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Abstract 

Structural elements under compression can fail due to instability. Such type of failure may present itself 

as flexural buckling, which is the sudden change of configuration of one state to another at a critical 

compressive load. Actual structure characteristics, such as cracks, real joints, sudden changes of flexural 

stiffness, bracing, and actual boundary conditions, make current analytical buckling methods inefficient. 

For this reason, most structures are evaluated using Finite Element (FE) software based on the Finite 

Element Method (FEM). However, such a numerical method may have a high computational cost when 

parametric studies need to be performed. The motivation for this thesis was to develop an analytical 

alternative for the buckling analysis of columns and beam-columns.  

The thesis analyses jointed Euler-Bernoulli columns and beam-columns with  𝑁  discontinuities due to 

step-changes of flexural stiffness, and influence of open edge cracks, real joints, bracing, and actual 

support conditions. The approach considered utilizes the Heaviside function to obtain a single piecewise 

expression for the deflection, slope, moment, and shear of columns and beam-columns. The use of the 

Heaviside function, along with proposed closed-form expressions, reduce the number of unknown 

integration constants to only four.  

Main findings are listed as following: (i) Linear buckling analysis of a column only depends on solving the 

determinant of the 4x4 matrix of unknown coefficients, obtained by imposing four boundary conditions. 

(ii) Solving the four unknown constants of integration results in performing a geometrical non-linear static 

analysis of the beam-column, which perfectly agrees with results obtained through FE software. (iii) 

Closed-form expressions reduce the number of unknown constants of integrations to only four, regardless 

of the number of sections composing a column or beam-column. 

Concluding remarks and recommendations include: (i) Closed-form expressions accurately provide linear 

buckling loads for columns and geometrical non-linear expressions for beam-columns. (ii) Equations 

solved algebraically can be stored and used for future analysis, saving the computation time of rerunning 

the analysis for specific columns or beam-columns. Having the equations expressed algebraically allows 

for the ease of performing parametric analysis and exploring the performance of new designs. (iii) 

Computational cost (time needed for the computer to obtain the results) may depend on the 

mathematical software used for the calculations. Other software may result in having lower 

computational time for the same calculations. 
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1 Introduction 

Structural columns, drill strings, and car driveshafts are a few examples amongst the many engineering 

structures that may suffer from instability. Such structures are composed of multiple components with 

different material and geometrical properties while being jointed together. When it comes to analyzing 

and validating these engineering structures, Finite Element (FE) software is widely used. However, high 

computational costs can be encountered when parametric investigations are carried out or during the 

exploration of different designs. 

This chapter introduces the challenges surrounding the buckling analysis of columns and beam-columns 

subjected to cracks, elastic joints, bracings, and elastic boundary conditions. After, it briefly covers the 

different methods available in the literature for obtaining the critical values of such systems. Moreover, 

it explains how these complexities are idealized in analytical models. Afterwards, the identified research 

gap, followed by the research questions and objectives, are presented. The chapter concludes by 

providing the layout for the thesis.  

1.1 Background and Motivation 

Before breaking ground in any construction site, a team of engineers explores many designs to obtain the 

most economical and safe structure. Sudden changes in material and geometrical properties (Figure 1) 

are often implemented to reduce cost, optimize design, or be aesthetically pleasing. These structures 

must be checked against different kinds of failure, such as material or stability failure. Buckling is a stability 

failure, which is the sudden equilibrium change from one configuration to another at a critical compressive 

load. Actual structures present physical damage in the form of cracks, joint stiffness between consecutive 

segments, and bracing in a column. Such real-life occurrences may compromise the stability of a structure 

by lowering the compressive load necessary for a structure to buckle. Therefore, it is vital to include such 

complexities in the buckling analysis of columns and beam-columns to understand and avoid the sudden 

collapse nature inherent to buckling. 

It is common to use software based on the Finite Element Method (FEM) to evaluate the buckling load or 

deflection of columns and beam-columns. The influence of cracks, lateral bracing, real joints between 

structural elements, or actual boundary conditions are complexities that can be included in models by 

using discrete rotational, internal, and external transversal springs [1]–[5]. Nevertheless, the use of FEM 

in the design exploration or parametric study can have a high computational cost to the point of becoming 

unfeasible. Elevated costs arise from the remodeling and remeshing of each new model for the linear 

buckling analysis of columns and the need for multiple loading steps to obtain accurate results for the 

deflection, slope, moment, and shear of beam-columns. 
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Figure 1: Examples of physical structures that can suffer from instability. (a) drill-strings under high compressive loads and 
consisting of many elements of different cross-sections. (b) structural columns that have different material properties at the 
column-slab-column interface. (c) stepped wind turbine subjected to high lateral loads. (d) structural columns with step-changes 
in their cross-section. 

To overcome the mentioned FEM limitations, many authors have developed analytical methods for 

tackling columns with the previously mentioned complexities. Some have based their work using the 

Principle of Minimum Potential Energy, which can provide an approximation to the buckling load for 

columns with step-changes in cross-section [6], [7], with both end and intermediate axial loads [8]. Q. S. 

Li has proposed an approach to obtain the exact solutions of the buckling load by manipulating the 

governing equations into Bessel equations, followed by the transfer matrix method for columns with non-

uniform cross-sections and multi-step non-uniform columns under different boundary conditions [9]–

[12]. 

Additionally, Arbabi et al. [13], proposes a semi-analytical procedure for the buckling analysis of columns 

with variable cross-sections using the theory of distributions. Such a theory provides adequate 

mathematical tools to manipulate the governing equations of a discontinuous system to be expressed in 

a single equation in terms of generalized functions.  

Generalized functions have unique properties that make them helpful in expressing discontinuous 

functions as piece-wise continues ones and by describing loading conditions, such as that of a point load, 

without creating a discontinuity in the loading function. Their use has been proved helpful in obtaining 

general closed-form solutions of complex models. Such models include the analysis of jointed Euler-

Bernoulli (EB) beams with step-changes in material and cross-section [2], and the static analysis of EB 

beam-columns with multiple unilateral cracks [3] where the buckling load could be obtained. 

The literature review has identified the lack of an effective analytical method that considers the influence 

of all the complexities presented in Figure 1 and Figure 2. Therefore, the main goal of this thesis is to offer 

a closed-form solution for the buckling analysis of columns and beam-columns with both material and 

cross-section step-changes while considering the influence of non-propagating cracks, bracing, real joints, 

and actual boundary conditions.  

1.2 Analytical model to be solved 

The following section presents the model of the highest complexity to be solved with its corresponding 

assumptions and scope. 
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1.2.1 Mathematical model 

Discrete springs have been used in mathematical models to introduce complexities of real structures [1]–

[5] as seen in Figure 2. Three main springs are contemplated: 

• External transversal springs can be considered at the boundary and continuity conditions of the 

jointed EB beam-column to model the points where transversal displacement are restricted to 

some degree due to the influence of lateral bracing, diaphragms, and stabilizers of drill strings, to 

name a few examples.  

 

• Internal transversal springs can be used to model real joints between two structural elements.  

 

• Rotational springs have been used by many authors to model open cracks along the beam-column 

due to its effectiveness. Cracks are represented by pinning together two beam-column sections 

and using a rotational spring to model the increase in flexibility due to the crack [3]–[5], [14]. 

       
Figure 2: Examples of physical damage of existing structure in the form of (a) cracks in the column, (b) cracks at the location of 
column-slab, and (c) real joint connections. 

The complexities of real structures of interest for the mathematical model are:  

• Loss of stiffness due to non-propagating open cracks. 

• Influence of joints between connected structural beam-column elements. 

• Influence of lateral bracing. 

• Influence of real boundary conditions.  

Such complexities are included in Figure 3, which displays the model of the highest complexity that will 

be analyzed in this thesis.  
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Figure 3: Model of the highest complexity: Jointed EB beam-column with multiple step-changes in flexural stiffness. Each EB 
structural element is pinned together with rotational and internal and external translational springs at the discontinuity location. 
The model has rotational and translational springs at the boundaries. 

1.2.2 Model Assumptions and Scope 

Given the potential complexity of such types of analysis, the following assumptions are made to formulate 

the new analytical solutions: 

• Small deformations theory. 

• Effects of shearing deformations and shortening of the beam axis are neglected. 

• The material of the beam-column is homogeneous and linearly elastic. Uncertainties of material 

properties are not considered. 

• No local buckling at any cross-section along the beam-column is allowed. 

• Physical damage in the form of non-propagating open edge cracks. 

• Cracks are represented by massless rotational springs at pin-connected joints to introduce slope 

discontinuity and loss of stiffness. 

• Transversal displacement restrictions are represented by external transversal springs. 

• The behavior of joints is modelled by internal transversal springs.  

• Axial load acts through the axis of the beam-column. 

Small deformation theory allows the kinematic relations to be developed as appropriate for linear 

elasticity [15]. 

Local buckling occurs when the strength of a member, usually a steel member, is compromised due to the 

stability failure of one of the steel’s profile components. These can be considered as plate elements that, 

given the right conditions of slenderness and compressive axial load, may buckle, resulting in local 

buckling. Plate buckling is analyzed by its own governing equations which are dependent on two variables 
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as plate buckling involves the bending of two planes. Local buckling can be avoided with the correct 

implementation of stiffeners on the steel profile [16]. 

1.3 Research Questions and Objectives 

The main questions this thesis will tackle are: 

1. How to take advantage of the properties of generalized functions to develop a closed-form 

solution for the buckling analysis of columns and beam-columns with step-changes of its flexural 

stiffness (sudden changes of material and cross-section properties), while considering the 

influence of non-propagating cracks, real joints, boundary, and lateral support conditions? 

2. How do different springs (rotational, external translational, and internal translational) acting in a 

column affect the buckling loads? 

The goal of this thesis is to be achieved in the following steps: 

1. Formulate a closed-form expressions for the buckling analysis of beam-column elements with 

step-changes of flexural stiffness and: 

a. Ideal joints and boundary conditions 

b. Ideal joints and elastic boundary conditions 

c. Ideal boundary conditions, and elastic joints which are modelled by internal translational 

springs between two successive elements. 

d. Ideal joints, and external along-the-axis translational springs to model external bracing. 

e. Ideal boundary conditions, and successive elements pinned together with a rotational 

spring to model non-propagating cracks. 

f. External along-the-axis translational springs to model external bracing, internal 

translational springs to model elastic joints, and internal rotational springs to model non-

propagating open edge cracks. 

2. Perform a parametric study to demonstrate the advantages of using the proposed closed-form 

solution for the buckling analysis of complex beam-columns. 

1.4 Thesis Layout 

Chapter 1 – Introduction 

Chapter 2 – Theoretical background 

Chapter 3 – Closed-form solutions for the buckling analysis of Euler-Bernoulli beam-columns and columns 

Chapter 4 – Validation of the closed-form solutions for the buckling analysis of complex beam-columns 

Chapter 5 – Applications and Discussion 

Chapter 6 – Case Study – Wind turbine tower buckling analysis 

Chapter 7 – Conclusions and recommendations 
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2 Theoretical background 

2.1 Introduction 

Extensive research has been done on the current methods for performing buckling analysis of beam-

column models presenting varying complexities. This chapter explains the theoretical background 

necessary to understand the nature of the buckling problem and overviews the status of the field. To this 

end, the governing equations for beam-columns and columns are introduced in section 2.2. Afterwards, 

the concept of stability is briefly presented in section 2.3, including different buckling analysis methods, 

emphasizing Euler’s buckling analysis. The modelling of physical structures and complexities in the form 

of cracks, bracings, and real joints is presented in section 2.4. Generalized functions of interest are 

discussed in section 2.5, with section 2.6 focusing on the literature takeaways and comparison between 

different buckling analysis methods. 

2.2 Beam, Columns, and Beam-Columns 

Beam-columns are structural members commonly found on frame-type structures being subjected 

simultaneously to both axial and transversal loads. Under these conditions, the response of the structural 

element is no longer linear, causing the method of superposition to no longer to be valid [17]. When no 

transversal loads are present, the structural member under pure compressive axial load is a column. 

Columns can be classified as either short, slender, or intermediate [18]. On the other hand, if only 

transversal loads are present, the structural element behaves as a beam.  

2.2.1 Derivation of governing differential equations 

The governing equations that express the behavior of beam-columns are based on Euler-Bernoulli’s (EB) 

beam theory and can be derived from models seen in Figure 4. Figure 4a displays a structural element 

subjected simultaneously to a distributed lateral load  𝑞(𝑥)  and a compressive axial force  𝑃. EB’s main 

assumptions are based on the theory of small deformations, and on plain cross-sections remaining planar 

and normal to the undeflected beam axis in a beam subjected to bending [19]. Under such assumptions, 

an element of length  𝑑𝑥  between two cross-sections is presented in Figure 4b. For such a small section, 

the lateral load  𝑞(𝑥)  is assumed to be constant. Loads acting on the y-axis direction are assumed to be 

positive. 
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Figure 4: (a) Beam subjected to the lateral load  𝑞(𝑥)  that varies with the distance  𝑥  and is subjected to an axially compressive 
force  𝑃. (b) Element of length  𝑑𝑥  between two cross-sections taken normal to the undeflected axis of the beam shown in (a). 

The governing differential equations for a beam-column are derived by considering the kinematic, 

constitutive, and equilibrium conditions. Under the assumption of the theory of small deformations, 

sin (𝜃) ≈ tan (θ) ≈ θ  and  cos(𝜃) ≈ 1 − 𝜃2/2 ≈ 1  [15], and thus, derive the kinematic relations. The 

sign convention and relation to the slope can be seen in Figure 5. 

𝜃 =
𝑑

𝑑𝑥
𝑢(𝑥) Eq. 1 

 

𝜅 =
1

𝜌
=

𝑑𝜃

𝑑𝑥
=

𝑑2

𝑑𝑥2
𝑢(𝑥) Eq. 2 

 
Figure 5: Sign convention adopted with the x-axis running along the column’s axis and the positive y-axis acting downwards. 
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The relationship among the distributed load  𝑞(𝑥),  shear force  (𝑉),  and bending moment  (𝑀),  can be 

obtained by inspecting the element displayed in Figure 4b. Equilibrium of vertical forces results in the 

relation between the distributed load and the shearing forces: 

−𝑉 + 𝑞 𝑑𝑥 + (𝑉 + 𝑑𝑉) = 0 Eq. 3 

𝑞 = −
𝑑𝑉

𝑑𝑥
 Eq. 4 

Similarly, equilibrium of moments around point  𝑛  of Figure 4b under the assumption of small angles 

results in: 

𝑀 + 𝑞 𝑑𝑥
𝑑𝑥

2
+ (𝑉 + 𝑑𝑉) 𝑑𝑥 − (𝑀 − 𝑑𝑀) + 𝑃

𝑑𝑢

𝑑𝑥
 𝑑𝑥 = 0 Eq. 5 

Neglecting second-order terms, Eq. 5 reduces to: 

𝑉 =
𝑑𝑀

𝑑𝑥
− 𝑃

𝑑𝑢

𝑑𝑥
 Eq. 6 

Finally, by neglecting the effects of shearing deformation and axial shortening, the bending moment can 

be obtained considering the curvature of the beam and the flexural stiffness of the beam [20], resulting 

in: 

−𝑀 = 𝐸𝐼 𝜅 = 𝐸𝐼
𝑑2

𝑑𝑥2
𝑢(𝑥) Eq. 7 

The governing equation for a beam-column can be obtained by combining Eq. 4 with Eq. 6 and Eq. 7, 

resulting in the following alternative forms: 

𝑑2

𝑑𝑥2
(𝐸𝐼 

𝑑2

𝑑𝑥2
𝑢(𝑥)) + 𝑃 

𝑑2

𝑑𝑥2
𝑢(𝑥) = 𝑞(𝑥) 

Eq. 8 

 

Or: 

𝑑

𝑑𝑥
(−𝐸𝐼 

𝑑2

𝑑𝑥2
𝑢(𝑥)) − 𝑃 

𝑑

𝑑𝑥
𝑢(𝑥) = 𝑉 

Eq. 9 

It should be noted that when no axial force is present (𝑃 = 0),  Eq. 8 reduces to the governing equation 

of a beam under pure bending due to only lateral forces [20]: 
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𝑑2

𝑑𝑥2
(𝐸𝐼 

𝑑2

𝑑𝑥2
𝑢(𝑥)) = 𝑞(𝑥) Eq. 10 

When no lateral load is present (𝑞(𝑥) = 0), Eq. 8 describes the behavior of an ideal column: 

𝑑2

𝑑𝑥2
(𝐸𝐼 

𝑑2

𝑑𝑥2
𝑢(𝑥)) + 𝑃 

𝑑2

𝑑𝑥2
𝑢(𝑥) = 0 

Eq. 11 

2.2.2 General solution of the governing equation 

The general solution of the governing differential equation of a beam-column (Eq. 8) with constant 

stiffness can be obtained in different ways. This paper’s analytical solution for the buckling of a beam-

column is based on the solution obtained employing the Laplace transform.  

Given that the governing differential equation is fourth-order, the solution will have four unknown 

constants of integration. Dividing Eq. 8 by the constant stiffness  𝐸𝐼  and substituting  𝑣2 = 𝑃/𝐸𝐼,  

simplifies the governing differential equation to:  

𝑑4

𝑑𝑥4
𝑢(𝑥) + 𝑣2  

𝑑2

𝑑𝑥2
𝑢(𝑥) =

𝑞(𝑥)

𝐸𝐼
 Eq. 12 

The introduced variable  𝑣  is critical for the buckling analysis given it contains the load variable  𝑃,  and 

will be referred to as the axial parameter or the critical variable. The Laplace transform of Eq. 12 is: 

ℒ{𝑢(𝑥)}(𝑠4 + 𝑠2 𝑣2) + 𝑢(0)(−𝑠3 − 𝑠 𝑣2) + 𝑢′(0)(−𝑠2 − 𝑣2) − 𝑠 𝑢′′(0) − 𝑢′′′(0)

=
ℒ{𝑞(𝑥)}

𝐸𝐼
 

Eq. 13 

Where  ℒ{∎}  stands for the Laplace transform operator and  𝑠  for Laplace’s variable associated with the 

running variable  𝑥 . Isolating the term  ℒ{𝑢(𝑥)}  and introducing the integration constants by substituting  

𝑢(0) = 𝐴,  𝑢′(0) = 𝐵,  𝑢′′(0) = 𝐶,  𝑢′′′(0) = 𝐷  results in: 

ℒ{𝑢(𝑥)} = 𝐴 (
𝑠3 + 𝑠 𝑣2

𝑠4 + 𝑠2 𝑣2) + 𝐵 (
𝑠2 + 𝑣2

𝑠4 + 𝑠2 𝑣2) +
𝐶 𝑠

𝑠4 + 𝑠2 𝑣2
+

𝐷

𝑠4 + 𝑠2 𝑣2
+

ℒ{𝑞(𝑥)}

𝐸𝐼 (𝑠4 + 𝑠2 𝑣2)
 Eq. 14 

Taking the inverse Laplace transform to Eq. 14 results in: 
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𝑢(𝑥) = 𝐴 + 𝐵 𝑥 + 𝐶 (
1 − cos(𝑣 𝑥)

𝑣2 ) + 𝐷 (
𝑥

𝑣2
−

sin(𝑣 𝑥)

𝑣3 ) + ⋯ 

⋯+
∫ (𝑞(𝜏) sin(𝑣 𝜏) cos(𝑣 𝑥) − 𝑞(𝜏) cos(𝑣 𝜏) sin(𝑣 𝑥)) 𝑑𝜏

𝑥

0

𝐸𝐼 𝑣3
− ⋯ 

⋯−
∫ (−𝑞(𝜏) 𝑥 + 𝑞(𝜏) 𝜏) 𝑑𝜏

𝑥

0

𝐸𝐼 𝑣2
 

Eq. 15 

Eq. 15 describes the transverse displacement of a homogeneous beam-column segment of constant 

stiffness subjected simultaneously to a lateral load  𝑞(𝑥), and an axial compressive load  𝑃. When no 

lateral load is present, Eq. 15 describes the transverse displacement of an ideal column, simplifying Eq. 15 

into: 

𝑢(𝑥) = 𝐴 + 𝐵 𝑥 + 𝐶 (
1 − cos(𝑣 𝑥)

𝑣2 ) + 𝐷 (
𝑥

𝑣2
−

sin(𝑣 𝑥)

𝑣3 ) Eq. 16 

For the case no axial force is present  (𝑃 = 0, 𝑣 → 0), the transverse displacement is described by: 

𝑢(𝑥) = 𝐴 + 𝐵 𝑥 +
𝐶 𝑥2

2
+

𝐷 𝑥3

6
+

𝑞[4](𝑥)

𝐸𝐼
 Eq. 17 

With  𝑞[𝑘](𝑥)  being the primitive of order  𝑘  of the lateral loading function. 

2.2.3 Beam-column conformed of multiple segments of constant stiffness 

A homogeneous beam-column consisting of  𝑁  discontinuities, as seen in Figure 6, is composed of 𝑁 + 1  

segments. Eq. 15 is used to describe the transverse displacement of each segment, resulting in a total of  

4(𝑁 + 1)  unknown constants of integrations. These are solved by enforcing  4(𝑁 + 1)  conditions. Four 

unknowns are evaluated by enforcing four boundary conditions, two at each boundary. The remaining  

4𝑁 unknowns are evaluated at the location of the discontinuities, by enforcing continuity of 

displacements, slopes, moment, and shear, between two successive beam-column segments.  
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Figure 6: EB beam-column consisting of  𝑁  step changes of flexural stiffness subjected to an axial load  𝑃  and a lateral load  𝑞(𝑥). 
𝑁 + 1  sections of constant stiffness are described by their displacement function  𝑢𝑖(𝑥𝑖). 

𝑢𝑖(𝑥𝑖) = 𝐴𝑖 + 𝐵𝑖 𝑥𝑖 + 𝐶𝑖 (
1 − cos(𝑣𝑖  𝑥𝑖)

𝑣𝑖
2 ) + 𝐷𝑖 (

𝑥𝑖

𝑣𝑖
2 −

sin(𝑣𝑖  𝑥𝑖)

𝑣𝑖
3 ) + ⋯ 

⋯+
∫ (𝑞𝑖(𝜏) sin(𝑣𝑖 𝜏) cos(𝑣𝑖  𝑥𝑖) − 𝑞𝑖(𝜏) cos(𝑣𝑖 𝜏) sin(𝑣𝑖 𝑥𝑖)) 𝑑𝜏

𝑥𝑖

0

𝐸𝐼𝑖 𝑣𝑖
3 − ⋯ 

⋯−
∫ (−𝑞𝑖(𝜏) 𝑥𝑖 + 𝑞𝑖(𝜏) 𝜏) 𝑑𝜏

𝑥

0

𝐸𝐼𝑖 𝑣𝑖
2  

Eq. 18 

The subscript  𝑖  is used to represent the deflection, slope, moment, or shear of beam-column segment  𝑖. 

The relation between the slope, moment, and shear to the displacement function was presented in the 

previous section. Applying Eq. 15 into Eq. 1 and Eq. 7 results in: 

𝜃𝑖 = 𝐵𝑖 +
𝐶𝑖 sin(𝑣𝑖  𝑥𝑖)

𝑣𝑖
+ 𝐷𝑖 (

1

𝑣𝑖
2 −

cos(𝑣𝑖  𝑥𝑖)

𝑣𝑖
2 ) +

∫ 𝑞𝑖(𝜏) 𝑑𝜏
𝑥𝑖

0

𝐸𝐼𝑖 𝑣𝑖
2 − ⋯ 

⋯−
∫ (𝑞𝑖(𝜏) sin(𝑣𝑖 𝜏) sin(𝑣𝑖 𝑥𝑖) + 𝑞𝑖(𝜏) cos(𝑣𝑖 𝜏) cos(𝑣𝑖  𝑥𝑖)) 𝑑𝜏

𝑥𝑖

0

𝐸𝐼𝑖 𝑣𝑖
2  

Eq. 19 

𝑀𝑖 = −𝐶𝑖 𝐸𝐼𝑖 cos(𝑣𝑖  𝑥𝑖) −
𝐷𝑖 𝐸𝐼𝑖 sin(𝑣𝑖  𝑥𝑖)

𝑣𝑖
+ ⋯ 

⋯−
 ∫ (−𝑞𝑖(𝜏) sin(𝑣𝑖 𝜏) cos(𝑣𝑖 𝑥𝑖) + 𝑞𝑖(𝜏) cos(𝑣𝑖  𝜏) sin(𝑣𝑖  𝑥𝑖)) 𝑑𝜏

𝑥𝑖

0

𝑣𝑖
 

Eq. 20 



   
 

12 | P a g e  
 

To express each equation in terms of local variables, the axial load  𝑃  of Eq. 6 is substituted by  𝑃 = 𝑣𝑖
2 𝐸𝐼𝑖  

allowing to write the shear on a local member as: 

𝑑

𝑑𝑥𝑖
(−𝐸𝐼𝑖  

𝑑2

𝑑𝑥𝑖
2 𝑢𝑖(𝑥𝑖)) − 𝑣𝑖

2 𝐸𝐼𝑖  
𝑑

𝑑𝑥𝑖
𝑢𝑖(𝑥𝑖) = 𝑉𝑖 Eq. 21 

Applying Eq. 15 into Eq. 21 leads to: 

𝑉𝑖 = −𝐵𝑖 𝐸𝐼𝑖 𝑣𝑖
2 − 𝐷𝑖 𝐸𝐼𝑖 − ∫ 𝑞𝑖(𝜏) 𝑑𝜏

𝑥𝑖

0

 Eq. 22 

The mentioned discontinuities present themselves as step-changes of stiffness, bracing influence, real 

joints, and non-propagating open edge cracks. For ideal columns, no lateral load is present  (𝑞𝑖(𝑥𝑖) = 0), 

with the local displacement, slope, moment, and shear being expressed as: 

𝑢𝑖(𝑥𝑖) = 𝐴𝑖 + 𝐵𝑖 𝑥𝑖 + 𝐶𝑖 (
1 − cos(𝑣𝑖  𝑥𝑖)

𝑣𝑖
2 ) + 𝐷𝑖 (

𝑥𝑖

𝑣𝑖
2 −

sin(𝑣𝑖  𝑥𝑖)

𝑣𝑖
3 ) Eq. 23 

𝜃𝑖(𝑥𝑖) = 𝐵𝑖 +
𝐶𝑖 sin(𝑣𝑖 𝑥𝑖)

𝑣𝑖
+ 𝐷𝑖 (

1

𝑣𝑖
−

cos(𝑣𝑖  𝑥𝑖)

𝑣𝑖
2 ) Eq. 24 

𝑀𝑖(𝑥𝑖) = −𝐶𝑖 𝐸𝐼𝑖 cos(𝑣𝑖 𝑥𝑖) −
𝐷𝑖 𝐸𝐼𝑖 sin(𝑣𝑖 𝑥𝑖)

𝑣𝑖
 Eq. 25 

𝑉𝑖(𝑥𝑖) = −𝐵𝑖  𝐸𝐼𝑖 𝑣𝑖
2 − 𝐷𝑖 𝐸𝐼𝑖 Eq. 26 

This paper focuses on enforcing the boundary and continuity conditions using local coordinates. Two 

boundary conditions are enforced at  𝑥𝑖 = 0  and the remaining two at  𝑥𝑖 = 𝐿𝑖. The continuity of 

displacements, slopes, moments, and shears between two consecutive segments are enforced at  𝑥𝑖 = 𝐿𝑖  

and at  𝑥𝑖+1 = 0. 

2.3 Stability 

Structural analysis is performed to find the configuration of a loaded system that satisfies different criteria 

to make a structure safe. Specific criteria depend on different types of failure. Two primary failure 

considerations for structures are  

• Material failure occurs when stresses in a structure exceed an allowable value related to material 

properties.  

• Form or configuration failure happens when a structure cannot maintain its design configuration 

due to external disturbances, i.e. applied loads. When tensile loads occur, the stability loss falls in 
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the category of material instability. On the other hand, when compressive loads are present, the 

stability loss is labelled as structural instability. It is more commonly known as buckling, which is 

a dangerous failure due to the potential collapse of the structure [16].  

There are three criteria for stability: 

• Euler’s statical (non-trivial equilibrium state) criterion, based on the non-trivial equilibrium state 

approach, answers whether it exists another configuration besides the straight configuration in 

which the structure is in equilibrium. Figure 7 is considered to illustrate the problem. Two states 

of equilibrium are displayed in Figure 7(a) for a fixed-free column of uniform cross-section and 

elastic material under an axial load  𝑃. The axial load is increased while remaining on the straight 

configuration. Above a critical load, denominated as  𝑃𝑐𝑟,  the column supports the load in a bent 

configuration, represented by the dashed line of Figure 7(a). At the critical load, two equilibrium 

configurations are possible, a condition known as bifurcation or branching. The force-deformation 

behavior is shown in Figure 7(b). As the load increases, there is a point at which the lateral load 

can no longer be associated with the lateral deflection [16]. 

• Liapunov’s dynamical criterion, based on kinetic or dynamical approach, investigates whether the 

amplitude of vibrations of a column diminishes or increases with time given a slight disturbance. 

The structure is considered as dynamically unstable for  𝑃 > 𝑃𝑐𝑟. 

• Potential energy stability criterion, based on the work approach or energy approach, investigates 

at which load the potential energy of a conservative system ceases to be at a minimum [16]. 

 
Figure 7: (a) Two equilibrium states are displayed for a fixed-free column of uniform cross-section and elastic material under an 
axial load  𝑃. (b) Load-deformation for the fixed-free column displayed on (a). 

Buckling can be categorized further as flexural buckling, torsional buckling, torsional-flexural buckling, 

and snap-through buckling [16]. 

2.3.1 Euler Buckling analysis – non-trivial equilibrium state approach (Classical method) 

This section focuses on the different methods for flexural buckling of columns and beam-columns. 

Emphasis will be given to the non-trivial equilibrium state approach, otherwise known as Euler’s buckling 

criterion. An energy approach is going to be briefly introduced and discussed. 

The non-trivial equilibrium state approach is also known as Euler buckling analysis, linear-buckling 

analysis, eigenvalue buckling; this paper refers to it as the “classical method”. Such an analysis provides 

the theoretical buckling loads of an elastic structure. The buckling load of a structural element can be 
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obtained by using the governing equations of columns and beam-columns. The following assumptions are 

necessary for the Euler buckling analysis: 

• Beam-column and column are perfectly straight. 

• The cross-section is uniform throughout its length. 

• The axial load acts at the centroid of the beam-column. 

• Stresses are within the elastic limit. 

• Material is homogeneous and isotropic. 

• Self-weight is neglected. 

• Failure only presents itself due to buckling. 

• Axial shortening is negligible. 

2.3.1.1 Column Buckling 

The buckling load for a simply supported column with uniform cross-section and homogeneous material, 

as seen in Figure 8, can be obtained by using the governing differential equations of a column. Using the 

derived general solutions of the column for the displacement, slope, moment, and shear (Eq. 23 – Eq. 26), 

it is possible to obtain the critical buckling load.  

 
Figure 8: Simply supported column under an axial load  𝑃  and constant stiffness  𝐸𝐼. The first buckling mode is represented by the 
dashed line. 

There are three main boundary conditions for ideal columns: fixed, pinned, or free. A fixed boundary 

condition requires the deflection and slope at the boundary to be zero. A pinned boundary condition 

requires the deflection and moment to be zero, while a free boundary condition requires both the 

moment and shear to be zero. 

After applying the boundary conditions, a system of four equations is obtained and expressed in matrix 

notation. The trivial solution provides the values of the undeflected column. The non-trivial solution, 

according to linear algebra, is obtained by when the determinant of the matrix of unknown displacements 

vanishes, i.e. the determinant equals zero. This paper refers to the determinant of the system of equations 

as the buckling equation. It presents itself as a transcendental equation dependent on the axial parameter  

𝜈,  given that the axial load  𝑃  is present in such a variable (𝜈 = 𝑃/𝐸𝐼). The non-trivial solutions are found 

at the roots of the buckling equation. Each root is associated with a buckling load and its corresponding 

buckling mode, which is the shape that the beam-column takes at the buckling load.  

Appendix 1 presents all the steps required for obtaining the buckling load of the simply supported ideal 

column seen in Figure 8. 
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The governing equations of columns and their general solution can be used for analyzing a column with 

sudden jumps in its flexural stiffness by either having changes of its material or geometric properties, as 

seen in Figure 9. 

 
Figure 9: Ideally jointed EB column with  𝑁  step changes on flexural stiffness subjected to an axial load  𝑃. 

The governing equations (Eq. 23 – Eq. 26) must be applied to each section with uniform cross-section and 

homogeneous material properties. The application would result in four unknown constants of integration 

for each segment. A system of  𝑁  discontinuities would have  𝑁 + 1  segments resulting in a total of  

4(𝑁 + 1)  unknown constants of integration. Boundary and continuity conditions would provide the 

necessary equations to solve for all constants. Four equations are obtained from the boundary conditions, 

and the remaining equations are obtained by conditions that require a continuity of displacements, slope, 

shear, and moment. For the buckling analysis of a column, this means solving at least a  4(𝑁 + 1) × 4(𝑁 +

1)  matrix which non-trivial solution – having its determinant equal to zero – would result in the buckling 

loads and modes. Therefore, a system with  𝑁  discontinuities would become computationally expensive 

to solve because of the large number of equations and the matrix of coefficients size. 

2.3.1.2 Beam-column buckling 

To effectively convey the effect of lateral loads on the buckling analysis of beam-columns, the following 

example is presented: 

• A simply supported steel beam-column of homogeneous material under axial load  𝑃  and a 

constant distributed lateral load  𝑞0 (Figure 10). 

• It has a length of 5000 mm 

• Young’s modulus of 200 000 N/mm2 

• 300x300 mm2 square cross-section 

 
Figure 10: Simply supported beam-column under an axial load  𝑃  and constant stiffness  𝐸𝐼. 
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Using Eq. 23 and Eq. 25 (deflection and moment of a column), it is possible to solve for the four unknown 

integration constants by imposing the four boundary conditions of the simply supported beam-column 

(𝑢(0) = 𝑀(0) = 𝑢(𝐿) = 𝑀(𝐿) = 0). After solving the four unknown integration constants, it is possible 

to plot the deflection of the beam-column. The midspan deflection  (𝑥 = 0.5 𝐿)  is plotted against the 

critical variable  𝑣  under different values of  𝑞0,  as presented in Figure 11.  

 
Figure 11: Midspan deflection of a simply supported beam-column under a constant lateral load  𝑞0  in N/mm. 

The red line at  𝑣𝐿 = 𝜋  corresponds to the critical load of the column counterpart of Figure 8 (𝑃 =

𝜋2𝐸𝐼/𝐿2). Such a value is the vertical asymptote reached in different ways, depending on the magnitude 

of the uniform distributed load. As seen in Figure 11, under a constant distributed load, the magnitude of 

the midspan deflection increases as the axial parameter  𝑣  approaches the critical load of the column (red 

dashed line). Moreover, beam-columns under lower values of  𝑞0  approach faster the asymptote 

corresponding to the buckling load of its column counterpart. 

2.3.2 Work and Energy 

Work is defined as the energy required to move mass around in space [19] and can be classified as internal 

and external work. According to the law of conservation of energy, the energy in a system cannot be 

created nor destroyed – it remains constant by converting one form of energy into another. For a perfectly 

closed elastic system, this means that the change in energy of external loads (i.e. external work done) is 



   
 

17 | P a g e  
 

equal to the change in its internal energy in the form of strain energy (i.e. internal work done) [16]. Thus, 

the work balance equation is: 

−𝑊𝑖𝑛 = 𝑊𝑒𝑥  Eq. 27 

2.3.2.1 Internal Work – Bending strain energy 

A one-dimensional elastic body conformed by rigid elements of infinitesimal length  δ𝑥  (Figure 12(a)) is 

connected by hinges and rotational springs (Figure 12(b)). The bending strain energy of such an elastic 

body is defined as the energy stored in all the rotational springs [16]. The total energy of bending stored 

on the rotational springs is expressed as: 

𝑈𝑟 = ∑𝛿𝑈𝑟 = ∑
1

2
 𝑘𝑟 (δ𝜃𝑖)

2

𝑛

𝑖=1

= −𝑊𝑖𝑛 Eq. 28 

With  δ𝜃𝑖  expressing the change in angle between two successive elements connected by hinge  𝑖,  and  

𝑘𝑟  being the rotational stiffness of the spring. Assuming the rotational springs follow the law of linear 

moment springs, then: 

𝑀 = 𝑘𝑟(δ𝜃) → δ𝜃 =
𝑀

𝑘𝑟
 Eq. 29 

Eq. 28 can be written as: 

𝑈𝑟 = ∑δ𝑈𝑟 = ∑
𝑀𝑖

2

2 𝑘𝑟

𝑛

𝑖=1

  Eq. 30 

Using the relationship from the strength of materials: 

𝑀 = 𝐸𝐼 (
𝑑2𝑢

𝑑𝑥2) = 𝐸𝐼 (
𝑑𝜃

𝑑𝑥
) = 𝐸𝐼 lim

δ𝑥→0
(
δθ

δx
) ≈ 𝐸𝐼

𝛿𝜃

δ𝑥
 Eq. 31 

Solving for stiffness on Eq. 29: 

𝑘𝑟 =
𝑀

𝛿𝜃
=

𝐸𝐼

𝛿𝑥
 Eq. 32 

Substituting the relation of the rotational spring stiffness of Eq. 32 in Eq. 30, the total energy due to 

bending is: 
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𝑈𝑟 = ∑δ𝑈𝑟 = ∑
𝑀𝑖

2

2 𝐸𝐼
 𝛿𝑥𝑖

𝑛

𝑖=1

 Eq. 33 

For a continuous system,  𝑛  must be infinitely large (𝑛 → ∞). At the limit,  𝛿()  tends to  𝑑(); hence the 

summation  Σ  tends to be the integral  ∫  [16]. Thus, the strain energy is: 

𝑈𝑟 = ∫
𝑀2

2 𝐸𝐼
𝑑𝑥 =

𝐸𝐼

2
∫(

𝑑2

𝑑𝑥2
𝑢(𝑥))

2

𝑑𝑥 Eq. 34 

 

 

Figure 12: (a) Deflection of a simply supported beam-column modelled by discrete rigid elements with only a bending deformation. 
(b) Elastic rotational hinge. (c) Geometric nonlinearity. 
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2.3.2.2 External Work – Work done by an axial load 

The external work  𝑇𝑝  of Figure 12(c) is defined as: 

𝑊𝑒𝑥 = 𝑇𝑝 = ∑𝛿𝑇𝑝 = ∑𝑃𝛥𝑖

𝑛

𝑖=1

 Eq. 35 

Where  Δi  is the displacement of the load of segment  𝑖  and can be found from geometry. Under the 

assumption of small displacements,  cos(𝜃) ≈ 1 − 𝜃2/2,  and thus the displacement of the load is:   

Δ = 𝛿𝑥(1 − cos(𝜃)) = 𝛿𝑥 (1 − (1 −
𝜃2

2
)) = 𝛿𝑥

𝜃2

2
 Eq. 36 

Hence, the external work can be expressed as: 

𝑊𝑒𝑥 = ∑δ𝑇𝑝 = ∑𝑃𝛥𝑖

𝑛

𝑖=1

= ∑ 𝑃
𝜃𝑖

2

2
𝛿𝑥𝑖

𝑛

𝑖=1

 Eq. 37 

For a continuous system, with  𝑛 → ∞,  the total external work can be expressed in integral form as: 

𝑊𝑒𝑥 = ∫
𝑃

2
 𝜃2 𝑑𝑥 =

𝑃

2
∫(

𝑑

𝑑𝑥
𝑢(𝑥))

2

𝑑𝑥 Eq. 38 

2.3.2.3 Critical loads by the energy method 

Many authors have used energy methods, such as the principle of minimum potential energy (PMPE), to 

obtain buckling loads of columns with a sudden change of stiffness [6]–[8]. Small lateral deflections need 

to be assumed when using the energy method. Such a deflection increases the strain energy, 𝑈𝑟, of the 

structure. Due to the deflection, the axial load  𝑃  does work equal to the external work  𝑊𝑒𝑥  [20]. The 

structure is stable if the strain energy (𝑈𝑟) is higher than the work done by the axial load (𝑇𝑝); unstable if 

the strain energy (𝑈𝑟) is lower than the work done by the axial load (𝑇𝑝). The critical load is found when 

the structure changes from a stable to an unstable configuration, which occurs when the strain energy 

equals the work done by the axial load. 

STABLE 𝑈𝑟 > 𝑇𝑝  

Eq. 39 UNSTABLE 𝑈𝑟 < 𝑇𝑝  

CRITICAL 𝑈𝑟 = 𝑇𝑝  
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Exact solutions for the buckling loads are obtained using the energy method when the assumed deflection, 

𝑢(𝑥), correctly satisfy the boundary conditions matching the actual deflection. Correctly assuming the 

deflection function for complicated systems becomes challenging when following the energy method, 

resulting in approximate solutions [20].  

2.3.3 Numerical Approach: Finite Element Analysis 

The Finite Element Method (FEM) is a numerical method that is the basis for the Finite Element Analysis 

(FEA). This method is a powerful tool and a favored technique for most fields of engineering. FEM is based 

on two fundamental concepts. The first concept is representing a continuous structure in a finite number 

of simple elements jointed at the nodes, known as discretization. Each node has a defined number of 

degrees of freedom (dof). The nodes of such elements are the primary unknowns and present themselves 

as displacements or stresses for structural analysis. Values between nodes are determined from 

polynomial interpolation. The second concept is based on obtaining the solution of differential equations 

by means of the weak method using numerical integration techniques. These two concepts reduce the 

differential equation of the complex system into a finite set of linear simultaneous equations, which can 

be solved through the application of matrix methods [21]. 

Although the FEM is powerful for analyzing complex systems, the discretization and the use of numerical 

methods involve errors, hence always providing approximate solutions. For simple systems, these errors 

can be minimized, resulting in solutions having a negligible error compared to analytical solutions [21]. 

Many papers have validated results obtained from proposed analytical methods for the buckling analysis 

of complex beams and beam-columns against those obtained through the FEM [2], [3]. For such reasons, 

results obtained through the proposed closed-form solution will be validated against those obtained 

through the FEM. 

2.3.4 Discussion of current methods 

All presented methods can be implemented for the analysis of beam-columns. The formulation of the 

proposed closed-form solution is based on the classical method. The main limitation of the latter is the 

number of equations required due to the unknown constants of integration. Structural elements 

consisting of  𝑁  discontinuities require  4(𝑁 + 1)  equations that are obtained through the boundary and 

continuity conditions.  

The relations derived for the internal and external work have been used for the analysis of structural 

elements. These serve as a basis for other energy methods, such as the method of real work, the method 

of virtual work, Castigliano’s theorems, and the principle of minimum potential energy (PMPE) [22]. The 

main limitations in using energy methods are that the accuracy of results is dependent on being used on 

linear elastic structures that obey the law of superposition [23]. This may not be the case for beam-

columns and columns in which the relation between applied loads and displacement are no longer linear. 

The FEM is a robust method that has been used for the linear analysis of beams, columns, and beam-

columns. This method provides approximate results which are dependent on the discretization of the 

system. The discretization may result in errors or a high computational cost when performing parametric 

studies using FEM.  
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2.4 Modelling Complexities of physical structures 

Structures are idealized into simplified models to perform structural analysis. Springs are often used in 

such models to have a better representation of reality. The following subsection provides a brief 

description of the use of springs. Its influence for the buckling analysis has been proved to be crucial by 

M. L. Gambhir, who demonstrated that springs have an important effect on the buckling load by affecting 

the buckling mode [16]. Two main types of springs are considered to idealise structures: an extensional 

or normal spring, and a moment or rotational spring. The springs considered for the formulation of the 

closed-form solution are linear springs, which have a linear load-deformation relationship [16]. 

2.4.1 External Extensional Springs 

External extensional springs can be considered at the boundary and continuity conditions of jointed EB 

beam-columns to model the points where transversal displacement is restricted to some degree due to 

the influence of lateral bracing, diaphragms, and stabilizers of drill strings, to name a few examples [20]. 

Linear extensional springs carry normal force only. The elongation  Δ  of such a linear elastic spring 

subjected to a force  𝐹 is: 

Δ =
𝐹

𝑘𝑒
 Eq. 40 

Where  𝑘𝑒  is the spring stiffness in units of force/deformation  (𝐹/Δ). 

In the classical procedure, linear external translational springs between two consecutive segments, or at 

the boundaries, are accounted for when enforcing equilibrium of vertical forces, as seen in Figure 13.  

 
Figure 13: Diagram of vertical forces acting at the location of an external translational spring. 

Σ𝐹𝑦 = 0 

𝑉𝑖 + 𝑢𝑖  𝑘𝑒𝑥𝑡,𝑖 = 𝑉𝑖+1 Eq. 41 

With  𝑉  being the shear force of segment  𝑖  and  𝑖 + 1,  and  𝑢𝑖  being the displacement of section  𝑖  at 

the location of the extensional spring. 

When using energy methods, the strain energy  𝑈𝑒𝑥𝑡,𝑠𝑝𝑟𝑖𝑛𝑔  of a spring is: 

𝑈𝑒𝑥𝑡,𝑠𝑝𝑟𝑖𝑛𝑔 =
1

2
𝑘𝑒 (Δ)2 Eq. 42 
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2.4.2 Internal Extensional Springs 

Internal extensional springs connecting two consecutive Euler-Bernoulli beam-column sections can be 

implemented to represent the real behavior of the joints connecting such members [2]. 

In the classical procedure, internal translational springs are accounted for when enforcing the continuity 

of displacements. The internal translational spring affects such continuity by deforming itself due to the 

shear force acting at the discontinuity location. Dividing the shear force of member  𝑖  by the internal 

spring stiffness  𝑘𝑖𝑛𝑡,𝑖   connecting two consecutive members provides the extra deformation required to 

ensure a continuity of displacements and is written as: 

𝑢𝑖 +
𝑉𝑖

𝑘𝑖𝑛𝑡,𝑖
= 𝑢𝑖+1 Eq. 43 

2.4.3 Rotational Springs 

Many authors have used the discrete spring model to represent cracks along the beam-column, given its 

effectiveness. This modelling is performed by pinning together two beam-column sections and using a 

linear rotational spring to model the increase in flexibility due to the crack [3], [5], [14]. There exist various 

equations that define the stiffness of a rotational spring to model cracks. Such equations are dependent 

on the height of the cross-section as well as the depth of the crack, as proposed by Dimarogans et al. [24]. 

Linear rotational springs are idealized structures capable of resisting rotation but having no axial stiffness. 

The moment,  𝑀, is directly proportional to the angle of rotation  𝜃  for linear rotational springs [16]. 

Hence: 

𝑀 = 𝑘𝑟 𝜃 Eq. 44 

With  𝑘𝑟  being the rotational stiffness of the spring in units of force ∙ deformation / radians  (𝐹𝐿/𝑟𝑎𝑑). 

In the classical procedure, the influence of rotational springs is accounted for when enforcing the 

continuity of slopes. Similar to the continuity of displacements, the moment present at the location of the 

rotational spring affects the slope.  Dividing the moment of section  𝑖  by the rotational spring stiffness  

𝑘𝑟𝑜𝑡,𝑖  provides the change of slope due to the moments, and is written as: 

𝜃𝑖 −
𝑀𝑖

𝑘𝑟𝑜𝑡,𝑖
= 𝜃𝑖+1 Eq. 45 

When using energy methods, the strain energy  𝑈𝑟𝑜𝑡,𝑠𝑝𝑟𝑖𝑛𝑔  of a rotational spring is: 

𝑈𝑟𝑜𝑡,𝑠𝑝𝑟𝑖𝑛𝑔 =
1

2
 𝑘𝑟 𝜃

2 Eq. 46 
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2.5 Generalized Functions 

Generalized functions have been defined mathematically in many ways, with the most popular definition 

proposed by Schwartz in his theory of distributions. Such “functions” have beneficial properties making 

them useful in different fields of engineering and science. One valuable property is their ability to make 

discontinuous functions into continuous ones [25]. The following section focuses on such property and 

introduces the Dirac delta function  𝛿(𝑥),  and the Heaviside function  𝐻(𝑥). 

2.5.1 Dirac delta function 

The Dirac delta function  𝛿(𝑥)  can be defined as zero for all values of  𝑥,  except at  𝑥 = 0,  where at such 

location it has a value of infinity, as it is schematized in Figure 14. One condition that must be fulfilled is 

having the area under the spike equal to one. Hence it can be defined as [26]: 

𝛿(𝑥) = {
+∞,      𝑥 = 0
0,           𝑥 ≠ 0

 Eq. 47 

 

Or as: 

𝛿(𝑥 − 𝑎) = {
+∞, 𝑥 = 𝑎
0               𝑥 ≠ 𝑎

 Eq. 48 

while being constrained to satisfy: 

∫ 𝛿(𝑥) 𝑑𝑥
+∞

−∞

= 1 Eq. 49 

 

 
Figure 14: Schematic representation of the Dirac Delta function. 

Such function has been successfully implemented in the buckling analysis of beam-columns with unilateral 

cracks using the flexibility model [3].  It has also been used when expressing the lateral loading function  
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𝑞(𝑥)  to account for a lateral point-force  𝐹𝑎  acting at  𝑥 = 𝑎. Thus, the lateral load is expressed as  𝑞(𝑥) =

𝐹𝑎𝛿(𝑥 − 𝑎)  [2]. 

2.5.2 Heaviside function 

The Heaviside function is also known as the unit step function and is denoted as  H(x)  or  θ(x). Following 

the half-maximum convention, the Heaviside function is defined as having a value of zero for negative 

arguments and a value of one for positive arguments. At an argument of zero, the Heaviside takes a value 

of  1/2  [27] and can be visualized in Figure 15. Hence: 

𝐻(𝑥) = {
0         𝑥 < 0
0.5    𝑥 = 0
1         𝑥 > 0

 Eq. 50 

 

 
Figure 15: Heaviside function, using the half-maximum convention. 

Such a function has been used to successfully express the deflection of a beam with step-changes of its 

stiffness [2], [3]. The Heaviside function will be implemented to represent the global deflections, slopes, 

moments, and shears as a single piecewise continuous equation.  

2.6 Literature Takeaways 

To the best of the knowledge of the author of this thesis, there is no analytical approach that considers 

the combination of lateral loads, non-propagating open cracks, and lateral restrictions in the buckling 

analysis of beam-columns with step-changes in their geometric and material properties, connected by 

flexible joints while having elastic boundaries. Most analytical or semi-analytical approaches in the 

literature review consider only the ideal column case with some complexities and approximate results. 

The non-trivial equilibrium state approach provides exact solutions for the buckling analysis of structural 

elements with discontinuities. These appear due to the presence of springs or step-changes of flexural 

stiffness, and their influence is accounted for in the continuity conditions. The limitation of this approach 

is having to solve  4(𝑁 + 1)  unknown constants of integration for the case of a beam-column, or obtaining 

the determinant of a  4(𝑁 + 1) × 4(𝑁 + 1)  for the case of a column. 
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The buckling analysis performed by different authors following the energy method [6]–[8] has provided 

approximate results for simple columns with step-changes of flexural stiffness. The main limitation of such 

a method is to accurately assume the deflection of the column. Any deflection that deviates from the 

actual deflection provides approximate results. 

As FEM is a powerful numerical method, many authors validate their results against those obtained from 

FE software. However, performing parametric studies may become computational expensive or result in 

numerical instabilities due to the remeshing of the model. 

The energy methods provide an upper bound, and their accuracy highly depends on the assumed 

deflection function. Moreover, although the FEM is such a powerful numerical method, it may be prone 

to numerical instabilities when analyzing complicated systems with a refined mesh. The ideal good 

practice would be to compare the results obtained through the FEM with analytical solutions. However, 

due to the complexity of systems and the limitations of analytical methods, it is usually not performed. It 

should be noted that although the FEM can perform buckling analysis for 1-D models, its computational 

cost can be high in the event of a parametric study. 

For the design phase or a parametric study, the lack of analytical methods for the buckling analysis of 

complex column and beam-column models makes engineers rely on numerical methods with their own 

limitations. Generalized functions, precisely the Heaviside function, can express in a single equation the 

deflection, slope, moment, and shear of an EB structural element regardless of the number of 

discontinuities present. They have been successfully implemented in the analysis of models with some 

complexity. For such reason, expressing the buckling solution in terms of generalized functions can 

provide computational efficiency in exploring different designs or in the evaluation of pre-damaged 

structures.  In combination with closed-form expressions, this efficiency reduces the number of unknown 

constants of integration to only four. This reduction results in only calculating the determinant of a  4 × 4  

matrix.  

Given the above and recognizing the potential for such a combination, the present thesis is focused on 

exploring the possibility of using the mentioned combination for the buckling analysis of columns and 

beam-columns.  
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Table 1: Comparison of the current methods for accounting for the influence of various complexities. 

Influence of: Classical method PMPE FEM 

Step-changes 
of flexural 
stiffness 

• Can obtain exact 
solutions 

• Exact solution if 
assumed deflection 
matches real 
deflection 

• Exact solution can be 
obtained       

      • Depends on 
discretization • Each segment 

introduces 4 
unknown integration 
constants 

    

  • Difficult to assume 
correct deflection 
because of different 
stiffnesses 

    

        

        

          

Springs 

• Can obtain exact 
solutions 

• Accounted in the 
energy stored in the 
springs 

• Exact solution can be 
obtained       

      • Depends on 
discretization • Accounted for when 

enforcing continuity 
conditions 

• Difficult to assume 
correct deflection 
because of springs 

  

        

        

Elastic 
boundary 
conditions 

• Accounted for when 
enforcing the 
boundary conditions 

• Can be accounted in 
the energy stored in 
the boundary springs 

• Exact solution can be 
obtained       
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3 Closed-form solutions for the buckling analysis of Euler-Bernoulli 

beam-columns and columns 

The following section presents the derivation of the closed-form solution for the buckling analysis of Euler-

Bernoulli beam-columns of different complexities. This section aims to formulate and offer the general 

closed-form solution for the main analytical model, presented in Figure 3. This formulation is performed 

in a stepwise approach, starting with the general procedure given in subsection 3.1. The following 

subsection offers the closed-form solution for an ideal beam-column with ideal boundary conditions and 

joints, as seen in Figure 17. Afterwards, the introduction of elastic boundary conditions to such a model, 

as seen in Figure 19 in subsection 3.3, is discussed. Subsection 3.4 presents the formulation of the general 

solution for a beam-column with elastic joints in the form of along-the-axis internal transversal springs, as 

seen in Figure 20. External transversal and internal rotational springs between two consecutive segments 

are presented in subsections 3.5 and 3.6, respectively. Finally, the closed-form solution for the buckling 

analysis of the model of the highest complexity, as seen in Figure 26, is presented in subsection 3.7. 

3.1 Solution procedure for the derivation of the closed-form solution for the buckling 

analysis of complex beam-columns and columns 

The procedure for finding the closed-form solution is based on normalizing Eq. 12  with respect to the 

length  𝐿  and is expressed as: 

𝑑4

𝑑𝜉4
�̃�(𝜉) + �̃�2

𝑑2

𝑑𝜉2
�̃�(𝜉) =

�̃�(𝜉)

𝐸𝐼
  Eq. 51 

Eq. 51 is dependent on the normalized abscissa  𝜉 = 𝑥/𝐿, which ranges from 0 to 1. The normalized 

quantities in Eq. 51 are as follow: 

�̃�(𝜉) =
𝑢(ξ 𝐿)

𝐿
 

Eq. 52 

 

�̃�2 =
𝑃 𝐿2

𝐸𝐼
 Eq. 53 

 

�̃�(𝜉) = 𝑞(𝜉𝐿)𝐿3 Eq. 54 

For a beam-column with step-changes of its flexural stiffness, the solution of the normalized differential 

equation, Eq. 51, is implemented to each section with its local normalized coordinate  𝜉𝑖,  transforming 

Eq. 51 into: 
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𝑑4

𝑑𝜉4
�̃�𝑖(𝜉𝑖) + �̃�2

𝑑2

𝑑𝜉2
�̃�𝑖(𝜉𝑖) =

�̃�𝑖(𝜉)

𝐸𝐼𝑖
 Eq. 55 

With  0 ≤ 𝜉𝑖 ≤ �̃�𝑖,   �̃�𝑖 =
𝐿𝑖

𝐿
,  and  �̃�𝑖

2 =
𝑃 𝐿2

𝐸𝐼𝑖
. Figure 16 represents the normalized counterpart of the 

highest-complex model, which will be analyzed.  

 
Figure 16: Normalized counterpart of the model of highest complexity to be analyzed, consisting of  𝑁  discontinuities due to step-
changes of flexural stiffness, or the presence of springs. Each section has a constant flexural stiffness  𝐸𝐼𝑖   and is described in terms 
of a local dimensionless axis,  𝜉𝑖. 

The term  𝜉0,𝑖  represents the location of a discontinuity due to a step-change in flexural stiffness or the 

presence of a spring. It is expressed in terms of the global abscissa  𝜉𝐺. The Heaviside function is 

implemented to express a single piecewise continuous function using the local functions of each segment. 

The global deflection of the beam-column is defined as: 

𝑈(𝜉𝐺) = �̃�1(𝜉1) + ∑[�̃�𝑖(𝜉𝑖) − �̃�𝑖−1(𝜉𝑖−1)] 𝐻(𝜉𝐺 − 𝜉0,𝑖−1)

𝑁+1

𝑖=2

 Eq. 56 

Similarly to Eq. 56, the slope, moment, and shear of the beam-column are expressed as: 

Θ(𝜉𝐺) = �̃�1(𝜉1) + ∑[�̃�𝑖(𝜉𝑖) − �̃�𝑖−1(𝜉𝑖−1)] 𝐻(𝜉𝐺 − 𝜉0,𝑖−1)

𝑁+1

𝑖=2

 
Eq. 57 
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Μ(𝜉𝐺) = �̃�1(𝜉1) + ∑[�̃�𝑖(𝜉𝑖) − �̃�𝑖−1(𝜉𝑖−1)]𝐻(𝜉𝐺 − 𝜉0,𝑖−1)

𝑁+1

𝑖=2

 Eq. 58 

 

𝑇(𝜉𝐺) = �̃�1(𝜉1) + ∑[�̃�𝑖(𝜉𝑖) − �̃�𝑖−1(𝜉𝑖−1)]𝐻(𝜉𝐺 − 𝜉0,𝑖−1)

𝑁+1

𝑖=2

 
Eq. 59 

The relationship between the global normalized coordinate (𝜉𝐺) and local coordinate (𝜉𝑖) is: 

𝜉𝑖 = 𝜉𝐺 − ∑𝐿𝑗

𝑖−1

𝑗=1

 

A beam-column with  𝑁  discontinuities due to step-changes of flexural stiffness, or the presence of 

springs, would consist of  𝑁 + 1  segments. These discontinuities lead to each section introduce four 

unknown integration constants, making it necessary to obtain the determinant of a  4(𝑁 + 1) × 4(𝑁 +

1)  system of equations to obtain the buckling equation for a column, or solving for  4(𝑁 + 1)  integration 

constants for a beam-column, and thus getting the critical buckling loads. To reduce the number of  4(𝑁 +

1)  unknown integration constants and therefore the number of required conditions, the relation between 

the integration constant of two successive beam-column elements are found by imposing the continuity 

conditions. For the normalized case, the continuity conditions are imposed at  𝜉𝑖 = �̃�𝑖  and at 𝜉𝑖+1 = 0,  

with subscript  𝑖  used to represent segment  𝑖,  and consists of enforcing continuity of displacement  (𝑢),  

slope  (𝜃),  moment  (𝑀),  and shear  (𝑉).  

When enforcing the continuity conditions, it is essential to remain dimensionally consistent. Normalizing 

the displacement with respect to the length makes the displacement function and its derivatives 

dimensionless. The local displacement and slope have the form of: 

�̃�𝑖(𝜉𝑖) = 𝐴𝑖 + 𝐵𝑖 𝜉𝑖 + 𝐶𝑖 (
1

�̃�𝑖
2 −

cos(�̃�𝑖  𝜉𝑖)

�̃�𝑖
2 ) + 𝐷𝑖 (

𝜉𝑖

�̃�𝑖
2 −

sin(�̃�𝑖 𝜉𝑖)

�̃�𝑖
3 ) + ⋯ 

⋯+
∫ (�̃�𝑖(𝜏) sin(�̃�𝑖  𝜏) cos(�̃�𝑖 𝜉𝑖) − �̃�𝑖(𝜏) cos(�̃�𝑖  𝜏) sin(�̃�𝑖  𝜉𝑖)) 𝑑𝜏

𝜉𝑖

0

𝐸𝐼𝑖 �̃�𝑖
3 − ⋯ 

⋯−
∫ (−�̃�𝑖(𝜏) 𝜉𝑖 + �̃�𝑖(𝜏) 𝜏) 𝑑𝜏

𝜉𝑖

0

𝐸𝐼𝑖 �̃�𝑖
2  

Eq. 60 

 



   
 

30 | P a g e  
 

�̃�𝑖(𝜉𝑖) = 𝐵𝑖 +
𝐶𝑖 sin(�̃�𝑖 𝜉𝑖)

�̃�𝑖
+ 𝐷𝑖 (

1

�̃�𝑖
2 −

cos(�̃�𝑖 𝜉𝑖)

�̃�𝑖
2 ) +

∫ �̃�𝑖(𝜏) 𝑑𝜏
𝜉𝑖

0

𝐸𝐼𝑖  �̃�𝑖
2 + ⋯ 

⋯−
∫ (�̃�𝑖(𝜏) sin(�̃�𝑖  𝜏) sin(�̃�𝑖  𝜉𝑖) + �̃�𝑖(𝜏) cos(�̃�𝑖 𝜏) cos(�̃�𝑖  𝜉𝑖)) 𝑑𝜏

𝜉𝑖

0

𝐸𝐼𝑖 �̃�𝑖
2  

Eq. 61 

 

Both  �̃�𝑖(𝜉𝑖)  and  �̃�𝑖(𝜉𝑖)  are dimensionless. On the other hand, the moment and shear have units of  

𝐹𝑜𝑟𝑐𝑒 ∙ 𝐿𝑒𝑛𝑔𝑡ℎ2  given that the second and third derivatives of the dimensionless displacement function 

are multiplied by Young’s Modulus  (𝐸)  and the second moment of inertia  (𝐼) of their respective 

segment. The moment and shear of segment  𝑖  have the form of: 

𝑀𝑖(𝜉𝑖) = −𝐶𝑖 𝐸𝐼𝑖 cos(�̃�𝑖 𝜉𝑖) −
𝐷𝑖 𝐸𝐼𝑖 sin(�̃�𝑖  𝜉𝑖)

�̃�𝑖
+ ⋯ 

⋯−
∫ (−�̃�𝑖(𝜏) sin(�̃�𝑖 𝜏) cos(�̃�𝑖 𝜉𝑖) + �̃�𝑖(𝜏) cos(�̃�𝑖 𝜏) sin(�̃�𝑖  𝜉𝑖)) 𝑑𝜏

𝜉𝑖

0

�̃�𝑖
 

Eq. 62 

𝑉𝑖(𝜉𝑖) = −𝐸𝐼𝑖(�̃�𝑖
2 𝐵𝑖 + 𝐷𝑖) − ∫ �̃�𝑖(𝜏) 𝑑𝜏

𝜉𝑖

0

 Eq. 63 

Finding the relation between two successive beam-column segments reduces the number of unknown 

integration constants to only four, which are solved by imposing the four boundary conditions. The 

procedure of relating the integration constants has been successfully implemented by F. Giunta on the 

analysis of jointed Euler-Bernoulli beams with step changes in material and cross-section under static and 

dynamic loads [2].  

The normalized equations for the local displacement, slope, moment, and shear for a column are: 

�̃�𝑖(𝜉𝑖) = 𝐴𝑖 + 𝐵𝑖 𝜉𝑖 + 𝐶𝑖 (
1

�̃�𝑖
2 −

cos(�̃�𝑖  𝜉𝑖)

�̃�𝑖
2 ) + 𝐷𝑖 (

𝜉𝑖

�̃�𝑖
2 −

sin(�̃�𝑖 𝜉𝑖)

�̃�𝑖
3 ) Eq. 64 

 

�̃�𝑖(𝜉𝑖) = 𝐵𝑖 +
𝐶𝑖 sin(�̃�𝑖 𝜉𝑖)

�̃�𝑖
+ 𝐷𝑖 (

1

�̃�𝑖
2 −

cos(�̃�𝑖 𝜉𝑖)

�̃�𝑖
2 ) Eq. 65 

 

𝑀𝑖(𝜉𝑖) = −𝐶𝑖 𝐸𝐼𝑖 cos(�̃�𝑖 𝜉𝑖) −
𝐷𝑖 𝐸𝐼𝑖 sin(�̃�𝑖  𝜉𝑖)

�̃�𝑖
 Eq. 66 
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𝑉𝑖(𝜉𝑖) = −𝐸𝐼𝑖 �̃�𝑖
2 𝐵𝑖 − 𝐸𝐼𝑖 𝐷𝑖 Eq. 67 

For the buckling analysis of a column, as explained in Section 2.3.1.1, the next step is to obtain the buckling 

equation by computing the determinant of the system of four equations. As explained in 2.3.1.2, the next 

step is to solve the four unknown integration constants for the buckling analysis of a beam-column. In 

either case, it is necessary to express all variables that account for the step changes in flexural stiffness  

(�̃�𝑖)  in terms of a stiffness of reference. This thesis takes the stiffness of the first segment as a reference 

for calculating the critical load  𝑃𝑐𝑟.  This is done by substituting: 

�̃�1 = √
𝑃 𝐿2

𝐸𝐼1
= 𝛼 Eq. 68 

 

�̃�𝑖 =
√

𝑃 𝐿2

𝐸𝐼𝑖

√
𝑃 𝐿2

𝐸𝐼1

∙ 𝛼 Eq. 69 

After the substitution, the buckling equation is dependent on the variable  𝛼,  which will be referred to as 

the critical variable. The roots of such an equation are associated with the buckling loads. Hence, at the 

roots, the critical buckling load can be found and is expressed as: 

𝑃𝑐𝑟 =
𝛼𝑟𝑜𝑜𝑡

2  𝐸𝐼1
𝐿2

 Eq. 70 

3.2 Formulation of a closed-form expression for the buckling analysis of ideal Euler-

Bernoulli beam-column 

Let us consider an EB beam-column consisting of  𝑁 discontinuities of flexural stiffness resulting on  𝑁 + 1  

sections of uniform stiffness, as seen in Figure 17. 
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Figure 17: Normalized ideally jointed EB beam-column with step changes in flexural stiffness and ideal boundary conditions 
subjected to lateral and axial load. 

As described in Section 3.1, the number of unknown constants of integration is reduced to only four 

unknowns. This is done by relating constants of integration between two successive segments by imposing 

continuity conditions. The continuity conditions are enforced at  𝜉𝑖 = �̃�𝑖  and at  𝜉𝑖+1 = 0, with the 

continuity conditions being: 

�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 71 

 

�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 72 

 

�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 73 

 

�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 74 

 
Figure 18: Two normalized ideally jointed consecutive segments where continuity of deflection, slope, moment, and shear needs 
to be enforced. 
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For ease of notation, dimensionless quantities,  𝛽𝑖,  are introduced to describe the relationships between 

the flexural rigidities of two successive segments: 

𝛽𝑖 =
𝐸𝐼𝑖

𝐸𝐼𝑖+1
 Eq. 75 

The relation between two successive constants of integration is: 

𝐴𝑖+1 = 𝐴𝑖 + 𝐵𝑖 𝐿𝑖 + (
1

�̃�𝑖
2 −

cos(�̃�𝑖 𝐿𝑖)

�̃�𝑖
2 )𝐶𝑖 + (

𝐿𝑖

�̃�𝑖
2 −

sin(�̃�𝑖 𝐿𝑖)

�̃�𝑖
3 )𝐷𝑖 + ⋯ 

⋯+
∫ (�̃�𝑖(𝜏) sin(�̃�𝑖 𝜏) cos(�̃�𝑖  𝐿𝑖) − �̃�𝑖(𝜏) cos(�̃�𝑖  𝜏) sin(�̃�𝑖  𝐿𝑖)) 𝑑𝜏

�̃�𝑖

0

𝐸𝐼𝑖 �̃�𝑖
3 − ⋯ 

⋯+
∫ (�̃�𝑖(𝜏) �̃�𝑖 − �̃�𝑖(𝜏) 𝜏) 𝑑𝜏

�̃�𝑖

0

𝐸𝐼𝑖 �̃�𝑖
2  

Eq. 76 

 

𝐵𝑖+1 = 𝐵𝑖 +
𝐶𝑖 sin(�̃�𝑖 𝐿𝑖)

�̃�𝑖
+ (

1

𝑣𝑖
2 −

cos(�̃�𝑖 𝐿𝑖)

�̃�𝑖
2 )𝐷𝑖 +

∫ �̃�(𝜏) 𝑑𝜏
�̃�𝑖

0

𝐸𝐼𝑖 �̃�𝑖
2 + ⋯ 

⋯−
∫ (�̃�(𝜏) sin(�̃�𝑖 𝜏) sin(�̃�𝑖  𝐿𝑖) + �̃�𝑖(𝜏) cos(�̃�𝑖  𝜏) cos(�̃�𝑖 𝐿𝑖)) 𝑑𝜏

�̃�𝑖

0

𝐸𝐼𝑖 �̃�𝑖
2  

Eq. 77 

 

𝐶𝑖+1 = 𝐶𝑖 𝛽𝑖 cos(�̃�𝑖  𝐿𝑖) +
𝐷𝑖 𝛽𝑖 sin(�̃�𝑖 𝐿𝑖)

�̃�𝑖
+ ⋯ 

⋯+
∫ (−�̃�𝑖(𝜏) sin(�̃�𝑖  𝜏) cos(�̃�𝑖  �̃�𝑖) + �̃�𝑖(𝜏) cos(�̃�i �̃�i) sin(�̃�𝑖 �̃�𝑖)) 𝑑𝜏

�̃�𝑖

0

�̃�i 𝐸𝐼𝑖+1
 

Eq. 78 

 

𝐷𝑖+1 = 𝐵𝑖  �̃�𝑖
2 𝛽𝑖 + 𝐷𝑖 𝛽𝑖 − 𝐵𝑖+1 �̃�𝑖+1

2 + ∫
�̃�𝑖(𝜏) 𝑑𝜏

𝐸𝐼𝑖+1

�̃�𝑖

0

 Eq. 79 

Using the derived relation between constants of integration (Eq. 76 –Eq. 79) in the global equations of 

deflection, slope, moment, and shear functions (Eq. 56 – Eq. 59) reduces the system of equations being 

expressed to only four unknown integration constants, which are solved through the boundary conditions.  
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3.3 Introduction of elastic boundary conditions to the closed-form solution for the 

buckling analysis of ideally jointed Euler-Bernoulli beam-column 

Let us consider an EB beam-column consisting of  𝑁 discontinuities of flexural stiffness resulting on  𝑁 + 1  

sections of uniform stiffness subjected to elastic boundaries, as seen in Figure 19.  

 
Figure 19: Normalized ideally jointed EB beam-column with step changes in flexural stiffness and elastic boundary conditions 
subjected to lateral and axial load. 

The elastic boundaries are accounted for in the four necessary equations to solve the four unknown 

constants of integration. The four equations are dependent on the equilibrium of moments and vertical 

forces, hence the equations at the boundaries (𝜉𝐺 = 0  and at  𝜉𝐺 = �̃�)  are: 

𝑇(0) = 𝑈(0) ∙ 𝑘𝐵𝐶𝑡1
∙ 𝐿3 Eq. 80 

Μ(0) = −Θ(0) ∙ 𝑘𝐵𝐶𝑟1
∙ 𝐿 Eq. 81 

𝑇(𝐿) = −𝑈(�̃�) ∙ 𝑘𝐵𝐶𝑡2
∙ 𝐿3 Eq. 82 

Μ(𝐿) = Θ(�̃�) ∙ 𝑘𝐵𝐶𝑟2
∙ 𝐿 Eq. 83 

The terms of  𝐿3  and  𝐿  are added to Eq. 80 – Eq. 83 to remain dimensionally consistent, given that the 

units of the translational and rotational springs are of  𝐹𝑜𝑟𝑐𝑒/𝐿𝑒𝑛𝑔𝑡ℎ  and  (𝐹𝑜𝑟𝑐𝑒 ∙ 𝐿𝑒𝑛𝑔𝑡ℎ)/𝑅𝑎𝑑, 

respectively.  
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3.4 Introduction of internal translational springs to the closed-form solution for the 

buckling analysis of elastic jointed Euler-Bernoulli beam-columns 

Let us consider an EB beam-column consisting of  𝑁  discontinuities due to step-changes of flexural 

stiffness and the presence of internal springs resulting on  𝑁 + 1  sections of uniform stiffness, as seen in 

Figure 20.  

 
Figure 20: Normalized ideally jointed EB beam-column with  𝑁  step-changes of flexural stiffness and  𝑁  along-the-axis internal 
translational springs while being subjected to a lateral load  �̃�(𝜉)  and axial load  𝑃. 

Following the same procedure, as described in section 3.1, it is possible to account for internal springs by 

relating constants of integration between two successive segments. As described in the procedure, the 

influence of internal springs is accounted for at the continuity conditions, as seen in Figure 21.  

 
Figure 21: Continuity condition between two dimensionless successive beam-column segments with an internal translational 
spring at discontinuity  𝑖. 

At the location of  𝜉𝑖 = �̃�𝑖  and at  𝜉𝑖+1 = 0, the continuity of deflections, slopes, moments, and shears 

are enforced. 

�̃�𝑖(�̃�𝑖) +
�̃�𝑖(�̃�𝑖) ∙ 𝜂𝑖𝑛𝑡,𝑖

𝑘𝑖𝑛𝑡,𝑖 𝐿
3

= �̃�𝑖+1(0) Eq. 84 

 

�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 85 
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�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 86 

 

�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 87 

 

Internal springs are accounted for on the continuity of displacements by dividing the shear of segment  𝑖  

by the internal spring stiffness at such a location. The term of  𝐿3  is introduced in Eq. 84 to remain 

dimensionally consistent. Moreover, the term  𝜂𝑖𝑛𝑡,𝑖  receives a value of zero when no internal spring is 

present and one when an internal spring is present. It is introduced to indicate when a spring is present 

between two segments. Given that the influence of internal springs only affects the continuity of 

displacements (Eq. 84), the derived relation between constants of integration for the ideal case on section 

3.2 remains the same for  𝐵𝑖+1, 𝐶𝑖+1, 𝐷𝑖+1 (Eq. 77 – Eq. 79). The only term that changes is  𝐴𝑖+1  and is 

equal to: 

𝐴𝑖+1 = 𝐴𝑖 + (�̃�𝑖 −
�̃�𝑖

2 𝐸𝐼𝑖 𝜂𝑖𝑛𝑡,𝑖

𝑘𝑖𝑛𝑡,𝑖 𝐿
3 ) 𝐵𝑖 + (

1

�̃�𝑖
2 −

cos(�̃�𝑖  �̃�𝑖)

�̃�𝑖
2 ) 𝐶𝑖 + (

�̃�𝑖

�̃�𝑖
2 −

sin(�̃�𝑖 �̃�𝑖)

�̃�𝑖
3 −

𝐸𝐼𝑖 𝜂𝑖𝑛𝑡,𝑖

𝑘𝑖𝑛𝑡,𝑖 𝐿
3 ) 𝐷𝑖 − ⋯ 

⋯ −
 𝜂𝑖𝑛𝑡,𝑖 ∫ �̃�𝑖(𝜏) 𝑑𝜏

�̃�𝑖

0

𝑘𝑖𝑛𝑡,𝑖 𝐿
3

+
∫ (�̃�𝑖(𝜏) �̃�𝑖 − �̃�𝑖(𝜏) 𝜏) 𝑑𝜏

�̃�𝑖

0

�̃�𝑖
2 𝐸𝐼𝑖

+ ⋯ 

⋯+
∫ (�̃�𝑖(𝜏) sin(�̃�𝑖 𝜏) cos(�̃�𝑖 �̃�𝑖) − �̃�𝑖(𝜏) cos(�̃�𝑖 𝜏) sin(�̃�𝑖 �̃�𝑖)) 𝑑𝜏

�̃�𝑖

0

�̃�𝑖
3 𝐸𝐼𝑖

− ⋯ 

Eq. 88 

Using the newly derived relation between constants of integration between two consecutive segments, 

the buckling analysis of elastic jointed EB beam-columns with  𝑁  step-changes of flexural stiffness can be 

performed depending only on the four boundary conditions.  

3.5 Introduction of external translational springs to the closed-form solution for the 

buckling analysis of ideally jointed Euler-Bernoulli beam-column 

Let us consider an EB beam-column consisting of  𝑁  discontinuities due to step-changes of flexural 

stiffness and the presence of external springs resulting on  𝑁 + 1  sections of uniform stiffness, as seen in 

Figure 22.  
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Figure 22: Normalized ideally jointed EB beam-column with  𝑁  step-changes of flexural stiffness and  𝑁  along-the-axis external 
translational springs while being subjected to a lateral  �̃�(𝜉)  and axial load  𝑃. 

External springs are accounted for when enforcing the continuity of vertical forces. As in previous sections, 

the continuity conditions are enforced at  𝜉𝑖 = �̃�𝑖  and at  𝜉𝑖+1 = 0  as seen in Figure 23.  

 
Figure 23: Continuity condition between two normalized successive beam-column segments with an external translational spring 
at discontinuity  𝑖.  

To avoid coupling problems when both internal and external springs act on the same discontinuity for 

future models, the external spring is considered acting on segment  𝑖 + 1,  given that the internal spring 

was associated with the shear of segment  𝑖  in section 3.4. This results in the continuity of shears being: 

�̃�𝑖 + �̃�𝑖+1 ∙ 𝑘𝑒𝑥𝑡,𝑖 ∙ 𝐿3 ∙ 𝜂𝑒𝑥𝑡,𝑖 = �̃�𝑖+1 Eq. 89 

The term of  𝐿3  is introduced to remain dimensionally consistent. The term  𝜂𝑒𝑥𝑡,𝑖  receives the value of 

zero when no external spring is present and one when it is present. This term is used to indicate the 

presence of a spring between consecutive segments. This continuity condition only affects the relation of 

constants of integration for term  𝐷𝑖+1  with  𝐴𝑖+1,  𝐵𝑖+1,  and  𝐶𝑖+1  remaining the same as in Eq. 76 – Eq. 

78. The continuity of displacement, slope, and moment are the same as in the ideal case (Eq. 71 – Eq. 73)  

and are in the form of: 
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�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 90 

�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 91 

�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 92 

The newly derived relation for  𝐷𝑖+1 is equal to: 

𝐷𝑖+1 = −
𝐴𝑖+1 𝐿

3 𝑘𝑒𝑥𝑡,𝑖 𝜂𝑒𝑥𝑡,𝑖

𝐸𝐼𝑖+1
+ 𝐵𝑖�̃�𝑖

2 𝛽𝑖 + 𝐷𝑖𝛽𝑖 − 𝐵𝑖+1�̃�𝑖+1
2 + ∫

�̃�𝑖(𝜏) 𝑑𝜏

𝐸𝐼𝑖+1
 

�̃�𝑖

0

 Eq. 93 

This newly derived relation successfully accounts for the influence of external springs in ideally connected 

EB beam-columns with step-changes of flexural stiffness. Implementing such relation on the global 

equations Eq. 56 – Eq. 59, along with enforcing the boundary conditions, results in having a system of four 

equations expressed in terms of only four unknown constants of integration. 

3.6 Introduction of rotational springs to the closed-form solution for the buckling analysis 

of an ideally jointed Euler-Bernoulli beam-column 

Let us consider an EB beam-column consisting of  𝑁  discontinuities due to step-changes of flexural 

stiffness and the presence of rotational springs resulting on  𝑁 + 1  sections of uniform stiffness, as seen 

in Figure 24.  

 
Figure 24: Normalized ideally jointed EB beam-column with  𝑁  step-changes of flexural stiffness and  𝑁  rotational springs while 
being subjected to a lateral  �̃�(𝜉)  and axial load  𝑃. 

As in previous sections, the influence of rotational springs is accounted for when enforcing the continuity 

conditions. The presence of rotational springs affects the continuity of slopes when trying to relate the 

constants of integration between two consecutive segments at  𝜉𝑖 = �̃�𝑖  and at  𝜉𝑖+1 = 0,  as seen in Figure 

25. 



   
 

39 | P a g e  
 

 
Figure 25: Continuity condition between two normalized successive beam-column segments with a rotational spring at 
discontinuity  𝑖. 

The continuity of displacement, moment, and shear remains the same as in Eq. 71, Eq. 73, and Eq. 74. The 

continuity of slopes is: 

�̃�𝑖(�̃�𝑖) −
�̃�𝑖(�̃�𝑖) ∙ 𝜂𝑟𝑜𝑡,𝑖

𝑘𝑟𝑜𝑡,𝑖 𝐿
= �̃�𝑖+1(0) Eq. 94 

With  𝐿  being introduced to remain dimensionally consistent. The term of  𝜂𝑟𝑜𝑡,𝑖  receives the value of 

zero when no rotational spring is present and a value of one when it is. This term accounts for the absence 

or presence of rotational springs between two consecutive segments. Such a continuity condition only 

affects the term  𝐵𝑖+1,  leaving the remaining terms  𝐴𝑖+1,  𝐶𝑖+1,  and  𝐷𝑖+1  equal to Eq. 76, Eq. 78, and 

Eq. 79 from the ideal case in section 3.2.  

�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 95 

�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 96 

�̃�𝑖(�̃�𝑖) = �̃�𝑖+1(0) Eq. 97 

The new relation of  𝐵𝑖+1  is: 

𝐵𝑖+1 = 𝐵𝑖 + 𝐶𝑖 (
𝐸𝐼𝑖 cos(�̃�𝑖�̃�𝑖) 𝜂𝑟𝑜𝑡,𝑖

𝑘𝑟𝑜𝑡,𝑖 𝐿
+

sin(�̃�𝑖�̃�𝑖)

�̃�𝑖
) + ⋯ 

⋯+ 𝐷𝑖 (
𝐸𝐼𝑖 sin(�̃�𝑖�̃�𝑖) 𝜂𝑟𝑜𝑡,𝑖

�̃�𝑖  𝑘𝑟𝑜𝑡,𝑖 𝐿
−

cos(�̃�𝑖�̃�𝑖)

�̃�𝑖
2 +

1

�̃�𝑖
2) +

∫ �̃�𝑖(𝜏) 𝑑𝜏
�̃�𝑖

0

�̃�𝑖
2 𝐸𝐼𝑖

+ ⋯ Eq. 98 
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⋯+
𝜂𝑟𝑜𝑡,𝑖  ∫ (−�̃�𝑖(𝜏) sin(�̃�𝑖 𝜏) cos(�̃�𝑖 �̃�𝑖) + �̃�𝑖(𝜏) cos(�̃�𝑖 𝜏) sin(�̃�𝑖 �̃�𝑖)) 𝑑𝜏

�̃�𝑖

0

�̃�𝑖  𝑘𝑟𝑜𝑡,𝑖 𝐿
+ ⋯ 

⋯−
∫ (�̃�𝑖(𝜏) sin(�̃� 𝜏) sin(�̃� �̃�𝑖) + �̃�𝑖(𝜏) cos(�̃�𝑖  𝜏) cos(�̃� �̃�𝑖)) 𝑑𝜏

�̃�𝑖

0

�̃�𝑖
2 𝐸𝐼𝑖

 

When implementing the newly developed relation into the global equations, it is possible to reduce such 

equation to only having four unknown constants of integration. Applying four boundary conditions 

provides the necessary system of four equations to solve the four unknown integration constants. 

3.7 Closed-form solution for the buckling analysis of EB beam-column subjected to step-

changes of flexural stiffness, external and internal translational springs, as well as 

rotational springs 

Let us consider an EB beam-column consisting of  𝑁  locations where complexities in the form of internal 

translational, external translational, and rotational springs are present, as well as step-changes of flexural 

stiffness. These complexities create  𝑁 + 1  segments of uniform stiffness, as seen in Figure 26.  

 

 
Figure 26: Normalized ideally jointed EB beam-column with  N  step-changes of flexural stiffness and  N  along-the-axis external, 
internal translational springs, and rotational springs while being subjected to a lateral  �̃�(𝜉)  and axial load  𝑃. 

Analyzing the relation of constants of integration between two consecutive segments subjected to 

different complexities from section 3.4 to section 3.6, it is noted that each complexity in the form of a 

spring affects the relation of a different constant of integration. The influence of internal springs only 

affects the term  𝐴𝑖+1, the influence of external springs only affects the term  𝐷𝑖+1, the influence of 

rotational springs only influences the term  𝐵𝑖+1, and finally the term  𝐶𝑖+1  remaining the same as in Eq. 

78. 
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The final form of the relation of constants of integration between two consecutive segments is defined 

as: 

𝐴𝑖+1 = 𝐴𝑖 + (�̃�𝑖 −
�̃�𝑖

2 𝐸𝐼𝑖 𝜂𝑖𝑛𝑡,𝑖

𝑘𝑖𝑛𝑡,𝑖 𝐿
3 ) 𝐵𝑖 + (

1

�̃�𝑖
2 −

cos(�̃�𝑖  �̃�𝑖)

�̃�𝑖
2 ) 𝐶𝑖 + ⋯ 

+(
�̃�𝑖

�̃�𝑖
2 −

sin(�̃�𝑖 �̃�𝑖)

�̃�𝑖
3 −

𝐸𝐼𝑖 𝜂𝑖𝑛𝑡,𝑖

𝑘𝑖𝑛𝑡,𝑖 𝐿
3 ) 𝐷𝑖 −

 𝜂𝑖𝑛𝑡,𝑖 ∫ �̃�𝑖(𝜏) 𝑑𝜏
�̃�𝑖

0

𝑘𝑖𝑛𝑡,𝑖 𝐿
3

+ ⋯ 

⋯+
∫ (�̃�𝑖(𝜏) sin(�̃�𝑖 𝜏) cos(�̃�𝑖 �̃�𝑖) − �̃�𝑖(𝜏) cos(�̃�𝑖 𝜏) sin(�̃�𝑖 �̃�𝑖)) 𝑑𝜏

�̃�𝑖

0

�̃�𝑖
3 𝐸𝐼𝑖

− ⋯ 

⋯−
∫ (−�̃�𝑖(𝜏) �̃�𝑖 + �̃�𝑖(𝜏) 𝜏) 𝑑𝜏

�̃�𝑖

0

�̃�𝑖
2 𝐸𝐼𝑖

 

Eq. 99 

𝐵𝑖+1 = 𝐵𝑖 + 𝐶𝑖 (
𝐸𝐼𝑖 cos(�̃�𝑖�̃�𝑖) 𝜂𝑟𝑜𝑡,𝑖

𝑘𝑟𝑜𝑡,𝑖 𝐿
+

sin(�̃�𝑖�̃�𝑖)

�̃�𝑖
) + ⋯ 

⋯+ 𝐷𝑖 (
𝐸𝐼𝑖 sin(�̃�𝑖�̃�𝑖) 𝜂𝑟𝑜𝑡,𝑖

�̃�𝑖  𝑘𝑟𝑜𝑡,𝑖 𝐿
−

cos(�̃�𝑖�̃�𝑖)

�̃�𝑖
2 +

1

�̃�𝑖
2) +

∫ �̃�𝑖(𝜏) 𝑑𝜏
�̃�𝑖

0

�̃�𝑖
2 𝐸𝐼𝑖

+ ⋯ 

⋯+
𝜂𝑟𝑜𝑡,𝑖  ∫ (−�̃�𝑖(𝜏) sin(�̃�𝑖 𝜏) cos(�̃�𝑖 �̃�𝑖) + �̃�𝑖(𝜏) cos(�̃�𝑖 𝜏) sin(�̃�𝑖 �̃�𝑖)) 𝑑𝜏

�̃�𝑖

0

�̃�𝑖  𝑘𝑟𝑜𝑡,𝑖 𝐿
+ ⋯ 

⋯−
∫ (�̃�𝑖(𝜏) sin(�̃� 𝜏) sin(�̃� �̃�𝑖) + �̃�𝑖(𝜏) cos(�̃�𝑖  𝜏) cos(�̃� �̃�𝑖)) 𝑑𝜏

�̃�𝑖

0

�̃�𝑖
2 𝐸𝐼𝑖

 

Eq. 100 

𝐶𝑖+1 = 𝐶𝑖 𝛽𝑖 cos(�̃�𝑖  𝐿𝑖) +
𝐷𝑖 𝛽𝑖 sin(�̃�𝑖 𝐿𝑖)

�̃�𝑖
+ ⋯ 

⋯+
∫ (−�̃�𝑖(𝜏) sin(�̃�𝑖  𝜏) cos(�̃�𝑖  �̃�𝑖) + �̃�𝑖(𝜏) cos(�̃�i �̃�i) sin(�̃�𝑖 �̃�𝑖)) 𝑑𝜏

�̃�𝑖

0

�̃�𝑖 𝐸𝐼𝑖+1
 

Eq. 101 
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𝐷𝑖+1 = −
𝐴𝑖+1 𝐿

3 𝑘𝑒𝑥𝑡,𝑖 𝜂𝑒𝑥𝑡,𝑖

𝐸𝐼𝑖+1
+ 𝐵𝑖�̃�𝑖

2 𝛽𝑖 + 𝐷𝑖𝛽𝑖 − 𝐵𝑖+1�̃�𝑖+1
2 + ∫

�̃�𝑖(𝜏) 𝑑𝜏

𝐸𝐼𝑖+1
 

�̃�𝑖

0

 Eq. 102 

Adopting such expressions between constants of integration reduces the global functions to depend only 

on four unknown integration constants. Applying four boundary conditions results in a system of four 

equations sufficient to perform the buckling analysis of beam-columns.  

When there is no lateral load present (column case), Eq. 99 – Eq. 102 is reduced to: 

𝐴𝑖+1 = 𝐴𝑖 + (�̃�𝑖 −
�̃�𝑖

2 𝐸𝐼𝑖 𝜂𝑖𝑛𝑡,𝑖

𝑘𝑖𝑛𝑡,𝑖 𝐿
3 ) 𝐵𝑖 + (

1

�̃�𝑖
2 −

cos(�̃�𝑖  �̃�𝑖)

�̃�𝑖
2 ) 𝐶𝑖 + (

�̃�𝑖

�̃�𝑖
2 −

sin(�̃�𝑖 �̃�𝑖)

�̃�𝑖
3 −

𝐸𝐼𝑖 𝜂𝑖𝑛𝑡,𝑖

𝑘𝑖𝑛𝑡,𝑖 𝐿
3 ) 𝐷𝑖 Eq. 103 

𝐵𝑖+1 = 𝐵𝑖 + 𝐶𝑖 (
𝐸𝐼𝑖 cos(�̃�𝑖�̃�𝑖) 𝜂𝑟𝑜𝑡,𝑖

𝑘𝑟𝑜𝑡,𝑖 𝐿
+

sin(�̃�𝑖�̃�𝑖)

�̃�𝑖
) + 𝐷𝑖 (

𝐸𝐼𝑖 sin(�̃�𝑖�̃�𝑖) 𝜂𝑟𝑜𝑡,𝑖

�̃�𝑖  𝑘𝑟𝑜𝑡,𝑖 𝐿
−

cos(�̃�𝑖�̃�𝑖)

�̃�𝑖
2 +

1

�̃�𝑖
2) Eq. 104 

𝐶𝑖+1 = 𝐶𝑖 𝛽𝑖 cos(�̃�𝑖  �̃�𝑖) +
𝐷𝑖 𝛽𝑖 sin(�̃�𝑖 �̃�𝑖)

�̃�𝑖
 Eq. 105 

𝐷𝑖+1 = −
𝐴𝑖+1 𝐿

3 𝑘𝑒𝑥𝑡,𝑖 𝜂𝑒𝑥𝑡,𝑖

𝐸𝐼𝑖+1
+ 𝐵𝑖�̃�𝑖

2 𝛽𝑖 + 𝐷𝑖𝛽𝑖 − 𝐵𝑖+1�̃�𝑖+1
2  Eq. 106 

Eq. 103 – Eq. 106 are used to relate the constants of integration between two successive EB column 

segments. Applying the four boundary conditions results in a system of four equations whose determinant 

is the buckling equation of the column. The roots of such an equation are associated with the buckling 

loads. 

For the case no axial load is present (beam), the expressions that relate constants of integration can be 

obtained from F. Giunta’s work “On the analysis of jointed Euler-Bernoulli beams with step changes in 

material and cross-section under static and dynamic loads “ [2]. 

3.8 Implementation of the closed-form solution 

In this section, the procedure to implement the closed-form solution is presented on a step-by-step 

approach. 

1. Express the local displacement, slope, moment, and shear equations (Eq. 60 – Eq. 67) using the 

closed-form expressions. Use Eq. 95 – Eq. 98 for beam-columns, and Eq. 99 – Eq. 102 for columns. 

This step expresses all local functions in terms of only four unknown constants of integration. 

2. Express if a spring is absent or present by defining the appropriate  𝜂  to equal zero or one, 

respectively. 
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3. Use the Heaviside function to obtain a single continuous piece-wise function to describe each 

deflection, slope, moment, and shear (Eq. 56 – Eq. 59). 

4. Impose the four boundary conditions to obtain a system of four equations.  

5. Obtain the buckling equation by computing the determinant of the system of equations for the 

buckling analysis of a column. Solve for the four unknown constants of integration For a beam-

column. 

6. Apply variables (𝐿𝑖, 𝜂, 𝛽𝑖 , 𝜈𝑖 , 𝐸𝐼𝑖) 

7. Express all critical variables with respect to a single critical variable of reference (e.g. segment 1) 

 

𝜈1 =
√𝑃 𝐿2

𝐸𝐼1
= 𝛼 

 

𝜈𝑖 =

√𝑃 𝐿2

𝐸𝐼𝑖

√𝑃 𝐿2

𝐸𝐼1

∙ 𝛼 

 

8. Plot the buckling equation. Obtain the critical loads which are associated with the roots of the 

buckling equation of a column: 

𝑃𝑐𝑟 =
𝛼2 𝐸𝐼1

𝐿2
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4 Validation of the closed-form solutions for the buckling analysis of 

complex beam-columns 

The purpose of the following section is to validate the formulated closed-form solution from section 3 

against the results obtained from the finite element software DIANA. The jointed beam-column presented 

in Figure 27 consists of an assembly of four EB beam-columns of constant stiffness. Step-changes of 

flexural stiffness between sections and the presence of springs are located at three discontinuities  

(𝑥0,1 = 3 𝑚, 𝑥0,2 = 6 𝑚, 𝑥0,3 = 9 𝑚). The material, section length, cross-section and flexural stiffness 

properties are presented in Table 2.  

 
Figure 27: EB beam-column subjected to an axial load  𝑃, with a rotational and external spring at the discontinuity  𝑥0,1,  flexural 

stiffness step-change, rotational, internal, and external spring at the discontinuity  𝑥0,2,  flexural stiffness step-change, and 

external spring at the discontinuity  𝑥0,3.  The beam-column has a fixed boundary at  𝑥 = 0,  and only an elastic translational 

condition at  𝑥 = 𝐿.  

The beam-column displayed in Figure 27 is subjected to an axial load  𝑃. The boundary condition at  𝑥 = 0  

is considered as fixed, while it is subjected to only a translational boundary spring at  𝑥 = 𝐿. The presence 

of a rotational spring and along-the-axis external translational spring creates a discontinuity at  𝑥0,1. Step-

changes of flexural stiffness, along with the presence of rotational and both internal and external along-

the-axis translational springs, produces a discontinuity at  𝑥0,2. The discontinuity at  𝑥0,3  is caused by the 

presence of an along-the-axis external translational spring, along with step-changes of flexural stiffness 

between two consecutive beam-column elements. The properties of all springs acting on the beam-

column are presented in Table 3. 

Buckling analysis is performed using the proposed closed-form solution in section 3. The influence of 

springs is successfully accounted for by defining the correct value of  𝜂𝑠𝑝𝑟𝑖𝑛𝑔,𝑖. Such a variable receives a 

value of one when a spring is present and zero when the spring is absent.  
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Table 2: Flexural rigidity, material, length, and cross-section properties for each section of the beam-column in Figure 27. 

Section Material 
Length 

Young's 
modulus 

Height Width 
Second moment 

of area 
Flexural 
rigidity 

[𝑚𝑚] [𝑁/𝑚𝑚2] [𝑚𝑚] [𝑚𝑚] [𝑚𝑚4] [𝑁𝑚𝑚2] 

1 
Concrete 

3000 31476 500 500 5.2083E+09 1.639375E+14 
C25/30 

2 
Concrete 

3000 31476 500 500 5.2083E+09 1.639375E+14 
C25/30 

3 Steel 3000 200000 300 300 6.7500E+08 1.350000E+14 

 

4 Steel 3000 200000 200 200 1.3333E+08 2.666667E+13 
 

 
 

Table 3: Boundary conditions and spring properties. 

Discontinuity 
point 

Translational spring Rotational 
spring 

 Boundary conditions 

Internal External  Locatio
n 

[𝑘𝑟𝑜𝑡𝐵𝐶
] [𝑘𝑡𝑟𝑎𝑛𝑠𝐵𝐶

] 

[𝑘𝑖𝑛𝑡,𝑖] [𝑘𝑒𝑥𝑡,𝑖] [𝑘𝑟𝑜𝑡,𝑖] 
 [𝑁𝑚𝑚/𝑟𝑎𝑑] [𝑁/𝑚𝑚] 

[𝑖] [𝑁/𝑚𝑚] [𝑁/𝑚𝑚] [𝑁𝑚𝑚/𝑟𝑎𝑑]  0 F I X E D 

1 - 1.00E+06 3.00E+12  𝐿 0 3.00E+04 

2 7.00E+04 2.20E+05 9.00E+10     

3 - 9.00E+04 -     

 

The analysis aims to find the critical buckling loads given the properties of Table 2 and Table 3. As 

mentioned in section 2.3.1, the lateral load does not influence the theoretical buckling loads. For such a 

reason, no lateral load was considered acting on the beam-column of Figure 27. 

The boundary conditions provide a system of four equations that are expressed with the appropriate 

global equation for the deflection, slope, moment, and shear. All critical local variables  𝜈𝑖  are expressed 

in terms of the same critical variable. Defining  𝜈1 = 𝛼  and representing all other local critical variables in 

the same parameter, as seen in Eq. 69, results in  �̃�2 = 𝛼,  �̃�3 = 1.1019 𝛼,  and  �̃�4 = 2.4794 𝛼. 

The determinant of such a system of equations is the buckling equation, and the buckling loads are 

obtained at their roots, which are associated with 𝛼. Figure 28 displays the first three roots of the buckling 

equation of the beam-column of Figure 27. 



   
 

46 | P a g e  
 

 

Figure 28: First three roots of the beam-column of Figure 28 are expressed in terms of  𝛼 = �̃�1 = √
𝑃 𝐿2

𝐸𝐼1
 . Axial load  𝑃 is related to 

the  critical variable  𝛼. 

The buckling load is found by solving for the load term  𝑃,  which is associated to  𝛼  by: 

𝛼𝑐𝑟 = √
𝑃 𝐿2

𝐸𝐼1
 Eq. 107 

Hence, the buckling load is: 

𝑃𝑐𝑟,𝑖 =
𝛼𝑐𝑟,𝑖

2  𝐸𝐼1

𝐿2
 Eq. 108 

Eq. 108  shows the positive relationship between the critical load  𝑃  and the critical root  𝛼𝑐𝑟. Using Eq. 

108, the first three buckling loads are computed and compared to the values obtained through DIANA in 

Table 4. The percentage error between the results obtained through DIANA against those obtained 

through the proposed closed-form solution is calculated as: 

𝜀(%) = (
𝑃𝑐𝑟𝐷𝐼𝐴𝑁𝐴

− 𝑃𝑐𝑟𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑃𝑐𝑟𝐷𝐼𝐴𝑁𝐴

) ∙ 100 Eq. 109 

With  𝑃𝑐𝑟𝐷𝐼𝐴𝑁𝐴
  being the critical load obtained through DIANA and  𝑃𝑐𝑟𝑃𝑟𝑜𝑠𝑝𝑜𝑠𝑒𝑑

  being the critical load 

obtained through the proposed method. 



   
 

47 | P a g e  
 

Table 4: Comparison between the buckling loads obtained through the proposed closed-form solution to those obtained through 
DIANA. 

Mode 

Closed-form solution DIANA 
% Error 

Root No. 𝑃𝑐𝑟𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑
  𝑃𝑐𝑟𝐷𝐼𝐴𝑁𝐴

 

𝛼𝑖 [ 𝑁 ] [ 𝑁 ] [ % ] 

1 6.0414 4.155E+07 4.155E+07 0.00021% 

2 8.5218 8.268E+07 8.268E+07 0.00000% 

3 10.8520 1.341E+08 1.341E+08 0.00093% 

 

Each buckling load is associated with a buckling mode, which is the shape the beam-column takes under 

the influence of its respective buckling load. Solving for the constants of the system of equations would 

result in the trivial solution along with the trivial mode, which is an undeflected beam-column. The non-

trivial mode is avoided by assigning a value to one of the four unknown constants of integration, and then 

solving the remaining three unknown constants. If no mode is obtained, another constant of integration 

must be chosen. The local dimensionless buckling mode is obtained after introducing the solved constants 

of integration and critical value  𝛼𝑐𝑟  to the local dimensionless deflection function. The global 

dimensionless buckling mode is obtained after combining in a piece-wise manner all the local modes. A 

comparison between the global modes obtained through the closed-form solution and those obtained 

through DIANA is displayed in Figure 29.  

 
(a) Mode 1 was obtained through the closed-form solution. Min: -0.828 mm. Max: 1.00 mm. 

 

(b) Mode 1 obtained through DIANA 
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(c) Mode 2 was obtained through the closed-form solution. Min: -0.343 mm. Max: 1.00 mm 

 
(d) Mode 2 obtained through DIANA 

 
(e) Mode 3 was obtained through the closed-form solution. Min: -0.902 mm. Max: 1.00 mm. 

 

(f) Mode 3 obtained through DIANA 

Figure 29: Comparison between the first three buckling modes obtained from the closed-form solution to those obtained through 
DIANA. (a) Buckling mode one was obtained using the closed-form solution. (b)Buckling mode one was obtained through DIANA. 
(c) Buckling mode two was obtained using the closed-form solution. (d) Buckling mode two was obtained through DIANA. (e) 
Buckling mode three was obtained using the closed-form solution. (f) Buckling mode three was obtained through DIANA. 
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For axial loads below the first critical load, solving the four constants of integration of the beam-column 

using the closed-form expressions can successfully describe the displacement, slope, moment, and shear. 

Assuming the compressive load  𝑃  has a value of 1000 𝑘𝑁, and being subjected to a trapezoidal load 

function with 𝑞1 = 1𝑁/𝑚𝑚  and  𝑞2 = 4 𝑁/𝑚𝑚, the beam-column’s deflection, slope, moment, and 

shear are presented and compared to values obtained from a geometrical non-linear static analysis on 

DIANA, as shown in Figure 30 – Figure 33. All diagrams have a perfect agreement with the results obtained 

from the proposed closed-form expressions. The values not in agreement in the shear diagram in Figure 

33 are due to singularities at the location of external springs acting on the beam-column.  

 
Figure 30: Comparison between deflection obtained from DIANA and proposed closed-form expressions. 

 
Figure 31: Comparison between slope obtained from DIANA and proposed closed-form expressions. 
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Figure 32: Comparison between moment obtained from DIANA and proposed closed-form expressions. 

 

 
Figure 33: Comparison between shear obtained from DIANA and proposed closed-form expressions. 

The takeaways for this chapter are that the proposed closed-form expressions can be used to perform a 

buckling analysis of a column with  𝑁  discontinuities due to a combination of step-changes of flexural 

stiffness, internal and external translational springs, internal rotational springs, and elastic boundary 

conditions. The buckling analysis accurately calculates the buckling loads and captures their respective 

buckling modes. It is also possible to accurately obtain the deflection, slope, moment, and shear of beam-

columns under a compressive axial load and a varying lateral load. Using the closed-form expressions and 

solutions avoids the need to perform a geometrical non-linear structural static analysis on FEM software, 

which requires the discretization of the system and multiple loading steps to obtain such results 

accurately.  
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5 Applications and Discussion 

The purpose of the following chapter is to discuss and present possible applications for the proposed 

closed-form solution. Section 5.1 offers a brief discussion of the computational cost when obtaining the 

buckling equation of columns. A simple parametric study is performed in Section 5.2 to see how different 

kinds of springs and their location influence the critical loads of a simply supported column.  

5.1 Computational Cost of closed-form expressions 

The advantages of using the proposed closed-form expressions when performing a linear buckling analysis 

are: (i) to only solve for the determinant of a 4x4 system of equations, regardless of the number of 

discontinuities present of a column, (ii) to only solve for four unknown constants of integration to obtain 

the deflection, slope, moment, and shear of a beam-column. Nonetheless, there is a computational cost 

that is related to the number of discontinuities. Figure 34 displays the computation time required in 

seconds for obtaining the buckling equation of a column with  𝑁  discontinuities and having ideal boundary 

conditions. Figure 35 depicts the computation time required in seconds for obtaining the buckling 

equation of a column with  𝑁  discontinuities and having elastic boundary conditions.  

 
Figure 34: Computation time for obtaining the algebraic buckling equation of a column with ideal boundary conditions in Maple. 
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Figure 35: Computation cost for obtaining the algebraic buckling equation of a column with elastic boundary conditions. 

The computation cost starts becoming expensive for a column with ideal boundary conditions after six 

discontinuities are present (column of seven segments). For a column with elastic boundary conditions, 

such a cost starts becoming expensive after five discontinuities (column of six segments). It is worth noting 

that such computational costs are associated with solving and expressing the buckling equation 

algebraically in terms of lengths, flexural stiffness, spring stiffness, and critical variables using the 

mathematical software Maple. Other mathematical software might be more efficient in obtaining 

algebraically the determinant of a 4x4 system of equations.  

Although the computation time starts increasing after five discontinuities for a column with ideal 

boundary conditions, or after six discontinuities for a column with elastic boundary conditions, the 

buckling equation would only have to be computed once and stored for future use giving it a comparative 

advantage when compared to numerical methods. 

5.2 Parametric study 

The following subsection presents a simple parametric study using the proposed closed-form expressions 

to visualize the effect on the critical roots resulting from changes in the stiffness and location of different 

springs acting on a simply supported column with the following properties: 

• A square cross-section of 200×200 mm 

• Made of steel with an elastic modulus of 200 000 N/mm2  

Sections 5.2.1 – 5.2.3 focus on the effect that the stiffness of external translational, internal translational, 

and rotational springs have on the critical roots. In turn, sections 5.2.4 – 5.2.6 examine how the roots of 

the buckling equation are affected by a spring acting at different locations, as seen in Figure 36. 
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Figure 36: Simply supported column under an axial load 𝑃 displaying the location of springs for five different cases for Sections 
5.2.4 – 5.2.6. 

5.2.1 Influence of external translational springs 

To only account for the influence of springs, the flexural stiffness will be assumed to be constant 

throughout the column presented in Figure 37. Springs are introduced at locations to create three 

segments of equal length. Moreover, Figure 37 displays a simply supported column with a span of 15 000 

𝑚𝑚. 

 

 

Figure 37: Simply supported column of constant stiffness under an axial load  𝑃. Each section is of the same length. External 
springs are located at  𝑥 = 𝐿/3  and 𝑎𝑡  𝑥 = 2𝐿/3. 

The first parameter to be analyzed is the influence of only translational springs. Using the closed-form 

solution proposed in section 3, it is possible to visualize how the critical roots are affected by external 

springs of different stiffnesses. Figure 38 displays the buckling equation of the column presented in Figure 

37 under seven different external translational spring’s stiffnesses. This simple case study solely focuses 

on the first three roots associated with the first three critical loads. 

In Figure 38(A), an external spring stiffness of zero results in the same critical roots as that of the 

unsupported column. With an increase of external spring stiffness, as seen in Figure 38(A) – (E), the first 

and second critical roots increase, and the third one remains unchanged because the external springs are 

located at the inflection points (points with no displacement) associated to the third buckling mode.  

Using the information from Figure 38, the relationship between an increase in stiffness to an increase of 

critical load (𝑃𝑐𝑟) is obtained and plotted in Figure 39. The first and second critical loads follow their almost 
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linear trend (segment A-B and D-B) and are associated with their respective buckling mode (half-sine wave 

shape for segment A-B, and sine wave shape for segment D-B). From such a plot, it is possible to visualize 

at which stiffness both critical loads equal each other. The buckling modes still seem to follow the almost 

linear trend they had for segments A-B and D-B, meaning that there is a change in buckling modes 

between the first and second critical loads. Segment B-C belongs to the first critical load but has a buckling 

mode of a sine-wave shape, while segment B-E describes the second critical load but has a half-sine wave 

buckling mode.  

INFLUENCE OF CHANGE OF EXTERNAL TRANSLATIONAL SPRING STIFFNESS 

 
 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

 
(E) 

 
(F) 



   
 

55 | P a g e  
 

 
(G) 

Figure 38: Plots obtained using the proposed closed-form solution to illustrate the change of critical roots due to the influence of 
external translational springs of different stiffnesses located at a third of the span from both supports. 

 
Figure 39: Critical load of first and second critical root versus External spring stiffness. Line ABE is associated with buckling mode 
1 of its ideal counterpart (half-sine wave shape). Line DBC is associated with buckling mode 2 of its ideal counterpart (sine wave 
shape). 

5.2.2 Influence of internal translational springs 

To only account for the influence of internal springs, the flexural stiffness is assumed to be constant 

throughout the beam-column presented in Figure 40. Springs are introduced to create three segments of 

equal length. Moreover, Figure 40 is simply supported with a span of 15 000 mm. 
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Figure 40: Simply supported beam-column of constant stiffness under an axial load  𝑃. Each section is of the same length. 
Internal springs are located at  𝑥 = 𝐿/3  and at  𝑥 = 2𝐿/3. 

As in the previous subsection, it is possible to visualize the influence of internal springs with different 

stiffnesses on the critical roots by using the developed closed-form solution. Figure 41 displays the 

buckling equation of the column displayed in Figure 40 under different internal translational spring 

stiffnesses. Figure 41 shows how the increase of stiffness of the internal translational springs affects one 

critical root at a time. There is also a linear trend between the critical roots and the increase of stiffness 

of the spring. This relation can be seen in Figure 43, where the critical load of each root is plotted against 

the stiffness of the spring. 

When the roots match those of the ideally jointed column (𝛼𝑐𝑟 = 𝜋 & 2𝜋), their respective buckling mode 

is the same as well. When the critical roots do not match those of its ideally jointed counterpart, the 

buckling mode is the extension of the internal translational springs, with each segment remaining straight, 

as seen in  Figure 42. 

INFLUENCE OF CHANGE OF INTERNAL TRANSLATIONAL SPRING STIFFNESS 
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(B) 
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(D) 
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(E) 

 
(F) 

Figure 41: Plots obtained using the proposed closed-form solution to illustrate the change of critical roots due to the influence of 
internal translational springs with different stiffnesses located at a third of the span from both supports. 

 
Figure 42: Buckling mode when critical roots are not equal to that of its ideally jointed counterpart due to the influence of internal 
translational springs. 

 
Figure 43: Change of first three critical loads due to changes of internal translational spring stiffness. 

5.2.3 Influence of rotational springs 

To only account for the influence of springs, the flexural stiffness will be assumed to be constant 

throughout the column presented in Figure 44. Springs are introduced at locations to create three 

segments of equal length. Moreover, Figure 44 is going to be simply supported. The square cross-section 

of the beam-column is 200×200 𝑚𝑚2, resulting in a flexural stiffness of about 2.667E+13 𝑁𝑚𝑚2. 
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Figure 44: Simply supported column of constant stiffness under an axial load  𝑃. Each section is of the same length with a square 
cross-section of 200x200 mm2. Rotational springs are located at  𝑥 = 𝐿/3  and at  𝑥 = 2𝐿/3. 

Using the closed-form solution proposed in section 3, it is possible to visualize how rotational springs 

affect the critical roots of the simply supported column of Figure 44. Such plots are displayed in  Figure 

45, where five buckling load plots showing the critical roots are presented for five different rotational 

spring stiffnesses. Unlike internal springs that only affect one root at a time, the stiffnesses of the 

rotational springs influence all buckling modes compared to their ideal case.  

Under the influence of large cracks, characterized by having a low rotational stiffness compared to the 

flexural stiffness of the segment, all critical roots are greatly affected. Increasing the rotational spring 

stiffness from that presented in Figure 45(A) has a higher effect on the critical roots associated with higher 

modes. Data can also be obtained from Figure 45 to visualize at which rotational stiffness there is a 

negligible change in critical loads. This data is presented in Figure 46, where after certain stiffness, any 

increase stops having a great influence on the critical loads. 

Once again, the third critical root is unaffected by the change of stiffness of the rotational springs. This 

lack of change is because the springs are located at the inflection points associated with the third buckling 

mode. 

INFLUENCE OF CHANGE OF ROTATIONAL SPRING STIFFNESS 
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(C) 

 
(D) 

 
(E) 

Figure 45: Plots obtained using the proposed closed-form solution to illustrate the change of critical roots due to the influence of 
internal rotational springs with different stiffnesses located at a third of the span from both supports. 

 
Figure 46: Change of first two critical loads due to changes of rotational spring stiffness. 
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5.2.4 Location of external translational spring 

This subsection studies the effects of the location of a single external spring with stiffness of 5 000 𝑁/𝑚𝑚 

acting on five different locations of a simply supported column of 10 000 mm, as seen in Figure 36. As 

described previously, the column is made of steel with a Young’s Modulus of 200 000 𝑁/𝑚𝑚2 and a 

square cross section of 200×200 𝑚𝑚2.  

Figure 47 displays how the external spring at five different locations from one of the pin supports affects 

the critical roots of the mentioned column. It should be noted that the location of the external spring 

affects the various critical roots in different ways. Using the proposed closed-form expressions, Figure 48 

displays the effect of the location of the external springs on the critical loads associated with each critical 

root. It is possible to identify the location of the highest impact on the critical loads using the closed-form 

expressions. Such a tool helps the user determine how the location of single supports affects higher 

buckling loads. 

INFLUENCE OF THE LOCATION OF A SINGLE EXTERNAL TRANSLATIONAL SPRING 
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(E) 

Figure 47: Plots obtained using the proposed closed-form solution to illustrate the change of critical roots due to the influence of 
an external translational spring with stiffness of 5 000 N/mm acting at different locations from the supports. 

 

 
Figure 48: Effect of critical loads due to a single external spring at different distances from left pin support of a 10 000 mm simply 
supported column. 

5.2.5 Location of internal translational spring 

This subsection studies the effects of the location of a single internal spring with a stiffness of 100 𝑁/𝑚𝑚 

acting on five different positions of a simply supported column of 10 000 𝑚𝑚, as seen in Figure 36. The 

column is made of steel with a Young’s Modulus of 200 000 𝑁/𝑚𝑚2 and a square cross section of 

200×200 𝑚𝑚2.  

The proposed closed-form expressions have been used to obtain the graphs in Figure 49 displaying how 

the location of the single internal translational spring (representing the stiffness of joints between two 

consecutive column segments) affects the critical roots and loads of the column. From such a graph, it is 
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evident that the location does not affect the critical loads of the simply supported column, thus making 

the stiffness of the internal translational springs critical on the buckling loads. 

 

INFLUENCE OF THE LOCATION OF A SINGLE INTERNAL TRANSLATIONAL 
SPRING 
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(E) 

Figure 49: Plots obtained using the proposed closed-form solution to illustrate the change of critical roots due to the influence of 
an internal translational spring with a stiffness of 100 N/mm acting at different locations from the supports. 

 

 



   
 

63 | P a g e  
 

5.2.6 Location of rotational spring 

This subsection studies the effects of the location of an internal rotational spring with stiffness of 5e+9 

𝑁𝑚𝑚/𝑟𝑎𝑑 acting on a simply supported column of 10 000 𝑚𝑚. The column is made of steel with a 

Young’s Modulus of 200 000 𝑁/𝑚𝑚2 and a square cross-section of 200×200 𝑚𝑚2.  

The proposed closed-form expressions have been used to obtain the five graphs displayed within Figure 

50, presenting the effect of a single internal rotational spring with a stiffness of 5e+9 𝑁𝑚𝑚/𝑟𝑎𝑑 acting at 

five different locations from the left pin support, as depicted in Figure 36. The data in Figure 50 is extracted 

and displayed in Figure 51 to represent better how the location of a single rotational spring affects the 

first three buckling loads. From such a figure, the position of highest interest can be easily identified. It 

can also be concluded that having the rotational spring present at the inflection points corresponding to 

their respective buckling mode results in the lowest negative impact on the critical buckling loads. 

INFLUENCE OF THE LOCATION OF A SINGLE ROTATIONAL SPRING 
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(E) 

Figure 50: Plots obtained using the proposed closed-form solution to illustrate the change of critical roots due to the influence of 
an internal rotational springs with a stiffness of 100 N/mm acting at different locations from the supports. 

 

 
Figure 51: Effect of critical loads due to a single internal rotational spring at different distances from the left pin support of a 10 
000 mm simply supported column 
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6 Case Study – Wind turbine tower buckling analysis 

The following section uses the proposed closed-form expressions to obtain 

charts to explore different designs of wind turbine towers. Two approaches 

are considered: the first consists of finding the material properties of each 

section that can withstand known forces, such as those experienced due to a 

lateral wind load and the axial compression load of the generator itself. The 

second approach focuses on obtaining deflection plots due to different 

combinations of lateral and axial forces, given the known properties of a 

structure.  

It should be noted that the proposed closed-form solutions only provide 

critical loads by performing a linear buckling analysis. The deflections obtained 

from the closed-form solutions can account for the geometrically non-linear 

static analysis of the wind tower. 

6.1 Finding the best cross-section properties given known loads 

This first section focuses on employing the proposed closed-form expressions 

to obtain useful plots in finding the best combination of material properties 

for a 30 kW wind turbine (Figure 52). Such a turbine located at the free end of 

a cantilever column exerts 3480 kg of compressive force, according to Aeolos 

Wind Energy Ltd technical charts. The rotor blade diameter for such a wind 

turbine is 15.6 m, which can be supported by a 24 m wind tower. Plots are 

obtained assuming a lateral point load due to the wind of 10 000 𝑁 acting at 

the free end of the cantilever beam-column. Seven models of a wind tower 

consisting of six sections are considered. Table 5 presents the cross-sectional 

and material properties of such models. 

The proposed closed-form expressions are used to solve the four unknown constants of integration 

algebraically. Such solutions, and the data of Table 5, result in the deflection of seven different wind 

towers, as seen in Figure 53. If a maximum allowable displacement is known, the plot can identify the 

tower models that satisfy such a condition. 

 

 

 

 

 

 

Figure 52: Wind tower 
structure consisting of six 

hollow circular sections of 
equal span and varying 

diameter.  
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Table 5: Cross-sectional and material properties of seven considered models in the design exploration of a wind tower structure. 
Section 1 represents the base of the tower, and section 6 the top of the tower. 

 Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 

 (Elastic Mod.) (Elastic Mod.) (Elastic Mod.) (Elastic Mod.) (Elastic Mod.) (Elastic Mod.) 

 [𝑁/𝑚𝑚2] [𝑁/𝑚𝑚2] [𝑁/𝑚𝑚2] [𝑁/𝑚𝑚2] [𝑁/𝑚𝑚2] [𝑁/𝑚𝑚2] 

Model 1 
Steel Steel Steel Steel Steel Steel 

(2.00E+05) (2.00E+05) (2.00E+05) (2.00E+05) (2.00E+05) (2.00E+05) 

Model 2 
Concrete Steel Steel Steel Steel Steel 

(3.00e+04) (2.00E+05) (2.00E+05) (2.00E+05) (2.00E+05) (2.00E+05) 

Model 3 
Concrete Concrete Steel Steel Steel Steel 

(3.00e+04) (3.00e+04) (2.00E+05) (2.00E+05) (2.00E+05) (2.00E+05) 

Model 4 
Concrete Concrete Concrete Steel Steel Steel 

(3.00e+04) (3.00e+04) (3.00e+04) (2.00E+05) (2.00E+05) (2.00E+05) 

Model 5 
Concrete Concrete Concrete Concrete Steel Steel 

(3.00e+04) (3.00e+04) (3.00e+04) (3.00e+04) (2.00E+05) (2.00E+05) 

Model 6 
Concrete Concrete Concrete Concrete Concrete Steel 

(3.00e+04) (3.00e+04) (3.00e+04) (3.00e+04) (3.00e+04) (2.00E+05) 

Model 7 
Concrete Concrete Concrete Concrete Concrete Concrete 

(3.00e+04) (3.00e+04) (3.00e+04) (3.00e+04) (3.00e+04) (3.00e+04) 

Outer radius 
350 330 310 290 270 250 

[𝑚𝑚] 

Inner radius 
150 130 110 90 70 50 

[𝑚𝑚] 

Thickness 
200 200 200 200 200 200 

[𝑚𝑚] 

Second 

1.139E+10 9.090E+09 7.138E+09 5.503E+09 4.155E+09 3.063E+09 moment of 

area [𝑚𝑚4] 
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Figure 53: Deflection of seven wind tower structures with different material properties under an axial load of 35 000 N and a 
lateral point load of 10 000 N acting at the free end. 

The solved unknown constants of integration expressed algebraically allow for the further consideration 

of other parameters, such as different cross-sectional properties, or lengths of each section, without the 

need to obtain new solutions for the constants of integration.   

6.2 Finding allowable loads given known structural properties 

This section employs the proposed closed-form expressions to obtain geometrical non-linear deflection 

under different axial and lateral load combinations at the free end of a telescopic wind tower. Model 1 

from Table 5 is analysed. It is possible to plot the deflection experienced at the free-end under different 

combinations of axial compressive loads (related to the axial parameter  𝜈) and wind point load (Figure 

54). Such a plot is valuable when a maximum allowable deflection is considered as a design criterion. From 

such a plot, the first critical buckling variable (𝜈𝑐𝑟𝑖𝑡1
) of its column counterpart is presented as the 

asymptote of the graph. Under such a compressive load, the column bifurcates from one configuration to 

another. The closed-form expressions can capture the effect of the point load acting on the free end of 

the structure, with the deflection reaching the bifurcation point in different manners, depending on the 

lateral load.  
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Figure 54: Deflection at the free end of model 7 under the combination of wind load (𝑃𝑤𝑖𝑛𝑑) and axial parameter  𝜈. 

The closed-form expressions can obtain the linear buckling loads and capture the geometrical non-linear 

effects experienced by beam-columns. Such expressions can be used to obtain displacement plots due to 

a combination of axial and lateral loads acting on beam-columns. Getting the solutions algebraically allows 

the user the freedom of changing parameters without drawbacks from the FE method, such as having a 

new model for each analysis, avoiding the re-discretization of each model, and the need of multiple load 

steps to capture the geometrical non-linear effects due to the axial and lateral loads. 
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7 Conclusions and recommendations 

This chapter first discusses the research questions follower by the thesis concluding remarks. Finally, 

some recommendations are presented for future improvements of analysis of beam-columns. 

7.1 Answers to the research questions 

The first research questions proposed in section 1.3 was: 

“How to take advantage of the properties of generalized functions to develop a closed-form solution for 

the buckling analysis of columns and beam-columns with step-changes of its flexural stiffness (sudden 

changes of material and cross-section properties), while considering the influence of non-propagating 

cracks, real joints, boundary, and lateral support conditions?” 

• The most effective way of using generalized functions for the buckling analysis of columns and 

beam-columns is by employing the governing equations of each section between discontinuities 

and expressing the global behavior of the column or beam-column by creating a piecewise 

equation by means of the Heaviside function. It should be noted that such a procedure does not 

tackle the issue of having many integration constants; it just helps in expressing the global 

behavior of the structure in a single equation.  

 

• Point loads create discontinuities when analyzing columns and beam-columns. They can be 

avoided by expressing such load types in the loading function utilizing the Dirac delta function.  

The second research question was: 

“How do different springs (rotational, external translational, and internal translational) acting in a column 

affect the buckling loads?” 

• The parametric study performed in section 5.2 using the closed-form expressions provides some 

insight into how different springs (external and internal translational, and internal rotational) 

affect the roots of the buckling equations, which are related to the critical buckling loads of a 

column and beam-column. The stiffness and location of springs affect such roots.  

 

o External springs can increase the value of all of their critical roots compared to their ideal 

counterpart. Under the right stiffnesses, they behave as intermediate supports affecting the 

buckling modes the columns undergo, as seen in Figure 39, where the change of buckling 

modes between roots can be identified. Moreover, the location of the external spring has an 

added effect on the critical loads of a column. However, the spring location has different 

impacts on the higher buckling loads, as seen in Figure 48.  

 

o Internal springs can decrease the value of the critical roots compared to their ideal 

counterpart. Unlike external springs, the change of stiffness of internal springs affects one 

critical root at a time. The buckling mode is associated with that of its ideal counterpart. 

Trends of the buckling modes related to loads can be seen in Figure 43. Critical values that 

differ from those of their ideal counterparts have a special buckling mode, as displayed in 
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Figure 42. Finally, the spring stiffness of an internal spring is the sole factor affecting the 

critical roots of a column. 

 

o Low rotational spring stiffnesses reduce all critical roots until the rotational spring stiffness 

matches that of one of the connected segments. However, the change of critical load due to 

variations of rotational spring stiffness is not constant nor linear, as in the case of internal 

translational springs or external translational springs. After reaching a specific stiffness, any 

further increase would not significantly affect the critical loads, as seen in Figure 46. The 

location of rotational springs also plays a considerable role in its effect on the critical roots. 

However, the location impacts the critical roots of higher-order, as seen in Figure 51. 

 

o A common relation of all springs is that it does not affect the critical roots whenever they are 

located at an inflection point associated with one of the buckling modes of the column. 

7.2 Concluding remarks 

This thesis proposes a closed-form solution for the buckling analysis of Euler-Bernoulli columns and beam-

columns with step-changes of flexural stiffness with real boundaries, as well as external translational, 

internal translational, and internal rotational springs. The analyzed column or beam-column consists of  

𝑁 + 1  sections of constant stiffness,  𝑁  being the number of discontinuities present on the column or 

beam-column. The discontinuities present themselves where step-changes of flexural stiffness occur or 

due to springs' presence between two consecutive segments. The deflection, slope, moment, and shear 

are expressed locally for every segment. The Heaviside function is used to combine in a piece-wise manner 

all local functions to obtain a single expression for the global deflection, slope, moment, and shear.  

A system of  𝑁  discontinuities presents  4(𝑁 + 1)  unknown constants of integration. The proposed 

closed-form expressions reduce the number of unknown to only four unknown constants of integration 

which are solved by enforcing four boundary conditions. This reduction of unknown constants also results 

in computing the determinant of a  4 × 4  matrix of unknown coefficients to obtain the buckling equation 

that provides the critical loads for a column. Moreover, after solving for the constants of integration when 

analyzing the static behavior of a beam-column, the closed-form expression can accurately describe the 

geometrically non-linear deflection, slope, moment, and shear. Such results have been validated utilizing 

the FE software DIANA. 

Computational time starts taking a toll after six discontinuities. However, the advantages of using the 

proposed closed-form expressions are that the buckling equation or the four unknown integration 

constants are solved algebraically. Such algebraic expressions allow the possibility of storing the resulting 

equations for future use without recomputing them. Having the solutions expressed algebraically also 

allows the manipulation and change of parameters to explore different structural designs. 
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7.3 Recommendation and further improvements 

• The proposed closed-form solutions prove that a linear buckling analysis can be performed 

analytically on a column with  𝑁  discontinuities while only depending on obtaining the 

determinant of a 4 × 4 system of equations or solving for the four unknown constants of 

integration. The computational time it takes to perform such calculations can vary depending on 

the mathematical software used for the variable manipulation required for such an analysis.  

 

• It is recommended to store the buckling equation and the constants of integration after solving 

them algebraically, avoiding the need to recompute such expressions. Having the solutions saved 

and expressed algebraically allows direct use in the parametric study of columns and beam-

columns. 

 

• The closed-form expressions can be expanded to include more complexities acting on columns 

and beam-columns, such as the influence of being on an elastic foundation. 
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Appendix 1: Pin-pin column buckling example 

 

Figure A1.1: Pin-pin column under an axial load  𝑃 

The column presented in Figure A1.1 can be analyzed using equation ( A  1 ). 

𝑢′′′′ + 𝑣2 ∙ 𝑢′′ =
𝑞

𝐸𝐼
 ( A  1 ) 

The general solution of equation ( A  1 ) is  

𝑢(𝑥) = 𝐴 + 𝐵 𝑥 + 𝐶 (
1

𝑣2
−

cos(v x)

v2 ) + 𝐷 (
𝑥

𝑣2
−

sin(𝑣 𝑥)

𝑣3 ) + 𝑄 ( A  2 ) 

 

With  

𝑄 =
∫ (−𝑞(𝜏) 𝑥 + 𝑞(𝜏) 𝜏) 𝑑𝜏

𝑥

0

𝐸𝐼 𝑣2
+

∫ (𝑞(𝜏) sin(𝑣 𝜏) cos(𝑣 𝑥) − 𝑞(𝜏) cos(𝑣 𝜏) sin(𝑣 𝑥)) 𝑑𝜏
𝑥

0

𝐸𝐼 𝑣3
 ( A  3 ) 

 

The four constants of integration require four equations for them to be solved. Such equations are 

obtained using the boundary conditions. The boundaries of a pin-pin column dictate that the 

displacements and moments are zero at  𝑥 = 0  and  𝑥 = 𝐿  giving us the four necessary equations for 

the system of equations. 

The constitutive relation of the displacement to the moments is found in equation ( A  4 ). 

𝑀 = −𝐸𝐼 ∙ 𝑢′′ ( A  4 ) 
 

After applying the boundary conditions, the matrix of the system of equations for a pin-pin column is: 

[
 
 
 
 
 
1 0 0 0
0 0 −𝐸𝐼 0

0 0 −𝐸𝐼 cos(𝑣 𝐿) −
𝐸𝐼 sin(𝑣 𝐿)

𝑣

1 𝐿 −
cos(𝑣 𝐿)

𝑣2
−

sin(𝑣 𝐿)

𝑣3
+

𝐿

𝑣2]
 
 
 
 
 

 ( A  5 ) 
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The transcendental buckling equation is obtained from the determinant of the matrix of the system of 

equations. From  ( A  5 ), it can be noted that the loading function is not present; hence it has no effect 

on the theoretical buckling load. The determinant of the matrix in equation ( A  5 ) is: 

𝐵𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 =
𝐿 𝐸𝐼2 sin(𝑣 𝐿)

𝑣
 ( A  6 ) 

 

The non-trivial solutions associated with the buckling loads can be found by setting the buckling 

equation to zero, which is the same as finding its roots, which are associated with the term  𝑣𝐿. The first 

and second roots can be seen in Figure A1.2: 

 

Figure A1.2: Transcendental buckling equation of a pin-pin column 

The first and second buckling load,  𝑃𝑐𝑟,1  and  𝑃𝑐𝑟,2  respectively, can be found by solving for  𝑃  

considering that  𝑣2 =
𝑃

𝐸𝐼
. Hence: 

𝑃𝑐𝑟,1 =
𝜋2 𝐸𝐼

𝐿2   and  𝑃𝑐𝑟,2 =
4 𝜋2 𝐸𝐼

𝐿2  

 

These critical loads are associated with their respective buckling shapes that can be seen in Figure A1.3, 

assuming a length of 10 m for the column. 

 

Figure A1.3: First and second buckling mode of the pin-pin column from Figure A1.1. 
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