
1

Using Foreign Data Wrapper in 
PostgreSQL to Expose Point Cloud 
on File System

Mutian Deng

Mentor #1: Martijn Meijers 
Mentor #2: Peter van Oosterom

Source from PDOK AHN3



2

Outline

• Introduction
• Related work
• Methodology & Implementation
• Results & Analysis
• Conclusions & Future work



3

Outline

• Introduction
• Related work
• Methodology & Implementation
• Results & Analysis
• Conclusions & Future work



4

Point Cloud Data

• Data acquisition technologies

• Wide range of applications

Source from wiki

Source from ResearchGate



5

Point Cloud Data Features

• Large number of points

• Multi-dimensions
Source from LAS specification

Source from http://ahn2.pointclouds.nl



6

Problem statement

• Storage
• Access
• Processing (like organization, manipulation)
• Query
• Combination with other GI
• Representation

Efficient management solution of point clouds data 
is required for efficient use



7

Point clouds data management
• File system solution

- Storage using file or collection of files in dedicated formats.
- Read/Process/Write data using appropriate softwares.

+ Pros: 1. Efficient and standard storage
2. Powerful processing tools
3. Lossless compression algorithm
4. Ease of use

- Cons: 1. Limited to the selection like accessing points in AoI.
2. Not support data combination



8

+ Pros: 1. SQL language for query
2. combination with other GI
3. update, insert and deletes
4. multi-users access

- Cons: 1. Efficient storage model is still needed
2. No fast data importing

Point clouds data management
• DBMS solution

- Storing and Retrieving by database management system   
with extensions



9

Problem statement
Both file system method and DBMS method:
• Have its own advantages and disadvantage
• Satisfy the part of requirements point clouds data management

• Store the LiDAR data on file system
• Expose and use LiDAR data on DBMS

Hybrid solution?



10

Problem statement

Library of PostgreSQL that can 
communicate with the external data source.

- How to realize the Hybrid solution?
- By means of Foreign Data Wrapper



11

Research question 
- Main research question and sub-questions

To what extent we can use LiDAR point clouds directly 
in the PostgreSQL by means of FDW?

• How does FDW build the connection between LiDAR file 
system and DBMS? 

• What kinds of queries and what levels of selection can be 
executed upon LiDAR data?

• What sizes of AHN3 datasets can work well by FDW solution?
• What are the benefits and problems when using FDW method? 



12

Outline

• Introduction
• Related work
• Methodology & Implementation
• Results & Analysis
• Conclusions & Future work



13

File system solution

File formats: 
• LAS 
• LAZ 
• ASCII 

File tools
• LAStools
• PDAL 
• laspy



14

Database Management System solution 
(DBMS)
Databases:
• PostgreSQL (PostGIS)
• Oracle (SDO_PC_PKG)
• NoSQL

Storage model
• Flat table
• Blocks



15

The extensions of PostgreSQL for point cloud data

• PgPointcloud
Storing point cloud data in PostgreSQL
two data type: PcPoint and PcPatch

• PostGIS
Querying geographic objects in PostgreSQL.

Database Management System solution 
(DBMS)



16

• 3 data types supported:
• Sbet
• ROSbag
• EchoPulse

• Not for LAS/LAZ point clouds
• Read-only
• One wrapper only reads one file
• Different formats use different wrappers

• Use Multicorn as implementation tool

Developed FDW for point cloud - LI3DS FDW

Source from https://github.com/LI3DS/fdw-li3ds



17

Outline

• Introduction
• Related work
• Methodology & Implementation
• Results & Analysis
• Conclusions & Future work



18

Methodology & Implementation
• Foreign Data Wrapper
• FDW for point clouds data
• System Architecture
• Benchmark 



19

Foreign Data Wrapper
Use FDW CREATE SERVER server_name

FOREIGN DATA WRAPPER wrapper_name
OPTIONS (opt_name opt_value)

CREATE FOREIGN TABLE table_name
(column_name column_type,
...)
SERVER server_name
OPTIONS (opt_name opt_value)

To access foreign data:

• Foreign server  defines how to 
connect to a particular external data 
source.

• Foreign table defines the structure of 
remote data represent external data.



20

Foreign Data Wrapper
Write FDW 
Implementation tool: Multicorn

https://multicorn.org/

CREATE SERVER pc_server
FOREIGN DATA WRAPPER multicorn
OPTIONS (wrapper ‘SystemFdw’)

CREATE FOREIGN TABLE pc_table
(x double precision,
y double precision,
z double precision
…)
SERVER pc_server
OPTIONS (filepath ‘…/pcfilesystem’)

Implementation tools: Multicorn
• FDW library for PostgreSQL
• Multicorn FDW is not 

different from others 
(same usage)

• Develop FDW in Python 
language



21

 __init__()
Args:
(from table creation)

• options
• columns

Implementation
interface: multicorn.ForeignDataWrapper

Foreign Data Wrapper

 execute()
Args:

• quals: a list of Qual instances
(PostgreSQL qualifiers)

• columns
Returns: an iteration python objects

• Sequence
• Dictionary 

WHERE x > 1
:
Qual.field:  x
Qual.operator:  >
Qual.value: 1

CREATE FOREIGN TABLE pc_table
(x double precision,
y double precision,
z double precision
…)
SERVER pc_server
OPTIONS (filepath ‘…/pcfilesystem’)



22

Methodology & Implementation
• Foreign Data Wrapper
• FDW for point clouds data
• System Architecture
• Benchmark 



23

FDW for point clouds data

A foreign data wrapper for LiDAR data needs to realize that
 The LiDAR data can be stored in their original file format on 

file system and can be processed by powerful file I/O tools
 In the meantime, the point records of data can be exposed on 

DBMS and the data can be used by DBMS facilities



24

FDW for point clouds data



25

Data organization
• lassort: sort the LAS/LAZ/TXT point clouds 

file into z-order (Morton code) arranged cells 
based on square quad tree 

• lasindex: create an LAX file besides LAS/LAZ 
point clouds file, which contains spatial 
indexing  information. with the presence of 
LAX, the spatial selection can be speed up

FDW for point clouds data
Data access

• Data storage
• Data organization
• Data obtain
• Data display 

• File system side
• DBMS side

Data storage
• TXT
• LAS
• LAZ



26

FDW for point clouds data
Data access

• Data storage
• Data organization
• Data obtain
• Data display 

• File system side
• DBMS side

Data display
Foreign table

Data obtain
FDW
• The point records of the data are obtained 

and fetched by foreign data wrapper.
• “las2txt” is used to parse each point record.

x double precision
y double precision
z double precision

classification integer



27

• Update
• Delete
• Insert 

FDW for point clouds data
Data functionalities • Data manipulation

• Type conversion
• Querying 

 Data can be updated, deleted, inserted synchronized both 
in file and foreign table

 This is realized in foreign data wrapper implementation



28

FDW for point clouds data
Data functionalities • Data manipulation

• Type conversion
• Querying 

ST_SetSRID ( ST_MakePoint ( x , y ) , 28992)

After retrieving the data to foreign table, the data type can be cast for 
“Point-in-Polygon” query

X and Y coordinates in number type 

PostGIS geometry Point type 



29

FDW for point clouds data
Data functionalities • Data manipulation

• Type conversion
• Querying

With the support of PostgreSQL and PostGIS, the possible queries 
on the foreign table representing the LiDAR data:
• - select the ground/ water/ building… points insides a region
• - select nearest neighbor of one location with a buffer
• - select all the points within a rectangle of different sizes
• - select all the points within a circle of different sizes
• - select all the points within a irregular polygon of different sizes
• - select the highest point of a region
• - select the maximal, minimal and average elevation value of 

points in a region
• - select the total point density and local point density of a region



30

Methodology & Implementation
• Foreign Data Wrapper
• FDW for point clouds data
• System Architecture
• Benchmark 



31

• Motivation
 The point clouds dataset always store data in several 

distributed files on the file system, rather than only one LiDAR 
file due to its large volume, like AHN dataset. 

 These LiDAR files on one file system can have different 
originated formats and spatial extent.

• FDW solution
 The core of FDW for Point Cloud Data Management System is 

handling multiple LiDAR files.

System Architecture
Point Cloud Data Management System



32

System components

System Architecture
Point Cloud Data Management System



33

System process
• System building

System Architecture
Point Cloud Data Management System

id filename format min_x max_x min_y max_y
1 C_37EN1_0000048_0000213.laz laz 79999.998 80833.351 443749.998 444791.597 
2 C_37EN1_0000048_0000214.laz laz 79999.998 80833.351 444791.598 446874.930 
3 C_37EN1_0000048_0000215.laz laz 79999.998 80833.351 446874.931 448958.263 
4 C_37EN1_0000048_0000216.laz laz 79999.998 80833.351 448958.264 450000.001 
5 C_37EN1_0000049_0000213.laz laz 80833.349 82500.018 443749.998 444791.597 
6 C_37EN1_0000049_0000214.laz laz 80833.348 82500.018 444791.598 446874.930 
7 C_37EN1_0000049_0000215.laz laz 80833.348 82500.018 446874.931 448958.263 
8 C_37EN1_0000049_0000216.laz laz 80833.348 82500.018 448958.264 450000.001 
9 C_37EN1_0000050_0000213.laz laz 82500.015 84166.685 443749.998 444791.597 

10 C_37EN1_0000050_0000214.laz laz 82500.015 84166.685 444791.598 446874.930 
11 C_37EN1_0000050_0000215.laz laz 82500.015 84166.685 446874.931 448958.263 
12 C_37EN1_0000050_0000216.laz laz 82500.015 84166.685 448958.264 450000.001 
13 C_37EN1_0000051_0000213.laz laz 84166.682 85000.001 443749.998 444791.597 
14 C_37EN1_0000051_0000214.laz laz 84166.682 85000.001 444791.598 446874.930 
15 C_37EN1_0000051_0000215.laz laz 84166.682 85000.001 446874.931 448958.263 
16 C_37EN1_0000051_0000216.laz laz 84166.682 85000.001 448958.264 450000.000 

Multiple LiDAR files with different formats and 
extent are collected together.
A metadata file needs to be created and stored 
in same file system, besides these LiDAR files



34

System process
• Data access

Since the core of the Point Cloud Data Management System is  
to handle multiple files
• One single foreign table needs to represent the data  

content fetched by one FDW from different LiDAR files (on 
the same file system), based on one selection condition.

System Architecture
Point Cloud Data Management System



35

System process
• Querying – Rectangle selection
 1. Get selection condition box from quals
 2. Read metadata file to pre-select the relevant files whose extent 

overlaps with selection box
 3. Use appropriate reader to read relevant files one by one
 4. Retrieve the LiDAR file and only parse the points inside the 

selection box
 5. Fetch the qualified points to PostgreSQL

System Architecture
Point Cloud Data Management System



36

System process
• Querying – polygon selection
 1. Get selection condition box from quals
 2. Read metadata file to pre-select the relevant files whose 

extent overlaps with selection box
 3. Use appropriate reader to read relevant files one by one
 4. Retrieve the LiDAR file and only parse the points inside 

the selection box
 5. Fetch the qualified points to PostgreSQL
 6. PostGIS selects the points that are exactly inside the polygon

System Architecture
Point Cloud Data Management System



37

Methodology & Implementation
• Foreign Data Wrapper
• FDW for point clouds data
• System Architecture
• Benchmark 



38

Benchmark
Dataset: AHN3

Test aspects:
• Feasibility
• Efficiency
• Scalability 



39

Benchmark
• Test datasets

lassplit

id filename format min_x max_x min_y max_y
1 C_37EN1_0000048_0000213.laz laz 79999.998 80833.351 443749.998 444791.597 
2 C_37EN1_0000048_0000214.laz laz 79999.998 80833.351 444791.598 446874.930 
3 C_37EN1_0000048_0000215.laz laz 79999.998 80833.351 446874.931 448958.263 
4 C_37EN1_0000048_0000216.laz laz 79999.998 80833.351 448958.264 450000.001 
5 C_37EN1_0000049_0000213.laz laz 80833.349 82500.018 443749.998 444791.597 
6 C_37EN1_0000049_0000214.laz laz 80833.348 82500.018 444791.598 446874.930 
7 C_37EN1_0000049_0000215.laz laz 80833.348 82500.018 446874.931 448958.263 
8 C_37EN1_0000049_0000216.laz laz 80833.348 82500.018 448958.264 450000.001 
9 C_37EN1_0000050_0000213.laz laz 82500.015 84166.685 443749.998 444791.597 

10 C_37EN1_0000050_0000214.laz laz 82500.015 84166.685 444791.598 446874.930 
11 C_37EN1_0000050_0000215.laz laz 82500.015 84166.685 446874.931 448958.263 
12 C_37EN1_0000050_0000216.laz laz 82500.015 84166.685 448958.264 450000.001 
13 C_37EN1_0000051_0000213.laz laz 84166.682 85000.001 443749.998 444791.597 
14 C_37EN1_0000051_0000214.laz laz 84166.682 85000.001 444791.598 446874.930 
15 C_37EN1_0000051_0000215.laz laz 84166.682 85000.001 446874.931 448958.263 
16 C_37EN1_0000051_0000216.laz laz 84166.682 85000.001 448958.264 450000.000 

• Use ‘lassplit’ to split one AHN file into 16 files  
based on x and y interval

• The output files are named in x and y order 



40

Benchmark

• Dataset scale

Data scale AHN3 files Test files

Small 1 (1*16) 16

Medium 4 (4*16) 64

Large 9 (9*16) 144

One AHN file has 16 test files



41

Benchmark
• Query level 

Query level overlap files
in each AHN file

Low 1
Medium 4

High 9

Small scale: One AHN file has 16 test files

Low

Medium

High



42

Benchmark
• Scalability
• Different level queries on different scale of datasets

Data scale Query level Relevant files

Small
(1 AHN)

low 1
medium 4

high 9

Medium
(4 AHN)

low 4
medium 16

high 36
Large

(9 AHN)
low 9

medium 36



43

Benchmark
• Efficiency
• Mini level queries on small dataset

• The query region 
only overlaps with 
one file

• Area of query region 
is really tiny

Small scale: One AHN file has 16 test files



44

Benchmark
• Feasibility
• Mini level queries on large dataset

Area Relevant files 

100
1
2
4

400
1
2
4

900
1
2
4

• The query region only 
overlaps with 1, 2, 4 files

• Area of query region is 
really tiny

• Like querying a house 
region on the city dataset



45

Outline

• Introduction
• Related work
• Methodology & Implementation
• Results & Analysis
• Conclusions & Future work



46

Efficient test results
data organization

Mini level queries on small scale dataset

system After organization
Time(s) count Time(s) count

4 124 0.08 124
8 238 0.09 238

11 165 0.11 166
5 114 0.13 114
9 116 0.07 116

17 253 0.14 252
18 177 0.12 177
11 128 0.13 128
10 140 0.15 140
26 270 0.16 270
26 179 0.05 179
15 88 0.07 87
6 122 0.08 122

11 1022 0.11 1022
15 219 0.14 219
5 129 0.14 129

Query region is tiny 
compared to the extent 
of relevant files

 Time greatly reduced
 Error imported



47

low level queries on small scale dataset

system After organization

Time(s) count Time(s) count

all 
bbox 55 4724593 49 4724588

polygon 63 2263124 61 2263118
rectangle 150 13000976 138 10537689

ground
bbox 58 3841360 54 3841359

polygon 65 2263124 64 2263118
rectangle 162 10537701 152 10537689

Efficient test results
data organization

Query region is of half area 
to the extent of relevant file

Mini level queries      small level queries
: Area of query region get larger

 Time difference smaller
 Error larger



48

Efficient test results
Multicorn qualifiers 

Mini level queries on small scale dataset

Without quals Using quals Count
/millionTime(s) count Time(s) count

48.213 113 124 4 124 11
48.214 221 238 8 238 21
48.215 284 165 11 165 26
48.216 127 114 5 114 12
49.213 241 116 9 116 22
49.214 526 253 17 253 48
49.215 521 177 18 177 49
49.216 302 128 11 128 28
50.213 266 140 10 140 25
50.214 772 270 26 270 66
50.215 713 179 26 179 66
50.216 426 88 15 88 40
51.213 170 122 6 122 15
51.214 302 1022 11 1022 29
51.215 427 219 15 219 37
51.216 130 129 5 129 12

• Using quals: read and 
fetch the points satisfying 
the condition

• Without quals: read and 
fetch all the points in the 
relevant files



49

Feasibility test results

releva
nt

large-mini-bounding box large-mini-polygon

area
system organization

area
system organization

Time
(s) count Time

(s) count Time
(s) count Time

(s) count

1 100 27 2336 0.48 2326 54.5 27 1279 0.47 1279
2 100 17 1522 0.26 1522 52 17 774 0.25 774
4 100 20 58 0.34 58 45.5 20 1 0.31 1
1 400 17 11894 0.50 11891 220 16 7211 0.53 7211
2 400 23 4101 0.33 4101 230 22 2524 0.33 2524
4 400 17 3801 0.27 3801 186 18 1771 0.29 1771
1 900 23 37780 0.74 37784 458 24 20927 0.85 20930
2 900 44 29478 0.87 29478 318 43 10475 0.93 10475
4 900 18 8383 0.34 8384 441 19 4299 0.36 4300

 Time is remarkably reduced by the data organization, 
when region is tiny.



50

Feasibility test results

relevant
large-mini-bbx large-mini-polygon

area
system organization

area
system organization

time(s) count time(s) count time(s) count time(s) count
1 100 27 2336 0.48 2326 54.5 27 1279 0.47 1279
2 100 17 1522 0.26 1522 52 17 774 0.25 774
4 100 20 58 0.34 58 45.5 20 1 0.31 1
1 400 17 11894 0.50 11891 220 16 7211 0.53 7211
2 400 23 4101 0.33 4101 230 22 2524 0.33 2524
4 400 17 3801 0.27 3801 186 18 1771 0.29 1771
1 900 23 37780 0.74 37784 458 24 20927 0.85 20930
2 900 44 29478 0.87 29478 318 43 10475 0.93 10475
4 900 18 8383 0.34 8384 441 19 4299 0.36 4300

 Query is done in several seconds, not all the files in the underlying file 
system need to be read, instead of only overlapping files, because of the 
pre-selection of relevant files.

 Although several huge point clouds files are relevant, only part of the 
points (not all the points) are required to be read, because of the 
indexing and qualifiers.



51

Scalability test results

data 
scale

query 
level

relev
ant

bbx Time/c
ount polygon Time/c

ount

Area
(km2)

Count
(million)

Time
(s)

Time
(min)

(s/milli
on)

Area
(km2)

Count
(million)

Time
(s)

Time
(min)

(s/milli
on)

small

low 1 0.4 5 55 1 11.7 0.2 2 63 1 27.8

medium 4 3.8 76 952 16 12.5 2.0 42 1164 19 27.9

high 9 3.5 49 718 12 14.7 3.5 49 891 15 18.3

medium

low 4 1.2 30 383 6 12.9 0.6 17 458 8 27.5

medium 16 8.5 137 1832 31 13.4 7.6 122 2224 37 18.3

high 36 31.5 502 6399 107 12.8 31.4 501 8197 137 16.4

large
low 9 13.0 203 2490 42 12.3 8.3 132 3145 52 23.9

medium 36 31.4 653 8108 135 12.4 31.3 653 11265 188 17.3

 Time for each polygon selection is more than the time for its bounding box .
 The speed is represented as “how many seconds needed for 1 million returned points”. 

The speed of bounding box selection is fast than polygon.



52

Scalability test results

data 
scale

query 
level relevant

bbx polygon
Area

(km2)
Count

(million)
Time

(s)
Time
(min)

Area
(km2)

Count
(million)

Time
(s)

Time
(min)

small
low 1 0.4 5 55 1 0.2 2 63 1

medium 4 3.8 76 952 16 2.0 42 1164 19
high 9 3.5 49 718 12 3.5 49 891 15

medium
low 4 1.2 30 383 6 0.6 17 458 8

medium 16 8.5 137 1832 31 7.6 122 2224 37
high 36 31.5 502 6399 107 31.4 501 8197 137

large
low 9 13.0 203 2490 42 8.3 132 3145 52

medium 36 31.4 653 8108 135 31.3 653 11265 188

 In the small scale data test, the high level query overlaps with more files 
than medium level query, but it costs less time, it is because its query region 
bounding box count is smaller, no relevance to the query level (number of 
overlapping files)



53

Scalability test results

data 
scale

query 
level relevant

bbx polygon
Area
/km2

Count
/million time/s Time

/min
Area
/km2

Count
/million time/s Time

/min

small
low 1 0.4 5 55 1 0.2 2 63 1

medium 4 3.8 76 952 16 2.0 42 1164 19
high 9 3.5 49 718 12 3.5 49 891 15

medium
low 4 1.2 30 383 6 0.6 17 458 8

medium 16 8.5 137 1832 31 7.6 122 2224 37
high 36 31.5 502 6399 107 31.4 501 8197 137

large
low 9 13.0 203 2490 42 8.3 132 3145 52

medium 36 31.4 653 8108 135 31.3 653 11265 188

 In the test of 4 relevant files, the query on the larger scale data costs 
less time than query on the small scale data, it is because the bound 
box count of query region is smaller, no relevance to the data scale



54

Scalability test results

data 
scale

query 
level relevant

bbx polygon

Area
(km2)

Count
(million)

Time
(s)

Time
(min)

Area
(km2)

Count
(million)

Time
(s)

Time
(min)

Time 
PostGIS

(s) 

small
low 1 0.4 5 55 1 0.2 2 63 1 8

medium 4 3.8 76 952 16 2.0 42 1164 19 212
high 9 3.5 49 718 12 3.5 49 891 15 173

medium
low 4 1.2 30 383 6 0.6 17 458 8 75

medium 16 8.5 137 1832 31 7.6 122 2224 37 392
high 36 31.5 502 6399 107 31.4 501 8197 137 1798

large
low 9 13.0 203 2490 42 8.3 132 3145 52 655

medium 36 31.4 653 8108 135 31.3 653 11265 188 3157

 Time difference between the polygon selection and bounding box 
selection(time polygon selection – time bbx selection) is the time cost 
by PostGIS to do the query on the PostgreSQL foreign table.

 This time is also relevant to returned points count.

(time polygon selection – time bbx selection)



55

Outline

• Introduction
• Related work
• Methodology & Implementation
• Results & Analysis
• Conclusions & Future work



56

Conclusions  
• Answer to the main research question

To what extent we can use LiDAR point clouds directly in the  
PostgreSQL by means of Foreign Data Wrapper?

 Multiple LiDAR point clouds are stored on file system, with a 
metadata file. 

 By means of foreign data wrapper, they can be exposed and 
queried on foreign table in the PostgreSQL / PostGIS. (foreign table 
can be queried same as local table and join with local table) 

 Spatial selection, attributes selection, data manipulation, aggregate 
functions are possible.



57

Conclusions  
• Answer to the sub research questions

 How does FDW build the connection between LiDAR file system and DBMS? 
 What kinds of queries and what levels of selection can be executed upon LiDAR data ?
 What sizes of AHN datasets can work well by FDW solution?
 What are the benefits and problems when using FDW method? 

The connection information is based on the file path of the LiDAR file 
system, besides the LiDAR files there is a metadata file storing 
header information including filename, spatial extent, file format, etc. 
Therefore, the data from the LiDAR files on this file system can be 
exposed on PostgreSQL.



58

Conclusions  
• Answer to the sub research questions

 How does FDW build the connection between LiDAR file system and DBMS? 
 What kinds of queries and what levels of selection can be executed upon LiDAR 

data?
 What sizes of AHN datasets can work well by FDW solution?
 What are the benefits and problems when using FDW method? 

The operations includes data manipulation; spatial selection of 
different query region like rectangle, irregular polygons and circle; 
attributes selection; aggregate function like maximal, minimal 
height can be executed.
In the scalability results, different sizes of tested regions can be 
queried on LiDAR data, time is relevant to the returned points.



59

Conclusions  
• Answer to the sub research questions

 How does FDW build the connection between LiDAR file system and DBMS? 
 What kinds of queries and what levels of selection can be executed upon LiDAR data?
 What sizes of AHN datasets can work well by FDW solution?
 What are the benefits and problems when using FDW method? 

Different scales of tested datasets can work well by FDW solution, if 
the storage space for the LiDAR file system is enough.



60

Conclusions  
• Answer to the sub research questions

 How does FDW build the connection between LiDAR file system and DBMS? 
 What kinds of queries and what levels of selection can be executed upon LiDAR data ?
 What sizes of AHN datasets can work well by FDW solution?
 What are the benefits and problems when using FDW method? 

• The benefit of this solution is there is no need to load LiDAR data from 
files into PostgreSQL and take local and storage, they can be used by 
DBMS features like query. Therefore, it is efficient to execute the query 
like selecting the points inside a building on the datasets of whole 
province.

• The problems can be it takes time to register header information into 
metadata file and retrieve the metadata file to search for relevant files.



61

Future work  
• Metadata management
• Data display
• Data organization
• Comparison

 Database management system can be a good alternative for 
header information, because one LiDAR file system can have a 
large number of different files, and the header information of all 
these files need to be retrieved during the process of FDW, while 
the index can be built on the file extent column of metadata table to 
save the retrieving time. 



62

Future work  

When fetching and representing the content (point records) on 
the PostgreSQL foreign tables, it can be a more efficient way to 
use the data type PcPatch of PgPointcloud to organize and 
display the content of LiDAR data. 

• Metadata management
• Data display
• Data organization
• Comparison



63

Future work  

 Data organization is proved to be useful, more spatial access 
methods and underlying parameters can be researched to 
improve the feature of the foreign data wrapper solution.

• Metadata management
• Data display
• Data organization
• Comparison



64

Future work  

 The hybrid solution of foreign data wrapper can be compared to 
the both solutions:

• File system solution: use las2las to filter and query the points 
inside an area of interest.

• DBMS solution: use PgPointcloud to store the LiDAR data in 
PostgreSQL

• Metadata management
• Data display
• Data organization
• Comparison



65

Thanks for attention!


	Using Foreign Data Wrapper in PostgreSQL to Expose Point Cloud on File System
	Outline
	Outline
	Point Cloud Data
	Point Cloud Data Features
	Problem statement
	Point clouds data management
	Point clouds data management
	Problem statement
	Problem statement
	Research question � -  Main research question and sub-questions�
	Outline
	File system solution
	Database Management System solution (DBMS)
	幻灯片编号 15
	Developed FDW for point cloud -  LI3DS FDW
	Outline
	Methodology & Implementation
	Foreign Data Wrapper
	Foreign Data Wrapper
	幻灯片编号 21
	Methodology & Implementation
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	Methodology & Implementation
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	Methodology & Implementation
	Benchmark
	Benchmark
	Benchmark
	Benchmark
	Benchmark
	Benchmark
	Benchmark
	Outline
	Efficient test results�                 data organization
	幻灯片编号 47
	Efficient test results�           Multicorn qualifiers 
	Feasibility test results
	Feasibility test results
	Scalability test results
	Scalability test results
	Scalability test results
	Scalability test results
	Outline
	Conclusions  
	Conclusions  
	Conclusions  
	Conclusions  
	Conclusions  
	Future work  
	Future work  
	Future work  
	Future work  
	幻灯片编号 65

