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Abstract

To successfully perform manipulation tasks in an unknown environment, a robot must be able
to learn the kinematic constraints of the objects within this environment. Over the years,
many studies have investigated the possibility to learn the kinematic models of articulated
objects using a Learning from Demonstration (LfD) [1] approach. In the majority of these
studies the assumption is made that the robot solely manipulates articulated objects. In
reality, however, robots also manipulate free-space objects that generally do not encounter
any constraints. As a result, a human has to manually confirm which of the observed demon-
strations concern articulated objects and which concern free-space objects. Furthermore, the
majority of these studies do not evaluate the quality of the kinematic models prior to learning
them. As a consequence, incorrect or uncertain models can be learned by the robot, which
could lead to task failure or even dangerous behavior.

In this report, the novel Kinematic Model Learner (KML) framework is introduced, which
aims to solve both of these problems using a multi-modal approach. In doing so, special
attention is given to the understandability of the created framework, and its ability to adjust
to different robot applications.

The KML framework consist of two separate frameworks called KMLtraj and KMLforce. After
the demonstration is given, the KMLforce framework first uses the force data to determine
whether the manipulated object is free-space or constrained. If the object is recognized to
be free-space, it will be classified as such after which the corresponding kinematic model is
learned. If the object is classified as constrained, the KMLtraj framework uses the observed
trajectory data to classify and learn the kinematic models of the constrained objects. In order
to prevent the robot from learning incorrect or uncertain models, a probabilistic classifier is
used which only learns a kinematic model if the corresponding confidence level is above a
certain learning threshold.

The designed frameworks are experimentally validated by performing a total of 27 demonstra-
tions on the care robot Marco using tele-operation. From these manipulations the trajectory
and force data were used as inputs to validate each framework separately. Additionally, the
KMLtraj framework is also evaluated using the Cody dataset, which contains the trajectories
of 35 different manipulation tasks.
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It has been concluded that the KML framework can robustly recognize and learn the kinematic
models of the free-space and articulated objects. Moreover, a robustness analysis showed that
the KML framework is more robust than the current state-of-the-art articulation pack-
age [2]. Additionally, the KML framework is able to asses the quality of the learned models
and can prevent the robot from learning incorrect or uncertain models. Finally, the framework
can be easily adjusted to different robot applications as the effects of the tuning parameters
are easy to understand and can be determined by assessing the robot applications or by
performing simple experiments.
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Chapter 1

Introduction

1-1 Motivation

As a result of the increasing quality of public health, health care and nutritions, most countries
in the world have rising life expectancy and an ageing population [4]. For this reason, it will
be hard to preserve the quality of care, and thus people’s well-being. Consequently, one of
the European Union’s grand challenges is to improve the life-long health and well-being of all,
while maintaining economically sustainable care systems [5]. In order to solve this challenge
the employment of new technologies is essential.

A promising new technology is the implementation of (semi-)autonomous care robots. Care
robots are able to assist elderly and disabled people in their Activities of Daily Living (ADL),
as illustrated in Figure 1-1. This aid can empower elderly to remain active and independent.
Doing so will contribute to increasing, and lengthening the duration of, their physical, social,
and mental well-being [5].

Figure 1-1: Care robot Marco fetches a cup. Courtesy of Heemskerk Innovative Technology
(HiT).
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2 Introduction

To fulfill typical ADL tasks, care robots have to be able to manipulate a large variety of day-to-
day objects [6]. In order to successfully manipulate an object autonomously, it is essential for
the robot to first understand the spatial movements that are possible for that specific object.
Some objects are partially constrained, such as doors, cupboards and drawers, while others can
be moved freely through space or are immovable. Many of the objects found within a typical
household settings tend to exhibit common kinematic structures, which makes it possible to
learn these structures. Based on the resulting kinematic model and joint configurations, the
robot is able to select and adapt actions, recognize their successful completion and detect
failure [7].
This Master’s thesis will focus on the problem of recognizing and learning the kinematic
models of day-to-day objects. As an illustrating example, consider Figure 1-2 where a mobile
manipulation robot interacts with various day-to-day objects in a kitchen environment, and
learns their kinematic model.

Figure 1-2: Care robot Marco interacts with various day-to-day objects in a kitchen environment,
and learns their kinematic model.

1-2 Prior Work: Learning kinematic models

Over the last two decades, researchers have developed a number of robotic systems to open
cabinets, doors and drawers [8, 9, 10]. A downside of these robotic system is that the robots
are limited in their ability to adapt to previously unseen objects. For this reason, other work
in service robotics focuses on using new observations, acquired by the robot, to estimate the
kinematic parameters of previously unseen doors, drawers and rigid bodies [3, 11, 12, 13, 14].
This research domain is especially interesting as it enables the robot to learn new kinematic
models during employment.
In this chapter a short summary will be given on the prior work of learning kinematic models.
First, Section 1-2-1 gives a more formal definition of the five most common types of kinematic
models of day-to-day objects. Subsequently, Section 1-2-2 explains how the kinematic models
can be learned by making the robot interact with the object of interest. Finally, Section 1-2-3
describes the current state-of-the-art articulation package, which is able to determine the
kinematic models of constrained objects using solely trajectory data.
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1-2 Prior Work: Learning kinematic models 3

1-2-1 Kinematic model types

When inspecting the set of objects that are typically manipulated by a service robot, it
becomes evident that the movement constraints that act on these objects can be categorized
into five different classes: rigid, prismatic, rotational, free-space, or complex. The different
object classes are illustrated in Figure 1-3. The properties of the first four classes are very
generic, thereby making it possible to describe them using four generic kinematic models.
Sturm et al. [11] described these models using a parameter vector α ∈ Rk that contains k
parameters. All of the object classes have a different structure and are defined using a different
number of parameters.

First of all, rigid objects (e.g., push-buttons or heavy furniture) are fully constrained and
cannot be moved by the robot. The model that describes these objects is calledMrigid and
has k = 6 parameters specifying the fixed position and orientation of the object.
Secondly, prismatic objects (e.g., drawers, sliding doors or blind windows) are constrained by
prismatic joints causing the object to move in a straight line. The model that describes these
objects is called Mpris and has 2 more parameters than the rigid model that describes the
direction of the prismatic axis.1
Thirdly, rotational objects (e.g., doors, windows or dishwashers) can only rotate around the
axis of rotation. The model that describes these objects is calledMrot and has 3 more param-
eters than the rigid model. The additional parameters describe the direction of the rotational
axis (2 parameters) and its radius (1 parameter).
Fourthly, free-space objects (e.g., mugs, water bottles or apples), can be moved in any direc-
tion and therefore do not have any kinematic constraints. As a consequence, this kinematic
model has 0 parameters.
Finally, the last object class contains constrained objects that have different mechanical link-
ages, such as a garage doors, or objects that consist of multiple constraints that can be
manipulated simultaneously, such as two-bar office lamps. As the objects within this class
have a more complex structure than the other classes, the model that describes these objects
is called Mcomplex. Complex objects can, for example, be modeled by splitting them into
a combination of simpler models, or by fitting a Gaussian Process with varying number of
parameters [11].

Figure 1-3: In a domestic environment there are 5 different classes of objects that are relevant
for a robot manipulator application. All of the object classes have a different structure and are
defined using a different number of parameters.

1Sturm et al. does not explain why only 2 additional parameters are required, but it is assumed that the
direction of the prismatic axis is defined by 2 rotations around a predetermined axis.
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4 Introduction

This report focuses on recognizing free-space, prismatic and rotational objects and learning
their kinematic models: Mfree, Mpris and Mrot. This thesis does not focus on learning
models of the rigid or complex objects, as these objects are only very rarely manipulated by
a service robot. In spite of this, in Section 2-3, it is shown that it is possible to recognize
complex objects by means of elimination. For a more detailed description of the kinematic
constraints or the classification and model learning of theMrigid andMcomplex models, the
interested reader is referred to the work of Sturm et al. [11].

1-2-2 Interactive Perception

Kinematic models and other task-relevant information can be determined by carefully in-
specting the interaction between the robot and the object. The field of research that studies
the correlation between robot actions and changes in the sensor signals is called ‘interactive
perception’.

Traditionally, most interactive perception approaches have been based on one single sensor
modality, mostly using vision [12, 14, 15, 16]. These uni-modal approaches fail when the
used sensor stream does not contain the relevant information. According to Martín-Martín
and Brock [3], these failures can be caused by changes in the environment (e.g., lights go
off), in the characteristic of the interaction (e.g., self occlusions or grasp/contact loss), or in
the perceptual task. Some researchers alleviate these failures by integrating multiple sensor
modalities [12, 3].

Hausman et al. [12] introduced a vision based approach that combines the visual observations
(obtained using fiducial markers), with the outcome of the robot’s actions. More specifically,
the outcome of the robot’s manipulation actions are used to actively reduce the uncertainty
of the candidate kinematic models and their parameters. This is done by fusing two different
sensor modalities. The first sensor modality performs vision-based object tracking, similarly
to Sturm et al. [11]. The second sensor modality determines whether an action is either
successful (the expected motion is observed) or unsuccessful (the action cannot be completed
because the joint friction is too high). The framework recursively selects those actions that
are expected to be most informative and therefore quickly converges to the correct kinematic
model.

Martín-Martín and Brock [3] created a multi-modal framework that combines force, trajectory
and vision data in order to learn the kinematic and dynamic models of articulated objects.
The created framework, as illustrated in Figure 1-4, is able to integrate and balance between
different modalities according to their uncertainty.

The goal of most of these interactive perception approaches is to make a robot learn au-
tonomously by making it interact with the unknown objects in its environment. The downside
to this approach is, however, that the current state-of-the-art robot applications are cogni-
tively incapable of dealing with the unpredictable nature of the objects within a domestic
environment. As a consequence, the robot is unable to answer essential questions, such as:
‘Which objects can/should I interact with?’, ‘How much force should I apply to move the
object?’ or ‘How should I manipulate the object such that the task is successful?’.
Section 1-2-3 explains how Sturm et al. [11] circumvent this problem by using initial demon-
strations (e.g., provided by a human tele-operator) as a starting point for learning kinematic
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1-2 Prior Work: Learning kinematic models 5

models. This simplifies the learning problem, since the robot can assume that the task is suc-
cessfully completed during the demonstration, making it unnecessary to answer the questions
posed earlier.

Figure 1-4: The multi-modal setup used by Martín-Martín and Brock [3] to analyze the interac-
tion between the robot and the object.

1-2-3 Using trajectory data

Sturm performed most of the pioneering work on learning kinematic models [2, 11, 17, 18, 19].
Based on this work, the state-of-the-art articulation package was created, which is able to
determine the kinematic models of rigid, prismatic, rotational and complex objects using solely
the trajectory data that was recorded by the robot during demonstrations. This package has
been validated using multiple robot applications performing numerous manipulation tasks.
After a demonstration is given to the robot, the best fitting kinematic model is found and
learned in two steps.

First of all, the best fitting model for each object class is obtained by estimating the parameter
vector α ∈ Rk that maximizes that data likelihood:

α̂ = arg max
α

p(x|M, α), (1-1)

where p(x|M, α) is the probability that the end-effector trajectory x would be observed, given
the predicted modelM and its corresponding parameter vector α. This probability is based
on the distance between the observed trajectory and the predicted model, and can be tuned
using the tuning parameter σz.2

2For a more detailed description of how the probability function p(x|M, α) is calculated, the reader is
referred to [11].
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Secondly, all of the candidate kinematic models are evaluated, after which the best fitting
kinematic model is selected and learned by the robot. It is, however, difficult to select the
correct model, as the models with a larger number of parameters have a fitting advantage over
models with a smaller number of parameters. For example, a rotational model will often fit
better than the prismatic model, as the former has one more parameter to fit. To compensate
for the different number of tunable parameters, Sturm decided to use the Bayesian information
criteria (BIC) [20], which is defined as:

BIC(M) = −2 log p(x|M, α̂) + k logN, (1-2)

where α̂ is the maximum-likelihood parameter vector, k is the number of parameters and N
is the number of samples of the observed trajectory. The model selection is then reduced to
selecting the model that has the lowest BIC score:

M̂ = arg min
M

BIC(M). (1-3)

Finally, Sturm et al. also demonstrated how the learned kinematic models can be used by a
robot to perform the task autonomously, using a Cartesian Equilibrium Point (CEP) controller
[21]. For details on the equilibrium point control, and how it can be used to coordinate the
motion of a mobile robot, the reader is referred to [22, 23].

1-3 Problem Description

This section describes the three main problems of the state-of-the-art approaches, as described
in Section 1-2.
First of all, previous research has shown that the kinematic models of drawers and doors
can be learned by the robot using vision, force or trajectory data. The majority of these
studies assumed that the robot only manipulates articulated objects. In real world scenarios,
however, service robots often operate free-space objects, for example when performing pick-
and-place tasks. As a consequence, a human has to inform the robot whether it is dealing
with an articulated or free-space object. Moreover, it is impossible for the trajectory-based
approaches to reliably recognize free-space objects. This is because the free-space objects can
be moved in any direction and can therefore easily describe the same trajectory as any other
articulated object.
Secondly, it is often assumed that the kinematic models that are learned give a good repre-
sentation of the manipulated object constraints. Consequently, most of the state-of-the-art
frameworks do not take the quality of the learned models into account. In reality, however,
robots often use different tools and tactics, such as hooks [22] or caging grasps [24] to manip-
ulate objects. In many of these scenarios a rigid grasp cannot be guaranteed. As a result, the
kinematic models have a chance of being of low quality as the observed trajectory can be a
poor representation of the real constraints of the object. These low quality models generally
cannot be used for autonomous manipulation, as this can result in unsafe movements and/or
damage to the robot. Therefore, it is absolutely essential that a robot is able to evaluate the
quality of the learned models.
Finally, another common problem for state-of-the-art frameworks is that they cannot be easily
adjusted to serve other robot applications. As increasingly complex algorithms are used, the
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1-4 Goals 7

interpretation of the tuning parameters and the consequences of changing them can become
intractable for robot engineers.

1-4 Goals

In order to solve the first problem as described in Section 1-3, the following main goal is
defined:

Main goal:
Conceive a framework capable of recognizing free-space, prismatic and rotational
objects based on a given (tele-)demonstration, and learn their kinematic models.

This goal translates into devising a framework that uses trajectory and force data of a given
robot demonstration as input, and gives the learned kinematic model as output. As the
framework should be applicable to other robot manipulators, it is also required to solve the
second and third problem statement defined in Section 1-3. These problem statements result
in the following two sub-goals:

Sub-goal 1:
The conceived framework should be able to assess the quality of the learned kine-
matic models.

Sub-goal 2:
The conceived framework should be understandable and easily adjustable to dif-
ferent robot manipulators.

1-5 Approach

In order to accomplish these goals, different approaches are used as described in this section.

Approach for main goal:
In order to recognize free-space, prismatic and rotational objects and learn their
kinematic models, the novel Kinematic Model Learner (KML) framework is cre-
ated (Chapter 2), which consists of two separate frameworks called KMLtraj and
KMLforce. The KMLtraj framework (Section 2-1) uses the trajectory data of the
demonstration to find the best fitting prismatic and rotational models. However,
as explained in Section 1-3, trajectory-based kinematic model learners are unable
to reliably recognize free-space movements. To solve this problem, the KMLforce
framework (Section 2-2) first uses the force data of the demonstrated manipula-
tions to recognize free-space objects. Finally, both framework are combined into
the KML framework (Section 2-3).
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8 Introduction

Approach for sub-goal 1:
To evaluate the quality of the learned kinematic models, a probabilistic classifi-
cation method is created (Section 2-1-4) which determines the confidence levels
of each of the learned models. The confidence levels are based on the difference
between the candidate model and the observed trajectory. For safety reasons, only
the kinematic models should be learned which have a high confidence level.

Approach for sub-goal 2:
In order to create an understandable framework that can be easily adjusted to
other robot manipulators, comprehensible tuning parameters have to be used.
These parameters can be either derived by assessing the robot goals and the
quality of the robot sensors, or they can be directly observed through simple
experiments. Furthermore, the kinematic models can be visually inspected and
the confidence levels intuitively display the quality of the models.

Chapter 3 describes the experimental set-up and the 27 manipulation tasks that are used for
the validation of the KML framework. Finally, based on these manipulations the results of
the framework are discussed in Chapter 4.
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Chapter 2

Kinematic Model Learner (KML)
Framework

The current state-of-the-art articulation package [11] uses trajectory data to learn kine-
matic models, as described in Section 1-2-3. It was explained that there are three limiting
factors of this framework. First of all, the articulation package cannot recognize free-space
movements. Secondly, prismatic objects that move in a straight line can easily be recognized
as rotational object with a very large radius. Finally, the package does not evaluate the qual-
ity of the learned models and the likelihood that the classification is correct. This chapter
introduces the novel KML framework, which aims to solve all of these problems.

The novel KML framework is a combination of two separate frameworks that complement
each other: KMLtraj and KMLforce. The schematic overview of the KML framework is shown
in Figure 2-1. This figure also serves as a roadmap for this chapter, in which each section is
devoted to one part of the framework.

First, Section 2-1 describes how the KMLtraj framework uses the trajectory data of a manip-
ulation to learn the best fitting prismatic and rotational model. Furthermore, it is explained
how the KMLtraj framework evaluates the quality of the learned models and expresses this
quality in a confidence level. If both the prismatic and rotational models fit poorly, the
object can be classified as free-space/complex. Subsequently, Section 2-2 explains how the
KMLforce framework uses force data to reliably recognize free-space movements. If the ob-
ject is recognized to be free-space, it will be classified as such after which the corresponding
kinematic model is learned. When the object is not recognized as free-space, it will be clas-
sified as a constrained object, which can either be prismatic, rotational or complex. Finally,
in Section 2-3 the results of both frameworks are combined into the final KML framework.
This framework is able to recognize and learn the kinematic models of free-space, prismatic
and rotational objects. Furthermore, the framework is able to recognize complex objects by
means of elimination. Throughout this chapter, it is also explained how the framework can
be adapted to any robot manipulator application.
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10 KML Framework

Figure 2-1: A schematic overview of the KML framework. This also serves as a roadmap for this
chapter, in which each section is devoted to one part of the framework.

2-1 Part 1: Using trajectory data - KMLtraj

This section describes the KMLtraj framework. The KMLtraj framework uses the trajectory
data of a manipulation to learn the best fitting prismatic (Mpris) and rotational model
(Mrot). If both the prismatic and rotational models fit poorly, the manipulation is classified
as free-space/complex.
First, Section 2-1-1 describes the general principles of a least-squares approach. After this,
Sections 2-1-2 and 2-1-3 explain how the best fitting prismatic and rotational models can be
found. Finally, Section 2-1-4 explains how the quality of the fitted models can be evaluated
using three probabilistic functions that are combined into a confidence level. In Chapter 4
the KMLtraj framework is validated using the experiments described in Chapter 3.
The key contributions of the KMLtraj framework:

• A novel approach is used to determine the best fitting rotational modelMrot. Instead
of penalizing the number of variables, as is done in articulation package, the KMLtraj
framework penalizes small rotation angles (Section 2-1-3). This approach prevents the
optimization function from findingMrot with an undesirable large radius when dealing
with a prismatic object.

• A confidence level (Section 2-1-4) is determined using the average distance between the
observed trajectory and the predicted models. The robot can use this confidence level
to exclusively learn models that are likely to be correct. Furthermore, the confidence
level gives robot operators a better understanding of the quality of the learned models.

2-1-1 Model fitting using a least-squared method

Given the observed end-effector trajectory of the robot manipulation, the best fitting models
(Mpris andMrot) can be determined using a least-squares approach [25]. In a least-squares
approach, the goal is to find a solution which minimizes the squared residual error.
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2-1 Part 1: Using trajectory data - KMLtraj 11

For robot manipulators, the error can be defined as the distance between an observed end-
effector pose xi and its nearest point on the predicted model x̂i. The nearest point can be
calculated by projecting the observed pose onto the predicted model: x̂i = projM̂(xi). The
least-squares solution then becomes:

arg min
M̂

=
N∑
i=1
|projM̂(xi)− xi|2. (2-1)

In the KMLtraj framework, the least-squares approach is used to find the best fitting prismatic
modelMpris. However, this ordinary least-squares approach is not reliable when attempting
to find the best fitting rotational model Mrot. The unreliability is caused by the fact that
a straight line can be approximated very well by a rotational model with an unrealistically
large radius and thus a small rotation angle. Simply stated, a straight line may be very well
approximated withMrot given a sufficiently large radius and small rotation angle. As a result,
it thus becomes hard to distinguish whether prismatic movements (e.g., opening a drawer)
should be classified asMpris orMrot. To cancel out this limitation, the KMLtraj framework
amends this least-squares approach to determine the best fitting rotational models. In this
approach, it is assumed that, when dealing with rotational objects, the robot is very likely
to rotate this object more than a certain angle θ around its axis of rotation. It could, for
example, be assumed that the robot will never open a cabinet only 20 or 30 degrees, as the
contents of this cabinet cannot be reached by the robot when only partially open. In essence,
the KMLtraj framework adds an additional cost function to the least-squares optimization
problem which penalizes low rotation angles that are unlikely to be demonstrated. The final
optimization function will be explained in more detail in Section 2-1-3.

2-1-2 Fitting prismatic models (Mpris)

Given the observed end-effector trajectory of the robot manipulation, the best fitting prismatic
model Mpris is determined using a least-squares approach. The least-squares problem, as
described in Equation (2-2), finds a straight line in 3D which minimizes the squared residual
error. Because the solution is a straight line, the problem can be specified as a linear least-
squares problem. As a consequence, instead of using an optimization approach, the solution
can be calculated algebraically. First, a point on the prismatic axis is found by taking the
mean of the trajectory. Subsequently, the direction of this axis can be calculated as the
first right-singular vector using Singular Value Decomposition (SVD) [26]. As an illustration,
Figure 2-2 shows a simple 2D example of a prismatic movement and the fitted prismatic
model.

arg min
Mpris

=
N∑
i=1
|projMpris(xi)− xi|2. (2-2)
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12 KML Framework

Figure 2-2: A simple 2D example of a prismatic movement. The best fitting prismatic model is
represented by a 2D line (red), which minimizes the squared residual error.

2-1-3 Fitting rotational models (Mrot)

Given the observed end-effector trajectory of the robot manipulation, the best fitting rota-
tional modelMrot is determined in two steps.

Step 1:
Find a plane P that best fits the observed trajectory x, and project x onto P.
This reduces the dimension of the optimization problem from R3 → R2.

The best fitting plane P is found by solving the following least-squared problem:

arg min
P

=
N∑
i=1
|zi − xi|2, (2-3)

where zi is the projection of xi onto the plane, zi = projP(xi). The resulting plane P and
projected trajectory z are used as inputs for step 2.

Step 2:
Find the best fitting rotational model by finding the circle on plane P which best
fits the projected trajectory data z.

The best fitting rotational modelMrot is obtained by finding a circle on plane P that best fits
the projected trajectory z. As described in Section 2-1-1, an ordinary least-squares approach
should not be used to fit rotational models, as a prismatic movement can be approximated
very accurately by a circle with an unrealistically large radius and concomitant small rotation
angle. To prevent this from happening, an additional cost function J(θ) is added to the
optimization problem. This cost function penalizes rotational models with small rotation
angles, while leaving models with large rotation angles untouched. The final optimization
function that finds the rotational models then becomes:

arg min
Mrot

=

√√√√ 1
N

N∑
i=1
|projMrot(zi)− zi|2 + λJ(θ), (2-4)
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where λ is a weighting factor that determines the overall influence of J(θ) during the opti-
mization. The effect of the additional cost function is illustrated in Figure 2-3 using the same
2D example as in Figure 2-2. The next subsection provides a more detailed description of the
used cost function and how it can be tuned to fit different robot application.
The optimization function, as formulated in Equation (2-4), has multiple local optima. Con-
sequently, in order to find the global minimum, the used optimization algorithm should be
carefully chosen.

(a) A least squares solution. (b) The proposed optimization function with addi-
tional cost function J(θ).

Figure 2-3: A simple 2D example of a prismatic movement. In (a) the least-squares solution fits
a rotational model (blue) with a large radius and small rotation angle. BothMpris andMrot fit
equally well. In (b) the cost function J(θ) pushes the optimization function to search for rotation
models with a larger rotation angle until θh is reached. Using the novel optimization function, it
can be concluded thatMpris fits better.

Cost function J(θ)

The cost function J(θ) is based on two assumptions about the robot’s manipulations. On the
one hand the robot is unlikely to rotate an object less than θl degrees, and on the other hand
the robot is likely to rotate an object more than θh degrees. Based on these assumptions, the
cost function is described as follows:

J(θ) =


1, if θ ≤ θl
q arctan(−θ + θl+θh

2 ) 1
π + 0.5 if θl < θ < θh

0, if θ ≥ θh
(2-5)

where q is a scaling factor that prevents a gap between the three regions of the cost function.
In the scenario that θ ≤ θl the cost is maximum, whereas for θ ≥ θh there is no additional
cost. As a consequence, the cost function pushes the optimization solver to search for models
where θ ≥ θh.
The θl and θh values are tunable parameters that can easily be adjusted to the expected
rotation angles within a given environment. As an example, in many robot applications,
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the robot hardly ever rotates an object less than θl = 25◦. Furthermore, for a task, such
as opening a door, to succeed a rotation angle larger than θh = 45◦ is often required. The
resulting cost function is shown in Figure 2-4. Of course it is also possible to use other cost
functions (e.g., affine functions).

After the cost function has the desired shape, λ can be varied to either increase or decrease
the influence of the cost function J(θ). In general, when increasing λ, the rotation angle of
the found Mrot will increase until θh is reached, whereas lowering λ decreases the overall
influence of the cost function. λ = 0 results in the original least-squares solution and should
therefore not be used within the context of fitting a rotational model.
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Figure 2-4: Cost function J(θ) that penalizes low rotation angles. The parameters in this
example are θl = 25◦ and θh = 45◦.

2-1-4 Classification approach

Using the approaches explained in previous sections, the best fitting prismatic modelMpris

and rotational modelMrot can be obtained. As explained in Section 1-3, it is very important
that the robot exclusively learns the kinematic models that are likely to be correct. Therefore,
a probabilistic classification method is developed that determines the confidence levels of each
of the candidate models. This confidence level is determined using predefined probability
functions that describe the likelihood that a candidate model is correct based on its Mean
Absolute Error (MAE). The MAE, as defined in Equation (2-6), is used rather than the
commonly used Root-Mean-Square Error (RMSE), as it is a more intuitive measurement and
therefore simplifies the tuning of parameters [27].

MAE = 1
N

N∑
i=1
|projM̂(xi)− xi| (2-6)

The confidence level is based on a set of fuzzy rules describing four scenarios, as summarized
in Table 2-1. In scenario 1, both Mpris and Mrot fit poorly, as their MAEs are high. By
means of elimination, it can be concluded that the manipulated object is likely to be free-
space/complex.1 In scenarios 2 and 3, one model fits well (low MAE) while the other model
does not fit well (high MAE). In these scenarios, the model with the lowest MAE is the most

1It is not possible to distinguish between the free-space and complex objects using only trajectory data.
Therefore the object will be classified as free-space/complex. In Section 2-2 it is described how the KMLforce

framework uses force data to make this distinction.
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likely to be correct. In the final scenario both models do not fit perfectly (moderate MAE)
but could be correct as the found error is not that high. In this scenario the robot should not
classify the object or learn any model as it is uncertain which one is correct.

Table 2-1: Fuzzy rules that are used to determine the likelihood that a manipulated objects
belongs to an object class.

Scenario MAEpris MAErot Most likely

1 High High Mfree/complex

2 Low High Mpris

3 High Low Mrot

4 Moderate Moderate Mpris orMrot

Probability functions

A probability function is used to describe the likelihood that an object belongs to a certain
class. The probability function is expressed using a cumulative distribution function (CDF).
The CDF can be written as Fµ,σ(MAE) and is defined by Fµ,σ(MAE) = Pr(X ≤ MAE),
where X is a random variable. Thus, for a continues random variable the CDF becomes:

Fµ,σ(MAE) =
∫ MAE

−∞
fµ,σ(t)dt, (2-7)

where fµ,σ is the probability density function of a normal distribution N (µ, σ2).

As shown in Table 2-1, the only scenario where the manipulated object should be classified as
a free-space or complex movement, is when both models fit poorly. Therefore, the likelihood
that the object is free-space or complex is calculated using the lowest MAE of both models:

p(Mfree/complex) = Fµfc,σfc

(
min(MAEpris,MAErot)

)
(2-8)

The likelihood that the object is either prismatic or rotational is calculated as:

p(Mpris) = 1− Fµpr,σpr (MAEpris)
p(Mrot) = 1− Fµpr,σpr (MAErot)

(2-9)

The shape of the probability functions can be easily tuned using the parameters µ and σ. The
parameter µ describes the 50% likelihood point, whereas σ determines the steepness of the
curve. Users can adjust these parameters to fit their robot application. For example, more
accurate robot manipulators are advised to decrease µ and σ, as lower MAEs are expected
during the manipulations. For our robot application the values µfc = 0.01 m, σfc = 0.002 m,
µpr = 0.005 m, and σpr = 0.002 m are chosen. The resulting probability functions are shown
in Figure 2-5.
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(a) Probability function p(Mfree/complex).
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(b) Probability functions p(Mpris) and p(Mrot).

Figure 2-5: The probability functions that describe the likelihood that an object belongs to a
certain object class. (a) shows the probability function for the free/complex class. (b) shows
the probability functions for the prismatic and rotational class. The functions overlap as they are
chosen to be identical.

Confidence levels (C)

A confidence level is used to describe the confidence that a manipulated object belongs to
either the prismatic, rotational or free/complex object classes. The confidence levels of all
candidate models should sum to 100 %. The confidence levels are calculated in two steps, using
the previously designed probability functions. First of all, the confidence level ofMfree/complex

is calculated using:

Cfree/complex = p(Mfree/complex|x) · 100% (2-10)

Secondly, the residual confidence level is allocated to the prismatic and rotational models
using their relative likelihood given by:

Cpris =
(
1− p(Mfree/complex|x)

) p(Mpris|x)
p(Mpris|x) + p(Mrot|x) · 100%

Crot =
(
1− p(Mfree/complex|x)

) p(Mrot|x)
p(Mpris|x) + p(Mrot|x) · 100%

(2-11)

Additionally, an adjustable learning threshold is added, which allows robot engineers to decide
how well the predicted model should fit before the robot learns a kinematic model. An object is
only classified if the confidence level is above this learning threshold. If the object is classified
as prismatic or rotational, the corresponding kinematic model is attached to the object and
learned on the robot. If the KMLtraj framework classifies the object to be free-space/complex,
the object class is still uncertain and no model can be learned. If the confidence level of all
models are below the learning threshold, no model is learned. This classification approach is
illustrated in Figure 2-6.

In a nutshell, the confidence level gives an indication about the quality of the prismatic and
rotational models by assessing whether the difference between MAEpris and MAErot is sig-
nificant enough. Moreover, if both MAEs are high, it can be concluded that the manipulated
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object either belongs to the free-space or complex object class. The learning threshold makes
sure that no incorrect or uncertain2 models are learned.

Figure 2-6: The KMLtraj classification scheme. The KMLtraj framework uses a probabilistic
classifier, which only classifies an object if the confidence level is above a certain learning threshold
(70% in this figure). If the object is classified as prismatic or rotational, the corresponding
kinematic model is attached to the object and learned on the robot. If the KMLtraj framework
classifies the object to be free-space/complex the object class is still uncertain and no model can
be learned.

2-2 Part 2: Using force data - KMLforce

As described in the previous section, the trajectory data cannot be used reliably to recognize
free-space objects. This is mainly because free-space objects can be moved in any direction
and therefore often move in a straight or circular fashion. To deal with this uncertainty, the
KMLforce framework is designed such that it can recognize free-space movements using the
available force data measured by the force/torque (f/t) sensor.

As the goal of this framework is to recognize free-space objects, it is only interesting to know
the external forces on the f/t sensor caused by the manipulated object. Furthermore, in order
to make these external forces independent of the end-effector configuration, the input forces
used in the KMLforce framework are with respect to the world frame ΨW , as illustrated in
Figure 3-1.

In Section 2-2-1 the raw force data is pre-processed such that only external forces caused by
the objects are left. Subsequently, Section 2-2-2 describes the two characteristic properties
of objects that move through free-space and determines the inputs for the classifier. Finally,
Section 2-2-3 uses the characteristic free-space properties to create the decision boundaries of

2The correctness of a model is uncertain if there are multiple high-likelihood candidate models.
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the binary classifier. This binary classifier is able to distinguish free-space movements from
constrained movements using the force data that was recorded during a manipulation. In
Chapter 4 the KMLforce framework is validated using the experiments described in Chapter 3.
Main contributions of the KMLforce framework:

• The KMLforce framework can distinguish free-space from constrained movements using
the external forces that are caused by the manipulated object.

• Manipulations which only partially move through free-space can also be recognized by
the framework as the manipulations are first split into smaller segments.

2-2-1 Pre-processing the force data

The forces of robotic manipulators are generally measured with a f/t sensor which is placed at
the end of the wrist, right before the end-effector. Since the sensor is positioned at the wrist
of the robot, the sensor measures not only the external forces that are acting on the end-
effector, but also the forces that are caused by the weight and the motion of the end-effector.
In order to obtain solely the external forces that are caused by the manipulated object, the
forces caused by the end-effector should be removed computationally.
In addition, f/t sensors are occasionally disturbed by drift in their measurements. As a result
of this drift, the sensor values change over time. A common approach to minimize the effect
of drift is to compute the offset between the measurements and the true state of the sensor
[28]. This can be done by measuring the forces of a stationary empty gripper and removing
the gripper’s own weight. In order to effectively minimize the effect of drift, the offset should
be removed regularly.
In many robot applications, the noise of the f/t sensor is filtered using, for example, a low-
pass filter. In Section 4-2-3 it is explained that both filtered and unfiltered data can be used
as inputs for the KMLforce framework, as long as the classification boundaries are adjusted
accordingly.

2-2-2 Inputs for the binary classifier

The external forces are caused by the inertial, centrifugal, Coriolis and gravitational forces of
the object. However, as the velocity and acceleration of the robot’s end-effector is generally
low, it can be assumed that the inertial, centrifugal and Coriolis forces are close to zero.
Furthermore, it is assumed that during a free-space movement, the object has no contact
with the environment. With these assumptions two characteristic properties of free-space
movements can be formulated.

Property 1:
During free-space movements the external forces remain approximately constant.

As a consequence, the expected standard deviation of the measured forces in each direction
is close to zero:

σx ≈ 0, σy ≈ 0, σz ≈ 0. (2-12)
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Property 2:
The external forces caused by the object almost entirely consists of gravitational
forces.

Therefore, it is expected that the average forces measured by the sensor during a free-space
movement are:

µx ≈ 0, µy ≈ 0, µz ≈ −9.81 ·mobj , (2-13)

where mobj is the mass of the object that is moved through free-space.
When manipulating free-space objects, there are often parts of the movement where the
object is in contact with the environment and thus only partially moves through free-space.
For example, when picking up or placing down the objects during a pick-and-place task. The
properties described in Equations (2-12) and (2-13), however, assume that the object has
no contact with the environment. In order to still recognize partially free-space movements,
the manipulation is segmented into overlapping windows of dseg cm (e.g., if dseg = 5 cm the
segments are 0-5 cm, 1-6 cm, 2-7 cm, etc.). The chosen segmentation length dseg should be
smaller than the expected length of the free-space movement, such that at least one segment
contains the forces that are solely caused by the free-space movement.
For each of these segments the average forces and standard deviation are calculated and given
as input to the binary classifier:

Input per segment = [µx, µy, µz, σx, σy, σz]. (2-14)

2-2-3 Classification approach

The previous section described the expected average and standard deviation of the forces
with respect to the world frame. In reality however, the forces measured by the f/t sensor
deviate from the expected values due to sensor imperfections (e.g., noise or drift) and robot
behavior (e.g., abrupt movements or workspace limitations). To deal with these uncertainties,
the decision boundaries of the binary classifier describe a region around the expected µ and
σ values, as illustrated in Figure 2-7.
In order to create this region, the decision boundaries are chosen such that the mean and
standard deviation of the forces in x and y direction should lay within an ellipse centered at
zero and with diameters µmax and σmax. Furthermore, the mean and standard deviation of
the forces in z direction should be less than µz,max and σmax, respectively. Therefore, the
manipulated object is classified as a free-space object if the following conditions hold for at
least one segment:

µ2
x

µ2
max

+ σ2
x

σ2
max

≤ 1,

µ2
y

µ2
max

+
σ2
y

σ2
max

≤ 1,

µz ≤ µz,max, σz ≤ σmax,

(2-15)

where µmax, σmax and µz,max are three tuning parameters that describe the shape of the
decision boundaries.
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The tuning parameters µmax and σmax are based on the expected uncertainties and anomalies
of the f/t sensor. Tuning parameter µmax is mostly dependent on the drift of the sensor,
whereas σmax is mostly dependent on the noise on the sensor. For our robot application
µmax = 1 N and σmax = 0.3 N are chosen. The tuning parameter µmax is based on the
observed sensor drift and the minimal weight of the objects that ought to be detected, whereas
σmax is chosen to be three times3 the standard deviation of the measured noise during a
stationary experiment. Furthermore, the value µz,max = −0.5 N is chosen such that objects
of approximately 50 grams or more are detected while avoiding misclassification due to drift.
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Figure 2-7: Visualization of the 6D decision boundaries using three 2D plots, each showing the
mean (µ) and standard deviation (σ) of the forces in either the x, y or z direction. The input of
the binary classifier is represented by one point in each subplot. In order to classify the segment
as a free-space movement, each of the three points that represent one segment should lay within
the classifier bounds (black lines).

2-3 Final KML framework

The results of the KMLtraj and KMLforce frameworks can be combined into the final KML
framework. As both frameworks have their own strengths, the resulting multi-modal ap-
proach has more functionality and can be used on robot manipulators performing all kinds
of manipulation tasks. The final framework can classify free-space, prismatic, rotational and
complex objects. Furthermore, the framework is able to evaluate the quality of the learned
prismatic and rotational models. The frameworks are combined in the following way, which
is summarized in Figure 2-8.

After the manipulation task is executed, the KMLforce framework first determines whether
an object is a free-space or constrained object using the binary classifier, as described in
Section 2-2. If the object is recognized to be free-space, it will be classified as such after
which the corresponding kinematic model is learned. If the object is classified as constrained,
the KMLtraj framework uses the observed trajectory data to determine whether the object is
prismatic, rotational or free/complex. This is done using a probabilistic classifier, as described
in Section 2-1, which only classifies an object if the confidence level is above a certain learning
threshold. If the object is classified as prismatic or rotational, the corresponding model is
attached to the object and learned on the robot. If the KMLtraj framework classifies the

3The measured value is multiplied by three in order to make the classifier more robust.
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2-3 Final KML framework 21

object to be either free-space or complex, the object will be classified as complex as the
KMLforce framework already concluded that the object is constrained. Because the complex
objects can be recognized in this way, it is possible to also learn their kinematic models using,
for example, Gaussian Processes, as is done by Sturm et al. [11]. This is, however, currently
not part of the KML framework.

Figure 2-8: The KML classification scheme. The KML framework is a combination of the
KMLtraj and KMLforce frameworks. The former is a binary classifier, whereas the latter is a
probabilistic classifier with a learning threshold of 70%. If the KMLtraj framework classifies the
object to be either free-space or complex, the object is classified as complex since the KMLforce

framework already concluded that the object is constrained.
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Chapter 3

Experimental setup

This chapter describes the setup of the experiments used for the validation of the Kinematic
Model Learner (KML) framework. First, Section 3-1 describes the robot setup used to perform
the experiments. Subsequently, Section 3-2 describes the performed manipulation tasks in
more detail. In Chapter 4, the created frameworks are evaluated using the trajectory and
force data recorded during these manipulations.

3-1 Robot Setup

The framework was tested on the semi-autonomous care robot ‘Marco’. This robot is a
prototype of the TIAGo platform. An impression of the TIAGo platform is given in Figure 3-
1, in which the relevant parts and reference frames of the robot are depicted. Similar to the
TIAGo platform, Marco is equipped with a differential drive base, a RGB-D camera on its
head, a 1 Degree of Freedom (DOF) torso and a 7 DOF arm equipped with a 6 DOF ATI
Mini45 force/torque (f/t) sensor on its wrist. Marco uses a slightly different 1 DOF parallel
gripper and has an additional camera attached on the gripper to increase the depth perception
of the operator.

During the experiments the operator has full control over the robot using tele-operation. This
is done using a coactive interface [29] with a haptic device that lets the operator sense the
forces in the robot’s environment [30], as depicted in Figure 3-2. During the manipulations,
the operator cannot directly see the robot.

Force/torque data

The force/torque sensor measures the contact forces and torques with a resolution of 0.125 N
and 0.003 Nm, at a frequency of 100 Hz and is measured with respect to the sensor frame
Ψf/t, as shown in Figure 3-1. As mentioned in Section 2-2-1, the measured f/t data should
be pre-processed before it can be used.
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Since we are only interested in the forces that are caused by contact with an object, a package
is created that computationally eliminates all non-contact related forces. Furthermore, the
noise of the sensor is filtered using a first-order Butterworth (low-pass) filter with a cutoff
frequency of 4 Hz. Subsequently, it was found that the offset of the sensor changes a lot in
between experiments (±2 N) due to drift. Therefore, the sensor is recalibrated prior to each
manipulation. Finally, the measured forces and torques are transformed with respect to the
world frame ΨW , such that the z-axis is orthogonal to the floor. A more detailed description
of these pre-processing steps is given in Appendix A.

Figure 3-1: TIAGo robot plat-
form with relevant world frame
ΨW and force/torque sensor frame
Ψf/t. Adapted from www.tiago.pal-
robotics.com.

Figure 3-2: The operator controls the robot’s
movement using a coactive interface with a haptic
device that lets the operator sense the forces in
the robot’s environment. Courtesy of Heemskerk
Innovative Technology (HiT).

Magnetic tool

A magnetic tool, as shown in Figure 3-3, is designed to manipulate the prismatic and rota-
tional objects. The magnetic tool is attached to the objects and can be grabbed by the robot,
as shown in Figure 3-4. The tool is designed to prevent the robot from breaking the gripper
and to simulate the scenario of a non-rigid grasp.

The magnet is attached to a flat surfaced bolt that is rigidly attached to the object. However,
the magnet-bolt connection can only absorb (4.0± 0.5) N in the planar direction of the magnet
and (40.0± 1.0) N in the orthogonal direction. The maximal torque around any planar axis
is (0.38± 0.05) Nm, whereas almost no torque can be applied around the orthogonal axis. As
a consequence, the magnet can rotate around the bolt if the forces or torques on the magnet
reaches any of these limits. The maximum deviation from the object path is 7 cm, due to the
size of the magnetic tool.
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Figure 3-3: The magnetic tool consists of
two bolts that can be attached to an object
and a magnet that can be grabbed.

Figure 3-4: The magnetic tool can be
grabbed by the robot.

3-2 Manipulation tasks

The performance of the KML framework is evaluated with 9 representative manipulation
tasks consisting of 3 pick-and-place (PaP) tasks, opening 3 doors and opening 3 drawers. In
the first PaP task the goal is to move a mug from A to B. In the second PaP task an obstacle
is inserted, and in the third PaP task the mug starts on top of the obstacle and has to be
placed on the table. An overview of the different manipulation tasks is given in Figure 3-5.
Each of these different manipulation tasks are repeated 3 times, making up a total of 27
manipulations.

The robot starts at the position and configuration that the operator finds most suitable for
the manipulation. As soon as the gripper is closed, the robot starts recording the forces
of the f/t sensor and the end-effector poses. The recording is stopped after the gripper is
opened again and the manipulation has succeeded. Only successful manipulations are used
for classification. A task is considered to be successful if the magnetic tool remains connected,
and if the drawers are opened more than 15 cm or if the rotation angle of the doors is at least
30 degrees.
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Figure 3-5: The operator performs 9 different manipulation tasks, consisting of 3 PaP tasks,
opening 3 doors and opening 3 drawers. In the first PaP task the goal is to move a mug from A
to B. In the second PaP task an obstacle in inserted, and in the third PaP task the mug starts
on top of the obstacle and has to be placed on the table.

Mart Beeftink Master of Science Thesis



Chapter 4

Results & Discussion

This chapter discusses the results of the Kinematic Model Learner (KML) framework using
the recorded trajectory and force data of the manipulation experiments, as described in
Chapter 3. Furthermore, the KMLtraj framework will be compared with the current state-
of-the-art articulation package created by Sturm et al. [11], and is additionally evaluated
using the ‘Cody’ dataset.

The results of the KMLtraj and KMLforce frameworks are discussed in Sections 4-1 and 4-
2, respectively. Finally, the results of the multi-modal KML framework are discussed in
Section 4-3.

4-1 KMLtraj

In this section the results of the KMLtraj framework are discussed. In Section 4-1-1, the
found kinematic models are validated using visual inspection. After this, the confidence
level of each candidate kinematic model is determined in Section 4-1-2. Based on these
confidence levels and the predetermined learning threshold, the objects can be classified and
the corresponding kinematic models can be learned by the robot. In Section 4-1-3, the
robustness of the KMLtraj framework is evaluated by adjusting the tuning parameter λ, and
by analyzing the confidence levels in a worst case scenario. Additionally, the robustness of
the KMLtraj framework is evaluated using the ‘Cody’ dataset, containing the trajectories of
35 manipulations. Subsequently, Section 4-1-4 explains why the KMLtraj framework is better
suitable to be employed on a real world robot application than the current state-of-the-art
articulation package. Finally, the results are discussed in Section 4-1-5.

4-1-1 Model fitting

The 3D trajectory data of the performed manipulation experiments are shown in Figure 4-1.
A more detailed 2D visualization of the trajectory data is given in Appendix B. Using the
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trajectory data of each manipulation, the KMLtraj framework finds the best fitting prismatic
(Mpris) and rotational models (Mrot). The correctness of the found kinematic models can
be evaluated by plotting the trajectory together with the kinematic models. By visually
inspecting these plots, it can be easily concluded that all of the kinematic models are correctly
found.

Moreover, using this visualization, it can be shown that indeed, the least-squares solution
(λ = 0) findMrot with an undesirable large radius when opening a drawer, as illustrated in
Figure 4-2. Similarly, it can be observed that the proposed minimization problem, as described
in Equation (2-4), encourages the optimization algorithm to search for a model with a larger
rotation angle and thus a smaller radius. This is shown in Figure 4-3. Furthermore, two
examples of the kinematic models of a pick-and-place (PaP) and a door opening task can be
found in Appendix B.
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Figure 4-1: A 3D visualization of the 27 manipulations performed during the experiments, as
described in Section 3-2. A more detailed 2D visualization of the trajectory data is given in
Appendix B.
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Figure 4-2: Visualizing the ‘Drawer 2.1’ trajectory and the candidate modelsMpris andMrot

using λ = 0. With λ = 0 the minimization becomes a least-squares problem without any penalty
on the rotation angle. Therefore, the drawer is better described by Mrot with a large radius
(r = 1.05 m) and small rotation angle (θ = 15.2◦).
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Figure 4-3: Visualizing the ‘Drawer 2.1’ trajectory and the candidate modelsMpris andMrot

using λ = 0.1. With λ = 0.1 the optimization function finds a rotational model with a smaller
radius (r = 0.35 m) and larger rotation angle (θ = 44.8◦). Consequently, the drawer is correctly
classified as a prismatic object.
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4-1-2 Classification

After the best fitting prismatic and rotational models are learned, the quality of these models
are evaluated using the classification approach, as described in Section 2-1-4. When classifying
the objects according to the kinematic models with the lowest Mean Absolute Error (MAE),
all prismatic and rotational movements are correctly classified. However, as described in
Section 2-1, such a binary classifier cannot be used on the robot, as it is susceptible to
learning incorrect or uncertain kinematic models. The resulting confidence levels on the
other hand, give more insight into the quality of the learned models and should prevent the
robot from learning incorrect or uncertain models. The confidence levels of the manipulations
are illustrated in Figure 4-4. In this section, the results and the key values of the confidence
levels will be discussed.
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Figure 4-4: The resulting confidence levels of all manipulation tasks. The confidence levels of
each manipulation is represented by three bars showing the confidence of the prismatic (left/red
bar), rotational (middle/blue bar) and free/complex (right/green bar). The learning threshold is
adjustable, allowing robot engineers to decide how well the predicted model should fit before the
manipulation robot learns a kinematic model. If the confidence level of all models are below this
threshold, no model should be learned.

Because of the used learning threshold of 70%, only 6 out of 9 prismatic models of the ‘opening
drawer’ tasks are actually learned. As described in Section 2-1-4, the best fitting kinematic
model is only learned if the difference between MAEpris and MAErot is significant enough.
This can be easily verified by comparing the average MAEs of the models that are learned
and those that are not. As shown in Table 4-1, on average, the prismatic models that are
correctly learned have a large difference between MAEpris and MAErot (3.97 mm), whereas
the models that are not learned have a small difference (1.23 mm).

Table 4-1: Classification results for prismatic movements based on the confidence levels and the
chosen learning threshold.

MAEprisavg (mm) MAErotavg (mm) Difference (mm)

Correctly learnedMpris (6/9) 3.50 7.47 3.97
Not learned (3/9) 4.23 5.47 1.23
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Performing the same exercise on the ‘opening door’ tasks, 8 out of the 9 rotational models
are correctly learned with a large difference between MAEpris and MAErot (7.89 mm), as can
be seen in Table 4-2. One of the rotational models is not learned as its prismatic counterpart
also fits well, resulting in a small difference in MAEs (1.40 mm).

Table 4-2: Classification results for rotational movements based on the confidence levels and the
chosen learning threshold.

MAEprisavg (mm) MAErotavg (mm) Difference (mm)

Correctly learnedMrot (8/9) 12.80 4.91 7.89
Not learned (1/9) 4.70 3.30 1.40

On average, the MAEs of the correctly learned prismatic or rotational models are 58% lower
than the MAEs of its counterpart. Whether this difference is large enough to learn a kinematic
model depends on the robot application. Therefore, it is important to adjust the probability
functions and learning threshold to fit the specific robot application.
As mentioned in Section 2-1-4, the KMLtraj framework cannot reliably be used to recognize
free-space or complex movements, as these movements can have strong resemblance with
prismatic or rotational movements. Because of this, one PaP movement is misclassified as a
rotational object. Table 4-3 shows that indeed the found rotational model has a low MAE
(6.60 mm).
Nevertheless, by means of elimination, it is still possible to classify a movement as free-
space/complex. If both Mpris and Mrot do not fit well (high MAEs), it can be concluded
that the manipulated object belongs to the free/complex object class.1 As a consequence,
6 out of the 9 PaP movements are correctly classified as a free-space/complex. It should,
however, be noted that these results very much dependent on the trajectory of each PaP
movement. For example, if all of the PaP trajectories would have moved in a straight or
circular fashion, none of the PaP tasks would be classified as free/complex.

Table 4-3: Classification results for free-space movements based on the confidence levels and
the chosen learning threshold.

MAEprisavg (mm) MAErotavg (mm)

Correctly learnedMfree/complex (6/9) 44.17 21.06
Not learned (2/9) 66.50 10.10
Incorrectly learned (1/9) 14.70 6.60

4-1-3 Robustness analysis

This section evaluates the robustness of the KMLtraj framework by adjusting the tuning
parameter λ, and by analyzing the confidence levels in a worst case scenario. Additionally,
the robustness of the KMLtraj framework is evaluated using the Cody dataset, containing the
trajectories of 35 manipulations.

1As mentioned in Section 2-1-4, it is impossible to further distinguish the free-space objects from the
complex objects using solely trajectory data.
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Changing λ

As described in Section 2-1-3, λ can be varied to either increase or decrease the influence of
the cost function J(θ). In general, when increasing λ, the rotation angle of the found Mrot

will increase until θh is reached, whereas lowering λ decreases the overall influence of the cost
function. Furthermore, it was explained that an ordinary least-squares approach (λ = 0)
should not be used to fit rotational models, as a prismatic movement can be approximated
very accurately by a circle with an unrealistically large radius and thus a small rotation angle.

As expected, when choosing λ = 0, none of the prismatic movements (opening drawers) are
correctly classified when using a binary classifier based on the lowest MAE. When increasing
λ, the rotation angle of the foundMrot will increase until θh is reached. As a consequence, the
rotational models fit worse, leading to more correctly classified prismatic movements. The
classification results for changing λ is shown in Table 4-4. In the performed experiments,
the results for the free-space (PaP tasks) and rotational movements (opening doors) are not
affected by changing λ, since all of the rotational models already have large rotational angles
(θ > θh).

Table 4-4: The number of correctly classified prismatic and rotational objects is analyzed for
different λ when using a binary classifier based on the lowest MAE. λ = 0 shows that the least-
squares solution always finds a better fittingMrot. For any λ > 0.1 the results remain unchanged
as θh is reached.

λ prismatic rotational average θ for prismatic manipulations

0 0/9 9/9 13◦
0.01 7/9 9/9 38◦
0.02 8/9 9/9 40◦
0.05 8/9 9/9 44◦
≥ 0.1 9/9 9/9 45◦ (= θh)

Worst case scenario

In the worst case scenario of λ = 0, for all prismatic manipulations,Mrot fits a little bit better
than Mpris. However, as the difference between the MAEs of the prismatic and rotations
models are not significant enough (on average only 1.18 mm), the KMLtraj framework does not
learn any of the incorrectly classified rotational models, as shown in Table 4-5 and Figure 4-5.

It can be concluded that, even though λ > 0.1 has the best classification results in terms
of the lowest MAE, choosing different λ will have no harmful consequences, as the learning
threshold prevents the KMLtraj framework from learning incorrect models.

Table 4-5: Classification results for the prismatic movements (opening drawers) using λ = 0.
None of the candidate models are learned as the difference between MAEpris and MAErot is not
significant enough.

MAEprisavg (mm) MAErotavg (mm) Difference (mm)

Not learned (9/9) 3.74 2.57 1.18
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Figure 4-5: Resulting confidence levels of all manipulation tasks when choosing λ = 0. The
confidence levels of each manipulation is represented by three bars showing the confidence of the
prismatic (red/left bar), rotational (middle/blue bar) and free/complex (right/green bar). Due to
the learning threshold, none of the incorrect rotational models are learned for the ‘open drawer’
tasks.

The Cody dataset

The KMLtraj framework is also validated using the Cody dataset [11], which contains the
trajectories of 35 manipulation tasks, as shown in Appendix C. All of 35 manipulation were
correctly classified (21/21 rotational and 14/14 prismatic movements). During these exper-
iments the robot obtained a rigid grasp. Consequently, the Cody dataset shows smaller
deviations from the object constraints than the manipulations described in Chapter 3. As a
result, the confidence levels of the correct models are much higher. A more detail analysis of
the above mentioned results are given in Appendix C.

4-1-4 Improved current state-of-the-art

Using the manipulations, as described in Chapter 3, the novel approach of the KMLtraj
framework can be compared with the current state-of-the-art articulation2 package created
by Sturm et al. [11]. As the articulation package does not provide a confidence level of the
learned models, it is only possible to compare the articulation package with the KMLtraj
framework using binary classification. As described in Section 4-1-3, the binary classifier of
KMLtraj framework selects the kinematic model that has the lowest MAE. The results of
this binary classification are shown in Table 4-4. The binary classifier of the articulation
package selects the kinematic model that has the lowest BIC score.

The results of the articulation package are evaluated for different values of its tuning
parameter σz, as shown Table 4-6. It was difficult to find the most suitable σz = 0.05 m, as
small deviations from this value resulted in a strong bias towards one of the two models. The
results show that larger σz values results in a classification bias towards prismatic models,
whereas lower σz results in a classification bias towards rotational models. Sturm et al. argued

2http://wiki.ros.org/articulation
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that the articulation package correctly classified their data for any σz between 0.02 and
0.2 cm. For the dataset described in Chapter 3, however, no σz retrieved a 100% classification
score. This is most likely because the trajectories of the performed experiments show larger
deviations from the actual object constraints than the dataset that was used to validate the
articulation package (see Appendix C).

Table 4-6: Results of the articulation package for different values of the tuning parameter
σz. The best found value of σz = 0.5 still misclassified 2 rotational movements. Furthermore,
small deviations from this optimal value resulted in a strong bias towards one of the two models.
Larger σz values results in a classification bias towards prismatic models, whereas lower σz results
in a classification bias towards rotational models.

σz prismatic rotational

0.01 0/9 9/9
0.02 1/9 9/9
0.05 9/9 7/9
0.1 9/9 4/9
0.2 9/9 0/9

The tuning of the parameter σz is made especially difficult because the relation between σz
and the final BIC score is dependent on the number of samples N . In Table 4-7, it is verified
that the articulation package is dependent on the number of samples by downsampling the
trajectory data by a factor 5. In general, the articulation package favoursMpris for lower
number of samples due to the k log(N) term in Equation (1-2). Because of this dependency,
the articulation package is harder to tune, and less robust to changes in data acquisition,
such as changes in the sampling frequency.
It is validated that the results of the KMLtraj framework (see Table 4-4), on the other hand,
do not change when downsampling the trajectory data by a factor 5. Except for the obvious
fact that the optimization function might find a model which is slightly different than before.

Table 4-7: The results of the articulation package is dependent on the number of sam-
ples. When downsampling the trajectory data by a factor 5 the average number of data point
reduces from Navg = 472 to Navg,downsampled = 94. After downsampling, the results of the
articulation package change dramatically. For the downsampled scenario the best choice for
σz has now become σz = 0.02.

σz prismatic rotational

0.01 0/9 9/9
0.02 8/9 9/9
0.05 9/9 6/9
0.1 9/9 0/9
0.2 9/9 0/9

When comparing Table 4-6 with Table 4-4, it can be concluded that the KMLtraj framework
outperforms the current state-of-the-art articulation package when using a binary classifier,
as the KMLtraj framework correctly classified all of the prismatic and rotational movements.
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Furthermore, in contrast to the articulation package, the results of the KMLtraj framework
are independent on the number of samples. Therefore, the KMLtraj framework is easier to
tune and more robust to changes in the data acquisition.

4-1-5 Discussion

In this section the results of the KMLtraj framework are discussed. The first three topics
discuss the advantages of the KMLtraj framework compared to the state-of-the-art. The last
topic discusses the main limitation of the used approach.

The confidence level is a much better tool for classification than a binary classifier.

The confidence level has three main benefits. First of all, the confidence level evaluates the
quality of the learned kinematic model. Secondly, a kinematic model is only learned if this
model fits significantly better than the alternative models. If multiple models are likely to
be correct, none of the models are learned in order to avoid misclassification. Finally, as the
total confidence of all models sum to 100%, the quality of the models can be quickly evaluated
by an operator or robot engineer.
A binary classifier on the other hand has none is these benefits. On the contrary. A simple
binary classifier is prone to misclassification, learns every model independently of its quality,
and gives no feedback on the quality of the learned models.

The KMLtraj framework is more robust than the state-of-the-art.

As the magnetic tool is used during the experiment, the resulting trajectories occasionally
show large deviations from the constrained object path. This is mostly due to the fact that
the operator cannot directly see the robot and its environment during the manipulation and
is therefore dependent on the visual feedback of the cameras and the haptic feedback. In
spite of these large deviations, the KMLtraj framework is still able to correctly classify all
of the manipulated objects, in contrast to the articulation package. Therefore, it can be
concluded that the KMLtraj is more robust to deviations from the actual constrained object
path. Nevertheless, it is important to mention that more experiments should be performed
in order to further substantiate this conclusion.

The confidence levels can be easily adjusted to different robot application.

The probability functions that are used to calculate the confidence levels can be easily adjusted
to different robot applications by adjusting µ and σ. Users can adjust these parameters to
fit their robot application. For example, when the robot application requires a very accurate
model, a small increase in MAE can have a large effect on the usability of the corresponding
kinematic model. Therefore, the µ and σ parameters should be decreased, such that only
very accurate kinematic models are learned by the robot.

The results of the KMLtraj framework depend on the length of the trajectory.

The MAE is used in the probability functions to calculate the confidence levels. A downside of
this approach is that, even though the MAE represent the average error between the observed
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trajectory and the kinematic model, the maximum MAE is still limited by the length of the
trajectory. For example, if the observed trajectory is very small, the largest possible MAE
will also be very small. As a consequence, the probability functions should be redesigned if
the observed trajectory is significantly smaller than originally anticipated.

4-2 KMLforce

In this section the results of the KMLforce framework are discussed. The goal of the KMLforce
framework is to recognize free-space movements using the force data recorded during the
manipulations. In order to recognize the free-space movement, the raw force data first has to
be pre-processed (Section 2-2-1), such that only the external forces caused by the manipulated
object are left. A detailed description of the pre-processing steps performed on Marco are
given in Appendix A.
In Section 4-2-1 the performed manipulations are classified using a binary classifier. Subse-
quently, Section 4-2-2 evaluates the robustness of the KMLforce framework by changing the
tuning parameters, which define the decision boundaries. Finally, the results are discussed in
Section 4-2-3.

4-2-1 Classification

As explained in Section 2-2, prior to the classification, the force data is split into segments
of dseg = 10 cm, such that partially free-space movements can also be detected. Using this
segmentation length, the 27 manipulations were segmented into 860 segments having an
average of 520 samples per segment. The mean and standard deviation of each segment is
given as input to the binary classifier. The input data of all force segments can be visualized
using three 2D plots, as depicted in Figure 4-6. In this figure, each subplot shows the mean and
standard deviation of the forces in either the x, y or z direction. Consequently, one segment is
represented by 1 point (*) in each subplot. The binary classifier classifies a segment as a free-
space movement if each of the three points lays within the corresponding decision boundaries
(black lines), i.e., if the conditions described in Equation (2-15) hold for at least one segment.
The mean and standard deviation of the pick-and-place segments (green) are clustered around
the expected values, as described in Section 2-2-3. Only a few segments are to be found
outside of this cluster. These anomalies are caused by the contact transitions during the PaP
tasks when picking up or placing down the mug. From the 860 classified segments (across
all 27 manipulations), 394 belong to the pick-and-place tasks and 464 belong to the the
prismatic (opening drawers) and rotational (opening doors) tasks. The results of the segment
classification are summarized in Table 4-8.

Table 4-8: Classification results of the force segments using the KMLforce framework.

Free-space movements Constrained movements

Correctly classified 341 464
Incorrectly classified 55 0

Total number of segments 396 464
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The binary classifier correctly classifies all segments from the constrained (prismatic and
rotational) movements. Furthermore, 341 out of 394 pick-and-place segments are recognized
as free-space movements. Out of the 55 incorrectly classified segments, approximately 18
are caused by the contact transitions (picking-up and putting down) of each pick-and-place
task. The other incorrect classifications are caused by the drift of the f/t sensor in x direction
during the manipulation. This is a known problem for the used f/t sensor, as the wires are
inadequately connected to the robot. The classifier will most likely yield better results if this
problem is accounted for, as the mean forces are expected to lay closer to zero.

A movement is classified as free-space if at least one of its segments is classified as a free-space
movement. As a consequence, all free-space movements (9/9) and all constrained movements
(18/18) are correctly classified.
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Figure 4-6: Mean and standard deviation of the segmented trajectories. One segment is repre-
sented by 1 point (*) in each subplot. In order to classify the segment as a free-space movement
each of the three point that represent one segment should lay within the decision boundaries
(black lines).

4-2-2 Robustness analysis

The results in the previous section were based on the following tuning parameters: dseg =
10 cm, µmax = 1 N and σmax = 0.3 N. In this section the robustness of the KMLforce frame-
work is tested by varying either dseg, µmax or σmax, while keeping the other variables con-
stant. The robustness is expressed as the range of the tuning parameters for which 100%
of the movements are correctly classified. It should be noted that the obtained results are
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dependent on the quality of the f/t sensor and the smoothness of the robot manipulations, as
will be discussed in Section 4-2-3.

The results of the robustness analysis are summarized in Table 4-9. First of all, all manip-
ulations are correctly classified up until the point where the length of the segments become
smaller than 3 cm. This is logical as it is more likely that the measured forces have a smaller
deviation when measuring a smaller part of the manipulation. This illuminates the fact that
the KMLforce framework is less robust for small trajectories. However, as the trajectories of a
manipulation robot are typically much larger (dtot ' 20 cm), this does not have to be a trou-
blesome limitation. A simple solution to this limitation would be to only learn a kinematic
model if the trajectory is of a certain minimal length. Secondly, it was found that for the
tuning parameter µmax, perfect results are obtained for any value greater than or equal to
0.5 N. Because of the drift that occurs during the experiments, some free-space movements
are misclassified as constrained when µmax < 0.5 N. Finally, σmax can be chosen anywhere
between 0.05 and 0.9 N. This range is rather large, considering the fact that for many of the
constrained segments, the standard deviation (in either the x, y or z direction) is smaller
than 0.9 N (see Figure 4-6).

It can be concluded that the KMLforce framework is very robust to changes in each of the
tuning parameters. Furthermore, the appropriate tuning parameters can be easily determined
by assessing the sensor quality and the expected length of the free-space movements.

Table 4-9: The robustness of the KMLforce framework is tested by varying either dseg, µmax

or σmax, while keeping the other variables constant. Each row of the table shows the range in
which one variable can change while preserving the 100% classification score.

σmax (N) µmax (N) dseg (cm)

0.3 1.0 [3, dtot]
0.3 [0.5,∞] 10

[0.05, 0.9] 1.0 10

4-2-3 Discussion

In this section the results of the KMLforce framework are discussed.

The KMLforce reliably recognizes free-space movements.

As can be seen in Figure 4-6, the mean and standard deviation of the forces during a free-
space movement lay close to the expected values described in Section 2-2-2. Furthermore,
the free-space and constrained movements are easy to discriminate, since the constrained
movements have significantly larger standard deviations. Consequently, the KMLforce frame-
work can reliably recognize objects moving through free-space. This, however, also directly
indicates the main limitation of the KMLforce framework, namely that the free-space objects
have to move through free-space and thus have no contact with the environment, in order
to be correctly classified. More specifically, the free-space object has to be moving through
free-space for at least dseg cm before it will be correctly classified.
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The classification results are (mostly) independent of the used filter, as long as
the decision boundaries are adjusted accordingly.

The mean and standard deviation of the force segments are calculated after the signal has
been filtered with a low-pass filter, as described in Appendix A-3. Naturally, the classifi-
cation results are affected by this filter, because the standard deviation of the force data
will decrease. However, when a filter is correctly designed, it only removes the noise, while
leaving the rest of the signal mostly untouched. As a consequence, the standard deviation of
the free-space and constrained segments will be lowered approximately the same amount due
to filtering. Consequently, it is expected that different filters have almost no effect on the
classification results, as long as the decision boundaries are adjusted accordingly. Analogous,
unfiltered data can be used as well.

The robustness of the KMLforce framework is dependent on the quality of the f/t
sensor and the smoothness of the robot manipulation.

As the binary classifier is based on the mean and standard deviation of the input forces, the
quality of the f/t sensor can have a large effect on the robustness of the KMLforce framework.
For example, if the noise level of the f/t sensor increases significantly, a free-space movement
could be misclassified as constrained. Moreover, drift also plays a major role in the robust-
ness of the classifier. For example, if the sensor drifts more than the chosen µmax value, a
free-space movement will also be misclassified as constrained.
Additionally, when the used robot performs smoother manipulations (lower forces), the frame-
work becomes less robust, as the mean and standard deviation of the constrained movements
are likely to move closer to zero. As a consequence, some of the constrained movements could
be classified as free-space.

The classifier is designed using world knowledge instead of using machine learning.

The created classifier is based on the characteristic properties of free-space movements and
knowledge about the sensor quality. Machine learning, on the other hand, could also be
used to learn a classifier. There are two downsides to using machine learning. First of all,
in order to learn a classifier, a large dataset is required to avoid sparse regions. Secondly,
it can be difficult to find a classifier that correctly classifies unseen instances because the
machine learning algorithm can both overfit or underfit the training data. Consequently, it
is more sensible to use the available knowledge about the free-space characteristics to design
a classifier.

4-3 Combining KMLtraj and KMLforce

Finally, the results of the KMLtraj (Section 4-1-2) and KMLforce (Section 4-2-1) frameworks
are combined to form the multi-modal KML framework, as describe in Section 2-3. When
combining the obtained results, all free-space (mugs), prismatic (drawers) and rotational
(doors) objects are correctly classified. This is done in two steps, as illustrated in Figure 2-8.

First, the KMLforce framework determines whether the object is a free-space or constrained
object using a binary classifier. As a result, each of the 9 pick-and-place tasks are correctly
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recognized as free-space movements. As a free-space object has no constraints, the learned
kinematic model is empty. Additionally, the KMLforce framework correctly classifies all draw-
ers and doors as constrained objects.
Secondly, as the KMLforce framework is unable to further differentiate the constrained objects
into either prismatic, rotational or complex objects, these manipulations are given as input
to the KMLtraj framework. The KMLtraj framework correctly classifies all the drawers as
prismatic and all the doors as rotational objects. Because of the learning threshold of the
KMLtraj framework, 14 out of the 18 kinematic models are actually learned and attached to
the corresponding object.
After the results of the KMLtraj and KMLforce frameworks are combined, all of the manipu-
lations are correctly classified. Consequently, it can be concluded that the KML framework is
capable of recognizing free-space, prismatic and rotational objects, and learn their kinematic
models. Additionally, the KML framework is able to asses the quality of the learned models
and can prevent the robot from learning incorrect or uncertain models. As a consequence, 24
of the 27 kinematic models are actually learned by the robot.

4-3-1 Discussion

In Sections 4-1-5 and 4-2-3 the results of the KMLtraj and KMLforce frameworks are discussed
in detail. This section provides a more general discussion of the assumptions, results and
implications of the final KML framework.
In order to create an understandable and adjustable framework, a well balanced
number of tuning parameters is required.
One of the goals of this Master’s thesis is that the framework is both understandable to
robot engineers, and adjustable to different robot applications. Whether this goal is achieved
depends on the number and understandability of each tuning parameter. If the number of
tuning parameters is too small, the robot engineer might not have enough freedom to adjust
the framework to the used robot application. On the other hand, too many or too complex
tuning parameters can make the framework hard to comprehend. In total, the proposed KML
framework has 12 different tuning parameters that can easily be determined by either assess-
ing the quality of the force/torque sensor, or by assessing the general purpose of the robot
application. Because of the simplicity of the used parameters, the framework is believed to be
both easily understandable and well adjustable. The used tuning parameters are summarized
in Appendix D.

The generalizability of the learned kinematic models depends on the used grasp-
ing technique.
In many robot applications, a non-rigid grasp is used during the manipulation. Consequently,
the observed trajectory deviates from the actual object constraints. As the specific deviations
found during these manipulations are dependent on the used grasping tool, the learned kine-
matic models can only be used on other robots if they use a similar grasping tool. On the
other hand, if the robot has a rigid grasp during the manipulations, the observed trajectory
is the same as the actual object constraints. As a consequence, the learned kinematic model
can be used by any robot that has a rigid grasp during manipulation.
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Chapter 5

Conclusion & Future work

5-1 Conclusions

In this thesis, the novel Kinematic Model Learner (KML) framework is presented that aims
to solve some of the most pressing problem for robots learning kinematic models based on
given demonstrations, as described in Section 1-3. The created KML framework is a com-
bination of two separate frameworks that complement each other: KMLtraj and KMLforce.
The designed frameworks are experimentally validated by performing a total of 27 demon-
strations on the care robot Marco using tele-operation. The trajectory and force data of these
manipulations were used as inputs to validate each framework separately. Additionally, the
KMLtraj framework is also evaluated using the Cody dataset, containing the trajectories of
35 different manipulation tasks. The main conclusions of this research are:

• The KMLtraj framework can classify and learn the kinematic models of the prismatic
and rotational objects more robustly than the state-of-the-art articulation package.
Additionally, the confidence levels used in the KMLtraj framework enable the robot or
a human operator to instantly evaluate the quality of the learned models. Furthermore,
the learning threshold makes the framework even more robust, as it prevents the robot
from learning incorrect or uncertain models. The biggest limitation of the KMLtraj
framework, however, is that trajectory data alone is not sufficient to reliably recognize
free-space objects, as these objects often move in a circular or straight fashion. In order
to solve this problem, the KMLforce framework is created.

• The KMLforce framework can robustly recognize free-space movements because of the
characteristic properties of these movements. A robustness analysis has shown that
the binary classifier used by the KMLforce framework can reliably classify free-space
and constrained movements. In order to deal with partially free-space movements, the
trajectory is split into segments. This enables the framework to recognize all of the
performed pick-and-place tasks.
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• The final KML framework combines the strengths of the KMLtraj and KMLforce frame-
works. As a result, the KML framework is capable of recognizing free-space, prismatic
and rotational objects based on a given (tele-)demonstration, and learn their kinematic
models. Additionally, the KML framework is able to asses the quality of the learned
models and can prevent the robot from learning incorrect or uncertain models. Addi-
tionally, by means of elimination the framework should also be able to classify complex
movements. This latter is, however, not yet validated with experiments and should
be tested in future work. Finally, the framework can be easily adjusted to different
robot applications as the effects of the tuning parameters are easy to understand and
can be determined either by assessing the robot applications or by performing simple
experiments.

5-2 Future Work

Although promising results have been found towards making robots learn kinematic models
based on demonstrations, this work does not complete this topic. Many more developments
can be studied in future research. The following topics pose as candidates for future research:

• The learned kinematic models do not provide the robot with any information on the
forces that are necessary to manipulate the objects. Using the learned kinematic model
and available force data it is possible to differentiate the forces into normal and tan-
gential forces. One interesting research direction would be to use these normal and
tangential forces to create a dynamic model of the manipulated object. If both the
kinematic and dynamic model of an object are known, the robot knows the path it has
to follow and the required forces to realize this movement [3].

• Currently the framework finds the best fitting kinematic model using a naive least
squares optimization function with an additional cost function for the rotation an-
gle. The experiments performed in this study have shown that this method performs
well. However, least-squares solutions are known to be sensitive to outliers and there-
fore might not be the best approach. A possible solution to this problem, is to use a
Bayesian approach for fitting the models [19]. Future studies could research the possi-
ble improvements when using the Bayesian approach to find the best fitting kinematic
models.

• In theory, the KML framework should be able to correctly recognize complex move-
ments. This is, however, not validated in this study, as no objects of the complex class
were manipulated in the experiments. Future research could perform more extensive
experiments, where also complex objects are manipulated. Furthermore, the robustness
of the framework could be validated using different robot manipulators.

• The KML framework solely uses initial demonstrations to classify an object and learn
its kinematic model. However, the robot could also use additional demonstrations or
user feedback to improve the task performance. Users could provide feedback, such as
the correct plane of rotation or the estimated radius/opening angle of a door, using a
specially designed coactive interface. This poses two interesting research topics. First
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of all, future research could investigate the best way to gather additional user feedback.
Secondly, future research could investigate the possibility to combine multiple manip-
ulations of the same object, such that a more accurate kinematic model can be obtained.
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Appendix A

Pre-processing force/torque sensor

A-1 Computational elimination of non-contact forces and torques

Because the force/torque (f/t) sensor is attached to the wrist of the manipulator, the raw
sensor data includes the inertial, centrifugal, Coriolis and gravitational forces and torques
caused by the weight and the motion of the gripper that is attached to the sensor. As
explained in Section 2-2-1, in order to obtain the f/t measurements that are solely caused
by the manipulated object, the forces and torques caused by the end-effector and the offset
caused by the drift of the sensor should be removed computationally.

The framework that currently removes the gravitational forces/torques on robot Marco is not
taking the configuration of the gripper into account. As a consequence, the current framework
works very poorly. Therefore, a new gravity compensation framework is designed which uses
the mass, center of mass (COM), and robot configuration to obtain solely the external forces.
The used method to obtain the external forces is described in more detail by Stilman [28].

As the velocity and acceleration of the gripper is generally low, the inertial, centrifugal and
Coriolis forces and torques are negligible. The gravitational forces/torques caused by the
gripper, however, have significant influence on the raw sensor data and can be removed in
two steps. First of all, the forces caused by the end-effector are removed by measuring the
gripper’s mass on a scale (mgripper= 0.405 kg), and by subtracting the resulting gravitational
forces (w.r.t. Ψf/t, as illustrated in Figure 3-1) from the raw sensor data. Secondly, the
non-contact torques are removed by multiplying the gravitational forces with the COM of
the gripper and rotating these torques into the sensor frame Ψf/t. The COM of the gripper
is calculated by measuring three static gripper configurations with and without the gripper
attached to the sensor. Using these experiment it was found that the gripper is close to
symmetric in the y and z directions, whereas the COM in the x direction of the sensor frame
is calculated to be 0.053 m.

Furthermore, it was discovered that the sensor has significant issues with drift in between
and during experiments. The effect of the drift is minimized by regularly removing the offset
between the measurements and the true state of the sensor. The offsets are computed by
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measuring the forces and torques of a stationary empty gripper and removing the gripper’s
own weight.

The new gravity compensation framework was evaluated with an experiment where an empty
gripper rotates extensively around the wrist of the robot. As is shown in Figure A-1, the
new framework outperforms the old one as the obtained forces are (as expected for an empty
gripper) close to zero, independently of the gripper configuration.
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Figure A-1: Rotating the gripper extensively around the wrist. The raw data measured by the f/t
sensor is shown in the left figure. The new gravity compensation framework (right) outperforms
the old one (middle) as the obtained forces are (as expected for an empty gripper) closer to zero,
independently of the gripper configuration.

A-2 Latency

Latency is an important topic in robotics because a small delay in data acquisition can have
a huge influence on the robot’s performance. These delays can, for example, causes aliasing
or oscillations when tele-operating the robot. Therefore, the latency of the robot is evaluated
by performing two different stationary pull/push experiments while obtaining the data using
either a wifi and a LAN connection. In these experiments a human pushes and pulls the
gripper (while pointing forward) in different frequencies.

Based on the resulting data it is concluded that the frequency of the data acquired using
wifi is not high enough (only 15 Hz). Because of this low sampling frequency the signal is
significantly distorted due to aliasing. Therefore, the f/t data will be acquired using a LAN
cable. This resulted in an increase of sampling frequency from 15 Hz to 100 Hz. The different
signals are shown in Figure A-2.
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Figure A-2: Force data of the two push/pull experiments using wifi (top) and a LAN cable
(bottom). The quality of the data is higher for the LAN cable, as the sampling frequency is
100 Hz instead of the 15 Hz obtained using wifi. In the first 5 seconds of the first experiment
aliasing is clearly visible. Note: the amplitude and frequency of the forces are different because
they represent two different push/pull experiments performed by a human.

A-3 Filtering force data

The noise of the sensor is filtered using a first-order Butterworth (low-pass) filter with a
cut-off frequency of 4 Hz. With this filter the higher frequency noise signals are cut-off.
Consequently, the noise on the force data is reduces while maintaining the forces caused by
the object manipulation. The filter is validated using the seconds pull/push experiment as
shown in Figure A-2. When analyzing the filtered signal, as shown in Figure A-3, it is clearly
visible that the noise of the data is removed while leaving the characteristic push/pull forces
intact.
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Figure A-3: Force data of a push/pull experiment before (red) and after (blue) filtering using a
first-order Butterworth (low-pass) filter with a cut-off frequency of 4 Hz.
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Appendix B

Trajectory data in more detail

Even though the 3D trajectories, as shown in Figure 4-1, gives an good intuition about the
recorded trajectory data, it does not show much detail and does not distinguish between
the 9 different manipulation tasks. Figure B-1 displays the trajectory data in more detail.
Furthermore, examples of the fitted models for a ‘pick-and-place’ and ‘opening door’ task are
shown in Figures B-2 and B-3.

-35 -30 -25 -20 -15 -10 -5 0

x [cm]

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

y
 [

c
m

]

Top view

-35 -30 -25 -20 -15 -10 -5 0

x [cm]

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

z
 [

c
m

]

Side view

Pick and place 1

Pick and place 2

Pick and place 3

Drawer 1

Drawer 2

Drawer 3

Door 1

Door 2

Door 3

Starting position

Figure B-1: A more detailed visualization of the trajectories data obtained during the manipu-
lation tasks, as described in Section 3-2. The left figure shows the top view of the trajectories,
whereas the right figure shows the trajectories from a side view. The starting point of each
manipulation is set as zero.

Master of Science Thesis Mart Beeftink



50 Trajectory data in more detail

-5

0

0

5

z
 [

c
m

]

-5

10

-10

-15

y [cm]

5-20

0
-25

x [cm]

-5

-30 -10

-15-35

Pick and place 2.2

M
pris

 (MAE = 0.0694)

M
rot

  (MAE = 0.0103, r = 0.17m,  = 149.2 °,  = 0.1)

Figure B-2: Visualizing the ‘Pick-and-place 2.2’ trajectory and the candidate modelsMpris and
Mrot using λ = 0.1. BothMpris andMrot do not fit well. However, asMrot has a moderate
error of 10.3 mm the door is neither classified as a free-space nor a rotational object.
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Figure B-3: Visualizing the ‘Door 2.1’ trajectory and the candidate models Mpris and Mrot

using λ = 0.1. The rotational model clearly fits better (MAErot = 2.3 mm) than the prismatic
model (MAEpris = 13.4 mm). Consequently, the door is correctly classified as a rotational object.
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Appendix C

Validation KMLtraj using the Cody
dataset

The KMLtraj framework is also evaluated using the dataset provided by Sturm et al. [2]. In
this dataset, the robot Cody opens: a cabinet door that opens to the right, a cabinet door that
opens to the left, a dishwasher, a drawer, and a sliding cabinet door. These manipulations
are all repeated 7 times, resulting in 35 trajectories, as shown in Figure C-1. The robot
manipulates the objects with a hook using Equilibrium Point Control (EPC) [21], which is a
form of impedance control.

Compared to the experiments performed in Chapter 3, the rotational movements are much
better distinguishable from the prismatic movements. Consequently, the confidence levels are
also much higher, as can be seen in Figure C-2.

Based on the confidence levels and the learning threshold, only two kinematic models are
not learned. One kinematic model of the ‘sliding cabinet’ movement is not learned as the
Mean Absolute Error (MAE) of the prismatic model is relatively high (8.20 mm). Moreover,
one rotational model of the ‘dishwasher’ movement is not learned. When visually inspecting
the model, it quickly becomes clear that the plane P was not correctly fitted on the trajec-
tory. This anomaly is probably the result of the optimization function not finding the global
minimum.
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Figure C-1: Observed trajectories of robot Cody operating 5 different objects. From [2].
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Figure C-2: After the KMLtraj framework learns the best fitting modelsMpris andMrot that
using the Cody dataset [2] the confidence levels are calculated. The confidence levels of each
manipulation is represented by three bars showing the confidence of the prismatic (left/red bar),
rotational (middle/blue bar) and free/complex (right/green bar).
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Appendix D

Tuning parameters

In total, the proposed Kinematic Model Learner (KML) framework has 12 different tuning
parameters that can easily be determined by either assessing the quality of the force/torque
sensor, or by assessing the general purpose of the robot application. The KMLtraj framework
has 8 tuning parameters, which are summarized in Table D-1. The 4 tuning parameters of
the KMLforce framework are summarized in Table D-2.

Table D-1: A summary of the tuning parameters of the KMLtraj framework.

KMLtraj Tuning parameters Purpose/meaning
Cost function
(Section 2-1-3) λ

Weighting factor of the cost function J(θ). The weighting
factor can be varied to either increase or decrease the influ-
ence of the cost function.

θl, θh
Shaping the cost function J(θ). These values are based on
the expected rotation angles of the robot application when
manipulating rotational objects.

Classification
(Section 2-1-4) µfc, σfc, µpr, σpr

Shaping the probability functions that describe the likeli-
hood that a candidate model is correct. The mu values de-
scribe the 50% likelihood point, whereas sigma determines
the steepness of the curve.

Learning threshold

The learning threshold allows robot engineers to decide how
well the predicted model should fit before the manipulation
robot learns a kinematic model. An kinematic model is only
learned if the confidence level is above this learning thresh-
old.
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54 Tuning parameters

Table D-2: A summary of the tuning parameters of the KMLforce framework.

KMLforce Tuning parameters Purpose/meaning

Segmentation
(Section 2-2-2) dseg

In order to recognize partially free-space movements, the
manipulation is segmented into overlapping windows of dseg
cm. The segmentation length dseg should be smaller than
the expected length of the free-space movement.

Classification
(Section 2-2-3) µmax, σmax, µz,max

Shaping the decision boundaries used for the binary classifier
of the KMLforce framework. These values can be determined
by assessing the drift and the noise of the f/t sensor and by
determining the minimal weight of the objects that should
be detected.
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Glossary

List of Acronyms

DOF Degrees of Freedom

HiT Heemskerk Innovative Technology

ADL Activities of Daily Living

LfD Learning from Demonstration

COM center of mass

RMSE Root-Mean-Square Error

BIC Bayesian information criteria

CEP Cartesian Equilibrium Point

DOF Degree of Freedom

KML Kinematic Model Learner

PaP pick-and-place

CDF cumulative distribution function

MAE Mean Absolute Error

EPC Equilibrium Point Control

SVD Singular Value Decomposition
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List of Symbols

α Parameter vector which describes the parameters of a kinematic model
µ Mean/tuning parameter
ΨW World frame
Ψf/t Force/torque sensor frame
σ Standard deviation/tuning parameter
θ Rotation angle

N (µ, σ2) Normal distribution with mean µ and standard deviation σ
P A plane that best fits the observed trajectory points in terms of having the

lowest sum of squared residual errors.
x The observed end-effector trajectory of a manipulation.
C Confidence level
Fµ,σ A cumulative distribution function based on a normal distribution N (µ, σ2)
fµ,σ The probability density function of a normal distribution N (µ, σ2)
mgripper The mass of the gripper attached to the f/t sensor
mobj The mass of an object.
q Scaling factor
X Random variable
z A projection of the observed trajectory x onto a plane P
Mcomplex Kinematic model of a complex object
Mpris Kinematic model of a prismatic object
Mrigid Kinematic model of a rigid object
Mrot Kinematic model of a rotational object
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