating Local Volatility model. The CLV model is derived and implemented using the
Finite Difference Method (FDM) and Monte Carlo (MC) simulation. The different models are
compared to see where they differ and a reasoning of when to choose which method is discussed.



2 Option price modelling and the Black-Scholes model

In this section we will discuss what is the basics of option pricing and from this determine the
famous Black-Scholes model. We will look at the weaknesses of this model and look into different
models that overcome some of these weaknesses.

2.1 What is an option?

To understand what an option is we first need to know what an asset is. The term asset describes
an object which has a value, which is known at this moment, but might change in the future.
Gold is an example of an asset, as are shares in a company.

We define a European call option: A European call option gives its owner the right, but not
the obligation, to purchase a predetermined asset at a predetermined price at a predetermined
future date. The price for which the asset can be bought in the future is known as the strike
price, or excercise price. The date at which you can excercise the option is called the maturity
time or expiry time.

Suppose your bank gives you a European call option that gives you, the holder, the right to buy
10 shares in Royal Dutch Shell for K = € 100 six months from now. After six months you will
choose whether or not to exercise your option. The sensible choice depends on the asset price:

1. If the value of 10 shares of Royal Dutch Shell is below € 100 you will not excercise your
option, since you can buy these shares for less money in the market. We say that the
option is out-of-the-money (OTM).

2. If the value of 10 shares of Royal Dutch Shell is above € 100 you will excercise your option,
since you can now sell these shares for more money in the market and make a profit. We
say that the option is in-the-money (ITM).

Because you cannot lose money when you have this option, while having a chance to earn money,
the option must have a certain value and the bank will not give it to you for free. The question
now becomes, what will you have to pay for the option? This can be rephrased to the question:
What is the fair value of this option?

Define the asset price as S(t) given the asset price at time ¢ and K the strike (or excercise)
price. Note that that for a European call option the payoff is (S(T") — K) if S(T') > K at expiry
time and 0 if S(7') < K. Thus the value of the European call option V¢ at maturity 7' is

Vo = max(S(T) — K, 0).



Payoff at maturity
o

Asset price a:(matumy S(T)
Figure 1: Payoff of a call option at the excercise time of the option.

A put option works the same as a call option, but has the possiblity of selling an option instead
of buying an option. So a put option gives the holder the right to sell a predetermined asset, at a
predetermined price at a predetermined future time. This means that the holder of a put option
will excercise his/her option and sell an asset for strike price K if the asset value at expiry S(T")
is smaller than K. We find that the value of the European put option Vp at maturity is:

Vp = max(K — S(T),0).

Payoff at maturity
o

1
K
Asset price at maturity S(T)

Figure 2: Payoff of a put option at the excercise time of the option.

2.2 Stochastic processes and martingales

Now we have established the basic idea about how an option works, we need to delve a little
deeper into the underlying stochastic processes. The mathematical view of stochastic processes,
brownian motions and martingales are presented which are used to construct models for asset

pricing.
2.2.1 Stochastic processes and Brownian motions

A stochastic process X () is a collection of random variables which are indexed by a time variable
t. Suppose we have a collection of time points 11,75, ..., TN and we are at time point T}, with



Ty < Ty, < Tx. Untill now we have observed values X (T1), X (T%),..., X (T);). We need to use
some mathematical tools to show we have knowledge of a stochastic process upto a certain time
Ty.. We do this with the help of a filtration. To construct this we order o-algebras.

F(Tp) = o {X(T}) : 1 < k < i}

Note that this gives us the property that F(77) C F(Tz) C --- C F(T). Thus the information
that is available to us at time T} is given by F(T}). We call a process F(t)-measurable when
we know the value of this process Vs < t. A simple example of this is the stock price process,
we can find historical values of the stock price process, thus we know the realizations, but we
do not know what is going to happen to the stock price in the future.

A Brownian motion (also known as a Wiener process) is often used to construct a Stochastic Dif-
ferential Equation(SDE) and is a fundamental stochastic process. A process W (t) is a Brownian
motion if

1. W(to) = 0 almost surely (which means P [W (to) = 0] = 1)

2. W (t) is almost surely continous (which means P [lim Wi(s)=W({)| =1)

s—t

3. W(t) has independent Gaussian increments which means that Vt; < ty < t3 < t4 we know
that W(te) — W(t1) L W(ty) — W(ts). The distribution of the increment W (t) — W (s) ~
N (0,t — s) for s € [to,t).

A brownian motion is the continous time version of a random walk.

2.2.2 Martingales and It6’s lemma

Let us consider a probability space (§2, F,Q), where € denotes the collection of all possible
outcomes, F(t) is the o-algebra and Q is the probability measure. Assume the process X (t) is
right continous and its left limits exist for ¢ € [ty, T]. We call X (¢) a martingale with respect to
the filtration F(¢) under the measure Q if V¢ < oo the following holds:

L E[|X ()] < o0
2. E[X(t)| F(s)] = X(s) for s < t.

This implies that the expected future value for a martingale is its current value. The notation
E[-|F] is the conditional expectation under the measure Q where F is the filtration described
previously. Note that the Brownian motion is a martingale.

One of the assumptions of the Black-Scholes model which will be discussed in chapter 2.4 is that
the asset price S(t) follows a Geometric Brownian Motion (GBM). This means that it satisfies
the Stochastic Differential Equation (SDE)

dS(t) = pS(t) dt 4+ aS(t) dWE(t)

with S(tg) = Sp. The Brownian motion in this is W (¢) under the P measure, which is the so
called real-world measure.
We will now state [t6’s lemma which will later be used to derive models for option pricing.

Theorem 1 (It6’s lemma). Suppose process X (t) satisfies the SDE

AX(t) = pu(t, X () dt + o(t, X (1)) dW (t)



with X (tg) = Xo. Suppose also that for all x,y € R there exists a positive N such that

lu(t, ) — u(t,y)|? + |o(t,z) — ot y)|* < N |z -y

ut, )] + lo(t,2)” < N (1+[af) .
Let g(t, X), X = X(t) be a function of X and t with continous partial derivatives %, E%%, %.
Then the stochastic variable Y = g(t,X) is also a stochastic process governed by the same
Brownian motion W (t) with dynamics:
dg dg | 1 4 9%y dg
dY(t) = | = tL,X)=—= 4+ -0“(t,X)—= | dt+ ==0o(t, X) dW(¢).
(0= (50 + it 0 5% + 300 0055 ) aet a(e. ) aw (o)

The proof can be found in several books on stochastic processes such as [2] and is not of interest
for this thesis.

2.3 Option pricing principles

It is now clear that options have value, thus if you trade them, you must agree on a price. One of
the most important concepts of option valuation is the no arbitrage principle. This principle
says that there is never the opportunity to make a risk-free profit that gives a greater return
than the interest gained by depositing money in a bank. Essentially this means that if you want
to make more money than the interest gained by putting money on a bank account, you have to
take more risk. Assume there exists a risk-free interest rate r at which we can lend and borrow
for any amount.If € 100 is deposited now, the value in one year will be € 100-¢e". The other way
around, if we have € 100 in a year, the value now is € 100 - e~". From this we find a relation
between the European call and put options. Consider a call option and a put option on the
same asset with strike price K and expiry date T. We will now consider two portfolios:

rT

1. II4: one call option Vo and K - e™"* cash

2. II4: one put option Vp and one asset S.

At expiry, the first portfolio’s worth is
max(S(T) — K,0) + K(e7™T - ") = max(S(T) — K,0) + K = max(S(T), K).
At expiry the second portfolio has value:
max(K — S(T),0) + S(T)(e™™" - &) = max(K — S(T),0) + S(T) = max(K, S(T)).

Since these two portfolios always give the same payoff, it is logical that they must have the same
value at any time between now and expiry. Therefore we can conclude that

Voe+ Ke ™ =Vp+ 8.

This relation is called put-call parity. Note that if the values of portfolio A and B differ,
we can make a risk-free profit, thus allowing arbitrage. If the value of 114 > IIp we would
sell the call option and borrow the money and buy IIg. This would directly give us the value
M4 —IIp > 0, thus a risk-free profit instananeously. If IIp > 114 we get a risk-free profit in a
similar manner.

One of the most important assumptions made in pricing an option is the Efficient Market
Hypothesis, which states that asset prices(in the market) fully reflect all available information.
This essentially means that if we discount asset prices by the interest rate this is a martingale.



So under the risk-neutral measure the discounted stock price is a martingale. Since we can
construct a replicating portfolio for an option, we see that the discounted value of this must also
be a martingale. So

for all ¢t € [tp,T]. This also holds for options, so the discounted option price is a martingale.
Because we know the terminal condition for European options, we can express the option value
now as the expectation of the discounted payoff:

EQ [%‘ﬂm] =31 = V)

2.4 Black-Scholes model

Fisher Black and Myron Scholes published their article [3] in 1973 explaining a model on option
and stock dynamics. It is to this day one of the most important models in the pricing of deriva-
tives and Myron Scholes and Robert Merton (who gave the mathematical understanding for this
model) received the Nobel prize for this. The Black-Scholes equation translates the problem of
pricing a European option to solving a stochastic partial differential equation (stochastic PDE)
with a certain final condition. In this section we will see how the PDE is derived and what its
solution is.

2.4.1 Derivation of the Black-Scholes PDE

The Black-Scholes model is based on the following assumptions:

1. There is a constant risk-free interest rate r at which we can borrow and lend money in
any amount.

2. The asset price follows a geometric brownian motion with constant drift and volatility.
3. The stock pays no dividend.

4. There are no arbitrage possibilities.

5. It is possible to buy and sell every amount of stock, including fractions and short selling.
6. There are no transaction costs on trading.

Since we assume that the asset price follows a geometric brownian motion we see that
dS(t) = rS(t) dt + o dWE(t)

Consider the money-savings account M (¢) with dM (t) = rM(t) dt with M (tp) = 1. We know
that the discounted value of options and assets are martingales. So

V(L) = M(t)E {V(f’Tf) ‘ }"(to)] .

M
We assume there exists a continously differentiable function ITy = Iy (¢, S) such that

V(T,S) V(t,S)
M(T) 'f ““] = M)

Iy (¢, 5) = E© [



Since the discounted option value is a martingale we see that:
14 1 v 1 v
dily =d|—)=—dV - — dM = — dV —r— dt.
v <M> YA Ve Y T
Looking at an infinitely small change in V' we find using [t6’s lemma:

2
dV = (W +TSa—V + 02528—‘/

1
i Q
5 55 T 3 852> dt + oS dW.

This gives us

2
dIly = % <(W - sV + 10252w> dt + oS dW@> — 7‘% dt

ot o8 2 082

Since ITy must be a martingale, the dynamics of IIyy cannot contain any dt terms(since the
expectation of a martingale is not time dependant). Therefore
1 0*V
- S—— + —0?5°— —rV =0.
ot s T27 7 gsr T
This is known as the Black-Scholes PDE. For the solution to be well-posed we require a final

condition, which logically is the payoff function at time 7.

2.4.2 Solution to the Black-Scholes PDE

The solution to the Black-Scholes PDE is known analytically for European call and put options.
From an economical perspective it is easy to see that the value of an asset must always be greater
than or equal to zero, and the option satisfies its dynamics from the moment of being issued to
the expiration time. This means we have S € [0,00) and ¢ € [0,T]. For a call option we know
that

Ve (S, T) = max(S(T) — K, 0).
Furthermore, if the asset price is zero, thus the asset has no value, this means the option has no
value. Thus

Ve(0,t) =0, Vtelo,T].

If we now have a very large asset price, so large that it is extremely unlikely that it will go
out-of-the money, we can see that

Vo(S,t) =S —K-e " for § > K.
This holds because the option value is the discounted expected payoff. These 3 conditions make
sure a unique solution exists for the value of a call option:
Vo(S,t) = SFyr,1)(d1) — KC_T(T_t)FN(U,l)(d2)~

Where N(0,1) is the standard normal distribution and F' denotes the Cumulative Distribution
Function (CDF).
o log(§) + (= 0T -1
! oVT —1t ’
dy =dy — o/ (T —t).
Using put-call parity we can now also determine the price of a European put option:
Vp(S,t) = Vo(S,t) + Ke 7T — g
= Ke"T70(1 - Frro,1)(d2)) + S(Fa0,1)(d1) — 1)

= Ke " T Epr1y(—d2) — SEp(o,1)(—da).
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2.4.3 Barrier options under the Black-Scholes model

In the previous section a formula was derived to price European options, options whose payoff
depend on the strike price and the asset price at expiry. There is a large variety of other types
of options, referred to as exotic options. There are usually two features that make an option
more complex:

1. Path dependency: the way in which the payoff depends on the asset path S(t) for t € [0, 7],
2. Early excercise is allowed.

For these exotic options we usually cannot find exact expressions for the option value, which
means we must approximate the price. This is usually done with a Monte Carlo method and
simulating many asset paths or numerically approximating the solution to the Black-Scholes
PDE.

A barrier option is an option whose payoff switches either on or off if the asset price crosses a
pre-determined level B. A down-and-out call option for example has the same payoff as a regular
European call option, unless the asset price goes below a pre-determined barrier B < Sy at any
time in [0, 7.

For the value of a down-and-out call option we now write Vo g(S,t). If B < K we can express
the solution to the Black-Scholes PDE analytically by:

S\'"=_ /B?

It is logical that the down-and-out call option is worth less than a regular European call option
and this is reflected in the above expression. Other types of barrier options, such as an down-
and-in put option, can be written in terms of call and put options as well.

2.5 Weaknesses of the Black-Scholes model

The Black-Scholes model is based on a number of assumptions, which do not always hold in the
real world as can be seen in financial markets as can be read in [4]. Especially the assumption
that the volatility is constant over time is not always realistic. Furthermore in markets there
is evidence of a so called volatility smile/skew which will be discussed later. This has been
shown extensively and this is why banks and other financial institutions will usually sell their
derivatives for a different price than the Black-Scholes price.

Even though the Black-Scholes model has weaknesses it is widely used, because it is easy to
calculate, a good approximation for further calibration and reversible. The reversibility will be
discussed in the implied volatility section (3.2).

11



3 Implied volatility and the local volatility model

In this section different choices of volatility are presented and implied volatility will be explained.
Futhermore the local volatility model will be derived and after this an alternative representation
of the local volatility will be derived, which is useful since it puts the local volatility in terms
of the implied volatility. The local volatility model is used to overcome the weakness of the
Black-Scholes model of not allowing different volatilities for different strike prices at the same
time to maturity.

3.1 Time dependent volatility

Suppose we want to extend the Black-Scholes model with a volatility parameter that is not
constant, but time dependent. We now get:

dS(t) = r(t)S(t) dt + o (t)S(t) dW (¢)

If we now take two stochastic processes X (t),Y (¢), that are constructed with the same Wiener
process:

dX(t) = (7’ - ;a%)> dt + o(t) AW (1),  dY(t) = <r - ;ay> dt + oy dW (1)

where oy denotes a constant volatility for the process Y. If we look at the expectations we see:

E[X(T)] = X, + /OT <7“ - ;02(75)) dt, E[Y(T)] =Y+ <r — ;ai) T.

We now look at the variances:

Var [Y(T)] = 03T
T 2
Var [X() = E [X*(7)] - BIX@D) = | [ o) aw(o)]

We know from It0’s isometry that

2

EUOTg(t) dW(t)] :/OTE[g2(t)] dt.

Thus
2

E[/OTa(t) dW(t)] :/OTE[O'2(t)] dt=/0T0'2(7f) dt.

So we find:
T
Var [X(T)] = /O o2(1) dt.

The variances of X (7') and Y (T) are equal if

T
Var [X(T)] = /0 o?(t) dt = 02T = Var [Y(T)]

1 /7
J%:T/O o?(t) dt

[ T
oy = ;/0 o2(t) dt.

12



If we now take Xy = Y we see that E[X(T")] = E[Y(T")]. This ensures the first two moments of
these stochastic processes match. This is enough to ensure equality for European options under
the Black-Scholes model. Thus for European options when considering a model with a volatility
parameter that only depends on time, we can find the matching volatility for the Black-Scholes
model which gives these options the same price at every time.

3.2 Implied volatility

Suppose we have a model that computes or approximates the price of an option V. For this
option the strike price, the asset price at this moment, the time to maturity and the risk free
interest rate are known. With the Black-Scholes model we can determine the option price using
these parameters and the volatility. Therefore, we can find the volatility for which, under the
Black-Scholes model, the option value is equal to V. Thus we seek the volatility ¢ which makes
the option value under the Black-Scholes model equal to the option price given by a different
model. This is what we call the implied volatility. The same can of course be done for option
prices quoted in the market. It is actually quite normal to quote options in terms of their
Black-Scholes implied volatility instead of their price.

To determine the Black-Scholes implied volatility (from now on shortened simply to implied
volatility) belonging to the price of a call option in the market Vo market, we find the value oimyp
such that the following equation holds:

VC,market = VC(t07 S, T, K, Oimp, T)

For a time-dependent volatility parameter as in the previous section we see that the implied

volatility is simply:
1 (T
Oimp = T/ 0'2(t) dt.
0

When we look at options on the same stock with the same expiry date but different strike prices
in the market, we often see a so called volatility smile or skew. This means that the volatility
is not constant for different strike prices, which is not possible under the Black-Scholes model
or with a volatility parameter that is only time-dependent. This gives us a reason to look for a
different model which allows the volatility parameter to differ for different strike prices.

Chart 1. The S&P 500 Implied Volatility Curve Pre-and Post- 1987

Implied Valatility

Smile Pre -Oclober1987
~

kew Post-October 1987

Out-of-the-Money Put Strikes At-the-Maoney Out-of-the-Money Call Strikes
Strike

Source: CBOE

Figure 3: Example of the volatility smile

We will now look into more complicated models. Note that more complicated models often
require calibration to the market and it is important that these models are able to replicate the
values for European options.

13



3.3 Deriving the local volatility model

We will now determine the price of a call option with local volatility. The local term is an
indicator that the volatility is a function of the stock. The classical model for local volatility is
given by:

dS(t) = S(t)r dt+ S(t)a(t, S(t)) dW(t), S(to) = So.

Where r represents the constant interest rate.
For a call option V(¢,S) when assuming no arbitrage, we get (due to It6’s lemma) the following
PDE:

2
a(t, S)SQ% + rsg—g —rV =0

V(T,S) =max(S(T) — K,0).

!
t 2

This is also known as the Kolmogorov-backwards equation, which describes a probability distri-
bution at a time s < t. We will link this to the Fokker-Planck PDE later in this section.

First we derive the stock density f with the help of call and put options. We then use this to
find the function G (t,.S) in terms of market quotes. If we have a standard European call option
Ve (to, So, K) and we assume the interest rate is constant we know the value is:

Ve(to, So, K) = 7" ORS [max(S(T) — K, 0)| F(to)]
= m(T—t0) /OO(J: — K)f(T,z) dx.
K

Where f is the density of the stock process. If we now write F'(tg,T) = e~ "(T=t0) and differentiate
the option with respect to the strike price K we find:

0 0 o0
- Violto, So K) = Flto,T) - /K (x — K)f(T,2) da

— Flt, T) /: 6%(33 _ K)f(T.5) dz = —F(to, T) /: F(T,2) da.

Differentiating again with respect to K gives us:
82
OK?
Thus we can describe the stock density f in terms of derivatives of call options (or put options).
If we differentiate with respect to the time to maturity 7" we find:

9 Vetto.50) = (e’“<“0> |- mi) dx)

Ve(to, So, K) = F(to, T) f(T, K).

— —Volto, So) + Flto, T) /:(:c - K);; (T,2) dz.

We can describe the evolution of a probability density with the help of the Fokker-Planck PDE
which usually models the probablility density function by a Dirac delta function § at starting
time and describes the evolution of this probability density in time.

Theorem 2 (Fokker-Planck PDE). The transition density f(t,S) = f(to, So,t,S) associated to
the SDE:

dS(t) = p(t,S) dt +a(t,S) dW(t), S(0)= S5
for S(t) with to <t <T satisfies the Fokker-Planck PDE:

0 0 1 9?

7f(t7 S) + 7ﬂ(t7 S)f(t,S) + 5@

o 55 a(t,8)S%f(t,8) =0

f(to, So0) = 0(So)-

14



The idea behind the local volatility model is to match the density of our asset price with the
Fokker-Planck PDE. When considering the Fokker-Planck PDE for our problem we can rewrite
this to: 5 5 o2
1
—f(t,S)=—r=—=5ft,5)+ ==
We use this to rewrite the integral found in the derivative of the call option with respect to T’
and see:

a(t, 8)S%f(t,S).

e e8] 2
/K(x—K)aan(T,x) dx:/ (x — K) [—aaxrscf(T,a:)—&—;~§x2&(t,x)x2f(t,m) dz (1)

K
S /oo(x - K)gmf(T,x) da+ (2)
K X
o) 2
;/K (x_K)38x2 2T, 2)a* f(T,z) da. (3)

Assuming lim, oo (T, ) = 0 (thus the density decays faster than = grows) we find:
/ (x — K )8:1:f(T x)dr = (x — )a:f(T,:c)\;O:K—/ xf(T,z) dz
K Ox K
= —/ xf(T,x) do

K

We use the second derivative of the call option to express this in terms of the density:

o0 9 e
A(m—K)mxf(T,x)dxzw/K a2 Vo(T, z) dz

/ —VC (T, ) daj}

:1)[ O V(T K) - VC(T,K)].

—1 0
- (T,
F(to,T)[ pRACIUE)

F(ty,T) | 0K

The second integral in (3) can likewise be written as:

/ oo(x — K)a—2252(T, )2’ f(T,x) do = 6*(T, K)K?f(T, K)
K 83:

_ 1 _9 2 0?
— F(to,T)g (Ta K)K aKQVC(T07T SD: )
So we see that
ar Volto, So) = —rVo + Fto, T) {F(tO,T)Kc‘)K T Fa. ) 2 )’ LR e

Ve
OK?

Ve 1_
=—rVo+ [—rKaK Vot 3T, K)K?

From this it is easy to rewrite this to express &2 in terms of the derivatives of call options:

D Velto, So, K) + rK 22Ve(to, So, K)

9
o (T,K) =
( ) 1K? 822V0(t07‘5’0a K)

(4)

So the volatility (7, K) is described by the data available from the market and perfectly fits
these datapoints, while not introducing any parametrization of the volatility, which means we
do not have to perform a calibration procedure.

15



3.4 Local volatility in terms of implied volatility

We see that the formula for the local volatility is expressed in terms of derivatives of call option
prices. However, in practice not all derivatives can be obtained from the market data, and thus
we have to approximate these derivatives. We will now derive the local volatility in terms of the
Black-Scholes implied volatility. From the Black-Scholes model we know that for a European
call option the value is given by:

Ve(t, K) = SoF,)(d1) — KG_T(t_tO)FN(o,l)(%%

where
g () + (4 dod(t B) (¢~ to)
1= Gimp (£, K)V/E — to ’

and Gimp(t, K) is the Black-Scholes implied volatility with strike K at time t. We now use a
transformation of variables:

y = log <P(f§t)> = log (g) —r(t—to), w =0t K)(t —to),

where P is the usual notation for the forward price: P = Spe”(=%). We will now define the
price of the call option in terms of a function ¢(y,w):

c(y,w) = So [Frn0,1)(d1) — €Y Fyro,1)(d2)] = Ve (t, K).

do = di — 5’imp(t,K)\/t —1p

We can also express d; and ds in terms of these variables:

y 1

When differentiating to K we get:
OV _0coy  0cow _0cl  dcow
0K 0yoK 0OwoK 0yK 0wdK'

The second derivative with respect to K:

PVe 1 (e o0\ | 200 P 0woe | (0u) 0%
0K?2 K2 \oy?2 Oy K 0K dwdy 0K? 0w 0K ) 0w?
The derivative with respect to (t — tg):

Ve Jc  Oc Ow

a—t) oy dwar
If we now substitute these into (4) we find:

Jdc  Ow _'_TK@@

_9 Aw O(t—to) Ow 0K
TR = o\ 0w e s 1 [P de 5 (B0 O] ®
2\oy? "oy ) T oK dwoy T 2 sz oe + (57)" a8

We can simplify this by writing out the derivatives of ¢. Note that for a standard normally
distributed stochastic variable Z the following holds:

Fy(x) = f(z)2!
fz(x) = —xfz(x)a,

16



Furthermore:

1 1 2 1 172
di) = ——— e~ 3(d2+vw)? _ o~ 3 (d3+w+2d2v/w)
fa(d) V2 V2r

— fy(da)e VIt — py(dy)e (FETIVENVER _ g
We now see:

o s _f 2 20 —eyfz(d2)88 } So [fz<d2) VO e ) 02

= So -fz(dz)ey <8d2 > — eV fz(dy) adﬂ

|- dae o]

We use this to determine the second derivative:

0? 1 , 11 1 1 ddy 1 1 1
67)62 = 50¢” |:fZ(d2)\/(; - 2fZ(d2)m] = 50¢” [—dzfz(d2)62f - 2fz(d2)m]

-ssemange 4322 £ (5 34) ()
S )

= 50 e¥ f.(da)

8 dw 2w? 4w 2w

Now we look at:

5%c 1 0 1
900y 302\@8,1; (e fz(d2)) 502\F [V fz(da) + € f7(da)]
1 od od
= 502\/5 [eyfz(fb) —e¥dy f7(d) 8;] So \/»eny(dZ) [1 —dy 8;]
B PO s N I P N I
0w 2\/5 0w w2 ow |2 w
and we see:
dc 0 od
50 — S0 a5 - Fe(a) - et ta) 5|
od od
— S0t | F2(da) 5 — Pald) — Fela 52|
= —Soesz(dQ),
giving us:
0?2 od
aiyg = -5 |:€sz(d2) + eyfz(dQ) a;:|
1
= —S()esz(dg) + Soeyfz(dz)ﬁ
B @ ('90
N ay &u

Substituting this into (5) gives us the following result:
%;; +rK g—f‘g

o
o°(t,K) = .
( ) 1+K@(l_ﬂ)+lK2&+lK2(@)2 _l_L_i_LQ

OK \2 w 2 OK?2 2 0K 8 2w 202
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Putting the remaining derivatives in terms of the implied volatility yields:

80} _92 _ aﬁlmp
E = Uimp + 2Uimp . (t - t()) ot
Ow 0a;

— = 20imp - (t — to)—=

gk~ 20w (=)

—2(t—t) 86'imp 2_’_2,. (t_t)aza'imp
OK2 O\ oK Otmp 0 9K?

If we substitute these into (6) we can express the local volatility in terms of the implied volatility
and find:

85’1mp

— — a7im
Gi2mp + 2Uimp(t — to) ( ot +r- K ng)

. a_im 2 — a_im — 8_im 2 a2_im ’
<1 = ng> + KGimp(t — to) < a1 — 1K Fimp(t — to) ( gKP> tK a(;@p)

52 (t,K) =

where gimp = oimp(t, K) and y = log (ﬁ) Transforming to 7 = T — t we find:

_92 _ Béim aaim
Timp T 2T Cimp (— 9>+ K aKP)

3 .
K-log (55 ) o, 854 0oimp \2 | 1 075
oe imp — . imp 1 — Jimp Timp
(1 - ok | T EKTOmp | R 4KTUImp< 9K ) + K553

Timp

721, K) =

Note that the implied volatility is in general not equal to the local volatility unless the implied
volatility is constant.

The local volatility model enables a volatility smile/skew to exist, which is implied by the
market. For European options and barrier options this is enough to be able to compute their
prices correctly. However when looking at options that allow you to excercise the option early,
the local volatility model falls short. There is no control over the forward volatility which is
essential for these kinds of options. A forward start option is an option for which the starting
price and starting time is set in the future. Note that models that are more complicated than
the Black-Scholes model are derived for more complex options than European options, but they
should agree on the price on a European option. These more complicated processes are better
at capturing the dynamics of asset price movements which are needed for exotic options.
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4 The Collocating Local Volatility Model

The Collocating Local Volatility model is introduced in [1] by Grzelak. Before we delve into the
Collocating Local Volatility (CLV) model, some background on stochastic collocation is necessary,
which will be given in the following section. Afterwards an overview of how to construct the
CLV model is given. This is followed by a derivation of a PDE for this model. The CLV model
allows for control over the forward-start implied volatility while ensuring a good fit to the market
data.

4.1 Stochastic collocation

The idea behind stochastic collocation is to approximate a stochastic variable Y that is com-
putationally expensive to compute with a stochastic variable X which is easy to compute. We
determine a function g such that g(X) ~ Y. This is done by inverting the cumulative distribu-
tion function (CDF) of Y on a few points, the so called collocation points. On these points we
compute a few “expensive” inversions:

Yn = Fy  (Fx (Zn))-

We thus seek a function g(-) = Fy ' (Fx(-)) such that Fx(z) = Fy(g(z)), giving us Y = g(X).
We can therefore generate samples from Y without having to compute the expensive inversions
of the CDF but rather use our mapping function g and the easy to compute X. This is possible
because Fx(X) and Fy (Y) are uniformly distributed on [0, 1]: take u € [0, 1]. Now if we look at
P[Fy(Y) < u] = PlY < Fy'(u)] = Fy (Fy ' (u)) = u we see that this is exactly the CDF of the
uniform distribution, therfore Fy-(Y') is uniformly distributed. For F'x(X) this goes analogous.
Therefore we have Fy (V) = Fx(X) thus Y = Fy'(Fx(X)). Note that although both Fy (Y) and
Fx(X) are uniformly distributed, this does not mean that X and Y have the same distribution.

4.2 Constructing the Collocating Local Volatility model

The CLV method is constructed in the following manner. Consider an underlying asset S(t) and
a process X (t) wich will be used to generate the process S(t). We can choose X (t) freely but
require the moments to exist. We relate X (¢) and S(¢) by:

S(t) = g(t, X (1)),

where ¢ is a deterministic function. We want to build the function g(¢, z) such that the volatilities
implied by the market correspond to those generated by the model.

S(t) = g(t, X (1))
AX (t) = p(X(t)) dt + o(X (1)) dW(t)

with X (t9) = S(tp). Although it is not necessary to have X (typ) = S(to) we will use this because
if we let t — 0 for g(t, x) this will be more practical. To approximate this function g we consider
the arbitrary process X (¢) with given marginal CDF and finite moments. We build a projection
function g(t, ) such that for a number of collocation points x;(7;) = x;; (once again chosen by
the method in [7]) we have that:

Fx ) (wig) = Fgq,)(9(Ti, 2i5)) = Fgq, (i)

3

Note that we can obtain the collocation values s; ; by computing F;(IT) (FX(Ti)(fEi,j))-
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The collocation points z;; are chosen such that the moments match. This method is shown
in [7], but it boils down to computing the Gauss quadrature points, which are the zeros of the
orthogonal polynomial which it belongs to. This leads to

E [SK(T)| = E [¢*(T, X (1)) +eun

for i € {1,..., M} where ey — 0 quadratically for N — oc.

Now that we have the collocation points, we have to ensure continuity of the function g. We want
to be able to simulate the stock prices between the expiries at which we know the distribution.
Suppose we want to know the value g(¢, X (t)), where t € (T;,T;+1). We then determine the
collocation points x;. For a random normal variable this is easily done by taking z;(t) =
E[X(t)] + /Var [X(t)] w;-v(o’l), where x?/(o’l) is the j*" collocation point for a standard normal
variable.

We also need to look at the distribution F' STy Let us consider a set of expiry dates 11, ..., Ty.
We calibrate the function g to these expiries. Assume a set of implied volatilities is given at
these expiry dates and they are free of arbitrage. Under the risk-neutral measure we see that
for a European option

Vo(So, Ty, K) = e "1 EQ [max(S(T;) — K, 0)|F(to)]

=T / max(z — K, O)fg(Ti)(x) dz
_ T /K (x = K) fg(z (@) da.

Differentiating this with respect to K yields

OVC(SOa T:ia y)
0K

o [ Ps(oo) + Py ()

So we see that Ve (S0, Tony)
rT; c\o0,144,Y
S‘(Ti)(y) =€ 9K + 1.

y=K

We numerically approximate the inverse to obtain the collocation values s; ; = FS_(IT) (F X(Ty) (:v”))
When we have these we have triplets {7}, x; j, s; ;} we use these to approximate the function g
by interpolation. Note that g should be monotonic thus we need to use a monotonic form of
interpolation. Note that the only thing that influences the collocation points x; ; is the choice

of the process X, thus this is not influenced by any views on the asset price S.

4.3 Construction of the PDE

Using this model we will now derive a stochastic PDE such that we can use the FDM.

The value of an option on an underlying stock is a function of the stock price and time. We
have a way of expressing the option value at maturity in terms of the stock price and time (the
payoff function). Thus we can express for an option V (¢, S(t)) = V (¢, g(t, X(t))) = f(t, X (t)) in
a function f which depends on X and time and with the final condition known: V (7, 5(T)) =
O(T,9(T, X(T))). We assume a differentiable function Iy exists such that:
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We assume that the discounted option value is a martingale, this can be seen as a logical no
arbitrage condition as pointed out earlier. We find for an infinitesimal change of Ily:

\% 1 \% 1 \%4
Applying It6’s Lemma to the option value yields:
_(9f of |1, O f of o0
dV(t) = <8t + M(X(t))a—X + 3 (X(t))ﬁ dt + U(X(t))a—X dW™(t).
So
1 v
_ L i(of of 1. >f U awon| -V
= [(87& +u(X(t))aX + 57 (X(t))aX2 dt+U(X(t))aX dW™(t) S dt

2
=7 | (3 + 01 + 3O - oY) atrotxn gt awlo)]

Since we assumed that the discounted option value is a martingale, the part before d¢ must be
zero. Therefore we see that:

0 of 1
a—{ + M(X(t))a—;; + 502()((75))@ —rV =0.

Substituting V (¢, S(t)) = f we now get the desired PDE:

0% f

2
{ W+ u(X ()% + Lo X (1) 5% —rV =0
V(T,S) =o(g(T, X(T)))
Which in turn becomes

oV oV 1 ., . 0V
ox 27 Mgxz —V =0

with final condition
V(T,S) = @(g9(T, X(T)))-

We will later use this PDE to price options using the FDM.
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5 Numerical methods

5.1 Finite difference method

The idea behind the Finite Difference Method(FDM) is to approximate derivatives by using the
Taylor expansion of the function around a certain point. Suppose we want to approximate %.

of h2 92 f K3 O3 f

flx—h)=f(x) - h%(fﬂ) + ?@(95) + —F%(x) +O(h")
f(z) =f(z)
B af 2 o2 f 3 OB f
flz+h) =f(z) + h%(x) + 5@(95) + f%(@ + O(hY)

So we see that

fla+h) = flw—h) 20%@) + B0 @)+ 0t af
o = = 5@+ O(h)

If we let h — 0 we see that this converges quadratically to the desired derivative.

Since we have a PDE with a time component we need to do some form of time integration when
using the FDM. The Euler Backwards time-integration is used here, because it is unconditionally
stable. There are many textbook examples of how this method works, for example in [9]

5.2 Finite difference method for Black-Scholes model

To use the FDM on the Black-Scholes model we need to discretise the partial differential equation
(PDE):
AV 1 4 ,0%V 0%
— 4+ 0S5 — S— —rV =0.
at T2 95r T es T
Since we have a final condition at t = T', we transform this by using 7 =T — ¢ to get an initial

condition and find the PDE:
o*V oV

— — =08 — —rS—=+rV =0
or 277 a2 as
We make a grid with points at ¢t = 0, ¢t = T and N; + 1 points thus with mesh width k = %
For the stock dimension we make a grid with points at S = 0, upper limit S = L and N, + 1
points thus with mesh width h = N%c
We use a Taylor expansion:
i+1 i+1 8Vvi+1 h2 82V?+1 h3 83V.i+1 4
Vi = Vi +th—g + 5558 + % 55 +O0)
i+l _ i+1
Viii = Vit

it1 oy i1 37 it
Vidi = ViT —h—gg + 5 55 — & a5 +O(I7).

If we now look at it 1 1 i1
9 Vj+1 . Vj—l - 2Vj +Vj+1 O(h2
252 72 +OR).

Furthermore we see that ‘ ,
vitt—yio gyt
J g _ 7Y

k or

+ O(k)
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V-H_l o V;Zj_ll avi-&-l

S = as O,

We approximate V' at (jh,ik) by solving the difference equation:

V'iJrl _ V7, 0_2 V?J+1 _ 2vji+1 + V?Hrl V-i+1 _ V'iJrl 4
. +1 -1 : +1 -1
I ( h 2.7 }‘7/72 J —T(]h)%‘f‘?ﬂ‘/;ill :0

k 2

So, for an internal point we have

(1 Lok + ka2(jh)2> Vit (‘72(]71)2 n T(jh)> vitl _ g <a2(jh)2 B r(jh)) yitl

h? 2h?2 2h J+l 2h2 2h J
2 2\ yritl %% i\ i o5 i\ i

For a call option we have boundary conditions:
Ve(0,7) =0 and Vo(L,7)=L—K-e '".
where L > K and initial condition
Ve(S,0) = max(S(0) — K, 0).

We can write this in matrix-vector form with

Vi

We then get

We first write:

1 0 0 1 0 0
0 2 0 : 0 4 0
D= 0 3 , B = 0 9
: . . . 0 : . .. . 0
0 - 0 Nm—l_ [0 - e 0 (Nm_1)2_
and
[0 1 0 0 ] [—2 1 0 0 |
-1 0 1 1 -2 1
G- | 0 CH-— 0 1 |
0 0
: .. =10 1 o 1 =201
I O --- - 0 =1 0_ I 0O --- - 0 1 _2_
to write

1
B =(1+rk)l = Sk (rDG + oc’EH) .
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The boundary conditions become:
Vi, =1+ rk+ko? - (N)?) Vi

UQ(Nm)Z 7(Nz) i+1 02(N:c)2 7(Ny) i+1
_k< 5 + 5 )VMH—/{( 5 i >VNw_1.

Because we know V]i‘,iil we can shift that part such that

kN
2

Vi + (0N, +7) V;'Vﬁl = (1+rk + ko®N?2) v]@jl

—k 0-2N412: . TNx Vi+1
9 2 Ny—1°

This gives us

0
q =
O .
| LN (02N, + fr)V]i,’:}rl |

5.3 FDM for pricing a barrier option

We now consider a down-and-out call option Vg g(S,t). The Black-Scholes PDE is relevant as
long as the barrier is not corssed, therefore the barrier option must satisfy the Black-Scholes
PDE on the grid [0, 7], [B, S]. So when the barrier B is crossed, the option becomes worthless,
giving us the boundary condition

VC7B(B,t) = 0, Vt € [O,T].

The upper boundary condition used in the previous section still holds, therefore we now use the
same FDM with a different boundary condition.

5.4 FDM for pricing under the local-volatility model

We have a volatility parameter that depends on the asset price, thus o (S, 7). The local volatility
now depends on this.

We use the Hagan formula from [5] for the market-implied volatility to get results that are
easily reproducable. We take parameters that are supposed to be moderate and do not allow
arbitrage(see [1]). Those parameters are: o = 0.2, 8= 0.5, v = 0.2, p = —0.9, f(to,t) = Spe"
with Sy = 1 and » = 0.03. This formula is given below and looks long and complicated, but it is
explicit, which makes it easy and fast to calculate using a computer. It comes from the SABR
model and allows for control of the volatility smile by altering the parameters «, 3,7 and p.

a z
Cimp _(fK)(l—ﬂ)/Q {1 + ulogQ(%) + (1-p)* 10g4( )} | <X(Z)> |

5 I
24 1920 K
1-p)2 o pBya (2 —3p%)7
{H [ 20 (JK)P AR BE T 2 }T}

where

2= V()P og (;;)
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and

V1=2pz+224+2—p
=1 .
x(z) = log { T, }
We take a grid of K and 7 and determine the implied volatility at these points, to get a so-called
volatility surface.

With this implied volatility surface, we can determine the local volatility. We approximate

— — a 1m 6 1m
aizmp + 27Cimp ( 7 e+ K L p)
2
K- bg(ﬁ) 95, 05 0imp \ 2 025
_ 1mp . 1mp _ l . Ulmp Ulmp
<1 Timp ok | T ETOmp | BE" — §K70imp ( oK ) + K5

by approximating the derivatives of the implied volatility with respect to 7 and K using the
FDM. This gives us

72(1,K) =

— 0Gim OGim
O'mp+27'0'imp< % Lt K o p)
) .
K-log( 55 a5, 95 0 imp \ 2 9%5;
o o€ imp =. imp l =. Oimp Jimp
(1 Timp ax | T ET0mp | BE" — §K70imp ( K ) + K xe

With the local volatility we can now approximate the option prices with the FDM with help of
the PDE. These should match the option prices found by putting the implied volatility into the
Black-Scholes model. We get the discretisation:

(1, K) =

v‘i-i-l _ Vz _9 k(i1 Vz—i—l V-H_l +V~i+1 V7,+1 V»H_l ‘
J : j _ 9 (J 72(1"‘ ))(jh)2 j+1 }52 j—1 —r(jh) j+1 o j—1 —i-T’VjH_l —0

This means that:

72 . .
i1 0 (jh,k(i+1)) i+1 i+1 i+1 rkj [ im i+1\ _ v/
(L +rk)V™ — 9 kj (VJ+1 25T+ Vj—l) (VJH ij1> =Vj.

We get a similar matrix representation as for the standard European call option, but with
another matrix for the volatility:

1 0 0 1 0 0
0o 2 0 . : 0 4 0
D=1: 0 3 " : s E=11 0 9
: 0 0
| 0 0 N,—1 | 0 0 (Ny—1)* |
and
[0 1 0 0 ] [ —2 1 0 0 |
-1 0 1 : 1 -2 1
a_| 0 CH- 0 1 ’
0 0
-1 0 1 1 -2 1
0 0 —1 0| 0 1 -2 |
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and volatility matrix:

[ 52(h, k(i + 1)) 0 0
0 2(2h, k(i + 1)) 0 :
R = : 0 52(3h, k(i + 1))
_ 0 - - 0 G(No— k(i +1)) |
Giving us
BT = (1+rk)I - %k (rDG + EHR™)
such that

BH—IVi—H — Vz + qi.

5.5 FDM for pricing under the CLV framework

A process must be chosen for X. In this example the Ornstein-Uhlenbeck process is chosen with
the parameters A, 6 and 7 to be specified freely. Remember the OU process is determined as:

dX(t) = MO — X (t)) dt +n dWO(t)

This leads to the PDE (backwards in time):

0X2

{ W NO—- X)W —Lp28Y v =0
V(T,8) =@(g(T,X(T)))

A grid for X and 7 is constructed on which the finite difference method, with Euler backwards
time integration, is used to determine the option value at starting time.
We need to find the inverse of the market-implied density:

T aV(T‘lv K)

(r)=1+e
0K =K

5(Ty)
Since the CDF is monotonic, and a bijective function, so is its inverse. Therefore we will use
interpolation on the inverse to determine

si = Fyory (Fxcr (@)

With the collocation points x; ; and the collocation values s; ; the asset price can be approx-
imated at any time in [0,7]. Because the grid for X is relatively large, some values of X are
smaller and greater than the collocation points z; ;. For a normal process, like the Ornstein-
Uhlenbeck process, the collocation points can be determined analytically. The collocation values
in between [T}, Tj4+1] are determined by linear interpolation with time. So for ¢ € [T}, Tj41]:

t=T;

si(t) = sij + (siy1,5 — Si,j)m'
7 7

After this linear extrapolation of the collocation values is used to determine the asset prices
for low and high values of X at each timestep. With these values the boundary conditions can
be determined using the knowledge that the discounted option price is a martingale. With the
collocation values and the collocation points a monotone interpolation is performed to determine
the boundary condition at expiry. In this case piecewise cubic Hermite interpolation is used to
ensure montonicity. For more details on this see [9].
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We now write the PDE

{ N0 X)W 128V vV =0

V(T.S) =®((T. X(T))
in terms of finite difference approximations, where we take X € [BB, L], where BB is the
lower bound and L the upper bound. From a heuristical approach we take BB = E[X] — 1
and L = E[X] + 1 for the expiry of one year. The variance of the process X this is smaller
than one and the mapping function g uses the quantiles of the distribution X and the interval
[E[X] — 1,E[X] + 1] captures the majority of this distribution. Thus

i+1 7 i+1 i+1 i+1 i+1 i+1
‘G _‘/J—)\(e—jh) (‘/}+1_‘G_1>_1772< j+1_2‘/; +‘G‘_1>+7ﬂ‘/}i+1_0'

k 2h 2 h2

This can be rewritten as:

=V

Vi) b (M2
2h

i ) j+1
(1+rk) VAT — k(O — jh) ( S 5 2

This is put into matrix-vector form to speed up the computation in matlab.

For a barrier option the FDM for the CLV model works similarly, but the value X = g~1(t, S(¢))
has to be determined for S = B at each timestep. The option value at time ¢ is set to zero
if the value of X is smaller than ¢~ 1(¢, B). This inverse is determined by using linear inverse
interpolation.

5.6 Monte Carlo pricing under the CLV framework

The Monte Carlo(MC) approach for option pricing is based on the discounted martingale prop-
erty. We want to evaluate the discounted payoff. By taking very many samples of the process
S we can approximate the expected value of the payoff and discount this to receive the option
price. So we generate many paths for, use the payoff function and determine the mean of these
values. In this case we must sample from the “cheap” stochastic process X and map this onto S.
For European call and put options this requires only one step to simulate X. The construction
of the mapping function g goes analogous as in the previous section. The paths of X are mapped
and we compute the payoff for each mapped path. Taking the mean of the discounted value of
these payoffs results in an estimate for the option value. In the implementation antithetic vari-
ables are used to ensure a smaller variance in our estimate, since we can construct a stochastic
process with the same distribution but negative correlation. It is known that for a normally

distributed variable X = U ~ N(0,1) that also Y = —U ~ A(0,1). Then

Var <X + Y) ~ Var(X) + Var(Y) + 2Cov(X,Y) - Var(X) + Var(Y)
2 B 4 4 '

This will thus result in a smaller variance, and thus improve our estimate.

When dealing with a barrier option, it is necessary to check if the asset price hits the barrier
between the expiry and starting time, which requires us to take small timesteps and make the
simulation more computationally expensive. When considering a barrier option under the CLV
model at every timestep determine g~!'(B) = X must be determined, similarly as in the FDM
approach. At every timestep it is checked if the barrier in the X domain is crossed. This is used
to set the option value to zero if the boundary is crossed at any time between [0, 7).
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6 Numerical results

In this section we will use the techniques described in the previous chapter to illustrate the
results of the different models and highlight the differences between them. For all examples in
this section we will first consider a European call option with strike price K = 0.8, risk-free
interest rate r = 0.03 and expiry of one year. When we consider a barrier option, we will use
a down-and-out call option with a barrier at B = 0.6. All programs were created with matlab
and the code used to obtain the results can be found in the appendix.

6.1 Results for pricing under the Black-Scholes model

For a given volatility and stock price we can now determine the value analytically using the
Black-Scholes model. We can also approximate this by using the FDM. We take the volatility
to be 0 = 0.3. As you can see in the picture below, these are almost exactly the same. At
expiry there is a larger error around the strike price, this is only natural since there is more
curvature there, which the FDM does not fully capture. When we are further from expiry this
error becomes smaller.
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S )
(b) Absolute difference between the call option val-
0.5 ues found with the FDM and the one found by
0 using the Black-Scholes analytic solution.
0 1 2 3

(a) Value of a call option expiring in one year as a
function of asset price S(T)).

6.2 Results for pricing a barrier option under the Black-Scholes model

Just like for the regular call option, we compare the prices found by the Black-Scholes analytical
solution with the price found with the FDM.

8 x10°
6
4

2

0
0 0.5 1 1.5 2 25 3
0.5 1 1.5 2 25 3

(b) Absolute difference between the down-and-out
call option values found with the FDM and the one

10 one year. found by using the Black-Scholes analytic solution.

(a) Value of a down-and-out call option expiring
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6.3 Results for pricing under the local volatility model

The formula by Hagan is used, as described in section 3.4. This gives us an implied volatility
surface is used to compute the local volatility which is then used in the FDM. The parameters
used are: a = 0.2, 3=0.5, v =02, p=—0.9, f(to,t) = Spe" with Sy =1 and r = 0.03. The
option price found is compared with the option price found by putting the implied volatility
into the Black-Scholes model. The local volatility method produces an even smaller error when
used to price a European call option.

0.02

0.015

0.01

1 0.005

0
0 0.5 1 1.5 2 25 3

00 0.5 1 1.5 2 25 3
(b) Absolute difference between the down-and-out

call option values found with the FDM and the one
found by using the Black-Scholes analytic solution.

(a) Value of a down-and-out call option expiring
in one year found using the local volatility model.

6.4 Results for using stochastic collocation

Before stochastic collocation is applied to the CLV framework an example of stochastic collo-
cation is shown. Consider the non-central x? distribution. Using matlab a x? distribution is
taken with shape parameter d = 1.732 and A = 0.15 degrees of freedom and N = 5 collocation
points. This is then interpolated with the Lagrange polynomial and compared with the actual
distribution, as can be seen in the figure below.

1 Collocation points and SC polynomial fit

-5 0 5 10 15 20 25 30 35 -4 -3 -2 -1 0 1 2 3 4
X

(a) Cumulative distribution function of our ap- (b) Values of the mapping function ¥ = g(X) and
proximation approximation of g using Lagrange interpolation.

6.5 Results for pricing under the CLV model with the FDM

The Ornstein-Uhlenbeck process is chosen for X with parameters 8 = 0.1, A = 1.3 and n = 0.25.
Note that the choice of these parameters should not matter for how well the mapping function
g behaves. Once again the formula by Hagan is used to give an implied volatility surface, which
is used to calibrate the CLV model. Consider a set of expiries {0.05,0.25,0.5,1,2,3,4}. N =4
collocation points are chosen, so 28 collocation points and values are determined. The collocation
points are found below. These collocation points yield the following collocation values:

A grid is take from [E[X(T")] — 1,E[X(T)] + 1] = [—0.6547,1.3453]. This results in an option
price of 0.1594 while the Black-Scholes solution yields a price of 0.1587, thus there is an error
of approximately 0.5%.

6.6 Results for pricing under the CLV model with MC simulation

The same set-up as for the FDM is used to price with MC simulation. M = 10° samples are
generated. For the maturity time of one years the CLV method finds the price 0.1589. The price
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| T | @ T2 i3 Tig | | T [ sia 82 Si3 Si

)

0.05 || 0.8170 | 0.9032 | 0.9835 | 1.0697 0.05 || 0.8952 | 0.9684 | 1.0350 | 1.1047
0.25 || 0.5001 | 0.6707 | 0.8298 | 1.0005 0.25 || 0.7638 | 0.9340 | 1.0828 | 1.2341
0.5 | 0.2611 | 0.4717 | 0.6680 | 0.8785 0.5 | 0.6668 | 0.9109 | 1.1224 | 1.3289

0.5296 | 0.8835 | 1.1842 | 1.4641
0.3384 | 0.8534 | 1.2832 | 1.6574
0.1980 | 0.8370 | 1.3695 | 1.8093
0.0863 | 0.8279 | 1.4501 | 1.9410

1 -0.0030 | 0.2346 | 0.4560 | 0.6935
2 -0.1941 | 0.0521 | 0.2816 | 0.5278
3 -0.2436 | 0.0032 | 0.2332 | 0.4801
4 -0.2570 | -0.0101 | 0.2200 | 0.4669

=W N

Table 1: Collocation points and values for the CLV model.

given by the Black-Scholes analytical solution is 0.1589 so the error is approximately 0.1% off
the actual price.

A series of tests were done to compare option prices for different levels of the strike price, barrier
level and expiry time using the different methods:

|T|[ K | B | Black-Scholes | LV [ CLV FDM | CLV MC |

1109 0 0.1587 0.1598 0.1594 0.1589
1109 | 07 0.1586 0.1728 0.1301 0.1286
1108|075 0.2322 0.2433 0.1792 0.173
11085 | 0.7 0.1963 0.2112 0.1638 0.1628
21 08 0.7 0.2559 0.2715 0.1437 0.1432
21085 0.7 0.2344 0.2579 0.1403 0.1377

Table 2: Option prices for different parameters and different models.

In the table above it can be seen that the Black-Scholes model and Local Volatility model give
higher option prices than the CLV model. The prices of the CLV model using the FDM and
MC approach are quite similar. There are differences in between them but these are relatively
small.

7 Conclusion

Even though the Black-Scholes model is often used and relatively straightforward with an an-
alytical solution, the model does not reflect the reality of the stock markets. Especially the
so-called volatility skew or volatility smile is not incorporated into the model. This means that
for options on the same stock with the same time to expiry, the implied volatility is different
for different strike prices. This is not possible under the Black-Scholes model but can be seen
in the market.

The local volatility model overcomes this weakness by allowing a volatility skew. The local
volatility model perfectly fits the market data and differs from the Black-Scholes model by as-
suming that the volatility is also dependant on the asset price. However when using the local
volatility model it is not always possible to compute prices for exotic options, because there is
no control over the forward-start volatility. The CLV model overcomes this weakness. It takes a
simple to compute process X which is then mapped onto the asset price S. We can choose the
process X freely which gives us control over the forward-start volatility while the model ensures
fit to market data with a mapping function g. This enables the model to compute the correct
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option prices and implied volatilities while enabling one to choose the shape of the forward-start
implied volatility.

The CLV model can be used by both Monte Carlo simulation and the FDM. Both have their
benefits, the MC simulation is more intuitive and easy to implement, while retaining accuracy.
When using the Ornstein-Uhlenbeck process the MC simulation requires only one time step for
each simulation, which is very efficient. It can also be used in higher dimensions very well, while
the efficiency of the FDM suffers greatly if the number of dimensions is increased. Furthermore,
the FDM allows for easy computation of the derivatives, which are required for hedging, a com-
mon market practice. However when considering a barrier option the FDM only needs to change
the boundary conditions, while the MC simulation needs to take many small timesteps, which
decrease the computational efficiency. The results in the previous section show that for pricing
the results do not differ much.

In short, the CLV method looks very promising because it allows for great control over the
forwards-start volatility while retaining very good perfect market fit. This ensures that the CLV
model is capable of accurately pricing more exotic options than the other models discussed.
When ipmlementing the CLV model the FDM could be used for hedging strategies while for
more accurate pricing or higher dimension MC simulation is preferred.

8 Discussion

This thesis does not use actual market data, so it should be validated with actual market data
to see if the CLV model behaves well. While the MC approach and the FDM approach to
the CLV model generate different prices, as they both have small errors, the prices generated
should be similar. When considering a more complex exotic option it might be worthwhile to
use both methods and compare the results to get a better understanding of the option price.
A possible extension of this research is to use the CLV model for higher dimensions, such as
different stocks that are correlated and compare the results. It might also be interesting to see
how the CLV model and the different implementations behave when pricing an option which
allows early excercise.
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A Appendix

A.1 Matlab code for results
A.1.1 Black_Scholes_call.m

%By Jan Tijink 4203240

%Euler Backwards time integration for call option

%using Finite central differences for approximations of derivatives
clf

Y%parameters

E = 0.9; sigma = 0.3; r = 0.03; T = 1;

L = 3; Nx = 500; Nt = 300; k = T/Nt; h = L/Nx;

%
Tl = diag(ones(Nx—2,1),1) — diag(ones(Nx—2,1),—1);
T2 = —2xeye(Nx—1,Nx—1) + diag(ones(Nx—2,1),1) + diag(ones(Nx—2,1),—1);

mvec = [h:h:L-h]/h;
D1 = diag(mvec);
D2 = diag(mvec. 2);

B (14+rxk)*xeye (Nx—1,Nx—1) — 0.5*xkx*sigma. 2xD2xT2 — 0.5*xk*rxD1xT1;
U zeros (Nx—1,Nt+1);

%boundary conditions and initial condition

U(:,1) = max([h:h:L-h]’—E,0) ;

bca = zeros (1,Nt+1);

becb = L-Exexp(—r*[0:k:T]) ;

U = [bca;U;bcb];

g=zeros (Nx—1,1);

%Euler backward time integration

for i = 1:Nt

q(Nx—1,1)= k*(0.5*%xsigma "2 ((Nx—1)xh)"2/(h"2) 4+ 0.5%xr*((Nx—1)*h)/h)*U(Nx+1,i+1);

U(2:Nx,i+1) = B\(U(2:Nx,i)+q);
end
Y%computing the exact value
U_exact=zeros (Nx+1,Nt+1);
for j=1:Nt+4+1
for i=1:Nx+1
[c,cdelta ,p, pdelta]=ch08((i—1)*h,E,r,sigma,(j—1)xk);
U_exact (i,j)=c;
end
end

A.1.2 Black_Scholes_DownOutCall.m

%By Jan Tijink 4203240

%Euler Backwards time integration for down—and—out call

%using Finite central differences for approximations of derivatives
clf

Y%parameters

E = 0.9; sigma = 0.3; r = 0.03; T = 1; Barrier=0.6;

L = 3; Nx = 500; Nt = 300; k = T/Nt; h = (L-Barrier)/Nx;

Tl = diag(ones(Nx—2,1),1) — diag(ones(Nx—2,1),—1);

T2 = —2xeye(Nx—1,Nx—1) + diag(ones(Nx—2,1),1) + diag(ones(Nx—2,1),—1);
mvec = [Barrier+h:h:L—h]/h;

D1 = diag(mvec) ;

D2 = diag(mvec." 2);

B = (14r*k)*eye(Nx—1,Nx—1) — 0.5xkx*sigma”"2xD2+«T2 — 0.5xk*r*D1xT1;
U = zeros (Nx—1,Nt+1);

%boundary conditions and initial condition

U(:,1) = max([Barrier+h:h:L-h]’—E,0) ;

bca = zeros (1,Nt+1);

bcb = L-Exexp(—r*[0:k:T]) ;

U = [bca;U;bcb];

g=zeros (Nx—1,1);

%Euler backward time integration

for i = 1:Nt

q(Nx—1,1)= k=*(0.5*xsigma"2*(Barrier+(Nx—1)xh) "2/(h"2) 4+ 0.5*xrx(Barrier+(Nx—1)*h)/h)*U(Nx+1,i+1);

U(2:Nx,i+1) = B\(U(2:Nx,i)+q);
end
%Black—Scholes solution
Cbarrier_exact=zeros (Nx+1,Nt+1);
for j=1:Nt+1
for i=1:Nx+1
[c,cdelta ,p, pdelta]=BlackScholes(Barrier+(i —1)xh,E,r ,sigma ,(j—1)%k);

[c2,cdelta2 ,p2,pdelta2]=BlackScholes(Barrier "2/(Barrier+(i—1)*h) ,E,r,sigma,(j—1)xk);

Chbarrier_exact (i,j)=c—((Barrier+(i—1)*h)/Barrier) (1—2xr/(sigma”2))*c2;
end
end

A.1.3 LocalVolatility.m

%By Jan Tijink 4203240

%Euler Backwards time integration for a European call option using Hagan
%formula for volatility

%using Finite central differences for approximations of derivatives

clf

Y%parameters Hagan formula (SABR)

beta=0.5; alpha=0.2; rho=-0.9; gamma=0.2;

%other parameters

T=1;S0=1; r=0.03; E= 0.9; L = 3; Nx = 300; Nt = 300; k = T/Nt; h = L/Nx; S_0=1;
Y%matrices for Euler Backwards

Tl = diag(ones(Nx—2,1),1) — diag(ones(Nx—2,1),—1);
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T2 = —2xeye(Nx—1,Nx—1) + diag(ones(Nx—2,1),1) + diag(ones(Nx—2,1),—1);
mvec = [h:h:L-h]/h;

D1 = diag(mvec) ;D2 = diag(mvec."2);

U = zeros (Nx—1,Nt+1);

%boundary conditions and initial condition

U(:,1) = max([h:h:L-h]’—E,0) ;

bca = zeros (1,Nt+1);

bcb = L—Exexp(—r*[0:k:T]);

U = [bca;U;bcb];

g=zeros (Nx—1,1);

sigma=zeros (Nx+1,Nt+1,3);
%implementing the Hagan formula for the implied volatility surface
for i=1:Nt
for j=2:Nx+1
for b=1:3

sigma(j,i,b)=Haganformula (alpha ,beta ,gamma,rho ,E4+(b—2)xh,SO*exp (r*(T—(i—1)xk)) ,T);

end
end
end
Y%computing the Local volatility
Localvol2=zeros (Nx+1,Nt+1);
for 1i=2:Nt
for j=2:Nx
tau=(i —1)x*k;
SS=E;
dsdt=(sigma(j,i+1,2)—sigma(j,i—1,2))/(2xk);
dsdk=(sigma (j,i,3)—sigma(j,i,1))/(2xh);
dsdk2=(sigma(j,i,3)—2«sigma(j,i,2)+sigma(j,i,1))/(h"2);

Localvol2(j,i)=(sigma(j,i,2) " 24+2xsigma(j,i,2)*taux(—dsdt+r*xSSxdsdk))/((1—SS*xlog(SS/(exp(r*tau))
)/sigma(j,i,2)*dsdk) "24+SS*tauxsigma(j,i,2) *(dsdk —0.25*SS*tauxsigma(j,i,2) *(dsdk) " 2+SSx

dsdk2));
end
end
Y%mnumerical integration
for i = 1:Nt

B = (1+rxk)*xeye (Nx—1,Nx—1) — 0.5*xkxD2xT2xdiag(Localvol2 (2:Nx,i+1)) — 0.5xk*r*xD1xT1;
q(Nx—1,1)= k*(0.5*%(Localvol2(Nx,i))*((Nx—1)*h)"2/(h"2) + 0.5*%xr*((Nx—1)xh)/h)*U(Nx+1,i4+1);

U(2:Nx,i+1) = B\(U(2:Nx,i)+q);
end
%computing the exact value
C_exact=zeros (Nx+1,Nt+41);
for i=2:Nt+1
for j=1:Nx+1
[c,cdelta ,p, pdelta]=BlackScholes ((j—1)xh,E,r ,sigma(j,end,2) ,(i—1)xk);
C_exact (j,i)=c;
end
end
price=interpl ([0:h:L],U(:,end) ,1)

A.1.4 HaganBarrierCallLocalVolatility.m

%By Jan Tijink 4203240

%Euler Backwards time integration for down and out call option
%using Finite central differences for approximations of derivatives
clf

Y%parameters Hagan formula (SABR)
beta=0.5; alpha=0.2; rho=-0.9; gamma=0.2;
Y%other parameters

T=1; r=0.03; E= 0.9; L = 3; Nx = 300; Nt = 300; k = T/Nt; Barrier=0.6; h = (L—Barrier) /Nx;

Y%matrices for Euler Backwards

T1 = diag(ones(Nx—2,1),1) — diag(ones(Nx—2,1),—1);

T2 = —2xeye (Nx—1,Nx—1) + diag(ones(Nx—2,1),1) + diag(ones(Nx—2,1),—1);
mvec = [Barrier+h:h:L—h]/h;

D1 = diag(mvec);

D2 = diag(mvec."2);

U = zeros (Nx—1,Nt+1);

%boundary conditions and initial condition
U(:,1) = max([Barrier+h:h:L-h]’—E,0) ;

bca = zeros (1,Nt+1);

bcb = L-Exexp(—r*[0:k:T]) ;

U = [bca;U;beb];

g=zeros (Nx—1,1);

sigma=zeros (Nx+1,Nt+1,3);
%implementing the Hagan formula for the implied volatility surface by
%taking t and then reverting the order in time
for 1=1:Nt+1
for j=2:Nx+1
for b=1:3

sigma (j,i,b)=Haganformula (alpha , beta ,gamma,rho ,E+4+(b—2)xh,( Barrier+(j—1)*h)xexp(r*(T—(i—-1)*k)),T

5
end
end
end
%computing the local volatility
Localvol2=zeros (Nx+1,Nt+1);
for i=2:Nt
for j=2:Nx
tau=(i—1)xk;
SS=E;
dsdt=(sigma(j,i+1,2)—sigma(j,i—1,2))/(2xk);
dsdk=(sigma (j,i,3)—sigma(j,i,1))/(2%h);
dsdk2=(sigma(j ,i,3)—2«sigma(j,i,2)+sigma(j,i,1))/(h"2);
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Localvol2(j,i)=(sigma(j,i,2) 24+2«sigma(j,i,2)*taux(—dsdt+r*xSSxdsdk))/((1—SS*xlog(SS/(exp(r*xtau))
)/sigma(j,i,2)*dsdk) "24+SSxtauxsigma(j,i,2) *(dsdk —0.25*SS*xtauxsigma(j,i,2) *(dsdk) "2+SSx

end
end

Y%numeri
for i =

B = (14r*k)*xeye(Nx—1,Nx—1) — 0.5xk*D2xT2xdiag(Localvol2 (2:Nx,i+4+1)) — 0.5xkxr*D1xT1;
q(Nx—1,1)= k*(0.5%(Localvol2(Nx,i))*(Barrier+(Nx—1)*h)"2/(h"2) + 0.5*%xr*(Barrier+(Nx—1)xh) /h)*U(Nx

+1,i+1);
U(2:Nx,i+1) = B\(U(2:Nx,i)+q);
end
%computing the exact value

dsdk2));

cal integration

1:Nt

C_exact=zeros (Nx+1,Nt+1);

C_exact (:,1)=max([Barrier :h:L]’—E,0) ;

for i=2:Nt+1

for j=1:Nx+1
[c,cdelta ,p, pdelta]=BlackScholes(Barrier+(j—1)*xh,E,r,sigma(j,end,2) ,(i—1)xk);
C_exact (j,1i)=c;
end
end
A.1.5 CLV_FDM.m
Y%by Jan Tijink 4203240
N=4;
theta=0.1;
lambda=1.3;
eta=0.25;

T=[0.05

,0.25,0.5,1,2,3,4];

xcoll=zeros (length (T) ,N);
x=[—2.3344;-0.7420;0.7420;2.3344]";

the collocation values and

Y%getting
F=zeros (

length (T) ,N);

for i=1:7

for

end
end
r=0.03;

j=1:4

expectation=X_0Oxexp(—lambda*T(i))+thetax(l—exp(—lambdax*T(i)));
variance=eta "2 /(2xlambda) xexp(—lambdax*(2+T(i)))*(exp(2xlambdaxT(i))—1);

xcoll (i, j)=expectation+sqrt(variance)=*x(j);

F(i,j)=normcdf(xcoll(i,j),expectation,sqrt(variance));

h = S0/2000;

E=[0.001:(10—-0.03) /400:10]%S0};
sigma=zeros (length (T) ,length (E) ,3);

V=zeros (

beta=0.5; alpha=0.2; rho=-0.9; gamma=0.2;

length (T) ,length (E) ,3);

for i=1:length (T)

for j=1l:length (E)
for b=1:3
sigma(i,j,b)=Haganformula (alpha ,beta ,gamma,rho ,E(j)+(b—2)xh,SOxexp (r*T(i)),T(i));
V(i,j,b)=BlackScholes (SO0,E(j)+(b—2)*h,r,sigma(i,j,b),T(i));
end
end
end
dVdK=(V (:,:,3)=V(:,:,1))./(2%h);

SIJ=zeros (size (F));

FS=zeros

(length (T) ,length (E

)
FS2=zeros (length (T) ,length (E));

FSS=zeros (size (F));
extradvdk=zeros (1,N);
V2=size (FSS);
h=0.001;

%(inefficient) linear inverse

for i=1l:length (T)

FS(i

,i)=l4exp (r*T(i))*dVAK (i ,:
lower=((1+exp (r*T(i))*dVdAK(i,:))>F(1,1));

interpolation

) s

approximate

upper=((14+exp (r*T(i))*dVdK (i ,:) )<F(end,end));

tellerl =0;
teller2 =0;
for j=1l:length (E)
if lower(j)==1
if tellerl==0
tellerl=j —1;
end
end
if upper(j)==0
if teller2==0
teller2=j;
end
end
end

dVdK2=dVdK (i, tellerl:teller2);

E2=E(tellerl:teller2);
FS2(i,1:
SI1J (i,
for j=1:N

sigmafs=Haganformula(alpha ,beta ,gamma,rho,SIJ(i,j)+h,SO*xexp(r*T(i)) ,T(i))

sigmafs2=Haganformula (alpha , beta ,gamma,rho,SIJ(i,j)—h,SOxexp(r*T(i)),T(i))

FSS(i,j)=1+exp(r*T(i))*(BlackScholes(S0,SIJ(i,j)+h,r,sigmafs ,T(i))—BlackScholes(S0,SIJ(i,])
—h,r,sigmafs2 ,T(i)))/(2xh);

while abs(FSS(i,j)-F(i,j))>10"(—4)

E2=[E2,SIJ(i,j)];

length (dVdK2) )=1+4exp (r*T(i))*dVdK2;
=interpl (14+exp(r*T(i))*dVdK2,E2,F (i ,:));
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V2=BlackScholes (S0,SIJ(i,j)+h,r,Haganformula(alpha,h beta ,gamma,rho,SIJ(i,j)+h,SO*exp(r=T
(1)), T(1)),T(i));
V3=BlackScholes (S0,SIJ(i,j)—h,r,Haganformula(alpha , beta ,gamma,rho,SIJ(i,j)—h,SOxexp(r=T
(i)),T(i)),T(i));
dVdK2=[dVdK2, (V2-V3)/(2xh)];
SIJ(i,j)=interpl(l4+exp(r*T(i))*dVdK2,E2,F(i,j));
sigmafs=Haganformula (alpha ,beta ,gamma,rho,SIJ (i, j)+h,SOxexp(r*T(i)),T(i));
sigmafs2=Haganformula (alpha , beta ,gamma,rho ,SIJ(i,j)—h,SOxexp (r*T(i)),T(i));
FSS(i,j)=l4exp(r*T(i))=*(BlackScholes(S0,SIJ(i,j)+h,r,sigmafs ,T(i))—BlackScholes (S0,SIJ(
i,j)=h,r,sigmafs2,T(i)))/(2xh);
end
end
end
Y%parameters and gridsize
expec=X_0xexp(—lambdaxT(4) )+theta*(l—exp(—lambdaxT(4))); L=expec+2;
TT=T(4); K= 0.9; Nx = 300; Nt = 300; k = TT/Nt; BB=expec —2; h = abs(L-BB) /Nx;
%FDM implementation
g=zeros (Nx—1,1);
U = zeros (Nx+1,Nt+1);
tt=[k:k:TT];
U(:,1) = max(UBC0-K,O0) ;
Tl = diag(ones(Nx—2,1),1) — diag(ones(Nx—2,1),—1);
T2 = —2xeye(Nx—1,Nx—1) + diag(ones(Nx—2,1),1) + diag(ones(Nx—2,1),—1);
mvec = [BB+h:h:L-h];
D1 = diag(mvec) ;
%setting the Boundary Conditions
UBCO=zeros (1 ,Nx+1);
BCS=interpl (xcoll (4 ,:),SI1J(4,:) ,[BB,L], linear ', extrap’);
svals=[max(BCS(1) ,0) ,SIJ(4,:) ,BCS(2) ];
xvals=[BB, xcoll (4,:) ,L];
UBCO=pchip ([BB, xcoll(4,:),L],[BCS(1),S1J(4,:),BCS(2)],[BB:h:L]);
collvalues=zeros (Nt+1,N);
BC=zeros (2,Nt) ;
for i=1:Nt
xcols=S0*(exp(—lambdaxtt (i))+thetax(l—exp(—lambdaxtt(i)))) + sqrt(eta 2/(2xlambda)*exp(—lambdax(2x*
tt(i)))*(exp(2+xlambdaxtt (i))—1))=*x;
for j=1:N
collvalues (i, j)=polyinterp (T,SIJ(:,j) ,tt(i));
end
BC(:,i)=interpl (xcols,collvalues(i,:) ,[BB,L], linear ,’extrap’);
end
BC(2,:)=BC(2,:)—Kxexp(—r=*tt);
BC(1,:)=BC(1,:);%max(BC(2,:),0);
U(end,2:end) = BC(2,:);
U(1,2:end) = BC(1,:);
Y%numerical integration
for i = 1:Nt
B = (14r*k)*eye(Nx—1,Nx—1) — 0.5xkxT2xeta"2/(h"2) — 0.5xkxlambdax(eye(Nx—1,Nx—1)*xtheta—D1)=*T1/h;
q(Nx—1)=(k/2xeta"2/(h"2)+k*lambda/(2+h) *(theta —(BB+Nx*h) ) )*U(Nx+1,i+1);
U(2:Nx,i+1) = B\(U(2:Nx,i)+q);
end
Y%computing the exact value
sigma=Haganformula(alpha , beta ,gamma,rho ,K,X_Oxexp(r=T(4)),T(4));
[c,cdelta ,p, pdelta]=BlackScholes (X_.0,K,r,sigma ,T(4));
Checkvalue=c
Optionvalue=interpl ([BB:h:L] ,U(:,end) ,X_0)

A.1.6 CLV_FDM _Barrier.m

Y%by Jan Tijink
tic
N=4;
theta=0.1;
lambda=1.3;
X_.0=1;
eta=0.25;
T=[0.05,0.25,0.5,1,2,3,4];
xcoll=zeros (length (T) ,N);
x=[—2.3344; —0.7420;0.7420;2.3344]";
Barrier =0.6;
%computing the collocation points
F=zeros (length (T) ,N);
for i=1:7
for j=1:4
expectation=X_0Oxexp(—lambda*T(i))+thetax(l—exp(—lambdax*T(i)));
variance=eta "2 /(2xlambda) xexp(—lambdax*(2+T(i)))*(exp(2xlambdaxT(i))—1);
xcoll (i, j)=expectation+sqrt(variance)=*x(j);
F(i,j)=normcdf(xcoll(i,j),expectation,sqrt(variance));
end
end
S0=X_0; r=0.03; h = S0/2000; r=0.03;
E=[0.001:(10—0.03)/400:10]*S0;
sigma=zeros (length (T) ,length (E) ,3);
V=zeros (length (T) ,length(E) ,3);
beta=0.5; alpha=0.2; rho=-0.9; gamma=0.2;
for i=1:length (T)
for j=1l:length (E)
for b=1:3
sigma(i,j,b)=Haganformula (alpha , beta ,gamma,rho ,E(j)+(b—2)xh,SOxexp (r*T(i)),T(i));
V(i,j,b)=BlackScholes (SO0,E(j)+(b—2)*h,r,sigma(i,j,b),T(i));
end
end
end
dVdK=(V (:,:,3)=V(:,:,1))./(2%h);
SIJ=zeros (size (F));
FS=zeros (length(T),length (E));
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FS2=zeros (length (T) ,length (E));
FSS=zeros (size (F));
extradvdk=zeros (1,N);
V2=size (FSS);
h=0.001;
%Determine collocation values
for i=1l:length (T)
FS(i,:)=l4exp(r*T(i))*dVdAK(i,:) ;
lower=((14+exp (r*T(i))*dVdK (i ,:))>F(1,1));
upper=((14+exp (r*T(i))*dVdK (i ,:) )<F(end,end));
tellerl =0;
teller2 =0;
for j=1l:length (E)
if lower(j)==
if tellerl==0
tellerl=j—1;

end
end
if upper(j)==0
if teller2==0
teller2=j;
end
end

end
dVdK2=dVdK(i, tellerl:teller2);
E2=E(tellerl:teller2);
FS2(i,1:length (dVdK2) )=l4+exp (r*T(i))*dVdK2;
SIJ(i,:)=interpl(l4+exp(r«T(i))*dVdK2,E2,F(i ,:));
for j=1:N
sigmafs=Haganformula(alpha ,beta ,gamma,rho,SIJ(i,j)+h,SO*xexp(r*T(i)),T(i));
sigmafs2=Haganformula (alpha , beta ,gamma,rho ,SIJ(i,j)—h,SOxexp(r*T(i)),T(i));
FSS(i,j)=l4+exp(r*T(i))=*(BlackScholes(S0,SIJ(i,j)+h,r,sigmafs ,T(i))—BlackScholes(S0,SIJ(i,j)=h,r
,sigmafs2 ,T(i)))/(2*h);
while abs(FSS(i,j)—F(i,j))>10"(—4)
E2=[E2,SIJ(i,j)];
V2=BlackScholes (S0,SIJ(i,j)+h,r,Haganformula(alpha ,h beta ,gamma,rho,SIJ(i,j)+h,SO*xexp(r*T(i))
T(1)),T(1)) :
V3=BlackScholes (S0,SIJ(i,j)—h,r,Haganformula(alpha , beta ,gamma,rho,SIJ(i,j)—h,SOxexp(r«T(i))
JT(i)),T(i)) ;
dVdK2=[dVdK2, (V2-V3)/(2%h)];
SIJ(i,j)=interpl(l4+exp(r*T(i))*dVdK2,E2,F(i,j));
sigmafs=Haganformula (alpha ,beta ,gamma,rho,SIJ (i, j)+h,SO*xexp(r*T(i)),T(i));
sigmafs2=Haganformula (alpha , beta ,gamma,rho ,SIJ(i,j)—h,SOxexp (r*T(i)),T(i));
FSS(i,j)=l4exp(r*T(i))=*(BlackScholes(S0,SIJ(i,j)+h,r,sigmafs ,T(i))—BlackScholes(S0,SIJ(i,j)
—h,r,sigmafs2 ,T(i)))/(2xh);
end
end
end

expec=X_0xexp(—lambda*T(end) )+theta*x(l—exp(—lambdaxT(end)));
L=expec—+2;

TT=max(T); r=0.03; K = 0.9; Nx = 300; Nt = 300; k = TT/Nt; BB=expec —2; h = abs(L-BB) /Nx;
Y%matrices for Euler Backwards

g=zeros (Nx—1,1);

Y%insert BC’s

U = zeros (Nx+1,Nt+1);

%boundary conditions and initial condition

UBCO=zeros (1,Nx+1);

BCS=interpl (xcoll(end,:) ,SIJ(end,:) ,[BB,L], linecar’, extrap’);
svals=[max(BCS(1) ,0),SIJ(end,:) ,BCS(2)];

xvals=[BB, xcoll (end ,:) ,L];

boundary=pchip (svals ,xvals , Barrier);

UBCO=pchip (xvals ,svals ,[BB:h:L]) ;

UBCO ([BB: h:L]<=boundary ) =0;

tt=[k:k:TT];

U(:,1) = max(UBC0-K,O0) ;

bca = zeros (1,Nt+1);

bcb = zeros(1,Nt+1);

Tl = diag(ones(Nx—2,1),1) — diag(ones(Nx—2,1),—1);

T2 = —2%eye (Nx—1,Nx—1) + diag(ones(Nx—2,1),1) + diag(ones(Nx—2,1),—1);
mvec = [BB+h:h:L—-h];

D1 = diag(mvec);

collvalues=zeros (Nt+1,N);
BC=zeros (2,Nt) ;
barrierx=Barrierxones (1 ,Nt+1);
for i=1:Nt
xcols=S0x*(exp(—lambdaxtt (i))+theta*x(l—exp(—lambdaxtt(i)))) + sqrt(eta”2/(2+lambda)xexp(—lambdax*(2x*
tt(i)))*(exp(2*lambdaxtt (i))—1))x*x;
for j=1:N
collvalues (i, j)=polyinterp (T,SIJ(:,j) ,tt(i));
end
BC(:,i)=interpl (xcols,collvalues(i,:) ,[BB,L], linecar , extrap’);

barrierx (i+1)=pchip ([max(BC(:,i) ’,0),collvalues(i,:)],[BB,L,xcols],Barrier);
teller =0;
while (abs (pchip ([BB,L, xcols ] ,[max(BC(:,i) ’,0),collvalues(i,:)],barrierx(i41))—Barrier)>5e—3)&&(
teller <10)
barrierx (i+1)=interpl ([ pchip ([BB,L, xcols] ,[max(BC(:,i)’,0),collvalues(i,:)],barrierx (i+1)) ,max(
BC(:,i)’,0),collvalues(i,:)],[barrierx(i+1),BB,L,xcols],Barrier);
teller=teller +1;
end
end
BC(2,:)=BC(2,:)—Kxexp(—r=*tt);
BC(1,:)=max(BC(1,:),0);
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127 U(end,2:end) = BC(2,:);
128 U(1l,2:end) = BC(1,:);
129 %numerical integration

130 for i = 1:Nt

131 B = (14rxk)*eye(Nx—1,Nx—1) — 0.5%xk*T2xeta"2/(h"2) — 0.5xkxlambdax*(eye(Nx—1,Nx—1)xtheta—D1)*T1/h;
132 q(Nx—1)=(k/2xeta"2/(h"2)+k*lambda/(2+h) *(theta —(BB+Nx*h)))*«U(Nx+1,i+1);

133 U([BB:h:L]<=barrierx (i+1),i)=0;

134 U(2:Nx,i+1) = B\(U(2:Nx,i)+q);

135

136 end

137 sigma=Haganformula (alpha ,beta ,gamma,rho ,K,X_Oxexp(r*T(end)) ,T(end));
138 [c,cdelta ,p, pdelta]=BlackScholes (X_.0,K,r,sigma ,T(end));

139 [c2,cdelta2 ,p2,pdelta2]=BlackScholes(Barrier "2/X_0,K,r,sigma ,T(end));
140 Checkvalue=c—(X_.0/Barrier) (1—2%r /(sigma”~2))xc2

141

142 Optionvalue=pchip ([BB:h:L] ,U(:,end) ,X_.0)

A.1.7 CLV_MC.m

%by Jan Tijink 4203240
theta=0.1;

lambda=1.3;

X_0=1;

eta=0.25;
T=[0.05,0.25,0.5,1,2,3,4];

x=[—2.3344; —0.7420:0.7420;2.3344]";
N=length (x) ;

10 xcoll=zeros(length(T) ,N);

11 F=zeros(length (T) ,N);

12 for i=1l:length(T)

OO0 UhA WN =

13 for j=1:N

14 expectation=X_0O%exp(—lambda*T(i))+thetax(l—exp(—lambdaxT(i)));

15 variance=eta "2 /(2xlambda) xexp(—lambdax*(2+T(i)))*(exp(2xlambdaxT(i))—1);
16 xcoll(i,j)=expectationtsqrt(variance)s*x(j);

17 F(i,j)=normecdf(xcoll(i,j),expectation,sqrt(variance));

18 end

19 end

20 S0=1; r=0.03; h = S0/2000; r=0.03;

21 E=[0.001:(10-0.03)/400:5]%S0;

22 sigma=zeros (length (T) ,length(E) ,3);

23 V=zeros(length(T),length(E),3);

24 beta=0.5; alpha=0.2; rho=-0.9; gamma=0.2;
25 for i=1l:length (T)

26 for j=1l:length (E)

27 for b=1:3

28 sigma(i,j,b)=Haganformula(alpha ,beta ,gamma,rho ,E(j)+(b—2)xh,SOxexp(r*T(i)),T(i));
29 V(i,j,b)=BlackScholes (S0,E(j)+(b—2)xh,r,sigma(i,j,b) ,T(i));

30 end

31 end

32 end

33 dVAK=(V(:,:,3)=V(:,:,1))./(2%h);

34 SlJ=zeros(size(F));

35 FS=zeros(length (T),length(E));
36 FS2=zeros(length (T) ,length(E));
37 FSS=zeros(size(F));

38 extradvdk=zeros (1,N);

39 V2=size (FSS);

40 h=0.001;

41 for i=1l:length(T)

42 FS(i,:)=l4exp(r*T(i))*xdVdK(i,:) ;

43 lower=((14+exp (r*T(i))*dVdK (i ,:))>F(1,1));

44 upper=((14+exp (r*T(i))*dVdK(i,:) )<F(end,end));

45 tellerl =0;

46 teller2 =0;

47 for j=1l:length (E)

48 if lower(j)==1

49 if tellerl==

50 tellerl=j—1;

51 end

52 end

53 if upper(j)==

54 if teller2==0

55 teller2=j;

56 end

57 end

58 end

59 dVdK2=dVdK(i, tellerl:teller2);

60 E2=E(tellerl:teller2);

61 FS2(i,1:length (dVdK2) )=1+exp (r*T(i))*dVdK2;

62 SIJ(i,:)=interpl(l+exp(r*T(i))*dVdK2,E2,F(i,:));

63 for j=1:N

64 sigmafs=Haganformula (alpha , beta ,gamma,rho,SIJ (i, j)+h,SOxexp (r*T(i)) ,T(i));

65 sigmafs2=Haganformula (alpha , beta ,gamma,rho,SIJ(i,j)—h,SOxexp (r*T(i)) ,T(i));

66 FSS(i,j)=l4+exp(r*T(i))=*(BlackScholes(S0,SIJ(i,j)+h,r,sigmafs ,T(i))—BlackScholes(S0,SIJ(i,j)

“h,r,sigmafs2 ,T(1)))/(2+h) ;

67 while abs(FSS(i,j)=F(i,j))>10"(—3)

68 E2=[E2,SI1J(i,j)];

69 V2=BlackScholes (S0,SIJ(i,j)+h,r,Haganformula(alpha ,h beta ,gamma,rho,SIJ(i,j)+h,SO*xexp (r*T
(1)) ,T(1)),T(i))

70 V3=BlackScholes (S0,SIJ(i,j)—h,r,Haganformula(alpha , beta ,gamma,rho,SIJ(i,j)—h,SO*xexp(rxT
(1)), T(1)),T(i))

71 dvdK2=[dVdK2, (V2-V3)/(2%h)];

72 SIJ(i,j)=interpl(l+exp(r*T(i))*dVdK2,E2,F(i,j));

73 sigmafs=Haganformula(alpha , beta ,gamma,rho,SIJ(i,j)+h,SO*xexp(r*T(i)),T(i));

74 sigmafs2=Haganformula (alpha , beta ,gamma,rho ,SIJ(i,j)—h,SOxexp(r*T(i)),T(i));
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end

end

M=1000000;
TT=max (T) ;
randoms=randn (1 ,M) ;

X=X_0xexp(—lambdaxT(4) )+thetax(l—exp(—lambdaxT(4)))+sqrt(eta”2/(2+xlambda)*(1—exp(—2xlambdax(T(4)))))=*
Xanti=X_0xexp(—lambdaxT(4) )+theta*(l—exp(—lambdaxT(4)))—sqrt(eta ~2/(2xlambda)*(1—exp(—2xlambdax(T(4))))

V=exp(—r*(T(4))).*max(pchip(xcoll (4,:),SI1J(4,:),X) K
V2=exp(—r*(T(4))).*max(pchip(xcoll (4,:),SIJ(4,:),Xanti) —K

FSS(i,j)=1+exp(r*T(i))=*(BlackScholes(S0,SIJ(i,j)+h,r,sigmafs ,T(i))—BlackScholes (S0, SIJ(

iJ)—h,r,sigmafs2 ,T(i)))/(2xh);

end

r=0.03; K= 0.9;

randn (1 ,M) ;

)*randn (1 ,M) ;

value=(V+V2) x0.5;
Optionvalue=mean(value) ;

sigma=Haganformula(alpha , beta ,gamma,rho ,KK(j) ,SOxexp(r«T(4)),T(4));

,0) 5

[c,cdelta ,p, pdelta]=BlackScholes (SO ,KK(j) ,r,sigma ,T(4));
Check=c
optionsd =

confidenceinterv = [Optionvalue —1.96%xoptionsd/sqrt (M) ,

std(value);

A.1.8 CLV_MC_Barrier.m

%by

Jan Tijink
theta=0.1;
lambda=1.3;
X_0=1;
eta=0.25;
T=[0.05,0.25,0.5,1,2,3,4];
x=[—2.3344;—-0.7420;0.7420;2.3344]";
N=length (x);

NN=100;%number of simulation steps to see if we cross
xcoll=zeros (length (T) ,N);
F=zeros (length (T) ,N);

expectation=X_0Oxexp(—lambdaxT(i))+thetax(l—exp(—lambdaxT(i)));
variance=eta "2 /(2+lambda) xexp(—lambdax*(2+T(i)))*(exp(2xlambdaxT(i))—1);

xcoll (i, j)=expectationtsqrt(variance)s*x(]);
F(i,j)=normcdf(xcoll(i,j),expectation,sqrt(variance));

for i=1:length (T)
for j=1:N
end

end

S0=1;

r=0.03; h = S0/2000; r=0.03;

E=[0.001:(10—0.03) /400:5]%S0;
sigma=zeros (length (T) ,length (E) ,3);
V=zeros (length (T) ,length (E) ,3);
beta=0.5;

for i=1:length (T)
for j=1l:length (E)
for b=1:3
sigma(i,j,b)=Haganformula(alpha ,beta ,gamma,rho ,E(j)+(b—2)xh,SOxexp(r«T(i)),T(i));
V(i,j,b)=BlackScholes(S0,E(j)+(b—2)*h,r,sigma(i,j,b),T(i));
end
end
end
dVdAK=(V (:,:,3)=V(:,:,1))./(2xh);

alpha=0.2; rho=-0.9; gamma=0.2;

SIJ=zeros (size (F));

FS=zeros (length (T) ,length (E));

FS2=zeros (length (T) ,length (E));

FSS=zeros (size (F));

extradvdk=zeros (1,N);

V2=size (FSS);

h=0.001;

i=1l:length (T)

FS(i,:)=l4exp(r*T(i))*xdVdK(i,:) ;
lower=((14+exp (r*T(i))*dVdK (i ,:))>F(1,1));
upper=((14+exp (r*T(i))*dVdK(i,:) )<F(end,end));
tellerl =0;
teller2 =0;

for

for

end

j=1l:length (E)
if lower (j)==1
if tellerl==0
tellerl=j —1;
end
end
if upper(j)==
if teller2==0
teller2=j;
end
end

dVdK2=dVdK(i, tellerl:teller2);
E2=E(tellerl:teller2);
FS2(i,1l:length (dVdK2) )=14exp (r+T(i))*dVdK2;

S1J

for

(i,

j=

:N

sigmafs=Haganformula (alpha , beta ,gamma,rho,SIJ (i, j)+h,SOxexp (r*T(i)) ,T(i));
sigmafs2=Haganformula (alpha , beta ,gamma,rho,SIJ(i,j)—h,SOxexp(r*T(i)) ,T(i));
FSS(i,j)=14exp(r*T(i))=*(BlackScholes(S0,SIJ(i,j)+h,r,sigmafs ,T(i))—BlackScholes (S0,SIJ(i,j)

—h,r,sigmafs2 ,T(i)))/(2+h);
while abs(FSS(i,j)=F(i,j))>10"(—3)
E2=[E2,SIJ(i,]j)];

V2=BlackScholes (S0,SIJ(i,j)+h,r,Haganformula(alpha ,beta ,gamma,rho,SIJ(i,j)+h,SO*xexp (rxT

(1)),T(i1)),T(i));
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the

=interpl (1+exp(r*T(i))*dVdK2,E2,F(i,:));
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V3=BlackScholes (S0,SIJ(i,j)—h,r,Haganformula(alpha ,h beta ,gamma,rho,SIJ(i,j)—h,SO*xexp(r=T
(1)), T(1)),T(i))
dVdK2=[dVdK2, (V2-V3) /(2%h)];
SIJ(i,j)=interpl(l+exp(r*T(i))*dVdK2,E2,F(i,j));
sigmafs=Haganformula (alpha , beta ,gamma,rho,SIJ (i, j)+h,SOxexp (r*T(i)) ,T(i));
sigmafs2=Haganformula (alpha , beta ,gamma,rho,SIJ(i,j)—h,SOxexp (r*T(i)) ,T(i));
FSS(i,j)=l4+exp(r*T(i))=*(BlackScholes(S0,SIJ(i,j)+h,r,sigmafs ,T(i))—BlackScholes (S0, SIJ(
i){)=h,r,sigmafs2 ,T(i)))/(2%h);
end
end
end
B=0.6;
K=0.9;
M=1000;
TT=max(T); r=0.03; K= 0.9;
Dt=TT/(NN) ;
colvalue=zeros (1,N);
barrierx=Bxones (1 ,NN+1);
XX=zeros (NN,M) ;
XXanti=zeros (NN,M) ;
randoms=eta /(sqrt (2xlambda))*sqrt(—exp(—2xlambdaxDt)+1)*randn (NN,M) ;
XX (1,:)=X_0xexp(—lambdaxDt)+theta*(l—exp(—lambdaxDt) )+randoms (1 ,M) ;
XXanti(1,:)=X_0*xexp(—lambdaxDt)+theta*(l—exp(—lambdaxDt))—randoms (1 ,M) ;
xcolvalue=ones (NN,N) ;
colvalue=ones (NN,N) ;
U2=ones (NN,M) ;
U=ones (NN,M) ;
for i=2:NN
xcolvalue (i ,:)=X_0O%xexp(—lambdaxi*Dt)+thetax(l—exp(—lambda*xixDt))+sqrt(eta”"2/(2*lambda)x*(1—exp(—2x*
lambdax(ixDt))))*x;
for k=1:N
colvalue (i,k)=interpl (T,SIJ(:,k)’,ixDt);
end
XX(i,:)=XX(i—1,:).*xexp(—lambda*Dt)+theta*(l—exp(—lambda*Dt))+ randoms(i,:) ;
XXanti(i,:)=XXanti(i —1,:)*exp(—lambda*Dt)+theta*(l—exp(—lambda*Dt))— randoms(i,:) ;
extremes_s=interpl (xcolvalue(i,:) ,colvalue(i,:) ,[min(XX(i,:)) ,max(XX(i,:))], linear’, extrap’);
barrierx (i)=pchip ([max(extremes_s ,0) ,colvalue(i,:)],[min(XX(i,:)) ,max(XX(i,:)),xcolvalue(i,:)],B);
U(i,XX(i,:)<=barrierx(i))= 0;
U2(i,XXanti(i,:)<=barrierx(i))=

end
Xval = [X_O*ones (1,M);XX];
Xval2 = [X_0xones (1,M);XXanti];

Xend = Xval (end ,:);
Xend2 = Xval2 (end ,:);
A=cumprod (U) ;
AA=cumprod (U2) ;
V=A(end ,:) .xexp(—r=*(TT)). *max(pchip ([min(XX(end ,:) ) ,max(XX(end ,:)),xcolvalue(end,:) ] ,[max(extremes_s
,0) ,colvalue(end,:)],Xend) — )
V2:AA(end ). *exp(fr*(TT)) *mdx(pchlp ([mln(XX(end 1)) ,max(XX(end ,:)),xcolvalue(end,:) ] ,[max(extremes_s
O),Colvalue(end :)],Xend) =K ,0);
Optlonvalue mean(V+V2) *0. 5
sigma=Haganformula(alpha , beta ,gamma,rho ,K,SOxexp (r*T(end)) ,T(end));
[c,cdelta ,p, pdelta]=BlackScholes (S0,K,r,sigma ,T(end));
[c2,cdelta2 ,p2, pdelta2]=BlackScholes(B"2/S0,K,r,sigma ,T(end));
Checkvalue=c—(S0/B) "(1—2x*r /(sigma "~2))*c2
error=0Optionvalue—Checkvalue
optionsd = std(value);
confidenceinterv = [Optionvalue —1.96xoptionsd/sqrt (M), Optionvalue+1.96xoptionsd/sqrt (M)]

A.1.9 Haganformula.m

function [sigma_implied] = Haganformula(alpha ,h beta ,gamma,rho ,E, forward ,T)

Y%computes the implied volatility by the Hagan formula with parameters

f=forward ;

z=gamma/alphax*(f*xE) " ((1—beta) /2)*xlog (f/E);

xz=log ((sqrt(l—2xrho*z+z " 2)+z—rho)/(1—rho));

sigma_implied1=alpha /(( £+B)"((1—beta)/2) (14 (1—beta) "2+(log (f/E)) 2/24+(1—beta) 4/1920x(log (£/E)) 4));

sigma_implied2=14((1—beta) "2xalpha"2/(24%(f*E) " (1—beta))4rhoxbetaxgammaxalpha /(4x(f*E)"((1—beta) /2))
+(2—3%rho "2)*xgamma”2/24) *T;

sigma_implied=sigma_impliedl*(z/xz)*sigma_implied2;

end
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