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Abstract—To ensure that future autonomous surface ships sail
in the most sustainable way, it is crucial to optimize the per-
formance of the Energy and Power Management (EPM) system.
However, marine EPM systems are complex and often coordinate
various distributed energy resources, energy storage systems,
and power grids to ensure reliable and safe power delivery.
Traditional control methods for marine EPM systems are limited
by evaluating processes using simplified component models over
a short time horizon, or relying on historical insights gained from
earlier journeys, and are not the optimal approach for complex
hybrid marine EPM systems. Advanced control strategies, such
as Model Predictive Control (MPC), offer a promising control
method that considers predicted future system responses over
an extended time horizon to determine the best control input,
making them an effective strategy for optimizing the performance
of hybrid marine EPM systems. However, to learn the onboard
energy profiles based on component behavior in a hybrid system
from past experiences is not a trivial task, and one of the primary
barriers to implementing MPC for marine EPM control. For
this reason, in this work, we address the challenge of learning
energy profiles for a marine EPM system by utilizing shallow and
deep machine learning for total power demand forecasting. The
forecast is an essential reference for an MPC-based controller
and will enable this control strategy to provide reliable and safe
power delivery for hybrid marine EPM systems. The proposed
approach compares state-of-the-art machine learning models to
identify the best-performing algorithm, considering accuracy and
computational requirements. We illustrate the potential of the
proposed approach by using real world operational data from a
vessel with a hybrid marine EPM system. Results indicate that
shallow models, trained on engineered features handcrafted with
classical signal processing techniques, allow forecasting the total
power demand up to a horizon of 5min with minimal loss in
accuracy and a negligible computational burden.

I. INTRODUCTION

The global push to reduce emissions [1], [2] has led to the
development of sophisticated marine energy systems. These
systems integrate various clean energy sources, including
liquefied natural gas [3], marine gas oil [4], low sulfur fuel
oil [5], and hydrogen [6]. Additionally, they incorporate energy

storage devices such as batteries and fuel cells [6], alongside
conventional internal combustion engines. Consequently, the
design, integration, and control of these hybrid energy sys-
tems have become increasingly complex [7]. This complexity
renders it impractical to construct and test these systems before
implementing necessary changes. Overcoming this challenge
is critical for the sustainable deployment of autonomous sur-
face ships [8], [9].

To enhance energy efficiency, component lifespan, and
safety, various strategies are utilized to regulate marine energy
systems [10]. However, implementing effective control strate-
gies for hybrid Energy and Power Management (EPM) systems
is not trivial [7]. These control strategies must include real-
time feedback, state predictions, and forecasts of the system’s
future behavior to optimize control inputs [7], [11]–[13].

In fact, relying on classical control methods such as rule-
based controllers [14], which rely on simplified component
models, to control hybrid EPM systems is not an effective
strategy given the complexity of the hybrid system. For this
reason, alternative control strategies must be explored that
are able to leverage highly accurate component models with
minimal computational burden.

One approach to optimizing the control of EPM systems is
to leverage advanced techniques like Model Predictive Control
(MPC), which can incorporate advanced component models to
accurately simulate the energy profile during EPM [15]. A key
advantage of MPC strategies is that it is possible to forecast the
system parameters over a set time horizon, which enhances the
EPM performance compared to classical controllers that lack
advanced knowledge of the energy profile [16].

However, to learn the onboard energy profiles based on
component behavior in a hybrid system from past experiences
is not a trivial task, and one of the primary barriers to
implementing MPC MPC for marine EPM control. In fact,
with an accurate model of the onboard energy profile it is
possible to accurately forecasting the future power demand of

O
CE

AN
S 

20
24

 - 
SI

N
GA

PO
RE

 |
 9

79
-8

-3
50

3-
62

07
-7

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

O
CE

AN
S5

15
37

.2
02

4.
10

68
22

63

Authorized licensed use limited to: TU Delft Library. Downloaded on October 24,2024 at 11:38:17 UTC from IEEE Xplore.  Restrictions apply. 



a hybrid marine energy system and ensure safe and reliable
power delivery. Currently, there are two main approaches when
it comes to learning the onboard energy profiles. First, the
conventional approach, is to model the vessel behavior using
an understanding of the underlying physics of the problem [17]
and optimize EPM systems based on these insights. However,
modeling the physics of multiple components in a hybrid sys-
tem, in real-time and forecasting the behavior, is challenging
without sacrificing model accuracy due to necessary simpli-
fications to reduce the computational demand. Alternatively,
Machine Learning (ML) models, based solely on historical
data, can learn the input-output behavior of a phenomenon
without needing to model the underlying physics [18]. The
advantage of ML models lies in their minimal computational
burden upon deployment. However, developing ML models
requires an extensive computational effort during the training
phase. In the context of implementing MPC for hybrid EPM
systems, ML models offer an effective solution for accurately
forecasting future power system loads with minimal compu-
tational burden during deployment, which makes them well
suited for real-time and forecasting applications. Nevertheless,
the development of ML models depends on the existence of an
automatic monitoring system and data storage onboard vessels.

According to Valchev et al. [19], new-built vessels are
equipped with automatic monitoring systems as a standard
feature, while older ships are increasingly being retrofitted
with these systems. As a result, high-quality, high-frequency
data is becoming more easily accessible [19]. The wide array
of onboard sensors on vessels has enabled researchers in the
maritime industry to employ various subsets of the available
data features to develop ML forecasting models [20]. In this
context, different shallow and deep ML techniques have been
investigated for various applications. For instance, Coraddu et
al. [13] used various regression models to predict vessel fuel
consumption and trim optimization, while Walker et al. [21]
and Valchev et al. [22] both employed Kernel Regularized
Least Squares for short-term forecasting of vessel motion and
performance, respectively. Walker et al. [23] compared differ-
ent shallow and deep models for vessel short-term motions
prediction under various loading conditions. Elatter et al. [24]
and Ghelardoni et al. [25] utilized support vector machines for
forecasting vessel load. Mehrzadi et al. [26] demonstrated the
efficiency of Recurrent Neural Network (RNN) in predicting
thruster power to counteract environmental disturbances for
dynamic positioning applications.

However, the use of shallow and deep learning models for
forecasting power demand for hybrid propulsion systems has
yet to be explored. Shallow models, which are the classical
family of ML models, typically rely on less data than deep
models and work on the basis of first extracting simple,
handcrafted features from the data and then applying tra-
ditional statistical techniques for prediction. Deep Learning
models typically rely on a significant amount of data to
build but can automatically learn complex features directly
from the raw data. Both shallow and deep learning models
have demonstrated strong performance in various time series

Fig. 1. The powertrain for the hybrid marine energy system under exam in
this work.

forecasting tasks [23], [27], [28]. However, for both model
types, it is important to ensure proper training, validation, and
testing of the model using relevant data and considerations
such as data quality, feature selection, model architecture, and
hyperparameter tuning. Therefore, this study aims to develop
an accurate power demand forecasting model for a vessel with
hybrid propulsion systems. The models are trained on real-
world operational data from a vessel and demonstrate that the
proposed models can forecast the total power demand without
requiring a priori knowledge of the system.

The rest of the paper is organized as follows: Section II
describes the powertrain and data leveraged in this work;
Section III describes the method to build shallow and deep
ML models for forecasting total power demand; Section IV
presented the results of the method described in Section III on
the data described in Section II; finally, Section V concludes
the work.

II. PROBLEM AND DATA DESCRIPTION

In this work we are concerned with forecasting the total
power demand of a hybrid marine energy system using shallow
and deep ML models. The powertrain for the hybrid marine
energy system under exam in this work is shown in Figure 1.

Real world operational data for the described vessel was
logged by the automatic monitoring system. The dataset fea-
tures, presented in Table I, can be considered in 3 categories
that represent the state of operation, the powertrain, and the
power demand. For the problem at hand, namely forecasting
the power demand, we consider the operational and powertrain
features as the input variables; whereas, the target is the power
features which is the power load demanded by the electric
motors, batteries, and diesel engine. Although, for the problem
at hand, we are actually interested in predicting the total
power (PT), i.e., the combined power demanded by the electric
motors, batteries, and diesel engines which is obtained by

PT = LDE,s+LDE,p+PEM,s+PEM,p+PBAT,s+PBAT,p (1)
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TABLE I
LIST OF FEATURES IN THE DATASET INCLUDING THE INPUTS AND

OUTPUTS OF THE SHALLOW AND DEEP TIME-SERIES FORECASTING
MODELS.

Variable Definition Unit

O
pe

ra
tio

na
l

t Datetime [−]

v Vessel Speed [knots]

ψ Heading Position [◦]

δp Steering angle - Port [◦]

δs Steering angle - Starboard [◦]

Po
w

er
tr

ai
n

NEM,s Electric Motor speed - Starboard [rpm]

NEM,p Electric Motor speed - Port [rpm]

SoCBAT,p Battery State of Charge - Port [%]

SoCBAT,s Battery State of Charge - Starboard [%]

NDE,p Diesel Engine speed - Port [rpm]

NDE,s Diesel Engine speed - Starboard [rpm]

FCDE,p Diesel Engine fuel consumption - Port [kg/min]

FCDE,s Diesel Engine fuel consumption - Starboard [kg/min]

FCAUX Auxiliary generator fuel consumption [kg/min]

NAUX Auxiliary generator engine speed [rpm]

LAUX Auxiliary generator engine load [kNm]

Po
w

er

PEM,p Electric Motor power - Port [kW]

PEM,s Electric Motor power - Starboard [kW]

PBAT,p Battery power - Port [kW]

PBAT,s Battery power - Starboard [kW]

LDE,s Diesel Engine load - Starboard [kW]

LDE,p Diesel Engine load - Port [kW]

Note that, for confidentiality reasons, we will express the
total power (PT) as a percentage of the total rated power, i.e.,
the sum of the rated power of the batteries, electric motors,
and diesel engines.

For what concerns forecasting the total power demand for
a hybrid EPM system, there are a couple of points worth
discussing before we progress. The first point is that we
do not consider forecasting times of extreme power use,
such as during firefighting or rescue operations, because the
control of the EPM system is not important compared to the
vessel’s primary function. The second point is that we do
not forecast the auxiliary power loads (i.e., power for the
lights, heating, towing equipment, or firefighting equipment)
due to the unpredictable nature of human influence over these
components. Considering these points, the available data was
comprised of approximately 5 × 106 samples, recorded at a
sampling rate of 5 seconds, over one year of operation.

III. METHOD

Forecasting the total power demand for a hybrid marine
EPM system from historical data containing the input-output
relationship is a supervised learning problem. We could con-
sider a classical regression problem characterized by an input
space X ⊆ Rm (i.e., the operational and powertrain features
of Table IV) and an output space Y ⊆ Rb (i.e., the power
features of Table IV). However, we are actually interested

in forecasting the total power demand based on past values,
which necessitates changing the classical framework in two
ways. First, the input space is now composed of all the
past information during the time frame [t − ∆−, t] (i.e.,
[X ,Y] ⊆ Rm+b), hereinafter X∆, where the hyperparame-
ter ∆− represents the duration of historical data we want
to include in the model. Second, the output space is now
defined as the original target features in Y just at the time
horizon t + ∆+, hereinafter Y∆, where the hyperparameter
∆+ represents the prediction horizon. It is worth mentioning
that balancing the effects of the temporal hyperparameters
(∆− and ∆+) must be considered carefully. Due to the curse
of dimensionality, increasing ∆− (which saturates the model
with past information) can be problematic, while reducing ∆−

(and failing to capture the dynamics of the problem) limits our
ability to make forecast accurately into the future [29]–[31].
The most suitable selection for ∆+ relies on the problem at
hand. While forecasting further ahead is typically the ideal
scenario, extending the time horizon tends to lead to a decrease
in prediction accuracy [29]–[31].

Using the proposed time-series forecasting regression
framework, the goal is to estimate the unknown rule µ which
maps X ∈ X∆ to Y ∈ Y∆ [29] by leveraging historical data
(i.e., a dataset Dn : {(X1, Y1) , · · · , (Xn, Yn)}.

In this work, we will approximate µ based on Dn using an
ML algorithm A . A particular algorithm AH, characterized
by its hyperparameters H, maps Dn into a model f inside
a space of possible ones F . For the reasons described in
Section I, we will consider both the shallow [29] and deep [32]
families of algorithms. The difference between these families
relies on how the input space X∆ is considered. For shallow
learning, we start by manually transforming the dataset X∆,
by implicit methods such as the kernel trick [33] or by manual
features engineering [34], to create a representation vector
ϕ(X) ∈ Rd. This representation captures essential information
while discarding irrelevant details [35], [36]. In contrast, deep
learning uses neural networks to automatically generate the
representation ϕ(X) ∈ Rd without explicitly defining it [32].

Regarding which machine learning algorithm to employ for
this application, we follow the principles of the no-free-lunch
theorem [37], which necessitates testing multiple algorithms
to find the best one for the task at hand. With this principle
in mind, we selected to test three state-of-the-art shallow
algorithms [33], [38], [39] and one deep one [32]. For the
shallow, we picked algorithms coming from two different
families. In the first family, Kernel Methods [33], we employed
a ridge regression model where the main idea is that the data is
first mapped into a representation space and a linear solution to
the problem is found. We considered KERNel ridge regression
(KERN) with a Gaussian kernel for the reasons described
in [40]. In the second family, Ensemble Methods [41]–[43],
we selected to test two algorithms based on fundamentally
different techniques to build the ensembles. First, we employed
the BAGging technique (BAG) [41], [42] which is concerned
with randomly sampling a subset of the training data to build
different trees and averaging the models’ outputs to reduce
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variance and improve performance. Subsequently, we opted
to try a BOOsting technique (BOO) [43] which, in contrast,
sequentially builds models, where each new tree attempts to
correct the errors made by the previous ones. This technique
gradually leads to improved model performance.

For the shallow algorithms, we considered the following
hyperparameters

• KERN required tuning both the regularization hyperpa-
rameter C and the kernel coefficient γ

• BAG requires tuning the number of features randomly
sampled from the entire set of features at each node nf
and the maximum number of elements in each leaf nl.
Since the performance of ensemble methods improves
with the number of trees nt, we capped nt at 1000 for
computational tractability;

• BOO required tuning the gradient learning rate lr, the
maximum depth of each tree nd, the minimum loss
reduction ml, the number of points to randomly sample
from the entire training set for each tree creation nb,
and the number of features to randomly sample from the
entire set of features at each node nf .

In addition to exploring shallow models, we have taken
inspiration from research demonstrating the superior per-
formance of deep learning models in various applications,
particularly for the problem under exam, namely, time-series
forecasting. Given the complexities and specific characteristics
of our forecasting problem, it is crucial to leverage recent
advancements in deep learning for this domain. While ar-
chitectures such as the Long-Short Term Memory (LSTM)
network and Bidirectional-LSTM network have performed
well on certain time-series forecasting problems, it has been
documented that these models suffer when dealing with prob-
lems with multiple temporal scales [44]. To overcome this
issues, the deep temporal convolutional network (TCN) [44]
is one of the most promising state-of-the-art deep learning
architectures currently demonstrated in the literature and is
proven to have performed well on other forecasting problems
in the maritime domain [23]. For the TCN, the following
hyperparameters need to be tuned: the learning rate lr, the
dropout rate dr,0 of each TCN layer and the last layer, the
regularization coefficient C, the number of TCN blocks hl,
the number of filters on each block ni, and the kernel size for
each series and block ks,i. The TCN was implemented with
custom software leveraging for the TensorFlow [45] Python
module.

A summary of the hyperparmeters and the associated search
space for each of the shallow and deep algorithms is reported
in Table II.

The problem we still have to address is how to select the
best hyperparameters for each of the algorithms and estimate
the performance of the final model. Model Selection (MS) and
Error Estimation (EE) deal exactly with these problems [30].
We will rely on a resampling method to split the original
dataset Dn many (nr) times into three independent datasets
called learning, validation and test sets, respectively Lrl , Vrv ,

TABLE II
MODEL HYPERPARAMETERS AND ASSOCIATED HYPERPARAMETER SPACE

FOR EACH ALGORITHM TESTED IN THIS WORK.

Algorithm Hyperparameters

Sh
al

lo
w

KERN
γ: {0.1, 0.01, 0.001, 0.0001}
C : {0.001, 0.01, 0.1, 1, 10, 100}

BAG

nf : {d1/3, d1/2, d3/4}
nl : {1, 3, 5, 10}
nt : {1000}

BOO

lr : {0.01, 0.02, 0.03, 0.04, 0.05}
nd : {3, 5, 10}
ml : {0, 0.1, 0.2}
nb : {0.6n, 0.8n, 1n}
nf : {0.5d, 0.8d, 1d}

D
ee

p

TCN

lr : {0.0001, 0.0005, 0.001, 0.005, 0.01}
dr,0 : {0.1, 0.15, . . . , 0.5}
C : {0.00001, 0.00005, 0.000001}
hl : {1, 2, 3, 4}
ni : {16, 32, 64, 128, 256}
ks,i : {3, 5, 7, 9, 11}

and T r
t , with r ∈ {1, · · · , nr} such that

Lrl ∩ Vrv = ⊘, Lrl ∩ T r
t = ⊘, Vrv ∩ T r

t = ⊘ (2)
Lrl ∪ Vrv ∪ T r

t = Dn (3)

During the MS, we want to find the best combination of
hyperparameters (in the set of possible ones: see Table II)
for a shallow and deep algorithm AH, which corresponds to

H∗ : arg min
H∈H

nr∑
r=1

M(AH(Lrl ),Vrv ), (4)

where a model f = AH(Lrl ) is developed with a shallow
or deep algorithm A , with the hyperparameters H, and
with the data Lrl , and where M(f,Vrv ) is an error metric
which represents how well the model approximates the real
phenomenon. The main idea behind resampling is that since
the data in Lrl are independent from the data in Vrv , H∗ should
is the combination of hyperparameters which results in the
smallest error on data independent from the training set. Then,
during the EE, we want to evaluate the performance of the final
model f∗

A = AH∗(Dn) by evaluating

M(f∗
A ) =

1

nr

nr∑
r=1

M(AH∗(Lrl ∪ Vrv ), T r
t ). (5)

Similarly to before, because the data in Lrl ∪ Vrv are inde-
pendent from T r

t , M(f∗
A ) is an unbiased estimator of the true

performance of the final model according to the metric M [30].
One important note is that, because of the dependence in time
between the samples, there is an additional constraint when
resampling Dn where we preserve the continuity in time for
Lrl , Vrv , and T r

t [46].
Finally, when it comes to the metric M that we will

use to represent how well the model approximates the real
phenomenon, we have selected to report the Relative Error
in Percentage (REP) which quantifies the average relative
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difference between the prediction (f(Xr
i )) and the actual value

(Y r
i ) as a percentage

REP(f) =
100

nr

nr∑
i=1

|f(Xr
i )− Y r

i |
Y r
i

(6)

For the particular problem at hand, it is not reasonable
to synthesize the quality of the predictors based on purely
numerical metrics, so we will also rely on a visualization of
the track in time between the real and predicted values.

IV. RESULTS

This section presents the results of the method described
in Section III using the data described in Section II on
the problem described in the very same section, namely,
forecasting the total power demand of a hybrid marine energy
system.

For all of the experiments in this work, we considered
temporal hyperparameters based on the problem at hand, i.e.,
a forecast horizon in the range of 1–5 minutes to prescribe
optimal control of a marine EPM system (see Section I).

∆+ ∈ {1min, 2min, 5min}
∆− ∈ {5s, 30s, 1min, 5min, 10min}

Additionally, we have performed the resampling (nr) 30 times
and reported the error metrics with the interval of confidence
evaluated using the t-student’s distribution (with nr−1 degrees
of freedom) at 95% confidence.

Regarding the computational hardware utilized in this
work, experiments with shallow models were conducted using
2×Intel XEON E5-6248R 24C 3.0GHz CPUs and 192GB of
memory; while experiments with deep models were supported
by 2×NVIDIA Tesla K80 GPUs with 24GB of memory.

To test the proposed method for forecasting the total power
of a hybrid marine powertrain, in the first instance, we used
the raw signal from the vessel automatic monitoring system
(without additional features engineering) as the input to the
four different shallow and deep ML algorithms. Table III
presents the Total Power (PT) REP [%] for different forecast
horizons (∆+) with the optimal model and temporal (∆−)
hyperparameters for each algorithm trained on the raw signal
from the vessel automatic monitoring system (without addi-
tional features engineering).

It is worth making a number of observations based on
Table III

• With the exception of the KERN algorithm at the 1min
horizon, all algorithms (shallow and deep), exhibit similar
performance across different time horizons;

• In terms of computational demands during the model
training phase, the deep model is more resource-intensive
compared to the shallow models;

• Both shallow and deep models have minimal computa-
tional requirements during the forward phase (Test) of
their operations;

• As the time horizon extends further into the future, there
is a noticeable increase in the value of the REP.

TABLE III
TOTAL POWER (PT) REP [%] FOR DIFFERENT FORECAST HORIZONS

(∆+) WITH THE OPTIMAL MODEL AND TEMPORAL (∆−)
HYPERPARAMETERS FOR EACH ALGORITHM TRAINED ON THE RAW

SIGNAL.

Algorithm
REP [%] for different ∆+ Time

1min 2min 5min Train [h] Test [µs]

Sh
al

lo
w KERN 7.5 ± 1.2 9.9 ± 1.6 19.9 ± 4.3 0.7 ± 0.2 10.5 ± 1.0

BAG 10.8 ± 0.6 11.1 ± 1.4 21.6 ± 3.5 3.2 ± 0.1 5.7 ± 1.2

BOO 10.3 ± 0.4 10.8 ± 1.2 22.3 ± 3.6 5.9 ± 0.4 8.4 ± 0.6

D
ee

p

TCN 10.2 ± 0.2 11.0 ± 0.4 12.4 ± 0.5 6.5 ± 0.6 17.0 ± 6.3

At first glance, the results of Table III appear to be in line
with the expectations laid out in Sections I–III. However, con-
trary to the literature on the topic, these results suggest that the
deep model did not automatically derive a representation from
the raw signal that could outperform a shallow model trained
on the raw signal directly. There are a couple of explanations
to why this was the case. First, there can be too few data for
the deep model to automatically learn a representation better
than the raw signal itself (which explains why the performance
of the shallow and deep models are similar). Next, it can be the
case that the selected hyperparameter ranges were not suitable
for the particular problem under consideration; however, the
total time allocated to running deep experiments was in excess
of 8 days (see Table III) so it is computationally prohibitive to
repeat the experiment using different hyperparameter ranges.

Due to the limitations of the first experiment, and to further
test the proposed method for forecasting the total power
of a hybrid marine powertrain, in the second instance, we
engineered a handcrafted set of features from the raw signal
based on classical signal processing techniques as the input
to the three different shallow ML algorithms. A description of
engineered features and their symbols is presented in Table IV.
Table V presents the Total Power (PT) REP [%] for different
forecast horizons (∆+) with the optimal model and temporal
(∆−) hyperparameters for each shallow algorithm trained on
the engineered features.

Now, there are a few important observations to make
• When trained on engineered features, all of the shallow

algorithms consistently yield better results compared to
their performance when trained directly on the raw signal
across various forecast horizons (see Figure 2);

• Shallow models, when trained on engineered features,
exhibit slightly higher computational requirements dur-
ing the forward phase (Test) compared to those trained
directly on the raw signal;

• Similarly to before, as the time horizon extends further
into the future, there is a noticeable increase in the value
of the REP.

The results of Table V indicate, that for this particular
problem and data, the shallow models trained on engineered
features are the best approach to forecast the total power of
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TABLE IV
DESCRIPTION OF ENGINEERED FEATURES AND THEIR SYMBOLS.

Function Description

mean Mean value
var Variance
mad Median absolute value
max Largest value in array
min Smallest value in array
sma Signal magnitude area
energy Average sum of squares
iqr Interquartile range
entropy Signal Entropy
correlation Correlation coefficient between series
kurtosis Signal Kurtosis
skewness Signal Skewness
maxFreqInd Largest frequency component
argMaxFreqInd Index largest frequency component
meanFreq Frequency signal weighted average
skewnessFreq Frequency signal Skewness
kurtosisFreq Frequency signal Kurtosis
ampSprec Amplitude Spectrum of the frequency signal
angle Phase angle of the frequency signal

TABLE V
TOTAL POWER (PT) REP [%] FOR DIFFERENT FORECAST HORIZONS

(∆+) WITH THE OPTIMAL MODEL AND TEMPORAL (∆−)
HYPERPARAMETERS FOR EACH SHALLOW ALGORITHM TRAINED ON THE

ENGINEERED FEATURES.

Algorithm
REP [%] for different ∆+ Time

1min 2min 5min Train [h] Test [ms]

Sh
al

lo
w KERN 3.7 ± 0.8 4.9 ± 0.5 9.2 ± 1.6 0.8 ± 0.2 14.7 ± 1.9

BAG 3.7 ± 0.6 4.3 ± 0.6 9.4 ± 1.4 3.2 ± 0.2 9.0 ± 0.6

BOO 3.5 ± 0.5 4.2 ± 0.5 9.3 ± 1.1 6.0 ± 0.3 10.2 ± 1.5

Fig. 2. Best shallow algorithm performance (REP[%]) when trained on the
raw data as input (Table III) and the engineered features as input (Table V)
across various forecast horizons.

a hybrid marine powertrain. However, because it is quite hard
to synthesize the results of regression problems from only
numerical quantifiers, we have decided to present a visual
metric alongside the previous results. Figure 3 presents a
portion of the track-in-time (500 samples) for the best shallow
algorithm for each of the different forecast horizons according
to Table V. The results of Table V are well reflected in
Figure 3a– 3c through the following observations

• In the first instance (∆+ = 1min), the model is able
to well represent the signal and the real peaks are well

(a) ∆+ = 1min - BOO

(b) ∆+ = 2min - BOO

(c) ∆+ = 5min - KERN

Fig. 3. A portion of the track-in-time for the best shallow algorithm for each
of the different forecast horizons according to Table V.

matched by the predictions (see Figure 3a);
• In the second instance (∆+ = 2min), the model is

slightly worse at matching the magnitude of the real peaks
with its predictions (see Figure 3b);

• In the final instance (∆+ = 5min), the model is not
able to predict as many of the peaks in the signal (see
Figure 3c);

It can be observed that . In the

V. CONCLUSION

Optimizing the Energy and Power Management (EPM)
systems is vital for the sustainable deployment of autonomous
surface ships. The complexity of marine EPM systems presents
significant challenges in design, simulation, and control. This
is particularly true when coordinating various distributed en-
ergy resources and power grids to ensure reliable power deliv-
ery. To tackle these challenges, one promising approach is the
integration of Model Predictive Control (MPC) with Machine
Learning (ML) models. MPC strategies, utilizing forecasts
of system parameters, can significantly improve performance
compared to traditional controllers.
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For this reason, this study introduces a framework to learn
the energy profile of a hybrid marine energy system. We show
that, by employing both shallow and deep ML models, we can
develop an accurate forecast of the total power demand over a
1–5min forecast horizon. Initially, using the raw data as input
to shallow and deep ML models yielded moderate accuracy
(10–20% REP over a 1–5min forecast horizon). However,
incorporating engineered features based on classical signal
processing significantly enhanced model performance (3–10%
REP over a the very same forecast horizons).

Our study focused on data from a single vessel over a
limited time frame and a necessity for wider validation still
exists. The performance of deep learning models, in particular,
may improve with more extensive data. A crucial next step
for this research is to integrate the forecasting model into
an MPC-based controller in a simulation environment. With
this in mind, we observed that the proposed ML models, both
shallow and deep, impose minimal computational burden (mil-
liseconds), making them suitable for real-time and forecasting
applications for hybrid marine energy systems control.
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T. Malkamäki, S. Nikolskiy, T. Hammarberg, H. Nuortie, M. Zahidul
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