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ROSE: Robust Searchable Encryption With Forward
and Backward Security

Peng Xu , Member, IEEE, Willy Susilo , Fellow, IEEE, Wei Wang , Member, IEEE, Tianyang Chen,

Qianhong Wu , Member, IEEE, Kaitai Liang , Member, IEEE, and Hai Jin , Fellow, IEEE

Abstract— Dynamic searchable symmetric encryption (DSSE)
has been widely recognized as a promising technique to delegate
update and search queries over an outsourced database to an
untrusted server while guaranteeing the privacy of data. Many
efforts on DSSE have been devoted to obtaining a good tradeoff
between security and performance. However, it appears that all
existing DSSE works miss studying on what will happen if the
DSSE client issues irrational update queries carelessly, such
as duplicate update queries and delete queries to remove
non-existent entries (that have been considered by many popular
database system in the setting of plaintext). In this scenario,
we find that (1) most prior works lose their claimed correctness
or security, and (2) no single approach can achieve correctness,
forward and backward security, and practical performance
at the same time. To address this problem, we study for
the first time the notion of robustness of DSSE. Generally,
we say that a DSSE scheme is robust if it can keep the same
correctness and security even in the case of misoperations.
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Then, we introduce a new cryptographic primitive named
key-updatable pseudo-random function and apply this primitive
to constructing ROSE, a robust DSSE scheme with forward
and backward security. Finally, we demonstrate the efficiency
of ROSE and give the experimental comparisons.

Index Terms— Searchable symmetric encryption, forward and
backward security, robustness, key-updatable pseudo-random
function.

I. INTRODUCTION

SEARCHABLE symmetric encryption (SSE) enables a
client to outsource his encrypted data to an honest-

but-curious server while keeping the ability to issue key-
word search queries over these ciphertexts [1], [2]. Dynamic
SSE (DSSE) adds new capabilities for the client to update the
outsourced database, such as adding new entries and deleting
some existent entries [3]. In terms of security, a DSSE scheme
guarantees that the curious server can infer the information as
little as possible about the outsourced database and the issued
search and update queries from the client. This security
is described by the notion of leakage functions that define the
types of leaked information to the server. In practice, the cores
of designing a DSSE scheme are tradeoffs between efficiency,
such as storage or communication cost or search performance,
and the amount of leaked information.

At present, forward and backward security [4] is an
important property of DSSE to mitigate the devastating
leakage-abuse attacks [5], [6] by ensuring that (1) the newly
updated entries cannot be linked with the previous update
and search queries (called forward security [7]), and (2) the
deleted entries cannot be found by the subsequent search
queries (called backward security [8]). Specifically, backward
security includes three different types of leakage (Type-I
to Type-III ordered from most to least secure). As results,
some well-known DSSE schemes were designed in the past
three years for obtaining forward-and-backward security while
achieving high efficiency as much as possible [8]–[11]. Table I
lists these DSSE schemes and compares their efficiency
and forward-and-backward security. It shows that the DSSE
schemes with forward and Type-III backward security are
much more practical than the others.

Our Motivation: Most of these DSSE schemes are unable
to handle irrational update queries (e.g., adding or deleting
the same entry repeatedly and deleting the non-existent entry)
issued by the client due to human errors. They will be inef-
fective or insecure if the client issues the irrational update
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TABLE I

COMPARISONS WITH PRIOR FORWARD-AND-BACKWARD SECURE WORKS. N IS THE TOTAL NUMBER OF KEYWORD/FILE-IDENTIFIER PAIRS, W IS THE
NUMBER OF DISTINCT KEYWORDS, WMAX IS THE SUPPORTED MAXIMUM NUMBER OF KEYWORDS, F IS THE TOTAL NUMBER OF FILES, AND

FMAX IS THE SUPPORTED MAXIMUM NUMBER OF FILES. FOR KEYWORD w, aw IS THE TOTAL NUMBER OF INSERTED ENTRIES, dw IS

THE NUMBER OF Delete QUERIES, dMAX IS THE SUPPORTED MAXIMUM NUMBER OF Delete QUERIES, nw IS THE NUMBER OF

FILES CURRENTLY CONTAINING w, sw IS THE NUMBER OF Search QUERIES THAT OCCURRED, iw IS THE TOTAL NUMBER
OF Add QUERIES, AND s�w IS A NUMBER HAVING s�w ≤ sw (s�w IS EXPLAINED IN SEC. VI). ALL SCHEMES EXCEPT

ROSE AND QOS HAVE aw = nw + dw . SPECIFICALLY, ROSE HAS aw = nw + s�w + dw , AND QOS HAS

aw = iw + dw . RT IS THE NUMBER OF ROUND TRIPS FOR SEARCH UNTIL THAT THE SERVER OBTAINS
THE MATCHING FILE IDENTIFIERS. BS STANDS FOR BACKWARD SECURITY. THE NOTATION Õ

HIDES POLYLOGARITHMIC FACTORS

queries, say, they are not robust. System robustness is of sig-
nificance in practice, and it is easily affected by human errors.
In real-world information systems, human error is known as
a key factor incurring security breaches. As reported by Ver-
izon, 85% of data breaches involve human mistakes, wherein
misdelivery is the top cause of data breaches in the healthcare
industry [16]. Further, even if given a DSSE system supporting
multiple clients, as described in work [17], we may still suffer
from insider attacks. An inside and malicious client can lever-
age the robustness problem and intentionally issue irrational
update queries so as to illegally learn plaintext information
from the encrypted database or launch a denial-of-service
attack. Traditional database systems, like MySQL, seem to
be able to get rid of human errors or insider attacks by using
integrity constraint mechanisms to prevent irrational update
operations. But there has not been any DSSE work formally
investigating the robustness problem. We also note that a few
DSSE schemes are robust (in our definition), but their compu-
tation and communication costs are relatively high. Referring
to Table I, the details of the above problems are as follows.

Dianadel [8], ORION [11], and HORUS [11] cannot guar-
antee forward security when adding or deleting the same
entry repeatedly. Suppose that the database is empty; then,
the client successively adds the same keyword/file-identifier
pair (w, id) twice. In Dianadel , it is trivial for the server
to find that these two add queries are for adding the same
keyword. In ORION and HORUS, these two add queries
have distinctly different procedures in the view of the server.
Hence, the server can find the relationship between these two
add queries. In addition, these two schemes are also not
forward secure when deleting the same entry repeatedly for

the same reason. Although both ORION and HORUS try
to hide the above mentioned differences by running some
dummy operations, their methods fail to achieve the aim.
Although both IM-DSSEII and IM-DSSEI+II build oblivious
search indexes using encrypted matrices, they will extra leak
which file is being updated when issuing the duplicate add
or del queries. When issuing an add or a del query, both
IM-DSSEII and IM-DSSEI+II clients inform the server which
file is needed to be updated by uploading the corresponding
column index. Since the column index is statically calculated
with the client’s secret key and the file identifier, when giving
two duplicate add (or del) queries, the server knows that the
latter query updates the file added (or deleted) by the former
query. This extra leakage violates their declared update
leakage functions.

After deleting a non-existent entry, Dianadel and Janus [8],
Janus++ [10], SDa and SDd [13], Aura [14], and MITRA [11]
disallow the client to add the entry in the future. More
generally, these seven schemes restrict the client to re-add the
already deleted keyword/file-identifier pairs. This restriction
contradicts the fact that the keywords of data rely on the data’s
content, and some keywords of data may be deleted and then
recovered along with the constant update of the data’s content
in practice. However, Dianadel and Janus explicitly mentioned
that they fail to achieve this function. Janus++ has the same
problem since it has the same essence as Janus when deleting
an entry. Besides, if the same entry has been duplicately added,
then scheme FB-DSSE [12] can not return the correct search
result in future. Scheme QOS [13] fails to delete an entry that
has been added twice or more, since a delete query of QOS
only deletes the latest corresponding add query.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 11:47:08 UTC from IEEE Xplore.  Restrictions apply. 
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All existing DSSE works miss studying robustness. But,
Moneta [8] and Fides [8] unintentionally achieve this feature
with a very high cost. In terms of communication cost, these
two schemes need to return all matching ciphertexts, including
the ciphertexts of the deleted entries, to the client from the
server, and then the client decrypts the received ciphertexts.
Hence, they waste the communication cost to transfer the
non-expected ciphertexts. Furthermore, after decrypting those
ciphertexts, the client in both Moneta and Fides re-adds the
non-removed entries to the server using a new secret key.
Moneta applies a two-round ORAM [18], thus it is efficient in
terms of round trip. However, it takes much more computation
and bandwidth costs than Fides. More details are in Table I.

Our Contributions: A simple idea to alleviate from the
above problems requires the client to query the update his-
tory before issuing each update query. However, this idea
is impractical since it largely increases either the number
of search queries or the client’s storage cost. Moreover,
it cannot enable the client to re-add the already deleted
entries. Hence, we aim to construct a new DSSE scheme
with robustness, forward and backward security, and practical
performance. We start by investigating the robustness of some
other prior DSSE works (Sec. II) and introducing some back-
ground knowledge about searchable encryption and forward
and backward security (Sec. III). Our contributions can be
summarized as follows.

To the best of our knowledge, this paper is the first one
to define robustness of DSSE (Sec. IV). A robust DSSE
scheme means that it can keep the same correctness and
security regardless of whether the client adds or deletes the
same keyword/file-identifier pair repeatedly or deletes the non-
existent keyword/file-identifier pair or not. Correspondingly,
we extend the original definition of backward security to
contain the multiple timestamps of the duplicate update
queries. In contrast, only one timestamp was defined in the
original definition, since it implicitly assumes that no duplicate
update query occurs.

To construct a robust DSSE scheme, we define a new cryp-
tographic primitive called key-updatable PRF and construct
its instance based on an early PRF scheme [19] (Sec. V).
This instance is provably secure under the decisional Diffie-
Hellman (DDH) assumption in the random oracle (RO) model.
It enables a client to outsource his PRF values to a server and
then allows the server to update the original secret key of those
PRF values to a new one when receiving a key-update token
from the client. In concept, key-updatable PRF is distinct from
the notion of key-homomorphic PRF [20], even though both
of them can update the secret key of PRF values since they
use entirely different inputs to achieve the key update. More
details about their differences are in Sec. V.

Finally, we construct a robust DSSE scheme named ROSE
(Sec. VI). ROSE is forward and Type-III backward secure
under the adaptive attacks. It has the efficient complexity in
most terms of computation, communication and search costs
as shown in Table I. Since ROSE applies an ingenious design
to make s�w ≤ Min(sw, nw + 1) hold, where Min(sw, nw + 1)
stands for the minimum one of sw and (nw+1), ROSE has the
same search complexity as Janus and Janus++ in the worst

case. Moreover, in practice, ROSE takes much less search
time than Janus and Janus++, since the number of expensive
operations in ROSE, such as modular exponentiation, is linear
with O(s�w · dw) rather than O(nw · dw), and s�w < nw usually
holds except for some particular case. Hence, ROSE also has
practical search performance. Sec. VII tests the performance
of ROSE comprehensively.

II. DSSE SCHEMES REVISITED

SSE was first introduced by Song et al. [1]. Later,
Chang et al. proposed a forward secure SSE scheme [21].
Curtmola et al. were the first to formally define information
leakage and proposed an SSE scheme in the static setting,
and this scheme has the sub-linear search performance [2].
DSSE was first introduced by Kamara et al. [3]. In this
section, we investigate some other well-known DSSE schemes
regarding their robustness and find that only two of them
are robust, but no single scheme has robustness, forward and
backward security, and practical performance at the same time.

Two existing DSSE schemes explicitly assume that the
client never issues the irrational update queries. Clearly,
these schemes are not robust. For example, Cash et al. [22]
and Stefanov et al. [4] proposed two practical DSSE schemes
with small leakage, but Cash et al. mentioned that “We assume
throughout that the client never tries to add a record/keyword
pair that is already present”, and Stefanov et al. assumed that
“deletions happen only after additions”.

Although the other DSSE schemes do not explicitly state
the above assumption, most of them are still not robust.
We categorize them into the following three types according
to their flaws caused by the irrational update queries.

When issuing the same add query repeatedly, the prior
DSSE schemes in [3], [23], [24], and [9], [15], [25], [26]
cannot keep their claimed correctness or security. For example,
in [23], [24], and [9], the information leakage caused by
the duplicate add queries will be beyond the limitation of
their security definitions; in [3], the duplicate add queries
will insert several copies of the same data into the database;
however, the subsequent delete query can just remove one
copy of them, in other words, the delete task cannot be
achieved completely; in [9], the duplicate add queries cause
some data to be replaced improperly, such that the subsequent
search query cannot be achieved correctly; in [26], scheme
CLOSE-FB may fail to delete entries or disallow the client to
re-add a deleted entry due to it randomly decrypts entries and
perform deletion during a search; and in [25], for a keyword,
if the client issues a search query in the middle of two
duplicate add queries, the relationship between those two add
queries will be leaked, which is beyond the leakage amount
defined in that work. When issuing the same delete query
repeatedly, the prior DSSE schemes in [23] and [27] leak
the relationship of those duplicate delete queries, which is
beyond their security definitions. The DSSE schemes in [28]
and [7], [29], [30] disallow the client to re-add an already
deleted entry. Otherwise, the re-added entry will be deleted
by the server mistakenly. This mistake causes the subsequent
search query to return incomplete results.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 11:47:08 UTC from IEEE Xplore.  Restrictions apply. 
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Fortunately, there are two prior DSSE schemes, named
DOD-DSSE and FAST in [31] and [32], respectively, that are
robust. In terms of performance, when issuing an update
or search query, DOD-DSSE requires the client to fetch all
related data (which has a size linear with the maximum number
of keywords or files) from the server, update those data locally
if the current query is an update one, and re-add the updated
or original data to the server; thus, this scheme takes very high
computation and communication costs; FAST has a practical
search and update performance, but it is not backward secure.
In addition, DOD-DSSE must set the maximum numbers of
keywords and files when initializing it.

Another important research line on DSSE is to leverage
the trusted hardware to protect the update and search
queries [33]–[35]. Enclaves (in other words, trusted third
party) used in those works can trace the full states of the
encrypted database, while in traditional DSSE works, the only
trusted party (namely, the client) maintains very limited infor-
mation about the encrypted database. With the extra security
assumption offered by the trusted hardware, the robustness
may be achieved. In this work, we attempt to capture robust-
ness without using the trusted hardware assumption.

III. BACKGROUND

Notations: Let λ ∈ N be the security parameter. Symbol

x
$← X means randomly picking x from the set or space X .

Symbol |x | means the binary size of the element x . Symbol
|X | means the number of elements in the set X . Symbol x ||y
means concatenating strings x and y. Symbol {0, 1}i means
the 0/1 strings of length i ∈ N. Symbol {0, 1}∗ means the
0/1 strings with an arbitrary length. Symbol poly(λ) means a
polynomial in parameter λ. Let ⊥ be the abort symbol.

Symmetric Encryption (SE): Given a security parameter
λ ∈ N, an SE scheme with the key space KSE = {0, 1}λ,
the plaintext space MSE = {0, 1}∗, and the ciphertext space
CSE consists of two algorithms SE=(SE.Enc, SE.Dec) with the
following syntax: SE.Enc(K , m) takes a secret key K ∈ KSE
and a plaintext m ∈ MSE as inputs and probabilistically
generates a ciphertext ct; SE.Dec(K , ct) takes a secret key
K and a ciphertext ct ∈ CSE as inputs and recovers a plaintext
M ∈MSE or returns ⊥. An SE scheme must be correct and
semantically secure under chosen plaintext attack (SS-CPA) at
least.

Pseudorandom Function: Let F : KF × XF → YF be an
efficient function with the key space KF, the domain XF, and
the range YF. It is called a PRF if for all sufficiently large
security parameter λ ∈ N and PPT adversary A, its advantage
defined as AdvPRF

A,F(λ) = |Pr[AF(K ,·)(λ) = 1] − Pr[A f (·)(λ) =
1]| is negligible in λ, where K

$← KF and f is a random
function from XF to YF.

Searchable Encryption: A dynamic searchable symmet-
ric encryption (DSSE) scheme � = (�.Setup,�.Update,
�.Search) consists of algorithm �.Setup and protocols
�.Update and �.Search both between a client and a server:
• �.Setup(λ): the client takes a security parameter λ as

input and initializes (K , σ, EDB), where K is a secret

key, σ is the client’s local state, and EDB is an empty
encrypted database that is sent to the server.

• �.Update(K , σ, op, (w, id);EDB): For adding an entry
to or deleting an entry from EDB as the client’s request,
the client takes his secret key K , local state σ , query
type op ∈ {add, del}, and a keyword/file-identifier pair
(w, id) as inputs, and the server takes EDB as input. After
the protocol, the pair (w, id) is added to or deleted from
EDB.

• �.Search(K , σ,w;EDB): For searching EDB as the
client’s query, the client takes his secret key K , local
state σ , and a keyword w as inputs, and the server takes
EDB as input. After the protocol, the results matching
keyword w are returned from the server to the client.

Informally, � is correct if protocol �.Search always returns
correct results with an overwhelming probability for each
query. We refer readers to [3] for the formal definition.
In terms of security, the adaptive security of DSSE is captured
by the indistinguishability between a real and an ideal game,
and both games allow an adversary to adaptively perform
update and search queries. The adaptive security of a
DSSE scheme is parameterized by a (stateful) leakage func-
tion L = (LStp,LU pdt ,LSrch) that captures the information
learned by the adversarial server throughout the execution
of the DSSE scheme, and the components of L express
the information leaked by �.Setup, �.Update, and �.Search
respectively.

Definition 1 (Adaptive Security of DSSE): A DSSE scheme
� is said to be L−adaptively secure if for all sufficiently large
security parameter λ ∈ N and PPT adversary A, there is an
efficient simulator S = (S.Setup,S.Update,S.Search) such
that |Pr[Real�A(λ) = 1]−Pr[Ideal�A,S,L(λ) = 1]| is negligible
in λ, where games Real�A(λ) and Ideal�A,S,L(λ) are defined
as:
• Real�A(λ): Initially, generate (K , σ, EDB)← �.Setup(λ)

and send EDB to A. Then, A adaptively issues update
(resp. search) queries with input (op, w, id) (resp.
w) and observes the real transcripts generated by these
issues. A eventually outputs a bit.

• Ideal�A,S,L(λ): In this game, A sees the simulated
transcripts instead of the real ones. Initially, S simu-
lates EDB by running S.Setup(LStp(λ)). Then, A adap-
tively issues update (resp. search) queries with input
(op, w, id) (resp. w) and observes the simulated tran-
scripts generated by S.Update(LU pdt(op, w, id)) (resp.
S.Search(LSrch(w))). Eventually, A outputs a bit.

Forward and Type-III Backward Security: We briefly recall
the definitions of forward and Type-III backward security (for
more details, please refer to [7], [8], [12]). Let Q be a list of
all issued update and search queries. Each entry of Q is
either an update query (u, op, (w, id)) or a search query
(u, w), where u > 0 is the timestamp of the corresponding
query and gradually increases with the number of queries.
Before going ahead, we recall three leakage functions.

For a keyword w, function sp(w) is to return the timestamps
at which keyword w is searched, function TimeDB(w) is to
return all timestamp/file-identifier pairs of keyword w that
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have been added to but not deleted from EDB, and function
DelHist(w) is to return all insertion/deletion-timestamps pairs
of keyword w if there is a file identifier id such that (w, id)
has been added to EDB and subsequently deleted from EDB.
Hence, the above three functions are formally constructed from
the query list Q as follows.

sp(w) = {u|(u, w) ∈ Q}
TimeDB(w) = {(u, id)|(u, add, (w, id)) ∈ Q

and ∀u�, (u�, del, (w, id)) /∈ Q}
DelHist(w) = {(uadd, udel)|∃id, (uadd, add, (w, id)) ∈ Q

and (udel , del, (w, id)) ∈ Q}
With the above leakage functions, the forward and Type-III

backward security is defined as follows.
Definition 2 (Forward Security): An L−adaptively secure

DSSE scheme � is forward secure iff the update leakage
function LU pdt(op, w, id) = L�(op, id), where L� is a state-
less function.

Definition 3 (Type-III Backward Security): An
L−adaptively secure DSSE scheme � is Type-III backward
secure iff the update and search leakage functions LU pdt

and LSrch can be written as LU pdt (op, w, id) = L�(op, w)
and LSrch(w) = L��(sp(w), TimeDB(w), DelHist(w)), where
both L� and L�� are stateless functions.

Note that the definitions of both leakage functions
TimeDB(w) and DelHist(w) implicitly assume that no dupli-
cate update query is issued. The reason is that for
each keyword/file-identifier pair, only one insertion/deletion
timestamp is returned. Hence, these two leakage functions
and the Type-III backward security are not suitable for a
robust DSSE scheme (the definitions of Type-I and Type-II
backward security also have the same problem). Fortunately,
this problem does not exist in the definition of forward
security.

IV. ROBUST SEARCHABLE ENCRYPTION

Syntax: Roughly, a robust DSSE scheme allows the client
to issue duplicate update queries and delete non-existent
keyword/file-identifier pairs while guaranteeing that (1) the
search protocol always returns the correct set of file identifiers,
(2) the client can re-add the already deleted keyword/file-
identifier pairs, and (3) the security is consistent. Hence,
we define robust DSSE as follows.

Definition 4 (Robust DSSE): Let � be a DSSE scheme. �
is said to be robust if it can keep the same correctness
and security even if the client adds or deletes the same
keyword/file-identifier pairs repeatedly and re-adds the already
deleted keyword/file-identifier pairs.

General Backward Security Definition: Taking the case of
duplicate update queries into account, we slightly extend the
definitions of leakage functions TimeDB(w) and DelHist(w)
and name the resulting leakage functions as exTimeDB(w)
and exDelHist(w) respectively. Their formal definitions are as
follows, where U denotes the set of all satisfactory timestamps.

exTimeDB(w)

= {(U, id)|∀u ∈ U, (u, add, (w, id)) ∈ Q

and ∀u� > u, (u�, del, (w, id)) /∈ Q}.
exDelHist(w)

= {(Uadd,Udel)|∃id,∀uadd ∈ Uadd and udel ∈ Udel,

(uadd, add, (w, id)) ∈ Q and (udel, del, (w, id)) ∈ Q}
In addition, both exTimeDB(w) and exDelHist(w) must be the
maximal set to contain all possible elements.

With the above new leakage functions, we define the general
Type-III backward security as below.

Definition 5 (General Type-III Backward Security): An
L−adaptively secure DSSE scheme � is general Type-III
backward secure iff the update and search leakage func-
tions LU pdt and LSrch can be written as

LU pdt (op, w, id) = L�(op, w)

LSrch(w) = L��(sp(w), exTimeDB(w), exDelHist(w))

where both L� and L�� are stateless functions.
Clearly, the general Type-III backward security definition

implies the traditional Definition 3 if no duplicate update
query is issued. By the same method, the traditional Type-I
and Type-II backward security can be extended to obtain more
generality.

V. KEY-UPDATABLE PRF

Syntax and Security Definition: Let P be a PRF function.
If P is key updatable, then for any two secret keys K1 and K2,
there is a key-update token that can update the PRF values
with K1 to the PRF values with K2. In terms of security, key
updatable PRF is indistinguishable with a random function
under the non-trivial attacks. We define key-updatable PRF
and its security as below.

Definition 6 (Key-Updatable PRF): Let P : KP × XP →
YP be an efficient PRF function. We say that P is a secure
key-updatable PRF if the following properties hold:
• For all keys K1 and K2 ∈ KP and x ∈ XP, there are two

efficient algorithms P.UpdateToken : KP × KP → KP

and P.KeyUpdate : KP × YP → YP, such that given
key-update token �K1→K2 ← P.UpdateToken(K1, K2),
equation P.KeyUpdate(�K1→K2 , P(K1, x)) = P(K2, x)
holds.

• For all sufficiently large λ and PPT adversary A, its
advantage defined as AdvPRF

A,P(λ) = |Pr[ExptPRF
A,P(λ) =

1] − 1
2 | is negligible in λ, where experiment ExptPRF

A,P(λ)
is defined in Figure 1.

In addition, we say that the key-update tokens are com-
binable if there is an efficient operation � s.t. �K1→K2 �
�K2→K3 = �K1→K3 holds for any three keys K1, K2,
and K3.

Let (K1, K2) be two randomly chosen secret keys. In exper-
iment ExptPRF

A,P(λ), adversary A takes key-update token
�K1→K2 as input, adaptively issues queries to oracles P(K1, ·)
and f (·), and outputs n number of challenge PRF inputs
{x1, . . . , xn}; then, randomly giving one of sets {P(K1, xi )|i ∈
[1, n]} and { f (xi )|i ∈ [1, n]} to A, we say that A wins in
this experiment if he can correctly guess which set is given.
During the experiment, A cannot query oracles P(K1, ·) or
f (·) with these challenge PRF inputs.
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Fig. 1. Experiment on the security of key-updatable PRF.

Key-Updatable PRF vs. Key-Homomorphic PRF: Both
key-updatable and key-homomorphic PRFs can alter the orig-
inal secret key of PRF values to a new secret key. How-
ever, they apply different ways to achieve this work. Let
F : KF × XF → YF be a key-homomorphic PRF [20],
namely given any two F(K1, x) and F(K2, x), there is an
efficient procedure ⊗ such that F(K1 ⊕ K2, x) = F(K1, x)⊗
F(K2, x) holds. Suppose to alter the secret key K1 of values
{F(K1, xi )|i ∈ [1, n]} to any another secret key K3 ∈ KF,
key-homomorphic PRF must take many PRF values {F(K1 ⊕
K3, xi )|i ∈ [1, n]} as inputs and compute F(K3, xi ) =
F(K1, xi ) ⊗ F(K1 ⊕ K3, xi ) for i ∈ [1, n], where n ∈ N.
In contrast, to achieve the analogous work, key-updatable
PRF takes only one key-update token �K1→K3 as input and
computes P(K3, xi ) = P.KeyUpdate(�K1→K3, P(K1, xi )) for
i ∈ [1, n]. It is clear that key-updatable PRF is much more
efficient than key-homomorphic PRF for updating the secret
key of PRF values. Specifically, the generation of �K1→K3

does not rely on {xi |i ∈ [1, n]}.
A Key-Updatable PRF Instance: Referring to an early PRF

instance [19], it is easy to construct a key-updatable PRF
instance. Let G be a finite cyclic and multiplicative group of
prime order q , where |q| = poly(λ) and H : {0, 1}∗ → G is
a cryptographic hash function. Given KP = Z∗q , XP = {0, 1}∗,
and YP = G, a key-updatable PRF instance can be constructed
as

P(K , x) = H(x)K

�K1→K2 = P.UpdateToken(K1, K2) = K−1
1 · K2

P.KeyUpdate(�K1→K2, P(K1, x))

= P(K1, x)�K1→K2

where (K , K1, K2) ∈ KP and x ∈ XP. Additionally, this
instance has the property of a combinable key-update token
when setting operation � to be the multiplicative operation of
group Z∗q .

Security Proof: The security of the above key-updatable
PRE instance relies on the DDH assumption in the RO model.
Let G be a finite cyclic and multiplicative group of prime order
q where |q| = poly(λ). We say that the DDH assumption
holds if for all sufficiently large λ and PPT adversary A, its

Algorithm 1 The Contruction of S in the RO Model
S(gα, gβ , Z) � Note that Z = gαβ or gγ

1: Initialize two empty maps HList and FList

2: b
$← {0, 1}, �

$← KP, and R
$← G

3: (x1, · · · , xn , st)← AH(·),P(K1,·), f (·)(λ, �)
4: if b = 1 then
5: b� ← AH(·),P(K1,·), f (·)({P(K1, xi )|i ∈ [1, n]}, st)
6: else
7: b� ← AH(·),P(K1,·), f (·)({ f (xi )|i ∈ [1, n]}, st)
8: end if
9: return 1 if b = b�; otherwise, return 0
H(x)

1: if x has been queried before then
2: (r, gβ·r )← HList[x]
3: else
4: r

$← Z∗q and HList[x] ← (r, gβ·r )
5: end if
6: return gβ·r
P(K1, x)

1: Query H(x) if x was never queried before
2: (r, gβ·r )← HList[x]
3: return Zr � It implies that K1 = α and K2 = α ·�
f (x)

1: if x has been queried before then
2: (r, Rr )← FList[x]
3: else
4: r

$← Z
∗
q and FList[x] ← (r, Rr )

5: end if
6: return Rr

advantage defined as AdvDDH
A = |Pr[A(gα, gβ, gαβ) = 1] −

Pr[A(gα, gβ, gγ ) = 1]| is negligible in λ, where (α, β, γ )
$←

Z∗q ×Z∗q ×Z∗q . Then, we have the following security theorem.
Theorem 1: Let the cryptographic hash function H be mod-

elled as a random oracle. The above key-updatable PRF
instance is secure under the DDH assumption in the RO model.

Proof: To prove the security, suppose A is a PPT
adversary to break the key-updatable PRF instance in the
experiment ExptPRF

A,P. Algorithm 1 constructs a simulator S that
can simulate the experiment ExptPRF

A,P in the RO model and
leverage the capability of the adversary A to break the DDH
assumption. Next, we will prove that S correctly simulates the
experiment ExptPRF

A,P in the view of A if Z = gαβ ; otherwise,
A has no advantage to correctly guess b.

When Z = gαβ , for any x , we have gβ·r = H(x) and
P(K1, x) = gαβr = gK1·βr = H(x)K1 . It means that S
correctly simulates function P(K1, ·) even if it does not know
K1. In addition, it is clear that the constructed function f (·) is
a random one. Hence, we have that S is indistinguishable from
the experiment ExptPRF

A,P in the view of A if Z = gαβ . Formally,

we have Pr[ExptPRF
A,P(λ) = 1] = Pr[S(gα, gβ, gαβ) = 1].

When Z = gγ , for any x , we have P(K1, x) = gγ r

where r is random. It implies that for i ∈ [1, n], P(K1, xi ) is
indistinguishable from f (xi), since gγ has the same random
distribution with R, and A cannot query P(K1, xi ) or f (xi ).
Summarily, A has no advantage to correctly guess b if Z =
gγ . Formally, we have Pr[S(gα, gβ, gγ ) = 1] = 1

2 .
According to the definition of the DDH assumption and

the above results, we have |Pr[S(gα, gβ, gαβ) = 1] −
Pr[S(gα, gβ, gγ ) = 1]| = |Pr[ExptPRF

A,P(λ) = 1] − 1
2 | =

AdvPRF
A,P(λ). It means that if the DDH assumption holds, the
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Algorithm 2 Algorithm ROSE.Setup and Protocol ROSE.Update
Setup(λ)

1: Initialize a traditional PRF function F : KF×XF → YF with YF = {0, 1}λ
and a key-updatable PRF function P : KP × XP → YP with the property
of a combinable key-update token and KP = YP = {0, 1}λ� , where
λ� = poly(λ) s.t. F and P have the exact same security in practice

2: Initialize two hash functions G : {0, 1}∗ → {0, 1}λ and H : {0, 1}∗ →
{0, 1}2λ+λ�+2

3: Initialize three empty maps LastKey, LastUp, and EDB
4: Let op ∈ {add, del, srch} with the binary codes add = 01, del = 00, and

srch = 10
5: Assume the file identifier id0 = 0λ is an invalid one that never is used by

any real file

6: KSE
$← KSE, K� ← (LastKey, KSE), and σ ← LastUp

7: Send EDB to the server
Update(K�, σ, op, (w, id);EDB)
Client:
1: (K �, S�)← LastKey[w]
2: if (K �, S�) = (NULL, NULL) then

3: (K �, S�) $← KP ×KF and LastKey[w] ← (K �, S�)
4: end if
5: R

$← {0, 1}λ and L ← G(P(K �, w||id||op), R)
6: C ← SE.Enc(KSE, id)
7: (id �, op�, R�)← LastUp[w]
8: if (id �, op�, R�) = (NULL, NULL, NULL) then
9: D← H(F(S�, w||id||op), R)⊕ (op||02λ+λ� )
10: else
11: L � ← G(P(K �, w||id �||op�), R�) and T � ← F(S�, w||id �||op�)
12: if op = add then
13: D← H(F(S�, w||id||op), R)⊕ (op||0λ� ||L �||T �)
14: else
15: X ← P(K �, w||id||add)
16: D← H(F(S�, w||id||op), R)⊕ (op||X ||L �||T �)
17: end if
18: end if
19: Update LastUp[w] ← (id, op, R)
20: Send ciphertext (L , R, D, C) to the server
Server:
1: Store EDB[L] ← (R, D, C)

advantage of A must be negligible when it breaks the security
of the key-updatable PRF instance in the RO model.

VI. ROSE: OUR DSSE SCHEME

In this section, we introduce the main ideas to design ROSE,
apply key-updatable PRF to constructing ROSE, and finally
analyze ROSE.

Roughly, for each keyword, ROSE constructs a hidden chain
relationship to connect all keyword-searchable ciphertexts of
the keyword in sequence, in which the latest and earliest
generated ciphertexts are located at the head and the tail of the
chain, respectively. When receiving a keyword search trapdoor
from the client, the server determines the first matching
ciphertext that is located at the head of the corresponding chain
and decrypts out an index that can guide the server to find the
next matching ciphertext. By carrying on in the same way,
the server can determine all matching ciphertexts. Finally, the
server stops the search if the matching ciphertext located at
the chain’s tail is found and returns all found ciphertexts, and
then the client decrypts out the file identifiers.

To guarantee robustness, ROSE designs a probabilistic
algorithm to generate each ciphertext’s index, such that all
ciphertexts have different indexes even if they are generated by
the duplicate update queries. However, this idea also causes
a new challenge that concerns how to delete the ciphertexts
generated by the previous duplicate add queries. Suppose
the client adds the same keyword/file-identifier pair n times.
ROSE makes the n generated ciphertexts have n different
indexes. To remove all those ciphertexts by one delete
query, ROSE allows the ciphertext generated by the delete
query to contain a constant-size delete token, which enables
the server to find all ciphertexts that were generated by the
previous duplicate and relevant add queries.

To guarantee forward security when a search query
occurs in the middle of the relevant delete and re-add
queries, the ROSE client will randomly choose new secret
keys to generate the ciphertexts in the subsequent update

queries (including the subsequent re-add queries) after the
search query. Suppose the client issues a search query
at timestamp us . This idea is advantageous in guaranteeing
that the update queries issued before us are independent of
the update queries issued after us in the view of the server.
However, this idea also causes a new challenge that concerns
how to delete the ciphertexts that were generated before the
last search query.

Without loss of generality, for a keyword w, suppose the
client adds id , searches w, and deletes id in sequence. Let
Ca and Cd be the two ciphertexts generated by these add
and delete queries. According to the above idea, these
two ciphertexts were generated with different secret keys.
Hence, the delete token contained in Cd could be ineffective
for deleting the ciphertext with index Ca . Fortunately, key-
updatable PRF can overcome this challenge. It can update the
secret key of the delete token to the secret key of ciphertext
Ca . Hence, it can be used to delete the ciphertext Ca . More
details are introduced in the following construction of ROSE.

Setup: Algorithm 2 describes algorithm ROSE.Setup. The
client runs this algorithm to initialize a traditional PRF,
a key-updatable PRF, two cryptographic hash functions, and
three empty maps LastKey, LastUp, and EDB, chooses a secret
key KS E of symmetric encryption, generates the secret key
K� of ROSE, and sends EDB to the server whereas LastUp
is stored locally. Note that LastKey will record the up-to-date
secret key of each keyword that is used to generate ciphertexts,
and the operation types include the search query srch in
addition to add and del.

Update: Algorithm 2 also describes protocol ROSE.Update.
When updating a keyword/file-identifier pair (w, id) with
operation type op = add or del, the client randomly picks the
secret keys (K �, S�) of w and inserts them into LastKey[w]
if it is for the first time to issue the update query of w;
otherwise, it retrieves the keys from LastKey[w] (lines 1-4).
Then, the client generates and sends a keyword-searchable
ciphertext (L, R, D, C) to the server. To generate L, the client
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Algorithm 3 Protocol ROSE.Search(K�, σ,w;EDB)
Client:
1: (id �, op�, R�)← LastUp[w]
2: if (id �, op�, R�) = (NULL, NULL, NULL) then
3: return ⊥
4: end if
5: (K �, S�)← LastKey[w]
6: L � ← G(P(K �, w||id �||op�), R�) and T � ← F(S�, w||id �||op�)
7: (K , S)

$← KP × KF, op ← srch, R
$← {0, 1}λ, and �K→K � ←

P.UpdateToken(K , K �)
8: L ← G(P(K ,w||id0 ||op), R), D ← H(F(S, w||id0||op), R) ⊕

(op||�K→K � ||L �||T �), and C ← SE.Enc(KSE, id0)
9: Update LastUp[w] ← (id0, op, R) and LastKey[w] ← (K , S)
10: Send search trapdoor (L �, T �) and ciphertext (L , R, D, C) to the server
Server:
1: Store EDB[L] ← (R, D, C)
2: (Lt , Rt , Dt , Ct ) ← (L , R, D, C), (opt , �t ) ← (srch, NULL), and

(L �t , T �t )← (L �, T �)
3: I ← ∅ and D← ∅
4: repeat
5: (R�, D�, C �)← EDB[L �]
6: op�||X �||L ��||T �� ← D� ⊕ H(T �, R�)
7: if op� = del then
8: Remove ciphertext (L �, R�, D�, C �) from EDB
9: D← D ∪ {X �} � Note that X � ∈ YP if op� = del
10: Dt ← Dt ⊕ (0λ�+2||L �t ⊕ L ��||T �t ⊕ T ��) � Note that operation ⊕ is

handled before operation ||
11: Update EDB[Lt ] ← (Rt , Dt , Ct )
12: (L �t , T �t )← (L ��, T ��)
13: end if
14: if op� = add then
15: if ∃A ∈ D s.t. L � = G(A, R�) then
16: Remove ciphertext (L �, R�, D�, C �) from EDB
17: Dt ← Dt ⊕ (0λ�+2||L �t ⊕ L ��||T �t ⊕ T ��)
18: Update EDB[Lt ] ← (Rt , Dt , Ct )
19: (L �t , T �t )← (L ��, T ��)
20: else
21: (Lt , Rt , Dt , Ct )← (L �, R�, D�, C �)

22: (L �t , T �t )← (L ��, T ��) and opt ← op�
23: I ← I ∪ {C �}
24: endif
25: endif
26: if op� = srch then
27: if opt = srch and �t �= NULL then
28: Remove ciphertext (L �, R�, D�, C �) from EDB
29: Dt ← Dt ⊕ (00||�t ⊕ (�t � X �)||L �t ⊕ L ��||T �t ⊕ T ��)
30: Update EDB[Lt ] ← (Rt , Dt , Ct )
31: (L �t , T �t )← (L ��, T ��)
32: �t ← �t � X � � Note that X � ∈ KP if op� = srch
33: end if
34: if (opt = srch and �t = NULL) or (opt �= srch) then
35: (Lt , Rt , Dt , Ct )← (L �, R�, D�, C �)
36: (L �t , T �t )← (L ��, T ��) and (opt ,�t )← (op�, X �)
37: end if
38: for all A ∈ D do
39: A← P.KeyUpdate(X �, A)
40: end for
41: end if
42: L � ← L �� and T � ← T ��
43: until (L � = 0λ and T � = 0λ)
44: if I = ∅ then
45: Remove all previously found ciphertexts
46: end if
47: Send I to the client
Client:
1: if I = ∅ then
2: LastKey[w] ← (NULL, NULL)
3: LastUp[w] ← (NULL, NULL, NULL)
4: return ⊥
5: end if
6: for i = 1 to |I| do
7: idi ← SE.Dec(KSE,I[i])
8: end for
9: return {idi |i ∈ [1, |I|]}

computes the key-updatable PRF value P(K �, w||id||op) and
takes this value and random number R as inputs to compute
L = G(P(K �, w||id||op), R) (line 5). The content of D
contains the delete token X = P(K �, w||id||add) if op =
del (lines 15 and 16). Finally, the client updates LastUp[w]
locally to record the newest update information (id, op, R) of
keyword w (line 19).

Search: Algorithm 3 describes protocol ROSE.Search.
When issuing a search query, the ROSE client generates and
sends not only a search trapdoor but also a keyword-searchable
ciphertext with operation type op = srch to the server, and
the ciphertext contains a key-update token of key-updatable
PRF, which will be disclosed to the server in due course for
updating the secret key of delete tokens. When receiving a
search trapdoor, ROSE can find all matching ciphertexts and
delete all expected ciphertexts from them. Namely, only the
still-valid ciphertexts will be sent to the client. To delete the
matching-but-invalid ciphertexts, (1) the ROSE server applies
the delete tokens disclosed from the already found ciphertexts
to test if a newly found ciphertext can be removed; and
(2) when finding a matching ciphertext with operation type
op = srch, the ROSE server decrypts out a key-update token,
applies the token to update the secret key of all previously
disclosed delete tokens, and removes this ciphertext in some

cases (this step is for saving the time cost of the next search
query). More details of protocol ROSE.Search are as below.

When issuing a search query of keyword w, the client
retrieves the last secret keys (K �, S�) from LastKey[w] and
takes them as inputs to compute both the index L � and the
decryption token T � of the ciphertext that was generated in the
last update or search query of w, and L � and T � constitute
the search trapdoor (lines 1-6). Then, the client picks two new
random secret keys (K , S), computes the key-update token
�K→K � , and takes (K , S) and (op = srch, w, id0) as inputs
to generate a keyword-searchable ciphertext (L, R, D, C),
where id0 = 0λ does not stand for any real file, and D
contains op||�K→K � ||L �||T � (lines 7 and 8). Finally, the
client updates LastUp[w] and LastKey[w] to the information
about the current search query and these two new secret
keys, respectively, and sends (L �, T �) and (L, R, D, C) to
the server.

Recall that all ciphertexts of each keyword are con-
nected by a hidden chain relationship. Thus, in the chain
of keyword w, let (Lt , Rt , Dt , Ct ) and (L �, R�, D�, C �) be
two adjacent ciphertexts and (Lt , Rt , Dt , Ct ) be in front of
(L �, R�, D�, C �). Let (opt ,�t , L �t , T �t ) be the operation type,
the key-update token, the ciphertext’s index, and the decryp-
tion token that are contained in Dt . Upon receiving (L �, T �)
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Fig. 2. An example of ROSE.

and (L, R, D, C) from the client, the server inserts (R, D, C)
into EDB[L] and sets (Lt , Rt , Dt , Ct ) ← (L, R, D, C) and
(opt ,�t , L �t , T �t ) ← (srch, NULL, L �, T �) at the beginning
(lines 1 and 2).

Next, the server will repeat finding a new matching cipher-
text and then handle this ciphertext in different ways until all
matching ciphertexts are found (lines 4-43). Finally, the server
returns I. Then the client empties LastKey[w] and LastUp[w]
if I is empty and decrypts out the expected file identifiers
(lines 1-9).

An Example: For keyword w, suppose the client adds file
identifiers id1 and id2, searches w, duplicately adds id2, and
deletes id2 in sequence. According to protocols ROSE.Update
and ROSE.Search, the client orderly uploads five ciphertexts to
the server, these ciphertexts contain a hidden chain relationship
as the first part of Figure 2 shows, and we assume that
ciphertexts with indexes L1 and L2 are generated using secret
keys (K1, S1), and the other ciphertexts are generated using
secret keys (K2, S2).

Next, suppose the client searches w again. The second part
of Figure 2 shows the remainder ciphertexts and their rela-
tionships after the search. Specifically, according to protocol
ROSE.Search, the client sends search trapdoor (L5, T6) and
ciphertext (L6, R6, D6, C6) to the server, where ciphertext
(L6, R6, D6, C6) is generated using secret keys (K3, S3).
Upon receiving those messages, the server inserts ciphertext
(L6, R6, D6, C6) into EDB, sequentially finds all matching
ciphertexts {C5, C4, C3, C2, C1}, deletes {C5, C4, C2}, and
returns {C1} to the client.

Finally, suppose that this is the third time the client
searches w. The client sends search trapdoor (L6, T6) and
ciphertext (L7, R7, D7, C7) to the server. The third part of
Figure 2 shows the remainder ciphertexts and their relation-
ships after the search. This part mainly shows that in the
special case that the conditions in the lines 26 and 27 of
protocol ROSE.Search hold, ciphertext (L3, R3, D3, C3) is
removed, the key-update tokens �K2→K1 and �K3→K2 are
combined to the key-update token �K3→K1 , and D6 is updated
to contain �K3→K1 ||L1||T1 instead of �K3→K2 ||L3||T3
(lines 28 and 32 of protocol ROSE.Search).

Analysis on Correctness, Security, and Robustness: Suppose
that the client does not add or delete the same keyword/file-
identifier pairs repeatedly or re-add the already deleted

keyword/file-identifier pairs. It is very easy to verify the
correctness of ROSE. Without the assumption, it is also easy
to verify the correctness of ROSE, since for a keyword,
(1) all ciphertexts generated by the update and search
queries, including by the duplicate update queries, have
independent storage addresses and construct a hidden chain
relationship well, (2) this chain can guide the server to find
all matching ciphertexts in an orderly manner from chain head
to chain tail, (3) the key-updatable feature of PRF P enables
delete queries to remove all previously added and relevant
ciphertexts, (4) the duplicate delete queries do not affect
the search results, and (5) the re-added ciphertexts cannot be
removed by the previously issued delete queries. Hence,
ROSE is robust in terms of correctness.

In terms of security, we prove that without the above
assumption, ROSE is forward and general Type-III backward
secure. It also implies that with the above assumption, ROSE
is forward and Type-III backward secure, since the general
Type-III backward security implies the traditional Type-III
backward security. Formally, we have the following theorem
whose proof is in Appendix. It is easy to summarize and
conclude that ROSE is robust.

Theorem 2: Let the cryptographic hash functions H and
G be modelled as two random oracles. Suppose that the
client can add or delete the same keyword/file-identifier
pairs repeatedly and re-add the already deleted keyword/file-
identifier pairs, and F and P are two secure PRF func-
tions, then ROSE is an adaptively secure DSSE scheme with
LStp(λ) = λ, LU pdt (op, w, id) = ∅, and LSrch(w) =
{sp(w), exTimeDB(w), exDelHist(w)}.

Performance Analysis: Table I has listed the computation
and communication complexities of ROSE. When issuing
an update query, the client takes a constant computation
complexity to generate a constant-size ciphertext and send
this ciphertext to the server by an one-pass communication;
finally, the server stores this ciphertext in EDB. When issuing
a search query, the client takes a constant computation
complexity to generate a constant-size search trapdoor and a
constant-size ciphertext and sends them to the server; then, the
server finds all matching ciphertexts and sends the valid ones
of them to the client; finally, the client takes the computation
complexity linear with the number of the received ciphertexts
to decrypt out file identifiers in the symmetric-key setting.
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For each keyword, the client stores a pair of PRF’s secret
keys and a triple (file identity, operation type, random
number) locally. Hence, ROSE is very practical in most
aspects.

The only one slightly complicated work in ROSE is to
find all matching ciphertexts. For keyword w, suppose that
the client has issued the add queries nw times, the delete
queries dw times, and the search queries sw times. Thus,
for keyword w, database EDB has stored nw ciphertexts with
operation type op = add , s�w ciphertexts with operation type
op = srch, and dw ciphertexts with operation type op = del
at most, where s�w ≤ Min(sw, nw+1) holds since the redundant
ciphertexts with operation type op = srch are removed
according to the lines 28-32 of protocol ROSE.Search. Under
the above assumption, the complexity of searching w over
EDB mainly consists of the complexity O(dw) for removing
Type-del ciphertexts, the complexity O(nw ·dw) for finding or
removing Type-add ciphertexts, and the complexity O(s�w ·dw)
for updating the secret keys of the delete tokens. To sum-
marize, the search complexity of protocol ROSE.Search is
O((nw + s�w + 1)dw).

VII. IMPLEMENTATIONS

We experimentally compare ROSE with three DSSE
schemes, say Fides, HORUS, and IM-DSSEI+II (All codes
are available on https://github.com/HustSecurityLab/ROSE-
Experiment). Fides unintentionally achieves robustness.
HORUS can be slightly revised to gain robustness.
IM-DSSEI+II has very high run-time efficiency and is evaluated
to measure the performance degradation introduced by ROSE
to achieve robustness. We do not compare ROSE with Moneta,
since Moneta takes a very huge cost due to its underlying
cryptographic tool TWORAM. In a nutshell, ROSE usually
performs much better than both Fides and HORUS in most of
terms, except that as the number of deletions grows, the search
time cost of ROSE with a single thread will be slightly more
than that of Fides. However, this disadvantage against Fides
and HORUS can be relieved by parallelizing the search of
ROSE. Compared to IM-DSSEI+II, ROSE, Fides, and HORUS
require more time to issue an update query and to complete
a search query. In most cases, ROSE only introduces about
an order of magnitude extra time to complete the search,
except for the case when there are historical deletions. In terms
of client time cost during the search, ROSE outperforms
IM-DSSEI+II.

Evaluated Metrics: We evaluate and compare the four
schemes in terms of (1) the time cost to issue a single
add/delete query and (2) the time and bandwidth costs
when searching a keyword with or without considering his-
torical deletions. When considering historical deletions, the
search time cost of ROSE is also affected by the number
of historical search queries. Hence, we evaluate ROSE’s
search performance when simultaneously considering histori-
cal deletions and search queries. In contrast, the historical
search queries do not affect the search performance of Fides,
HORUS, and IM-DSSEI+II. In addition, the two processes,
namely ROSE tests whether a add ciphertext is deleted during

TABLE II

UPDATE TIME COST (μs) COMPARISONS

the search query (Step 15 in Algorithm 3, Section VI) and
updates the delete tokens (Steps 38 to 40 in Algorithm 3,
Section VI), can be parallelized to gain higher efficiency
during a search when considering historical deletions and
search queries. Hence, we finally evaluate ROSE by par-
allelizing the above two processes.

System Environment: We develop ROSE in C++ and
apply OpenSSL [36] and Relic Toolkit [37] to implement its
cryptographic primitives. OpenSSL provides hash functions
SHA-2 family and SHA-3 family and symmetric encryption
AES-128. Relic Toolkit provides the NIST P-256 elliptic curve
to implement key-updatable PRF. We code Fides in C++ and
apply OpenSSL to implement its cryptographic primitives as
well. We implement the RSA-based trapdoor permutation used
in Fides with GMP Library [38]. We adjust the parameters
of HORUS’s opencode for achieving the same security level
as ROSE and Fides do. Moreover, we slightly modify the
opencode to fix the bug in the position re-randomization
process of OMAP finalization. During the implementations
of these schemes, all data are stored in the memory. When
evaluating IM-DSSEI+II, we slightly revise the C++ code
released by Hoang et al. to provide fair comparisons. Those
revisions mainly include (1) we use the memory to store
the encrypted database and the client-side states, (2) we use
in-process variables instead of sockets to convey the commu-
nications between the client and the server, (3) we enable the
IM-DSSEI+II code to support incrementally adding or deleting
a single pair of keyword and file-identifier, and (4) we enable
the client to convert the searched pseudorandom numbers to
file identifiers after the search by maintaining client-side state
table. Note that the last point enables IM-DSSEI+II to run in
the setting where the file storage service is independent of
the encrypted database. Our experiments are performed on a
workstation with an Intel Xeon Silver 4216, 64 GB RAM, and
Ubuntu Server 20.04. All figures in this section are drawn with
Matplotlib [39].

Dataset: Since both Fides and HORUS take too much
time costs when running them over a large-scale dataset,
we simulate a moderate-scale dataset. This dataset is a fair
one and similar as the dataset used by the work [11] to test
HORUS. It contains 180,000 entries, where the result size of a
search query is between 5,000 and 40,000. Each entry consists
of a two-bytes keyword and a four-bytes file identifier.

Update Performance Comparisons: We compare the time
costs of issuing a single add and a delete query of
ROSE, Fides, HORUS, and IM-DSSEI+II. For each scheme,
we generate add queries to all 180,000 entries at first, then
generate delete queries to delete all these entries, and test
the average time costs to issue a add query and a delete
query, respectively. The average update time cost includes
the client-side and server-side costs. Table II shows that
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Fig. 3. Search performance comparisons without the historical deletion.

ROSE takes on average 1,338.73 and 2,087.81 microseconds
to add and delete an entry, respectively, about two orders of
magnitude more than those of IM-DSSEI+II. Although, the
update performance of ROSE (no more than 2.1 milliseconds)
is practical in real applications. Compared with Fides, ROSE
is approximately 2.31× and 1.48× faster when adding and
deleting an entry, respectively. Compared with HORUS, ROSE
is clearly too much faster.

Search Performance Comparisons Without the Historical
Deletion: This part compares the time and bandwidth costs
when searching keywords with ROSE, Fides, HORUS, and
IM-DSSEI+II. Note that the experiment here assumes that
there is no delete query before searching keywords. The
search time cost includes the client-side and server-side time
costs. The bandwidth cost means the transferred data size
between the client and the server. Figure 3 shows that ROSE
outperforms Fides and HORUS but is less efficient than
IM-DSSEI+II. Specifically, ROSE takes about 4.04 microsec-
onds to find one matching ciphertext on average. It is approx-
imately 814× and 8,560× faster than Fides and HORUS,
respectively. Compared to Fides and HORUS, ROSE achieves
a significant advantage in bandwidth cost. Suppose the search
results contain 40,000 file identifiers. The bandwidth cost
of ROSE is approximately 1.37 MB, which saves approxi-
mate 64% and 99.21% bandwidth compared with Fides and
HORUS, respectively.ROSE costs about more 3.61 microsec-
onds than IM-DSSEI+II to find one matching ciphertext on
average. In terms of bandwidth cost, IM-DSSEI+II is more
efficient than the rest, and its bandwidth does not change along
with the result size. This is because the size of its encrypted
index is fixed during the setup phase.

To clearly show that ROSE is more friendly to the client,
we explicitly list the client time costs of ROSE, Fides,
and IM-DSSEI+II during a search. We omit HORUS here,
since the HORUS client undertakes almost all the compu-
tational tasks during a search. Hence, the client time cost
of HORUS is much more than that of ROSE, Fides, and
IM-DSSEI+II. Figure 4 shows that ROSE is at least 5,713×
faster than Fides and gains a little advantage (about 1.3×
faster on average) against IM-DSSEI+II. For example, when
the search result size is 40,000, the ROSE client uses
approximately 11.91 milliseconds, while the Fides and the
IM-DSSEI+II client take approximately 2.19 minutes and
16.12 milliseconds, respectively.

Search Performance Comparisons With Historical Dele-
tions: In this part, we test how the historical delete and

Fig. 4. Client time cost comparisons during a search without the historical
deletion.

Fig. 5. Search performance comparisons with historical deletions but without
the historical search.

search queries affect the performance of a freshly issued
search query. Hence, before testing the search performance,
we suppose two cases: (1) the client has issued some delete
queries but no search query; (2) the client has issued not
only some delete queries but also some search queries,
where all search queries were issued ahead of the first
delete query. We compare the search performance of ROSE,
Fides, HORUS, and IM-DSSEI+II in the first case. In the
second case, we only evaluate the search performance of
ROSE, since the historical search queries do not affect the
search performance of Fides, HORUS, and IM-DSSEI+II.

We select the most frequently used keyword whose search
result size is 40,000 as the dataset used in the above two
cases. Specifically, in the first case, for the selected keyword,
we issue 40,000 add queries, then issue a variable number of
delete queries, and finally test the search performance of the
keyword over these historical ciphertexts. Note that all add
and delete queries randomly chooses their corresponding
file identifiers, and each file identifier chosen by a delete
query must be also chosen by a previous add query. The
second case has the same setting as the first case, except that
to simulate the historical searches, we additionally add some
ciphertexts with operation op = srch, and these ciphertexts
appear after the 40,000 add queries but before all delete
queries.

Figure 5 presents the experimental results in the first case.
In this part, IM-DSSEI+II keeps its significant advantage in
both terms of bandwidth cost and time cost against ROSE,
Fides, and HORUS. In terms of bandwidth cost, ROSE saves
at least 64% and 99.21% overhead compared with Fides
and HORUS, respectively, since ROSE avoids re-encrypting
and re-uploading ciphertexts to the server during a search.
In terms of time cost (including the server and client’s time
costs), ROSE always outperforms HORUS and conditionally
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Fig. 6. Search time cost of ROSE with historical deletions and searches using different number of threads. symbol s� denotes the number of ciphertexts with
op = srch before the first delete query. Symbol nthread means the number of threads.

outperforms Fides when the ratio of historical delete queries
to historical add queries is less than about 20% (shown as
ROSE-Worst in Figure 5(a)). For example, when the ratio is
10%, ROSE takes approximately 56.21 seconds to complete
the search, which is about 2.09× faster than Fides. When
the ratio is greater than 20%, ROSE takes more time cost
than Fides. However, the first case we defined, indeed, is also
the worst-case for ROSE, since all historical delete queries
appear after all historical add queries, which causes ROSE
must test each added ciphertexts with most of delete tokens.
In contrast, in the optimal case that each added ciphertexts
just be tested with one delete token at most, ROSE
always outperforms Fides greatly (shown as ROSE-Optimal
in Figure 5(a)). For example, given Number of Deletions

Number of Insertions ×
100% = 50%, the optimal search performance is approx-
imately 0.32 seconds, about 704× less than the worst one
(say, 3.80 minutes). Hence, in real applications, the search
performance of ROSE should be between the worst one and
the optimal one.

In the second case, given the different number of historical
deletions and searches, Figure 6 shows the parallel search
performance of ROSE. The numerical results demonstrate
that ROSE has the powerful capability to parallelize a search
process. For example, given 16 threads, Number of Deletions

Number of Insertions ×
100% = 50%, and the historical search number s� = 50
(respectively 100, 150, and 200), ROSE takes approximately
1.09 minutes (respectively 1.77, 2.48, and 3.08 minutes).
Compared with the time cost of a single thread, the search
performance improves about 12.05 times (respectively 12.73,
12.78, and 12.57 times).

According to the above extreme experiments, the historical
delete and search queries will affect the search perfor-
mance of ROSE. However, ROSE is still efficient in practice
due to the following reasons. First, all delete queries just
affect the search performance once. It means that such negative
effect will be significant if the client issues too many delete
queries between two successive search queries. However,
it is hard to find such kind of scenario in the real application.
Secondly, ROSE allows the server to combine the ciphertexts
with operation op = srch if they are adjacent. This feature
will reduce the negative effect of historical search queries to
the search performance. We omit this advantage in the above
experiments, since it is hard to find a real dataset including

the client’ search history. Thirdly, ROSE has the powerful
capability to parallelize a search process. Hence, ROSE can
sufficiently use the abundant computing power of the server,
like Cloud.

VIII. CONCLUSION AND FUTURE WORKS

To the best of our knowledge, this work is for the first time
to study the correctness, security and performance of DSSE
under the assumption that the client can issue the irrational
update queries. Under this assumption, we find that (1) most
prior DSSE schemes cannot guarantee their claimed correct-
ness or security, and (2) while a few prior DSSE schemes
seem robust, they do not formally study the robustness, and
they either entail very high computation and communication
costs or obtain the weak security. To tackle all the above
problems, we formally define the robustness of DSSE and
propose ROSE, the first robust DSSE scheme with forward
and backward security and practical performance. To construct
ROSE, we introduce for the first time key-updatable PRF
and then achieve ROSE. Finally, we experimentally compare
ROSE with two state-of-the-art DSSE schemes. It shows that
ROSE is very efficient in both updating data and performing
keyword searches.

Security and efficiency are two important indicators for
evaluating DSSE schemes. In terms of efficiency, we believe
that an intuitive future work is to achieve higher performance
without decreasing security. That expands robust DSSE’s
application scope to capture more high timeliness requirement
scenarios. Besides, supporting smaller client storage will suit
practical emerging ICT scenarios (e.g., the internet of things).
In terms of security, we state that extending this work to
support higher security with minimum efficiency degradation
may be meaningful. That may enable DSSE to explore in those
applications which care more about data confidentiality than
performance. There is a tradeoff between security and effi-
ciency. An open and challenging problem is to design securer
and more efficient robust DSSE with properties of the highest
backward security level, the smallest client storage, and more.

APPENDIX

SECURITY PROOF OF ROSE

To prove the forward and general Type-III backward secu-
rity, we construct a simulator S, which takes leakage functions
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Algorithm 4 The Construction of S in the Ideal Game of ROSE
Setup(LStp(λ))
1: Initialize EDB← ∅, four empty maps CipherList, UList, PList and TList,

and a global variable u← 0
2: CipherList[0] ← (0λ, NULL, NULL, NULL) and TList[0] ← 0λ

3: Send EDB to the server
Update(LU pdt (op, (w, id)))

1: u← u + 1 � the timestamp of the current update operation

2: (L , R, D, C)
$← {0, 1}λ × {0, 1}λ × {0, 1}2λ+λ�+2 × CSE

3: CipherList[u]← (L , R, D, C)
4: Send ciphertext (L , R, D, C) to the server
Search(LSrch(w))

1: u← u + 1 � the timestamp of the current search query
2: Extract the timestamp u0 of the last search query from sp(w) where

u0 = 0 if sp(w) = ∅
3: Extract all timestamps {u1, · · · , un} between u0 and u from both

exTimeDB(w) and exDelHist(w) and exclude the repeated timestamps,
where ui < u j if i < j

4: if n = 0 and u0 = 0 then
5: return ⊥
6: end if
7: Extract the maximum timestamp umax less than u0 from exTimeDB(w),

where umax = 0 if u0 = 0 or no such kind of umax exists
8: if n = 0 and umax = 0 then
9: return ⊥
10: end if
11: (Lu , Ru , Du , Cu)

$← {0, 1}λ × {0, 1}λ × {0, 1}2λ+λ�+2 × CSE
12: CipherList[u] ← (Lu , Ru , Du , Cu)

13: Pu
$← YP and TList[u] ← Tu

$← YF

14: UList[u] ← �u
$← KP

15: Program G s.t. G(Pu , Ru ) = Lu
16: if n = 0 and umax �= 0 then
17: (Lu0 , Ru0 , Du0 , Cu0 )← CipherList[u0] and Tu0 ← TList[u0]
18: Program H s.t. H(Tu , Ru ) = Du ⊕ (srch||�u ||Lu0 ||Tu0 )
19: Send search trapdoor (Lu0 , Tu0 ) and ciphertext (Lu , Ru , Du , Cu) to the

server
20: return all file identifiers in exTimeDB(w) after receiving the response

from the server
21: end if

22: for each (Uadd ,Udel ) ∈ exDelHist(w) and U ∈ exTimeDB(w) do
23: umin ← Min(Uadd ∪ Udel ) or Min(U)
24: if PList[umin ] = (NULL, NULL) then

25: PList[umin ] ← (Padd , Pdel )
$← YP ×YP

26: else
27: (Padd , Pdel )← PList[umin ]
28: end if
29: Orderly extract all key-update tokens {�1, · · · ,�m } with their

timestamps between umin and u from UList
30: for all v ∈ Uadd ∪ Udel or U , PList[v] �= (NULL, NULL), TList[v] �=

NULL, and umin < v < u do
31: if m �= 0 then

32: PList[v] ← (P
∏m

i=1 �−1
i

add , P
∏m

i=1 �−1
i

del )
33: else
34: PList[v] ← (Padd , Pdel )
35: end if
36: Set TList[v] ← Tv

$← YF
37: end for
38: end for
39: (Lun , Run , Dun , Cun )← CipherList[un ] and Tun ← TList[un ]
40: for i = n to 1 do
41: (Padd , Pdel )← PList[ui ]
42: (Lui−1 , Rui−1 , Dui−1 , Cui−1 )← CipherList[ui−1]
43: Tui−1 ← TList[ui−1]
44: if ui is corresponding to an add query then
45: Program G s.t. G(Padd , Rui ) = Lui
46: Program H s.t. H(Tui , Rui ) = Dui ⊕ (add||0λ||Lui−1 ||Tui−1 )
47: else
48: Program G s.t. G(Pdel , Rui ) = Lui
49: Program H s.t. H(Tui , Rui ) = Dui ⊕ (del||Padd ||Lui−1 ||Tui−1 )
50: end if
51: end for
52: Program H s.t. H(Tu , Ru ) = Du ⊕ (srch||�u ||Lun ||Tun )
53: Send search trapdoor (Lun , Tun ) and ciphertext (Lu , Ru , Du , Cu) to the

server
54: return all file identifiers in exTimeDB(w) after receiving the response

from the server

LStp(λ) = λ, LU pdt (op, w, id) = ∅, and LSrch(w) =
{sp(w), exTimeDB(w), exDelHist(w)} as inputs to simulate
algorithm ROSE.Setup and protocols ROSE.Update and
ROSE.Search respectively, and demonstrate that the simulated
ROSE is indistinguishable from the real ROSE under the
adaptive attacks. Algorithm 4 describes the simulator S.
Specifically, the simulator S consists of the following three
phases.

Setup Phase: In this phase, simulator S takes leakage
function LStp(λ) = λ as input, initializes an empty database
EDB, four empty maps CipherList, UList, PList and TList,
and a variable u of the timestamp, and sends EDB to the
server. Taking a timestamp as input, maps CipherList and
TList return a ciphertext and the corresponding decryption
token, respectively, both of which are generated by the
update or search query at the input timestamp; map UList
returns a key-update token that is generated by the search
query at the input timestamp; map PList returns a pair of
PRF P values, where one of them is used by the update
query at the input timestamp to generate a ciphertext. It is
clear that S.Setup(LStp(λ)) is indistinguishable from the real
algorithm ROSE. Setup, since the simulated database EDB is
the same as a real database.

Update Phase: When adversary A issues an update
query (op, w, id), simulator S takes leakage function
LU pdt (op, w, id) as input, computes the timestamp u of this
update query, randomly picks a ciphertext (L, R, D, C),
inserts this ciphertext into CipherList[u], and sends this
ciphertext to the server. According to randomness of oracles H
and G and the security of symmetric encryption, the simulated
ciphertext (L, R, D, C) has the same distribution as the real
ciphertext that is generated by protocol ROSE.Update in the
RO model. Hence, S.Update(LU pdt (op, w, id)) is indistin-
guishable from the real protocol ROSE.Update.

Search Phase: When adversary A issues a search query
w, simulator S takes leakage function LSrch(w) as input and
performs the following steps:

1) S computes the timestamp u of this search query and
extracts the timestamp u0 of the last search query
of w if w has been searched before; otherwise, it sets
u0 = 0 and extracts the timestamps of all update
queries of w that occurred after timestamp u0
(lines 1-3);

2) If both n = 0 and u0 = 0 hold, it means that adversary
A never issued an update query of w; then, S returns
⊥ (lines 4-6);
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3) S extracts the timestamp umax of the last add query of
w having umax < u0 and sets umax = 0 if u0 = 0 or
there is no such kind of add query (line 7); if both n = 0
and umax = 0 hold, it means that either adversary A
never issued an add query of w before timestamp u0 or
all added ciphertexts of w before timestamp u0 have
been removed by the adversary A’s delete queries;
then, S returns ⊥ (lines 8-10);

4) S randomly picks a ciphertext (Lu, Ru , Du, Cu), inserts
this ciphertext into CipherList[u], randomly picks Pu

from YP, a decryption token Tu from YF and a
key-update token �u from KP, inserts Tu and �u into
TList[u] and UList[u] respectively, and programs oracle
G such that Lu can be correctly generated by taking Pu

and Ru as inputs (lines11-15);
5) If both n = 0 and umax �= 0 hold, it means that

A does not issue any update query of w after
the last search query (or timestamp u0), and there
are still some matching ciphertexts that were added
before the last search query (or timestamp u0);
then, S retrieves the ciphertext (Lu0 , Ru0 , Du0 , Cu0)
from CipherList[u0] and the corresponding decryption
token Tu0 from TList[u0], programs oracle H such that
ciphertext (Lu, Ru , Du , Cu) contains the correct infor-
mation and constructs a hidden chain relationship with
ciphertext (Lu0 , Ruo , Du0 , Cu0), sends search trapdoor
(Lu0 , Tu0) and ciphertext (Lu , Ru, Du , Cu) to the server,
and returns all file identifiers in exTimeDB(w) after
receiving the response from the server (lines 16-21);
(Note that if n �= 0 holds, it means that A issued some
update queries of w after the last search query (or
timestamp u0); then, S will compute some values for
the ciphertexts generated by those update queries and
program oracles G and H such that these ciphertexts
can be correctly found or removed by the server when
receiving a correct search trapdoor.)

6) For each (Uadd ,Udel) ∈ exDelHist(w) and
U ∈ exTimeDB(w), S performs the following steps
(lines 22-38):

a) Extracts the minimum value umin from Uadd∪Udel

or U (line 23);
b) Randomly picks (Padd, Pdel) from YP × YP

if PList[umin ] is empty; otherwise, retrieve
(Padd , Pdel) from PList[umin] (lines 24-28);

c) Extracts all key-update tokens with timestamps
between umin and u (line 29);

d) Finally, for all v ∈ Uadd ∪ Udel or U , PList[v] �=
(NULL, NULL), TList[v] �= NULL, and umin <
v < u, computes a pair of PRF P values according
to the above extracted key-update tokens, picks
a random delete token, and inserts them into the
corresponding maps (lines 31-38);

7) For the ciphertexts stored in CipherList with timestamps
{u1, . . . , un}, programs oracles G and H according to
their operation types and precomputed values stored in
maps PList and TList, such that these ciphertexts can be

correctly found or removed by the server in the future
(lines 39-51);

8) Programs oracle H such that the ciphertext
(Lu, Ru , Du, Cu) can be connected with ciphertext
CipherList[un] by a hidden chain relationship,
sends search trapdoor (Lun , Tun ) and ciphertext
(Lu, Ru , Du, Cu) to the server, and returns all file
identifiers in exTimeDB(w) after receiving the response
from the server (lines 52-54).

In the above steps, upon receiving the search trapdoor
from simulator S, the server implements the real search
procedure to find all matching ciphertexts, except that the hash
functions G and H work as two random oracles. Moreover,
the search results are correct since oracles G and H have
been programmed well. Hence, S.Search(LSrch(w)) is indis-
tinguishable from the real protocol ROSE.Search in the RO
model.

To summarize, the above simulator S takes leakage func-
tions LStp(λ) = λ, LU pdt (op, w, id) = ∅, and LSrch(w) =
{sp(w), exTimeDB(w), exDelHist(w)} as inputs and simulates
an ideal game of ROSE that is indistinguishable from an real
game of ROSE under the adaptive attacks in the RO model.
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