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Impact Assessment of Extreme Storm Events
Using a Bayesian Network

Abstract

The most densely populated and economical most valuable areas in The Netherlands lie below
mean sea level. These areas are protected against the sea by a coastal dune system. The
vital importance of this dune system is reflected in the extensive collection of Dutch legal
regulations that ensure the safety level of the dunes.
Current safety assessment method for dunes, prescribed by these regulations, is based on
conducting large numbers (thousands) of simulations to estimate dune erosion at individual
locations along the Dutch coast. With the use of more complex dune-erosion models (i.e.
Xbeach; Roelvink et al. (2009)) in the safety assessment, the method gets computationally
more intensive. This means that conducting large numbers of simulations for a dune safety
assessment are not feasible. Therefore new probabilistic approaches (e.g., Bayesian approach)
are needed in order to apply state-of-the-art insights and models for dune erosion in a safety
assessment.

Aim

The aim of this study was to gain an insight in the applicability of the Bayesian network
approach for dune safety assessment against extreme storm events on the Dutch coast.

Method

First a database was generated that serves as input to the Bayesian network. The content of
this dataset is obtained in a way similar to current assessment method. This means, data-
sources (wave conditions, bottom profiles) and the dune erosion model (duros+; Vellinga
(1986), van Gent et al. (2008)) to simulate the dune erosion process were equal.
Qualitatively the Bayesian network is represented by nodes (variables) and arrows (relations).
Variables and relations were selected such, they were physically related to the dune erosion
process and could be obtained out of the database. Quantitatively the Bayesian network is
described by a conditional probability table defined by a expectation-maximization training
algorithm. For this training process, cases (a case is a record in the database and represents
a storm event) out of the dataset were selected.
Sensitivity analysis of the required number of training data, as well the determining variable
of this Bayesian network were made.

Results

Results show the Bayesian network is capable of reproducing the dune erosion process (given
this set of data) for 89%. The loss in skill is a consequence of the discretization of the variables
in the Bayesian network. The number of trainig-cases needed to make reliable predictions
that are more accurate then predictions made with the use of the prior probability, is ap-
proximately 5,000 cases.
Results of the sensitivity analysis indicates water level information is a determining term
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regarding the prediction skill. However, when other hydraulic conditions (wave height, peak
period) were known the water level was redundant. Indicating water level information is
captured by the variables wave height and/or peak period.
Dune erosion volumes predictions for locations at the Holland coast, shows a high amount of
uncertainty and results in unreliable predictions (negative log-likelihood ratio) when using a
Bayesian network trained on cases representing the Wadden coast. Probably coastal features
between both coastal regions are too diverse.

Furthermore, a Bayesian network is a useful tool to improve insight into data. Expected
relations between variables can be investigated and visualized in the Bayesian network quickly.

ii Deltares and Delft University of Technology
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1. Introduction

1.1. Background

The favourable location of The Netherlands in a delta area of large rivers brought The
Netherlands their prosperity. Without solid water-defence two-third of the country would
be highly vulnerable to flooding (Figure 1.1). Moreover, in this most vulnerable area nine
million people live and 65% of the national income is earned. Therefore a proper sea-defense
is of vital importance. Especially the condition of the primary defence against water from
the sea, main rivers and big lakes is crucial. They form the first line of defense and protect
The Netherlands against flooding.

Figure 1.1.: Areas in the Netherlands threatened by sea and river (light-green). Higher grounds
are indicated with a dark-green colour. The primary water defense is indicated in red. (HR2006,
2007)

1.1.1. Historical Background

In the beginning of February 1953 the Netherlands suffered from a severe storm event and
in several parts of the Netherlands (mainly Holland and Zeeland) the sea defence could not
withstand the high water and collapsed. The damage was enormous, 1800 people lost their
lives and around 15,000 ha land inundated. The failure of the dikes was caused by the
unprecedented high level of the North Sea at that particular time and place: the water over-
topped the dike, the back side (inner slope) was gradually washed away and finally the dike
collapsed.
Since it was apparent that the coastal defense was insufficient, the government appointed a
committee (the so-called Delta committee) to recommend on an appropriate measures to pre-

Deltares and Delft University of Technology 1



Impact Assessment of Extreme Storm Events
Using a Bayesian Network

vent a disaster like that. The problem was studied from an economic but also from a physical
point of view. The economic analysis compared the costs of building dikes of a certain height
with the risks (risk = costs of inundation × probability) of a possible inundation given that
specific height.

Nowadays, almost 60 years later, both the number of observations of sea levels and the
statistical methodology have improved considerably. This has led, among others, to a new
approach in which the strength of coastal defense is probabilistically determined. The proba-
bility that there is a flood in a given year equals p, where the number p has to be determined
by the politics ranging between 10−4 and 10−3 (depending on the importance of the area to
protect)1. Despite of the fact that only dikes collapsed during the 1953 storm event, in this
research attention will be paid to dunes solely.

Dunes

Because the major part of the Dutch coastal defence consist of dunes (approximately 250 km),
an appropriate safety assessment method for dunes is necessary. In order to evaluate whether
safety level of the dune system is conform the standard a five-yearly safety assessment of the
dune system is executed (see Section 2.1). If the actual safety level does not meet the agreed
standard, reinforcement measures should be taken.
In order to assess the dune safety against flooding a dune-erosion model is necessary to
simulate the dune-erosion process. In the 1970s and 1980s a lot of research has been done
with respect to dune-erosion due to heavy storms (van de Graaff (1977, 1986) and Vellinga
(1982, 1986)). Despite of the complex dune-erosion processes, the final result can be described
with a relative simple model duros (Vellinga, 1986) and updated to duros+ (van Gent
et al., 2008). Moreover, this research also showed the amount of dune-erosion is determined
by a relative large number of parameters. Due to this large number of process-determining
variables a probabilistic approach to assess the dune safety against flooding was followed
(TAW, 1984).
The storm characteristics associated by the prescribed safety level are never observed in front
of the Dutch coast and therefore needs to be obtained out of the available data. This data
are collected about water levels at (mainly) five stations along the Dutch coast since the end
of the 19th century. This collection contains many observations of water levels at different
locations over a time period of more than 100 years. A far extrapolation of this data has to
be made to include the storm characteristics of the design storm (i.e., 1/10,000 year). With
this extrapolation a certain amount of uncertainty is introduced. Current research on the
enlargement of the data collection and on better extrapolation measures try to minimize this
uncertainty (Baart et al., 2011).

1.1.2. Interpretations of probability

There have been two main contending views about how to understand probability (Korb and
Nicholson, 2004). One asserts that probabilities are fundamentally dispositional properties
of non-deterministic physical systems, such as dice. This view is particularly associated with
frequentism, identifying probabilities with long-run frequencies of events. The main complaint

1for dike-ring 14, the Holland coast, a probability of exceedance of 10−4 once in ten-thousand years is held
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is that short-run frequencies do not match probabilities (e.g., if we toss a coin only once, we
would hardly conclude that its probabilities is either one or zero). Moreover, the distinction
between short-run and long-run is vague, leaving the commitments of this frequentist inter-
pretation unclear.
The traditional alternative to this concept is to think of probabilities as reporting our sub-
jective degrees of belief. This view was expressed by Thomas Bayes (Bayes and Price, 1763)
and Pierre Simon Laplace two hundred years ago. The origin of Bayesianism lies in an inter-
pretation of Bayes‘ theorem. The Bayesian approach is a more general account of probability
in that one has subjective belief in a huge variety in propositions.

1.2. Motivation

Current safety assessment method is based on conducting large numbers (thousands) of simu-
lations to estimate dune erosion at individual locations along the Dutch coast. More complex
dune-erosion models (i.e. Xbeach; Roelvink et al. (2009)) are computationally more inten-
sive. This means that conducting large numbers of simulations for a dune safety assessment
are not feasible. Therefore new probabilistic approaches (e.g., Bayesian approach) are needed
in order to apply state of the art insights and models for dune erosion in a safety assessment.
This research focusses on the use of a Bayesian probabilistic approach in order to assess the
dune safety against storm events.

Bayesian approach

The Bayesian approach, formally described in previous section, is one example in the family
of probability interpretations. Bayesian statistics are not new. The field of Bayesian statistics
is rapidly evolving and new approaches for model construction and sampling haven be utilized
recently in a wide variety of disciplines to combine information (Wikle and Berliner, 2007). In
the field of coastal engineering recent work has been done by Plant and Holland (2011b); and
Plant and Holland (2011a). In their paper a relatively well-understood problem (wave-height
evolution in the surf zone) demonstrated some very powerful capabilities that are offered by
a Bayesian modelling approach. These include:

1. reduction of model and data dimension;

2. propagation of model and input uncertainty;

3. inverse estimation of model boundary-conditions;

4. assimilation of diverse observational inputs, and

5. identification of gaps in understanding.

The focus of this research is not to wave evolution in the surf zone but these advantages have
a more general character and might be useful here as well. In conclusion, the application
of the Bayesian approach for the Dutch coastal safety assessment is worth to be tested for
feasibility.

Deltares and Delft University of Technology 3



Impact Assessment of Extreme Storm Events
Using a Bayesian Network

1.3. Research Objective

The overall objective of this research can be formulated as follows:

Obtain insight into the applicability, with respect to current probabilistic approaches,
of the Bayesian approach for the dune safety assessment against flooding due to
extreme storm events.

1.3.1. Scope and assumptions

Main objective is to investigate whether the Bayesian approach is profitable with respect to
the current approach for the assessment of dune safety. Therefore, the dune erosion model
used in dune safety assessment nowadays, duros+ (van Gent et al., 2008), will be used for
the Bayesian approach as well. In Section 2.1.2 a detailed description of this dune erosion
model will be given, but loosely speaking, duros+ is a single dimension dune erosion model
that approximates the post-storm profile shape assuming conservation of volume in cross-
shore direction.
This research makes use of the output obtained by this empirical dune erosion model. The
lack of sufficient data limits the possibilities to verify the results based on actual measure-
ments. However, it should be clear that this thesis aims at a feasibility study of an alternative
probabilistic methodology and not at a method that accounts for all relevant (dune erosion)
phenomena. So, results of the relatively simple, empirical dune erosion model will serve as
input for the Bayesian network. In Bayesian words the outcome of the dune erosion model
is handled as truth to the Bayesian network.

1.3.2. Sub-questions

The aim of the study is to obtain an insight in the applicability of a Bayesian network
approach for the dune safety assessment. In order to reach this objective, four intermediate
research questions have been formulated:

SQ1 Is it possible to appropriately reproduce the current safety assessment for dunes in a
Bayesian network?

SQ2 What is an appropriate way to characterize the dune erosion process in a Bayesian
network?

• Which variables play an important role in the dune erosion process and how are
they correlated?

• What is the best way to end up with a robust and fast Bayesian network, regarding
the discretization of the variables available in the Bayesian network?

SQ3 What is the relation between the amount of data used for training of the Bayesian
network and the prediction skill?

SQ4 Is it possible to forecast the dune erosion process outside the spatial domain described
by the Bayesian network?
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1.4. Methodology

The application of the Bayesian approach is rather complex due to the limited knowledge on
the subject and the few applications in the field of coastal engineering. Therefore, one needs
to look in other fields (e.g., computer science, artificial intelligence) to learn the Bayesian
fundamentals. Literature about the theory and successful applications of Bayesian networks
is largely available. Therefore the first step of this research was to start with a thorough
literature study. Cross-shore bottom profiles along the Dutch coast were selected, together
with a set of hydraulic boundary conditions. With the use of a dune erosion model the dune
erosion process was simulated for appropriate (with respect to used dune erosion model)
JARKUS transects for the Dutch coast. The input and output of this model was stored and
will be used as input to the Bayesian network. The Bayesian network is used for predictions
of the dune safety levels along the Dutch coast. The output of a Bayesian network is an
updated probability distribution given evidence.

1.5. Organisation of the report

This document is chronologically structured based on the research process. Any background
information or secondary actions taken are described in the appendices. The context of the
research, including current and past studies concerning dune erosion and legal regulations, is
briefly described in Chapter 2. In this chapter also an introduction in Bayesian network will
be given together with the basic aspects of probabilistics.
Chapter 3 gives mainly an overview of earlier work with respect to the data used in the dune
safety assessment. In Chapter 4 the construction of the actual Bayesian network is described
in detail. This chapter also includes a validation of the Bayesian network.
Results of the predictions in the Bayesian network are described in Chapter 5. Out of the
dataset decribed in Chapter 3 several samples were obtained and used for training and/or
testing of the Bayesian network. A discussion corresponding to the results is made in ??. To
conclude, conclusions and recommendations are presented in Chapter 6.
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2. Literature Study

2.1. Dutch Dune Safety Assessment

In the Netherlands, the Law on Water Defences prescribes a five yearly assessment of the pri-
mary water defences by the administrators of those water defences. The Dutch government
prescribes the safety assessment regulation for this purpose in Dutch: ‘Voorschrift Toetsen
Veiligheid’ or VTV (WL | Delft Hydraulics, 2007b). Because the major part of the Dutch
coastal defence consist of dunes, an appropriate assessment method for dunes is necessary. In
the Guideline Dune Erosion (TAW, 1984), the safety assessment of dunes as water defences
is described.
During daily circumstances one might think the dunes are no part of the active coastal pro-
cesses. Hence, the water level and the waves do not reach the dunes. Only some aeolian
transport is observed. However, during heavy storms on the North Sea high waves are gener-
ated and a water level set-up can be expected. Especially when the wind is out of Northern
direction this set-up can reach several meters with respect to the mean sea level. This storm
surge together with the astronomical tide can lead to high water levels in front of the coast.
When those water levels are accompanied by high waves the dunes will be affected. Sand
from the dunes will be transported to deeper parts and the dune-front will move landwards.
In the 1970s and 1980s a lot of research has been done with respect to the dune-erosion due to
heavy storms (van de Graaff (1977, 1986) and Vellinga (1982, 1986)). Despite of the complex
dune-erosion processes, the final result can be described with a relative simple model duros
(Vellinga, 1986) and updated to duros+ by (van Gent et al., 2008). Given some charac-
teristics of the storm (maximum water level during the flood hmax and the significant wave
height in deep water H0s) and the grain diameter of the sand, the height and the shape of the
upper part of the cross-shore dune profile after the flood can be determined. This upper part
of the cross-shore profile is often indicated as dune erosion profile. Given the location of the
cross-shore profile before the storm, the amount (volume) of dune-erosion can be calculated.
An important assumption made is the closed sand balance, the amount of sand in the profile
is constant (no losses or gains!) This closed sand balance procedure, which is realistic in case
of a straight coast, determines the position of the dune retreat profile in horizontal direction.
Moreover, the research also showed the amount of dune-erosion is not only determined by
the water level but also by a relative large number of parameters. Due to this large number
of process-determining variables a probabilistic approach to assess the dune safety was rec-
ommended. This recommendation is followed and formally written in the (TAW, 1984). In
case of a probabilistic approach the probability of failure in case of a ‘just’ safe water defence
is explicitly determined beforehand. The Delta-committee determined the probability of ex-
ceedance belonging to the design water levels. In addition, the Delta-committee pointed out
emphatically that at water levels belonging to the design-level still ‘complete’ safety against
failure of the water defence must be present. Therefore, the probability of failure is ten
times smaller than the probability of the design water level (belonging to the extreme storm

Deltares and Delft University of Technology 7



Impact Assessment of Extreme Storm Events
Using a Bayesian Network

e.g. 1/10,000 years event).

2.1.1. Study Area

(a) Wadden Sea and barrier
islands

(b) ‘Delta area’

(c) Holland coast

Figure 2.1.: The three typical features of the Dutch coasts

The Dutch coast can roughly be divided in three areas (from North to South): Wadden Sea
and barrier islands ( 2.1a), Holland coast ( 2.1c) and the ‘Delta’ area ( 2.1b). When one
looks to Figure 2.1 several complex features can be recognized (e.g. curved coastlines). Due
to this assumption the dune erosion model has less applicability at both the Wadden barrier
islands and the Delta region. In Section 3.2.1 a selection of transects (i.e., cross-shore bottom
profiles) that meet the assumptions is made.

2.1.2. Dune erosion model DUROS+

This section describes the basics of the dune erosion model duros+: what goes in, how does
it work and what comes out. In the official safety assessment method prescribed by the Dutch
government, several model additions and assumptions were made to deal with uncertainties
in model input (e.g. storm duration) and output (erosion volume). Here a description of the
model itself will be given and minor attention will on the assessment method will be paid.
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After the 1953 storm surge disaster important research was done to better understand the
response of dunes to storm surges. This work resulted in the Guideline for Dune Erosion
(TAW, 1984) that provides a relatively simple equilibrium approach (commonly referred to
as the duros model (Vellinga, 1986)). Later research indicated a slightly greater peak period
that was previously assumed. Additional laboratory tests and studies were performed (van
Gent et al. (2008); van Thiel de Vries et al. (2008)) and those updated insights were integrated
in the previous model leading to the currently applied duros+ model.
The duros+ model assumes an equilibrium profile being developed during a storm, with an
average duration (see 2.2b).

(a) North-western storm (Please note
the inconsistency in direction indicat-
ing the North.)

(b) Representation of the standard storm dura-
tion as used in duros+. For the actual safety
assessment an additional safety margin is added
to deal with uncertainties in this storm duration.
(HR2006, 2007)

Figure 2.2.: Typical characteristics of a storm in front of the Dutch coast. A storm out of
Nort-western direction will result in high waves (long fetch) and high water levels (wind induced
set-up).

duros+ does not simulate the profile development in time, it approximates the post-storm
profile shape. The cross-shore position of the post-storm profile is found by assuming con-
servation of volume in cross-shore direction. This 1D approach, implies an underlying as-
sumption of alongshore uniformity. The post-storm profile consist out of three elements
(Figure 2.3)
It is important to realise that duros+ is developed for dune erosion. Inundation or overwash
processes (Sallenger, 2000), are not included in the model. Therefore, cases in which the water
level is higher than maximum dune height of the first dune row will give no results and are
not included in the dataset described in Chapter 3.

Required DUROS+ input

The post-storm cross-shore profile described by Equation A.1 depends on: (1) significant wave
height (2) wave peak period (3) grain size (see Equation A.4). Together with the required
pre-storm profile information they form the necessary input to duros+ model. In Section 3.2
an extensive description of each variable and the way of obtaining the data (how is a value
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Figure 2.3.: Example of a duros+ output for an arbitrary case. The red line indicate the
post-storm profile and the numbers indicate the three elements the post-storm profile is built of.

selected or sampled and where does it come from).
The set of all findings entered into the nodes of a single Bayesian network is referred to
as a case. A case provides information about a particular event or scenario. For example,
a case could represent a storm event characterized by a water level, wave height and peak
period. Case files consist of many cases acting as a database, in which each case is record.
In Section 4.3 such a file of cases will be used to learn the conditional probability tables of
the Bayesian network.

2.2. Theoretical Introduction

2.2.1. Probability Theory

Before a start will be made with the introduction to the Bayesian network approach the basic
probability calculus will be given. Some rules and axioms are presented together with a few
words regarding notation.
For a clarification of the basic notations; random variables are denoted by capital letters
A,B,C, etc. The values taken by these variables are denoted by lower case letters ai, bj , ck,
etc. The probability for A to assume the value ai is denoted by P (A = ai) or in short P (ai).
Where P is a number in the interval [0, 1]. Lower-case p() refer to a probability density
function. So, p(a) is the probability density function of an observed quantity (e.g. heads
in case of flipping a coin). Formal notation of the probability of a joint event A and C is
P (A∩C), however here, in Bayesian statistics more often used, P (A,B) will be used. In the
end it means the same1.

1fundamental rule for variables
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A B

A ∩B

Ω

Figure 2.4.: Venn diagram of two events A and B in sample space Ω. The intersection of A and
B is indicated with A ∩B.

2.2.2. Conditional probability

Knowing that an event has occurred sometimes forces us to reassess the probability of an-
other event, the new probability is called conditional probability. In general, computing the
probability of an event A, given that an event C occurs, means finding which fraction of the
probability C is also in the event A. The conditional probability of A given C is given by:

P (A|C) =
P (A,C)

P (C)
(2.1)

Provided P (C) > 0.
From this definition a useful rule can be derived by multiplying left and right by P (C), this
is called the product or multiplication rule:

P (A,C) = P (A|C)P (C) = P (C|A)P (A) (2.2)

Computing the P (A,C) can hence be decomposed into two parts, computing P (C) and
P (A|C) separately, which is often easier than computing P (A,C) directly.
Using both, defintion of conditional probability (Equation 2.1) and the multiplication rule
(Equation 2.2) one can derive Bayes’ rule2:

P (C|A) =
P (A|C)P (C)

P (A)
(2.3)

Under its usual Bayesian interpretation, it asserts that the probability of a hypotheses C
conditioned upon some evidence A is equal to the likelihood P (A|C) times its probability prior
to any evidence P (A), normalized by dividing P (C) (so that the conditional probabilities of
all hypotheses sum to 1). Equation 2.3 is the traditional form of Bayes’ theorom, after
the English mathematician and Presbyterian minister who derived this in the 18th century.
Bayes’ theorem is fundamental in Bayesian statistics, and is widely applied in fields including
engineering, science, medicine and law. An application of Bayes’ theorem can be found in a
Bayesian network (Section 2.3) and will be used in this thesis.

2In fact it was the French mathematician and astronomer Pierre-Simon Laplace who adopted Bayes’ ideas in
this formula. However, a half century of usage forces us to give Bayes’ name to what was really Laplace’s
achievement.
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Independence

Because independency plays an important role in Bayesian networks, attention will be paid
to the independence in statistics. If the conditional probability equals what the probability
was before, the events evolved are called independent. In formula form: An event A is called
independent of C if

P (A|C) = P (A) (2.4)

By application of the multiplication rule (Equation 2.2), if A is independent of C, then
P (A,C) = P (A|C)P (C) = P (A)P (C). Finally, by definition of conditional probability, if A
is independent of C, then

P (C|A) =
P (A,C)

P (A)
=
P (A)P (C)

P (A)
= P (C)

that is, C is independent of A. This works in reverse, too, so we have:

A independent of C ⇐⇒ C independent of A

This statement says that in fact, independence is a mutual property. Therefore one may say
‘A is independent of C’ or ‘A and C are independent’.

2.2.3. Probabilistic Graphical Models

A Bayesian network is one example in the family of probabilistic graphical models. Proba-
bilistic graphical models are a combination of probability theory and graph theory. The
definition of a probabilistic model can be found in (Pearl, 1988): ”A set U of discrete random
variables together with a joint probability distribution P () defined over these variables.” A
probabilistic graphical model provides a natural tool for dealing with two problems occurring
in engineering: uncertainty and complexity. Fundamental in the idea of a graphical model is
the notion of modularity; a complex system is built by combining simpler parts. The prob-
ability theory provides the glue whereby the parts are combined, ensuring that the system
as a whole is consistent, and providing ways to interface models to data. Graphical models
provide an intuitively appealing interface by which humans can model highly interacting sets
of variables.

2.2.4. Difference between Bayesian network and other probabilistic graphical
models

To put the Bayesian network in the context of other probabilistic graphical models the main
differences between the Bayesian network and two other often used models will briefly be
discussed below.

• Markov model or hidden Markov model : also a graphical probabilistic model compa-
rable to a Bayesian network. However, a Markov net is capable to represent cyclic
dependencies. In a regular Markov model, the state is directly visible to the observer,
and therefore the state transition probabilities are the only parameters. In a hidden
Markov model, the state is not directly visible, but output, dependent on the state, is
visible. The main difference between a Markov model and a Bayesian network is that
a Markov model concept does not have history (i.e., prior information).
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• Neural Network : An (artificial) neural network is a system based on the operation
of biological neural networks, in other words, it is an emulation of biological neural
system. Often people refer to Neural networks as a ‘black box’ due to the difficulty in
understanding the decision making process of the Neural network.

There are more graphical models (e.g. restricted Bollzman machine, junction (or clique) tree)
but they are less applied in probabilistic theory and will therefore not be discussed here.

2.3. Bayesian Network approach

A Bayesian network is a method of reasoning using probabilities 3, where the nodes represent
variables and arrows represent direct influence between the nodes. Nodes can represent any
kind of variable: a measured parameter, a latent (hidden) variable or a hypothesis. The graph
itself is a directed acyclic graph (DAG) which means that arrows have a direction (they point
from one node to another) and there are no cycles or loops in the network (to prevent new
information would be affected by its own result).
If there is an arrow from node A to another node B, A is called a parent of B, and B is
a child of A. The set of parent nodes of a node xi is denoted by parentsxi . In a Bayesian
network the joint probability distribution of the node variables can be written as the product
of the local distributions of each node and its parents as

P (xi, ..., xn) =

n∏
i=1

P (xi|parentsxi) (2.5)

In this sense Bayesian networks have built-in independence assumptions. In summary (Wikle
and Berliner, 2007): one has prior belief (information) in a certain event, collects data, and
then updates that belief given that new data (information). In the Bayesian world, the
definition of belief is simply the conditional probability given the evidence. So, the task of
the Bayesian network is to compute the posterior distribution function. This section gives a
general introduction in Bayesian networks, in Chapter 4 the Bayesian network approach is
applied.
The best way to understand a Bayesian network is to illustrate it with an example. Here, the
burglar-earthquake alarm example (adopted from Pearl (1988)) will be used. Consider the
network in Figure 2.5. This network represents a distribution on 5 variables P (B,E,A,C,R).
The intuition behind the model is that either burglaries or earthquakes (Pearl lived in Los
Angeles) can trigger an alarm. If the alarm rings your neighbour may call you at work to let
you know. On your rush way home you hear a radio report of an earthquake, the degree of
confidence (i.e. belief) that there was a burglary will diminish. This problem is captured in
Figure 2.5. Nodes and edges form the qualitative part, the quantitative part of the network
consist out of a set of conditional probability distributions. The table in Figure 2.5 shows the
conditional probability for the node ‘alarm’. Together both parts form a unique distribution
in factored form (see also Equation 2.5):

P (B,E,A,C,R) = P (B)P (E)P (A|E,B)P (R|E)P (C|A) (2.6)

3Several names are used to describe the method of reasoning using probabilities: belief networks, Bayesian
networks, knowledge maps, probabilistic causal networks, and so on. In this work Pearl’s name, Bayesian
networks (Pearl, 1988), is adopted, on the grounds that the name is completely neutral about the status
of the network (do they really represent beliefs, causality or what?).
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E B P (A|E,B)

e b P (A|e, b) P (¬A|e, b)
e ¬ b P (A|e,¬b) P (¬A|e,¬b)
¬ e b P (A|¬e, b) P (¬A|¬e, b)
¬ e ¬ b P (A|¬e,¬b) P (¬A|¬e,¬b)

Family of alarm

Earthquake (E)

Alarm (A) Radio (R)

Burglary (B)

Call (C)

Figure 2.5.: Example of a Bayesian network considering an alarm that can can be triggered by
either an earthquake or a burglar. Left: the conditional probability table for the node ‘alarm’, ¬
means ‘not’, so ¬b means no burglary. Right: Bayesian network of the situation with in the box
the family alarm.

Via the conditional probability definition (Equation 2.5) one can see that a node is indepen-
dent of its ancestors given its parents. In this example this means: the node ‘call’ (child) is
independent of ‘burglary’ and ‘earthquake’ (ancestors) given the node ‘alarm’ (parent). So,
given ‘alarm’, ‘call’ is conditionally independent of ‘burglary’ and ‘earthquake’. In Bayesian
terms this is called, the nodes ‘burglary’ and ‘call’ are d-seperated. There is no d-connecting
path between both nodes. Two nodes are d-connected if either there is a causal path be-
tween them, or there is evidence that renders the two nodes correlated to each other (Char-
niak, 1991). Together they form a ‘family’. In Figure 2.5 the family of the node ‘alarm’
is highlighted in the grey box. So, Equation 2.5 specifies the required parameters for this
Bayesian network, the probability of every node given all possible combinations of its par-
ents. Representing joint probability distributions via conditional independence is very useful,
it reduce the dimensionality of the network from full joint probability table, 25 − 1 = 31
to 1 + 1 + 4 + 2 + 2 = 10 parameters (Equation 2.6). This savings might not seem great,
but if the net is doubled in size the number of parameters become 210 − 1 = 1023. One
can imagine that in case of larger nets and non-boolean nodes (not just two possible classes,
non-dichotomous) the number of parameters will grow exponentially.

2.3.1. Bayesian inference

Bayesian inference is the application of Bayes’ theorem to calculate how the degree of belief in
a proposition changes due to evidence. For illustration, let X denote unobservable quantities
of interest and Y the data. The full probability model can always be factored in components
p(x, y) = p(y|x)p(x) = p(x|y)p(y). Applying Bayes’ rule (Equation 2.3) gives

p(x, y) =
p(y|x)p(x)

p(y)
,

provided 0 < p(y) < ∞. It is good to examine each component of Bayes’ rule separately
(Wikle and Berliner, 2007).

• Data distribution, p(y|x)
Distribution of the data, given the unobservables. When viewed as a function of X for
fixed y, it is known as a likelihood function, L(x|y). A key is one thinks of the data
conditioned on x. For example, if Y represents imperfect observations of temperature,
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and X is the true temperature, then p(x|y) quantifies the distribution of measurement
errors in observing temperature, reflecting instrument error as well as possible biases.

• Prior distribution, p(x)
This distribution quantifies the a priori4 understanding of the unobservable quantity of
interest. For example, if X corresponds to a temperature, then one might base this prior
distribution on historical information (climatology). A choice of a prior distribution can
be subjective and forms a integral part of the Bayesian inference.

• Marginal distribution, p(y) =
∫
p(y|x)p(x)dx

For the observations Y , p(y) can be thought of as the ‘normalizing constant’ in Bayes’
rule. Unfortunately, it is only for specific choices of the data and prior distribution that
one can solve this integral analytically (Cooper, 1990).

• Posterior distribution, p(x|y)
This distribution of the unobservables given the data is for this thesis the primary
interest for inference. The posterior is the update of our prior knowledge about x given
the actual observations y.

2.3.2. Practical application of the Bayesian network

Previous section introduces the general aspects of the Bayesian network. In this section a
more pragmatic part will be discussed, how can the Bayesian network be of use in order to
assess dune safety level? First an overview of practical advantages that may be valuable will
be given:

1. Modular representation of knowledge. A complex system is built by combining simpler
parts. What is known and how are the variables mutual correlated.

2. Local, distributed algorithms for inference and learning. Lower time complexity (less
time for inference)

3. Intuitive (possible causal) interpretation.

4. Factored representation may have exponentially fewer parameters than full joint repre-
sentation (remember the burglar alarm example) Lower sample complexity (less data
for learning).

Once a Bayesian network is constructed it can be used for several applications:

1. Posterior probabilities: probability of an event given any evidence

2. Most likely explanation: scenario that explains evidence

3. Rational decision making: maximize expected utitility

4. Effect of intervention: causal analysis

Main objective of this thesis is to update prior probabilities with new information. There-
fore primary use will be made of Bayesian feature to compute posterior probabilities given
evidence. However, also the other features will taken into account.

4a priori (lat.): beforehand
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3. Simulation Data

The requirements to construct a useful Bayesian network are data that measures the inputs
(morphology and hydrodynamics) and output (coastal response, here erosion volume) during
actual or simulated storm conditions. Since this thesis focusses on extreme conditions (1/10,000

year storm conditions), observations are not available and numerical simulations will be
made to fill the database. This chapter describes the used dataset. In order to compare both
approaches, current safety assessment method (described in WL | Delft Hydraulics (2007a,b))
with the Bayesian network approach, data will be obtained from the same sources. This
means: hydrodynamics are obtained out of HR2006 (2007), coastal profiles from JARKUS
and the dune erosion model duros+ will be used to simulate dune erosion. More information
about these data-sources can be found in den Heijer et al. (2011) and WL | Delft Hydraulics
(2007b). Here an overview of the content of the dataset will be given. This chapter gives an
overview of the content of the dataset, to enable a clear distinction between the source data
and the Bayesian network, as discussed in the next chapter.

3.1. Content Dataset

The assumptions and simplifications made by using duros+ largely determine the content
of the Bayesian input dataset. Variables that play a role in duros+ (e.g. water level) can be
found in the dataset, while, on the other hand, variables not considered in duros+(e.g. wave
direction) will be ignored. The amount of dune erosion, computed by the duros+ model,
depends on a number of parameters and factors (Section 2.1.2), namely:

• The shape of the initial cross-shore profile

• The diameter of the dune material

• The maximum storm surge level

• The significant wave height

• The (peak) wave period

This set of variables can be categorized in profile information (first two) and hydraulic bound-
ary conditions (last three). Together they form the load and strength part during a storm
event.
Detailed profile information, including foreshore, beach and first dune rows is essential to
enable the safety assessment. In the Netherlands a well established monitoring program
that measures the coastal cross-shore profiles on a yearly basis is active (Rijkswaterstaat -
Ministry of Infrastructure and Environment, 2010). Called, JARKUS transects (JAaRlijkse
KUStmetingen; yearly coastal measurements). In order to assess the safety level against
flooding at a particular point in time (static) transects of one year will be used. Here, the
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most recent measurements (2010) serve as input to the duros+ simulations.
The hydraulic boundary conditions, water level, wave height and wave period, are derived
from the time series of (directional) offshore wave buoys. In the Dutch case a number of
offshore wave buoys is available with decades of high resolution time series. For a location
of these buoys see Figure 3.1. Because the time series are relative short with respect to the
design conditions (100 years vs. a once in ten-thousand year storm event) extrapolation is
necessary. A distribution is fitted to the observed data such that extreme values (that are
never observed) are associated with a probability of occurrence. The stochastic description
of this hydraulic boundary conditions can be found in (in Dutch:) ‘Hydraulische Randvoor-
waarden 2006’ or HR2006 (2007)).
Finally, a response variable is added to describe the coastal response after an arbitrary storm
event. Several measures (or indicators) can be used to describe the coastal response, for
instance: retreat distance, change in dune height, total eroded volume, etc. Since duros+
have been used to simulate dune erosion process the response indicator must be obtained
out of duros+ output. More about the duros+ output can be found in Section 2.1.2. The
choice for an appropriate response indicator(s) is elaborated in Section 4.2.2. In summary,
the dataset can be classified in three categories: (Table 3.1).

Type Data Source

measured profile information JARKUS
extrapolated hydraulic boundary conditions HR2006
modelled coastal response to a storm duros+

Table 3.1.: Types of data that serve as input for the Bayesian network

3.2. Input Variables duros+

Previous section describes which variables are included in the dataset. In this section atten-
tion will be paid to the figuration of the data (i.e. what sort of water levels go in the dataset).
A start will be made with an description of the profile information followed by an extensive
description of the hydraulic boundary conditions.

3.2.1. Profile information

Due to the balancing procedure in calculating the volume of erosion, the shape of the initial
profile, the profile as present just before the storm event starts, is a determining factor for
the amount of dune erosion (WL | Delft Hydraulics, 2007b). Since a profile measurement
taken just before the storm surge will hardly ever be available, the uncertainty in the actual
profile and thus the sediment content in the erosion-accretion zone is a relevant parameter
also. Here the assumption is made that storm impact is relatively large with respect to sea-
sonal fluctuations. The JARKUS data contains in total 2178 cross-shore transects which are
measured yearly since 1965. For this research the most recent (2010) transect measurements
have been used. The transects have an alongshore spacing ranging from 150 m to 250 m. The
orientation of the transects is approximately shore normal and therefore seaward directed.
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Selection of transects

Due to the underlying assumptions of the duros+ model a selection is made of transects that
meet these assumptions. Table 3.2 gives an overview of transects that will be excluded. After

Exclude transect when Location duros+ assumption

Landward directed Mainly around the
heads of the Wad-
den islands

Alongshore uniformity

Outside the range of the offshore
measuring stations that serve as
source for the hydraulic boundary
conditions

Southwards of
Hoek van Holland
(Delta region)

Wave measurement data of
sufficient quality

Contains a hard structure (harbours
are left out)

i.e. Hondsbossche
and Pettermeer
Zeewering

duros+ is valid for sand
only

Contains only the underwater profile
up to the beach, or only contain part
of the beach and/or dune

Various A post-storm erosion-
sedimentation balance can
not be computed

Table 3.2.: Overview of the selection of transects. Because duros+ is not able to model all
parts of the Dutch coast certain areas are excluded.

this filtering 960 transects remain and they will form the cross-shore bottom profile input of
the duros+ simulation. Figure 3.1 gives an overview of the location of those transects. The
remaining transects are cropped at the landward side if more than one dune row is present
in the data. This means that only dune erosion (or failure) of the most seaward dune row is
calculated. Two main reasons have led to this choice (den Heijer et al., 2011). Firstly, this
gives the best comparable results between two arbitrary transects. Secondly, after failure of
the first dune row, any further erosion or overwash processes should be considered 2D.

3.2.2. Grain Diameter

The diameter of the sediment of the dune is an important parameter since it affects the shape
of the erosion profile (see both Equation A.1 and Equation A.4). Grain size distributions
haven been derived from sediment samples at 146 locations along the Dutch coast (TAW,
1984). For every location a normal distribution of grain sizes (D50) is given (possible to have
different grain sizes for the same transect). Mean grain sizes vary between 159 and 277 µm
and the standard deviations vary between 8 and 37 µm. Although it is not known where
in the cross-shore these samples have been taken, they are assumed to be representative for
the entire cross-shore profile (den Heijer et al., 2011). Depending on the location of the
transect a representative grain diameter will be obtained and serves as input for a duros+
simulation. Figure 3.2 shows the distribution of grain sizes in alongshore direction together
with an example of a normal distribution at a certain location.

3.2.3. Water level

It is clear that dangerous water levels occur in combination with severe storm surges. The
maximum surge to be reached during an arbitrary storm event is the resultant of two stochas-
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Figure 3.1.: Overview transects that were selected as suitable for duros+ (black). Not selected
transects are shown in gray. (den Heijer et al., 2011)

tically independent phenomena, namely the astronomical tide and the wind set-up. The as-
tronomical tide is a periodic predictable component due to the relative movements of sun,
moon and earth. The set-up is the result by weather circumstances (mainly wind direction
and wind speed) and therefore unpredictable. So, the set-up can be computed by: observed
high tide level minus the astronomical tide level at that moment. Together, they form the
storm surge level (ssl). Hereinafter the terms storm surge level and water level are used
interchangeably, the meaning is for both the same and equal to aforementioned description
of the storm surge level.
With the available water level data a distribution is fitted, use is made of the so-called con-
ditional Weibull distribution function (see Roskam et al. (2000) and WL | Delft Hydraulics
(2007a) for more details). The distribution describes the frequency of exceedance of the high-
est level (h) during a storm surge (per year). The water level with the highest probability
will match with the mean water level and lie around the N.A.P.1 +2 m. (see red histograms
in Figure 3.3) Here the mean value represents the normal daily condition. However, the focus
does not lie on those conditions but on more extreme conditions. Those extreme conditions
have a very low probability of occurrence and lie in the outer tail of the probability density
function (pdf). Thus, when randomly select a water level out of this pdf the probability of
such a value is quite small. Therefore a lot of samples2 are needed to guarantee also the
extreme conditions are present. However, there is a statistical method to focus the low-
probability values, this method is called Importance Sampling (IS). This technique make sure
that the samples taken are near the area of interest only. The area of interest in this thesis
are the extreme water levels. Since only a certain area in the probability space is observed,
it is possible that one or more parts of the failure space are not represented in the dataset.

1N.A.P. (Normaal Amsterdams Peil) is the Dutch reference level, at present approximately corresponding to
mean sea level.

2rule of thumb 400/pf (CUR, 1997)

20 Deltares and Delft University of Technology



Impact Assessment of Extreme Storm Events
Using a Bayesian Network

0.5 1 1.5 2 2.5 3 3.5

x 10
−4

0

10

20

30

40

Grain diameter [m]

nu
m

be
r 

of
 h

its

Histogram of grain sizes along the coast

0.5 1 1.5 2 2.5 3 3.5

x 10
−4

0

1

2

3

4
x 10

4

Grain diameter [m]

P
ro

ba
bi

lit
y

Distribution of grain size along the coast (blue) and at one location

 

 

Distribution of grain sizes along the coast
Distribution of one aribtrary grain size

Figure 3.2.: Upper figure: histogram of grain sizes along the Dutch coast. Lower figure: Normal
fitted probability density distribution grain sizes with µ = 2.10 ∗ 10−4 and σ = 3.08 ∗ 10−5 The
mean and standard deviation of the grain size at a single location is also given: µ = 1.90 ∗ 10−4

and σ = 1.0 ∗ 10−5

However, one would not expect problems since the low water levels, probably, will not influ-
ence the failure rate.
With the use of IS less samples are needed and that reduces the computational time consid-
erably. Result of the use of the IS technique is the shift of the probability density function
to higher water levels (see blue bins Figure 3.3). With the use of IS the probability of an
extreme water level is hight with respect to the non-IS probability. So, there are less samples
needed to make sure also extreme values are present. den Heijer et al. (2011) assumed that
100 samples leads to satisfying results for the purpose of their study. An enourmous reduction
in comparison with the 40,000,000 before. In line with this findings, 100 samples per selected
transect will be made.

3.2.4. Wave height

The main driving force during storms is wind. This make the wave height is correlated to the
water level. The highest water level and wave height are expected when a storm is moving
from North-Western direction. High wind speeds active over a long fetch could cause major
set-up and high waves in the basin-shaped North Sea (see Figure 2.2).

According to (TAW, 1984) the stochastic properties of the wave height are described by a
normal distribution. The mean value is related to the water level by a relation obtained from
Stijnen et al. (2005). So, given a water level, with this relation the mean wave height can be
computed. This mean wave height is normally distributed (with a fixed standard deviation)
and a wave height can be sampled.

In Figure 3.4 the probability density distribution of the wave height is given. Due to the shift

Deltares and Delft University of Technology 21



Impact Assessment of Extreme Storm Events
Using a Bayesian Network

Figure 3.3.: Water level distribution with Importance Sampling
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of the water level due to importance sampling to more high water levels, also the distribution
of the wave height will be skewed to higher wave heights.

Figure 3.4.: Wave height distribution with Importance Sampling

3.2.5. Wave period

The wave period is correlated to the wave height, and thus indirectly to the water level.
Physically, this relation holds that the wave steepness cannot be larger than a certain degree
(around 1/20 for wind waves). Comparable to the approach discussed in the previous section,
also the wave period is normally distributed with a fixed standard deviation. So, again, given
a wave height, a wave period can be obtained. In line with previous two variables also the
probability density distribution of the peak period is presented in Figure 3.5. Still a shift of
wave periods to higher values is recognizable, however less strong than with the wave height.
This illustrates there is a statistical relation between water level and wave height, but this
relation is less strong than the relation between water level and wave height.
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Figure 3.5.: Peak Period distribution with Importance Sampling
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4. Bayesian model Set-up

4.1. Introduction

This chapter describes the set-up of the Bayesian network. This set-up can roughly be
divided in three actions, respectively: construction, training and validity check. The first
step (Section 4.2) is characterized by the actual construction of the network. Nodes and
arrows are selected and form the actual lay-out of the Bayesian network. One has to decide
which variables to include in the Bayesian network (nodes), select correlations between the
variables (arrows) and discretize all the variables in a set of bins (histogram). The next step
is to find the conditional distributions of the unobservable quantities given the observed data.
In other words, given the variables and correlations of interest, the underlying conditional
probability tables get filled with the use of data. The dataset constructed in Chapter 3 will
be used for this iterative process. The feeding of information to the Bayesian network in
order to construct the conditional probability tables is called training and will be described
in Section 4.3. Finally, an evaluation of the fit of the model and its ability to adequately
characterize the process of interest is made. In other words, is the Bayesian network capable
to cover a representative sample of the behaviour domain to be measured and is the Bayesian
network able to scientifically answer the questions it is intended to answer? In statistics this
is called validity and will be described in Section 4.4.

For the construction, training and running of the Bayesian network the software package
Netica (www.norsys.com) was used. Netica is a widely used and relatively user friendly
software program. Moreover, there is a Java version available that makes it possible to run
inside a technical computing language (i.e. Matlab, Python). After all, the approach is in
line with the work of Plant and Holland (2011a) and Plant and Stockdon (2012).

4.2. Construction of the Bayesian network

First step in the construction of the Bayesian network is to decide which variables play a
role in the dune erosion process. The selected variables of interest are represented by nodes
in the Bayesian network (see Figure 4.1). The decision which variables to include in the
Bayesian network is based on two factors: first, the Bayesian network model is consistent
with the knowledge of underlying physical processes. Second, because duros++ was used
to simulate the erosion process, the selected variable are part of the duros++ simulation
as well. (See Section 2.1.2 for an overview of variables available in duros++.) A variable
must satisfy both statements to be selected. For instance, wind velocity has impact on
dune erosion (REF), however, it is not part of the duros++ simulation so not selected as
variable in the Bayesian network. Variables which are selected are illustrated in Figure 4.1.
A correlation between two variables in a Bayesian network is illustrated with a directed arrow
(see Figure 4.1). In a Bayesian network correlation means direct influence and can be called
statistical dependency indicating the dependency does not need to be causal or physical.
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Load variables

Strenght variables

Water level

Wave height

Erosion volume

Wave period

Profile

Grain diameter

Figure 4.1.: Schematisation of simplified Bayesian network. Each node represents a physical
variable and the arrows show direct influence.

(more about the correlations in Section 2.3) An arrow is drawn when a physical relation
(i.e. dependency) is according to our knowledge of the underlying scientific processes. This
means an arrow is drawn between water level and wave height (a physical relation exist)
but no arrow between water level and grain size for instance. Finally, an overview of nodes
and arrows is presented in Figure 4.1. Here the nodes are grouped in a load and strength
side. Together they result in coastal response, erosion volume in this case. The node ‘profile’
is highlighted to indicate profile itself is not a single variable. Next section will give more
information about this issue.

4.2.1. Profile Characterization

Cross-shore bottom profiles in front of the Dutch coast (JARKUS transects) are described by
vertical (altitude) and horizontal (cross-shore distance) vectors. In order to capture a bottom
profile precisely, all x, z coordinate needs to be described by a single node in the Bayesian
network. This takes probably a lot of effort and the resulting network will consist out of
an enormous number of nodes that slow down the time for inference. Therefore, the initial
bottom profiles will be characterized into several profile indicators. Each indicator represents
a characteristic of the profile. Due to this spatial simplification some information will get
lost. To characterize the profile four profile indicators are defined. Then numbers hereafter
correspond to the numbers of Figure 4.2.

PI 1 Profile volume, Vprof
Profile volume enclosed by horizontal reference levels NAP +3m (dune foot) and NAP
−4m, together with the vertical boundaries landward and seaward of the intersection of
the horizontal reference levels with the initial bottom profile. (Green box in Figure 4.2.)
This area indicates the potential accretion volume and is independent of dune height.

PI 2 Slope of Vprof , svol
Slope of the volume as indicated in PI 1 (purple line). This slope is comparable to the
foreshore slope and is added to give more information of the shape of the profile volume.
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Figure 4.2.: Profile indicators for a random selected pre-storm bottom profile. The numbers
correspond to the numbers in the list of profile indicators described in this section.

PI 3 Beach width, Wb

Beach width is the cross-shore distance between maximum dune height first dune row
and the shoreline. So, in fact here the beach width represents the regular beach width
extended with half the dune first dune row dune width. Beach width in this sense is a
somewhat confusing term since it is not the common definition.

PI 4 Maximum crest level of first dune row, zc
Maximum crest level of the first dune row. The dune height is an important indicator
of the strength of a dune, since it gives information about the dry volume of sand.

4.2.2. Response Indicator

The response indicator represent the morphological response due to a storm event. During
calm conditions no activity or volume changes at the upper dry beach is expected (maybe
some aeolian losses). This means that for most cases the response will be negligible. However,
during a severe storm event a change in dune volume could be expected. In Section 3.1 a
few examples of profile indicators are already given. Here the choice is made to use the
erosion volume above storm surge level (hereinafter referred to as erosion volume or erosion
volumeSSL in figures). The dune-erosion above storm surge level is the volume of erosion
of the initial dune above the storm surge level threshold. This indicator is typical for storm
regimes attacking the Dutch coast because there are always accompanied by a severe surge.

4.2.3. Discretization

Because Netica works with categories instead of numbers, it is required to represent the con-
tinuous physical processes with a small number of discrete categories. This process (hereafter
referred to as discretization) results in a number of bins, representing the estimated proba-
bility density distribution (i.e. histogram) for each variable. With the discretization process
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some information get lost. For example a bin with an interval of [1, 2] cannot distinguish a
value of 1.1 and 1.9, both numbers fall in the same bin. Following the definition in Stevens
(1946), discretizing results in a change in measure scale from ratio to nominal. There is not
one single method to discretize a continue signal in discrete categories. Hereafter, the choice
for the number of bins and the range per bin will be described.
The number of bins affects the dimensionality and complexity of the Bayesian network as
follows. If there are M variables and each variable has N bins, the number of correlations
that are required grows (exponentially) to a size of NM , which can lead to enormous memory
requirements. The choice for the number of bins is a balance between a couple of interest and
will be explained below. If there are too many bins relative to the size of the training data set,
very few observations (or hits) will fall in some of the probable states and they, therefore, will
not be well constrained. Too few bins, however, may not resolve the variability or threshold
values of the variables, blurring important sensitivities.
Theoretically, the number of bins can vary between two (so-called, dichotomous data1) and N ,
the number of values in the dataset of that variable. The last mentioned scenario describes the
case for which the number of bins equals the number of unique values and one can distinguish
all possible scenarios. However, mostly the number of bins lies somewhere between those outer
edges.
Practically, the guidelines defined by Plant and Holland (2011a) will be followed initially.

1. The intervals should be as wide as possible to minimize computation effort.

2. The intervals should be narrow enough to resolve the expected uncertainty and provide
forecast utility. For instance, if the expected rms prediction error were σH , then the
interval should be no larger than σH .

3. The intervals need to be wide enough to collect at least a few hits from the available
data. If an interval contains only a small number of samples, the histogram is not well
constrained and will, at worst, return a uniform distribution as a result.

There is some discussion about the required number of hits (among others, Yates (1934))
necessary to well constrain the interval. Another possibility to guarantee the number of hits
in an interval is sufficient, is to weight the data. For example, multiply all the data with,
say, a factor 5. Now one hit in an interval counts for five and the node is less sensitive to
the prior distribution. It is clear that the design of the discretization requires balancing of
a number of competing interests. This research adheres to these design guidelines using an
adaptive method, described below.

Number of bins

In determining the number of bins it is the aim to minimize the number of bins in order
to obtain a statistically robust network that is computationally efficient Plant and Stockdon
(2012). Following aforementioned guidelines a start is made with 5 bins per variable. For
each variable the mean, standard deviation and range is computed (Table 4.1). Data used
for the discretizing process is the same as the data described in Chapter 3. The probability

1dichotomous data are data that can be divided in two categories (e.g. dead -alive, failure - non-failure), where
each value must belong to one part or the other (jointly exhaustive) and nothing can belong simultaneously
to both parts (mutually exclusive)
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Figure 4.3.: Top figure: Histogram of measured grain sizes along the Dutch coast with a fitted
distribution. This distribution serves as starting point to determine the bin ranges. Bottom
figure: prior probability distribution for the five bins. The procedure for the other variable is the
same.
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Range
Variable Mean (µ) Std. (σ) min max

grain diameter [m] 2.1e−4 3.1e−5 8.8e−5 35e−5

water level [m] 3.8 1.2 2.0 7.8

wave height [m] 8.0 2.0 2.6 15.2

peak period [s] 14.1 2.9 5.4 25.9

erosion volume above SSL [m3] 122 183 0 1425

Profile indicators

volume [m3] 1410 1044 170 9235

slope [−] 0.0197 0.0077 0.0037 0.0794

dune-crest height [m] 15.5 4.1 8.0 34.0

beach width [m] 218 179 30 1571

Table 4.1.: Mean, standard deviation and range of the distributions of the input variables. For
the distributions see Appendix B. The mean value determines the center of bins, the standard
deviation determines the minimum range per bin. Together the bins capture all the data for the
specific variable (min to max).

distributions for each single Bayesian network input variable is illustrated in Appendix B.
The following assumptions and choices are made in order to define resolution of bins per
variable:

• Because for some variables (e.g. water level) the area of interest is located in the tail of
the probability distribution no data will be excluded, thus all data points will fall in a
bin.

• It is assumed distribution’s center of gravity lies around the mean value (true for a
more-or-less normal distribution). Therefore the bin resolution is high around the
mean.

• The minimum bin width equals the standard deviation (Plant and Holland, 2011b).
Therefore the area with the highest density of data (around the mean value) will get
the smallest possible bin range.

These decisions result in a discretized variable consisting out of 5 bins Figure 4.3. For each
variable two bins are located next to the mean value, µ + σ and µ − σ. The third bin with
an interval of σ is either located above or below the mean value depending on the area of
interest (in case of water level above, in case of dune height below). The remaining two bins
reach the minimum or maximum value of the distribution and will have the largest interval
for most of the cases. Assuming a normal distribution the number of hits in those areas is
relatively low. With a larger interval one guarantees enough hits in those bins. Table 4.2
gives an overview of the interval for each variable.

The only node that will not be discretized is the node containing the areanames (or in Dutch:
Kustvakken). The entire dataset consist out of seven areas, for each variable a bin is made
(see Figure 4.5). In this way it is possible to study areas separately. A higher probability
in for this variable can be explained as more transects in the dataset. For instance, Kustvak
Noord-Holland consist out of more transects than Kustvak Texel.
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Variable bin 1 bin 2 bin 3 bin 4 bin 5

Grain diameter (m ∗ 10−5)
min 8.8 18.8 22.1 25.4 28.7
max 18.8 22.1 25.4 28.7 34.0

Water level (m)
min 2.0 4.05 5.30 6.55
max 4.05 5.30 6.55 7.80

Wave height (m)
min 2.7 6.0 8.0 10.0 12.0
max 6.0 8.0 10.0 12.0 15.1

Peak period (s)
min 5.5 11 14 17 20
max 11 14 17 20 25.8

Erosion volume above SSL (m3)
min 0 200 400 600 800
max 200 400 600 800 1425

Profile indicators

Profile volume (m3)
min 172 360 1410 2460 3510
max 360 1410 2460 3510 9234

Slope (−)
min 0 0.004 0.012 0.02 0.028
max 0.004 0.012 0.02 0.028 0.08

Dune-crest height (m)
min 7.0 11.0 15.0 19.0 23.0
max 11.0 15.0 19.0 23.0 34.0

Beach width (m)
min 30 210 390 570 750
max 210 390 570 750 1580

Table 4.2.: Overview of the bin range for each variable. To keep numbers orderly sometimes
rounding off has applied.
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Figure 4.4.: Prior probability distributions of Bayesian network’s variables. The height of each
bar indicates the probability in each discrete bin and the width of each bar indicates the bin
widths.
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Figure 4.5.: Distribution of areanames. Each bin represents an coastal area (‘Kustvak’). The
height of each bin indicates the probability that a random selected transects will fall in that bin.
A higher probability means that an area (e.g. ‘Noord-Holland’ consist out of more transects than
anohter one (e.g. Schiermonnikoog).

Now the Bayesian network is constructed it can be trained with data. Training is the process
of automatically determining a representative Bayesian network net given data and will be
described in next section Section 4.3. Because the construction of the Bayesian network is
based on a couple of somewhat subjective choices, it depends on the constructor which vari-
ables he/she includes and what relations are drawn, a sensitivity analysis will be conducted
(see Section 5.4). In conclusion, Figure 4.6 shows the nodes and correlations of the Bayesian
network.

4.3. Parameter learning

In order to fully specify the Bayesian network and thus fully represent the joint probability
distribution, it is necessary to specify for each node X the probability distribution for X
conditional upon the parents of X. This quantification of the relationships between nodes
is done by specifying a conditional probability distribution for each node in a conditional
probability table (CPT). One of the most popular algorithms for doing parameter estimation
is the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). The EM algorithm
is a general algorithm for finding maximum likelihood estimates for a set of parameters Θ
when one is faced with an incomplete data set. The algorithm basically alternates between a
so-called expectation step and a maximization step. The theory behind it is rather complex,
but loosely speaking: in the expectation step the algorithm computes expected values of the
unobserved variables conditional on observed data. In the maximization step the computed
expected values are used to find the maximum likelihood assuming the calculated expected
value are correct.
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Figure 4.6.: Schematisation of the Bayesian network with all variables and correlations. Each
node represents a physical variable and the arrows represent direct influence. This net is con-
structed in the Bayesian software package Netica.

Before the first iteration of the learning algorithm starts, the conditional probability distri-
butions are uniformly distributed. The Bayesian network has no information yet. With each
iteration the conditional probability distributions gets updated and the shape might change.
A sufficient number of iterations (cases) need to be conducted to constrain the bins in a good
way. Initially the Bayesian network will be trained on the entire dataset 82,196 cases (=it-
erations) this number seems sufficient (Plant and Stockdon (2012)) however in Section 5.4 a
varying number of cases will be used as training and the effects will be analysed.
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4.4. Validity

Intermezzo Terminology
There are different types of validity (e.g., content validity, construct validity, empirical
validity, predictive validity, factorial validity, see also Cronbach and Meehl (1955)),
established by different types of research and requiring different interpretation. In sci-
ence and statistics, validity has no single agreed definition but generally refers to the
extent to which a concept, conclusion or measurement is well-founded and corresponds
accurately to the real world. Because this research is active in the fields of numerical
models and statisticsa, confusion about the terminology seems obvious. Therefore one
needs to be consistent what kind of validity is meant. Oreskes et al. (1994) describes
the problem as follows:

Verification and validation of numerical models of natural systems is impos-
sible. This is because natural systems are never closed and because model
results are always non-unique. Models can be confirmed by the demonstra-
tion of agreement between observation and prediction, but confirmation is
inherently partial. ... Models can only be evaluated in relative terms, and
their predictive value is always open to question. The primary value of
models is heuristic.

So, following Oreskes et al. (1994) using the term validity in this research is not legi-
timate. Nevertheless, since this study does not focus on a numerical simulation solely
and includes statistics as well, the term validity will be used. The precise meaning of
validity is described in text below.

aand involves people with a different background

The term validity, in this case, defines the degree to which the Bayesian network can represent
the Dutch coastal indicators. Here the test is designed to measure dune erosion as result of
a storm event. When the test appears reasonable on its face to model the real system, then
the model has face validity. A test can be said to have face validity if it ‘looks like’ it is going
to measure what it is supposed to measure. For instance one would expect (on average)
a finer grain size at the Wadden barrier islands with respect to the North-Holland coast.
In addition, one expects a high erosion volume accompanied by a high water level. If the
Bayesian network meets this expectations one can say the Bayesian network has face validity.
The role played by the correlations between variables in this Bayesian network is illustrated
by constraining some of the inputs and observing how the probabilities are updated for the
unconstrained variables. Here five interesting cases will be made in order to investigate the
model is adequate and has face validity.:

1. Constrain the location to one of the Wadden barrier islands (Figure 4.7).

2. Constrain the location to a location with expected differences with respect to the pre-
vious one, say North-Holland (Figure 4.8).

3. Constrain the water level to a height representing a severe storm (Figure 4.9).

4. Constrain the output of the Bayesian network, erosion volume, to a high volume (Fig-
ure 4.10).
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5. Constrain the wave height and peak period to an unexpected combination (Figure 4.11).

Several conclusions can be drawn regarding these figures:

1. Looking at Figure 4.7 and Figure 4.8 one can note that:

• The updated probabilities of the hydraulic boundary conditions (WLt, Hsigt and
Tpt) are equal to the prior distributions. This indicates there is no direct corre-
lation between the profile indicators and the hydraulic boundary conditions. This
is conform the Bayesian model set-up of Figure 4.6.

• The grain sizes at Schiermonnikoog all fall in the smallest grain size bin.

• The average grain size at North-Holland is larger but also broader distributed with
respect to the grain size distribution at Schiermonnikoog.

• There is direct correlation between profile volume and slope. (remember the def-
inition of both indicators Section 4.2.1). A large profile volume corresponds to a
mild slope and vice versa.

• Beach widths are smaller at the North-Holland coast then at Schiermonnikoog.

• On the other hand, on average the height of the dune crest is lower at Schiermon-
nikoog than in North-Holland.

• The erosion volume distribution corresponding to the Schiermonnikoog constraint
is more stretched, slightly increase of the outer bins. Opposite to a narrowing of
the erosion volume distribution for North-Holland, a slightly decrease of the outer
bins.

2. An observed water level of NAP +6m (Figure 4.9) indicates that:

• A change in water level distribution does not affect the updated distributions of
the profile indicators. Indicating water level is not correlated to location. In line
with aforementioned notation.

• A high water level shifts the wave height and peak period distribution to more
extreme conditions as well. This indicates a high water level coincides with a
higher wave height as well peak period.

• A high water level reduces the probability of an erosion volume below the 200 m3

(bin 1) drastically.

3. Given an erosion volume of 1000 m3 (Figure 4.10) one can see:

• An update in erosion volume affects all the variables in the net. Indicating a
relation between two nodes in a Bayesian network works in two directions, both
predictive and diagnostic.

• A high erosion volume coincides with (relatively): high profile volumes (high avail-
ability of sand), smaller grain sizes, higher water levels. Moreover, the probability
to observe this erosion volume increases, with respect to the prior distributions,
at the Wadden barrier islands.

4. The unexpected combination wave height - peak period combination of Figure 4.11 has
the following results:
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• A uniform distribution of erosion volumes. This indicates this variable is uni-
formed, resulting in a equal probability for every bin (uniform). This means, this
combination of wave height and peak period is according to the Bayesian network
not likely.

• One is almost certain (99%) of a water level in bin 1. So this variable is informed,
in contrast to the variable erosion volume. Reason for this is the way the Bayesian
network is constructed. Water level is conditionally independent given a specific
wave height. (P (Wl|Hs, Tp) = P (Wl|Hs))

In summary, one may conclude the Bayesian network is able to capture several expected
(strong) correlations. Moreover, this constraints show a high level of face validity. What
you expect is what you get. However, it is important to mention that the face validity is a
starting point, but should never be assumed to be provably valid for any given purpose. Next
chapter will hindcast erosion volumes for a set of testcases in order to quantify the Bayesian
prediction skill.
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Figure 4.7.: Constrain the location to the Schiermonnikoog and update the unconstrained
variables. Updated probabilities in red. Dashed lines depict the prior distributions. Hence, grain
size is not constrained!
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Figure 4.8.: Constrain the location to the North-Holland and update the unconstrained vari-
ables. Note the difference with previous figure.
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Figure 4.9.: Constrain the water level to a height (N.A.P. +6m) representing a severe storm
and update the unconstrained variables.
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Figure 4.10.: Constrain the erosion volume to 1000 m3, falling in the bin with the highest
erosion volumes, and update the unconstrained variables.
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Figure 4.11.: Constrain the wave height (+NAP 3m) and peak period (18s) to a (physically
speaking) unexpected combination. Hence, the water level is unconstrained!
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5. Results

5.1. Introduction

Once the Bayesian network was constructed and trained, it can be used for prediction by
updating the prior probabilities of the input variables with data. Erosion volumes at several
locations along the Dutch coast were hindcasted with testcases obtained out of the dataset
described in Chapter 3. A testcase is a set of observations representing a scenario and serves
as input for the Bayesian network in order to make a prediction for the erosion volume. In
each case of this dataset an observed erosion volume is available, so a comparison between
an observed and predicted erosion volume is possible. For this comparison two methods
are defined, skill and log-likelihood ratio, and are described in Section 5.2. In this chapter
the lay-out of the Bayesian network (variables and relations) is fixed and therefore also the
conditional probability tables, however data used to train and/or test the model will vary.
In Section 5.3.1 the Bayesian network is trained on the entire dataset (i.e., all data present
in the dataset Figure 5.1). So, cases used for training will be used for testing as well. Reason
for validating the model with input data is to assess the capability of the Bayesian network
to reproduce the input data. The next step is to use half the dataset for training while the
other half is used for predictions. In Section 5.3.2 three different half data samples will be
used for training and testing. Here, the set of testcases is not the same as training cases.
The testcases can be seen as ‘new’ information to the Bayesian network. However, cases for
training and testing are obtained out of the same population (so they are not independent).
For instance, the dataset consists out of just 960 cross-shore bottom profiles and there are
over 80,000 cases, so many cases have the same bottom profile.

1 4 10 21 26 36 57 73 82
index dataset (x 1,000)
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Figure 5.1.: Visualization of the dataset consisting out of more than 82,000 unique cases. As one
can see the dataset is ordered per location, starting with case 1 at Schiermonnikoog and ending
with case 82,196 at Delfland. The abbreviation of coastal areas is similar to the evaluation plots
below (Figure 5.4 and further)
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In Section 5.4 a sensitivity analysis of the subjective choices (nodes, relations, discretization
thresholds) made in the construction of the Bayesian network, will be executed. Reference
case for these analyses is the check case. The check case is the best possible prediction
the Bayesian network can make. Here, observed erosion volumes are input to the Bayesian
network as well.
The hindcast predictions, presented as confidence regions, are compared to the observations
at the specific location (Figure 5.4). Before a start can be made with the evaluation of the
Bayesian network first two measures to quantify the Bayesian prediction will be introduced.

5.2. Quantify prediction evaluation

To determine the degree to which the Bayesian network can recover the simulated erosion
volume (morphological change) and whether its uncertainty estimates are consistent with
the actual prediction errors two evaluation methods will be used. First, the prediction skill
will be quantified using a simple linear regression model relating predictions to the actual
observations1. Second, the prediction skill is quantified by evaluating the likelihood of each
observation, as predicted, and comparing this likelihood to the prior likelihood. Both methods
will be explained in detail below. The methods will be applied to hindcast predictions using
the training dataset to update some of the variables (e.g. water levels, wave height, profile
volume and dune crest).

5.2.1. Simple regression model

Goal of this regression model is to quantify the prediction skill relating predictions to the
actual observations. Therefore we wish to find the equation of the straight line

ŷ = α+ βx̄ (5.1)

Here, ŷ is the regression estimate based on x̄, the Bayesian-mean predicted value, and includes
corrections for bias α and β. The Bayesian-mean value is

x̄i =

J∑
j=1

p [∆Dj |inputsi] ∆Dj , (5.2)

where the summation is over the j = 1, 2, ..., J discrete bins from the prediction obtained for
each case i. Here inputsi represents a ‘case’ (a particular combination of the possible input
variables). The regression skill for this prediction is

s = 1−

I∑
i=1

σ−2
x,i [yi − ŷi]2

I∑
i=1

σ−2
x,i [yi]

2

, (5.3)

where the summation is over all considered cases, i = 1, 2, ..., I. The measure skill describes a
weighted percentage of observed variance that is explained by the Bayesian-mean prediction.

1Here, observation is not meant literally (there are no real-world observations of erosion volumes in the
dataset) but a observation is a simulated erosion volume out of duros+ that will be ‘observed’ by the
Bayesian network
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The weighting factors are the prediction variance around the Bayesian-mean value and do
not depend on the observations. The variances are computed as

σ2
x,i =

J∑
j=1

p [∆Dj |inputsi] [∆Dj − x̄i]2 . (5.4)

The Bayesian-mean value represents a robust predicted value (Plant and Stockdon, 2012) and
the variance of the prediction provides a measure of prediction uncertainty used as weighting
term in the regression and skill estimates. However, the Bayesian mean value is strictly
appropriate if the result is more-or-less normally distributed. When a result is bi-modal
for instance (see Figure 5.2) the Bayesian-mean value will fall between the two most likely
outcomes and is a horrible prediction. Therefore, another method to quantify the prediction
skill will be used as well.
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Figure 5.2.: Example of two possible probability density distributions describing the result. In
case of a modal distribution Bayesian-mean value is a good method to quantify the prediction
skill but it gets bad when the distribution is more-or-less bi-modal.

5.2.2. Log-likelihood ratio

It is possible to describe the skill of the updated probability distributions by evaluating
the likelihood of each observation, and comparing this likelihood to the prior likelihood.
Likelihood is a measure of how likely an event is. For instance for a forecast F with given
observables O, p(F |O), the likelihood function is the probability of the observations if the
forecast is known: p(O|F ). The likelihood term can include both model and observation
errors. That is, if the model and measurements were error free, than an observation would
be likely only if it equalled the forecast value. In reality, there are numerous errors causing
spread in the likelihood function.

Deltares and Delft University of Technology 45



Impact Assessment of Extreme Storm Events
Using a Bayesian Network

Here, with likelihood the maximum likelihood function is meant. This function describes
the likelihood of a set of parameter values given some observed outcomes is equal to the
probability of those observed outcomes given those parameter values. Since, one is interested
in the most likely parameters the likelihood is labelled as maximum likelihood. In this case
the log-likelihood ratio will be used (Equation 5.5) to describe the maximum likelihood. A
logarithmic function will be used to make the process of differentiating (to find the maximum
likelihood) easier. Moreover, because the logarithm is an increasing function, the likelihood
function and the log-likelihood function attain their extreme values for the same values.

L = log
{
p [∆Dj |inputsi]∆Dj=∆Di

}
− log

{
p [∆Dj ]∆Dj=∆Di

}
(5.5)
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Figure 5.3.: Given ∆D2 = ∆Di this figure shows the prior probability of a value in bin ∆D2

together with the posterior probability (after update with evidence inputsi) of the same bin.
The posterior probability is higher than the prior probability, the log-likelihood formulated in
Equation 5.5 is positive, so one is more certain about the outcome.

The first term on the right is the updated probability evaluated at the discrete bin that
matches the observed erosion volume for the ith case. If the updated probability is higher
than the prior probability for the observed value, then the prediction is improved compared
to the prior and the log-likelihood ratio is greater than zero. This indicates that the updated
probability distribution is both different compared to the prior distribution and more accu-
rate. On the other hand, if the updated probability of the observed value is lower than the
prior probability, it indicates that the updated probability is either more uncertain than the
prior or it is more confident but actually wrong.
Thus, the likelihood ration scores the ability of the Bayesian network to make skilful esti-
mates of both mean value and uncertainty. A summation of the log-likelihood ratio over
all observed cases provides a measure of how much better (or worse) the Bayesian network
prediction performed over the entire data set.

5.3. Testing

This section describes the hindcast of erosion volumes for a set of testcases. Testcases are
sampled out of the 82,196 cases of the dataset described in Chapter 3. This dataset is chrono-
logically ordered with respect to alongshore coastal location, Figure 5.1 gives an overview of
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Number of testcases Skill LR time (order of magnitude)

9 0.71 2 few seconds
83 0.88 19 30 seconds
822 0.93 218 3 minutes
8220 0.91 2102 15 minutes

Table 5.1.: Prediction skill and LR as function of the number of testcases. For all the runs a
number of 83 testcases is held.

the structure of this dataset. It is clear to see coastal areas with a longer coastline consist
out of more cases.
For every single prediction in the Bayesian network all the input variables2 are updated with
observations corresponding to the case. For every prediction the observed erosion volume is
known and can be used for a comparison with the predicted erosion volume. The hindcast
predictions, presented as confidence regions ( 5.4a), are compared to the observations for each
case ( 5.4b).
One single prediction is not representative for evaluation of a Bayesian network, therefore a
set of testcases will be used to evaluate the Bayesian network. In next sections different sets
of testcases will be used, but the number of testcases in a set is constant. This is because the
log-likelihood ratio (hereafter referred to as LR) is a summation over the number of testcases
(see also Equation 5.5). So, the number of testcases determines the LR value.
In Appendix D different numbers of testcases were used in order to predict the erosion vol-
umes. The Bayesian network was trained on the entire dataset and testcases were sampled
with constant interval (e.g. case number:1;1001;2001 etc. ) out of the same dataset. Results
are presented in Table 5.1. It is clear to see the LR increases more or less linear with respect
to the amount of testcases. This indicates the LR for a single prediction is more or less the
same. Considering the skill one does not see this linear relation. In Figure D.1 it is clear to
see 9 testcases are insufficient, there is just one observation outside the first bin. The case
with 822 Figure D.3 shows the best skill, however more testcases Figure D.4 will not increase
the skill, indicating the maximum skill situated around the 0.9. Moreover, more testcases
make it hard to distinguish individual observations. In addition, more testcases are more
time consuming as well. Therefore, the number of testcases to test the Bayesian network is
fixed to 83 testcases for all evaluations.

5.3.1. Bayesian network trained on entire dataset

Check case

To investigate the prediction scores for different sets of testcases, first a reference case repre-
senting the best possible prediction was obtained. The highest possible prediction skill and
likelihood ratio is determined by performing a prediction where the observed erosion volume
(the quantity we are predicting) was supplied into the Bayesian network. This hindcast test
called the ‘check’ (Figure 5.4).
The number of cases in the dataset presented in Figure 5.1 is 82,196. Starting at case one,
and using a stepsize of 1000 cases, one get 83 testcases equally sampled over the dataset
length. Thus, every coastal area is represented in the evaluation of the Bayesian network (see

2water level, wave height, peak period, areaname, dune height, beach width, profile volume and slope
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horizontal axis 5.4a).
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(a) Predicted erosion volumes. The red line indicates Bayesian-mean predicted value and the blue dots
the observations. The shading correspond to 50% (darkest), 90%, and 95% (lightest) confidence regions.
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(b) Regression of Bayesian-mean predicted value against the observed erosion volumes

Figure 5.4.: Predictions of erosion volumes (a) and correlations to observations (b) obtained
with the Bayesian network trained on the entire dataset. This figure represents the check case,
erosion volume observations are supplied to the Bayesian network as well

5.4a indicates each of the 83 predictions fall in the bin corresponding to the observed erosion
volume. For example, the prediction of the small erosion volumes observed at Schiermon-
nikoog and Ameland fall for 95% certain in bin one [0-200 m3]. However, the probability
density distribution inside a bin is not known, therefore given an observation the Bayesian-
mean predicted value is always equal to the average of a bin. This can also seen in 5.4b,
here the predicted erosion volumes (horizontal axis) are divided in four bins with a predicted
erosion volume equal to the middle of that particular bin. So, each observed erosion volume
in the range 0-200 m3 is predicted to have a value of 100 m3 (middle of bin one).
Since the observed erosion volumes are input to the Bayesian network, introduced uncertainty
is only due the discretization of the Bayesian network. The choice for these bin ranges results
in a predicton skill of 0.89. In other words, with the use of this Bayesian network 11% of
information get lost.
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Prediction case

Now the scores of a check case are available, a prediction of erosion volumes for the same
Bayesian network can be made (Figure 5.5). In fact, the only difference between this test
and the check case is observed erosion volumes are no input to the Bayesian network. The
set of testcases is the same.
A comparison between Figure 5.4 and Figure 5.5 indicates:

• The rather broad probability distributions of 5.5a, indicated by higher confidence
peaks, results in a decrease of the LR (from 27 to 19).

• Bayesian-mean predicted values are no longer fixed to the average of a bin, no vertically
lined group of observations in 5.5b.

• Both prediction skills are more-or-less the same (0.88 vs. 0.87), indicating the Bayesian
network is capable in predicting the erosion volumes belonging to these testcases3.

3Important to note: here the testcases were used for training as well!
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(a) Predicted erosion volumes. The red line indicates Bayesian-mean predicted value and the blue dots
the observations. The shading correspond to 50% (darkest), 90%, and 95% (lightest) confidence regions.
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(b) Regression of Bayesian-mean predicted value against the observed erosion volumes

Figure 5.5.: Predictions of erosion volumes (a) and correlations to observations (b) obtained
with the Bayesian network trained on the entire dataset. Here all the input variables are updated
with the conditions corresponding to the 83 observations in order to predict the erosion volumes.
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5.3.2. Bayesian network trained on half dataset

In order to prevent training and testing on the same cases, the dataset of 82,196 cases is
divided into two sub-sets. One sub-set will be used for training of the Bayesian network,
while the other will be used for testing of the Bayesian network. Here, the sampling of the
entire dataset into two equally sized sub-sets will be done in three ways (see Figure 5.1 for
visualization of the dataset):

1. Odd and evens (Figure 5.6)
Use the odd numbered cases (1,3,..,82195) for training and the even numbered cases
(2,4,..,82196) for testing. Thus, both samples cover the complete coast we are studying.

2. Split halfway (Figure 5.7)
Cut the dataset in two parts, use case 1-41,098 for training and case 41,099-82,196 for
testing. Thus, the Bayesian network gets trained on the Wadden barrier islands plus a
part of the North-Holland coast and tested on the remaining Holland coast.

3. Randomize and split halfway (Figure 5.8)
First shuffle all the cases so they are not ordered per coastal area and then cut the
dataset in two. Such, one does not know what the location of both the training and
testcases is. This method will be used in Section 5.3.3 to sample sets of training cases
of different size.

For all three Bayesian networks83 testcases will be used to update the probabilities. Since
the length of the sub-set (41,099 cases), from which the testcases are sampled, is half the
length of the entire dataset (82,196 cases), the stepsize is also halved (from 1,000 to 500). So,
in case of odd and evens, testcases out of each coastal area will be tested. Meanwhile, the
location of testcases used in Figure 5.7 are sampled out of Holland coast cases only. Finally,
for the shuffled half dataset it is not possible to locate a testcase (the dataset is unordered).
Therefore coastal areas will be not provided in Figure 5.8.
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(a) Updated probabilities for erosion volume compared to the observed value (blue dots). The shading
correspond to 50% darkest, 90%, and 95% (lightest) confidence regions.
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(b) Regression of the Bayesian-mean prediction against the observed erosion volumes

Figure 5.6.: This prediction evaluation represents the Bayesian network trained on the half
dataset and tested on 83 observations obtained out of the other half of the non-training data set.
Here all the input variables are updated with the conditions corresponding to the 83 observations
in order to predict the erosion volumes.
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(a) Updated probabilities for erosion volume compared to the observed value (blue dots). The shading
correspond to 50% darkest, 90%, and 95% (lightest) confidence regions.
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(b) Regression of the Bayesian-mean prediction against the observed erosion volumes

Figure 5.7.: This prediction evaluation represents the Bayesian network trained on the half
dataset and tested on 83 observations obtained out of the other half of the non-training data set.
Here all the input variables are updated with the conditions corresponding to the 83 observations
in order to predict the erosion volumes.
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(a) Updated probabilities for erosion volume compared to the observed value (blue dots). The shading
correspond to 50% darkest, 90%, and 95% (lightest) confidence regions.
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(b) Regression of the Bayesian-mean prediction against the observed erosion volumes

Figure 5.8.: This prediction evaluation represents the Bayesian network trained on the half
dataset and tested on 83 observations obtained out of the other half of the non-training data set.
Here all the input variables are updated with the conditions corresponding to the 83 observations
in order to predict the erosion volumes.
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Trained on: Tested on: Skill LR

All data All data
check 0.89 27
pred 0.88 19

Half1a Half1b
check 0.89 29
pred 0.88 18

Half2a Half2b
check 0.91 33
pred 0.52 -12

Half3a Half3b
check 0.93 27
pred 0.90 17

Table 5.2.: Prediction scores for different sampled training and testcases. Because the Bayesian
network differs per set of testcases a ‘check’ case per Bayesian network is provided as well.

Prediction scores corresponding to the various sets of testcases are presented in Table 5.2.
When one looks at Figure 5.6 - Figure 5.8 the following observations can be mentioned:

• It is clear to see that a Bayesian network trained on Wadden barrier islands cases and
tested on Holland cases, result in bad prediction compared to the other half datasets.
Specifically, the low LR score is a result of the predictions having rather broad proba-
bility distributions (visualized with the high gray peaks in the confidence plot of Fig-
ure 5.7). This indicates the Bayesian network is not capable of predicting erosion
volumes at the Holland coast, with Wadden barrier islands information only.

• Prediction scores for the other two Bayesian networkstrained on 41,099 cases are more-
or-less equal (see also Table 5.2). This indicates the

5.3.3. Bayesian network trained on small datasets

This section investigates the correlation between the amount of data (i.e., number of cases)
used for training and the prediction scores. Prediction evaluation with the entire and half
dataset were conducted already. Before the dataset was divided in smaller parts, first the
entire dataset was randomized comparable to half dataset 3. After this the dataset is not
spatially ordered any more. Now the randomized dataset (Figure 5.1) is divided by 4 (20,549
cases), 8 (10,275 cases), 16 (5138 cases) and 32 (2567 cases). These (small) datasets will be
used for training and the remaining cases will be used for testing. Thus, it is not possible to
train and test on the same case. Results visualized in the well-known plots are presented in
Appendix E, prediction scores are presented in Table 5.3. Please remember that all Bayesian
networksare tested on 83 testcases obtained out of remaining cases not used for training.

When one looks at Table 5.3 one can see the prediction skill is more-or-less equal to the
prediction skill of the corresponding ‘check’ case. Only the training dataset with a length of
1/32 of the original dataset length shows a reduction in skill of 15%. The low log-likelihood
ratio is a result of predictions having a rather broad probability distribution that are not
strongly different from the prior distributions. The negative LR of the last set of predictions
indicates the updated probabilities are worse (i.e., LR¡0) than using prior probabilities.
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Trained on: Number of training cases: Tested on: Skill LR

All data 82,196 All data
check 0.89 27
pred 0.88 19

Half3a 41,098 Half3b
check 0.93 27
pred 0.90 17

1/4 20,549 3/4
check 0.91 27
pred 0.93 20

1/8 10,275 7/8
check 0.91 31
pred 0.85 11

1/16 5,137 15/16
check 0.89 31
pred 0.89 10

1/32 2,569 31/32
check 0.91 38
pred 0.76 -11

Table 5.3.: Prediction scores for different sets of testcases. For every set of testcases 83 pre-
dictions are made. Because the Bayesian network differs per set of testcases a ‘check’ case per
Bayesian network is provided as well.

5.4. Sensitivity Analysis

The Bayesian network design relied on several somewhat subjective choices that may affect
network performance. The choices include (1) selecting variables to include in the network,
(2) deciding which of the possible correlations between the variables should be resolved, and
(3) choosing the bin resolution for each variable. In this section a sensitivity analysis for the
first two of these choices will be addressed.

5.4.1. Variable selection

In order to identify which variables (or combination of variables) contributed to improved
skill, a series of additional hindcast prediction test and evaluations were performed in which
different combinations of input variables were provided or withheld.

Single input variable

First, the role played by each input variable in making skilful predictions the Bayesian network
will be tested on every variable individually. For this testing the Bayesian network trained
on the entire dataset, described in Section 5.3.1, was used. Again the erosion volume will
be predicted, but this time with only evidence from one variable. For instance, given a
value for the water level, predict the most probable erosion volume given that water level.
Not only single nodes are used for prediction, also two combinations of nodes are evaluated.
The three hydraulic boundary conditions will be tested as group, as well as the six profile
indicators. Those two groups of nodes can be viewed as real-life available scenarios, for
instance one knows the storm characteristics or the location along the coast. In Appendix F
plots presenting updated probabilities after testing on one variable only are given. A summary
of prediction scores for every evaluation is given in Table 5.3.
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Figure 5.9.: Predictions of erosion volumes without water level information.

All input variables minus one

Next step is to remove just one variable out of the set of input variables. For instance, predict
erosion volumes by updating all input variables except for water level. Results in the common
plots are presented in Appendix G. Here an interesting case (remove the water level) will
be highlighted (Figure 5.9). These results show a couple of features of the prediction that
are valuable. First, it is obvious to see predictions made at the Wadden barrier islands show
a larg amount of uncertainty (i.e., rather broad updated probability distributions). Second,
despite of the fact the predictions are more uncertain (lower LR) the predictions are more
accurate (higher skill).
This last result (i.e., water level is not important) illustrates an important but purely sta-
tistical conclusion, as it is quite likely that water level is important to driving dune erosion
processes. However, for this analysis, based on typical Dutch storm characteristics, water
level was strongly correlated with wave height and peak period, such that water level is re-
dundant and largely unnecessary if wave height and peak period are available, and vice versa.
A potential advantage of this redundancy is that if there are errors in either estimates of wa-
ter level, wave height, peak period (this is always true), then the variables complement each
other and the impact of these errors can be reduced through the inherent data assimilation
capability of the Bayesian network approach (Plant and Holland, 2011a,b).
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Variable
Only Without

Skill LR Skill LR

Check 0.89 27 0.89 27

Water level 0.38 5 0.93 15

Wave height 0.33 4 0.88 18

Peak period 0.22 3 0.93 18

Areaname 0.01 1 0.88 19

Dune crest height 0.01 0 0.90 17

Beach width 0.00 1 0.85 18

Profile volume 0.00 1 0.90 13

Slope 0.00 1 0.93 14

Grain size 0.01 0 0.92 17

HBC 0.41 6

PI’s 0.09 5

Table 5.4.: Prediction scores in order to examine the relative importance of every variable
included in the Bayesian network
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6. Conclusions and Recommendations

6.1. Introduction

This study investigated the application of the Bayesian approach for the dune safety assess-
ment against extreme storm events. With the dune erosion model duros+ a dataset was
generated that serves as input (training) and as reference (testing) to the Bayesian network.
Aim of the Bayesian network was to predict dune erosion volumes above storm surge level
given a set of observations.
Predicted dune-erosion volumes (output Bayesian network) were compared to observed dune-
erosion volumes (output duros+). The quantification of this comparison was done by two
prediction scores, regression skill score and the log-likelihood ratio.
First the observed erosion volumes are input to the Bayesian network, in order to illustrate
the loss of information with the use of a Bayesian network solely. After that several analysis
were made to show the capabilities of the Bayesian network in order to predict dune erosion
volumes.
During this research one single dataset was used in order to train and test the Bayesian
network. The cases in this dataset are unique but not independent. For every case (i.e.
simulation) data was sampled or selected out of the same sources (HR2006, and JARKUS
(2010)) and the same dune-erosion model (duros+) was used to compute dune erosion vol-
ume. Therefore, this dataset can be viewed as one population. With the interpretation of
the conclusions as described below, this should be taken into account.

6.2. Conclusions

The research presented in this thesis improved our understanding of the Bayesian network
approach. Since the Bayesian approach is relatively new in the field of coastal engineering
the whole process will be evaluated. The sub-questions (described in Section 1.3.2) will be
discussed below.

SQ1 Is it possible to appropriately reproduce the current safety assessment for
dunes in a Bayesian network?
The Bayesian network is capable of reproducing dune erosion volumes which are gen-
erated by the dune erosion model duros+. This is illustrated by the validity check in
Section 4.4 and by the ‘check’ case described in Section 5.3.1.
In the validity check no predictions were conducted, only the effects of constraining
some variables were studied. For example, the constraint of the water level to a range
of 4-6 m illustrates a shift of the probability distributions to higher values for: wave
height, peak period and erosion volume respectively. With the use of the four profile
indicators several expected features can be illustrated, smaller grains and lower dunes
at the Wadden islands with respect to the the Holland coast for instance. This illus-
trates the Bayesian network is capable of adequately representing expected correlations
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regarding the Dutch coast.
Secondly, for the reproduction in the ‘check’ case also values of the variable of interest
(erosion volume) were input to the Bayesian network, such the effect of the application
of the Bayesian network can be illustrated. The loss in prediction skill (regression skill
less than one) is the result of the discretization of the variables in the Bayesian network.
The Bayesian network cannot distinguish values in one particular bin. When the range
of a bin is [200 - 300] m3 for instance, the Bayesian network cannot distinguish an
erosion volume of 201 m3 and 299 m3, they both fall in the same bin. Now, when the
erosion volume serves as input, the Bayesian network knows the bin for sure. By defi-
nition the predicted erosion volume is the mean value of this bin. Assume the observed
erosion volume is 201 m3, the Bayesian network is certain that the predicted value
is situated in the bin ranging from [200-300] m3, and therefore the predicted erosion
volume is 250 m3. Compare the observed (201 m3) and predicted erosion volume (250
m3), this is the reason for loss in the prediction skill. The reduction in prediction skill
of 11% is solely due to the thresholds used to discretize the variables. This, again,
indicates the importance of the discretization of the input variabled of the Bayesian
network.

SQ2 What is an appropriate way to characterize the dune erosion process in a
Bayesian network?
The choice to select and connect nodes corresponding to our physical knowledge of the
dune erosion process worked out quite well. The updated probabilities in Section 4.4
indicates the Bayesian network meets our expectations. For instance, a high water level
results in a skewed probability distribution to higher erosion volumes, and vice versa.

• Which variables play an important role in the dune erosion process and how are
they correlated?
In Section 5.4.1 the effect of adding and removing a variable has been tested.
Due to the number of correlations between the nodes in the Bayesian network
(no node is singly connected), it is hard to point out what variable is decisive
in the prediction of erosion volumes. For instance, due to the direct correlation
between water level and wave height, water level information is also stored in the
wave height conditional probability table. So, even if water level evidence is not
available to update the probabilities it indirectly still affects the prediction.

• What is the best way, to end up with a robust and fast Bayesian network, regarding
the discretization of the variables available in the Bayesian network?
Several times the comment was made the discretization of variables included in
the Bayesian network is an important step in the model set-up. The discretization
itself is responsible for a reduction in the prediction skill of 11%. Moreover, the
discretization plays an important role in the dimensionality of the Bayesian net-
work (size of conditional probability table grows exponantially with an increase
of number of bins) respectively, and in the robustness of the Bayesian network
(too many bins may result in an insufficient number of hits in a particular bin).
However, no analyses have been made with a different bin resolution. This could
be an interesting topic for future work possibly (see also Section 6.3).
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SQ3 What is the relation between the amount of data used for training of the
Bayesian network and the prediction skill?
A Bayesian network trained on 2,567 cases and tested on 83 observations results in
a negative log-likelihood ratio (LR). This indicates that using the prior distributions
would result in a better prediction score (LR = 0) with respect to updating the input
variables. Therefore one can draw the conclusion that the input of 2,567 (1/32 of
database size) is not sufficient in order to adequately predict erosion volumes for new
cases.

SQ4 Is it possible to forecast the dune erosion process outside the spatial domain
described by the Bayesian network?
(Predictions were made for dune erosion volumes for locations at the Holland coast
using a Bayesian network trained on data belonging to the Wadden barrier islands.)
Yes, it is possible but it results in bad prediction scores. It is possible because originally
the variables in the Bayesian network were discretized on data of both, the Holland and
Wadden coast, therefore no cases fall outside the range of a particular variable. The
low prediction scores indicates both coastal areas are too diverse and cannot be used
for prediction. A negative LR indicates that a prediction made after updating the
input variables is less accurate then using the prior probabilities. Apparently, relations
learned during training phase (with Wadden coast cases) are not representative for the
prediction of erosion volumes at the Holland coast.

6.3. Recommendations

R1 Discretization of the Bayesian network
In the process of constructing the Bayesian network, discretization became an impor-
tant step in the Bayesian analysis. However, the results presented in Chapter 5 are
all based on a Bayesian network with one set of discretization thresholds (described in
Section 4.2.3). First action in future work on the Bayesian network approach must be a
change in bin resolution (range and number of bins per variable). However, before this
it is worthwhile to first optimize the Bayesian network in a more efficient way described
in next recommendation.

R2 Built the Bayesian network in a more efficient way (reduce time for inference)
To reduce the time to evaluate multiply connected networks (more than one connections
from one node to another), one could turn the network into an equivalent singly connected
one. There are a few ways to perform this task. The most common ways are variations
on a technique called clustering. In clustering, one combines nodes until the resulting
graph (Bayesian network) is singly connected. By combining two nodes in one new node
one can create a single connected network (also called a polytree). A singly connected
network here has no more than one path between two nodes. An example to reduce the
dimension of a Bayesian network could be to use the dimensionless fall velocity parameter
H
Tw (Vellinga, 1986) instead of using the variables: wave height, peak period and grain
diameter. This makes the network more efficient due to the use of special singly connected
algorithms. Those are often faster and not exact (not NP-hard). However, a problem
arises if the node one creates have a large numbers of values. Then, the search for an
appropriate algorithm that approximates the conditional probabilities best continues.
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Since a large number of people are now using Bayesian networks, there is a great deal
of research and efficient exact solution methods as well as a variety of approximation
schemes.

R3 Dune safety assessment
In order to say something about the application of the Bayesian network approach in the
safety assessments of dunes, the Bayesian network model presented in this research needs
to be extended. Here the Bayesian network was used to predict erosion volumes. For an
actual safety assessment a definition of failure needs to be added to the Bayesian net-
work. Preferably the failure definition is determined before construction of the Bayesian
network, such that determining variables are included and adjusted. This research used
an erosion volume above storm surge level, which is dynamic and cannot be compared
with a profile indicator for instance.

R4 Distinguish more coastal features
The four profile indicators used in this research are sufficient in order to evaluate complete
coastal areas (in Dutch: ‘Kustvakken’) but is not sufficient to assess the dune safety level
when zooming in on a couple or even a single transect. The profile indicators profile
volume and slope are highly correlated and it could be that just using one of both is
sufficient in order to predict erosion volume. More research on the way of characterizing
a bottom profile (or profiles) should be executed to draw a final conclusion.

R5 Use of different types of data
Basis of a Bayesian network is data used to learn relations between the variables of
interest. The database used in this research can be viewed as one population (all the
cases are generated in the same way). It might be interesting to add different kind
of data to the database like: real-world observations, results of lab experiments or the
output of an other dune-erosion model. In this way the Bayesian network prediction
is less sensitive to a possible bias of one single dune erosion model. In addition, it is
possible to weight data in the Bayesian network. For instance the priority of a real-world
observation case can be increased by a weighting factor.
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A. Shape of the erosion profile

Here the shape of the erosion profile computed with duros+ is described. Formulae are
derived from WL | Delft Hydraulics (2007b) and van Gent et al. (2008). The shape of the
three elements of the post-storm profile (Section 2.1.2) will be described below. The numbers
correspond to the numbers indicated in Figure 2.3.

1. Dry dune front
The dune-foot is defined as the place where the steep dune devolves in the much more
gentle dry beach, at storm surge level. The slope of the eroded dune-front is 1:1.

2. Parabolic equilibrium post-storm beach profile
From the dune-foot (x = 0; y = 0) the shape of the erosion profile is parabolic (perpen-
dicular to the coast) in seaward direction.
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In the formulas Equation A.1, Equation A.2 and Equation A.3 the definition of the
symbols is:

H0s: significant wave height on deep water [m].
Tp: wave period at the peak of energy density spectrum [s].
w: the fall velocity of a sand particle in seawater of 5o Celsius [m/s].
x: the distance from the new dune foot [m].
y: the depth beneath storm surge level [m].

The formulas Equation A.1 and Equation A.2 are applicable whenever the peak period
is between the interval of 12s < Tp < 20s. Else, for Tp < 12 the Tp retains 12s. And
for Tp > 20s., the Tp retains 20s.
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The fall velocity (w) in seawater with a temperature of 5o Celsius can be calculated
using the following formula:

10 log

(
1

w

)
= 0.476 (logD50)2 + 2.18010 logD50 + 3.226 (A.4)

In which:
w: fall velocity of (dune)sand in seawater [m/s].
D50: measure for the grain diameter of the dune sand [m].

3. Transistion slope connecting the post-storm beach profile with the initial
profile
Seawards of the point xmax, ymax the profile pass into a straight line with a slope of
1:12.5 till the point where it crosses the original profile.
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B. Probability Density Distributions - HBC

Figure B.1.: Water level distribution with Importance Sampling
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Figure B.2.: Wave height distribution with Importance Sampling
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Figure B.3.: Peak Period distribution with Importance Sampling
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Figure B.4.: Input distributions of the Bayesian network
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Figure B.5.: Input distributions of the Bayesian network
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C. Bayesian Input Dataset
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D. Hindcast Results - Number of data
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(a) Updated probabilities for erosion volume compared to the observed value (blue dots). The shading
correspond to 50% darkest, 90%, and 95% (lightest) confidence regions.
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(b) Regression of the Bayesian-mean prediction against the observed erosion volumes

Figure D.1.: This prediction evaluation represents the Bayesian network trained on the entire
dataset and tested on 9 observations obtained out of the training data set. Here all the input
variables are updated with the conditions corresponding to the 9 observations in order to predict
the erosion volumes.
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(a) Updated probabilities for erosion volume compared to the observed value (blue dots). Inputs out of
training data set are used for testing. The shading correspond to 50% darkest, 90%, and 95% (lightest)
confidence regions.
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(b) Regression of the Bayesian-mean prediction against the observed erosion volumes

Figure D.2.: This prediction evaluation represents the Bayesian network trained on the entire
dataset and tested on 83 observations obtained of the training data set. Here the observed erosion
volumes are given as prediction.
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(a) Updated probabilities for erosion volume compared to the observed value (blue dots). The shading
correspond to 50% darkest, 90%, and 95% (lightest) confidence regions.
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(b) Regression of the Bayesian-mean prediction against the observed erosion volumes

Figure D.3.: This prediction evaluation represents the Bayesian network trained on the half
dataset and tested on 822 observations obtained out of the non-training data set. Here all the
input variables are updated with the conditions corresponding to the 822 observations in order
to predict the erosion volumes.
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(a) Updated probabilities for erosion volume compared to the observed value (blue dots). The shading
correspond to 50% darkest, 90%, and 95% (lightest) confidence regions.
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(b) Regression of the Bayesian-mean prediction against the observed erosion volumes

Figure D.4.: This prediction evaluation represents the Bayesian network trained on the half
dataset and tested on 8220 observations obtained out of the non-training data set. Here all the
input variables are updated with the conditions corresponding to the 8220 observations in order
to predict the erosion volumes.
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E. Hindcast Results - Small set of Testcases
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Figure E.1.: Bayesian network trained on 1/4 of the dataset.

Deltares and Delft University of Technology 79



Impact Assessment of Extreme Storm Events
Using a Bayesian Network

0 1 2 3 4 5 6 7

x 10
4

0

500

1000

1500
ErosionSSL − updateAll_predE−EIGHT_DATA_EM

Observation index [−]

E
ro

si
on

S
S

L 
[m

3]

0 200 400 600
0

200

400

600

800

ErosionSSL predicted

E
ro

si
on

S
S

L 
ob

se
rv

ed

skill=0.85, meane=70.99, rmse=124.89, LR=11

Figure E.2.: Bayesian network trained on 1/8 of the dataset.
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Figure E.3.: Bayesian network trained on 1/16 of the dataset.
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Figure E.4.: Bayesian network trained on 1/32 of the dataset.
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F. Hindcast Results - Relative importance
single variable only
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Figure F.1.: Bayesian network trained on entire dataset and tested on only water level infor-
mation
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Figure F.2.: Bayesian network trained on entire dataset and tested on only wave height infor-
mation
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Figure F.3.: Bayesian network trained on entire dataset and tested on only peak period infor-
mation
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Figure F.4.: Bayesian network trained on entire dataset and tested on only areacodes
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Figure F.5.: Bayesian network trained on entire dataset and tested on only dune crest informa-
tion
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Figure F.6.: Bayesian network trained on entire dataset and tested on only beach width infor-
mation
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Figure F.7.: Bayesian network trained on entire dataset and tested on only profile volume
information
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Figure F.8.: Bayesian network trained on entire dataset and tested on only slope information

90 Deltares and Delft University of Technology



Impact Assessment of Extreme Storm Events
Using a Bayesian Network

     Sch     Ame     Ter      Vlie     Tex      NH      Rijn      Delf
0

500

1000

1500
ErosionSSL − only_D50−ALL_DATA_EM

Coastal Area

E
ro

si
on

S
S

L 
[m

3]

200 250 300
0

200

400

600

800

ErosionSSL predicted

E
ro

si
on

S
S

L 
ob

se
rv

ed

skill=0.01, meane=151.85, rmse=219.52, LR=0

Figure F.9.: Bayesian network trained on entire dataset and tested on only grain size information
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Figure F.10.: Bayesian network trained on entire dataset and tested on only hydraulic boundary
conditions
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Figure F.11.: Bayesian network trained on entire dataset and tested on only profile indicator
information
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G. Hindcast Results - Relative importance
remove single variable
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Figure G.1.: Bayesian network trained on entire dataset and tested without water level.
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Figure G.2.: Bayesian network trained on entire dataset and tested without wave height.
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Figure G.3.: Bayesian network trained on entire dataset and tested without peak period.
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Figure G.4.: Bayesian network trained on entire dataset and tested without areacode.
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Figure G.5.: Bayesian network trained on entire dataset and tested without dune crest infor-
mation.
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Figure G.6.: Bayesian network trained on entire dataset and tested without beach width infor-
mation.
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Figure G.7.: Bayesian network trained on entire dataset and tested without profile volume
information.
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Figure G.8.: Bayesian network trained on entire dataset and tested without slope information.
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Figure G.9.: Bayesian network trained on entire dataset and tested without grain size informa-
tion.
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