<]
TUDelft

Delft University of Technology

Control-relevant neural networks for feedforward control with preview
Applied to an industrial flatbed printer

Aarnoudse, Leontine; Kon, Johan; Ohnishi, Wataru; Poot, Maurice; Tacx, Paul; Strijposch, Nard; Oomen,
Tom

DOI
10.1016/j.ifacsc.2024.100241

Publication date
2024

Document Version
Final published version

Published in
IFAC Journal of Systems and Control

Citation (APA)

Aarnoudse, L., Kon, J., Ohnishi, W., Poot, M., Tacx, P., Strijpbosch, N., & Oomen, T. (2024). Control-relevant
neural networks for feedforward control with preview: Applied to an industrial flatbed printer. IFAC Journal of
Systems and Control, 27, Article 100241. https://doi.org/10.1016/j.ifacsc.2024.100241

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.ifacsc.2024.100241
https://doi.org/10.1016/j.ifacsc.2024.100241

IFAC Journal of Systems and Control 27 (2024) 100241

journal homepage: www.elsevier.com/locate/ifacsc

Contents lists available at ScienceDirect

IFAC Journal of Systems and Control

Full length article

Control-relevant neural networks for feedforward control with
preview: Applied to an industrial flatbed printer”

Leontine Aarnoudse **, Johan Kon ?, Wataru Ohnishi ®, Maurice Poot?, Paul Tacx?,

Nard Strijbosch ¢, Tom Oomen *¢

¢ Department of Mechanical Engineering, Control Systems Technology, Eindhoven University of Technology, Eindhoven, The Netherlands

b Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

¢ Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 4 April 2022

Received in revised form 19 December 2023
Accepted 6 January 2024

Available online 9 January 2024

Keywords:

Feedforward control
Neural networks
Iterative learning control

The performance of feedforward control depends strongly on its ability to compensate for reproducible
disturbances. The aim of this paper is to develop a systematic framework for artificial neural networks
(ANN) for feedforward control. The method involves three aspects: a new criterion that emphasizes
the closed-loop control objective, inclusion of preview to deal with delays and non-minimum phase
dynamics, and enabling the use of an iterative learning algorithm to generate training data in view of
addressing generalization errors. The approach is illustrated through simulations and experiments on
an industrial flatbed printer.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Feedforward control is essential for the performance of control
applications since it can attenuate known disturbances before
they effect the system. Through model-based approaches (But-
terworth, Pao, & Abramovitch, 2012), approaches that combine
measured data and approximate models (Boeren, Oomen, & Stein-
buch, 2015; Bristow, Tharayil, & Alleyne, 2006), and fully data-
driven approaches (Bolder, Kleinendorst, & Oomen, 2018), high
performance can be achieved for mechatronic systems such as
wafer stages (Blanken, Boeren, Bruijnen, & Oomen, 2017). The
key challenge in feedforward control is the combination of per-
formance and flexibility, i.e., to achieve high performance for a
range of disturbances.

Many techniques for feedforward control have been devel-
oped that differ in terms of the three basic entities involved in
the construction of models from data (Ljung, 1999): the model
structure, the data set and the criterion for assessment of the
model. Each of these entities is essential for the performance and
flexibility properties of feedforward control. In particular, feed-
forward control for motion systems typically requires non-causal

™ This work is part of the research programme VIDI with project number
15698, which is (partly) financed by the NWO.
* Corresponding author.
E-mail addresses: l.i.m.aarnoudse@tue.nl (L. Aarnoudse), j.j.kon@tue.nl
(J. Kon), ohnishi@koseki.t.u-tokyo.ac.jp (W. Ohnishi), m.m.poot@tue.nl
(M. Poot), p.j.m.m.tacx@tue.nl (P. Tacx), n.w.a.strijposch@tue.nl (N. Strijbosch),
t.a.e.oomen@tue.nl (T. Oomen).

https://doi.org/10.1016/j.ifacsc.2024.100241

models (van Zundert & Oomen, 2018), data sets based on the
required flexibility and control setting, and assessment criteria
that take into account the aim of achieving high performance
in terms of the closed-loop error (Boeren, Blanken, Bruijnen, &
Oomen, 2018).

Regarding the model structure, to achieve good performance
the models used for feedforward control should be non-causal
to enable pre-actuation, and they should be non-linear in order
to approximate system nonlinearities. Existing approaches range
from signal-based with optimal feedforward signals for prede-
fined basis tasks (Hoelzle, Alleyne, & Wagoner Johnson, 2011) to
parameterized methods including polynomial and rational basis
functions (Blanken, Isil, Koekebakker, & Oomen, 2018; Boeren
et al,, 2018; Van Der Meulen, Tousain, & Bosgra, 2008), and non-
parametric methods such as Gaussian processes (Poot, Portegies,
Mooren, Van Haren, Van Meer, & Oomen, 2022) and artificial
neural networks (ANNs). Rational basis functions as well as Gaus-
sian processes are capable of generating non-causal feedforward
signals (Blanken & Oomen, 2020), but they are mostly linear
or limited to pre-specified nonlinearities like friction. Artificial
neural networks are universal nonlinear function approxima-
tors (Hornik, Stinchcombe, & White, 1989) that have large poten-
tial for the flexibility and performance of feedforward control of
motion systems.

ANNs have indeed been explored for feedforward control,
which has lead to several improvements, yet the success of these
ANN:Ss is still limited; the abilities of ANNs for preview and non-
linear feedforward are not yet fully exploited because existing
implementations limit the size and structure of the networks.

2468-6018/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ifacsc.2024.100241
https://www.elsevier.com/locate/ifacsc
http://www.elsevier.com/locate/ifacsc
http://creativecommons.org/licenses/by/4.0/
mailto:l.i.m.aarnoudse@tue.nl
mailto:j.j.kon@tue.nl
mailto:ohnishi@koseki.t.u-tokyo.ac.jp
mailto:m.m.poot@tue.nl
mailto:p.j.m.m.tacx@tue.nl
mailto:n.w.a.strijbosch@tue.nl
mailto:t.a.e.oomen@tue.nl
https://doi.org/10.1016/j.ifacsc.2024.100241
http://creativecommons.org/licenses/by/4.0/

L. Aarnoudse, J. Kon, W. Ohnishi et al.

Feedback error learning (FEL) (Kawato, Uno, Isobe, & Suzuki,
1988; Resquin, Gonzalez-Vargas, Ibafiez, Brunetti, Dimbwadyo,
Carrasco, Alves, Gonzalez-Alted, Gomez-Blanco, & Pons, 2017),
similar to Otten, De Vries, Van Amerongen, Rankers, and Gaal
(1997), successfully uses ANNs to map references to causal feed-
forward signals. However, it depends strongly on optimization
through experiment-based gradient descent and as such only
allows for small, shallow ANNs. In Sgrensen (1999), a forward
NARX model is trained and inverted to find reference-based feed-
forward signals, and a two-sample preview is successfully added.
However, this approach depends on invertible ANNs with mono-
tonic mappings, which strongly limits the available ANN struc-
tures.

Regarding the tuning in terms of data sets and assessment
criteria, which is a completely different aspect of ANNs for feed-
forward control, developments in traditional feedforward for con-
trol systems have led to key insights. When a nonlinear system
is approximated, the approximation will depend on the specific
set of input-output data that is used since nonlinearities manifest
themselves along the used trajectories (Markusson, Hjalmarsson,
& Norrlof, 2002). In addition, it is essential that the assessment
criterion for the feedforward model is control-relevant, i.e., it
relates to the criteria based on which the system performance is
assessed (Boeren et al.,, 2015). While important steps have been
made for ANNs for feedforward control, existing approaches do
not consider suitable input-output data or control-relevant as-
sessment criteria. FEL achieves good performance for, e.g., robotic
systems, but it uses the feedback controller output as criterion to
train the ANN (Nilsson & Egardt, 2008), which is neither efficient,
because every iteration requires an experiment, nor optimal, be-
cause it is not directly aimed at minimizing the tracking error.
In Patan and Patan (2019), an ANN-based learning controller
based on error and feedback controller output data is successfully
implemented, but the approach does not take into account the
dependence of feedforward control on the reference. In Xiong and
Zhang (2005) and Chen, Liang, and Zheng (2021), plant input and
output data is used to train a forward ANN-based model, to which
ILC is applied to obtain feedforward signals. Again, the approach
is not optimal because the purpose of feedforward control is not
reflected in the training process.

Although artificial neural networks are promising for feedfor-
ward control, the selection of suitable model structures, data, and
assessment criteria is not yet clear. The aim of this paper is to
develop a systematic framework for ANNs for feedforward control
that explicitly considers these entities in order to achieve both
flexibility and high performance. The contribution consists of four
cornerstones:

(C1) a control-relevant loss function that directly aims at mini-
mizing the closed-loop error;

(C2) non-causal neural networks with respectively finite and
infinite preview;

(C3) the use of iterative learning control to inexpensively gen-
erate suitable training data; and

(C4) illustration of the approach through several simulations
and through experiments on an industrial flatbed printer.

In addition, guidelines regarding data acquisition, network de-
sign and implementation aspects are provided. Preliminary re-
search appeared in Aarnoudse et al. (2021). The present paper ex-
tends (Aarnoudse et al., 2021) with extended theory, explanations
and implementation guidelines.

In the broader picture of ANNs for control and identification,
significant developments have been made. In the field of system
identification, ANNs are used to model nonlinear systems (An-
dersson, Ribeiro, Tiels, Wahlstrom, & Schén, 2019). Regarding

IFAC Journal of Systems and Control 27 (2024) 100241

Jon

TR L S O e B T

Fig. 1. Standard control setup (left) and control setup with a neural network
F(r) that maps r tofy, (right).

control, Moore (1993) suggests using ANNs as nonlinear con-
trollers for nonlinear systems, Ren, Lewis, and Zhang (2009) uses
ANNs with an additional sensor to detect and compensate ex-
ternal disturbances, and in the field of model-predictive control
(MPC) ANNs are used to approximate optimal MPC strategies, see,
e.g., Chen, Wang, Atanasov, Kumar, and Morari (2022), Hertneck,
Kohler, Trimpe, and Allgower (2018) or the overview in Hewing,
Wabersich, Menner, and Zeilinger (2020).

This paper is structured as follows. In Section 2 the problem
considered in this paper is formulated. In Section 3, the need
for control-relevant training of ANNs is explained and a control-
relevant loss function is designed. The importance of non-causal
feedforward and the network structures enabling finite and infi-
nite preview for feedforward control are discussed in Section 4.
In Section 5 the use of iterative learning control to generate
training data is proposed. In Section 6, a systematic framework
for ANNs for feedforward control is introduced, design consid-
erations aimed at motion feedforward are discussed, and some
implementation aspects are considered. Experimental results are
shown in Section 7. Lastly, conclusions are given in Section 8.

2. Problem formulation

In this section, the considered problem is formulated. First,
feedforward control is introduced. Then, artificial neural net-
works are introduced and their potential for motion feedforward
is discussed.

2.1. Feedforward control

Feedforward control aims to compensate for known distur-
bances. Consider an LTI control system as shown in Fig. 1 (left).
The discrete-time error signal e(t) with is given by

e(t) = Sr(t) — SPf(t) (1)

with reference r(t), feedforward signal f(t) and system sensitivity
S = (1+PC)~! with plant P and controller C. The reference r(t) is
a known disturbance that can be compensated by the feedforward
signal f(t). Zero error is achieved for

f*(t) = (SP)~'sr(t) = P 'r(¢). (2)

Feedforward signal f*(t) can, in general, not be determined di-
rectly since it depends on both the known reference signal r(t)
and the plant P, which is typically not known exactly. Existing ap-
proaches to approximate f*(t) include model-based estimations
of P or P! and data-driven methods such as iterative learning
control (ILC) that learn a feedforward signal f(t) ~ f*(t) directly
for one specific Ref. (Bristow et al.,, 2006) or parameterized as
a function of r(t) to achieve flexibility for varying Refs. (Bolder
et al., 2018; Bolder & Oomen, 2015).

L. Aarnoudse, J. Kon, W. Ohnishi et al.

D@D —
w%Q T
b3

Fig. 2. Example of a neuron zf, the inputs for which are given by the outputs
of the neurons in the previous layer, z{ and z}, with weights w,’(j and bias b}.

Input Hidden Hidden Output
layer layer layer layer
=0 =1 =2 =3

Fig. 3. FNN with two fully connected hidden layers.

2.2. Artificial neural networks

Artificial neural networks are universal function approxima-
tors that are capable of representing complicated and nonlinear
mappings (Hornik et al., 1989). A neural network, illustrated in
Fig. 2, consists of neurons that are collected in layers, where
each neuron has one or multiple inputs and a single output.
The outputs of the neurons in one layer form the inputs for the
neurons in the next layer. The output of a neuron z}<, the k™
neuron in layer [of a simple feedforward neural network (FNN)
where the information moves in a single direction, is given by

7z, =0 (L5 wiz ™ + b)) (3)

with w,’q € R the weights, b}, € R the biases, nj_; the number of
neurons in the previous layer and o an activation function, which
typically is a nonlinear mapping.

In this paper, three types of neural networks are considered:
feedforward neural networks (FNN), time-delay neural networks
(TDNN) (Waibel, Hanazawa, Hinton, Shikano, & Lang, 1989), and
recurrent neural networks (RNN) (Rumelhart & Hintont, 1986). In
an FNN, the information moves in one direction from the input
nodes, through the neurons in the hidden layers, to the output
nodes, see Fig. 3. In TDNNs the information moves similarly, but
each neuron in the first layer of a TDNN receives, in addition to
the current input, a window of time-delayed inputs.

RNNs can be interpreted as nonlinear state space systems
(Ljung, Andersson, Tiels, & Schon, 2020), because they contain
an recurrent state containing information from a distant past. In
contrast to time-delay neural networks that only convey informa-
tion from a limited window of past inputs, the recurrent neural
network creates a feedback loop around each node in the net. The
information contained in the state may remain available infinitely
long.

2.3. ANNs for feedforward control
This paper aims to exploit the capabilities of neural networks

in finding mappings without requiring a priori system knowledge,
in order to achieve both high performance and flexibility for

IFAC Journal of Systems and Control 27 (2024) 100241

varying references in feedforward control. Specifically, the aim is
to use neural networks to find a mapping F(r(t)) for which

f(e) = Fr(ey), (4)

such that feedforward signalf(r) minimizes the error e in (1) for
f(t) = f(t). This results in the control structure shown in Fig. 1
(right).

Three important aspects of feedforward control are explicitly
taken into account to achieve high performance for varying ref-
erences: (1) a control-relevant loss function is introduced that
reflects the aim of minimizing e(t) in the training, (2) the neural
networks are designed to enable non-causal feedforward signals
with finite or infinite preview, and (3) iterative learning control is
used to inexpensively generate closed-loop data to minimize the
generalization error.

3. Control-relevant neural networks

In this section a control-relevant loss function is presented
that directly reflects the aim of minimizing e(t) in (1) through
weighting with an estimate of the process sensitivity SP, leading
to contribution C1. A simulation example is used to illustrate that
typical mean-squared error-based training_of neural networks,
which is equivalent to using the estimate SP = 1, is not suitable
for control purposes.

3.1. Control-relevant loss functions

The aim of feedforward control is to minimize the error e(t) in
(1). A control-relevant loss function that takes into account this
aim is proposed in the following theorem.
Theorem 1. The approximation f(t) of feedforward signal f*(t) =
P~r(t) that results in the smallest error e(t) in (1) for reference
r(t) in terms of the squared vector 2-norm is the minimizer of loss
function

N N 2
gde) = s (ro-io)) . (5)
with the vector 2-norm defined as ||x|; = vVx"x.

Proof. Feedforward signal f*(t) is rewritten to

f*(t) = (SP)~'sr(¢). (6)
Using (6), (1) is rewritten to
e(f(t)) = SPF*(t) — SPf(t) = SP(f*(t) — f(t)), 7)

Taking ||e((f)t)||§ results in loss function

gy =sp (@ - o). ®)

In practice, SP is typically not know exactly and a model SPis
used instead. To provide robustness against model uncertainty a
regularization term may be added as in Bristow (2008), resulting
in the regularized control-relevant loss function

N —~ N 2
Jex (F©)) =1 [P (£ F0) | (9)
~ 2
+ro-fo|
W,
where w; is a scalar weight, and ||x||5\,2 = Xx"W)x where W,

may be chosen, for example, as wI. The regularization term also
prevents constant offsets in f*(t) — f(t) that may occur if SP is
small at low frequencies due to integrators in C. The analysis
assumes that P is LTI, but in practice most systems are nonlinear

L. Aarnoudse, J. Kon, W. Ohnishi et al.

)
o
F |
——p-| 7111 |_ mo
b VAYAYAYAA A

Fig. 4. Non-collocated two-mass spring damper system.

and therefore these offsets could cause undesirable effect. Note
that the standard mean-squared error (MSE) loss function that
is typically used in regression-based training of neural networks
minimizes [f*(t) —f(t)||§ and is equivalent to (9) with estimate
SP = 1, which is not suitable for feedforward control in general
as illustrated in the next example.

3.2. Example

The importance of the control-relevant loss function is illus-
trated using an example of two-mass spring damper system. The
system is undermodeled and the model parameters are fitted us-
ing both mean-squared error and control-relevant loss functions
to illustrate the importance of fitting the part of the signal that
has the largest influence on the tracking error.

Consider a system consisting of two masses, connected by
a spring and a damper, as shown in Fig. 4. An actuator that
provides a force input is connected to the first mass, while the
position output is measured at the second mass, resulting in a
non-collocated system. The transfer function from input to output
is given by

ds+k
T omymyst 4 (my 4 my)ds3 + (my + my)ks?
0.5s +822.5
"~ 554 4 353 4 493552’
with s the operator variable in the Laplace domain, masses m; =
1 and my, = 5, damper constant d = 0.5 and spring constant
k = 822.5, resulting in the Bode diagram of P shown in Fig. 5 . The

system is put in feedback as shown in Fig. 1 (left), with controller
C given by

_9.5495 + 10
T 0.1061s+ 1’

i.e., a lead/lag filter with a zero on 0.167 Hz, a pole on 1.5 Hz and
a gain of 10. The system is discretized using zero-order hold with
a sampling frequency of 1kHz, and a reference given by r(t) =
0.1(1 — cos(rt)) + 1074(1 — cos(40xt)) for t = 0, 1/1000, ..., 4,
see Fig. 6, is applied.

It is assumed that a feedforward signal f*(t) is available, which
results in zero error for reference r(t). This signal is given by
f*(t) = P~1r according to (2), and can be found using, for exam-
ple, iterative learning control as shown in Section 6. Signal f*(t)
is projected onto a set of reference-dependent basis functions
Y (r(t)), which is equivalent to training an ANN that is linear
in the parameters. In particular, a basis function is chosen that
approximates the system by a mass, i.e., ¥(r(t)) = #(t). Thus,
plant P is approximated by

1
ms?’
Note that the system P is undermodeled by P, and that the
estimation holds only for low frequencies before the resonance,

where the system behaves as a rigid body. The projected feedfor-
ward signal is given by

F(e) = P7r(t) = w(r(t). (13)

(10)

(11)

pP= (12)

IFAC Journal of Systems and Control 27 (2024) 100241

E‘ 0E T T T 7777 4
=2 A
3
E —100 |- 5
&
§ —200 - I AR Ll IR q
10! 10° 10! 102
200 T T 111710 T T TTT71] T T T 11177 T T
g 10 3
= 100| |
é 50 i
0 NN Lol IR |
10! 10° 10t 102

Frequency [Hz]

Fig. 5. Bode diagram of a non-collocated two-mass spring damper system

(—) and of estimates P = -1 with based on projected norm-optimal ILC

el
without (—) and with SP—weingShting (—). Note the phase difference between the

projections. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Parameter 11 is estimated using both standard MSE training with
SP = 1 and control-relevant training with SP = SP to illustrate
the importance of control-relevant training.

3.2.1. Standard (unweighted) MSE training
The unweighted least-squares estimate of m based on f*(t) is
given by

sz = arg min [[f*(¢) = y(r(e)m]; (14)

= (WY ()~ v,

This estimation results in the feedforward signal shown in Fig. 7.
As shown in the figure, f*(t) contains much more energy at 20 Hz
than the reference signal, due to the high gain of P~! at that
frequency. This is reflected in the projected feedforward signal,
which also contains most energy at 20 Hz, with the corresponding
phase. However, the estimate that follows from (14) is given by
myse = —1.12, while the actual mass for the rigid-body mode is
my + my = 6. In Fig. 6 it is shown that this estimation, with a
phase opposite to that of the system at low frequencies as shown
in Fig. 5, results in a high error. Note that in the error signal, most
signal content is at 0.5 Hz. This illustrates that the estimate (14) is
not suitable for feedforward control in general, since the energy
distribution over frequencies in f*(t) does not necessarily reflect
that in the error.

3.2.2. Control-relevant training
Now, estimate ficg is determined using weighting with SP
according to (5), such that

e = arg min [|SP(f*(t) - Y(r(t)m)ll3 (15)

= ((SPy (r(E)SPY(r(£)) " (SPY(r(t)))'SPF¥(t).

This results in the estimate mcg = 5.94 and the corresponding
Bode diagram shown in Fig. 5, which approximates P well at low
frequencies. The resulting feedforward signal is shown in Fig. 7,
and while it is in anti-phase with f*(t) at high frequencies, it is in
phase at low frequencies and the resulting error shown in Fig. 6
is almost zero.

The example illustrates the importance of using a loss function
that reflects the purpose of minimizing the closed-loop tracking
error. The best fit in terms of the mean-squared difference be-
tween f*(t) and f(t) results in an increase in error compared to
not using feedforward. By weighting with SP, an estimate f(t) is

L. Aarnoudse, J. Kon, W. Ohnishi et al.

0.2 N
E 2 N W2 s~‘ .“..
= » 4 \/
\‘ 74 h
—0.2 | AT |
0 1 2 3 4
Time [s]

Fig. 6. For a non-collocated two mass-spring-damper system with reference
(---), projecting f*(t) on a mass basis function without weighting results
in a error (--) larger than the error without any feedforward (—). When
the projection is weighted with SP instead, the error is almost 0 (—). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

glsuuwu AAAAAAZ

Fig. 7. The feedforward signal f*(t) used for training (--) and its unweighted
projection on a mass basis function (- -) are in phase for high frequencies, and
in anti-phase for low frequencies. When the projection is weighted with SP,
the resulting feedforward signal (—) is in phase with the training signal at
low frequencies and in anti-phase at high frequencies. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

found that best approximates the part of f*(t) that has the largest
influence on e(t), resulting in good tracking performance.

4. Non-causal neural networks

Feedforward signals for motion systems typically require pre-
view to achieve zero error, for example due to plant delays or
in the presence of non-minimum phase zeros. The feedforward
signal for which zero-error is achieved is given by f* = P!
according to (2). For typical discrete-time systems, the plant P
contains delays and is therefore strictly proper. As a result, the
inverse plant P~!, which is to be approximated by the neural
network, is non-causal.

In this section, two types of neural networks are consid-
ered that are capable of finding non-causal mappings between
the reference and the feedforward signal, respectively with fi-
nite and infinite preview: non-causal time-delay neural networks
(TDNN) and recurrent neural networks (RNN) with bi-directional
long short-term memory (BiLSTM) layers. First, non-causal net-
work structures are introduced, leading to contribution C2. Then,
the importance of non-causal feedforward is illustrated using a
benchmark non-minimum phase system to which both causal
and non-causal neural networks are applied.

4.1. Non-causal neural networks

A non-causal feedforward signal with finite preview can be
generated using a time-delay neural network with shifted in-
puts. A standard TDNN (Waibel et al.,, 1989) is a causal operator
that maps a finite time sequence of input samples {r(t), r(t —
1),...,r(t — N)} to a single output fi,(t). To enable non-causal

IFAC Journal of Systems and Control 27 (2024) 100241

r(t +m) :@

Fig. 8. Input node for causal (left) and non-causal (right) time-delay neural
networks with N input delays and m samples preview.

Y

N

Fig. 9. Non-minimum phase system consisting of a mass that can translate in
x-direction and rotate in ¢-direction with input force u and output y.

feedforward signals with finite preview, the input of a standard
TDNN is shifted. A preview of m samples is obtained by tak-
ing as input rene(t) = r(t + m), such that {rsnir(t), rsnir(t —
1), ..., rhie(t = N)} ={r(t+m), r(t+m—1),...,r(t+m—N)}L
Input nodes for causal and non-causal TDNNs are illustrated in
Fig. 8.

In typical feedforward control, it is also possible to include
infinite preview, see e.g. van Zundert and Oomen (2018) on
inversion for feedforward. Recurrent neural networks with bi-
directional long short-term memory layers can be used to ob-
tain feedforward signals with infinite preview. A standard LSTM
layer (Hochreiter & Schmidhuber, 1997) contains a hidden ‘state’
containing information on prior inputs and outputs. In a biLSTM
layer, two LSTM layers are combined. One of the layers receives
standard forward data, while the other receives time-reversed
data. As such, the biLSTM layer has access to all past and future
data, resulting in infinite preview equal to the reference length.

4.2. Motivating example: non-minimum phase systems

The importance of preview in feedforward control is illus-
trated using the non-minimum phase benchmark system shown
in Fig. 9, see also van Zundert and Oomen (2018). Consider the
open loop system from force u [N] to position y [m], given in
discrete time by

—3.107%(z 4+ 0.9632)(z — 0.9447)(z — 1.1410)
(z — 1)%(z2 — 1.9595z + 0.9632)
The system is sampled at 1kHz. With the feedback controller

C(z) = % the process sensitivity SP(z) becomes

P(z) = (16)

SP(z) = (17)
—3.107%(z + 0.9632)(z — 0.9447)(z — 1.1410)(z — 0.9813)
(z — 0.9901)(z2 — 1.9903z + 0.9903)(z2 — 1.9605z + 0.9640)

The systems P and SP have one non-minimum phase zero z =
1.1410, which causes undershoot, i.e., the step response of the
system initially moves in the ‘wrong’ direction (Vidyasagar, 1986).

L. Aarnoudse, J. Kon, W. Ohnishi et al.

2 100 8
S 50| .
E o ,

Z =50 | ! .
* | : | | |
T 02 0 0.2 0.4 0.6

Time [s]

Fig. 10. For a non-minimum phase system and a reference r (—) which is zero
for all t < 0, the bounded feedforward signal f* (—) that achieves zero error is
non-causal. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

100
Z
= 50 |-
<
E 0.....,..,w
RS
B 50|
(9]
o}
—100 ‘ ‘
~0.1 0.1 0.2

Time [s]

Fig. 11. Feedforward signals for the non-minimum phase system. For a reference
starting at t = 0, the non-causal feedforward f* (—) that achieves zero error is
nonzero for t < 0. The feedforward generated by a bi-directional LSTM RNN (- -)
is also non-causal due to infinite preview, while a causal LSTM RNN (-----) has a
bias for t < 0 and only shows dynamic behavior when the fourth derivative of
the reference becomes nonzero. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 1

Overview of the causal and non-causal networks used for simulation. The size
of each layer is given between parentheses, where ‘out’ is a linear output layer
with one neuron.

Network llell2

No feedforward 0.278

TDNN, causal (20 samples backview), 0.292
ReLU(50, 50, out)

TDNN, non-causal (50 samples preview, 0.083
20 samples backview), ReLU(50, 50, out)

TDNN, non-causal (20 samples preview, 0.152
20 samples backview), ReLU(50, 50, out)

RNN, causal LSTM (features hidden state = 5, 0.183

2 recurrent layers + output)
RNN, non-causal biLSTM (features hidden state = 5,
2 recurrent layers + output)

0.080

Because of the non-minimum phase behavior of the system,
the bounded feedforward signal f* = P~'r that achieves zero er-
ror is non-causal and provides pre-actuation, as shown in Fig. 10.
In order to generate a feedforward signal of this form, a non-
causal neural network is required.

For the simulated system (17) a data set containing feed-
forward signals for five different references is generated. One
reference is kept apart as test data, the others are used to train
several causal and non-causal neural networks with finite and
infinite preview as listed in Table 1. Each neural net is trained as
explained in Section 6, using a mean-squared error loss function
and with the reference and its four derivatives as inputs. In
Table 1, the performance of each network for the test reference
is expressed by the error 2-norm.

As shown in Fig. 11, non-causal neural networks can provide
the pre-actuation required for a small error, in contrast to causal
neural networks that, apart from a bias, only start actuating

IFAC Journal of Systems and Control 27 (2024) 100241

when the reference or its derivatives are nonzero. The results in
Table 1 illustrate that non-causality is required to achieve small
errors. In addition, it is shown that while non-causal TDNNs are
capable of achieving small errors, this depends strongly on the
size of the finite preview. As such, these TDNNs have an extra
design parameter compared to RNNs with biLSTM layers that
have infinite preview.

5. Data acquisition

In this section, it is proposed to use iterative learning control
(ILC) to generate closed-loop training data. Specifically, ILC is used
to generate feedforward signals for a set of references, leading to
contribution C3.

When modeling systems, especially systems with nonlinear-
ities that manifest themselves along the used trajectories, it is
essential that the data on which the model is based is maximally
informative for the purpose of the model. In the case of ANNs for
feedforward, this means that the data should reflect the aim of
minimizing e(t) in (1) through feedforward f(t) for various ref-
erences r(t). Therefore, the ANNs are trained using training data
consisting of references and corresponding feedforward signals
for which e(t) ~ 0. The N references ri(t), i = 1,2,...,N are
chosen such that they cover the set of possible references well in
terms of positions, directions and position derivatives including
velocity, acceleration and jerk.

For each of the references, a feedforward signal is required
such that Assumption 2 holds.

Assumption 2 (Perfect Training Data). For each reference r;, the
corresponding feedforward signal fi.in ; results in zero error, i.e.,

ei(t) = Sri(t) — SPfirain,i(t) = Sri(t) — SPf*(t) = 0. (18)

This can be achieved by iterative learning control (ILC) (Bris-
tow et al., 2006), provided that there are no iteration-varying
disturbances. In ILC, a feedforward signal that compensates for
a repeating disturbance, e.g., a reference signal, is learned iter-
atively. Each iteration j, the feedforward signal fj(t) is updated
according to

fiea(t) = QUfi(t) + arley(t). (19)

The error ej(t) for feedforward f(t) = fj(t) is determined ex-
perimentally and is defined according to (1). Learning filter L
is chosen to approximate SP~—! using a suitable inversion ap-
proach (van Zundert & Oomen, 2018). Robustness against mod-
eling errors is provided by the filter Q and learning gain «
ensures that iteration-varying disturbances are not amplified by
the learning. ILC requires few iterations to converge, it is easy
to implement and it is capable of attenuating repeating distur-
bances completely. As such, it is a suitable technique to inex-
pensively generate training data for neural networks for motion
feedforward.

6. Implementation and design considerations

In this section several aspects of ANN design and implemen-
tation are considered. First, the approach proposed in this paper
is summarized in Algorithm 1. Secondly, some considerations
regarding the design of ANNs for motion feedforward are given.
Thirdly, the implementation of the control-relevant loss function
of Section 3 and the data processing are explained.

6.1. Network design for motion feedforward

Several aspects of the design of ANNs for motion feedforward
are discussed based on properties of motion systems. First, suit-
able input signals are selected. Secondly, the network structure
and activation functions are discussed.

L. Aarnoudse, J. Kon, W. Ohnishi et al.

Algorithm 1 Neural Networks for Feedforward Control

1: Design a representative set of references (Section 5).

2: Use ILC to find the optimal feedforward input for each of the
references (Section 5).

3: Process the data to improve the conditioning, and separate
the data in training and testing sets (Section 6.2).

4: Choose a suitable neural network in terms of non-causal
properties and other hyperparameters (Sections 4, 6.1).

5: Train the network using a control-relevant loss function
(Sections 3, 6.2).

6: First validation step: evaluate the loss Jcg for the testing data
set.

7: Second validation step: evaluate the experimental tracking
error for the testing data set.

8: Use the neural network to generate feedforward signals for
arbitrary references.

6.1.1. Input selection

For feedforward control of typical motion systems, it is rec-
ommended to use not only the reference but also its derivatives
as inputs to the neural network, since the derivative terms deter-
mine essential parts of the feedforward signal. In particular, the
acceleration term is required for mass feedforward, the velocity
term is needed to overcome viscous friction and the snap term is
used to compensate for flexible dynamics.

Theoretically, the neural network should be able to compute
derivatives of the input itself, as is shown for a very simple
TDNN with linear activation functions in Aarnoudse et al. (2021).
However, this seldom works well in practice due to the different
orders of magnitude of the derivatives of the reference, which
result in bad conditioning. Due to this conditioning, combined
with extensive nonlinear networks with many local minima in
the cost landscape, solvers are often not able to find the minimum
corresponding to a situation in which the input is differentiated.
Therefore, it is recommended to provide the reference derivatives
as inputs to the network.

6.1.2. Hyperparameters: layers, neurons and activation functions

The selection of hyperparameters, such as the number of lay-
ers and neurons per layer, is crucial for the performance of neural
networks. In the case of motion feedforward, the aim is to find a
mapping f = F(r), where the resulting error is zero if F(r) is
equal to the inverse plant P~!. Therefore, the requirements for
the neural network depend on the plant. The network should be
extensive enough, in terms of the number of layers as well as
the neurons and functions within these layers, to approximate
P~ well. However, as is typical in most identification problems,
there is a trade-off between bias and variance. While a large
network may be able to find a mapping close to the true system,
i.e.,, with a small bias, a network with many parameters will have
a larger variance error (Ljung et al., 2020) and might suffer from
overfitting. In addition, such a network will take longer to train.

Extensive selection of optimal hyperparameters is outside of
the scope of this paper and requires further research. However,
there are some system properties that can be taken into account
when selecting a suitable network. First of all, although LTI sys-
tems are assumed at some points in this paper, motion systems
typically contain nonlinearities such as friction that can be mod-
eled by ANNSs that use nonlinear activation functions. Secondly, in
general these nonlinear characteristics can often be described by
relatively simple functions, such that relatively small ANNs are
often found to give good approximations. This is illustrated in
Section 7, where TDNNs with one hidden layer containing twenty
neurons achieve good performance.

IFAC Journal of Systems and Control 27 (2024) 100241
6.2. Implementation

Nowadays, many tools in various programming languages are
available for training neural networks. This section aims to point
out some implementation aspects that are of importance regard-
less of the specific tools that are used. In particular, the imple-
mentation of control-relevant loss functions and the processing
of the data are discussed.

6.2.1. Filtering through dynamic systems

In many machine learning frameworks, fast training of neural
networks is enabled by the use of GPUs instead of CPUs and by
automatic differentiation. Both of these steps limit the available
predefined functions significantly. While this is typically not a
problem for training neural networks, since all relevant functions
are available, it does become problematic when, for example,
functions from a control systems toolbox are used. Therefore, the
straightforward approach of determining the loss (9) by filtering
firain(t)—f(t) through a dynamic model of SP using functions such
as 1sim results in extremely slow training of the neural network.

To take advantage of the fast calculations available for specific
functions in the field of machine learning, the control-relevant
loss function of Section 3 can be implemented using convolutions.
The response y(k) of a stable, causal linear discrete-time dynamic
system at sample k is given by

k—1
y(k) =Y h(i)f (k- i) (20)
i=0

with f(k) the input and h(i) the Markov parameters of the system.
Note that the closed-loop process sensitivity SP of a physical
system is causal and, in general, stable due to the closed-loop
controller C. The Markov parameters of the system SP follow
from its impulse response, which only needs to be simulated or
measured once. During training, (20) can be implemented using
the convolution functions available in typical machine learning
toolboxes. Note, however, that these functions are typically aimed
at image processing for classification, and as such may employ
cross-correlation rather than actual convolution. In this case,
either the sequence of Markov parameters or the output signal
should be flipped to obtain the correct system response.

Remark 3. Using (20) allows for a procedure that does not
require parametric models. The Markov parameters of the sys-
tem can be determined from a frequency-response measurement
of the system. For data generation, it is possible to use lifted
ILC (Bristow et al., 2006) which only requires the same Markov
parameters.

6.2.2. Data processing

The training data for the neural network is conditioned to
enable efficient training. The magnitudes of the reference deriva-
tives that are used as inputs for the network, especially for
higher-order derivatives such as jerk and snap, are typically much
higher than that of the reference itself. Therefore, it is advanta-
geous to normalize all input signals as well as the training output.
Each input and output signal is normalized by determining the
maximum absolute value over all references, and scaling the
signal with that value.

To validate the performance of the neural network after train-
ing it is important to exclude several of the references with
corresponding feedforward signals from the training data and use
them as testing data instead. The separation of the available data
in training and testing sets is a trade-off between the quality
of training and validation. However, when the data is generated
using an inexpensive method such as ILC, both data sets can be

L. Aarnoudse, J. Kon, W. Ohnishi et al.

(® 4 |
4 LGantry Tu”

Fig. 12. Photo (top) and schematic overview (bottom) of the Arizona flatbed
printer.

= —80

=

2 —100

=

S —120[

<

2 _140 Lol Lol Lol Lol L1l
102 107! 10° 10* 10?

Frequency [Hz]

Fig. 13. Process sensitivity SP of the y-axis of the printer.

made sufficiently large. In the particular case of neural networks
for motion feedforward, the validation may consist of two steps:
First, the loss (9) is determined for the testing data. Secondly, if
the calculated loss is found to be acceptable, the feedforward sig-
nal is implemented on the system to determine the experimental
performance.

7. Experimental results

In this section the proposed framework for neural networks
for feedforward control is illustrated using an industrial flatbed
printer. First, the experimental setup and implementation are in-
troduced. Then, the results for different types of neural networks
are compared and discussed.

7.1. Experimental setup

The approach is illustrated using an industrial Arizona flatbed
printer, shown in Fig. 12. A single-input single-output situation
is considered, in which only the carriage is moved. The input
Fy is the force on the carriage, and the output y is its position.
The translation and rotation of the gantry have a reference equal
to zero, and no feedforward is applied in these directions. A
Bode magnitude plot of the process sensitivity of the y-axis of
the flatbed printer is shown in Fig. 13. In the remainder of this
section the data acquisition is described, and the training and
implementation using PyTorch are described.

Remark 4. Experimental setups may be subject to non-
reproducible disturbances such as noise. This influences the per-
formance of feedforward control, and Assumption 2 may not be
met. Since feedforward control does not influence the stability of

IFAC Journal of Systems and Control 27 (2024) 100241

05
)
g 0
Z
[
—0.5 | | | | | |]

Time [s]

Fig. 14. Nine training references (solid) and the testing reference (dashed).

the closed-loop system the method remains feasible as long as the
main disturbances are reproducible. Two approaches to reducing
the influence of noise are as follows.

(1) To reduce the noise in the ILC training data, ILC should be
applied with a small learning gain which averages the noise
over multiple realizations (Oomen & Rojas, 2017).

(2) The influence of noisy data on ANN training is analyzed
in Kon, Heertjes, and Oomen (2022), which investigates
instrumental variables as a solution.

7.1.1. Data acquisition using ILC

In accordance with Algorithm 1, a representative set of ten
fourth-order references is designed that covers a set of posi-
tions, velocities, accelerations, jerk and snap values, see Fig. 14.
The length of the references varies between 5-7s, sampled at
1000 Hz. Thus, each reference provides between 5000 and 7000
data points.

Standard frequency-domain ILC (Bristow et al., 2006) is used
to find a feedforward signal for each of the references, requiring
around ten iterations for each reference. One of the references for
which the feedforward signal is known and that is comparable
to the training references in terms of the derivative values, is
reserved as testing data. This signal is used for a first evaluation
step, i.e., evaluating the theoretical cost for a signal for which the
optimal feedforward signal is known, as well as for the second
evaluation step, i.e., experimental validation.

7.1.2. Neural network training and implementation

The neural networks are trained using PyTorch (Paszke et al.,
2019) software in Python, which uses automatic differentiation
to allow for fast backpropagation and training. First, the training
data is normalized to improve the conditioning during training.
Then, different types of neural networks are designed and trained.
While there are many algorithms available for training neural
networks, the Adam algorithm (Kingma & Ba, 2015) is preferred.
It was observed that the Adam algorithm results in relatively
fast training without stability issues, as opposed to, for example,
stochastic gradient descent, which converges slowly, or LBFGS,
which can converge fast but in this case tends to diverge easily.
The ANN weights are initialized using Kaiming Uniform or He
initialization (He, Zhang, Ren, & Sun, 2015), which is the default
initialization in PyTorch.

Although the time required for training varies depending on
the network, in general the training is fast because of the rela-
tively small data set used in this paper. For each network, the
training process consists of 1000 epochs with a higher learning
rate of 5e2, followed by 15000 epochs at a learning rate of 3e 2.
The training is conducted on a standard workstation: a Lenovo
Thinkpad P1 laptop running Windows 10, with a NVIDIA Quadro
T1000 graphics card and an Intel Core i7 9750H processor. 100
epochs with nine training references take approximately 6 s for
the nonlinear FNN (see entry FNC in Table 2) and approximately
60 s for the much larger biLSTM RNN (see entry RNC in Table 2).

L. Aarnoudse, J. Kon, W. Ohnishi et al.

Table 2

Overview of the networks tested in experiments. The size of each layer is given
between parentheses, where ‘out’ is a linear output layer with one neuron.
ANNs are trained with a control-relevant (CR) or mean-squared error (MSE)
loss function.

Name ANN design Loss
FLCC FNN, Linear (20, 20, out), Causal CR
FLCM FNN, Linear (20, 20, out), Causal MSE
FNCC FNN, Nonlinear: ReLU (50, 50, out), Causal CR
TNCC TDNN, Nonlinear: ReLU(50, 50, out),

Causal (20 samples backview) CR
TNNC TDNN, Nonlinear: ReLU(50, 50, out),

Noncausal (20 samples backview, 10 preview) CR
TNNM TDNN, Nonlinear: ReLU(50, 50, out)

Noncausal (20 samples backview, 10 preview) MSE
RNCC RNN, Nonlinear, Causal: LSTM (features

hidden state = 50, 2 recurrent layers + output) CR
RNNC RNN, Nonlinear, Noncausal: biLSTM (features

hidden state = 50, 2 recurrent layers + output) CR

Since the training is relatively fast, even for large networks, this
shows that there is room to increase the size of the data set or
the networks.

Remark 5. In this paper the feedforward signals based on the
ANNs are computed offline, such that real-time computation re-
quirements are of no concern. Computing the feedforward signal
for the complete test reference of 5500 samples takes approxi-
mately 0.5s for the nonlinear FNN, and 0.6 s for the non-causal
RNN. In general, for sufficiently small ANNs that employ limited
preview, real-time computation of feedforward signals can be
feasible, see, e.g., Otten et al. (1997), Resquin et al. (2017).

7.2. Overview of the networks used in experiments

Different types of neural networks (FNNs, TDNNs and RNNs)
are tested on the experimental setup to illustrate the influence of
finite and infinite preview, and the choice of activation functions
and other hyperparameters. All networks use as input the 4th-
order reference with its first four derivatives (velocity, accelera-
tion, jerk, snap), in accordance with Section 6.1.1. The networks
that are used are given in Table 2. Each network configuration is
trained using the control-relevant loss function

7(7) = wrfse (i - F)], +

with w; = 1, W, = 0.11. Additionally, for comparison two of the
network configurations are also trained with wy = 0, W, =1,
resulting in a mean-squared error loss function.

After training, the neural nets are used to generate a feed-
forward signal for a reference outside of the training set. The
resulting feedforward signals are each tested on the setup five
times, and the experimental loss is determined by replacing the

term SP (firain — f in the loss function by the average squared

2-norm of the error of these five experiments. The results of the
different networks are summarized in Table 3.

ean —F 1)
Wy

7.3. Discussion of experimental results

In the following paragraphs, different aspects of the results
shown in Table 3 are discussed. The main observations are the
following:

e Using nonlinear activation functions results in a loss reduc-
tion of at least 50% compared to a linear network that is
equivalent to polynomial basis functions.

IFAC Journal of Systems and Control 27 (2024) 100241

Table 3

The loss on the training data and the experimental loss on the test reference
according to (21) with wy = 1, W, = 0.1 for each of the ANNs in Table 2.
Control-relevant training and preview in TDNNs improve performance.

Net Loss training Loss test exp.
firain 0 4.606 x 10"
FLCC 3.355 x 10° 3.130 x 10?
FLCM 3.451 x 10° 3.351 x 10?
FNCC 1.201 x 10° 1.246 x 10%
TNCC 1.173 x 103 1.232 x 10%
TNNC 1.174 x 103 1.015 x 10?
TNNM 1.486 x 10° 1.082 x 102
RNCC 2.640 x 10? 9.789 x 10?
RNNC 2.234 x 10? 1.042 x 10°

e The improvements due to training with a control-relevant
loss function and adding preview to TDNNs are visible in
the experimental results. Even though for this setup other
phenomena dominate the performance, the results confirm
the relevance of these steps.

o RNNs are very sensitive to overfitting and using them may
lead to reduced performance.

Next, each of the observations is further explained.

7.3.1. Influence of nonlinear activation functions

As explained in Section 6.1.2, typical motion systems shown
nonlinear behavior, such as nonlinear friction characteristics.
Therefore, it is beneficial to include nonlinear activation func-
tions in the networks, which also increases the flexibility of the
networks significantly. This is best illustrated by comparing the
performance of a linear FNN (FLCC) with a nonlinear FNN (FNCC).
Note that a linear FNN is equivalent to the existing method of
feedforward control with polynomial basis functions (Oomen,
2019). Using a neural network nonlinear activation functions
instead is shown to result in a performance improvement of more
than 50%.

7.3.2. Control-relevance

The performance improvements due to the control-relevant
loss function are small yet visible. This follows from the compari-
son of the linear FNNs with control-relevant and MSE training, re-
spectively FLCC and FLCM, and from the comparison of non-causal
TDNN with CR and MSE training, respectively TNCC and TNCM. In
Table 3, it is shown that CR training results in a lower loss on both
the training data and the testing reference in experiments.

7.3.3. Causal and non-causal TDNNs

Taking into account a trail of previous reference samples is not
shown to have a significant effect on performance. This follows
from the comparison of nonlinear FNNs (FNCC) and nonlinear,
causal TDNNs (TNCC) in Table 3.

Adding a finite preview of samples shows some improvements
when comparing causal (TNCC) and noncausal (TNNC) TDNNs,
but the effect is small. This is most likely related to the fact
that the setup does not suffer from undershoot, and most of
the preview required to compensate for the sampling delays is
already provided by the reference derivatives.

7.3.4. The performance of RNNs

Based on the losses during training, it could be expected that
the recurrent neural networks would result in the best perfor-
mance. However, as shown in Table 3, this is not the case. The
most likely cause is overfitting, which would lead to decreased
performance for references that are not part of the training set,
especially since small inaccuracies are often amplified by RNNs.

L. Aarnoudse, J. Kon, W. Ohnishi et al.

;‘ T
: 1 A | |
5 o
g) WAMAAY
5 0 L /WWWF‘ ‘ *,“.‘iy-'-w/"ﬂ/‘/v B
kS - a
% w‘""\‘#w,w
~ | | | i L

0 1 2 3 4 5

Time 8]

Fig. 15. For references within the training set, the feedforward signal generated
by a non-causal RNN (RNNC, —) approximates the training signal (fqain,
—) much better than the signal from a non-causal TDNN (TNNC,). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

= 2 T T
- o M’ﬁ
,_E 1 o ey o |
z Fvt [
E 0 .WWJ | :AN | | o
S pot] T e
S 1) W SN Mg i
~ | 1 | i \

0 1 2 3 4 5

Time [s]

Fig. 16. For the testing reference, the feedforward signal generated by a non-
causal RNN (RNNC, —) deviates strongly from the training signal (fiain, —),
while the signal from a non-causal TDNN (TNNC, —) still gives a reasonably
good approximation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

x10~4

1 - |
£ | I ¥
E 0 V/\‘TMMW\EM/ Qﬁn ‘W‘w«‘;‘” \‘HWJ?\‘MM\M\J[\Q {\\PWWWMWAW
[S3|

-1 , \/\/

! !
0 1 2 3 4 5

Fig. 17. Errors for the testing reference resulting from the training data (fyain,
—), a non-causal TDNN (TNNC, —) and a non-causal RNN (RNNC, —). The
sections where the error of the RNN is large correspond to the parts where
firain 1S not well approximated, cf. Fig. 16. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Comparison of Figs. 15 and 16 shows that while the RNN fits a
signal within the training set much better than other nets, it does
not generalize well for the testing reference. This indicates that
overfitting may be the cause, and illustrates that a more com-
plicated net does not necessarily result in better performance. In
contrast, the TDNN shown in the figures may not approximate the
signal in the training set as well as the RNN, but its performance
for signals inside and outside of the training set is comparable.
In Fig. 17 it is shown that the mismatches in the feedforward
signal generated by the RNN result in large errors in the same
time intervals.

8. Conclusion
In this paper a systematic framework to artificial neural net-

works for feedforward control is proposed that can achieve high
performance and flexibility through choices in model structure,

10

IFAC Journal of Systems and Control 27 (2024) 100241

data and assessment criteria. A control-relevant loss function is
introduced that is aimed explicitly at minimizing the tracking
error, and it is shown that standard loss functions are in general
not suitable for feedforward control. In addition, non-causal ANNs
with respectively finite and infinite preview are introduced and
the importance of pre-actuation in feedforward control is illus-
trated using simulations. In the proposed framework, closed-loop
iterative learning control techniques are used to inexpensively
gather training data. Different design and implementation aspects
for motion feedforward are discussed, and the approach is illus-
trated experimentally, where different types of ANNs are used to
generate feedforward signals for an industrial flatbed printer.

In future work, the design and performance of ANNs for mo-
tion feedforward should be investigated further. The experimen-
tal results show the feasibility of the overall approach, but re-
garding the use of control-relevant loss functions and non-causal
networks the observed performance improvements are small and
these techniques require further experimental validation. In ad-
dition, the design of optimal neural networks for motion feedfor-
ward in terms of network types and hyperparameters requires
more research. The risk of overfitting when using RNNs may be
reduced through, e.g., early stopping and increasing the number
of training references. In addition, the use of stable RNNs, see,
e.g., Revay, Wang, and Manchester (2021), could be investigated.

Ongoing work is also aimed at using model knowledge in par-
allel to ANNs (Karpatne et al., 2017), resulting in the application
of physics-guided neural networks to feedforward control in Kon,
Bruijnen, van de Wijdeven, Heertjes, and Oomen (2022), where
regularization is used to ensure that the contributions of model
and ANN are orthogonal. In addition, the criteria used in this
paper aim at minimizing the fit error and assume deterministic
data. In Kon, Heertjes, and Oomen (2022), noisy data is assumed
and the stochastic errors, which could lead to closed-loop issues
in training of ANNSs, are analyzed.

CRediT authorship contribution statement

Leontine Aarnoudse: Conceptualization, Investigation, Soft-
ware, Validation, Writing - original draft, Writing - review &
editing. Johan Kon: Conceptualization, Software, Writing - re-
view & editing. Wataru Ohnishi: Conceptualization, Writing -
review & editing. Maurice Poot: Conceptualization, Writing -
review & editing. Paul Tacx: Conceptualization, Writing - review
& editing. Nard Strijbosch: Conceptualization, Writing - review
& editing. Tom Oomen: Conceptualization, Funding acquisition,
Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors gratefully acknowledge the contributions to this
paper through a new challenge-based learning project by Lennard
Ceelen, Spyros Chatzizacharias, Mathyn van Dael, Yves Elmens-
dorp, Gijs Herings, Jilles van Hulst, Laurens Kools, Martijn Ko-
rtenhoeven, Mike Mostard, Bart Reijnen, Pim Scheers, Matthijs
Schotman, Stan Verbeek, Joey Verdonschot, Peter Verheijen, and
Jelle de Vries.

The authors also wish to thank Koen Tiels and Sjirk Koeke-
bakker for their contributions.

L. Aarnoudse, J. Kon, W. Ohnishi et al.
References

Aarnoudse, Leontine, Ohnishi, Wataru, Poot, Maurice, Tacx, Paul, Strijbosch, Nard,
& Oomen, Tom (2021). Control- relevant neural networks for intelligent
motion feedforward. In 2021 IEEE int. conf. mechatronics.

Andersson, Carl, Ribeiro, Anténio H. Tiels, Koen, Wahlstrom, Niklas, &
Schon, Thomas B. (2019). Deep convolutional networks in system iden-
tification. In [EEE conf. decis. control (pp. 3670-3676). Nice, France:
IEEE.

Blanken, Lennart, Boeren, Frank, Bruijnen, Dennis, & Oomen, Tom (2017).
Batch-to-batch rational feedforward control: From iterative learning to
identification approaches, with application to a wafer stage. IEEE/ASME
Transactions on Mechatronics, 22(2), 826-837.

Blanken, Lennart, Isil, Goksan, Koekebakker, Sjirk, & Oomen, Tom (2018). Data-
driven feedforward tuning using non-causal rational basis functions: With
application to an industrial flatbed printer. In Am. control conf.

Blanken, Lennart, & Oomen, Tom (2020). Kernel-based identification of non-
causal systems with application to inverse model control. Automatica, 114,
Article 108830.

Boeren, Frank, Blanken, Lennart, Bruijnen, Dennis, & Oomen, Tom (2018). Op-
timal estimation of rational feedforward control via instrumental variables:
With application to a wafer stage. Asian Journal of Control, 20(3), 975-992.

Boeren, Frank, Oomen, Tom, & Steinbuch, Maarten (2015). Iterative motion
feedforward tuning: A data-driven approach based on instrumental variable
identification. Control Engineering Practice, 37, 11-19.

Bolder, Joost, Kleinendorst, Stephan, & Oomen, Tom (2018). Data-driven mul-
tivariable ILC: Enhanced performance by eliminating L and Q filters.
International Journal of Robust and Nonlinear Control, 28(12), 3728-3751.

Bolder, Joost, & Oomen, Tom (2015). Rational basis functions in iterative
learning control—With experimental verification on a motion system. IEEE
Transactions on Control Systems Technology, 23(2), 722-729.

Bristow, Douglas A. (2008). Weighting matrix design for robust monotonic
convergence in norm optimal iterative learning control. In Am. control conf.
(pp. 4554-4560).

Bristow, D. A., Tharayil, M., & Alleyne, A. G. (2006). A survey of iterative learning
control. IEEE Control Systems, 26(3), 96-114.

Butterworth, J. A, Pao, L. Y., & Abramovitch, D. Y. (2012). Analysis and compari-
son of three discrete-time feedforward model-inverse control techniques for
nonminimum-phase systems. Mechatronics, 22(5), 577-587.

Chen, Zhu, Liang, Xiao, & Zheng, Minghui (2021). Deep iterative learning
control for quadrotor ' s trajectory tracking. In 2021 Am. control conf. (pp.
1404-1409).

Chen, Steven W., Wang, Tianyu, Atanasov, Nikolay, Kumar, Vijay, & Morari, Man-
fred (2022). Large scale model predictive control with neural networks and
primal active sets. Automatica, 135, Article 109947.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, & Sun, Jian (2015). Delving deep
into rectifiers: Surpassing human-level performance on imagenet classifica-
tion. Proceedings IEEE International Conference Computer Vision, 2015 Inter,
1026-1034.

Hertneck, Michael, Kohler, Johannes, Trimpe, Sebastian, & Allgower, Frank (2018).
Learning an approximate model predictive controller with guarantees. IEEE
Control Systems Letters, 2(3), 543-548.

Hewing, Lukas, Wabersich, Kim P., Menner, Marcel, & Zeilinger, Melanie N.
(2020). Learning-based model predictive control: Toward safe learning in
control. Annual Review of Control, Robotics, and Autonomous Systems, 3,
269-296.

Hochreiter, Sepp, & Schmidhuber, Jiirgen (1997). Long short-term memory.
Neural Computation, 9(8), 1735-1780.

Hoelzle, David]., Alleyne, Andrew G., & Wagoner Johnson, Amy]. (2011).
Basis task approach to iterative learning control with applications to micro-
robotic deposition. IEEE Transactions on Control Systems Technology, 19(5),
1138-1148.

Hornik, Kurt, Stinchcombe, Maxwell, & White, Halbert (1989). Multilayer
feedforward networks are universal approximators. Neural Networks, 2,
359-366.

Karpatne, Anuj, Atluri, Gowtham, Faghmous, James H., Steinbach, Michael, Baner-
jee, Arindam, Ganguly, Auroop, et al. (2017). Theory-guided data science:
A new paradigm for scientific discovery from data. IEEE Transactions on
Knowledge and Data Engineering, 29(10), 2318-2331.

11

IFAC Journal of Systems and Control 27 (2024) 100241

Kawato, Mitsuo, Uno, Yoji, Isobe, Michiaki, & Suzuki, Ryoji (1988). Hierarchical
neural network model for voluntary movement with application to robotics.
IEEE Control Systems Magazine, 8(2), 8-15.

Kingma, Diederik P., & Ba, Jimmy Lei (2015). Adam: A method for stochastic
optimization. In 3rd Int. conf. learn. represent.

Kon, Johan, Bruijnen, Dennis, van de Wijdeven, Jeroen, Heertjes, Marcel,
& Oomen, Tom (2022). Physics-guided neural networks for feedforward
control: An orthogonal projection-based approach. In Am. control conf.

Kon, Johan, Heertjes, Marcel, & Oomen, Tom (2022). Neural network training us-
ing closed-loop data: Hazards and an instrumental variable (IVNN) solution.
In 14th IFAC work. adapt. learn. control syst.

Ljung, Lennart (1999). System identification (2nd ed.). Upper Saddle River, NJ:
Prentice Hall.

Ljung, Lennart, Andersson, Carl, Tiels, Koen, & Schon, Thomas B. (2020). Deep
learning and system identification. In 21st IFAC world congr.

Markusson, Ola, Hjalmarsson, Hdkan, & Norrlof, Mikael (2002). A general
framework for iterative learning control. IFAC Proceedings Volumes, 15(1),
387-392.

Moore, Kevin L. (1993). Iterative learning control for deterministic systems.
Springer-Verlag London Limited.

Nilsson, Magnus, & Egardt, Bo (2008). A clarifying analysis of feedback error
learning in an LTI framework. International Journal of Adaptive Control and
Signal Processing, 22, 875-901.

Oomen, Tom (2019). Control for precision mechatronics. In John Baillieul, &
Tariq Samad (Eds.), Encycl. syst. control (2nd ed.). London: Springer.

Oomen, Tom, & Rojas, Cristian R. (2017). Sparse iterative learning control with
application to a wafer stage: Achieving performance, resource efficiency, and
task flexibility. Mechatronics, 47, 134-147.

Otten, Gerco, De Vries, Theo]. A, Van Amerongen, Job, Rankers, Adrian M.,
& Gaal, Erik W. (1997). Linear motor motion control using a learn-
ing feedforward controller. IEEE/ASME Transactions on Mechatronics, 2(3),
179-187.

Paszke, Adam, Gross, Sam, Massa, Francisco, Lerer, Adam, Bradbury, James,
Chanan, Gregory, et al. (2019). PyTorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing
Systems, 32.

Patan, Krzysztof, & Patan, Maciej (2019). Neural-network-based iterative learning
control of nonlinear systems. ISA Transactions, 98, 445-453.

Poot, Maurice, Portegies, Jim, Mooren, Noud, Van Haren, Max, Van Meer, Max,
& Oomen, Tom (2022). Gaussian processes for advanced motion control. IEEJ
Journal of Industry Applications, 11(3).

Ren, Xuemei, Lewis, Frank L., & Zhang, Jingliang (2009). Neural network compen-
sation control for mechanical systems with disturbances. Automatica, 45(5),
1221-1226.

Resquin, F., Gonzalez-Vargas, J., Ibafiez,]., Brunetti, F., Dimbwadyo, 1., Carrasco, L.,
et al. (2017). Adaptive hybrid robotic system for rehabilitation of reaching
movement after a brain injury: A usability study. Journal of NeuroEngineering
and Rehabilitation, 14(1), 1-15.

Revay, Max, Wang, Ruigang, & Manchester, Ian R. (2021). A convex parameteri-
zation of robust recurrent neural networks. IEEE Control Systems Letters, 5(4),
1363-1368.

Rumelhart, David E., & Hintont, Geoffrey E. (1986). Learning representations by
back-propagating errors. Nature, 323(2), 533-536.

Serensen, Ole (1999). Additive feedforward control with neural networks. In 14th
Trienn. IFAC world congr. (pp. 1378-1383).

Van Der Meulen, Stan H., Tousain, Rob L., & Bosgra, Okko H. (2008). Fixed
structure feedforward controller design exploiting iterative trials: Application
to a wafer stage and a desktop printer. Transactions of the ASME. Journal of
Dynamic Systems, Measurement and Control, 130(5), 0510061-05100616.

van Zundert, Jurgen, & Oomen, Tom (2018). On inversion-based approaches for
feedforward and ILC. Mechatronics, 50(November 2016), 282-291.

Vidyasagar, M. (1986). On undershoot and nonminimum phase zeros. IEEE
Transactions on Automatic Control, 31(5), 440.

Waibel, Alexander, Hanazawa, Toshiyuki, Hinton, Geoffrey, Shikano, Kiyohiro,
& Lang, Kevin J. (1989). Phoneme recognition using time-delay neural
networks. IEEE Transactions on Acoustics, 37(3), 328-339.

Xiong, Zhihua, & Zhang, Jie (2005). A batch-to-batch iterative optimal control
strategy based on recurrent neural network models. Journal of Process Control,
15(1), 11-21.

http://refhub.elsevier.com/S2468-6018(24)00002-6/sb1
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb1
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb1
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb1
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb1
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb2
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb2
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb2
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb2
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb2
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb2
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb2
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb3
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb3
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb3
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb3
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb3
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb3
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb3
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb4
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb4
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb4
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb4
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb4
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb5
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb5
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb5
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb5
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb5
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb6
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb6
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb6
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb6
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb6
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb7
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb7
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb7
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb7
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb7
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb8
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb8
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb8
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb8
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb8
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb9
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb9
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb9
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb9
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb9
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb10
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb10
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb10
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb10
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb10
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb11
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb11
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb11
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb12
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb12
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb12
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb12
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb12
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb13
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb13
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb13
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb13
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb13
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb14
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb14
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb14
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb14
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb14
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb15
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb15
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb15
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb15
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb15
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb15
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb15
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb16
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb16
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb16
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb16
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb16
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb17
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb17
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb17
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb17
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb17
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb17
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb17
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb18
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb18
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb18
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb19
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb19
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb19
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb19
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb19
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb19
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb19
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb20
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb20
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb20
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb20
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb20
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb21
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb21
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb21
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb21
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb21
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb21
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb21
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb22
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb22
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb22
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb22
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb22
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb23
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb23
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb23
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb24
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb24
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb24
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb24
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb24
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb25
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb25
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb25
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb25
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb25
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb26
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb26
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb26
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb27
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb27
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb27
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb28
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb28
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb28
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb28
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb28
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb29
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb29
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb29
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb30
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb30
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb30
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb30
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb30
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb31
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb31
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb31
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb32
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb32
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb32
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb32
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb32
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb33
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb33
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb33
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb33
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb33
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb33
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb33
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb34
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb34
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb34
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb34
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb34
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb34
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb34
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb35
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb35
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb35
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb36
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb36
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb36
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb36
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb36
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb37
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb37
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb37
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb37
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb37
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb38
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb38
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb38
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb38
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb38
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb38
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb38
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb39
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb39
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb39
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb39
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb39
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb40
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb40
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb40
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb41
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb41
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb41
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb42
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb42
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb42
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb42
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb42
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb42
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb42
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb43
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb43
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb43
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb44
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb44
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb44
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb45
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb45
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb45
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb45
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb45
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb46
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb46
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb46
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb46
http://refhub.elsevier.com/S2468-6018(24)00002-6/sb46

	Control-relevant neural networks for feedforward control with preview: Applied to an industrial flatbed printer
	Introduction
	Problem formulation
	Feedforward control
	Artificial neural networks
	ANNs for feedforward control

	Control-relevant neural networks
	Control-relevant loss functions
	Example
	Standard (unweighted) MSE training
	Control-relevant training

	Non-causal neural networks
	Non-causal neural networks
	Motivating example: non-minimum phase systems

	Data acquisition
	Implementation and design considerations
	Network design for motion feedforward
	Input selection
	Hyperparameters: layers, neurons and activation functions

	Implementation
	Filtering through dynamic systems
	Data processing

	Experimental results
	Experimental setup
	Data acquisition using ILC
	Neural network training and implementation

	Overview of the networks used in experiments
	Discussion of experimental results
	Influence of nonlinear activation functions
	Control-relevance
	Causal and non-causal TDNNs
	The performance of RNNs

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

