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Abstract

Food production in agriculture is facing significant challenges from population growth and
labour shortages, increasing the need to automate labour-intensive tasks. Omnidirectional
mobile robots (OMRs) with three planar degrees of freedom are well suited to navigating
narrow greenhouse aisles for harvesting, pruning, pest detection, and related applications.
This thesis identifies a nonlinear model of such an OMR and designs a trajectory-tracking
controller for the MIRTE Master platform developed in the Cognitive Robotics department at
TU Delft. Limited data availability and onboard computation make this problem especially
challenging.

Sparse identification of nonlinear dynamics with control (SINDYc) is used to learn a sparse,
physics-informed model of the MIRTE Master from data. On top of this model, robust tube-
based nonlinear model predictive control (NMPC) is implemented for real-time trajectory
tracking. The controller uses a two-layer structure that combines nominal planning with an
invariant error tube to reject disturbances and model mismatch.

The proposed modelling and control pipeline is validated both in simulation and experimen-
tally on the robot. The results demonstrate real-time feasibility and robust tracking perfor-

mance, supporting the development of reliable and efficient control systems for agricultural
OMRs.

Master of Science Thesis Elysia Bonello



Table of Contents

Acknowledgements v

1 Introduction 1
1-1 Challenges in the MIRTE Master OMR . . . . . . . .. ... ... ... ..... 3
1-2 Thesis Goals . . . . . . . . 3
1-3 OQutline . . . . . . e 4

2 Modelling Dynamics of OMRs 5
2-1 Kinematic modelling . . . . . . . . .. )
2-2 Dynamic modelling . . . . . . .. 8
2-3  Overview of modelling & control approaches in the literature . . . . . . . . . .. 9

3 System ldentification using SINDYc 11
3-1 SINDYc framework . . . . . . .. 11
3-1-1 Datacollection . . . . . . .. 13

3-1-2  Numerical differentiation using total variation regularised (TVR) . . . . . 14

3-1-3 Library of nonlinear candidate functions . . . . . .. .. .. .. ... .. 15

3-1-4 Sparse regression . . . . ... 16

3-2 Model validation results . . . . . . .. .. 17
3-2-1 Model types . . . . . . 17

3-2-2 Validation trajectories . . . . . . . . ... 19

3-3 DiSCUSSION . . . . . . 22
3-4 Summary . ... 23

Elysia Bonello Master of Science Thesis



Table of Contents

4 Robust Trajectory Control using Tube-based NMPC

4-1 Tube-based NMPC framework . . . . . . . . . . . . .,
4-1-1 Nominal Controller . . . . . . . . . . .
4-1-2  Ancillary time-varying discrete linear—quadratic regulator (DLQR)

4-1-3 Time-varying robust positive invariant (RPI) tube approximation and con-
straint tightening . . . . . . .. L

4-1-4 Approximation of a maximum disturbance bound . . . . . ... ... ..

4-2 MATLAB simulation results . . . . . . . . . ..
4-2-1 Rectangular path with constant heading . . . . . . . ... ... ... ...

4-2-2  Circular path with constant heading . . . . ... ... ... .. .....
4-3 Summary . ... e e

5 Real-Time Implementation & Experimental Validation
5-1 Control software implementation . . . . . . . . . ... ... ... ... ...

5-2 acados Simulation Results . . . . . . . . ...
5-3 Experimental Results . . . . . . . . . ...

B5-4  Summary . . ...

6 Conclusions & Future Work
6-1 Future Work . . . . . .

Bibliography

Glossary

List of Acronyms . . . . . . . . . L

25

25
27
28

29
30

31
31

34
34

36
36

38
40

40

43
44

45

51
o1

Master of Science Thesis Elysia Bonello



iv Table of Contents

Elysia Bonello Master of Science Thesis



Acknowledgements

I would like to first thank my main supervisor, Dr. Meichen Guo, for her constant support,
guidance, and patience throughout this project. I also wish to express my appreciation to my
second supervisor, Yixuan Liu, whose insight and engagement during our weekly discussions
were invaluable. Together, they greatly shaped the development of this work. I am also
grateful to Dr. Chris Pek, who, together with Dr. Meichen, made it possible for me to work
on the MIRTE Master robot.

My sincere thanks go to Arend-Jan and Jasper for their continued support with the MIRTE
Master robot, always answering my questions promptly and resolving technical issues without
delay.

I am deeply grateful to my parents for their unwavering support throughout my MSc journey
and for their regular phone calls that kept me grounded. To Danjel, your encouragement from
before I began this journey and throughout its most difficult moments has been indispensable,
and I am truly thankful for your presence. To my siblings, thank you for the daily messages
with updates of the little ones, and to Emma, for your voice notes that reminded me I was
never far away. All of you encouraged me whenever I doubted myself, and for that I am
profoundly grateful.

Finally, to my DCSC friends and to all those I have met in the Netherlands, thank you for
the memorable moments and shared meals that made this experience all the more rewarding.

Delft, University of Technology Elysia Bonello
September 22, 2025

Master of Science Thesis Elysia Bonello



vi

Acknowledgements

Elysia Bonello

Master of Science Thesis



Chapter 1

Introduction

The global demand for agricultural production continues to rise due to population growth.
At the same time, the agricultural sector faces a declining labour force, further straining the
supply of food products [8]. This challenge is compounded by the limited availability of arable
land, constrained by climate conditions, soil quality, and other environmental factors.

To meet this growing demand, agricultural productivity must improve in a sustainable man-
ner. One promising solution is the automation of labour-intensive tasks. Over the past
decade, ground-based robots have been developed for a range of agricultural applications,
including automated planting, weeding, harvesting, and more [49], as shown in Figure 1-1.
However, these autonomous systems face significant challenges in achieving safe, efficient, and
reliable operation. This has led to the emergence of precision agriculture (PA), a multidisci-
plinary approach to farm management that aims to optimise yields through the efficient use
of available resources [48].

Figure 1-1: An OMR deployed in a tomato crop greenhouse [33]
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2 Introduction

In this context, a reconfigurable omnidirectional mobile robot (OMR) designed for greenhouse
environments is introduced in [42]. The robot improves manoeuvrability and adaptability in
the confined spaces typical of such settings. The OMR considered in this work are equipped
with Mecanum wheels which exhibit holonomic motion capabilities, allowing movement in any
planar direction without changing orientation. A Mecanum wheel consists of multiple passive
rollers, typically mounted at +45° around the wheel circumference, as shown in Figure 1-
2a [9]. The possible motion obtained by an OMR is illustrated in Figurel-2b. These robots
can perform three degrees of freedom (DoF) motion in a two-dimensional space, including
translation in both the z and y directions, and rotation about the vertical axis [51].

To function effectively in agricultural environments, OMRs require robust and precise control
strategies. Consequently, suitable model identification is essential for achieving satisfactory
model-based trajectory tracking, thus ensuring reliable performance and improved efficiency
in precision farming applications. The work in this thesis focuses on two central challenges.
The first concerns the identification of a sufficiently accurate nonlinear model of an OMR, in
this case the MIRTE Master robot. The second involves the development of a control strategy
that can guide the robot along precise trajectories for PA tasks.

The MIRTE Master robot, developed by the Cognitive Robotics department at the Mechan-
ical Engineering Faculty of TU Delft, serves as the experimental platform for this work. It
operates on a Robot Operating System (ROS) platform and is currently being transitioned to
ROS 2. At present, the robot lacks a formally identified model and no control is implemented.
Motion is executed in an open loop configuration, where pulse width modulation (PWM) sig-
nals are directly applied to the wheel motors without feedback correction. This absence of
feedback control and accurate modelling presents clear limitations in achieving the perfor-
mance required for PA.
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Figure 1-2: Mecanum wheel and possible OMR motion
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1-1 Challenges in the MIRTE Master OMR 3

1-1 Challenges in the MIRTE Master OMR

One of the main difficulties of the MIRTE Master robot lies in obtaining accurate state
information. Body velocities are derived from wheel encoder measurements and integrated
to estimate position and orientation. However, wheel encoders are subject to errors such as
quantisation noise, electrical interference, and wheel slip, particularly on uneven terrain [39].
These factors introduce small velocity errors at each integration step, which accumulate over
time and lead to drift in the pose estimate.

The onboard inertial measurement unit (IMU) provides additional motion information, but
its affordability comes with reduced precision, increased biases, and susceptibility to drift
over time [39]. Previous attempts to fuse encoder and IMU data using an extended Kalman
filter (EKF) have, in this case, degraded estimation performance. As a result, body velocity
estimates rely solely on wheel encoders and remain noisy.

The robot adopts a two-layer hardware architecture. The OrangePi single-board computer
runs ROS 2 and hosts the high-level control algorithm, while a dedicated microcontroller
performs low-level tasks such as reading sensor data and controlling actuators. While this
arrangement ensures responsive timing for low-level operations, it introduces communication
latency and variable update rates between the two devices. Real-time communication stacks
can experience latency variation and jitter, particularly in multi-node ROS 2 systems [24],
which limits the frequency at which control loops can reliably be executed.

These restrictions impose a dual constraint on controller design. The control algorithm
running on the OrangePi must be computationally efficient and tolerant of limited update
rates, while remaining robust to noisy state estimates and communication delays. Traditional
proportional, integral, derivative (PID) control can face difficulties, as the integral term is
prone to windup under delays and actuator saturation, while the derivative term amplifies
measurement noise. PIDs also struggle with the strong state-dependent coupling present in
the robot dynamics [61].

In this context, model predictive control (MPC) provides a structured way to handle such
challenges. By embedding system dynamics and explicit constraints directly into the op-
timisation, it can use prediction to anticipate future states rather than reacting solely to
the present. This allows improved trajectory tracking, reduces unnecessary actuation, and
helps extend battery life. Furthermore, a sufficiently accurate model increases system inter-
pretability and provides a foundation for integrating advanced control techniques in future
agricultural tasks.

For these reasons, the objective of this thesis is to develop and verify suitable methods for
modelling and trajectory control of the MIRTE Master robot, with particular attention to
the limitations imposed by scarce noisy data and restricted computational resources.

1-2 Thesis Goals

The aim of this thesis is to establish a solution that balances model accuracy, control per-
formance, and computational efficiency. The modelling and control methods are intended
for deployment across multiple MIRTE Master robots without requiring extensive per-unit

Master of Science Thesis Elysia Bonello



4 Introduction

tuning. This is essential because, although the robots share a common design, their physical
properties vary slightly between units, and these differences can have significant consequences
if not addressed.

The operating conditions and system dynamics of the MIRTE Master robot can change con-
siderably due to factors such as variations in ground surface properties and the execution of
different agricultural tasks, including harvesting and pest monitoring. For this reason, the
methods considered in this thesis are required to perform reliably under low-data conditions
and within the computational limits of the onboard controller. The broader objective is to

identify approaches that are adaptable to the dynamic and constrained environments typical
of PA.

Based on these considerations, the specific goals of this thesis are:

o To identify a sufficiently accurate model of the MIRTE Master OMR for use in agri-
cultural environments, given limited data availability and constrained computational
resources.

o To validate the identified model using different open-loop trajectory paths commonly
encountered in greenhouse operations.

e To design, within the stated constraints, an effective control strategy that optimises
the trajectory tracking performance of the OMR along greenhouse paths while ensuring
robust performance.

e To verify the proposed control method both in simulation and experimental tests on
the MIRTE Master robot for trajectory tracking.

Beyond these goals, a key practical contribution of this thesis is a transparent, step-by-step
synthesis workflow that turns data and hardware constraints into a deployable controller.
It makes the approximations, parameter choices, and design trade-offs explicit, which most
reviewed literature presents only at a high level.

1-3  OQutline

This work begins with the development of a mathematical model of the OMR dynamics in
Chapter 2. The same chapter also presents a concise review of the existing literature on OMRs,
covering modelling, identification, and trajectory control methods. Subsequently, Chapter 3
details the formal system identification method and the procedure used to identify and vali-
date the dynamics, accompanied by a discussion of practical implementation challenges and
possible strategies for improvement.

Chapter 4 formulates the trajectory control problem, synthesises the controller for the MIRTE
Master robot, and reports simulation verification results. Chapter 5 reports on the real-time
deployment of the control algorithm, presenting both simulation and experimental results,
with the experimental results compared against a baseline controller. Finally, Chapter 6
concludes the thesis and outlines potential directions for future work.

Elysia Bonello Master of Science Thesis



Chapter 2

Modelling Dynamics of OMRs

This chapter reviews the principal strategies for modelling the dynamics of OMRs, forming
the foundation for system identification and trajectory control design in later sections. Two
modelling approaches are presented in this work, namely the kinematic model and the dynamic
model. The term dynamics can be interpreted in two ways. In its broadest sense it refers
to how the system evolves over time. In a more specific sense a dynamic model captures the
underlying physical phenomena, including forces, torques, friction, and inertia.

2-1 Kinematic modelling

The pioneering work of Muir and Neuman [37] established the fundamental kinematic rela-
tionships that map body-frame velocities to individual wheel angular velocities. The standard
kinematic model assumes ideal conditions such as no slip and perfect roller contact, thus ne-
glecting frictional effects, wheel slip, and inertia. Despite these simplifications, the model
remains nonlinear because the global motion depends on trigonometric functions of the head-
ing angle, which varies over time.

The geometric parameters of an OMR are illustrated in Figure 2-1, where world-frame co-
ordinates are indicated by the subscript w and body-frame coordinates by the subscript b.
As shown in the figure, the MIRTE Master robot follows the ROS body-frame coordinates
convention, meaning that the positive z-axis corresponds to forward motion, the positive y-
axis corresponds to motion to the left, and a positive change in the yaw angle corresponds to
counter-clockwise rotation [56]. The states of the system in the world frame are defined by
the position and orientation of the robot, with derivatives Py, = [T Yw Q}T, while the state

derivatives in the body frame are denoted by Py, = [v, v, QJ7.

The measurement data from the MIRTE Master robot are obtained through the odom package
in ROS 2, which publishes odometry information on a dedicated topic. This package provides
the robot pose expressed in the world frame and the linear and angular velocities expressed
in the body frame.

Master of Science Thesis Elysia Bonello



6 Modelling Dynamics of OMRs

w

Figure 2-1: Geometric Parameters of the OMR adapted from [9]

A coordinate transformation matrix R(6) € R3*3 relates the two coordinate systems, as given
by

T cost) —sinf Of |v,
Yw| = [sin@ cosf O [vy,] . (2-1)
0 0 0 1] 1Q
—— ——

Each wheel is actuated by an independent motor, allowing individual control of the wheel
velocities. The relationship between the wheel angular velocities w € R* and the body
velocities of the robot is expressed as

w1 1 =1 —(a+b) ’
we| 141 1  (a+D) .
w| TR{L -1 (a+d) ||| (2-2)
Wy 1 1 —(a+0d)
J

where J € R**3 denotes the inverse kinematic Jacobian matrix, R is the wheel radius, and a
and b are half the wheelbase dimensions, as illustrated in Figure 2-1.

Elysia Bonello Master of Science Thesis



2-1 Kinematic modelling 7

The forward kinematic model, which expresses the vehicle velocities in terms of the wheel
angular velocities, is obtained using the Moore-Penrose pseudoinverse J* € R3*4, as given
by

w1
(% R 1 1 1 1 wa | - (2_3)
vl==1]-1 1 -1 1
Q 411 1 1 -1 |w3
a+b a+b a+b a+b Wy

The dynamic relation should reflect the available input and output data of the MIRTE Master
OMR. Therefore, the existing ROS 2 packages were examined to determine the raw command
applied to the direct current (DC) motors. The motors are driven by PWM duty-cycle
commands, u € U, where U = [-100, 100]* € R*. Consequently, the kinematic model must be
reformulated so that the world-frame state derivatives are parameterised by the PWM inputs
of each wheel. From the mirte_base_control package [36], the wheel angular velocity to
PWM mapping is implemented as

100
u = sat[_100,100] (677‘0) ; (2-4)

where 67 rad/s corresponds to the maximum command. Hence, the mapping is proportional
with saturation. In the unsaturated region, the relation is reduced to

6
w=Ku K= ﬁ%, u € [-100,100]* ¢ R?, (2-5)

Therefore, the final 3-DoF kinematic model of the OMR with PWM inputs is given by

A - . w

T cos —sinf 0 1 1 1 1

RK

Yo | = —— | sinf cosf O -1 1 -1 1 Y2

) 4 0 0 1 -1 1 1 -1 u3
L J L at+b a+b a+b a+b m

(2-6)

_:)':w 1 RK [ cosf +sinf cosh —sinf cosf +sinf cosf — sin 6 t

Yw | = —— | sinf —cos@ sinf +cosf sinf —cosf sinf + cosb U2

0 4 =L 1 1 -1 u3
L i L a+b a+b a+b a+b Uy

While these simplifications are computationally efficient, they can introduce drift and tracking
errors. In particular, errors in the heading angle affect the motion of the robot due to the state-
dependent nature of the trigonometric terms. Accuracy can be improved by incorporating
other mechanical effects into a dynamic model.

Master of Science Thesis Elysia Bonello



8 Modelling Dynamics of OMRs

2-2 Dynamic modelling

Certain design characteristics of mecanum wheels introduce disadvantages for navigation.
Although translational movement is enabled, vibrations that appear at high speeds reduce
energy efficiency because of the contact forces between the rollers and the ground [1]. For
this reason, the dynamic model is formulated so that the forces acting on the system are
represented explicitly.

Four-wheeled OMR dynamics can be derived using Newton’s Second Law of Motion [32, 7],
Newton-Euler equations [20], or Lagrangian mechanics [54]. Different studies often present
variations of the same system. Certain contributions are grouped into effective parameters,
others are neglected as higher-order effects, and some are retained explicitly.

In this work, the dynamics of an OMR are derived from Newton’s Second Law of Motion.
By analogy with the kinematic model, the dynamic relations are expressed in terms of the
available input and output data. This data consists of the world-frame coordinates, the body-
frame velocities, and the wheel PWM control input signals. The dynamic model of an OMR,
written in terms of the world-frame accelerations, is given as

Fy, m 0 O T
Fy,| =10 m 0 yw , (2-7)
T 0 0 I, 0
Fu M P,

where F,,, and F,,, are the total forces in the world x and y directions, 7 is the torque about
the centroid of the robot, m is the total mass of the robot and I, is the moment of inertia
about the rotation axis.

The forces F,, € R3 applied to the OMR are then analysed. The driving force at each wheel
i is generated by its DC motor and is expressed as

Fdi = aV; — BRw; 1€ {1, 2, 3,4}, (2—8)

where « and § are the DC motor coefficients and V; is the input voltage applied to wheel i [16].
The second term represents velocity-dependent effects that model motor back-electromotive
force (EMF). The input voltage vector V € [—V;, Vi]* € R* is proportional to the PWM
control input signal u and is written as

V=K,u=—u, (2-9)

where Vj is the motor supply voltage.

In this model, two types of friction are considered. Static friction, denoted by F, € R
prevents the rollers from slipping and counteracts the initiation of wheel motion during ground
contact. Viscous friction, denoted by F, = D,w € R*, resists the angular velocity of the
wheels through internal damping of the shafts [29].

The total generalised force acting on the robot is then transformed into the world frame and
is expressed as

Elysia Bonello Master of Science Thesis



2-3 Overview of modelling & control approaches in the literature 9

F, = R(0)T [Fy—F, — F,

o uq w1 Fy, w1 (2-10)
Wz _
Fu,| =ROT || aK, || —8R [*?| | - ?82 — D, [“?|],
- us w3 s3 w3

Uy w4 Fs4 W4

where T € R3*4 is the wheel-to-body transformation matrix, defined as

coS Y1 COS Y2 COS Y3 COS Y4
T = sin 1 sin vy sin s sin vy (2-11)
asiny; —bcosy; asin~ys +bcosyy bcosys —asinys —asinyy — bcosyy

and y; € {—45°,45°} denotes the roller angle of wheel i, as illustrated in Figure 2-1.

Given that body-frame velocity measurements are available, Equation (2-2) is applied to
substitute the angular velocity into Equation (2-10). In compact form, this yields

F., — R(6)T {aKvu _BIP, —F, — RDUJP,,} . (2-12)

This expression is substituted into Equation (2-7) to obtain the dynamic model of an OMR,

B, = M-'R(0)T [aKvu _F, - (;DU + /3) JPb} . (2-13)

The transformation matrices T and R.(#) ensure that the wheel forces are mapped consistently
to the body frame and then expressed in the world frame coordinates. In this way, the derived
model provides a physically consistent description of how the PWM signals applied to the
wheels result in translational and rotational accelerations of the OMR.

2-3 Overview of modelling & control approaches in the literature

The studies in Table 2-1 highlight the diversity of modelling and control approaches proposed
for four-wheeled OMRs with the same chassis layout as the MIRTE Master robot. Existing
work illustrates a trade-off between model complexity and fidelity. Kinematic models domi-
nate due to their simplicity, but they fail to capture important effects such as slip and inertia.
Dynamic models, by contrast, provide a richer description but require detailed parameter
identification, which is rarely validated outside structured environments. Another approach
explored in the literature review is data-based modelling, which constructs models directly
from measurement data without relying on physical knowledge. Although promising, most of
these methods rely on large datasets, and their limited interpretability poses challenges for
deployment in agricultural settings.

These observations motivate the use of modelling approaches that combine physics-based
formulations with measurement data, remaining parsimonious and interpretable while still

Master of Science Thesis Elysia Bonello



10 Modelling Dynamics of OMRs
Table 2-1: Literature of modelling and control of four-wheeled rectangular chassis OMRs
Modelling Control . . . Stability
Study Dynamics Approach Simulation Experiment Analysis
Linear
. . Time-Varying MPC
[50] Kinematic model with PID cascade Yes Yes No
control
Kinematic with Online adaptive
[30] adaptive slippage P No Yes No
control
model
. . NN Adaptive SMC
[29] K1nematlc and and PID cascade Yes No No
dynamic models
control
[5] Dynamic model - Yes No No
Lyapunov-
. based
[61] Dynamic Model SMC Yes No .
asymptotic
stability
Lyapunov-
2] Dynamic Model Adaptive SMC Yes Yes based .
asymptotic
stability
Differentiable
physics-based Gradient-based
[14] model with online  optimization using Yes Yes No

friction learning
using NN

NN

capturing the dominant nonlinear behaviours relevant for control design. In particular, the
upcoming chapters introduce the sparse identification of nonlinear dynamics with control
(SINDYc) framework and its integration with tube-based nonlinear model predictive control
(NMPC), which directly address these challenges.

Elysia Bonello
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Chapter 3

System ldentification using SINDYc

Precise trajectory tracking of four-wheeled OMRs in greenhouse environments requires models
that are sufficiently accurate and computationally efficient. The preceding review has shown
that existing kinematic, dynamic, and data-based models each present limitations related to
fidelity, parameter dependence, data requirements, or interpretability. To obtain a sufficiently
accurate and tractable model for control, the present chapter develops a modelling framework
based on SINDYc. This method combines the parsimony of physics-based structures with the
flexibility of data-driven identification, allowing essential nonlinear dynamics to be captured
from relatively limited and noisy experimental data while reducing the risk of overfitting [45].

An overview of the SINDYc framework is shown in Figure 3-1. A dataset is collected on
the MIRTE Master robot, after which a library of candidate nonlinear functions is con-
structed. The library can be formed from generic nonlinear functions such as polynomial and
trigonometric terms, and also from terms informed by known kinematic and dynamic rela-
tionships [12]. Control inputs are included in the library to represent actuation, which yields
the controlled formulation SINDYc rather than the original sparse identification of nonlinear
dynamics (SINDy) method [22]. Sparse regression is then applied to identify the dominant
terms that describe the measured dynamics.

In this chapter, the theoretical background of SINDYc is presented together with its algorith-
mic implementation for system identification. The method is applied to the MIRTE Master
robot to identify kinematic, dynamic, and extended hybrid models, with the aim of selecting
the most suitable representation for control. Experimental validation is carried out to demon-
strate that SINDYc produces interpretable models that are suitable for subsequent control
design.

3-1 SINDYc framework

A continuous-time nonlinear system x = f(x,u) is considered with state x € R™ and input
u € R™. N snapshots are collected at times ¢ and arranged column-wise as

Master of Science Thesis Elysia Bonello



12 System Identification using SINDYc
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Figure 3-1: SINDYc algorithm adapted from [22]
X = X1 X9 ... XN] s U= [ul ug ... uN] . (3—1)

A selected library of candidate functions is denoted by © (X, U) € RV*L which contains L
nonlinear functions of the state and input vectors evaluated over N sampled instants. The
objective is to identify a sparse coefficient matrix 2 € R"*L such that

X ~207(X,U), (3-2)

where X € RN contains the derivatives of the n states at the sampled instants. The sparse
coefficient matrix is estimated efficiently using the sequentially thresholded least squares
(STLSQ) algorithm [22],

R T A
& = argmin 5| X; — £,07 (X, U)|3 + EHEkH%

£, (3-3)
subject to [, | > A or |&,| =0,

where X, € RY is the trajectory of the k" state derivative with k € {1,...,n}, ék € RE
is the sparse coefficient vector that selects the active candidate terms for the k' state, and
ék,l denotes the coefficient associated with the I candidate function in the library for the
k'™ state. The parameter A, > 0 is a small ridge term that ensures numerical conditioning
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3-1 SINDYc framework 13

of the regression, while A\ > 0 is the sparsity threshold that balances model parsimony with
accuracy. Each stage of the algorithm is described in detail in the following subsections.

3-1-1 Data collection

The first step in any system identification method is to collect data from the system being
studied. The systematic design of persistently exciting training data has received little atten-
tion in the SINDy literature and its extensions. The convergence rate of the identified model
depends strongly on the excitation signal, which directly influences data richness [19]. By
contrast, in the broader field of data-driven identification and control, persistency of excita-
tion is recognised as a fundamental requirement for ensuring data richness and guaranteeing
unique model recovery.

SINDYc has been shown to require substantially less training data than NN-based approaches.
For example, a NN trained on the Lotka—Volterra system required 250 trajectories of 103
snapshots each to achieve satisfactory performance, whereas SINDYc achieved comparable
accuracy using only a single trajectory of 10* snapshots. In addition, SINDYc identified
the correct governing terms of the system from limited observations, which enabled accurate
prediction of behaviours beyond the training trajectories [22].

For the MIRTE Master platform, world-frame states, body-frame state derivatives and PWM
input trajectories are sampled every 0.1 s, and the dataset covers the complete range of
relevant motions as illustrated in Figure 1-2b.

The yaw angle is extracted from the pose quaternion and unwrapped to remove the disconti-
nuity between —m rad and 7 rad. Without unwrapping, finite-difference derivatives and the
subsequent sparse regression interpret —m and 7 as different states, creating artificial jumps
in the data. For example, a transition from 0.997 to 7 should correspond to a near-zero
derivative, but when wrapped it appears as a large negative jump from 7 to —m. This discon-
tinuity prevents the method from converging to the true system dynamics. By unwrapping,
the angular trajectory remains continuous, allowing derivatives to be estimated correctly and
ensuring consistent identification.

The algorithm used to generate the training data is presented in Algorithm 1. Excitation
is generated by alternating short, randomised templates with randomised magnitudes during
the first 75% of the run. In the remaining 25%, patterned segments are applied. Within each
pattern, equal PWM commands u; with i € {1,2, 3,4}, are applied to the active motors while
the inactive motors are held at zero. This design promotes excitation across all motion modes
while maintaining relevance to practical robot operation. Unlike benchmark systems such as
Lotka—Volterra, where the governing equations consist of simple polynomial interactions that
can be recovered from limited trajectories, the OMR requires targeted excitation of structured
motion patterns to ensure that slip, friction, and coupling effects are sufficiently represented
during identification. The templates are updated approximately every At, = 1 s, so that
translation in x, translation in gy, and yaw motion are all excited in comparable proportions,
which supports the correct identification of each state derivative X.

A slew-rate limit |Aumax| = 20 is imposed on the PWM commands to protect the DC motors
and to align state and input dynamics in time. This constraint produces smooth trajectories
that are representative of nominal operation and also improves numerical differentiation. The
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14 System ldentification using SINDYc

Algorithm 1: PWM excitation for SINDYc data collection
Input: duration 1" = 120s, control interval At = 0.3s, template update interval
At,, = 1s, maximum PWM |upax| = 100, maximum PWM change
| Atumax| = 20
Output: command sequence u(t) € [—Umax, Umax)
Initialise time t < 0, ¢, + At,, command u < 0
while ¢t < T do
if ¢t <60 then

if ¢, > At, then
Select a random template that targets z, y, or yaw so that coverage

remains balanced
Select a random magnitude u; ~ U(30, 100) for each wheel ¢ to form u
ty <0
end

4

else

if ¢, > At, then
Select a random pattern from a fixed list with equal magnitudes to form u
ty < 0

end

end

foreach wheel i do

di — U — Uy

Au; < clamp(d;, —Aumax, AlUmax)

U < Clamp(ui + Auia —Umax, umax)

end

Send u to the motors and record (u(t),x(t),%(t))
t+—t+ At

ty ¢ty + At

end

absolute PWM magnitudes are drawn from the interval [30, 100], with |umax| = 100 denoting
the saturation level. The inherent deadband within (—30,30) is traversed during the ramps
defined by Aw;, which provides informative samples near zero and assists in identifying friction
terms that appear in the dynamic model.

The actuation signals u are applied directly to the wheel motors and are therefore independent
of the measured states, which avoids ambiguity between process dynamics and control action
during identification.

3-1-2 Numerical differentiation using total variation regularised (TVR)

After obtaining the dataset containing the robot world-frame pose and body-frame velocities,
the next step in the SINDYc framework is to estimate the state derivatives required for
model identification. Specifically, the state derivative matrix X must be expressed in the
world frame, so the body-frame velocities are mapped to world-frame derivatives using the
kinematic transformation in Equation (2-1).
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3-1 SINDYc framework 15

However, since the body-frame velocities are computed from incremental encoder counts, they
are affected by commutation ripple and brush bounce. Furthermore, broadband disturbances
are injected into the estimated wheel angular velocities [58]. At low speeds, encoder quanti-
sation becomes pronounced and a delay between samples is introduced [62]. Therefore, the
estimated speed is held constant for several samples and short spikes appear when a pulse
arrives, so the true smooth motion is not represented. Direct finite-difference differentiation is
therefore noisy and biased. World-frame velocities are instead estimated using TVR applied
to the world-frame pose trajectory. With appropriate tuning, high-frequency and impulsive
noise components are attenuated while physically meaningful edges are preserved [6].

The TVR problem is formulated to estimate the derivative without amplifying the measure-
ment noise. An integrated derivative is fitted to the data and the total variation of the
derivative is penalised so that a piecewise-smooth estimate is produced that preserves gen-

uine changes [6]. The approximated world-frame state derivative X is determined by solving
the optimisation problem

o N o
min 5[|A7X — (X — Xo)[[3 + )V (DX)] +¢, (3-4)
X i=1

where for the MIRTE Master robot, X denotes the measured world-frame pose of the robot
with initial pose Xg. The operator A performs discrete integration on the sampling grid and
reconstructs the approximated velocity along the pose trajectory relative to the initial pose.
The second term penalises rapid oscillations in the estimated velocity across all time samples
using the first difference operator D and the regularisation parameter . Larger values of
a suppress encoder and localisation noise more strongly but may oversmooth slope changes.
The parameter € ensures numerical stability and influences corner sharpness. Smaller values
preserve sharper transitions but can reduce conditioning [6].

3-1-3 Library of nonlinear candidate functions

Once the state derivatives X have been estimated, the next step in the SINDYc framework is
to specify the library of candidate functions from which the governing equations are identi-
fied. This library ©(X, U) provides the dictionary of possible nonlinear interactions between
the states and inputs. It is constructed from terms motivated by the kinematic and dynamic
models derived in Chapter 2. For the extended kinematic model, the library is further aug-
mented with additional nonlinear terms to account for unmodelled effects, as described is
more detail in Section 3-2. Each column is normalised so that all terms have a comparable
scale. This procedure prevents numerical bias during regression [55].

The candidate terms included for each state derivative in the kinematic model are listed in
Table 3-1. The coeflicients are not shown, since they are identified during regression, and only
the structure of the model is tabulated. These terms follow directly from Equation (2-6).

For the dynamic model, Equation (2-13) is expanded to obtain the candidate terms shown
in Table 3-2. The terms sin(f) and cos(#) in the translational accelerations and the constant
term in the angular acceleration arise from the static friction component. In this work, these
terms are omitted from the library. A constant contribution would be integrated at every
time step and cause the system state to drift even when the control inputs are zero.
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16 System ldentification using SINDYc

State derivative Candidate terms

T sin(0)u, cos(f)u
Y sin(f)u, cos(f)u
0 u

Table 3-1: Candidate library terms for the kinematic model

State derivative Candidate terms
Ty sin(f)u, cos(#)u, sin(f), cos(h), sin(§)vy, cos(d)v,
G sin(6)u, cos(f)u, sin(d), cos(d), sin(f)vy, cos(d)vy,
6 u, constant, {2

Table 3-2: Candidate library terms for the dynamic model

Angular acceleration is determined by the net yaw torque generated by the wheels. The
torque is represented as a linear function of the PWM input signals u with a damping term
proportional to the angular velocity 2. Rolling resistance, viscous losses, and floor interaction
are reflected primarily through this damping term [38].

3-1-4 Sparse regression

With the state derivatives estimated and the nonlinear candidate library defined, the final
step in the SINDYc identification procedure is to determine which terms best describe the
system dynamics. This is achieved using sparse regression, which identifies a parsimonious
model from the normalised library by solving Equation (3-3) for each state £ € {1,2,3}.
The library is normalised before fitting so that the sparsity threshold acts fairly across all
terms [45].

The STLSQ procedure begins with a least-squares fit. Coefficients with magnitude below the
sparsity threshold \j are set to zero. Equation (3-3) is then solved on the remaining active
set. Thresholding and refitting are repeated until a sparse representation is obtained and the
active set no longer changes [63].

The threshold 0 < A < 1 is scaled to reflect the normalisation of the library and the magni-
tude of the numerical derivatives. Larger thresholds yield sparser models and improve inter-
pretability but may remove physically relevant terms. Smaller thresholds lower the residuals
on the identification data, but may admit noise and reduce predictive performance on new
data [45]. The threshold for each state derivative is set by selecting the least approximation
error between the TVR-based derivatives, and the model constructed from the identified co-
efficients and the library. A very small ridge regularisation term A, is included to improve
numerical conditioning. The bias introduced by this term is negligible and the stability of
the fit is preserved.
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3-2 Model validation results

Datasets were collected on the MIRTE Master robot, world-frame derivatives were estimated
using TVR differentiation, and libraries of candidate functions were constructed from kine-
matic and dynamic models. Sparse regression with STLSQ was then applied to obtain parsi-
monious models that balanced accuracy, interpretability, and robustness to noise. This formu-
lation ensured that physically meaningful terms were retained while redundant or noise-driven
contributions were removed.

The SINDYc algorithm is implemented in MATLAB, and the identified models are evaluated
by comparing predicted state trajectories with independent validation data and by assessing
whether the identified dynamics generalise beyond the training set. This evaluation demon-
strates that the coefficients obtained through sparse regression capture the essential behaviour
of the robot and provide a reliable basis for subsequent control design.

Algorithm 1 is used to generate the training data for identifying the SINDYc models, as shown
in Figure 3-2a. In practice, the collection of such data faces several challenges. A sufficiently
large dataset of randomised signals is difficult to obtain without risking collisions. Equal
excitation of the three motion modes is also difficult to achieve. From the inverse kinematic
Jacobian J in Equation (2-2) it follows that the forward velocity v, is more likely to be
excited, since contributions to v, and €2 can cancel or diminish for some PWM signals. These
effects are visible in Figure 3-2b. The forward velocity exhibits stronger and more persistent
excitation than the lateral velocity and the angular velocity, even though the data generation
algorithm is designed to excite all velocities equally.

A trade-off is therefore required in the design of the excitation signals. The chosen design
ensures that the training data span representative operating conditions while safe operation
is maintained. This choice is justified because the identified model is used within a robust
trajectory tracking controller that compensates for residual modelling errors through feedback.
The resulting training dataset contains 800 samples.

The TVR differentiation method is applied to the world-frame pose to obtain smooth and
reliable state derivatives. The measured body-frame velocities are transformed to the world
frame using Equation (2-1) and are compared with the corresponding TVR estimates in
Figure 3-2d. The TVR estimates preserve the overall velocity trends while attenuating noise
and impulsive disturbances. This behaviour limits bias in the regression due to measurement
errors.

3-2-1 Model types

Three models are validated on different trajectories using SINDYc, namely a kinematic model,
an extended kinematic model and a dynamic model. The kinematic and dynamic models are
identified using the libraries shown in Table 3-1 and Table 3-2, respectively. The extended
kinematic model uses an expanded candidate library with relaxed constraints, allowing sparse
selection of additional terms. An extended dynamic model was also identified, but its be-
haviour closely matched that of the standard dynamic model and is therefore omitted from
this work.
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Figure 3-2: Training data used for SINDYc

Kinematic model

This model is identified to highlight the mismatch between ideal kinematic assumptions and
the actual system behaviour. It also serves as a baseline for tuning the sparsity weight A. The
library is fixed to the standard mecanum kinematics derived in Section 2-1. The coefficients
are obtained by applying the same STLSQ procedure with the sparsity weight set sufficiently
low to prevent any term from being eliminated. This is equivalent to performing an ordinary
least-squares fit on the fixed library.

Extended kinematic model

The extended kinematic model removes constraints on the library and uses sparse regression
to select coefficients from an augmented set of candidate functions. The extended library
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targets slip and coupling effects that are absent from the original model. While such effects
may be absorbed implicitly into the coefficients associated with the control inputs, they are
not captured in a physically meaningful or reliable way. Since the state dimension remains
three, the same variables are used, and nonlinear variants are added, including trigonometric
functions of the yaw angle and functions of the control inputs. The library is refined and
the sparsity weight is tuned iteratively. Terms that do not improve validation accuracy are
removed. Moreover, candidate functions are restricted to be continuously differentiable to
preserve linearisation accuracy and computational efficiency for control. The added terms are
listed in Table 3-3.

Dynamic model

World-frame accelerations are identified with the dynamic model and are integrated twice
in time to recover the pose. The state space is extended to six variables, including world-
frame pose and velocities. Since direct acceleration measurements are unavailable, the TVR
differentiation algorithm is applied a second time to estimate the world-frame acceleration
used in the regression. In this case, tuning is more sensitive since small acceleration errors
accumulate in position and can promote overfitting when the acceleration estimates are noisy.

3-2-2 Validation trajectories

Several trajectories are validated in this project. Two simple trajectories are presented to high-
light the behaviour of the MIRTE Master robot without feedback control. One is designed
to assess yaw behaviour, and the other is representative of greenhouse operation. Significant
deviations from ideal mecanum kinematics are revealed by the measured ground truth for
both trajectories. In segments where equal PWM commands are applied to trace axis-aligned
rectangles, a perfectly closed path is expected from an ideal platform. Instead, drift, curva-
ture, and non-closure are observed. These deviations are due to slip, frictional asymmetries,
and drive or encoder mismatch.

Rectangular path with changing heading

The forward velocity v, dominates the motion and the angular rate €2 increases at the corners
of the rectangular path. The ground truth is shown by the black curves in Figure 3-3a. In
contrast to the ideal case, a gradual increase in the measured yaw angle is observed during the
straight segments. After about four seconds of forward motion, the yaw angle has increased
by approximately 0.2 rad.

State derivative Candidate terms
Ty sin(f)u, cos(f)u, u
Y sin(f)u, cos(f)u, u

Table 3-3: Candidate library terms for the extended kinematic model

Master of Science Thesis Elysia Bonello



20 System ldentification using SINDYc
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Figure 3-3: Measured vs SINDYc Validation Plots for the different models on a rectangular path
with changing heading

The kinematic models track the time profile of v, but remain below the measured magnitude
by a nearly constant offset. This bias is explained by losses that change with the wheel PWM
signals. Rolling resistance and viscous friction increase with speed, and the motor back-EMF
reduces available torque as the PWM increases. The kinematic formulation maps the PWM
inputs to velocity with fixed gains, so these effects cannot be represented. The extended
kinematic model relaxes the library constraints and selects additional input and yaw terms,
yet it still operates at the velocity level without states for acceleration, damping, or drag.
Speed dependent slip and drive losses are therefore not captured, and the same bias remains.

The measured v, levels are matched more closely by the dynamic model, since accelerations
are identified and inertial and damping effects are represented. A pronounced first-order lag
is observed, arising from the estimation and integration of acceleration to recover velocity
and also from the TVR based acceleration estimates.

The lateral velocity in this validation data remains close to zero, so the signal-to-noise ratio
(SNR) is low. The estimated velocities of the kinematic models remain near zero, while that of
the dynamic model shows larger deviations that follow small measured peaks. This behaviour
indicates sensitivity to measurement noise in the acceleration estimate.

On the other hand, the yaw rate is tracked well by both kinematic models. The dynamic
model exhibits a smooth but lagging response similar to that observed in v,. However, since
the identified accelerations are integrated twice to obtain the pose, the trajectory drifts and
lags more than for the other models.

Overall, the extended kinematic model provides the best balance between pose tracking and
velocity fidelity on this trajectory, as shown by the root mean square error (RMSE) in Table 3-
4. The heading angle RMSE of the extended model is significantly lower than for the others.
Priority is given to heading accuracy because it affects the world-frame velocity mapping and
couples into the evolution of z and y. A small discrepancy in the heading angle therefore
produces larger errors in the integrated pose.

Comparable velocity RMSE values are obtained across models. In the dynamic model a slow
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Table 3-4: RMSE for pose and velocities over the rectangular path with changing heading

Model Pose Velocities
z m] y[m] 6[rad] v, m/s] v, [m/s] Q [rad/s]

Kinematic 0.45 0.78 0.43 0.12 0.01 0.17
Extended kinematic 0.31 0.36 0.05 0.12 0.02 0.17
Dynamic 0.45 0.51 0.51 0.10 0.04 0.22

transient is observed, while the kinematic models respond faster with steady-state offsets.
The pose RMSE shows that a fast response is preferred, since position error grows during the
transients of the velocity signals.

Rectangular path with constant heading

A constant-heading rectangular path is expected to produce motion in which one body-axis
velocity dominates each straight segment, while the angular velocity remains zero throughout
the trajectory. During longitudinal segments, |v;| > 0 and v, = 0, while during lateral
segments, the converse holds. The ground-truth trajectory, shown as the black curve in
Figure 3-4a, is observed to deviate from this ideal. A peak yaw rate of 0.3 rad/s is measured
during lateral motion, which indicates slip of the mecanum wheels. The rectangle is not closed
and the yaw angle increases by approximately 0.7 rad by the end of the trajectory.

Behaviour similar to that of the previous trajectory is observed in the identified models.
The kinematic and extended kinematic models reproduce the time profiles of v, and v,, but
a nearly constant magnitude offset is exhibited. The dynamic model attains the measured
steady-state levels with smooth transients. A noticeable lag is present, introduced by the
estimation and integration of acceleration to recover velocity.

Measured vs SINDYc¢ Pose Measured vs SINDYc¢ Velocity
XY Position
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Z
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Figure 3-4: Measured vs SINDYc Validation Plots for the different models on a rectangular
ground truth with ideal constant heading
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22 System ldentification using SINDYc

A yaw rate close to zero is predicted by the original kinematic model along the entire path,
as the slip-induced rotation is missed. This is seen in the top plot of Figure 3-4, where the
red dashed curve closes the rectangle, and in the bottom plot, where the yaw angle remains
nearly constant. A non-zero yaw rate is captured by the extended kinematic model, and a
closer match is obtained. Lag and amplified transients near zero yaw rate are observed in
the dynamic model. The heading angle error of this model is accumulated due to double
integration.

Similarly to the trajectory with changing heading, the velocity RMSE values are comparable
across models, whereas the pose errors differ significantly, as shown in Table 3-5. The largest
pose errors are obtained by the original kinematic model. The heading angle RMSE is high
because ideal kinematics are assumed, and the resulting yaw error propagates into the other
states. The lowest heading angle RMSE is achieved by the extended kinematic model, and the
lateral position error is reduced. The steady-state offset in the forward velocity keeps the error
in state x elevated. The lowest RMSE for state z is attained by the dynamic model, while its
heading-angle RMSE is slightly higher than that of the extended model. The improvement in
x arises from a reduced steady-state bias in the forward velocity provided by the additional
dynamic terms in the library.

3-3 Discussion

This section discusses the validation results, highlighting limitations and factors that influence
modelling accuracy. A PWM deadband of approximately (—30,30) is observed, particularly
at start up and during direction changes. This nonlinearity is not represented in the candidate
libraries. Static friction can not be modelled in the kinematic formulations and is neglected
in the dynamic model, so behaviour near zero input is poorly represented. As a result, the
learned models might absorb the deadband as bias or apparent delay.

The identified kinematic and dynamic models use restricted libraries of nonlinear candidate
functions so that their structures match the models derived in Chapter 2. Both reproduce the
expected polarities of the coefficients in the derived equations, which supports the SINDYc
implementation and the analytical derivations. However, the RMSE values are not low. From
the validation body-frame velocity plots in Figures 3-3b and 3-4b, offsets with fast transients
are observed for the kinematic and extended kinematic models, whereas a pronounced first-
order lag is observed for the dynamic model. In this context, RMSE may fail to distinguish
between models whose behaviours differ despite similar error magnitudes.

Identification can be improved by introducing an explicit map from PWM to wheel angular

Table 3-5: RMSE for pose and velocities over the rectangular path with constant heading

Model Pose Velocities
x [m] y[m] 6[rad] v, [m/s] v, [m/s] € [rad/s]

Kinematic 0.58 0.31 0.55 0.11 0.05 0.10
Extended kinematic 0.52 0.18 0.28 0.11 0.05 0.07
Dynamic 0.22 0.18 0.30 0.11 0.07 0.06
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velocity that captures the deadband and the motor time constant so that the first-order lag of
the ground truth is reproduced. Moreover, model accuracy depends strongly on the quality
of the training data. A larger and more diverse dataset would further reduce modelling
discrepancies [45]. The dataset is limited to about 800 samples due to collision risks with
randomised inputs, which is small for system identification. Equal excitation of all motion
modes is difficult to achieve, and insufficient excitation of a state derivative is associated with
degraded estimation for that state. The available dataset is therefore not ideal, and broader
coverage with balanced excitation would likely reduce the RMSE.

The kinematic formulations cannot represent friction forces explicitly, since forces are not
included as states in a third-order description. At higher speeds, frictional nonlinearities
behave differently than at low speeds, which complicates identification when using static
coefficients [59]. This effect was evident in the identification runs, where the estimated coef-
ficients varied when high-acceleration data were included. To mitigate this, a slew-rate limit
is applied to restrict rapid changes in velocity and to focus the identification on the nomi-
nal operating region, thus capturing the dominant nonlinearities. This choice, however, may
introduce an offset when the system operates at other accelerations.

A more exhaustive candidate library is expected to improve identification. In this work, can-
didate terms are added manually. An automated search over the sparsity thresholds A € R3 is
performed and the combination with the lowest training error is selected. The resulting model
is validated on separate datasets and terms that do not improve validation error are removed
for model simplicity. This process is time-consuming and non-comprehensive. Consequently,
some higher-order effects may be omitted, which can contribute to residual modelling error.

Priority is given to minimising the heading angle RMSE, since the heading angle is present in
the other state derivatives. The kinematic model provides a simple baseline and reproduces
the general velocity profiles but does not capture slip-induced coupling, which yields the
largest pose errors. The extended kinematic model retains a compact structure, introduces a
small set of physically meaningful nonlinearities, and delivers the lowest heading-angle RMSE
with reduced lateral error. The lowest forward-position error is achieved by the dynamic
model through reduced steady-state bias. However, noticeable lag and amplified transients
are observed due to acceleration estimation and integration, which reduces pose accuracy.
The state dimension is increased to six in the dynamic formulation, so the computational
complexity for control design would increase accordingly.

Therefore, the extended kinematic model offers a practical foundation for subsequent control
design. It provides a useful balance between the simplicity of the kinematic model and the
accuracy of the dynamic model.

3-4 Summary

The SINDYc framework is presented for the MIRTE Master robot, and each step is detailed
from data collection to model identification. Three dynamical systems are identified, namely
a kinematic, an extended kinematic, and a dynamic model. The models are validated against
independent ground-truth data and evaluated using the RMSE metric to assess their suitabil-
ity for subsequent control design.
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Although the time profiles of the modelled velocities track the measurements, the resulting
RMSE values are not small. Several factors are identified as contributors to these discrepancies
as discussed in Section 3-3.

For control design, the extended kinematic model provides the best balance between fidelity
and simplicity. A robust trajectory control approach is adopted to accommodate the remain-
ing unmodelled dynamics. Overall, the identified coefficients are shown to generalise beyond
the training data and to capture the dominant behaviours of the robot.
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Chapter 4

Robust Trajectory Control using
Tube-based NMPC

Model-based control for OMR trajectory tracking is designed to be robust, as the identified
model does not fully represent the true system dynamics. Robot behaviour and stability
are influenced by parameter uncertainties and external disturbances [61]. During greenhouse
operation, disturbances arise from variations in wheel to ground interaction, floor moisture,
loose debris, floor joints, and mild slopes. Slip and actuation bias are introduced by these
effects.

Common robust control strategies include SMC [21, 61, 15], Ho, optimal control [25, 46], and
robust MPC [41, 44, 10, 64, 60]. Stability guarantees and bounded tracking errors are typically
ensured under defined uncertainty bounds, with potential conservatism as a trade-off.

Tube-based NMPC is chosen for this work for its computational efficiency, explicit constraint
handling, and limited conservatism when disturbance bounds are estimated accurately. A
two-layer structure is used, in which reference trajectory planning is separated from distur-
bance rejection. The extended kinematic model identified in the previous chapter is used as
the nominal prediction model. A nominal controller uses this model to compute a nominal
trajectory compatible with system constraints based on a reference trajectory. A stabilising
feedback law is then applied so that the actual system is maintained within a robust invariant
tube around the nominal trajectory, as illustrated in Figure 4-1. Constraint satisfaction is
ensured by set tightening for all disturbances within the estimated bounds.

The tube-based NMPC framework is presented, and each stage is described in detail applied
for the MIRTE Master robot. Simulation results are provided in MATLAB before the control
method is deployed on the robot.

4-1 Tube-based NMPC framework

The MIRTE Master robot is represented as a nonlinear continuous-time system

(1) = £(x(t), u(t)) + R(6(1)) w(t), (4-1)
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Figure 4-1: Tube-based MPC illustration with nominal (blue) and actual (red) trajectories within
an error tube (grey)

where f is locally Lipschitz, since it consists of a finite sum of polynomials in u and the
smooth functions sin # and cosf. The input set is

U={ueR"||u| <tmax;, ¢ =1,...,m}. (4-2)

Unmodelled dynamics and external effects are captured by a disturbance w(t) that belongs
to a compact and convex set

W= {w e R?| |w| < Wmax, i = 1,2,3}. (4-3)
The maximum disturbance is estimated from measured body-frame velocity data and is
mapped to the world-frame state derivatives through the transformation matrix R(f) de-

fined in (2-1). The disturbance-free nominal model identified by SINDYc is

x(t) = £(x(t),a(t)). (4-4)

The applied input of the tube-based NMPC controller is composed of a nominal component
and an ancillary feedback control law,

u(t) = u(t) + k(x(t),x(t)). (4-5)
The tracking error is defined as

e(t) = x(t) — x(t). (4-6)

Under the ancillary feedback control law, the error dynamics become an autonomous disturbed
system [44]. A set £ C R™ is called a robust positive invariant (RPI) set for the error dynamics
under Equation (4-5) if

e(tp) €€ = e(t)e & Vi>ty, Vw(t) € W. (4-7)
Equivalently, the true state remains in the tube
x(t) € x(t) @ € for all t > to, (4-8)

where @ is the Minkowski sum with definition A® B:={a+b|a € A,be B} [18].
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4-1 Tube-based NMPC framework 27

4-1-1 Nominal Controller

The first step in the tube-based formulation is the design of the nominal controller, which
uses the extended kinematic model as the nominal model. This controller is implemented
as an NMPC that optimises the disturbance-free trajectory to track a reference x,ef. More
accurate nominal predictions lead to smaller tubes and less constraint tightening [43]. The
nominal trajectory is obtained by solving a finite-horizon optimal control problem (OCP) on
the interval [ty, ty + T,

tp+T )
Join /t ) Ux(t) — xre(t), U(t), u(t)) dt + Vp (x(tx + T) — Xer(ts + 1))
st x(t) =f(x(t),ut)) Vte [ty tr+T)

X(ty) =% x(tx) EX0 D E

at) eU VYt e [ty,ty +T] (4-9)

[0(H)]Joo < Cmax Yt € [t, tx + T,

where () = 3[|IX(t) — xpet(t) I + 310 1R + 3110(t) &,
and Vf() = %Hi(tk + T) - Xref(tk + T)HQP

In this work, a quadratic stage cost £(-) is used to penalise tracking error, actuation, and
input rate with positive definite weights @, R, and R4. A quadratic terminal cost V() with
positive definite weight P is used to promote convergence. The tightened input set I/ ensures
that the applied input in Equation (4-5) respects U for all e(t) € £ and all w(t) € W [43].

Terminal constraints are widely used in MPC to promote stability. However, schemes with-
out terminal constraints are attractive because they avoid conservative terminal ingredients
and are simpler to implement in practice [23]. In many applications, enforcing a terminal
constraint increases computational load and may be impractical for real-time control [3].
Consequently, many implemented NMPC designs adopt a terminal-cost formulation, which
removes the terminal set and retains a terminal cost to encourage convergence [4]. A com-
parison of the two approaches in a tube-based NMPC setting reported similar performance in
simulation [4]. In hardware experiments, the terminal set formulation was not used because
its real-time implementation was too slow.

Therefore, a terminal cost is used in this formulation as a soft mechanism to promote recursive
feasibility and convergence. Under suitable assumptions, a sufficiently long prediction horizon
combined with an appropriately weighted terminal cost and a locally stabilising ancillary
controller can ensure robust recursive feasibility and convergence to an RPI set, even without
a terminal constraint [27]. Formal proofs of recursive feasibility are beyond the scope of this
work.

The same framework is followed in this work, by tightening inputs using a tube on the
error dynamics and by keeping the terminal cost. The full set of theoretical assumptions
is not verified on the robot, so the design is presented as a practically robust tube-based
NMPC rather than a fully proven stability guarantee. This mirrors a common observation
in the literature that robustness properties for terminal-constrained and terminal-free MPC
are established in theory, yet the formal bounds often remain conceptual and do not transfer
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28 Robust Trajectory Control using Tube-based NMPC

directly to practical applications [23]. This motivates the use of simple tube-based tightenings
for the OMR.

Instead of reusing the previous nominal state as the next initial state, as is common in
standard NMPC schemes, the nominal initial state X is treated as a decision variable of the
OCP. Given the measured state and the RPI tube, the optimiser selects Xg such that the tube
is centred at this state while enclosing the measured state [53]. At time t; this requirement
is enforced as

%o € {x(ty) } S &, (4-10)

where © denotes the Pontryagin difference defined as A6 B:={z€R" |z BC A}.

4-1-2 Ancillary time-varying discrete linear—quadratic regulator (DLQR)

The next component of the tube-based NMPC framework is the ancillary feedback law. Its
role is to counteract disturbances and model mismatch, thus ensuring that the true state
remains within the invariant tube around the nominal trajectory. To achieve this, a time-
varying DLQR is used as the ancillary feedback controller to stabilise the error dynamics
and keep the true state inside the RPI tube under all admissible disturbances [11]. In the
neighbourhood of the nominal trajectory, local linearisation captures the dynamics sufficiently
well, so a linear scheme is used. Computational limits on the MIRTE Master platform also
favour this choice over a second nonlinear controller. Since the locally optimal DLQR solution
varies in time, the tube is treated as a time-varying RPI sequence.

The nominal trajectory (x*(t), u*(t)), computed by the NMPC in the previous subsection, is
linearised over time,

of of

Act (t) Bct (t) (4'11)

x|, ur (1)  Oulxe(n), ar ()

The linearised model is discretised at each sampling instant ¢, with period T by a first-order
forward-Euler approximation to reduce computational effort,
Ak =1+ Ts Act (tk) Bk = Ts Bct(tk>- (4—12)
The DLQR problem is solved to obtain the infinite-horizon solution P with weighting ma-
trices Qiqr = 0 and Rjq > 0,
—1
P, = A PiA; — (A PyBy)(BLP.By. + Ri) (B PrAg) + Qi (4-13)

The time-varying gain Ky, is obtained from the discrete algebraic Riccati equation (DARE)
solution, .
Ky = (B, PyBy + Riy) BiPLA. (4-14)

Thus, the total control input applied to the MIRTE Master robot is

u, = uy —Kj(xp — x3) - (4-15)
—_——

Ancillary DLQR
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4-1 Tube-based NMPC framework 29

4-1-3 Time-varying RPI tube approximation and constraint tightening

Following the design of the nominal controller and ancillary feedback law, the next step in
the tube-based NMPC framework is to approximate a time-varying RPI tube. This reduces
conservatism compared to a static tube formulation [28]. At each sampling instant k, a
discrete-time error—prediction model is formed by linearising the nominal dynamics along
(Xk, 0y) and closing the loop with the ancillary gain Kj. With the ancillary control law, the
closed-loop system is defined as,

Agr = A — BrKy, (4-16)
and K, ensures that A is Schur stable.

Under a bounded disturbance wy, € W, the error dynamics satisfy the set recursion [26]

Epr1 2 Acl,k: EL & W. (4—17)

In error coordinates, the tube is initialised as & = {0} because the measured tracking error at
the start is zero. For each subsequent step, the tube cross-sections &1 are updated according
to (4-17). In the state space, the tube is centred at the optimised nominal initial state Xy at

each step. The tube size adapts over time and is typically less conservative than a stationary
tube [44, 34].

Ellipsoidal tubes approximate (4-17) well [17]. However, the optimiser deployed on the robot
does not handle ellipsoidal constraints efficiently, since they appear as coupled quadratic
inequalities and increase computational load [57]. A box representation is therefore used as
a trade-off between conservatism and computational effort. Box constraints map to simple
bounds that the solver processes efficiently. The box tube is defined by the component-wise
half-width d; € RY, as

Er:={e eR" | |e|] < dy}, (4-18)

with the robust update

dit1 > |Aak|di + Wmax, (4-19)

where wi,x € R™ denotes the vector of worst-case absolute disturbances in the world-frame
state derivatives, that is, the element-wise bounds of WW. These bounds are approximated
from experimental data, as described in Subsection 4-1-4.

Constraint tightening ensures the applied input remains in U for all admissible errors. From
(4-15), the nominal input is restricted to

)

Z;{k =USKLE, = {1_1 e R™ | LBi—i-(‘Kk‘ dk) <u; < UBi—(|Kk| dk)i’ 1=1,.. .,m}, (4-20)

so that if Gy € U, and lex| < dg, then ug € U holds for all wy € W. State constraints are
not imposed in this work, since the states represent the robot pose.
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30 Robust Trajectory Control using Tube-based NMPC

To reduce computation, the tube half-width dj and the tightening (4-20) are held fixed across
stages within each NMPC solve. This avoids stage-dependent constraints while preserving ro-
bustness to a worst-case disturbance over the horizon. A more accurate alternative propagates
(4-19) across the horizon with an online estimated wy and applies stage-wise half-widths and
tightenings, reducing conservatism at additional computational cost. The deployed controller
adopts the simpler option as a practical trade-off.

4-1-4 Approximation of a maximum disturbance bound

The maximum disturbance bound must be approximated in order to determine the RPI
set introduced in the previous subsection. This bound is inferred from the body-velocity
training data used to identify the SINDYc models so that the tube update uses realistic
worst—case values which reduces conservatism. A residual-based bound is estimated between
the measured velocities and the nominal model velocities. The validation results in Figures 3-
3b and 3-4b show small delays, first—order lag, and offset bias between the extended kinematic
model and the ground truth. These effects are predictable actuator dynamics that are handled
by the NMPC. The disturbance bound is intended to reflect unmodelled effects such as
slip and uneven terrain. The velocity measurements are therefore corrected to remove the
deterministic actuator dynamics so that the estimated disturbance is not inflated.

To estimate the deterministic effects, the dataset is split into a training set and a validation
set. For each velocity state i, the identified velocity vf**(¢) is delayed by 74, > 0

%

V5O (L) = v (t — Tdi)s (4-21)

3 7

and passed through a first-order lag filter &;(¢) with time constant 7,; > 0

10 &i(t) = —&(t) + vPTA(t). (4-22)

A state-wise gain ¢; and bias b; complete the corrected map,

v () = gi&i(t) + b (4-23)

The parameters 74;, 774, gi, and b; are fitted on the training set by least squares. Delay,
dominant first—order dynamics, steady—state gain, and bias are thus separated from the dis-
turbance.

The fitted correction is applied to the whole dataset to obtain v{°™(¢). Residuals on the
validation set are then computed as

wi(t) = v (t) — vi (1), (4-24)
and are interpreted as disturbance samples. An affine regression is fitted to capture their
dependence on the input slew-rate used in the NMPC formulation (4-9). The time derivative
of the input is denoted by u(t), and its component-wise infinity norm by ||@(t)||~. For each
state 7, non-negative coefficients are estimated on the validation set so that
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|w¢(t)| ~ a; + b; ||’LL(t)”OO, a; >0, b; > 0. (4—25)

The resulting symmetric continuous-time maximum disturbance bound is given by

wmax,i =a; + b; Umax, 1=1,...n. (4—26)

The worst-case disturbance bound is used in discrete-time in (4-19). Therefore, this bound is
discretised as Wipax = Wmax 1s-

4-2 MATLAB simulation results

The tube-based NMPC framework is first prototyped in MATLAB to verify that the identified
model tracks different reference trajectories and tolerates additive disturbances within the
estimated bounds. The nominal OCP is solved with fmincon using the sequential quadratic
programming (SQP) algorithm. At each iteration a local quadratic model of the Lagrangian
is formed and the constraints are linearised, then a convex quadratic programming (QP) is
solved while a Hessian approximation is updated [40].

A single sampling time of 0.1 s is used throughout identification, discretisation, and control.
This value is selected during system identification where sensor latency is observed. The
choice keeps finite differences with suitable SNR and the model dynamics is captured well at
this rate.

The prediction and control horizons are set to N, = N, = 10. The tightened input bounds
are initialised to £[90]*. The NMPC and DLQR weights are tuned iteratively. A straight-line
trajectory is simulated to compute the DLQR solution and to inspect the Riccati matrix P.
During receding-horizon operation, the terminal region varies little. The end of the horizon
typically lies near steady conditions with small tracking error and non-extreme inputs. The
nominal state is steered toward a similar region along the trajectory, so a constant P remains
an appropriate local quadratic approximation from solve to solve. Therefore, the DLQR
matrix P is used as the terminal weight in the quadratic terminal cost, as it serves as a
local control Lyapunov function and represents the infinite-horizon cost near the terminal
region [35].

A sequence of fictitious random disturbances is drawn independent and identically distributed
(iid) over time from the axis-aligned box [—~Wmax, Wmax|. Each sample is mapped to the world-
frame state derivatives and injected while the SINDYc model is propagated to emulate the
real system. This setting verifies disturbance handling under the approximated RPI tube
and the associated constraint tightening. The tube-based NMPC procedure is summarised
in Algorithm 2, where the main steps are stated and the terminal weight is held fixed. The
notation used in the algorithm is defined in Table 4-1.

4-2-1 Rectangular path with constant heading

The first trajectory matches one of the validation cases in Subsection 3-2-2. The nominal
controller computes the input sequence that tracks a rectangular path with constant heading
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Algorithm 2: Tube-based NMPC with DLQR ancillary feedback

IanIt: Np7 Nt7 TS7 Xrefy Wmax; LB7 UB7 LBd7 UBd7 Q7 R7 Rd7 P7 QLQR7 RLQR
Output: {ug}o.n,—1, {Xk}o:ne, {Xkfo:n,

X0 ¢ Xref,05 X+ Xq, dg<0, Uy : e [—90,90]4
for k=0to N; —1do

Window Xyef [k:k+Np—1]
(X3, ug) < Solve OCP (SQP): z = [%g; vec(U)]
cost: Q,R, Ry + terminal P
cons: |x; — Xo| < dy, 1 € Uy, LBy < Au < UBy
Xk+1 < Propagate(Xj, ug, T, 0)
(A4, Bg) < linearise then discretise at (X, uy)
K, < dlqr(A4, B4, Qror: RLgr)
u < ug — Kp(x, — )A(S)
Xj41 < Propagate(xy, uy, Ts,rand[_; 1] © Wiax)
(ik-ﬁ-l A |Ad - Bde’ di + Wmnax

Upr1: a € [LB + |Kk| di1, UB — ’Kk’ dk+1]
end
Symbol Meaning Value
Ny Prediction horizon steps 10
Ny Total simulation steps Set per experiment
T Sampling time 0.1s
Xref Reference trajectory in R3 Rectangular or Circular path
with constant heading
X, Actual state [z, Y, 0] X0 = Xref,0
X Nominal state X0 = Xq
uy, Nominal input (first element of U*) € R* -
uy Applied input -
W mnax Maximum discrete disturbance bound [0.004, 0.003, 0.009]"
rand_; ;)  iid random vector Uniform on [-1,1] sampled
each step
©) Hadamard (element-wise) product -
LB,UB Input bounds [~100, 100]*
LB,;,UB; Input-rate bounds [—30, 30]*
Q NMPC stage state weight 100013
R NMPC stage input weight 0.00114
Ry NMPC input-rate weight 0.00114
P NMPC terminal weight DLQR solution P
QLaor linear—quadratic regulator (LQR) state weight 1000 I3
Riqr LQR input weight 0.00114
dy, Box tube half-width € R3 dp=0
U, Tightened input set [LB + |Kj|dx, UB — |Kj|dy]
A, By Linearised and discretised model at (X3, )
Ky DLQR gain dlqr(Ag, Bg, Quor, RLgr)
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Table 4-1: Notation used in Algorithm 2
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4-2 MATLAB simulation results 33

under the nonlinear dynamics, the input-rate limits, and the tightened input constraints. At
each step the initial nominal state is optimised at the centre of the RPI tube, which yields a
better local prediction while the actual state remains inside the tube, as shown in Figure 4-2a.

A short dwell of 0.3s is inserted at the end of each straight segment to reduce curvature
of the nominal path at the corners. The executed path smooths the nominal 90° change
into a curve due to input slew-rate limits. Some curvature is acceptable, since exact corner
tracking would require the motion to come almost to a stop and would lengthen the run.
The tube grows from zero at the start and then settles to a steady size, consistent with the
update in (4-19). This behaviour is consistent with a contractive closed-loop error map and
Schur-stable discrete-time linearised dynamics A.

Figure 4-2b presents the tracking errors between the actual and reference states. The x and y
positions exhibit a slight lag during motion and a rapid correction when the reference holds,
consistent with the input-rate penalty. The yaw error remains bounded within approximately

Tube-based NMPC World Frame Pose State RMSE w.r.t Reference: e, = 0.014m, e, = 0.0207m, ey = 0.00553rad
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Figure 4-2: Tube-based NMPC for a rectangular path with constant heading
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40.02rad under the injected disturbance. RMSE values are reported in the title and remain
modest in magnitude despite transient deviations at the corners, which temporarily increase
the tracking errors. Even with these three cornering episodes, the RMSE remains low.

Figure 4-2c shows the applied PWM signals together with the tightened admissible sets for
the nominal controller. The tightened set is included to illustrate the effect of the tube-based
implementation. It is important to note that the total applied control input can exceed the
nominal tightened set, since the ancillary control law is added to the nominal input. The
control signals remain within the [-100, 100] constraints and transition smoothly between
levels. This confirms that the ancillary feedback and tube-based tightening maintain the
applied inputs admissible while the nominal controller delivers the required manoeuvres.

4-2-2 Circular path with constant heading

The second trajectory consists of a circular path with constant heading, as illustrated in
Figure 4-3a. The resulting response is observed to behave similarly to the rectangular reference
path. The tube is grown from zero at the start and gradually settles into a steady size along
the orbit.

Tracking performance is illustrated in Figure 4-3b. The z and y position states exhibit a
slight, consistent lag relative to the reference, reflecting the effect of input constraints and
slew-rate limits in the NMPC. The yaw error remains within approximately 4+0.01 rad under
the injected disturbance. The RMSE values across all states are comparable to those for the
rectangular path and remain low.

The total applied PWM signals and the tightened input set for the nominal controller are
shown in Figure 4-3c. The inputs stay well within the admissible limits and transition
smoothly, confirming that the ancillary feedback ensures robustness while the nominal con-
troller enforces constraint satisfaction.

4-3 Summary

A tube-based NMPC framework is developed for the identified SINDYc model. The receding-
horizon NMPC computes a nominal trajectory that tracks a time-varying reference while
satisfying input constraints that are tightened to account for uncertainty. The nominal sys-
tem is linearised and discretised along the trajectory. A time-varying DLQR law is used as
ancillary feedback to maintain the real state within a time-varying RPI set under bounded dis-
turbances. This tube-based structure ensures that constraint satisfaction and robust tracking
are preserved in closed-loop operation.

The controller is first verified in simulation using MATLAB. Bounded additive disturbances are
applied to emulate real conditions. Two distinct reference trajectories are simulated and it
is demonstrated that the closed-loop system satisfies the input constraints while maintaining
small tracking errors, with the real trajectory remaining within the tightened tube through-
out. The control input evolves smoothly and remains admissible at all times, confirming the
effectiveness of the constraint tightening strategy.

This implementation shows that robust performance can be achieved without a hard terminal
constraint, provided that appropriate terminal cost and constraint tightening are used. The
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Figure 4-3: Tube-based NMPC for a circular path with constant heading

approach balances theoretical design and practical feasibility, making it suitable for real-time
deployment.

In the next chapter, the control algorithm is deployed on the MIRTE Master robot. A real-
time feasible solver for the NMPC is required. Therefore, the algorithm is first simulated
offline with the candidate solver to reproduce the results obtained in MATLAB and to assess
suitability in terms of tracking performance and execution time.
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Chapter 5

Real-Time Implementation &
Experimental Validation

The proposed tube-based NMPC is deployed on the MIRTE Master robot. Real-time imple-
mentation requires a fast, reliable solver capable of handling nonlinear systems. acados, an
open-source framework for embedded optimisation [57], is used. Its solver structure is tailored
to real-time hardware with low computational constraints. The framework is modular and
flexible, so the nominal NMPC can be combined with the ancillary feedback law. acados is
widely used in embedded robotic systems that demand robustness and rapid convergence [13].

Conceptually similar to the fmincon function in MATLAB, acados is configured to solve non-
convex OCPs via SQP. In this approach the nonlinear OCP is locally approximated at each
iteration by a convex QP, which is then solved efficiently.

5-1 Control software implementation

The software architecture used for deployment is shown in Fig. 5-1. The tube-based NMPC
is integrated into a ROS 2 package. State feedback is obtained by subscribing to an odometry
topic, and PWM wheel signals are published to dedicated command topics.

In acados, the OCP is defined in a Python generation script that uses acados_template
together with the casadi symbolic library. In this script the OCP defined in (4-9) is declared.
Therefore, the continuous-time extended kinematic model is defined symbolically. The stage
and terminal costs with their weighting matrices are set. The input and input-rate constraints
are declared. The prediction horizon and the discretisation method are selected. Solver
options are also configured.

When the script is executed, the generated C code and Makefile are written to c_generated_code/
in the working directory. The code is then compiled to produce the solver artifacts.

At runtime, the generated solver artifacts are used by a C++ ROS 2 node. C++ is chosen
because it integrates naturally with ROS 2 and avoids Python interpreter overhead in the
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/tube_nmpc package where:
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generate_ocp.py
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Figure 5-1: ROS 2 tube-based NMPC architecture with acados solver

real-time control loop [31]. The generated headers are included and the solver library is
linked at build time. At each sampling instant, the problem data are set as shown by the
tube_nmpc. cpp block in Figure 5-1. The solver is called and returns the initial nominal state
and the first optimal input to the tube formulation. The ancillary controller then computes
the total applied control input and publishes it as motor commands. The RPI set and the
tightened control input set are updated, and the process repeats until the end of the trajectory.

As noted in Section 4-2, the control algorithm runs at 10Hz. This rate provides sufficient
margin for the communication stack and for the response of the DC motors when updated
wheel speeds are received. Hence, increasing the rate at any stage of the implementation is
unnecessary.

To preserve a similar user interface, body-frame velocity setpoints are used. Internally, a
pose reference trajectory is generated from the initial pose and the commanded velocities,
and a slew-rate limiter is applied so that the reference varies smoothly. This choice enables
trajectory tracking while keeping a similar external command interface.

Before hardware deployment, the full pipeline is validated offline. Robot measurements are
simulated consistently with the MATLAB setup, in which an additive iid disturbance is injected
along the trajectory to test robust performance.
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5-2 acados Simulation Results

The tube-based NMPC implemented in acados is validated on rectangular and circular tra-
jectories at constant heading, mirroring the MATLAB tests. The acados runs complete in 2.1
s and 2.6 s for the rectangular and circular paths, respectively, which is significantly faster
than the fmincon runs that take 42.8 s and 46.4 s for the same paths. The maximum number
of iterations in acados is set to 1000, whereas in fmincon it is limited to 50 to keep execution
time minimal. The resulting trajectories are shown in Figures 5-2 and 5-3.

In both cases the nominal trajectory closely tracks the reference and the simulated disturbed
state remains within the RPI set. The RMSE values are reported in the titles of the error
plots in Figures 5-2b and 5-3b and are of comparable magnitude across the two trajectories.
For the rectangular path the acados implementation yields position RMSE in x and y that
is roughly 1 cm lower than in MATLAB, while the yaw RMSE is approximately equivalent. For
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Figure 5-2: Tube-based NMPC for a rectangular path with constant heading
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Figure 5-3: Tube-based NMPC for a circular path with constant heading

the circular path the y position shows an improvement of about 2.5 cm with acados, while
the remaining states are similar between implementations. This improvement may reflect the
different solver configurations, including the higher iteration limit, which can allow a better
suboptimal solution.

The total applied PWM inputs are illustrated in Figures 5-2c and 5-3c, together with the
tightened admissible set for the nominal controller. The inputs have smooth transitions
throughout.

The acados controller tracks the reference under bounded disturbances comparably to the
MATLAB version while achieving lower runtimes. Given the nonlinearity of the OMR, the
underlying OCP is non-convex and solutions are generally suboptimal [27]. Consequently,
the two implementations are not expected to produce identical results, but both consistently
demonstrate robust tracking performance.
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5-3 Experimental Results

The acados implementation is deployed on the MIRTE Master robot. The robot pose is ob-
tained by subscribing to the odometry node, and PWM wheel-speed commands are published
to the individual motor nodes, as indicated in Figure 5-1. All experiments were conducted
indoors in the Mobile Robotics Lab of the Cognitive Robotics department at TU Delft. The
robot operated on an even, matte vinyl floor.

A baseline NMPC controller is used with a definition similar to the nominal controller to
compare robust performance. The key differences are that the control set is not tightened
but remains bounded at [-100,100] and the initial optimisation state is set to the current
robot pose. The NMPC weighting matrices are tuned for the MIRTE Master robot, but are
set the same for both controllers. Thus, this comparison isolates the effect of the ancillary
control law. For a clear comparison, the reference, NMPC, and tube-based trajectories are
plotted superimposed. The measured data were shifted to share the same initial coordinates,
as shown in Figures 5-4 and 5-5.

On the rectangular path, tighter tracking is obtained with the tube-based controller, with
reduced yaw fluctuations and position error. This is reflected in lower RMSE values. Under
the NMPC, larger deviations at the corners with greater yaw drift are observed, reducing
overall accuracy. Wheel slippage is corrected more promptly by the tube-based controller,
while a slower correction is observed for the NMPC. The benefit arises from how the tube
formulation reshapes the nominal problem and from the ancillary feedback that acts at each
sample. The tightened sets reduce the feasible search region, so the nominal optimiser selects
inputs that anticipate curvature in the trajectory. The ancillary law then corrects slippage and
heading error immediately, which prevents the growth of corner transients. This is evident
in the plot of PWM input signals in Figure 5-4c, where the general trend is similar but the
corrections introduced by the ancillary control law are noticeable in the discrepancies along
the straight segments.

On the circular path the curvature and velocity vary smoothly, so both controllers achieve
satisfactory performance and the discrepancies are smaller. Slightly lower errors in the lon-
gitudinal direction and yaw are produced by the tube-based controller, whereas lower lateral
error is obtained with the NMPC. The NMPC already tracks the trajectory well, so there are
fewer opportunities for the tube approach to deliver a significant advantage. This is also evi-
dent in the plot of PWM control input signals in Figure 5-5¢, where both controllers exhibit
very similar trends.

5-4 Summary

This chapter defines the implementation pipeline for real-time deployment on the MIRTE
Master robot. acados is used as the optimisation solver and is first validated in simulation
with two trajectories. The rectangular path is typical of greenhouse operation, whereas the
circular path is included to assess performance on a more curved trajectory. The RMSE levels
are similar to the MATLAB results, with improvements in position for both paths.

On hardware, a baseline NMPC without tightening is used to compare the robust perfor-
mance of the tube-based controller. Real-time control is delivered reliably and efficiently
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5-4 Summary
NMPC RMSE - €,=0.080 m, ¢,=0.039 m, ¢4=0.053 rad
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Figure 5-4: Tube-based vs NMPC for a rectangular path with constant heading

with acados, while staying within the available computational resources. For the rectangular
path, better tracking performance is obtained with the tube-based controller, particularly in
lower yaw RMSE. For the circular path, both controllers perform well with minor discrepan-
cies in the reported RMSEs.

Consequently, cornering is seen to excite modelling errors and to be more prone to slippage.
This is corrected more effectively by the tube-based approach, which yields tighter tracking
without actuator saturation. This finding is relevant for OMRs in greenhouse applications,
since common trajectories include cornering at a constant heading.
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Chapter 6

Conclusions & Future Work

This thesis has addressed the modelling and control of a four-wheeled OMR, using the MIRTE
Master as the experimental platform. Kinematic and dynamic models were derived analyti-
cally to highlight their structural differences and to illustrate the respective advantages and
limitations of each approach. These models were then identified from data using SINDYc,
together with an extended kinematic formulation. While the kinematic and dynamic models
were restricted to the structures derived in Chapter 2, the extended kinematic model re-
laxed these restrictions, enabling additional nonlinearities to be recovered from data while
remaining physically interpretable.

The extended kinematic model offered the best balance between complexity and accuracy
and was therefore selected as the nominal model for control. A tube-based NMPC framework
was developed, with the nominal trajectory generated by NMPC and a time-varying DLQR
ancillary law enforcing invariance within an approximated time-varying RPI set. To enable
this construction, disturbance bounds representing uncertainties such as wheel slip, surface
irregularities, and other unmodelled effects were estimated from residuals of filtered training
data. These bounds were used to define tightened constraints and tube half-widths. The
resulting controller was validated in simulation, where both MATLAB and acados implemen-
tations produced similar tracking results. Importantly, acados achieved significantly faster
runtimes, confirming its suitability for real-time control.

The experiments compared the tube-based controller with a nominal NMPC to demonstrate
the added value of the ancillary structure. On a rectangular path with constant heading,
the tube-based controller reduced cornering error without saturating the actuators, as the
ancillary law corrected slip and heading deviation at each sample and limited the growth of
transients. On a smoother circular path, where curvature and velocity varied gradually, both
controllers performed comparably and the benefit of ancillary feedback was less pronounced.
These results confirm that the tube-based formulation enhances robustness particularly under
manoeuvres with large heading changes or when slip is present.

Overall, the thesis goals defined in Section 1-2 have been achieved. A sufficiently accurate
model was identified under limited data and computational constraints, and it was vali-
dated on representative greenhouse trajectories. A robust trajectory-tracking controller was
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designed and implemented within these constraints, and the proposed control scheme was
verified both in simulation and experiments. In addition, an explicit workflow has been estab-
lished that makes the approximations, parameter choices, and design trade-offs transparent,
whereas these are often implicit in the literature.

The complete source code can be found in the repository.

6-1 Future Work

Although the main goals of the thesis have been achieved, several directions for further re-
search remain open. Model identification could be improved by collecting longer and more
diverse datasets that better excite all motion modes, since the current training set is limited
in both size and coverage. Ensuring balanced excitation across translation and yaw would
likely reduce the modelling discrepancies observed in validation. The actuation dynamics
could also be identified separately. Introducing an explicit mapping from PWM to wheel
angular velocity, including deadband and motor time constants, would allow the first-order
lag observed in the measurements to be reproduced more accurately. Frictional effects are
also only partially captured. Their velocity dependence, particularly at higher accelerations,
suggests that explicit friction models may further improve accuracy.

Future work should also consider more systematic approaches to constructing candidate li-
braries. In this thesis, additional nonlinear terms were included manually, and sparsity thresh-
olds were tuned through search and validation. Automated generation of candidate functions,
combined with structured selection criteria that balance fit and parsimony, would reduce the
time required for identification and uncover higher-order interactions that may remain hidden
in the current formulation. An alternative approach is to explore identification in the body
frame, which removes trigonometric dependencies and simplifies the model structure, though
at the cost of interpretability of the resulting states.

On the control side, the treatment of disturbances can be refined. The current approach relies
on deterministic worst-case bounds, which are conservative by design. Extending the tube-
based framework with adaptive or probabilistic disturbance sets would reduce conservatism
and allow the controller to adapt to changing environments or wear effects over time.

Evaluating the controller under concurrent robot tasks, such as pruning or harvesting, would
further test its robustness under realistic operational conditions and computational load. Di-
rect data-driven predictive control methods provide another interesting benchmark for com-
parison with tube-based NMPC.

Finally, the scalability of the proposed methods should be assessed across multiple MIRTE
Master robots and environments. While the robot served as a representative platform, val-
idating the approach on additional units would help quantify robot-to-robot differences and
determine the extent of calibration required for each system. Testing on varied surfaces and
greenhouse layouts, particularly under conditions of slip and uneven terrain, would further
confirm the robustness of the identified models and the proposed controller. Such studies
would strengthen the case for deployment in PA, which was the overarching aim of this
thesis.
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Glossary

List of Acronyms

DARE discrete algebraic Riccati equation

DC direct current

DLQR discrete linear—quadratic regulator
DoF degrees of freedom

EKF extended Kalman filter

EMF electromotive force

iid independent and identically distributed
IMU inertial measurement unit

LQR linear—quadratic regulator

MPC model predictive control

NMPC nonlinear model predictive control

NN neural network

OCP optimal control problem

OMR omnidirectional mobile robot

PA precision agriculture

PID proportional, integral, derivative
PWM pulse width modulation

QP quadratic programming

RMSE root mean square error

ROS Robot Operating System

RPI robust positive invariant

SINDy sparse identification of nonlinear dynamics
SINDYc sparse identification of nonlinear dynamics with control
SMC sliding mode control
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SNR signal-to-noise ratio

SQP sequential quadratic programming
STLSQ sequentially thresholded least squares
TVR total variation regularised
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