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Summary

The European Union aims to achieve climate neutrality by 2050. Both increased electricity consumption and
dependence on renewable, climate-neutral energy systems have placed growing pressure on national power
grids, including those of the Netherlands. Moreover, because grid stress is concentrated in peak hours, much
of the available capacity remains unused during off-peak hours, which is inefficient. Although investing in
grid expansion appears to be the obvious solution, it is very costly and would not help balance the difference
between peak and off-peak loads. If, however, consumers shift electricity consumption away from these peak
hours, the grid would become more efficient and possibly lower the need for long-term grid infrastructure
investments. Dynamic electricity pricing is recognized as a promising tool to incentivize this demand flexi-
bility. By exposing households to dynamic intraday prices, they have a financial incentive to shift electricity
consumption away from expensive peak hours to save money.

This thesis studies the impact of dynamic electricity prices on household electricity consumption patterns.
We use high-frequency hourly consumption and price data from 813 Norwegian households. Norway, a
country further along the energy transition, offers a unique context for Dutch policymakers due to its high
adoption rate of dynamic electricity contracts (ca. 75%) and high degree of electrification (ca. 84%). The
question central to this thesis is:

How do dynamic electricity prices influence intra-day electricity consumption patterns among residential consumers?

We approach this question by investigating whether and to what extent households alter their electricity
consumption in response to price changes, the prevalence of load shifting behavior, and the role of specific
household characteristics and technology in price responsiveness. We take advantage of the 'natural experi-
ment’ that is present in our data. That is, we capitalize on the price shock that occurred during the winter
of 2021. By comparing household consumption in the price-shock winter to the preceding winter, we isolate
the effect of the price shock and, by extension, extract household responsiveness to changing electricity prices.

We use two related models to understand how households respond to changing intra-day electricity prices.
The first model looks at the impact of dynamic pricing during the price-shock winter of 2021. The second
model investigates how households respond to price fluctuations occurring at the same hour on different
days. Both models control for the daily habits of each household and events that could impact consumption
and affect all households, like the weather. Lastly, we explore how different household-specific characteristics
impact the responsiveness to price changes.

The results indicate that households with dynamic electricity contracts reduced overall electricity consump-
tion more than those with fixed contracts in response to the 2021 price shock. Sensitivity to a 1 NOK price
increase is also found to be higher during the price shock. Intraday price responsiveness was observed pri-
marily in peak price hours with an average hourly consumption reduction of 3.3%. The subgroup analysis
reveals that certain household subgroups exhibit larger effect sizes than the overall average, indicating het-
erogeneity in responsiveness. Households that own an Electric Vehicle (EV), especially those who charge
their EV using smart-charging systems, demonstrate larger absolute peak-hour consumption reductions, sug-
gesting that enabling technology plays a critical role in residential demand flexibility. Furthermore, these
two subgroups also exhibit strong evidence of load-shifting behavior, where households directly shift con-
sumption from expensive peak hours to cheaper off-peak hours. This suggests these households are well
positioned to contribute to demand-side flexibility.
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From a policy perspective, our findings suggests that dynamic electricity contracts incentivize households
to adjust consumption during peak price hours. Widening the gap between peak and off-peak prices could
amplify the financial incentive for households to shift consumption away from peak hours. Moreover, the ro-
bustness results indicate households might generally be better at responding to multi-day price trends rather
than monitoring and responding to intra-day price changes. For that reason, Time Of Use (TOU) contracts,
where peak price hours are more predictable, may already be a strong enough incentive to adjust consump-
tion for the average household without enabling (smart) technology. The simplicity and predictability of
these contracts contribute to this. Theoretically, real-time pricing (RTP) contracts remains the economically
superior design, by aligning electricity prices to real-time electricity supply and demand. With increasing
renewable energy generation like solar and wind, the need for RTP contracts becomes increasingly important.
The effectiveness of RTP contracts, however, partly depends on the adoption of (enabling) technologies that
help households to fully benefit from them.

Policymakers can remain focused on increasing adoption of dynamic electricity contracts. Moreover, policy
interventions to advance the adoption of such technologies could increase household price responsiveness
and flexibility, thereby improving the ability to optimally interact with RTP contracts. That said, while being
focused on very short-term responsiveness, our findings indicate it is unlikely for dynamic pricing alone to re-
solve overloaded power grids. However, encouraging the adoption of dynamic electricity contracts combined

with policy support could be a meaningful contribution to a long-term solution.
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1 INTRODUCTION

1 Introduction

1.1 Overloaded Power Grids: A Persistent Challenge to Dutch Climate Neutrality Goals

In 2020, the Member States of the European Union (EU) presented their plan to become climate neutral by
2050. To support this ambition, the EU plans to cut greenhouse emissions by at least 55% compared to 1990
levels at the end of this decade (Commission, 2020). Thereafter, the Dutch government shared plans to adhere
to this agreement in 2021. In the Netherlands, 70% of all electricity should be sustainable by the year 2030 (Ri-
jksoverheid, 2022). In other words, 70% of electricity should be originated from renewable sources. Progress
to achieve this ambition is, however, limited. In 2024 PBL Netherlands Environmental Assessment Agency
shared a report stating the improbability of the Netherlands matching this EU policy of 55% reduction by
2030 (Planbureau voor de Leefomgeving, 2024). Their independent calculations indicate a disappointing 44-

52 percent reduction in greenhouse emissions.

The overloaded power grid is presented as an important issue to resolve in order to advance the energy
transition (Rijksoverheid, 2024). Grid operator TenneT names both increased electricity usage and depen-
dence on intermittent meteorological-based renewable sources as potential drivers of the grid issues (NOS,
2023c). The increase in renewable electricity production from intermittent sources like wind turbines and
solar panels causes unstable electricity production and potential supply-demand mismatches (Ourahou et al.,
2020). In 2023, TenneT issued a warning that the Netherlands might face electricity shortages by 2030 (NOS,
2023c). The overloaded power grid in the Netherlands is already affecting some households. In the Dutch
city of Almere, the power grid issues have led to situations where houses could not be connected to the
grid (NOS, 2023a). Expanding the power grid seems to be a solution. However, as indicated by power grid
operators themselves, expanding the grid will need substantial investments, and is not likely to resolve the
issue, if at all, for at least another 10 to 15 years (Rabobank, 2024). The overloaded power grid thus repre-
sents a persistent barrier to achieving EU climate goals, while electricity consumers face nuisance from grid
congestion. This raises the question of how to resolve the issue of overloaded power grids.

1.2 Incentivizing Demand Flexibility Could Be A Solution

The power grid is not always overloaded. Daily peak demand is testing the limits of current power grid
capacity (Bosman, 2024). Consequently, reducing peak demand, meaning reducing peak grid loads, would
help relieve pressure on the power grid (Bosman, 2024; Rabobank, 2024; TenneT, 2024). Reducing peak elec-
tricity usage has also been suggested by the Dutch government and grid operators as a potential solution
(NOS, 2023b, 2023d). Assuming "planned" power outages are not an option for reducing peak demand, the
reduction must come from the consumer side. This means consumers need to adjust their consumption pat-
terns to lower peak electricity demand. In other words, achieving peak demand reduction requires greater
flexibility in electricity usage, commonly referred to as demand flexibility. Achieving demand flexibility has
thus become a key topic of interest in the energy transition, as it reduces the need for grid investments.

Electricity demand arises from multiple sectors of the economy (e.g., Industry, Transport, Residential). Each
sector is unique in its electricity consumption patterns, drivers, and characteristics. Demand flexibility is
therefore likely to be different across sectors. In the Netherlands, 12.3% of total electricity consumption was
attributed to households in 2023 (CBS, 2025). Although aggregate industrial consumption was considerably
higher, accounting for 54.4% (when combining the industry and the energy sector), it consists of numerous
smaller industrial subsectors, from which each is likely to exhibit a unique consumption pattern. This posi-
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1 INTRODUCTION

tions the residential sector as a major and intriguing focus for studying electricity consumption. This thesis
focuses on the residential sector, where individual households make electricity consumption decisions.

Household electricity consumption is highly dependent on daily routines and the ownership of appliances.
Weekday consumption patterns revolve around business hours, with peaks occurring just before people leave
for work and shortly after they return home. These peak consumption levels generally coincide with peak
pressure in power grids, posing a challenge, as household routines may limit the ability to refrain from elec-
tricity consumption during these typical hours. Typical drivers of household electricity consumption include,
but are not limited to, lighting, cooking, climate control, laundry, entertainment, and charging needs.

Smart technology systems have been suggested to contribute to relieving pressure on power grids. Smart-
controlled devices increase residential flexibility by allowing consumers to shift electricity consumption to
different times of the day without adding effort (e.g., automatically running the dishwasher at 3:00 AM in-
stead of immediately after dinner)!. Home battery systems could increase flexibility and help flatten the
grid demand curve for households by storing cheap energy during the night and using it to decrease peak
consumption during the day (Bosman, 2024). The promising Vehicle-to-Home (V2H) technology leverages
Electric Vehicle (EV) batteries to provide electricity to homes (Bosman, 2024; Hyundai Motors, 2022). During
the day, EV batteries can be charged with renewable electricity sources. Stored electricity can then be used
when demand exceeds (renewable) electricity supply or other peak moments. Using stored electricity instead
of electricity supplied by the power grid helps relief peak pressure on the grid. While these technological
solutions can contribute, some technologies are expensive and still need consumers to change their behavior.

This begs the question: why would consumers adopt them without clear incentives?

Dynamic electricity contracts have been recognized as a means to incentivize demand flexibility through
price-responsive behavior by consumers (Rabobank, 2024). Dynamic electricity price contracts are agree-
ments where electricity prices fluctuate in response to variations in the day-ahead spot markets. Energy
is traded on spot markets, where prices are set using a clearing principle (supply equals demand) (TenneT,
2025). Households can benefit from these contracts by allowing hourly electricity prices to influence their con-
sumption, enabling their electricity usage to adapt dynamically to price fluctuations. Furthermore, dynamic
electricity contracts increase the effectiveness of the aforementioned smart technology systems. For example,
when considering V2H, dynamic electricity contracts provide a financial incentive to charge batteries at lower
night-time rates and use stored electricity during the day, rather than relying on more expensive grid electric-
ity. The EU emphasized the relevance of these contracts by making dynamic electricity price contracts a right
for all customers of the electricity market (European Union, 2019).

Interestingly, Rabobank (2024) indicated that only 3% of Dutch households had such a contract by the end of
2023 (Rabobank, 2024). The same article suggested that the price-demand response in the Netherlands may
be limited during the coming years, due to low usage of smart (controlled) devices. The lack of technological
adoption of smart technologies suggests the Netherlands may not (yet) be equipped for dynamic electricity
contracts to serve as a solution for overloaded power grids.

Dutch policy-makers need more information to steer the country towards the right solution. While investing

1Although shifting electricity consumption can also be done manually, it is often more difficult to realize. In the case of the dishwasher
example, an individual would have to stay up late to turn on the dishwasher at 3:00 AM. Shifting potential is increased noticeably by
smart technology.
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1 INTRODUCTION

in grid expansion may seem straightforward, it is both costly and time-consuming. Incentivizing a price-
demand response through the adoption of dynamic electricity contracts might be the more efficient solution.
Although the Netherlands may not yet be fully equipped to maximize demand flexibility through dynamic
electricity contracts, it could be the best long-term solution. Therefore, studying how effective such a price-
demand response is in shifting electricity demand from peak hours to off-peak hours remains highly relevant.
The implications of such a study could answer the question of whether Dutch policy and legislation should

steer the country towards a system where this price-demand response is (more) prevalent.

1.3 Norwegian Demand Flexibility: A Benchmark for Future Energy Policy?

Whereas the Netherlands is actively involved in the energy transition, it ranks only eleventh in terms of the
Energy Transition Index (ETI) (World Economic Forum, 2021). Sweden, Norway, and Denmark rank as the
top three European countries based on their ETI scores. Interestingly, unlike Dutch households, ca. 75%
of Norwegian households have a dynamic electricity contract tied to hourly spot price (Statistics Norway,
2025a). Furthermore, a notable feature of Norways energy consumption is the high share of electricity in its
national energy mix. While only 19-25% in the Netherlands, electricity held a staggering share of almost 84%
in Norway in 2021 (Energie Nederland, 2021; Statistics Norway, 2025b). Although country demographics are
not fully comparable, this Norwegian situation provides an interesting opportunity to study the effect of a
price-demand response in shifting electricity demand from peak hours to off-peak hours. Studying a country
that is further along the energy transition could, in this context, yield ‘a look into the future’, and poten-
tially generate invaluable insight for Dutch policy-makers and managers. Norwegian demographics provide
insight into a scenario characterized by high smart meter adoption, widespread dynamic electricity contract
usage, high electricity dependence, and a more advanced stage in the energy transition. Analyzing whether
Norwegian consumers shift electricity demand, how they shift demand, and which types of consumers are
more likely to shift or not shift demand, all provide valuable insights for guiding Dutch policy.

1.4 Research Objective

This study aims to address knowledge gaps concerning incentivized demand flexibility. The specific knowl-
edge gaps and corresponding literature review are presented in Chapter 3. We explore and explain the price
responsiveness of residential consumers in electricity demand. We examine Norwegian households to gain
insight into the dynamics of demand responses in a leading energy transition country. Norwegian insights
could potentially guide Dutch policymakers in addressing key challenges related to overloaded power grids,
ultimately supporting the European ambition of climate neutrality. This thesis is guided by the following

main research question:

How do dynamic electricity prices influence intra-day electricity consumption patterns among residential consumers?
This study takes a quantitative approach to answer this question. Before discussing the methodology, Section
2 explores the theoretical foundations of energy demand, price responsiveness, and dynamic electricity con-

tracts. Next, it presents the reader with a review of empirical evidence in Chapter 3. The above-mentioned

main research question is introduced to contribute to the existing knowledge gaps in the literature.
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2 CONCEPTUALIZING RESIDENTIAL ELECTRICITY DEMAND

2 Conceptualizing Residential Electricity Demand

To understand household responsiveness to dynamic electricity prices and their potential to alleviate pres-
sure on power grids, we first examine the theoretical framework that explains why electricity prices matter,
how they are determined, and how they influence household behavior. This chapter, together with Chapter
3, is part of a broader review of the literature that examines theoretical foundations (2), methodological ap-
proaches (3.1), and empirical evidence (3.2, 3.3) related to the flexibility of household electricity demand.

First, a microeconomic theory on energy demand is introduced. Households are presented as utility-maximizing
agents whose demand for electricity is derived from the need for energy services. We then establish a basic
understanding of energy markets and the concept of economically efficient pricing. This leads to the intro-
duction of dynamic electricity contracts as a mechanism to expose the end-customer to variable electricity
prices. Dynamic electricity contracts are suggested to incentivize a demand response through these variable
electricity prices. We propose two key short-run mechanisms by which households can respond to price

changes.

2.1 Economics of Electricity Demand and Utility Theory

In their book "An Introduction to Energy Economics and Policy’, Filippini and Srinivansan (2024) introduce
a microeconomic theory on energy demand (Filippini & Srinivasan, 2024). Energy consumption and demand
is different compared to goods like bread or mobile phones. Energy demand is a derived demand, meaning
its demand is derived from demand for other products or services that use energy as input (Filippini & Srini-
vasan, 2024; Sorrell, 2015). For example, using a phone can be viewed as combining labor, capital, and energy.
The resulting demand for electricity comes from the demand for mobile phone usage. Another example is
the electricity demand resulting from the demand for food. To prepare and conserve food, consumers have a
stove and fridge. The energy demand that results from using this fridge is thus derived from the demand for

food (conservation).

In addition, energy demand can be strongly influenced by energy prices, and both the cost and energy
efficiency of the technology chosen by the consumer (Sorrell, 2015). We can use the example of the fridge
mentioned above to clarify this. Consumers could first of all choose to purchase the cheapest fridge on the
market. It can be reasonably assumed that this fridge is of lower quality and therefore consumes more elec-
tricity per hour compared to more energy-efficient, higher-end alternatives. The consumer who buys this
fridge, by assumption, chooses not to invest in technologically superior capital (i.e., economic capital), but
rather has higher electricity consumption. The consumer could have also chosen to invest in better capital,
which would lead to reduced electricity consumption. Standard microeconomic theory assumes consumers
optimize the costs of both options. Thus, the consumer choice is based on both their budget, capital costs,
and electricity costs. Figure 1a illustrates this behavior graphically. Consumers minimize costs by choosing
the combination of capital and energy that maximize output, while minimizing costs. The isoquant curve in
Figure 1a shows all combinations between capital and energy that yield the same output, whereas the isocost
line represents combinations with the same total cost, taking prices of both capital and energy into account.
To minimize costs, consumers choose the combination of capital and energy where the isocost and isoquant

lines are tangent (point A).
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The idealized neoclassical theory of consumer demand depicts consumers as utility-maximizing rational
decision-makers (Himmelweit et al., 2001; Sorrell, 2015). The concept of "utility” originates from ethical the-
ory, but has been further developed by economists in their aim to understand human behavior?. The utility
theory known in economics today is a theory of preference (Himmelweit et al., 2001). It assumes consumers
always have a preference for a specific act or product and can rank these preferences. These preferences are
thus of an ordinal nature. Moreover, these preferences are consistent and sovereign, meaning consumers are
consistent in their choice and not influenced in any way. As all preferences of acts are ordinal, a relation
exists between them. The mathematical representation of this relation is called the utility function, which
expresses the total utility (U) of the consumer as a function of consumed goods. The standard microeco-
nomic theory assumes consumers to have a preference between all acts or products, and are assumed to
be rational in choosing the act/product that gains them the highest utility (or satisfaction), consumers are
utility-maximizing (Himmelweit et al., 2001).

When applying the (neoclassical) utility theory to energy demand, households are believed to gain utility
from the consumption of goods that serve as input in the production of Energy Services (ES) and Other
Goods (OG). Energy Services, like the fridge from the aforementioned example, are created by combining
Capital Stock (CS) with Energy (E). This yields the following utility function:

U = u(ES(E,CS),0G) 1)

Under the constraint of their income, consumers optimize the consumption of both Energy Services and
Other Goods in a utility-maximizing manner. A graphical representation of this optimizing behavior is given
in Figure la (Filippini & Srinivasan, 2024, p. 52). The income constraint of consumers is represented by the
budget line in figure 1b. The budget line represents the linear relationship between the two points where the
entire budget is spent on one good (ES and OG). The budget line has the following formula:

Income = Pricegs X Qs + Pricepg X Qog ()

Qgs and Qo represent the consumed quantity of Energy Services and Other Goods.

ZUtility’ is a term that has known many definitions over the past two centuries. Daniel Bernoulli defines it as ‘benefit’ or ‘advantage’,
while Jeremy Bentham defined utility as ‘pleasure’ (Himmelweit et al., 2001)
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Isoquant

oG A Indifference
curve
Isocost line
Budget line
E E
ES’ ES

@ Consumers choose inputs to minimize production costs of Cap-
ital (C) and Energy (E), while maximizing output. Consumers ® Consumers choose the optimal combination (utility-
can invest in capital and consume less energy, or consume more maximizing) of goods where the budget line is tangent to the
energy while investing less in capital. indifference curve. Point A with consumption OG* and ES*.

Figure 1: Consumers optimize consumption of Energy Services (a) and minimize costs of production of Energy Services (b) (Filippini &
Srinivasan, 2024, p. 52).

2.2 Energy Markets and Pricing

In microeconomic theory, markets are assumed to work through price-clearing mechanisms that balance sup-
ply and demand. Both supply and demand are driven by the respective willingness to produce and consume
at a specific price level. When a price level exceeds the willingness to pay of consumers, demand (at price
P) will decrease. Suppliers, on the other hand, have a willingness to produce at price P. When suppliers are
not willing to produce at price P, supply will decrease. As a response to both behaviors, prices fluctuate.
Prices rise when demand exceeds supply, and fall when supply exceeds demand. Eventually, supply and
demand will reach an equilibrium state around the ‘equilibrium price” (Borenstein et al., 2002). A graphical
representation of such a market equilibrium is presented in figure 2. Supply and demand curves intersect at
price P and quantity Q.

Many consumers have electricity contracts where the price of electricity is fixed. Based on the market
equilibrium principle explained above, we know the market price is the result of the equilibrium between
supply and demand. Fixed prices must therefore either assume constant supply and demand over the con-
tract period, or represent the ‘expected’” average level of supply and demand from which the fixed price
is derived. This presents the electricity market with an efficiency problem. Supply and demand are not
constant. Electricity consumption fluctuates throughout the day, week, month, and year. Simultaneously,
especially with the arrival of renewable electricity sources, supply is also prone to fluctuations. Renewable
electricity sources, such as wind turbines and solar panels, are subject to intermittency, meaning their power
output is not constant but rather dependent on weather conditions. Wind turbines only generate power
when there is sufficient wind while solar panels need sunlight. Problems with intermittent power sources
arise whenever electricity production is not correlated with demand patterns (Ourahou et al., 2020). This
unstable supply-demand mismatch makes it inherently difficult to derive an accurate fixed price, resulting

1"‘U Delft Remco Y. Hoen Page 6



2 CONCEPTUALIZING RESIDENTIAL ELECTRICITY DEMAND
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Quantity (Q)

Figure 2: Market equilibrium at the intersection of supply and demand curves. At equilibrium, quantity Q is consumed at price level P.

in either the consumer or the power company generating a profit from the contract, which is inefficient. The
next section addresses the inherent inefficiency in fixed pricing that arises when faced with volatile electricity
supply and demand.

Microeconomic theory suggests that the pricing of goods and services can be optimized. Pricing at short-
run Social Marginal Cost (SMC) is considered to be economically efficient (Borenstein, 2016). To clarify, SMC
refers to the total social cost of producing another unit of, in this case, energy. Social cost includes both the
marginal cost of production and external factors (e.g., pollution). The closer the price of energy is to the SMC,
the greater the incentive for consumption. A difference between SMC and the price point is economically
inefficient, and a deadweight loss for society (Borenstein, 2016). Prices higher than SMC result in limited
consumption, whereas lower prices create inefficient consumption. Renewable electricity sources introduce
an additional layer to efficient pricing, as renewable sources operate at a near-zero marginal cost (Blazquez
et al., 2018). Consequently, SMC of renewable sources is much lower compared to fossil sources, indicating

that electricity prices should be lower when renewable sources supply power.

Economically efficient pricing means that prices should be equal to SMC at any time of day. Since sup-
ply and demand are not constant over time, prices must also fluctuate accordingly. Fixed electricity contracts,
where the consumer pays a fixed price per kWh, do not facilitate this pricing flexibility. Switching to dynamic
electricity contracts is therefore likely to result in gains in economic efficiency (Borenstein, 2005). Section 2.3

elaborates on these types of contracts.

Figure 3 illustrates a scenario where supply and demand are not constant during the day. For simplicity
reasons, we only differentiate between peak and off-peak household demand time intervals. We assume
household demand peaks just before and after business hours. Furthermore, on the supply side, we assume
solar panels generate considerable power around noon. This scenario can be represented by two demand
curves and two supply curves. The off-peak equilibrium price is lower compared to the peak price, as a

result of renewable power production and lower demand.
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Price (P)
/
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Figure 3: Market equilibrium in a system with two supply and demand curves. Peak periods are represented by the dashed lines. The
off-peak demand curve shifts to the left, as demand is lower in off-peak hours. Renewable power generation at near-zero SMC during
off-peak hours (noon) causes the supply curve to shift to the right. The renewable power generation shift is shown by the green arrow.
Both reduced demand and cheaper supply result in lower quantity consumed and lower off-peak electricity prices.

2.3 Dynamic Electricity Contracts

Section 2.2 introduced the reader to the economics of energy demand and neoclassical rational utility-
maximizing model. Section 2.2 provides the foundation for the idea that fluctuating electricity prices are
economically efficient. Dynamic electricity contracts are introduced as a mechanism to facilitate increased
efficiency by allowing prices to fluctuate based on supply and demand. This section elaborates on two promi-
nent types of dynamic contracts.

Dynamic energy contracts are contracts between electricity suppliers and end customers where the hourly
electricity price can vary based on the current (day-ahead) spot price of electricity (European Union, 2019).
Suppliers generally charge a small fee for providing the service. While this fee is added to the wholesale elec-
tricity price, price variation results from changes in wholesale spot prices. Whereas fixed electricity contracts
maintain a constant price per kWh throughout the contract’s duration, dynamic contracts directly charge their
customers electricity spot prices. We introduce two prominent types of dynamic electricity pricing contracts:
Real-Time Pricing (RTP) contracts and Time-Of-Use (TOU) contracts.

RTP contracts are contracts that charge consumers the hourly electricity spot prices (Dutta & Mitra, 2017).
These contracts are often based on the day-ahead market, meaning that hourly prices can change every day.
TOU contracts are similar, but instead of hourly price fluctuations, they feature peak and off-peak pricing
periods (Dutta & Mitra, 2017). In other words, instead of 24 price periods per day, TOU contracts only have
two price periods per day. Both types calculate prices based on supply and demand mechanisms. Prices are
higher when demand is peaking, and, in general, lower when renewable energy is produced. As a result, dy-
namic electricity contracts enable market efficiency to reach households. Moreover, dynamic contracts create
a financial incentive for utility-maximizing consumers to potentially profit from price changes. By shifting
consumption from expensive to cheaper hours, consumers can reduce their electricity bills.
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This study predominantly focuses on hourly electricity consumption and prices. RTP contracts are therefore
most relevant to this research. More information on the type of electricity contracts and pricing dynamics

relevant to the data used in this study can be found in section 4.2.4.

2.4 Consumers Respond to Price Signals

The previous section indicates that dynamic electricity contracts create a financial incentive to change con-
sumption behavior. From a neoclassical microeconomic point of view, it is rational for consumers to respond
to this financial incentive (Naastepad & Storm, 2024). A decrease in electricity prices would make consuming
Energy Services cheaper than Other Goods. This would lead to a reduction in the slope of the budget line
in Figure 1b (eq. 2), allowing consumers the opportunity to rebalance their consumption. Rebalancing con-
sumption in response to a price decrease benefits consumers by increasing total utility without affecting their
budget. Figure 4 gives a graphical representation of this scenario. Please note that the consumer is now able

to consume more Other Goods and more Energy Services simultaneously.

Other Goods

£

Q1

Energy
0 Services
2

Figure 4: Graphical representation of rational, utility-maximizing consumer. When the price of Energy Services decreases, the substitution
effect optimizes consumption distribution: the consumer will buy more ES and less OG. The consumer, however, now also has a higher
purchasing power. The income effect carries the consumer to the new highest possible indifference curve, resulting in more consumption
for both OG as ES.

It is important to distinguish between the short-term and long-run utility-maximizing behavior of consumers
in the context of energy demand. Namely, in the short run, capital (Figure 1a) is thought to be fixed or
constant (Filippini & Srinivasan, 2024). This suggests that, in the short run, consumers are unable to replace
energy-inefficient capital with energy-efficient alternatives. Returning to the previous example, consumers
are not able to purchase a more energy-efficient fridge in response to an increase in electricity prices. It is
therefore assumed that, in the short-run, variation of energy demand only depends on variation of demand
for Energy Services. In other words, as investing in more energy-efficient capital is not possible, in the short-
run, consumers can only engage in behavioral changes in energy consumption to maximize utility. This
leads to the idea that a long-term response is likely to be higher compared to a short-term one. But how do

households respond to these signals in the short run?
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Consumers can generally respond by two key mechanisms: load-shedding and load-shifting behavior. These
terms refer to the demand that can be eliminated by the consumer and the demand that can be shifted to
different times of the day, respectively. A graphical representation of both behaviors is presented in Figure
5. Shiftable load is reported to have the largest potential for demand response, as it may be easier to shift
consumption compared to eliminating it altogether. Furthermore, cost savings are also predominantly linked

to load-shifting behavior. Load shedding, however, contributes the most to energy savings (Wang et al., 2018).

Load Shedding Load Shifting

Demand (Q)
Demand (Q)

Time (T) Time (T)

@ Electricity profile of load shedding behavior. The load from the o Electricity profile of load shifting behavior. The load from the
initial electricity consumption pattern (black) is shed, resulting initial electricity consumption pattern (black) is shifted to other
in the load-shedded electricity profile (red). Consumers reduce times, resulting in the load-shifted electricity profile (red). Con-
overall electricity consumption by eliminating specific electricity sumers reduce peak electricity consumption by shifting specific
demand. The consumption pattern is lowered. electricity demand. The consumption pattern is flattened.

Figure 5: Graphical representation of load shedding (5a) and load shifting (5b) consumer behavior. Images are inspired by Wang et al.,
2018.

It is important to note that households are likely to have different responses to price changes. Households
have different preferences, causing them to behave differently. Load-shifting behavior, for example, has the
added risk of backfiring, where the reduction in peak-hour consumption is smaller than the subsequent
increase in off-peak consumption, resulting in a net rise in overall demand. Furthermore, as not all electricity
consumption has the same shifting or shedding potential, household-specific characteristics may influence the
price response sensitivity. To illustrate, it will be difficult for households to eliminate or shift the electricity
consumption related to cooking. It is, however, possible to eliminate some consumption linked to heating by
wearing warmer clothing. At the same time, charging mobile devices or running laundry appliances has the
potential to be moved to other times of day.
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3 Literature Review

Chapter 2 introduced the theoretical framework that is used in this study to explain why and how house-
holds respond to electricity prices. Chapter 3 builds on this by reviewing empirical evidence that tests these
theoretical ideas. This chapter investigates how researchers have studied price responsiveness in practice, the
methods and data sources they have used (3.1), and what empirical evidence reveals about the magnitude
(3.2) and heterogeneity (3.3) of household responses to electricity price fluctuations. Evidence on the role of
enabling technologies in household responsiveness is also reviewed in Section 3.3. This chapter concludes by

summarizing existing knowledge gaps and formulating the research questions that guide this study.

The literature was obtained through a Scopus search engine and Google search. A first set of articles was
acquired by formulating a Scopus search string that aims to define the scope and boundaries of this review of
the literature. This literature search was then supplemented by articles on more specific topics found through
both Google search and Scopus.

3.1 Methods used in Literature

To understand the empirical evidence on household price responsiveness, it is important to examine the
methodology used in previous research. This section provides an overview of common study designs, data
types, analytical methods, and the metrics studied to evaluate electricity demand response. Highlighting
these methods helps identify both common practices and sets the stage for the empirical approach adopted

in this thesis.

Studies on price responsiveness of household electricity demand are often performed using observational
data (Fabra et al., 2021; Hirth et al., 2024; Hofmann & Lindberg, 2019, 2023; Meller Andersen et al., 2024; Zhu
et al., 2018), or data from experimental setups (Allcott, 2011a; Buckley, 2020; Hofmann & Lindberg, 2024).
Observational data is generally recognized for its generalizable value. In contrast, experimental setups can
provide a stronger basis for causal inference studies, as treatment effects can be more effectively isolated. Ex-
perimental setups allow researchers to control the setting from which data is gathered. Experimental setups
are widely used in medical studies, as they allow researchers to isolate test subjects and ensure consistent ex-
posure to treatments, such as administering a medication under controlled conditions. While causal evidence
is strong in these settings, one could question whether the same effect would have been observed outside
laboratories. Observational studies obtain data from real-life situations, often featuring a sample that is a

more representative measure of the broader population, making a stronger case for generalizable results.

Temporal resolutions for estimating price elasticity range from common intervals such as annual, quarterly,
and monthly data (Auray et al., 2019; Krishnamurthy & Kristrom, 2015; Schulte & Heindl, 2017; Zhu et al.,
2018) to more granular hourly price and consumption data (Allcott, 2011a; Fabra et al., 2021; Hirth et al., 2024;
Hofmann & Lindberg, 2019, 2023, 2024; Moller Andersen et al., 2024). The latter often focus on alternative
metrics, such as evidence of load shifting, (peak) demand reduction, and consumption profiles.
Cross-sectional, time-series, and panel data are all common dataset types in this field of research. Though,
time-series and panel data is used more frequently when analyzing a demand response over time. Meta-
analysis showed cross-sectional data to produce less elastic estimates compared to time-series and panel
datasets (Zhu et al., 2018).
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Data analysis methods generally include an Ordinary Least Squares (OLS) regression (Allcott, 2011a; Zhu
et al., 2018). Several studies also use a Two-Stage Least Squares (25LS) model, arguing electricity price is not
exogenous (Fabra et al., 2021; Hirth et al., 2024). When price is assumed to be endogenous, OLS is not fit
to handle the simultaneity of both the price and demand equation (Hirth et al., 2024)3. In this context, 25LS
models often utilize an Instrumental Variable (IV) for price to prevent the error term of price from being
correlated with the error term of demand. Weighted Least Squares (WLS) is also mentioned as analytical
method in the literature (Zhu et al., 2018). WLS can be used when data is heteroskedastic, meaning the vari-
ance of the error term is not constant across observations. Log-log models are occasionally used to interpret
regression results in percentages directly. Nonetheless, Hirth et al. (2024) noted that this becomes difficult
when electricity prices reach zero or fall below zero (Hirth et al., 2024).

Difference-in-Difference (DID) models are also used in prior literature (Hofmann & Lindberg, 2023). DID
models can be used to, for example, evaluate the effect of a policy intervention by comparing two otherwise
similar groups, only one of which is exposed to a new policy (Wooldridge, 2020). These types of models gen-
erally compare outcomes across two periods: before and after the policy intervention. By ensuring the two
groups are similar before policy implementation, the model assumes that any change in outcome can be at-

tributed to the policy. In statistical terms, this is often referred to as the average treatment effect of such a policy.

Several studies use Fixed Effects in their modeling approach (Allcott, 2011a; Azarova et al., 2020; Hofmann
& Lindberg, 2024). Fixed Effects control for (heterogeneous) omitted variable bias. These models control
for unobserved heterogeneity in observations by assuming heterogeneity is constant over time (Wooldridge,
2020). In the context of household electricity consumption, for example, including household-level Fixed
Effects controls for differences in baseline consumption across households. Additionally, hourly variation
in electricity use could also be the result of household-specific routines rather than baseline consumption
or price variation. Assuming these routines are constant over time, fixed-effects models can control for this
variation by demeaning household-specific hourly consumption data. This isolates consumption variation
that is ‘abnormal” for a given household and hour. This household-hour combination of Fixed Effects has
previously been implemented by Hofmann and Lindberg, 2024. In contrast, time-fixed effects controls for
unobserved shocks that occur at a specific point in time, but affect all households uniformly (Wooldridge,
2020). For example, if all households increase electricity consumption in response to abnormally low outdoor
temperatures on a given day, this common shock will be accounted for through time fixed effects.

These methodological choices found in the literature shape the types of insights studies can provide. The
following section reviews what the empirical evidence has found using these different approaches.

3.2 Price-Demand Response: Empirical Evidence

The topic of demand response to variable electricity prices is a topic that has often risen and vanished from
the (academic) stage. Analysis by Faruqui et a. (2017) discussed that the topic first came into the interest of
researchers in the 1970’s and 1980’s (Faruqui et al., 2017). Technological barriers, specifically the lack of smart
meters, led to a weakened interest in the subject. During the California energy crisis of 2000, researchers
theorized about incentivizing consumers to reduce electricity usage at peak hours. Later, with the support of

enabling technologies, pilots testing this effect became more frequent.

3Price endogeneity assumes price affects demand and demand affects price. This feedback loop would work through the market
mechanism where price is set through the equilibrium between supply and demand.
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This section provides a review of empirical evidence on consumer responsiveness to fluctuating electricity
prices. The review progresses from long-term demand response to a narrow focus on short-term intra-day

responses observed through hourly consumption data.

Many studies on the long-term price elasticity of electricity leverage annual or semi-annual consumption
data and average electricity prices. A cross-country analysis of residential electricity demand in eleven OECD
countries found strong price responsiveness in the long run (Krishnamurthy & Kristrom, 2015). The study
reported a long-term weighted price elasticity of -0.62 for the full sample. Sweden, a neighboring country to
Norway, had a price elasticity of -0.71. Germany was found to have a price elasticity of electricity of -0.431
(Schulte & Heindl, 2017). Based on semi-annual data, a French study on the price elasticity of electricity
demand estimated a long-term elasticity of -0.8 (Auray et al., 2019). These results indicate the existence of

large differences in long-term responsiveness between countries and households.

As discussed in Section 2.4, short- and long-term price responses differ in the tools households have available
to respond to price changes. Households are assumed to rely on behavioral change in the short run, whereas
the long run allows for technology changes as well. The meta-analysis by Zhu et al., 2018 on the price
elasticity of residential electricity demand highlights the clear difference in the magnitude of responsiveness
between the short and long term. Based on 175 and 196 studies, respectively, the mean short-term price elas-
ticity was found to be -0.228, while it was -0.577 in the long term. Although both elasticities were negative,
residential responsiveness is higher in the long term. This aligns with the theory introduced in Section 2.4.
The meta-analysis covered the period from 1950 to 2014 and was based on (among others) annual, quarterly,
and monthly consumption data. Interestingly, monthly data were found to be a better measure for short-term
price responses by households compared to their annual counterparts. This finding suggests that a shorter
time interval in consumption data is capable of detecting price responsiveness in higher detail.

Increased smart meter adoption enables researchers to study the price-demand response at shorter time
intervals, including hourly intervals. Surprisingly, however, relatively few studies have taken advantage of
this opportunity to gain a deeper understanding of hourly or even daily household responsiveness to fluctu-
ating prices. Among the studies that do leverage hourly data, consumer responses are often reported using
alternative indicators rather than (short-term) price elasticity estimates. Common metrics include peak-hour
consumption reductions, changes in total electricity use (load shedding), shifts in hourly consumption pat-
terns, and evidence of load-shifting behavior.

In Germany aggregate electricity demand response to fluctuating wholesale prices was studied (Hirth et
al., 2024). A short-term price elasticity of -0.05 was reported based on hourly consumption data. This study
did, however, only look at aggregate electricity consumption, and did not exclude industrial consumers. Al-
though the study provides evidence of demand flexibility, our focus concentrates specifically on residential
consumers. Another study reported the short-term price elasticity of electricity demand in Oslo. Based on
aggregate hourly consumption data, the found elasticity ranged between -0.011 and -0.075 (Hofmann & Lind-
berg, 2019). This study also failed to separate households from office buildings in its analysis.
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A recent Norwegian study shared evidence of demand flexibility in response to hourly price signals (Hof-
mann & Lindberg, 2024). The researchers conducted a large-scale experiment involving 3,746 Norwegian
households. Households were found to reduce electricity consumption by an average of 2.92% in peak hours.
Households were also revealed to be sensitive to the type of price signal (i.e., duration and frequency), and
the magnitude of price increase. (Hofmann & Lindberg, 2024). This aligns with both economic theory in-
troduced in Section 2.4, and a United States (US) based RTP experiment (Allcott, 2011a). Higher electricity
price differences increase the financial incentive (for rational consumers) to be more price responsive. This
finding is also consistent with a Danish study that found the short-term price elasticity for total electricity
consumption to increase when prices were high and unstable in 2022. Furthermore, electricity consump-
tion profiles in 2021 and 2022 were showing more consumption during the night compared to 2019. This
"flattening’ of the consumption profile is evidence of load shifting behavior (Meller Andersen et al., 2024)*.
In contrast, based on observational data, Spanish households did not show differences in behavior between
households with dynamic (RTP) contracts compared to non-RTP contracted households (Fabra et al., 2021).
These counterintuitive findings are attributed to the absence of enabling technologies, low awareness, and
low price variation. The latter corresponds to the findings of the two above-mentioned studies (Allcott, 2011a;
Hofmann & Lindberg, 2024).

Another Norwegian study, conducted during the 2021/2022 energy crisis, found demand flexibility among
households during periods of extreme electricity prices (Hofmann & Lindberg, 2023). Immediately after
prices increase, consumers reduced their energy consumption, achieving total savings of 11.4% during winter.
Interestingly, this study did not find the existence of hourly intra-day price responsiveness for the average
household. The study suggests that consumers primarily react to awareness of high electricity prices rather
than daily price variations, which corresponds with other studies (Fabra et al., 2021; Moller Andersen et al.,
2024). The average household may have limited capacity to shift demand away from peak hours. However,
some household subgroups did demonstrate reduced consumption during peak hours as a result of higher
electricity prices. This indicates household specific characteristics could be of interest in understanding de-
mand flexibility. Section 3.3 reviews empirical evidence on the importance of household characteristics, and

the heterogeneity of residential price responsiveness.

A meta-analysis conducted in 2020 showed that incentivizing consumers to reduce electricity demand will
result in a demand reduction of 3.91% (Buckley, 2020). The authors also named a more conservative estimate
of 1.87%. Interestingly, while the article confirms that dynamic pricing strategies are effective during peri-
ods of high demand, the authors also suggest dynamic pricing is less effective in reducing overall demand
(Allcott, 2011b). This, potentially counterintuitive, result is theorized to be the consequence of a so-called
rebound effect, introduced in Section 2.4. Households may reduce peak hour consumption, but elevate off-
peak consumption by a greater factor (Buckley, 2020; Torriti, 2012). While the recent Norwegian experiment
mentioned earlier did not observe a rebound effect in their results (Hofmann & Lindberg, 2024), other studies
have reported the effect (Azarova et al., 2020; Schofield et al., 2015).

In conclusion, this section presents various studies that investigate the price elasticity of electricity demand,
short-term demand flexibility, and the type of consumption responses. Households are generally seen to re-
duce electricity consumption in response to increasing electricity prices (Buckley, 2020; Hirth et al., 2024; Hof-
mann & Lindberg, 2019). Hofmann and Lindberg, 2024 reported an average 2.92% peak hour consumption
reduction in their Norwegian field experiment. Literature suggests households are sensitive to the magnitude

*Households represented 25% of this sample
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of price increase (Allcott, 2011a; Hofmann & Lindberg, 2024), and can exhibit signs of load-shifting (Meller
Andersen et al., 2024). Load-shifting is sometimes linked to a rebound effect in the literature (Azarova et al.,
2020; Buckley, 2020; Schofield et al., 2015; Torriti, 2012). Hofmann and Lindberg, 2023 reported an 11.4%
decrease in electricity consumption during winter in response to a price shock. However, literature is not con-
clusive about the effect as Fabra et al., 2021 did not find a behavioral difference between RTP and non-RTP

contracted households.

3.3 Residential Characteristics Moderating the Demand Response

The theoretical framework presented in Chapter 2 provides an economic theory on energy demand (2.1), and
introduces theory on price responsiveness (2.4). These sections state that demand is the result of consumer
preferences (2.1). Consumer preferences are specific to every household. Therefore, households might re-
spond differently to price signals (2.4). This section expands on these insights by exploring determinants that
have been empirically identified in literature to explain variations in residential energy consumption, and
factors that moderate the relationship between price and demand.

Numerous researchers have emphasized appliance-related factors® as a key driver of electricity demand. In
general, appliance factors are positively correlated with price responsiveness (Faruqui & George, 2005). This
observation can be logically explained by differences in household motivation and the availability of tools
or technologies that enable price-responsive behavior. Since higher appliance ownership is associated with
higher electricity consumption (Chen et al., 2022; Wiesmann et al., 2011), it could also increase the financial
incentive for households to respond to price changes, which would explain the aforementioned correlation.
Additionally, EVs in particular have been identified as a technology that can potentially moderate the price-
demand response of residential consumers (Hofmann & Lindberg, 2023; Moller Andersen et al., 2024; Wang
et al., 2018). Subsequently, EVs are identified to have a major influence on load shifting potential by house-
holds, as they belong to the major electricity-consuming devices, and charging is not bound by time (Wang
et al., 2018). Meanwhile, demand related to electric cooking harms price responsiveness (Faruqui & George,
2005). This suggests appliance-specific demand flexibility, as consumers respond to price changes with spe-

cific appliances, as theorized in Section 2.4.

Related to household appliances and electricity consumption by consumers are technologies that allow
consumers to be more price-responsive. These smart technologies facilitate greater control over appliances.
Greater control, automation, and reduced cognitive costs suggest smart technology could moderate the rela-
tion between electricity price and consumption (Allcott, 2011a; Bedir et al., 2013; Bobbio, 2021; Fabra et al.,
2021; Faruqui & Sergici, 2013; Ozkan, 2016; Parrish et al., 2019). Parrish et al. (2019) reported a 15% higher
demand response in trials where participants have access to automation technology (Parrish et al., 2019). Fur-
thermore, the lack of enabling technologies was also suggested as a cause of the non-response found in the
Spanish study mention in Section 3.2 (Fabra et al., 2021)

Socio-structural factors also influence the price responsiveness of residential consumers. High-income house-
hold are reported to be more price responsive compared to low-income households (Frondel et al., 2019). Pref-
erence for and accessibility to energy-efficient appliances could be a contributing factor in this relationship
(Alberini et al., 2011). Households with high electricity consumption, homeowners (as opposed to tenants),

and individuals with higher levels of education have also been found to demonstrate greater response (Fron-

5Appliance-related factors refer to the presence, efficiency, and usage of electrical devices
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del et al,, 2019). On the other hand, people per household is discovered to reduce price sensitivity (Faruqui
& George, 2005). These variables are assumed to be correlated to some extent. Income and education level
are likely to be positively correlated. The link between socioeconomic status and appliance ownership also
deserves attention. Socio-economic factors, such as income and education, influence both the size of the
dwelling and the number of appliances owned, which in turn contribute to higher electricity consumption,
and more potential for a demand response (Karatasou & Santamouris, 2019).

3.4 Knowledge Gaps & Research Questions

After reviewing the methods, empirical findings, and moderating factors explored in the literature, this sec-
tion identifies the key gaps that motivate this thesis.

The literature on the price elasticity of household electricity (3.2) reveals several important gaps. The first ma-
jor limitation is the minimal usage of high-frequency data. Although hourly electricity consumption data is
increasingly available through increased smart meter adoption, many studies on price elasticity and demand
responsiveness continue to rely on monthly or annual datasets. While these studies are valuable, they risk
overlooking the dynamic nature of household behavior. Moreover, while existing research often investigates
whether electricity consumption changes as a result of price, it often disregards the mechanism through which
these changes occur. Hourly consumption data allows for a deeper understanding of behavioral dynamics by
capturing very short-term responsiveness. Hourly data enables us to distinguish between peak and off-peak

hours, helping to identify when and where consumption changes occur.

Another area where further investigation is needed concerns the moderating role of household character-
istics. As discussed in Section 3.3, some factors (e.g., income, household size) have been studied, but often at
a broad level. The availability of hourly data offers new opportunities to examine how these characteristics
influence short-term or even intra-day responsiveness to price signals.

Finally, existing studies mainly focus on countries with low adoption rates of dynamic electricity contracts
and limited electrification of energy end-uses. This contextual focus brings external validity into question,
specifically whether the findings would be representative in the context of higher adoption in that country.
For example, households that live in carbon-intensive countries and choose to purchase an EV could be more
conscious about the climate, and, therefore, be more inclined to be flexible in electricity consumption. The ob-
served price responsiveness of such studies may not reflect the behavior of the average household. Studying
these knowledge gaps in a highly electrified country with widespread adoption of dynamic electricity con-
tracts would offer more representative insights into household demand flexibility in response to price signals.

This study aims to shed light on knowledge gaps surrounding the heterogeneity of responses to electricity
price fluctuations. Specifically, we investigate whether and to what extent households alter their electricity
consumption in response to price changes, the prevalence of load shifting behavior, and the role of household
characteristics and technology in moderating price responsiveness. This research is guided by the following
main research question:

How do dynamic electricity prices influence intra-day electricity consumption patterns among residential
consumers?
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Three sub-questions are defined in support of answering the main question.
1. What is the effect of intra-day electricity price fluctuations on hourly household electricity consumption?
2. To what degree do higher intra-day electricity prices lead to a shift in consumption from peak to off-peak hours?

3. To what extent do household characteristics moderate the effect of price changes on electricity consumption and
load shifting?

The 2021-2022 electricity price crisis presents a unique opportunity to study these questions. This period saw
a sharp rise in the overall electricity price level and price volatility. Although households with fixed-price
contracts are generally not exposed to these short-term changes, households with dynamic contracts were
directly exposed. This setting allows us to observe the effects of more pronounced real-time price signals on
households’ electricity consumption. Through this ‘natural experiment’, we can investigate how exposure to
this price shock affects household consumption and the extent to which dynamic contract households change
their consumption behavior. This scenario presents an ideal opportunity to address all three sub-questions.
Further details and characteristics of this price shock are shown in section 4.2.4.

The first sub-question aims to establish the baseline effect for understanding the responsiveness of house-
holds to price changes. The aim is to identify the pure treatment effect of price fluctuations on consumption.
Next we investigate by what mechanism consumers respond. Do consumers engage in load-shifting, load-
shedding, or another type of behavior? The third question aims to dismantle consumer responsiveness, and
uncover the heterogeneity of consumer demand flexibility. We aspire to generate a more nuanced under-
standing of residential electricity consumption responsiveness to prices. Together, these sub-questions build
the answer to the main research question, and could provide valuable insights with meaningful implications
for policymakers and technology managers.
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4 Data

This chapter explores the dataset that was obtained for this study. After some general remarks, we first
explore all available data in Section 4.2. We then explain a sampling strategy based on our research questions.

Finally, Section 4.2.3 gives a detailed description of the sample and subgroups of interest.

4.1 Data Collection & General Remarks

Data is collected from already available online sources. We have found a recent dataset that fits our objective®.
The dataset was collected by the Department of Electric Power Engineering of the Norwegian University of
Science and Technology (Hofmann et al., 2023). Hofmann et al. (2023) first shared the dataset. This Nor-
wegian panel dataset contains rich data on individual (hourly) electricity consumption, aggregated (hourly)
electricity consumption, (hourly) electricity prices, and a rich set of survey answers on household electric-
ity consumption behavior and awareness, electricity price contracts, household characteristics, and socio-
demographic information (Hofmann et al., 2023). Hofmann et al. (2023) combined the collected consumption
data by local grid companies and the National Electricity Consumption Data Platform (Elhub). Smart meters
allowed the collection of household consumption data.

The dataset is a balanced panel, meaning all units are observed in every period, without missing values.
In addition, we acquired hourly temperature data to enrich the existing dataset. The data figures and calcu-
lations that we developed are run in RStudio (Posit team, 2025). This section explores and presents the data
and discusses its usefulness.

4.2 Consumption and Price Dynamics (Full Period)
421 Regions

The Norwegian power grid is divided into five so-called bidding zones. These five bidding zones have their
own electricity price. This is the result of high dependence on meteorologically based electricity sources, and
insufficient grid capacity to balance these effects countrywide. To illustrate, the northern part of Norway
has many hydroelectric power plants that take advantage of the elevated geography of the region. However,
the connection of the grid to the southern regions does not allow the transfer of generated electricity at all
times. Southern regions, therefore, feature separate supply-demand patterns compared to their northern
counterpart, meaning electricity prices can be different. These differences can be observed by looking at the
electricity price data in Section 4.2.4.

®Please note that this dataset was obtained early in the research process, prior to finalizing the specific methodological approach.
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Figure 6: Electricity bidding areas in Norway. Image taken from Statnett (Statnett, 2025).

4.2.2 Aggregate Electricity Consumption

Hofmann et al. (2023) collected and shared aggregated consumption data per Norwegian bidding area
(Hofmann et al., 2023). Data is collected for the period July 2019 to July 2022 on an hourly basis. Aggregate
demand data is classified by both total MWh demand. Figure 7 presents aggregate demand per bidding area
over time. We present the descriptive statistics for this aggregate hourly demand dataset in Table 1. The table
was created based on our own calculations in R.

Aggregate Electricity Demand Over Time

Comparison across price areas in MWh

3,000

2,000

1,000

Electricity Demand (MWh)

Nov 2019 May 2020 Nov 2020 May 2021 Nov 2021 May 2022
Time
Price Area — NO1 — NO2 — NO3 — NO4 — NO5

Figure 7: Aggregate demand in MWh over time. Note that regional and seasonal differences can be spotted. We visualized the data by
showing hourly consumption at noon. Region NO1 consumes the most electricity, followed by NO2, NO3, and NO4. Winter months
represent the peaks in aggregate electricity demand. The figure was created specifically for this thesis using the dataset provided by
Hofmann et al. (2023).
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Table 1: Descriptive Statistics per bidding area for Aggregate Demand Data (kWh)

Data N Mean SD Median  Min Max  Range

NO1 Demand Avg (kWh) 27,048 1.634 0.670 1.590 0.520  3.750 3.230

NO2 Demand Avg (kWh) 27,048 1.703 0.645 1.670 0.580  3.780 3.200

NO3 Demand Avg (kWh) 27,048 1.728 0.607 1.720 0.550  3.650 3.100

NO4 Demand Avg (kWh) 27,048 2.338 0.763 2.410 0.770  4.160 3.390

NO5 Demand Avg (kWh) 27,048 1.672 0.603 1.650 0550  3.620 3.070

Our research is focused specifically on household responsiveness to changing electricity prices. Therefore, we
will not leverage this aggregate consumption data. Descriptive statistics on aggregate data can, however, be
valuable in establishing whether the selected household data is representative of the whole country. Table 1
and Figure 7 show NO4 to be the highest consuming region in Norway. NO4 is also the northernmost region,
which could explain this pattern due to a greater need for heating. Both mean and median consumption in
the other regions look rather similar. While there are some minor differences in consumption, comparing the
consumption ranges between regions does not suggest underlying patterns of interest. Figure 7 highlights
the seasonal variation in consumption. Winter months represent peak consumption periods.

4.2.3 Household Level Data

The Household data, collected by Hofmann et al., 2023, consists of both a survey, and electricity consump-
tion data. Survey answers were gathered through willing individuals online. The survey was conducted
by a market research company called Ipsos. The household sample was pre-recruited. Region NO2 was
not represented in the household survey. Hofmann et al. (2023) matched household consumption to survey
data whenever households permitted data sharing. Not all households that authorized data sharing were
included in the final dataset. Some households could not be matched to consumption data by name, and
were consequently excluded from the consumption dataset. As a result, individual consumption data from
our dataset is limited to the regions of Oslo (NO1) and Bergen (NO5) by default. The creation of the final
household sample used by Hofmann et al. (2023) is explained in the next paragraph. Please note that these

cleaning steps were performed before the dataset was acquired for this study.

A total of 4,446 households were surveyed. Of these 4,446 households, 3,011 consented to share their electric-
ity consumption data from the period October 2020 to March 2022. Individual electricity consumption data
could only be acquired from the regions of Bergen and Oslo, further reducing the number of households
to 1,609. If households had missing (hourly) consumption data, these households were excluded from the
dataset. This resulted in a total of 1,161 observations. Outliers were identified and excluded based on three
criteria: the share of zero values, maximum consumption, and average consumption. Subsequently, a total of
25 households were excluded, resulting in a total of 1,136 households. This section describes consumption
and survey data for the full 1,136 household dataset.

Figure 8 presents the distribution of electricity contract types in the dataset. As shown, not all households that

met the criteria mentioned in the previous paragraph have dynamic electricity contracts. Interestingly, 13.6%
of the households have a variable contract. The full definition of such a variable contract and the differences
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with hourly spot contracts are left undefined in the original dataset. According to Stremtest, one of Norway’s
most popular electricity price comparison websites, a variable contract is essentially an intermediate between
fixed and hourly spot contracts (Stremtest.no, 2025). Electricity suppliers need to inform households with
variable contracts of a price change two weeks in advance. Hourly electricity prices, therefore, fluctuate
periodically instead of daily.

Household Energy Contracts
Distribution of contract types across respondents
80%

63.1%

60%

40%

20%
13.6% 12.9%

8.5%

Percentage of Households

1.4% 0.5%
00/0 I ee—
Energy Contract Type

. Hourly Spot . Fixed - Don't have electricity contract

. Variable . Other . Don't know

Contract Type

Figure 8: Distribution of electricity contract types in household dataset. The figure was created for this thesis using the dataset provided
by Hofmann et al. (2023). (N = 1,136)

As mentioned before, individual consumption data was acquired through home-installed smart meters.
Households authorized the use of their data. Descriptive statistics, split per region, are shown in Table 2.
This table was produced based on our own calculations. The number of observations is based on hourly
consumption data from October 2020 until March 2022 for each household. This explains the high number
of observations. The majority of households appear to reside in the NO1 region, where the mean hourly con-
sumption is slightly lower. Though, the difference falls well within the standard deviation and is therefore
not considered a concern. Mean consumption is higher than median consumption for both regions, which is
a sign of positive skew in our data.

Table 2: Descriptive Statistics for Household Consumption Data (kWh)

Data’ N8 Mean SD Median Min Max Range
NO1 Household Consumption 10,344,864 1.496 1.616 0.942 0 19.638 19.638
NO5 Household Consumption 4,568,544 1.778  1.554 1.356 0 18.396  18.396
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When analyzing our household consumption data further, we focus on daily consumption patterns. We
visualize the consumption pattern of three random households in Figure 9. The figure shows the average
daily consumption pattern, meaning the average consumption per hour of the day. The baseline consumption
seems to be different for all three households. Furthermore, evenings seem to be high consumption hours for
these households.

Average Household Demand Over Time
Comparison across households in kWh

Average Demand (kWh)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hour of Day)

ID — 2954 — 6731 — 7449

Figure 9: Hourly average household consumption over time (hour of day). Three households were sampled at random to create this figure.
Average consumption per hour of day reveals interesting consumption dynamics and differences. Average electricity consumption for
household 6731 peaks at around 19:00. Though, household 2954 has its peak at around midnight. The figures were created exclusively
for this thesis using the dataset provided by Hofmann et al. (2023).

The consumption pattern of household 2954 is particularly interesting. Instead of peaking during dinner,
consumption seems to peak in the middle of the night, whereas the other households reduce consumption just
before midnight. This could be a trace of household heterogeneity. The midnight peak could potentially be
attributed to household-specific factors (e.g., EV charging), or different routines. This topic is later revisited.

4.2.4 Electricity Prices

Norway is split into five separate bidding zones. In theory, all bidding zones can feature different electricity
prices. Table 3 gives an insight into these differences. The table was constructed for this thesis and is based
on data shared by Hofmann et al. (2023). We reiterate that the number of observations is high because the
dataset is structured as a panel. Mean and median prices are lower in the northern regions NO3 and NO4,
when compared to their southern counterparts. When interpreting the range across all five areas, it becomes
apparent that prices tend to reach lower maximum levels in regions NO3 and NO4. In addition, southern
regions (NO1, NO2, NO5) do not exhibit price differences of interest.
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Table 3: Descriptive Statistics for Electricity Price (NOK)

N Mean SD Median Min Max  Range

NO1 27,048 0.635 0.625 0.400 -0.020  6.540 6.560
NO2 27,048 0.672 0.715 0.400 -0.020  6.540 6.560

NO3 27,048 0.264 0.238 0.210 0 3.690 3.690
NO4 27,048 0.231 0.210 0.190 0 3.690 3.690
NO5 27,048 0.633 0.622 0.400 0 6.540 6.540

Figure 10 presents the average price levels per region of interest for each time of day. As shown in the figure,
the average hourly electricity prices in NO1 and NO5 follow each other closely. Furthermore, time-specific
trends also become visible. Prices seem to peak (on average) both around 9 and 19 O Clock.

Electricity Prices

Comparison across price areas in kWh
0.72

0.68

0.64

Price (/kWh)

0.60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hour of Day)

Price Area — NO1 — NO5

Figure 10: Average hourly electricity price in regions NO1 and NO5. These averages were calculated using the full period that is available
in the data. The figure was created specifically for this thesis using the dataset provided by Hofmann et al. (2023).

Figure 11 presents the development of average daily electricity prices per region of interest over time. Prices
rose sharply toward the end of 2021 and the beginning of 2022, which is a sign of the electricity crisis in the
corresponding period. The two gray areas show winter seasons. The winter season of 2021-2022 seems to
coincide with the peak of the electricity price crisis.
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Average Electricity Price over Time
Electricity Trend 2020 - 2022

Average Price (/kWh)
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Figure 11: Average daily electricity price over time. Prices increased rapidly at the end of 2021. The figure was created for this thesis
using the dataset provided by Hofmann et al. (2023).

4.3 Sample Construction

The dataset presented in the previous section enables a broad range of sampling possibilities. Not all avail-
able data is relevant to our research questions. We therefore construct a preliminary household sample and
identify several subgroups of interest. The reasoning behind this sample is linked to the methodological
approach in Section 5.4. The sample used in this study should contribute to answering the research questions
that were defined in Section 3.4. Our research questions are focusing on three areas of interest: the baseline
effect of price fluctuations on electricity consumption, the mechanism (e.g., occurrence of load shifting) by
which households respond to these price fluctuations, and whether specific household subgroups are more
responsive to price fluctuations.

The analysis in this thesis draws on household-level electricity consumption data from both available regions
NO1 and NO5. We take advantage of the occurrence of the electricity price shock by limiting our analysis
to the two winter seasons in our dataset. Households are categorized based on their electricity contract type.
We include households with hourly spot (dynamic) contracts, and fixed contracts. Households that do not
have knowledge of their electricity contract, do not have an electricity contract, or have a variable contract are
excluded from consideration’. Thus, our final sample contains 813 households.

Combining the survey with household-level consumption data allows for the identification of specific house-
hold subgroups!?. The reasoning for the household subgroups considered in this thesis is based on prior
literature and is consistent with the theory presented in previous chapters. The included subgroups are EV
ownership, Smart-charging behavior, Home ownership, and Active monitoring of electricity prices. These household
characteristics connect to previous literature from Section 3.3 by focusing on appliance factors, enabling tech-
nology, a combination of socio-economic factors and dwelling factors, and awareness, respectively. The Home

“Inclusion could weaken the validity of causal inference regarding the impact of dynamic prices on consumption.
10The full list of survey questions can be found in Appendix A.
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ownership characteristic combines multiple factors of interest worth explaining in more detail. First of all,
owning a home reflects a household’s economic and social standing (SES), as it often correlates with income
and wealth. Second, it determines the degree of control household have over the dwelling. Finally, the dis-

tinction between owning and renting is policy-relevant, as it could help focus policy interventions.

The next section describes the transformation of the data in preparation for analysis, the creation of the
aforementioned household subgroups, and the final distinction central to our analysis: peak and off-peak
hours.

4.4 Key Variables Used in Analysis

To facilitate our focus on households with fixed or hourly contracts, we constructed two binary indicator
variables: DynamicContract and FixedContract. The household-level consumption data is then filtered to in-
clude only these two contract types, resulting in a final sample of 813 households. The temporal restriction is
realized by creating a Winter dummy?!, and filtering out all observations that are made on non-winter days.

The final sample consequently covers a total of 180 days, spanning two consecutive winter seasons.

We construct a binary EV ownership dummy based on survey questions 29 and 30. The dummy is equal
to one for households that own an EV, charge it (at least sometimes) at home, and is charged on the same
smart meter as the rest of the house. The final distinction is made to be sure EV charging consumption is
captured by the data available to us.

We construct a binary dummy representing smart charging of electric vehicles. The dummy is based on
survey question 31. Charging behavior is classified as smart charging when it is automated based on hourly
electricity prices. Households that avoid high-price hours by manual or time-scheduled intervention, are not
captured by the smart charging dummy.

We formulate a binary ActiveMonitoring dummy based on survey questions 1 and 4. This dummy iden-
tifies households that both monitored their power consumption and checked electricity prices on a daily
basis. Home ownership is derived from survey question 24, with households classified as renters if they
reported not owning the house they live in.

Finally, we introduce both a Peak and Off-Peak dummy variable. Peak hours are defined as hours during
which the electricity price is at least 20% higher than the daily average. In contrast, off-peak hours are hours
where price is at least 20% below the daily average. These definitions allow these hours to vary for each day
based on price. It is important to understand the price-focused approach in this variable. Although theory
suggests that price peaks coincide with demand peaks, this it not always the case. Finally, it is important to
understand that, under this definition, not every day features a peak or off-peak hour.

winter is defined by official season: December-February.
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Figures 12 and 13 show the distribution of peak and off-peak hours in the winters of 2020 and 2021.

Stacked Frequency of Peak and OffPeak Hours - Winter 2020
Peak: >20% above daily avg, OffPeak: <80% of daily avg
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Figure 12: Peak / off-peak distribution throughout the day during the pre-shock winter. Off-peak hours are predominantly night hours.
Peak hours are concentrated around the beginning and end of business days. The figure was created for this thesis using the dataset

provided by Hofmann et al. (2023).

The peak/Off-Peak patterns displayed in Figures 12 and 13 correspond to the average hourly price pattern
presented earlier (Fig. 10). Prices tend to peak both in the morning and later afternoon. Interestingly, the
amount of hours classified by either dummy are lower during the price shock winter in 2021.

Stacked Frequency of Peak and OffPeak Hours - Winter 2021
Peak: >20% above daily avg, OffPeak: <80% of daily avg
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Figure 13: Peak / off-peak distribution throughout the day during the price shock winter. Off-peak hours are predominantly night hours.
Peak hours are concentrated around the beginning and end of business days. The figure was created for this thesis using the dataset

provided by Hofmann et al. (2023).
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4.5 Descriptive Statistics

This section presents descriptive statistics on the final analytical sample defined in Section 4.3. For most
descriptions, we either make a distinction between contract types or household characteristics. Electricity
consumption characteristics of the included households during winter are explored first.

The hourly consumption range across households is large, which suggests that there exist considerable hourly
consumption differences between households. We therefore compute the mean daily electricity consumption
for each household. Figure 14 presents these mean consumption levels in a density plot. Average consump-
tion levels can be seen to be positively skewed, meaning the distribution is not normal but clustered around
the left tail.

Density of Mean Household Electricity Consumption
Across All Households (2020-2022)

0.015

0.010

Density

0.005

0.000

0 50 100
Mean Daily Consumption (kWh)

Figure 14: Mean (daily) household electricity consumption. Electricity consumption is positively skewed. This figure is produced for this
thesis and is based on data provided by Hofmann et al. (2023). The figure is created with R.

Table 4 displays descriptive statistics by contract type for both the pre-shock winter and during the price

shock. Both dynamic and fixed contract households show lower average hourly consumption levels.

Table 4: Descriptive Statistics for Hourly Demand (kWh) by Contract Type

Group N mean sd median  min max range
Dynamic - Winter 2020 1,548,720 2400  2.061 1.856 0 18.922  18.922
Fixed - Winter 2020 207,360 2364  2.006 1.903 0 18.396  18.396
Dynamic - Winter 2021 1,548,720  2.007  1.787 1.545 0 18.859  18.859
Fixed - Winter 2021 207,360 2.056  1.768 1.648 0 18.908  18.908

To further examine household heterogeneity, Figure 15 presents the distribution of education levels across
dynamic and fixed electricity contracts. Education level is defined as the highest level of education within
the household, meaning not all household members necessarily have this level of education. The distribution

1"‘U Delft Remco Y. Hoen Page 27



4 DATA

differences between the contract types are visibly negligible. However, in this dataset, higher university
education is more prevalent in households with hourly spot contracts (RTP contracts).

Education Level by Energy Contract Type

Distribution of education levels across contract types
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Figure 15: Distribution of education level grouped by electricity contract types. The figure was created for this thesis using the dataset
provided by Hofmann et al. (2023). (N = 813)

Figure 16 explores EV ownership across households grouped by their type of electricity contract. Although
households generally do not own EVs, household EV ownership is highest for households with hourly spot
RTP contracts.

EV Ownership by Energy Contract Type
Comparison of EV ownership across contract types
100%

75% 71.9%
66.4%

50%

25%

Percentage of Households

0%
Hourly Spot Fixed
Energy Contract Type

EV Status . EV Owner . Non-EV Owner

Figure 16: Distribution of EV ownership grouped by types of electricity contract. The figure was created for this thesis using the dataset
provided by Hofmann et al. (2023). (N = 813)
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Expanding on this, the charging behavior of EV owning households has been mapped in Figure 17. Inter-
estingly, smart charging behavior seems to be quite different when comparing fixed and RTP contracted
households. Households with dynamic electricity contracts exhibit more effort in trying to avoid charging
in high-priced hours. More than 50% of these households respond manually, but about 15% rely on smart
charging technology. We must note that not all EV owning households have provided an answer to this
survey question (N = 183).

Charging Strategy by Energy Contract Type

Comparison of EV charging methods across contract types
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Charging Strategy . Time Scheduled . Smart Charging

Figure 17: Distribution of EV (smart) charging behavior in response to avoiding high-priced hours. Household answers are grouped by
type of electricity contract. The figure was created exclusively for this thesis using the dataset provided by Hofmann et al. (2023). (N =
183)

Our final sample contains households with dynamic and fixed contracts. Average hourly electricity consump-
tion patterns are explored for both contracts during the pre-shock winter. Figure 18 presents these consump-
tion profiles. Without additional restrictions or focus, both curves appear very similar. Table 5 presents the
descriptive statistics for all subgroups used in our final sample during the pre-shock winter. Average hourly
consumption levels are different across subgroups. Renters consumed considerably less electricity compared
to both levels reported in Table 4 and other subgroups. Households that own an EV consume most electricity.

Table 5: Descriptive Statistics for Hourly Demand (kWh) by Subgroup

Group N mean sd median  min max range
Dynamic EV - Winter 2020 311,040 3.893 2373 3.527 0 18.409  18.409
Dynamic SmartCharge - Winter 2020 47,520 4252 2504 3.726 0.200 18.032  17.832
Dynamic HomeOwner - Winter 2020 1,416,960 2.486 2.099 1.948 0 18.922 18.922
Dynamic Renter - Winter 2020 131,760 1472 1271 1.195 0.008  10.499  10.491
Dynamic ActiveMonitoring - Winter 2020 397,440 2.634  2.036 2.168 0 17.768  17.768
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Electricity Consumption Pattern by Contract Type

Average hourly demand across Fixed and Dynamic households
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Figure 18: The electricity consumption pattern of households grouped by electricity contract type. The average is taken for the pre-shock
winter of 2020. Both weekdays and weekends are included. The differences between patterns are negligible. We created this figure for
this thesis. The figure is created with R.

Figure 19 compares average hourly electricity consumption patterns between weekdays and weekends during
both winter seasons. Households can be seen to have a different (average) consumption pattern during
weekends. Increased home occupancy on weekends could contribute to this. This figure does not distinguish
between contract types.

Electricity Consumption Pattern Weekday vs. Weekend
Average hourly demand in winter
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Figure 19: Average electricity consumption per hour in winter season, grouped by weekdays and weekends. Note that households have
different average consumption profiles, indicating different routines. We created this figure for this thesis. The figure is created with R.
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To investigate the effect mentioned in both the main and sub-questions, we take a quantitative approach and
construct an econometric model (5.2) based on the theory and empirical evidence presented before. Statistical
estimation techniques used for analysis are explained in Section 5.3. Section 5.4 elaborates on the household

subgroups that we investigate. Finally, modeling assumptions and limitations are discussed in Section 5.5.

5.1 Model Overview

The objective of this quantitative model is to generate accurate and meaningful insights into the main research

question:

How do dynamic electricity prices influence intra-day electricity consumption patterns among residential

consumers?

To support answering this question, three sub-questions are defined in support of answering the main ques-
tion.

1. What is the effect of intra-day electricity price fluctuations on hourly household electricity consumption?
2. To what degree do higher intra-day electricity prices lead to a shift in consumption from peak to off-peak hours?

3. To what extent do household characteristics moderate the effect of price changes on electricity consumption and
load shifting?

Several key topics can be identified that should be addressed by this model. The model should first help to
establish the baseline effect of electricity price on household electricity consumption. The relation between
price and consumption is of central interest. Next, the model should distinguish between peak and off-peak
consumption to reveal whether households engage in load-shifting behavior. Finally, the moderating effect

of several household-specific characteristics is investigated.

A linear regression model is formulated based on the theory and evidence presented in Chapters 2 and
3, respectively. The dependent variable of interest is household electricity consumption. Electricity price
serves as the main independent variable in this study. The exact definition and explanation of the linear

regression model is presented in Section 5.2.

5.2 Econometric Model

Our method comprises two linear regression models that complement each other, allowing for a more com-
prehensive analysis of the effect of electricity prices on consumption. First, a DID model is formulated. This
model is used to investigate whether households with dynamic contracts respond differently to price shocks
compared to fixed-contracted households. Next, we estimate a complementary regression model that directly
includes electricity price as an independent variable. Both models are inspired to some extent by previous
studies in Norway (Hofmann & Lindberg, 2023, 2024) and Germany (Ruhnau et al., 2023).
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5.2.1 Difference-in-Differences (DiD) Treatment Effect Model

We first built a two-way fixed-effects DID regression model to analyze the available data and generate insight-
ful results. Chapter 4 describes the panel dataset used in combination with this model. We use a DID model
to calculate the causal impact of the electricity (price) crisis in the winter of 2021 on electricity consumption.
The treatment group consists of consumers with dynamic electricity contracts, whereas the price shock is our
treatment period. Consumers with fixed-price contracts are taken as the control group, as the nature of fixed
contracts shields them from real-time price shocks during the contract period. This is justified by reviewing
the exploratory figure 18, which shows the consumption profiles of both groups during the pre-shock period.
Under normal conditions, average consumption patterns between the two groups are similar, supporting the

validity of the parallel trends assumption!?.

The DID model is defined by regressing consumption (C;;) on the interaction between the treatment group
dummy (DZD ) and the treatment period dummy (D/®). Both Fixed Effects (FEs) (;) and Time Fixed Ef-
fects (TFEs) () are added to control for unobserved heterogeneity. Standard Errors (SEs) are clustered on
the household (ID) level to allow for heteroskedasticity and autocorrelation. A second equation adds the
comparison between Peak (Dtp eaky and Off-Peak (D?f fPeak
investigated by adding a fourth dummy (D;) to the interaction. The exact subgroups investigated with this

) hours. Furthermore, household subgroups are

model are defined in Section 5.4. The model equations with and without the subgroup dummy are presented

below.

Cit=Po+ B1(DP x DJ®) +a; + 71 + € 3)

Cit = Bo+ B1(DP x DPS x D x DX) 4 B,(DP x DPS x DO/P* 5 DY) 4+, + €4 (4)

5.2.2 Complementary Price Responsiveness Model

In addition to the DID model, we define a second model. This complementary model also investigates the
difference between the pre-shock winter of 2020 and the crisis winter of 2021. In contrast, this model includes
price directly as a key independent variable. We compose the model in equations 5 and 6 by regressing
consumption (C; ;) on price (P, ;). We again add FEs («;) and TFEs (7;) to control for unobserved heterogeneity.
Price is interacted with the contract group dummy (DP) and the price shock period dummy (D}). We again
add the comparison between Peak (Df eaky and Off-Peak (D?f fPeak
a fifth dummy (D7) is introduced that again specifies household subgroups. By interacting price with this

) hours to the second equation. Finally,

household subgroup dummy, we investigate whether price responsiveness of dynamic contract households
is different between these subgroups. Section 5.4 details these household subgroups and other sampling
efforts in further detail. SEs are clustered on the household (ID) level to allow for heteroskedasticity and
autocorrelation. The statistical method used to estimate equations 5 and 6 is explained in Section 5.3.

Cis = Bo + B1(Pis x DY X D®) +a; + 1 + €yt ©)
Ci,t = :BO + ,Bl(Pi,t X DlD X Dfs X Dfeuk X Df) + ‘Bz (Pi,t X DZD X Dfs X DtOffPEIZk X Dic) +oa;+ 7+ €t (6)
It is important to understand the nuance between our two models. The DID model calculates the treatment
effect of the 2021 price shock on electricity consumption, meaning we compare average hourly consumption
across two periods rather than including price as the independent variable. The complementary model, on

12The parallel trends assumption states that the control group and treatment group should trend the same in the absence of any
treatment
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the other hand, directly estimates the effect of price changes on electricity consumption while comparing
two periods. The subtle nuance between our models allows us to analyze results under different modeling
assumptions. If both models yield similar results, this could strengthen the robustness of our findings, as
they were obtained under different conditions. Meanwhile, a difference in results could be just as interesting,

as it could reveal additional details about consumer responsiveness to electricity price.

5.2.3 Two-Way Fixed Effects

Our two-way fixed effects, captured through «; and <, are defined similarly to the classification used by
Hofmann and Lindberg, 2024

Our Fixed Effects term needs to control for unobserved household-specific heterogeneity. We essentially
want to control for the unique hourly consumption profile of each household. This allows households to
have different baseline consumption levels, as well as different consumption routines. This FE term is real-
ized by interacting the household ID with the 24 hours in a day.

In addition to the comprehensive FE term explained above, we should also introduce a sophisticated TFE
term. The TFE term should control for time-specific variation that is constant across all households. En-
ergy shocks and weather extremes are examples of important events that TFE are meant to control for. As
mentioned in Section 4.2.3, our household data originates from the two Norwegian bidding areas NO1 and
NOS5, which lie about 300 kilometers apart (Oslo - Bergen). Weather events in NO1 do not have to coincide
with those in region NO5. Households, therefore, do not experience the same event at the same time. To
control for these TFE, we interact our time index (DateTime) with these two Norwegian regions. By doing
so, we control for region-specific effects that are constant for all households within the region but vary across

regions over time.

5.3 Estimation Technique and Interpretation

We run all calculations and regressions in RStudio (Posit team, 2025). The econometric model introduced in
Section 5.2 is estimated by applying the well-established two-way Fixed Effects OLS technique. The FIXEST
package for R is used to facilitate running the regressions (Bergé, 2018). As mentioned before, two-way fixed
effects regression implicitly controls for omitted heterogeneous variables. We run regressions using absolute
units from the dataset. The unit of price is the Norwegian Krone (NOK). As of May 2025, one Norwegian
Krone (NOK) is equivalent to approximately 0.087 Euros. Electricity consumption is measured in kilowatt-
hours (kWh). Since the two models estimate a different type of effect, interpretation of the estimates depends
on which model was used to calculate it.

The DID model estimates a treatment effect, meaning the estimate represents the response of the treatment
group in comparison with the control group. Since electricity consumption is our dependent variable, the
model calculates how much more (or less) the dynamic contract group changed consumption during the
price shock, compared to the control group. The estimate is calculated in the unit of electricity consumption,
which is kWh. If the DID regression from equation 3 or 4 yields f; = —0.5, it would suggest that, on average,
households with dynamic contracts reduced hourly electricity consumption during the price shock by 0.5
kWh more than households with fixed contracts.
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In contrast, the estimate (1) that follows from our complementary model equation 6 should be interpreted
as the hourly change in the amount of kWh consumption as a result of an increase in price of 1 NOK. This
estimate is specific for the group assigned to the interaction term D7. Suppose D7 is a binary indicator equal
to 1 for dynamic contract households with an EV, and 0 for those without an EV. If the regression from equa-
tion 6 yields B; = —0.5, it would suggest that, in response to a 1 NOK increase in (hourly) price, households
with dynamic contracts consume 0.5 kWh less than comparable households without EV.

Using absolute units (e.g., kWh and NOK) can limit direct interpretability and the ability to compare re-
sults to other studies. Specifically, one might, for example, ask about the practical relevance of results: How
large is a 0.5 kWh decrease of hourly consumption in relative terms?. Although we considered the well-established
log-log regression, which allows for interpretation on relative percentage scales, it introduces certain draw-
backs. Logarithmic transformation cannot handle zeros and negative values. Since both our consumption
data and price data contain these types of values, log-log implementation would require additional opera-
tions. To maintain a balanced dataset, we would need to remove these days from consideration or adjust these
values by adding small constant values, making them nonzero. While these adjustments are not uncommon,
they introduce additional assumptions and potential distortions. Moreover, a rough percentage effect can still
be calculated by comparing the estimate to the mean hourly consumption of households in the dataset.

5.4 Sample Alignment with Methodology

Section 5.2 explains the model used in the regression analysis. It introduces the dummy variable D} that
facilitates the analysis of price responsiveness across several household subgroups. This section elaborates
on how the sample construction in Section 4.3 aligns with our methodological approach, and reiterates the

subgroups under investigation.

As explained in Section 5.2, the difference between dynamic and fixed contract households is captured by
our DID approach. By only including winter data in our sample, we can compare pre-shock consumption
patterns to electricity consumption during the price shock. Weekdays and weekends are both included in our
sample. We calculate the equations in Section 5.2 separately for weekdays and weekends, allowing for a com-
parison of price responsiveness on both types of days. Household characteristics of interest, as introduced in
Section 4.3, are captured by the subgroup dummy D7. The peak and off-peak hours, as defined in Section

4.4, are captured by their corresponding dummies D}*¥) and D?f fPeak

5.5 Assumptions and Limitations

To be fully transparent about potential issues that could arise from adopting the approach introduced in this

chapter, we outline several key assumptions underlying the models.

1. Parallel Trends Assumption
A DID model estimates the causal effect of a treatment by comparing the change in outcome between the
treatment and control group. This methodological approach assumes that, in the absence of any treat-
ment, the control group and treatment group would trend at the same rate and direction (Wooldridge,
2020). This assumption is called the parallel trends assumption. In our case, it assumes consumption
trends between dynamic and fixed-contract households are similar in the absence of the price shock.

2. Fixed Contracts as Control Group
The methodological approach in this thesis assumes that fixed contract households were not exposed
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to the price shock during the 2021-2022 winter season. This assumption is supported by the nature of
fixed contracts, where the price per kWh is constant over the contract period. We also assume that the

fixed contract has not been renewed during, or just before, the price shock.

3. Price is exogenous
Our current model assumes that price is exogenous. In other words, we assume prices are set outside

of our model considerations, and are not influenced by variables within our model.

4. Price-Demand Response is linear
The choice for the OLS estimation technique, by definition, assumes linearity in the relationship between
price and demand. By using OLS we assume the marginal effect of price increase is constant across the
price distribution. It suggests that, for example, there is no difference in response between a price

increase in the lower and upper quartiles.

We reflect on these assumptions in Section 7.5.
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6 Results

This chapter reports results of both models, highlights trends, and compares estimates across models. Before
diving into model results, we explore the electricity price shock that is central to our DID model. We then
present the baseline model results (Eq. 3 & Eq. 5), after which effects across subgroups (Eq. 4 & Eq. 6) are

discussed. Finally, the main results are summarized.

6.1 The Price Shock: Magnitude and Characteristics

The electricity price crisis of 2021 is of major importance to both our models defined in Section 5.2. Until now,
the only indication of price shocks has come from Figure 11 in Section 4.2.4. The figure presents a timeline
of average daily price levels in both price areas. Visual inspection shows that the higher price levels coincide
with the winter of 2021. Though, the magnitude of price shocks remains unclear. Furthermore, as we are
focused on the effect of hourly electricity price changes on consumption, price volatility is also of interest.
Quantifying both the magnitude of increase in average price levels and the change in price volatility relative
to the reference period provides insight into the conditions that households were exposed to.

First the difference in overall price level is outlined in Figure 20. The figure displays price level distribu-
tions in a density plot. Price level distributions of the winter of 2021 are fully shifted to the right. Hourly
price levels in 2021 were, on average, 1.047 NOK higher compared to 2020 (p-value = 0.0007346).

Density of Hourly Electricity Prices
Winter 2020 vs Winter 2021

Price (NOK/kWh)

Year [] 2020 [] 2021

Figure 20: Mean hourly price in the winter of 2020 was 0.415 NOK, whereas the winter of 2021 saw an average of 1.462 NOK. We created
this figure for this thesis. The figure is created with R.

The increase in average price levels already provides additional insight into the magnitude of the price shock.
However, in this study, we are mostly focused on responsiveness to intra-day price fluctuations. For this
reason, intra-day price volatility is also of key importance in understanding the price shock (treatment) that
households are exposed to. Figure 21 plots the average standard deviation for all winter days in 2020 and
2021. Standard deviation and volatility are interchangeable terms. The daily average represents the average

intra-day price volatility. Intra-day price volatility is observed to be mostly higher during the first half of the
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2021 winter. Overall, mean intra-day volatility levels almost doubled during the price shock, increasing from
0.1003 to 0.1855.

Average Daily Price Volatility During Winter

Standard deviation of electricity prices (Dec—Feb)

1.0

Daily Price Volatility (NOK/kWh)

0 25 50 75
Winter Day Index

Year — 2020 — 2021

Figure 21: Mean intra-day standard deviation was 0.1003 during the winter of 2020. The price shock winter of 2021 saw mean intra-day
volatility levels climb to 0.1855. We created this figure for this thesis. The figure is created with R.

6.2 Average Treatment Effect on Consumption
6.2.1 Baseline DiD Results

This section presents the results of estimating equation 3. By interacting the treatment group dummy with
the treatment period dummy, we investigate whether the treatment group (dynamic contract household) re-
sponds to the treatment (price shock) differently compared to our control group (fixed contract household).
Please note that this baseline model does not distinguish between peak and off-peak hours. Temporal resolu-
tions are specified in the column title. This analysis provides a foundation for interpreting the results from
other data subsets examined in subsequent specifications.

First, Figure 22 presents the consumption profile of both dynamic contract households and fixed contract
households during the price shock. The figure highlights the lower hourly consumption of dynamic contract
households during the treatment period compared to the control group. Looking at the trend line of both
groups, dynamic contract households consume less electricity on average. This trend corresponds with de-
scriptive statistics presented in Table 4. Figure 22 only allows for a qualitative comparison of consumption
patterns. The regression model in equation 3 enables quantitative analysis of a potential treatment response
by dynamic contract households. The key regression estimates from equation 3 are presented in Table 6.
The first two columns apply our DID approach, whereas the final two columns reveals the results from our
complementary model, as defined in Section 5.2. Temporal resolution (weekday vs. weekend) is specified per

column.
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Electricity Consumption Pattern by Contract Type

Average hourly demand across households in the winter of 2021

24

N
N

Demand (kWh)

1.8

1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hour of Day)

Trend Contract Type — Dynamic — Fixed

Figure 22: Consumption profiles of both dynamic contract households (treatment group) and fixed contract households (control group).
On average, households with dynamic contracts consume less electricity during daytime hours. Night-time profiles seem rather compa-
rable across groups. I created this figure for this thesis.

Table 6: Estimates of the Average Treatment Effect of dynamic contracts during the Electricity Price Shock (kWh)

Dependent Variable: Demand (kWh)

Model: (DID - Weekday) (DID - Weekend) (Comp - Weekday) (Comp - Weekend)

Variables

ppyramicContract - pyPriceShock -0.0830* -0.0945"* -0.0523"* -0.0694"*
(0.0475) (0.0459) (0.0234) (0.0301)

Fixed-effects

ID-Hour Yes Yes Yes Yes

PriceArea-DateTime Yes Yes Yes Yes

Fit statistics

Observations 2,497,536 1,014,624 2,497,536 1,014,624
R? 0.77715 0.76913 0.77716 0.76913
Within R? 0.00021 0.00027 0.00025 0.00029

Clustered (ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The regression focused on the interaction DiDymmiCCDHtma x DPriceShock reveals negative coefficients for both
models. Both models are consistent with a higher weekend estimate. DID results show that, in response to
the price shock, households with dynamic contracts reduced their hourly electricity consumption by 0.0830
kWh more than fixed-contract households on weekdays. During weekends, hourly consumption reduced,
on average by 0.0945. The visually observed reduction in electricity consumption among dynamic contract
households during price shock (Fig. 22) is consistent with the estimated treatment effect presented in Table 6.
Weekday estimates in Table 6 are statistically significantly different from zero at the 10% level, while weekend
estimates achieve significance at the 5% level.
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To support the findings from the DID model, the complementary model explicitly tests how variations in
electricity prices influence consumption across two winter seasons. During the price shock period, dynamic
contract households reduced hourly consumption by 0.0523 kWh on weekdays and 0.0694 kWh on weekends
in response to a 1 NOK increase in electricity price. These results of the complementary model align with the
regression results of DID based on the estimate sign (Table 6). All estimates are statistically significant at the
5% level. The complementary model, which includes price directly, has a slightly higher R?>. The Within R?
seems to be very small for all four regressions in Table 6.

6.3 Heterogeneous Effects Across Subgroups
6.3.1 Peak vs Off-Peak and Other Subgroups (DID Extension)

In addition to the baseline models, from which the results are presented in the previous section, equations
4 and 6 distinguish between peak and off-peak hour responsiveness within several subgroups. As defined
in Section 4.4, Peak hours are hours during which the electricity price is at least 20% higher than the daily
average. In contrast, off-peak hours are hours where price is at least 20% below the daily average. This
section presents the results of the subgroup analysis. The results for the Home Ownership subgroup!® are
provided separately in Appendix B.

Subgroup regression results for both models are displayed in Table 13. By estimating the average treat-
ment effect across subgroups, we investigate the importance of household characteristics and peak / off-peak
hours. As before, both model type and temporal resolution are specified per column.

Dynamic contract households respond differently during peak and off-peak price hours. Hourly electric-
ity consumption of dynamic contract households during peak hours decreased, on average, by 0.0886 kWh
on weekdays and 0.1068 kWh during weekends. These estimates are statistically significant at the 1% and 5%

level, respectively. Off-peak hour estimates were not statistically different from zero.

Next, peak/off-peak differences in consumption response are examined for dynamic contract households
that own an EV. The regression results in Table 13 show a stronger reduction in peak hour consumption for
both time resolutions compared to the average dynamic contract household estimate presented in the para-
graph above. Dynamic contract households that own an EV decrease hourly consumption in peak hours by
an average 0.1502 kWh on weekdays and 0.1610 kWh in weekends. In contrast, dynamic contract households
that own an EV are revealed to increase electricity consumption in off-peak hours. However, this estimate is
only significantly different from zero on weekdays, where the average hourly increase in off-peak consump-
tion is 0.1440 kWh. These results highlight the difference in sign between peak and off-peak hours.

Dynamic contract households with EVs can have a so called smart charging strategy. As explained in Section
4.2.3, households can avoid high-priced hours by smart technology automatically responding to hourly spot
prices. Consumption response for this subgroup is reported in Table 13. Regression results are similar to the
EV subgroup, but larger in magnitude. Peak consumption for this subgroup is reduced by an hourly aver-
age of 0.1899 on weekdays an 0.2910 in weekends. The sign flips for off-peak consumption response, where
hourly consumption is increased by an average of 0.3249 kWh and 0.3944 kWh for weekdays and weekends
respectively.

BBIntroduced and defined in Sections 4.3 and 4.4 respectively.
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Finally, dynamic contract households that actively monitor hourly spot prices are shown to decrease hourly
consumption in peak hours by an average of 0.1628 kWh on weekdays, and 0.1582 kWh during weekends.
Similar to the baseline peak/off-peak response, no statistically significant off-peak consumption response is
revealed for this group.

6.3.2 Subgroup Price Responsiveness (Complementary Model)

The complementary model directly includes the effect of price fluctuations on consumption. These results
are broadly consistent in sign and significance with the effects found in the DID model (Table 13). Effect
magnitudes however, tend to be smaller.

Dynamic contract households exhibit a more pronounced peak-hour response to price fluctuations during
the electricity crisis compared to fixed contract households. The price response is larger during weekends,
which aligns with DID model results from Table 13. No statistically significant response is observed for off-
peak hours.

Subgroup patterns found in Table 13 are also mostly consistent with DID model results. EV-owning house-
holds display stronger reductions in peak consumption and an increase in off-peak consumption. The ob-
served off-peak effect is only significant on weekdays. Even though the effect size is smaller than the DID
model, the complementary model reveals a comparable flip in sign between peak and off-peak consumption
for EV-owning households. In line with the DID model, smart charging technology displays even greater re-
sponsiveness to price change. Weekday results again feature a change in the estimate sign when moving from
peak to off-peak response. Lastly, households actively monitoring prices remain more price-responsive than
the average household. Off-peak responsiveness, however, remains statistically insignificant for this group.
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Table 7: Heterogeneous Treatment Effects Across Household Subgroups (DID Model)

Dependent Variable: Demand (kWh)

Model: (DID - Weekday) (DID - Weekend) (Comp - Weekday) (Comp - Weekend)

Variables

Peak Hour -0.0886*** -0.1068** -0.0279*** -0.0489**
(0.0300) (0.0477) (0.0091) (0.0233)

OffPeak Hour -0.0231 0.0214 -0.0231 0.0121
(0.0306) (0.0335) (0.0193) (0.0295)

Appliance Subgroups

EV - Peak -0.1502*** -0.1610** -0.0497*** -0.0781**
(0.0466) (0.0672) (0.0136) (0.0330)

EV - OffPeak 0.1440*** 0.0936 0.0683** 0.0850
(0.0543) (0.0605) (0.0326) (0.0523)

SmartCharge - Peak -0.1899* -0.2910* -0.0651** -0.1465*
(0.1052) (0.1633) (0.0296) (0.0807)

SmartCharge - OffPeak 0.3249** 0.3944* 0.1487* 0.2349
(0.1335) (0.2087) (0.0779) (0.1647)

Awareness Subgroup

ActiveMonitoring - Peak -0.1628"** -0.1582%** -0.0486*** -0.0770***
(0.0330) (0.0387) (0.0098) (0.0190)

ActiveMonitoring - OffPeak -0.0014 0.0388 -0.0054 0.0347
(0.0366) (0.0391) (0.0222) (0.0326)

Fixed-effects

ID-Hour Yes Yes Yes Yes

PriceArea-DateTime Yes Yes Yes Yes

Fit statistics
Observations 2,497 536 1,014,624 2,497 536 1,014,624

Clustered (ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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6.4 Summary of Key Results of Findings

We investigated the price effect on consumption using two models (Eq. 3-6). The DID model estimates, un-
der the parallel trends assumption, represent the causal effect of the price shock on electricity consumption.
In contrast, our complementary model captures the marginal effect of price during the price shock period
(winter 2021).

Regression results are divided into two parts: the average treatment effect of the price shock on consumption,
and the heterogeneity in consumption responsiveness. First, our DID model revealed that dynamic contract
households decreased average hourly consumption in response to the price shock. The magnitude of reduc-
tion is observed to be slightly higher during weekends. Households mainly reduced consumption during
peak price hours, while off-peak consumption is not decreased on average. Households that actively monitor
hourly spot prices showed more substantial consumption reductions compared to the average household.
Regression estimates for dynamic contract households that own an EV are approximately twice as negative
during peak hours compared to the average response, suggesting a stronger reduction in consumption for
this subgroup. Furthermore, the EV ownership subgroup shows signs of load shifting during weekdays, as
this subgroup increased consumption during off-peak hours. Finally, households that charge their EV with
smart technology saw both the highest peak hour consumption decrease and off-peak hour consumption
increase. Please note that all regression estimates are stated in absolute units, restricting direct comparability
of estimates. The complementary model results are largely consistent with the DID model.
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7 Discussion

This chapter presents a comprehensive discussion about the regression results introduced in Chapter 6. This
discussion follows the structure of the three sub-questions that guide this research. We first discuss the
average hourly consumption response in Section 7.2, drawing on results introduced in Section 6.2. Section
7.3 explores how households respond to price fluctuations. The moderating effect of household characteristics
is discussed in Section 7.4. The analyses in Sections 7.3 and 7.4 are based on the results from Section 6.3. Next,
we discuss the validity of our results, robustness, and sensitivity. Before recommending future research steps,

we delineate the policy implications of this study.

7.1 Interpreting Results Across Both Models

To fully understand household electricity consumption responses to dynamic pricing, this study employed
two complementary regression approaches: a Difference-in-Differences (DiD) model and a price interaction
model. This section interprets and contrasts the results of both models, highlighting where they align and
where they diverge. Finally, we explain what these differences reveal about household behavior under dy-

namic pricing conditions.

Both models align with the direction of the estimated effect. However, as highlighted before, the DID model
consistently yields larger effect sizes. In other words, it suggests a greater reduction in electricity consump-
tion in response to the treatment than the complementary model does. The nature of both models is likely to
explain this difference. In contrast to the DID model, the complementary model interacts hourly electricity
prices with both the contract type and the treatment period. The inclusion of price changes the model setup
from estimating the treatment effect of the price shock (the DID model) to calculating the difference in price
sensitivity during the price shock. The consistent difference in estimated effect size indicates that price varia-
tion captured by the complementary model is not the only variable of interest during the price shock.

We can make sense of this observation by incorporating the results in Section 6.1. Analysis of the price
shock revealed that it was characterized not only by higher average price levels but also by increased intra-
day price volatility. As the DID model compares two periods in time, it does not distinguish between these
price effects, and treats consumers with both. The price variable in the complementary model specifically cap-
tures hourly price variation during the price shock. As a result, this model is primarily sensitive to intra-day
price volatility and does not account for elevated average price levels. The consistently higher estimates pro-
duced by the DID model may therefore suggest that households respond not only to increased price volatility
but also to the higher average price levels observed during the shock period. Furthermore, the DID model
could also capture non-price effects that contribute to a higher consumption response to higher average price
levels. Awareness campaigns, for example, could make dynamic contract households more sensitive to higher

average prices, potentially contributing to the larger observed decrease in consumption.
gep P y ) g p
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7.2 Hourly Consumption Response to Dynamic Pricing

This section interprets the results presented in Chapter 6 while addressing our first research question:

What is the effect of intra-day electricity price fluctuations on hourly household electricity consumption?

7.2.1 Key Findings Related To RQ1

Regression results presented in Section 6.2 indicate that, in response to the price shock, the dynamic contract
household reduced their average hourly electricity consumption by 3.45% more on weekdays and 3.97% more
on weekends compared to fixed contract households. As opposed to our DID model, the complementary
model isolates intra-day price fluctuations more directly. Complementary model regression results indicate
that dynamic contract households reduced their average hourly electricity consumption by 2.17% on week-
days and 2.9% during weekends compared to households with fixed contracts. These results corroborate
our DID findings, demonstrating that households reduce electricity consumption in response to intra-day
changes in hourly prices. As explained in Section 7.1, the difference between both models highlights that
households do not only respond to intra-day price fluctuations, but also to (awareness of) higher overall price
levels. Contrary to Hofmann and Lindberg, 2023, who did not find evidence for intra-day price responsive-
ness, our complementary model results do highlight the existence of this type of short-term responsiveness.

Crucially, while statistically significant, the estimates represent an average effect over a group of house-
holds with diverse mean consumption. As a result, the absolute kWh reductions are likely to vary substan-
tially, being more pronounced for high-consuming households and relatively small for low-consuming ones.
Although the approximation in percentage terms improves interpretability, the average percentage change
might still not be representative of every household during every hour as a result of the positive skew in
average hourly consumption data.

That said, the observed differential reductions'*

in consumption among dynamic contract households point
to increased responsiveness to the 2021 price shock, which was characterized by both higher electricity prices
and intra-day price volatility. This negative relationship aligns with the standard microeconomic theory in
which consumers are expected to be sensitive to price fluctuations in their effort to optimize utility (Sec: 2.4).
Moreover, our findings support the conclusion drawn by Buckley, 2020, who report a 3.91% reduction in con-
sumption and argue that incentivizing demand reduction during high price periods is effective. In contrast,
our findings contradict the absent differential effect between RTP and non-RTP contracts found in Spain by
Fabra et al., 2021. This contradiction may be explained by the significant price variation in our dataset, which

was not present in the Spanish study.

The magnitude of the observed reduction suggests households are slightly more responsive during weekends
compared to weekdays. This finding highlights the variation between weekend and weekday consumption
flexibility, and could be related to a difference in routine (Fig. 19). However, given that average price levels
were approximately 250% higher and intra-day price volatility about 85% higher during the price shock, the
observed effect size is relatively modest.

To summarize, the results indicate that dynamic contract households respond to increased intra-day elec-
tricity price fluctuations by decreasing electricity consumption. Their response is statistically significantly

different from fixed contract households, while the effect size appears to be modest.

Differential reduction: Reduction in our treatment group relative to our control group.
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7.2.2 Modest Effect Size

Although the estimated hourly reductions appear modest compared to the price shock, they reflect the un-
weighted average effect across all 24 hours a day. This means that hours with high consumption response
are potentially diluted by unresponsive hours. Consequently, the average hourly estimate levels out hetero-
geneity of household consumption patterns throughout the day, which provides a conservative (or realistic)
bottom-line estimate rather than an overestimate. In contrast, estimates that focus specifically on peak reduc-
tion periods or daily, weekly, or monthly totals capture concentrated consumption reductions without this
dilution, making them appear larger even if the total amount of saved electricity is comparable.

Our estimates, particularly the complementary model, capture very short-term consumption changes, which
could help explain the lower-than-expected magnitudes. Since electricity prices for dynamic contract house-
holds are set only one day in advance, any hourly consumption response to price changes must occur with
only one day’s notice, which is a very short-term response. Strict model specifications may contribute to
low effect sizes. The inclusion of our two-way fixed effects (defined in Section 5.2.3) absorbs a large amount
of variation. Our Fixed Effects (IDxHour) effectively restricts consumption variation to differences within a
household for the same hour of day during different days. In addition, our Time Fixed Effects (DateTimex-
PriceArea) only leaves the relative difference between dynamic and fixed contract households within the same
hour and price area unabsorbed. While this approach may yield more conservative estimates, its strength lies
in the stricter definitions that improve causal interpretability, thereby providing more robust insights into the

direct impact of price changes.

7.2.3 Comparison to the original study

Surprisingly, the Norwegian study using the same consumption dataset found a higher average consumption
reduction of 11.4% (Hofmann & Lindberg, 2023). This divergence could be attributed to both methodological
differences and the defined focus period of the price shock. Although not explicitly mentioned, Hofmann
& Lindberg (2023) seem to have treated the dynamic contract group and fixed contract group as the same
in their analysis. Their reported 11.4% reduction thereby reflects an overall drop in consumption, whereas
our estimate represents the decrease in consumption relative to households with fixed electricity contracts. If
households with fixed contracts also reduced consumption during the price shock, this could help explain
the smaller effect size observed in our study. Furthermore, unlike our more rigorous two-way fixed effects
approach, Hofmann & Lindberg (2023) mostly focused on time fixed effects, which could potentially lead to
overestimation of effects attributed to the price shock. Finally, Hofmann & Lindberg (2023) used a broader
time frame than our study. While we focused exclusively on the official winter months, their analysis spans
from November to March. Data exploration (Fig. 11) revealed these additional months featured price peaks,
which could induce greater consumption reductions and thus contribute to their larger estimate. However, it
is unlikely that the inclusion of just two additional months fully accounts for the magnitude of the difference.
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7.3 Understanding the Price Response Mechanism

This section interprets the results presented in Chapter 6 while addressing our second research question:

To what degree do higher intra-day electricity prices lead to a shift in consumption from peak to off-peak hours?

7.3.1 Key Findings Related To RQ2

Our second research question focuses on the mechanism by which households respond to fluctuating intra-
day electricity prices. Section 7.2 discussed that dynamic contract households decrease average hourly elec-
tricity consumption in response to higher price levels and more intra-day volatility. While these results did
not specify the type of response behavior, the increase in consumption reduction in response to higher prices
suggests, in itself, a potential load-shifting capability of households. In other words, if households respond to
higher hourly prices by reducing consumption, they are also likely to increase consumption in hours where
the price is low. Regression results from Section 6.3 shed additional light on the mechanism by which house-

holds respond.

DID results indicate an absolute 0.0886 kWh (~3.3%) reduction during weekday peak hours, while a 0.1068
kWh (~4.0%) reduction is attributed to weekend peak hours. These absolute reductions are slightly larger
in magnitude than the average hourly reductions presented in Section 6.2, supporting the idea that the dif-
ferential reduction of dynamic contract electricity consumption is more prominent during hours where price
is peaking. While inconclusive, our findings show close similarity with the average peak hour consumption
reduction of 2.92% found by Hofmann and Lindberg, 2024.

Interestingly, the complementary model does not yield higher estimates when peak and off-peak hours
are included as separate regressors, producing estimates of -0.0279 kWh for weekdays and -0.0489 kWh
for weekends. While households are still price sensitive during peak hours!®, price sensitivity is lower in
magnitude than the average hourly response presented in Section 7.2. Although this sounds contradictory
to the DID results from the preceding paragraph, which indicate household kWh reductions are larger on
average during peak hours, the observed difference can be explained by the way peak hours are defined and
by the specific structure of the complementary model. Whereas our DID model captures overall consumption
reductions during peak hours, the complementary model estimates marginal price responsiveness to within-
peak-hour price variation. The lower estimate, therefore, reveals that households are less price sensitive to
within (already expensive) peak hours, meaning that a 1 NOK increase in price leads to a smaller decrease
in consumption. Households may, however, anticipate high peak-hour prices and shift their consumption be-
forehand. Such anticipatory behavior is not captured by the complementary model, and would both explain
the low regression estimates, as the difference with the results of the DID model.

In contrast to our expectations, off-peak hours, where prices were at least 20% lower than average for that day,
did not yield statistically significant results in either model, leaving the null hypothesis unrejected. Nonethe-
less, the statistically insignificant results still yield meaningful insights. The difference between peak and
off-peak consumption response suggests households did not engage in pure load-shedding behavior, as this
would mean off-peak hours would also see consumption reductions in response to the price shock. The
observed response is insignificantly different from zero, which indicates that the data do not provide strong
enough evidence to distinguish an effect from zero, suggesting that the effect could be zero, positive, or neg-
ative. While inconclusive, a potential zero effect does not necessarily rule out load shifting behavior. Many

15E.g., a 1 NOK increase in price decreases consumption during weekday peak hours by an average 0.0279 kWh
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off-peak hours are nighttime hours, making it more difficult for the average household to shift its consump-
tion. Hours with a likely consumption response may be diluted by unresponsive hours, lowering the overall
estimate and potentially explaining an insignificant result. In addition, our complementary model is likely to
have a close-to-zero effect during off-peak hours, as price sensitivity within off-peak hours is expected to be
low. Consumers tend to increase consumption during off-peak hours due to the relatively lower prices com-
pared to peak hours. This substantial price difference reduces the incentive for further price responsiveness

within off-peak periods.

7.4 Moderating Role of Household Characteristics
This section interprets the results presented in Chapter 6 while addressing our third research question:

To what extent do household characteristics moderate the effect of price changes on electricity consumption and load
shifting?

Regression results presented in Section 6.3 split Peak and Off-Peak effects for three different household char-
acteristics branches, five characteristics in total. Absolute DID results indicate that EV households displayed a
higher average hourly reduction in consumption in peak hours compared to the average household. Further-
more, EV households do exhibit considerable signs of load-shifting behavior, as they subsequently increase
off-peak consumption by a statistically significant amount. Complementary model results confirm a similar
relationship. Peak hour price sensitivity is higher in absolute magnitude for EV households relative to the
average households. These findings provide strong support to prior literature indicating the same positive
influence EV ownership can have on price responsiveness and load shifting behavior (Hofmann & Lindberg,
2023; Moller Andersen et al., 2024; Wang et al., 2018). Surprisingly, for both models, the estimate is not sig-
nificant for weekends, highlighting EV household data that could feature more variation within the sample
and more heterogeneity in this period. EV household consumption responses may be more heterogeneous
on weekends, as the absence of work-related time limitations allows for greater flexibility in when and how
they respond to price signals. Both the higher absolute reduction (DID) and higher sensitivity (Complemen-
tary) during peak hours, compared to average households, indicate households that own an EV have a more
pronounced consumption response. However, since EV households also have a higher baseline consumption,
their relative response in percentage terms is similar to average households (approximately 3.4% on week-

days, and about 3.7% during weekends).

Interestingly, households that own an EV and choose to smart charge their vehicle, demonstrate an even
higher absolute consumption response for both weekdays and weekends. Smart charging households again
display considerable load-shifting behavior. The complementary model results also indicate a greater re-
duction in consumption during peak hours in response to a 1 NOK increase in price. This finding adds to
existing literature that suggests enabling technology has the potential to improve household responsiveness
to price changes (Allcott, 2011a; Bedir et al., 2013; Bobbio, 2021; Fabra et al., 2021; Faruqui & Sergici, 2013;
Ozkan, 2016; Parrish et al., 2019). That said, as baseline consumption for EV households and smart charging
households is not fully comparable, these results are not entirely conclusive on increasing price flexibility.
They do, however, indicate that higher-consuming households also exhibit higher electricity consumption
reductions, suggesting they could play a more pronounced role in resolving the issue of peak loads on power
grids. In addition, regression estimates indicate that the average peak hour consumption reduction is smaller
than the average off-peak hour consumption increase, suggesting there is evidence of a potential rebound
effect for this household subgroup. Notably, this rebound effect is only observed among smart charging
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households, highlighting the role of EV charging flexibility in shaping load-shifting behavior. As shown in
Figure 23, daily consumption patterns reveal smart charging household consumption peaks during the night,
while these typically represent low-demand hours for other households. This pattern, combined with the
regression estimates, suggests that smart charging households are significantly more effective at shifting EV
charging to off-peak hours.

Electricity Consumption Pattern by EV Ownership

Average hourly demand across household subgroups in Winter 2021

Demand (kWh)

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hour of Day)

Trend EV Ownership — EV — NoEV — Smart Charging EV

Figure 23: Daily average electricity consumption patterns for three different EV subgroups during weekdays. The average electricity
consumption is calculated on an hourly basis per subgroup. A linear trend line is added. The plot shows differences in the average
consumption level per household subgroup during the winter of 2021. Households without EV consume the least electricity on an
hourly basis, whereas households that smart charge their EV consume the most. The consumption pattern of smart charging households
features a third consumption peak during the night. We created this figure for this thesis. The figure is created with R.

The active daily monitoring of electricity prices does seem to moderate the effect of price changes on electricity
consumption. Both the absolute reduction in peak hour consumption and the sensitivity to price during peak
hours are greater than those observed for the average household. This finding demonstrates the importance
of awareness in household responsiveness to price changes. It is important, however, to recognize that
awareness may itself be influenced by other underlying characteristics, making it a proxy for the true driver
of the effect. For example, if households are only checking electricity prices because they own an EV, then
the observed effect should be attributed to EV ownership instead of awareness.

7.5 Internal Validity

In this section, we critically examine the internal validity of this study. We assess the internal validity of key
assumptions that underpin our analytical approach and the use of Norwegian data. We discuss the extent
to which the results presented in this thesis serve as empirical evidence for a causal relationship between
dynamic electricity pricing and consumption flexibility. First, the key assumptions of our approach!® are
reiterated.

16First introduced in Section 5.5
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7.5.1 Parallel Trends Assumption

Our models rely on the Parallel Trends Assumption that states the treatment and control groups should
have similar pre-treatment trends. Although it is reasonable to assume that households with fixed-price
contracts do not respond to a price shock, variation in prices during the pre-treatment period could still
induce some price-responsive behavior in dynamic contract households. This would imply that even under
normal conditions, there may be minor differences in consumption patterns between households with fixed
and dynamic contracts. These potential (mild) violations of the parallel trends assumption challenge the
internal validity of our models. However, even if the parallel trends assumption is not perfectly satisfied, our
approach is still highly informative. The goal of this study is to assess the influence of dynamic pricing on
hourly consumption. As we compare price responsiveness to the electricity price shock with and without
exposure to real-time prices, the current method remains appropriate.

7.5.2 Fixed-Contract Households as Control Group

When taking fixed-contract households as a control group, we assume these households are not exposed to
the price shock. If, however, a fixed contract was renewed during the price shock, the household is exposed
to the elevated average price levels associated with the price shock. This exposure could then also induce a
consumption response among fixed contract households, which would violate the models assumption of no
reaction in the control group. It is, however, important to consider the implications of such a violation. A
price (shock) induced consumption response among fixed contract households would reduce the difference
in consumption response with our treatment group. As a result, the estimated treatment effect would be
biased toward zero. In other words, both models are more likely to underestimate the effect than to overstate
the difference between groups. The severity of such a violation would, therefore, depend on whether or not
we find a statistically significant effect. If no treatment effect is found, a potential violation of this assumption
could cast doubt on the validity of our results. In contrast, for any nonzero result, we know that a potential
violation would bias the estimate towards zero, meaning that our results represent a conservative estimate of
the true effect. This does not hurt our efforts to present evidence for a causal relationship.

7.5.3 Price Exogeneity

The exogeneity of price is an important assumption in our model. As mentioned in Section 3.1, some other
studies specifically use 2SLS instead of OLS to account for possible endogeneity problems with the price
variable (Fabra et al., 2021; Hirth et al., 2024). These studies argue that price of electricity is the result of
the supply-demand clearing mechanism, and that a demand response will consequently result in a change
in price. Although we acknowledge this price mechanism in Section 2.2, we assume that our strategy is
justified because of the day-ahead price setting feature in RTP contracts. Consumer prices are ‘set’ one day
in advance, interrupting the (short-term) feedback loop to price. Therefore, the household response to these
prices will not affect the previously communicated day-ahead prices, making price exogenous in the short
term. Naturally, when considering the hypothesized price-demand response, price could still be endogenous
in longer time frames. We assume, however, that electricity procurement is based on longer time frames than

our dataset, discounting potential price endogeneity.

7.5.4 Linear Relation Between Price and Consumption

Our adoption of the OLS estimation technique assumes the relation between price and consumption is lin-
ear. While OLS is a common technique, there exists empirical evidence suggesting the effect of price on

1"‘U Delft Remco Y. Hoen Page 49



7 DISCUSSION

demand might not be linear. For example, a recent Norwegian experiment suggested households increase
their consumption response when prices are higher than 15 NOK/kWh (Hofmann & Lindberg, 2024). That
said, even if the underlying relationship is not fully linear, OLS can still be highly informative in detecting
whether a relationship exists. However, incorrectly assuming linearity can misestimate the true effect. The
models average the effect, which, in the case of a nonlinear relation, could understate the response during
price spikes and overstate it in others. The models are also not equipped for recognizing response saturation

or potential price thresholds.

7.5.5 Peak / Off-Peak Definition

In addition to the assumptions above, the implications of our peak/off-peak hour definition also deserve
attention. We included these types of hours to investigate the mechanism by which households respond to
price changes (i.e., if households shift consumption from peak to off-peak hours). Our current definition is
price-driven, meaning we define peak and off-peak hours by looking at relative daily price differences. As
illustrated in Figures 12 and 13, this definition predominantly identifies peak hours during the daytime hours
between 8 AM and 8 PM. Off-peak hours mostly coincide with nighttime hours (11 PM - 7 AM). While this
definition is well-suited for understanding price responsiveness, it also comes with certain caveats. Our rel-
ative approach results in fewer hours identified during the treatment period compared to the pre-treatment
period. Moreover, not every day has to feature a peak or off-peak hour with our current approach. This
approach could hurt internal validity if the peak/off-peak classification correlates with unobserved factors
that also affect consumption. We expect the severity of this threat to be minimal, as our two-way fixed effects
are very comprehensive and should control for most confounding factors. Furthermore, the alternative where
we define peak/off-peak hours by fixed daily periods also has limitations. It could, for instance, classify cer-
tain hours as ‘peak’ even though prices are not actually elevated during those times, potentially leading to
misinterpretation. In Section 7.7.4, we assess the robustness of our results by re-estimating the model using

several alternative definitions for peak and off-peak hours.

Last but not least, some model estimates are only moderately significant at the 10% level, just above the
conventional 5% level. These moderately significant estimates indicate weaker statistical evidence against the
null hypothesis. Although this is not ideal, we argue that the findings remain informative because the esti-
mates with marginal significance typically stem from small subsamples, limiting the statistical power. These

estimates should be interpreted as suggestive or tentative.

7.6 External Validity

The generalizability of our findings to any broader population mostly depends on the representativeness
of the sample. This section assesses the external validity of this thesis by examining how well the sample
reflects the characteristics of the target population and the extent to which the results may apply beyond the
Norwegian context.

7.6.1 Sample Representativeness

The representativeness of our households consumption data can be investigated by comparing electricity
consumption from our sample to the aggregated electricity consumption data presented in Section 4.2.2.
Aggregate consumption data presented in Table 1 appears to be normally distributed, as indicated by the

small difference between the mean and median hourly consumption. In contrast, our sample features lower
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medians for both price areas, while the mean consumption for region NO5 is larger. This observation demon-
strates that our consumption data is positively skewed, where high-consuming households are potentially
overrepresented. Over-representation could harm generalizability if we do not acknowledge the existing
household heterogeneity in our effect estimates. Although a potential overrepresented group directly im-
pacts the effect size, the effect direction is less likely to be affected, unless high-consuming households
respond fundamentally differently from low-consuming households. Moreover, this issue is less likely to
distort results within household subgroups that already exhibit higher baseline consumption. For instance,
households that own an EV tend to consume more electricity on average than non-EV households. As a
result, the potential over-representation of high-consuming households has a smaller impact on estimates
within this subgroup, since the sample more accurately reflects the underlying distribution of consumption

in the relevant (sub)population.

7.6.2 Sampling Bias

Two notable sources of bias may undermine the external validity of this study. Unfortunately, while we ac-
knowledge their potential presence, our usage of pre-existing data limits our ability to assess the extent to
which these biases are present in our sample. First, selection bias in contract types could weaken external
validity. The current context allows households to choose their type of electricity contract. If households opt
into dynamic contracts, it could mean they are also more energy-conscious or price-aware. This raises the
question about the generalization of our findings to all households. Suppose dynamic pricing were adopted
more broadly or made the default. In that case, households that would not have chosen it voluntarily may
be less responsive to price signals, either due to lower flexibility or lower awareness. That said, while our
results provide evidence of behavioral responses under voluntary exposure to dynamic pricing, they may
overestimate household sensitivity to price variation if fixed contracts were to disappear from the electricity

market.

Second, self-selection bias could exist in the original data collection process. Households that participated in
the survey and were willing to share consumption data could be more socially engaged, educated, or climate-
aware than the general population. Since our findings rely on pre-existing data, we are unable to evaluate
the presence of this bias or correct for it directly.

That said, the data’s origin outside an experimental setting could also strengthen generalizability. The
potentially lower threshold for sharing data compared to participating in an experiment may also reduce
self-selection bias. Households do not need to be strongly committed to the study’s underlying cause to
consent to data sharing, which could broaden the participant pool beyond those highly engaged with the

topic, thereby reducing self-selection bias.
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7.7 Robustness Checks and Sensitivity Analyses
7.7.1 Parallel Trends Assumption

As suggested while discussing the internal validity of our study, our models rely on the Parallel Trends As-
sumption. To assess the robustness of this assumption, we conduct a placebo test by estimating an alternative
regression where households are treated with a placebo instead of the original price shock. We define the
placebo by splitting the original pre-treatment period (pre-shock winter) in half, and classifying the second
half as treatment. This regression, therefore, calculates the differential response to a placebo treatment. If the
Parallel Trends Assumption holds, we expect this regression to return insignificant or zero effects.

Regression estimates of the placebo test are shown in Appendix C.1. The average hourly differential re-
sponse is never significant for both the DID and complementary model, revealing that dynamic contract
households did not change behavior relative to fixed contract households in response to the placebo. This

demonstrates the robustness of our Parallel Trends Assumption and indicates it holds.

7.7.2 Fixed Effects

As explained in Section 5.2.3, our methodological approach applies two-way fixed effects that control for
unobserved heterogeneity. Our Fixed Effects control for unobserved heterogeneity in household-specific con-
sumption patterns, interacting ID with all daily hours. Our Time Fixed Effects specification controls for
unobserved heterogeneity in region-specific effects that are constant for all households within the region,
but vary across regions and over time. In this section, we discuss the importance of such strict controls by
investigating whether our findings remain valid under a more lenient two-way fixed effects definition. We
recalculate both models under more straightforward two-way fixed effects terms: Household ID and a time
index. This assumes that all households have similar consumption profiles and that the region is of little

importance. Regression results are reported in Appendix C.2.

Although the average hourly differential response is similar across classifications, subgroup analysis reveals
a different story. Effect sizes are often either larger or insignificant when comparing the simple fixed effects
to our original version. This is especially the case for the homeowner subgroup (see Appendix B). The home-
owner subgroup features many differences. While our advanced fixed effects do not indicate a response, the
simple fixed effects method suggests renters engage in load shifting whereas home owners do not.

The difference in regression results suggests that our simpler model, which controls for less variation, is sus-
ceptible to omitted variable bias. As fixed effects terms demeans all observations, it controls for systematic
differences in baseline consumption between households. However, since this FE term only controls for the
mean household consumption, it does not account for household-specific consumption patterns throughout
the day. For example, consider two households with the exact same mean electricity consumption. The first
household has a daytime work schedule, while the other works night shifts. Although their total electricity
might be the same, their hourly consumption patterns differ substantially!”. As a result, consumption vari-
ation might just as well be caused by differences in daily routines, rather than a response to price changes.
Without controlling for this, our model would suffer from omitted variable bias, leaving some household-
specific heterogeneity unaccounted for, which explains the difference in estimates. Our time fixed effects
could also explain the difference. As mentioned in Section 4.2.3, our household data originate from the two

7The differences in the consumption profile between households in our dataset are also described in Section 4.2.3 and Figure 9
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Norwegian bidding areas, NO1 and NO5, which are approximately 300 kilometers apart (Oslo to Bergen).
Weather events in NO1 do not have to coincide with those in region NO5. Households, therefore, do not
experience the same event at the same time. If we assume they do, we misclassify our time fixed effects term,
leading to biased estimates.

By controlling for household specific routines (ID-Hour) and time-related shocks in each region (PriceArea-
DateTime), the original two-way fixed effects classification provides a more credible estimate of the causal
effect. These differences highlight the existing heterogeneity in household responsiveness and the importance
of strict two-way fixed effects assumptions in studies on household electricity consumption.

7.7.3 Clustered Standard Errors

As described in Section 5.2, standard errors are currently clustered at the household (ID) level. This reflects
our assumption that the variation left unexplained by both the regressors and the two-way fixed effects is
correlated within individual households (across different hours). A more restrictive assumption is that resid-
ual correlation arises only within the same household-hour combination (IDCEHour). In other words, the
original assumption allows residuals at different hours (e.g., 7 PM and 10 PM) within a household to be
correlated, while the more restrictive assumption limits correlation to residuals observed at the same hour
across different days for that household. To assess the robustness of our original clustering assumption, we
also report our results while clustering SEs at the IDxHour level in Appendix C.3.

Standard errors decrease for all estimates, which leads to higher statistical significance. This outcome is
not surprising because clustering at a more restrictive level, increasing the amount of clusters, effectively
assumes greater independence among observations. Interpreting these robustness results, we find stronger
evidence of load-shifting behavior in both the EV and Smart Charging subgroups. Additionally, the results
suggest that households actively monitoring prices engage in load shifting during weekends. Interestingly,
we find no evidence of similar behavior on weekdays.

7.7.4 Peak/Off-Peak Definition

As indicated in Section 7.5, our approach to defining peak and off-peak hours comes with certain caveats.
Currently, peak hours are defined as hours where prices were at least 20% above the average price of that
day, and vise-versa for off-peak hours. To assess the robustness and sensitivity of our results, as well as the
implications drawn from them, regarding the definition of Peak and Off-Peak hours, we re-estimated our
models using two alternative classification approaches. First, we define peak and off-peak hours by a fixed
set of hours: 4 PM - 8 PM for Peak hours, and 12 AM - 4 AM for off-peak. This approach ensures every day
has both peak and off-peak hours, and there is no disparity in the amount of classified hours between the
pre-treatment and treatment periods. Second, we adopt the same relative price-driven approach, but adjust
the threshold to a more radical 50% instead of 20%. Regression results for these two options are displayed in
Appendix C.4.

Re-estimating our models using two additional definitions yield consistent effect directions, suggesting ro-
bustness of our core findings. However, the estimated treatment effects size is observed to be sensitive to
our classification strategy. Our fixed-hours approach consistently produces larger magnitudes, sometimes
even twice as high, compared to the original approach. Peak hour reductions remain highest in the Smart
Charging subgroup, with an average hourly reduction of 0.4614 kWh or nearly 11% under the new definition.
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Interestingly, this suggests that households are responsive during late afternoon hours even when price levels
do not exceed the 20% threshold relative to the daily average. Put differently, if the average household is sen-
sitive to hourly price fluctuations, one would expect larger reductions in hours where the price is relatively
high (>20%); yet, this does not seem to be the case. The larger consumption decrease for this peak hour defi-
nition could indicate that household routines are more flexible during this time window. Households could
also be particularly responsive during common, well-known high-price hours out of habit, rather than due
to daily monitoring of electricity prices. This observation and its interpretation present an interesting case
for time-of-use (TOU) contracts'®. Increasing the predictability of high-price electricity hours makes it easier
for households to adapt their behavior, particularly among households without the enabling technology to
automatically respond to hourly price fluctuations. Following this logic, TOU contracts could serve as an
effective tool to incentivize consumer flexibility, while also reducing the cognitive burden associated with

continuous price monitoring inherent in RTP contracts.

The strongest evidence for load shifting behavior, where off-peak consumption increases rather than de-
creases, disappears when defining off-peak as night hours. This may suggest that households do not shift
consumption to night hours, and that our original definition may better capture the hours where actual load
shifting occurs. When setting the threshold at 50% we see similar, slightly smaller, peak-hour reductions
for average households and EV-owning households. These lower estimates are counterintuitive, as theory
would suggest that larger intra-day price differences should provide greater incentives to shift consumption.
This may indicate that households have already exhausted most of their flexibility at the 20% peak-hour
threshold and are unable to reduce consumption further. Many other estimates are statistically insignificant,

which may be due to the low number of peak-hour observations exceeding 50% above the average daily price.

The sensitivity of treatment effects to our peak/off-peak definition highlights the importance of accurately
defining these hours to match them to research objectives. Our study primarily aims to investigate whether
dynamic contract households (and subgroups) respond differently to a price shock. Therefore, the focus lies
more on the direction of the effect and the relative differences across subgroups, rather than on the exact mag-
nitude of the response in any particular hour classification. Since our key implications relate to whether and
how different households adjust consumption in response to price shocks, rather than determining an exact
kilowatt-hour shift, the observed sensitivity does not undermine our interpretation. However, as discussed
above, interpreting the changing magnitudes across different peak hour classifications offers an interesting
perspective on why the case for RTP contracts may be weaker than often assumed.

7.8 Broader Interpretation

Our findings suggest that dynamic contract households reduce their electricity consumption when exposed
to higher and more volatile electricity prices. This confirms that price signals can incentivize more responsive
consumption behavior and, in turn, help reduce peak loads. Shifting consumption from peak hours to off-
peak hours appears to be more pronounced among households with higher consumption that have shiftable
loads. In our study, this group was represented by households owning EVs. As suggested in previous lit-
erature, enabling technologies like smart charging appear to be very effective in facilitating consumption
flexibility. Interpreting the direction of effects would advocate for incentivizing demand flexibility through

dynamic contracts as a (partial) solution to overloaded power grids.

BIntroduced in Section 2.3
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A broad extrapolation of our results reveals the potential scale of the average effect. Assuming all house-
holds in the NO1 and NO5 regions were on dynamic contracts and uniformly exhibited the average peak
hour reduction of 0.0886 kWh, this would translate into an estimated 3.3% reduction in average peak load.
The 3.3% reduction is approximately equivalent to 57 MWH in aggregate hourly consumption per bidding
area'®. Such a reduction could relieve pressure on the power grid or create capacity to connect around 21,000
additional households in each region without requiring further grid investments. Although this might ap-
pear to be a promising result, the order of magnitude is rather disappointing. Although a 3.3% peak hour
reduction is similar to the response found in other studies (Buckley, 2020; Hofmann & Lindberg, 2024), the
magnitude is still lower than expected considering the exceptional nature of the price shock?’.

Low estimates could be (partially) explained by our econometric modeling approach, as suggested in Sec-
tion 7.2.2. In addition, behavioral aspects could be constraining the very short-run response investigated
in this study. The short-term hour-to-hour reduction investigated in this thesis allows for very little plan-
ning regarding electricity consumption. Households might be more responsive to multi-day trends rather
than intra-day fluctuations. As suggested in Section 7.7.4, predictable peak price hours could contribute to
increased demand-side flexibility. Core consumption like lighting, heating, or refrigeration can’t easily be
decreased hour-to-hour without inconvenience. Some households may therefore have limited flexibility in

their electricity consumption.

Although the magnitude of effects is relatively small, it is a crucial confirmation on the existence of short-
term demand-side flexibility. Our methodological approach ensures the estimated effect is more likely to be
a conservative estimate rather than an overly optimistic one. Furthermore, short-run flexibility can form the
building block for larger behavioral shifts in the long run. The average hourly response may therefore seem
tiny, but when aggregated across many hours, and transitioned into a longer-term effect, the cumulative
impact can still be substantial. Finally, the differences in estimates between subgroups highlight potential

barriers and has the potential to guide policymakers to increase demand-side flexibility in the future.

7.9 Scientific Contribution

This study contributes to existing literature on residential electricity demand flexibility by examining how
dynamic electricity pricing influences household consumption behavior. By comparing dynamic and fixed
contract households, the study addresses a crucial knowledge gap: to what extent do dynamic price signals
successfully encourage more flexible consumption patterns? Using high-frequency hourly data, we evaluated
short-term price responsiveness and explored how household characteristics shape this response, as well as

the prevalence of load shifting.

Using hourly data enables us to capture very short-term consumption responses in a highly relevant country
context. Moreover, the price shock in our dataset approximates a natural experiment, providing a rare oppor-
tunity to deliver strong empirical evidence from a real-world setting. Our dual-model approach combines
two perspectives, offering a deeper and more nuanced understanding of household responsiveness to the

price shock.

19Based on an estimated average household peak-hour consumption of 2.702 kWh and total residential hourly consumption of 1,740
MWh during the pre-treatment winter period
20250% increase in average hourly price and 85% increase in intra-day price volatility.
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Compared to the original study by Hofmann and Lindberg, 2023, we make several scientific contributions.
First, we calculate differential consumption reductions by comparing households on dynamic contracts with
those on fixed contracts, isolating the effect of dynamic pricing on behavior. Second, we refined the time
frame of interest by only focusing on official winter months (Dec-Feb). While the original study compared
the price shock period (November 2021 to March 2022) with a broader reference period (October 2020 to
July 2021), we instead compared two winter seasons directly, ensuring that all months in the treatment and
reference periods overlapped. Third, while the original study relied on aggregated household consumption
data, we use the available household-level data directly, allowing us to capture more granular effects. Finally,
we employ advanced two-way fixed effects models that control for greater unobserved heterogeneity, thereby
strengthening the causal interpretation of our results.

Our findings contribute to the literature by showing that households with dynamic electricity contracts re-
duced electricity consumption more than those with fixed contracts in response to intra-day price fluctuations
during the 2021 price shock. We also find that sensitivity to a 1 NOK price increase was higher during the
price shock period. While this aligns with previous studies, we provide additional empirical evidence high-
lighting the crucial role of enabling technology. Specifically, households with smart EV charging exhibited the
largest consumption reductions. Finally, by combining our main results with robustness checks, we suggest
that TOU contracts may be sufficient to encourage flexibility, potentially reducing the need for RTP contracts.
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8 Conclusion

8.1 Summary of Findings

Using high-frequency Norwegian consumption and price data, enriched with household characteristics, this
study contributes to the understanding of how dynamic pricing influences residential electricity consumption
patterns. The following main research question guides this thesis:

How do dynamic electricity prices influence intra-day electricity consumption patterns among residential consumers?

Based on observational Norwegian data, this study provides empirical evidence that exposure to dynamic
electricity prices during the winter season is associated with increased intraday hourly price sensitivity and a
greater overall decrease in consumption in response to the 2021 energy price crisis, compared to households
with fixed-price electricity contracts. Specifically, we expanded this analysis by investigating differences
between peak and off-peak responsiveness and heterogeneity across household groups. Evidence reveals the
existence of intraday price sensitivity by showing a 3.3% consumption decrease during hourly intraday price
peaks, but no clear response when the intraday hourly price is relatively low. Moreover, separate subgroup
regressions highlight different effect sizes, indicating heterogeneity in price responsiveness. The differential
response during peak price hours is greater for households that own an EV and highest for households
that charge this EV with smart technology. These two subgroups also exhibit strong evidence of load-shifting
behavior, which suggests they are well-positioned to contribute to demand-side flexibility. Finally, households
that actively monitor electricity prices also exhibit higher absolute peak consumption reductions.

8.2 Policy Implications

Although our results do not support the notion that the nationwide adoption of incentivizing demand flexibil-
ity through dynamic electricity contracts is likely to resolve the issue of overloaded power grids immediately,
they could still have considerable potential in combination with supporting policies and technology. Our
findings support evidence of consumer sensitivity to dynamic electricity prices. Households are shown to
respond to intra-day peak prices by decreasing consumption. These behavioral responses strengthen the
case for implementing or expanding peak-hour tariffs, complemented by off-peak discounts, as a means to
encourage more flexible and efficient electricity usage. Widening the gap between peak and off-peak prices
amplifies the financial incentive for households to shift consumption away from peak hours.

Building on this, although not a primary focus of this study, evidence from our robustness analysis (Sec.
7.7.4) suggests that households may be particularly responsive during predictable high-price hours. This
implies that, in the short to medium term, TOU contracts could provide sufficient incentives for households
to reduce consumption. The simplicity of TOU contracts potentially enables broader household participation
compared to the more demanding RTP contracts. They are also effective in achieving peak-load reductions,
thereby helping to delay costly grid investments.

Looking forward, based on theory RTP contracts are expected to deliver greater economic efficiency by align-
ing consumption more closely with real-time supply-demand conditions. While households may currently
be better suited to TOU contracts, policy interventions should nonetheless aim to enhance household respon-
siveness to RTP contracts. This is especially important as the share of intermittent electricity sources grows
and enabling technologies become more prevalent. The effectiveness of RTP contracts, however, ultimately
depends on household readiness and the widespread adoption of enabling technologies.
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Policy interventions to accelerate the adoption of such technologies could increase household price respon-
siveness and flexibility, thereby improving household readiness to interact optimally with RTP contracts.
While our smart-charging results already illustrate the potential of RTP contracts, similar gains may be
achieved in other areas of electricity use, such as through smart thermostats, lighting, laundry, or cooking

appliances.

8.3 Directions for Future Research

Despite the insights gained in this study, a comprehensive understanding of consumer price responsiveness
under dynamic pricing contracts requires further research. First, the rich Norwegian dataset at our disposal
features many characteristics that have been left unexplored. Future studies could leverage this data to in-
crease understanding of the effects of dwelling characteristics, such as household size, residence size, and
residence type. The socio-economic variables, income and education, could also be incorporated as explana-
tory variables. Further, analyzing demand-side flexibility in the context of heating consumption would be
highly interesting given its importance in Norwegian electricity consumption.

While our findings contribute to existing knowledge, they also raise questions based on the limitations of
this study. First, estimates are low relative to the severity of the price crisis, and could be biased toward
highly responsive households. This potential bias, in particular, represents a limitation of our study. Future
research could adopt a WLS method that assigns weights to households based on average consumption. This
would yield more representative estimates for the average effect, accounting for the positive skew in our

consumption data.

Second, a potential limitation of our study is the explicit focus on hour-to-hour consumption variation, which
may overlook more complex behavioral responses that extend across multiple hours. Future researchers could
introduce a time-lag to our models. Such an expansion would allow for delayed consumption responsiveness.
Third, as mentioned in Section 5.5 and 7.5.3, a potential limitation of this study is our exogenous electricity
price assumption. Future research could change our methodological approach towards 2SLS, taking an in-

strumental variable for electricity price, to investigate whether this changes our findings.

Finally, our subgroup analysis is conducted in separate regression models, limiting our ability to infer
whether the difference between dynamic contract subgroups is statistically significant. Future research could
investigate these within-dynamic contract household differences by using regression subgroups in a single
model. This would enable researchers to directly compare estimates, whereas we can only make suggestive

claims about the absolute magnitude of effects.

8.4 Final Statement

Our findings highlight that dynamic pricing encourages households to reduce consumption during peak
hours, confirming that price signals can influence intraday electricity use. This responsiveness is strongest
among households that actively monitor prices and those using smart EV charging, highlighting the impor-
tance of both awareness and enabling technologies. TOU contracts may currently provide sufficient incentives
to encourage a demand response because of their simplicity and predictability. In the longer term, however,
RTP type contracts have more potential to align consumption with real-time supply-demand conditions, par-

ticularly as intermittent electricity generation increases and enabling technologies become more widespread.
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Policies that promote the adoption of smart technologies can further enhance consumer responsiveness. De-
mand response initiatives could specifically focus on raising awareness and enabling more households to
directly monitor and engage with electricity price (signals). Although we find the effect to be more pro-
nounced during weekends, the practical relevance lies in the flexibility of weekday consumption, as this is
where grid stress is highest. The average weekday peak hour consumption reduction, is relatively low in
magnitude, and unlikely to resolve issues of grid overload by itself. However, we should recognize that
short-term consumption reductions can build towards higher long-term demand flexibility. Encouraging the
adoption of dynamic electricity contracts and implementing policies to enhance responsiveness could be a
meaningful part of a solution to help balance the grid.
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A SURVEY QUESTIONS

A Survey Questions

The dataset used for this Thesis includes a survey that explores household characteristics. A full list of all
questions in this survey is presented below.

Age?

Gender?

City?

Q1: Did you monitor your power consumption this winter?

Q2: How did you acquire information about your power consumption?

Q3: Why did you not monitor your consumption?

Q4: Did you monitor the variation in electricity prices from day to day and hour to hour this winter?

Q5: How did you acquire information about the electricity prices?

Q6: Why did you not monitor the electricity prices?

Q?7: Did you take any measures to decrease or move power consumption from hours with high prices this
winter?

Q8: Which measure did you implement?

Q9: Do you know how much the household has saved on the power bill as a result of the measures?
Q10: About how much has the household saved per month this winter as a result of the measures?

Q11: Do you feel that the measures you implemented were worth the savings on the power bill?

Q12: Why did you not take any measures?

Q13: What motivates you to reduce your power consumption in high price hours?

Q14: How much do you agree or disagree with the following statement? People who adjust their power
consumption based on price should be able to save on their power bill.

Q15: Would you or have you used a free information service that alerts you of high price hours the
following day?

Q16: How many persons does your household consist of, including yourself?

Q17: What age are the inhabitants of you household, including yourself?

Q18: Imagine you can buy smart devices for 5,000 NOK that will reduce your power bill by automatically
shifting parts of you consumption away from high price hours - without reducing comfort. How much
would you have to save every year to do it?

Q19: How many weekdays (Mon-Fri) on average was there anyone home in the day (9 a.m. to 4 p.m.) this
winter (Nov-Mar)?

Q20: What is the highest education in the household?

Q21: What is the combined gross income of the household?

Q22: What type of residence do you live in?

Q23: How big is the residence?

Q24: Do you own the residence?

Q25: Do you have a rental unit in the residence?

Q26: Does the rental unit have its own power meter?

Q27: How is the residence heated?

Q28: How is the tap water heated?

Q29: Do you own one or more electric car that is at least sometimes charged at home?

Q30: How is the car or cars normally charged?

Q31: Do you control the car charging to avoid hours with high prices?

Q32: What type of power contract do you have?
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B Home Ownership Results & Analysis

Table 8: Home Ownership Subgroup Results

Dependent Variable: Demand (kWh)

Model: (DID - Weekday) (DID - Weekend) (Comp - Weekday) (Comp - Weekend)

HomeOwner Subgroup

HomeOwner - Peak -0.0916*** -0.1120** -0.0288*** -0.0519**
(0.0303) (0.0481) (0.0092) (0.0236)

HomeOwner - OffPeak -0.0220 0.0217 -0.0227 0.0154
(0.0311) (0.0340) (0.0196) (0.0299)

Renter - Peak -0.0574 -0.0515 -0.0186 -0.0177
(0.0484) (0.0648) (0.0148) (0.0321)

Renter - OffPeak -0.0345 0.0176 -0.0273 -0.0229
(0.0401) (0.0420) (0.0254) (0.0386)

Fixed-effects

ID-Hour Yes Yes Yes Yes

PriceArea-DateTime Yes Yes Yes Yes

Fit statistics

Observations 2,497 536 1,014,624 2,497 536 1,014,624
R? 0.77711 0.76907 0.77711 0.76907
Within R? 247 x 1072 237 x 1072 2.99 x 10> 2.39 x 102

Clustered (ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Homeowners demonstrate a statistically significant decrease in peak consumption, while consumption re-
sponse by renters is never statistically different from zero. Hourly peak consumption decreased by an aver-
age of 0.0916 kWh during weekdays and 0.1120 kWh in weekends. Off-peak homeowner estimates did not
show a significant consumption response. Similarly, complementary model results show that homeowners
are significantly more responsive during peak hours than renters, as renters show no significant consumption

reductions in peak periods.

When focusing on the price responsiveness of homeowners as opposed to households that rent their homes,
results indicate that only homeowners respond to the price shock by decreasing average hourly consumption
in peak hours. Moreover, this peak hour reduction is higher in absolute magnitude compared to the average
household’s peak reduction, suggesting that homeowners may be more responsive. As homeowners have
full control over both appliance and dwelling factors (such as type of heating and dwelling insulation), this
could explain the increased response. Homeowners could be better equipped to respond to price changes
compared to the average household. Evidence on the ability of home ownership to moderate the extent to
which households shift consumption from peak to off-peak hours is not as strong as it was for EV owning
households. Although homeowners exhibit peak consumption reductions, no significant increase in off-peak
hours is observed. As mentioned before, this does not rule out load shifting behavior altogether, but does

suggest load shifting is less pronounced than it was for EV households.
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Estimates for renters were very low, and insignificant, suggesting renters with dynamic contracts did not
respond differently to the price shock compared to renters with fixed contracts. Furthermore, it highlights
the difference in consumption flexibility between homeowners and renters, a finding also reported by Frondel
et al., 2019. The behavior of renters could be explained by the structure of rental agreements, where electricity
costs could be included in a fixed rent. In such cases, the landlord is the actual holder of the dynamic pricing
contract. As a result, renters are effectively shielded from real-time price signals and are not directly exposed
to the price shock, thereby reducing their incentive to adjust their consumption. Though, based on the struc-
ture of the survey and alternative answer, it seems unlikely renters would say they have a dynamic price
contract if, in reality, they pay a fixed rate. A more plausible explanation could be that renters have limited
control over usage. Renters are likely to live in buildings where (water) heating is shared with the whole
building, limiting their influence on consumption. Additionally, neither landlords nor renters are strongly
incentivized to invest in energy efficiency upgrades or technological improvements to their dwellings. This
could lead to a situation where renters have minimal capacity to respond to price changes, or move specific

consumption to off-peak hours.
Renters are remarkably insensitive to price fluctuations. While it’s important first to understand the root

causes of this observation, enabling more flexible consumption among renters has strong potential to en-
hance the overall effectiveness of dynamic pricing.

1"‘U Delft Remco Y. Hoen Page 65



C ROBUSTNESS RESULTS

C Robustness Results
C.1 Parallel Trends Assumption

Table 9: Robustness Results Parallel Trends Assumption

Dependent Variable: Demand (kWh)

Model: (DID - Weekday) (DID - Weekend) (Comp - Weekday) (Comp - Weekend)

Variables

pPynamicContract - pyPriceShock 0.0358 0.0583 0.0342 0.1178
(0.0397) (0.0378) (0.0623) (0.0883)

Fixed-effects

ID-Hour Yes Yes Yes Yes

PriceArea-DateTime Yes Yes Yes Yes

Fit statistics

Observations 1,248,768 507,312 1,248,768 507,312
R? 0.81756 0.80907 0.81756 0.80907
Within R? 431 x107° 0.00011 1.86 x 10~° 9.8 x107°

Clustered (ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

C.2 Fixed Effects

Table 10: Simple Fixed Effects Regression Results

Dependent Variable: Demand_kWh

Model: (DID - Weekday) (DID - Weekend) (Comp - Weekday) (Comp - Weekend)

Variables

ppynamicContract - pyPriceShock -0.0815* -0.0930** -0.0494* -0.0672*
(0.0471) (0.0455) (0.0227) (0.0293)

Fixed-effects

1D Yes Yes Yes Yes

DateTime Yes Yes Yes Yes

Fit statistics

Observations 2,497,536 1,014,624 2,497,536 1,014,624
R? 0.74156 0.73274 0.74156 0.73274
Within R2 0.00018 0.00023 0.00020 0.00024

Clustered (ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

1"‘U Delft Remco Y. Hoen Page 66



C ROBUSTNESS RESULTS

Table 11: Simple Fixed Effects Regression Results - Subgroups

Dependent Variable: Demand (kWh)

Model: (DID - Weekday) (DID - Weekend) (Comp - Weekday) (Comp - Weekend)

Variables

Peak Hour -0.0111 -0.0896** -0.0097 -0.0415**
(0.0272) (0.0407) (0.0090) (0.0198)

OffPeak Hour 0.0473 0.0076 0.0213 0.0016
(0.0299) (0.0444) (0.0180) (0.0374)

Appliance Subgroups

EV - Peak -0.1755%** -0.0561 -0.0561*** -0.0274
(0.0553) (0.0708) (0.0158) (0.0347)

EV - OffPeak 0.2082*** -0.0587 0.1099*** -0.0392
(0.0644) (0.0687) (0.0380) (0.0583)

SmartCharge - Peak -0.2533** -0.2795 -0.0852** -0.1436
(0.1234) (0.1785) (0.0340) (0.0877)

SmartCharge - OffPeak 0.5340*** 0.4516** 0.2708*** 0.2809*
(0.1451) (0.1934) (0.0869) (0.1484)

HomeOwner Subgroup

HomeOwner - Peak -0.0094 -0.0876** -0.0093 -0.0409**
(0.0277) (0.0413) (0.0092) (0.0201)

HomeOwner - OffPeak 0.0424 -0.0008 0.0184 -0.0024
(0.0307) (0.0450) (0.0184) (0.0379)

Renter - Peak -0.0275 -0.1099* -0.0140 -0.0479
(0.0501) (0.0660) (0.0154) (0.0326)

Renter - OffPeak 0.0979** 0.0983* 0.0513* 0.0449
(0.0445) (0.0573) (0.0276) (0.0505)

Auwareness Subgroup

ActiveMonitoring - Peak -0.1568"** -0.1456*** -0.0478"** -0.0704***
(0.0357) (0.0401) (0.0105) (0.0197)

ActiveMonitoring - OffPeak 0.0236 0.0297 0.0099 0.0266
(0.0433) (0.0469) (0.0262) (0.0387)

Fixed-effects

ID Yes Yes Yes Yes

DateTime Yes Yes Yes Yes

Fit statistics

Observations 2,497,536 1,014,624 2,497,536 1,014,624

Clustered (ID) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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C.3 Clustered Standard Errors

Table 12: Robustness Baseline Results IDxHour Clustered SE’s

Dependent Variable: Demand (kWh)

Model: (DID - Weekday) (DID - Weekend) (Comp - Weekday) (Comp - Weekend)

Variables

pPynamicContract . pyPriceShock -0.0830*** -0.0945%** -0.0523*** -0.0694***
(0.0118) (0.0118) (0.0060) (0.0079)

Fixed-effects

ID-Hour Yes Yes Yes Yes

PriceArea-DateTime Yes Yes Yes Yes

Fit statistics

Observations 2,497,536 1,014,624 2,497,536 1,014,624
R? 0.77715 0.76913 0.77716 0.76913
Within R? 0.00021 0.00027 0.00025 0.00029

Clustered (IDxHour) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 13: Robustness Subgroup Results IDxHour Clustered SE’s

Dependent Variable: Demand (kWh)

Model: (DID - Weekday) (DID - Weekend) (Comp - Weekday) (Comp - Weekend)

Variables

Peak Hour -0.0886*** -0.1068*** -0.0279*** -0.0489***
(0.0143) (0.0287) (0.0042) (0.0139)

OffPeak Hour -0.0231* 0.0214 -0.02317** 0.0121
(0.0137) (0.0198) (0.0087) (0.0176)

Appliance Subgroups

EV - Peak -0.1502*** -0.1610*** -0.0497*** -0.0781***
(0.0188) (0.0358) (0.0055) (0.0176)

EV - OffPeak 0.1440*** 0.0936*** 0.0683*** 0.0850***
(0.0239) (0.0319) (0.0143) (0.0273)

SmartCharge - Peak -0.1899*** -0.2910%** -0.0651*** -0.1465**
(0.0457) (0.0860) (0.0129) (0.0428)

SmartCharge - OffPeak 0.3249*** 0.3944*** 0.1487*** 0.2349**
(0.0725) (0.1186) (0.0429) (0.0946)

HomeOwner Subgroup

HomeOwner - Peak -0.0916*** -0.1120*** -0.0288*** -0.0519***
(0.0144) (0.0290) (0.0043) (0.0140)

HomeOwner - OffPeak -0.0220 0.0217 -0.0227** 0.0154
(0.0139) (0.0201) (0.0089) (0.0178)

Renter - Peak -0.0574*** -0.0515 -0.0186*** -0.0177
(0.0202) (0.0369) (0.0061) (0.0181)

Renter - OffPeak -0.0345** 0.0176 -0.0273** -0.0229
(0.0174) (0.0238) (0.0110) (0.0217)

Auwareness Subgroup

ActiveMonitoring - Peak -0.1628"** -0.1582%** -0.0486"** -0.0770***
(0.0131) (0.0222) (0.0039) (0.0109)

ActiveMonitoring - OffPeak -0.0014 0.0388* -0.0054 0.0347**
(0.0151) (0.0209) (0.0091) (0.0174)

Fixed-effects

ID-Hour Yes Yes Yes Yes

PriceArea-DateTime Yes Yes Yes Yes

Fit statistics
Observations 2,497 536 1,014,624 2,497,536 1,014,624

Clustered (IDxHour) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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C.4 Peak/OffPeak

Table 14: Robustness Results Fixed Peak/OffPeak Hours

Dependent Variable: Demand (kWh)

Model: (DID - Weekday) (DID - Weekend) (Comp - Weekday) (Comp - Weekend)

Variables

Peak Hour -0.1145* -0.1564*** -0.0589*** -0.0954***
(0.0542) (0.0539) (0.0215) (0.0319)

OffPeak Hour -0.0455 -0.0448 -0.0387 -0.0352
(0.0494) (0.0490) (0.0347) (0.0350)

Appliance Subgroups

EV - Peak -0.3962*** -0.3931*** -0.1635*** -0.2227***
(0.0721) (0.0739) (0.0324) (0.0465)

EV - OffPeak 0.0431 0.0200 0.0282 0.0204
(0.0690) (0.0662) (0.0505) (0.0505)

SmartCharge - Peak -0.4614*** -0.5705%** -0.2005%** -0.3588"**
(0.1593) (0.1630) (0.0640) (0.0997)

SmartCharge - OffPeak -0.0108 0.0153 -0.0216 0.0069
(0.1439) (0.0955) (0.1022) (0.0743)

HomeOwner Subgroup

HomeOwner - Peak -0.1360** -0.1764*** -0.0658*** -0.1055***
(0.0547) (0.0545) (0.0218) (0.0323)

HomeOwner - OffPeak -0.0540 -0.0532 -0.0442 -0.0403
(0.0500) (0.0496) (0.0351) (0.0354)

Renter - Peak 0.1181* 0.0598 0.0153 0.0137
(0.0706) (0.0688) (0.0302) (0.0416)

Renter - OffPeak 0.0460 0.0454 0.0204 0.0196
(0.0643) (0.0629) (0.0461) (0.0462)

Awareness Subgroup

ActiveMonitoring - Peak -0.1961*** -0.1843*** -0.0942%** -0.1150%**
(0.0531) (0.0519) (0.0236) (0.0317)

ActiveMonitoring - OffPeak -0.0733 -0.0788* -0.0489 -0.0525
(0.0498) (0.0455) (0.0359) (0.0334)

Fixed-effects

ID-Hour Yes Yes Yes Yes

PriceArea-DateTime Yes Yes Yes Yes

Fit statistics
Observations 2,497,536 1,014,624 2,497,536 1,014,624

Clustered (ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 15: Robustness Results 50% Peak/OffPeak Hours

Dependent Variable: Demand (kWh)

Model: (DID - Weekday) (DID - Weekend) (Comp - Weekday) (Comp - Weekend)

Variables

Peak Hour -0.0806** -0.0306 -0.0251** -0.0123
(0.0357) (0.0595) (0.0110) (0.0243)

OffPeak Hour 0.0164 -0.0457 0.0107 -0.0973
(0.0814) (0.0685) (0.0529) (0.1487)

Appliance Subgroups

EV - Peak -0.1150** -0.0704 -0.0413*** -0.0303
(0.0512) (0.0904) (0.0153) (0.0363)

EV - OffPeak -0.1435 0.0023 -0.0931 0.0061
(0.1479) (0.1344) (0.0960) (0.2922)

SmartCharge - Peak -0.1306 -0.2775 -0.0468 -0.1184
(0.1101) (0.2053) (0.0333) (0.0836)

SmartCharge - OffPeak -0.8953*** 0.6607 -0.5813*** 1.437
((0.2745) (0.4968) (0.1783) (1.080)

HomeOwner Subgroup

HomeOwner - Peak -0.0821** -0.0394 -0.0256** -0.0161
(0.0361) (0.0602) (0.0111) (0.0246)

HomeOwner - OffPeak 0.0130 -0.0579 0.0085 -0.1239
(0.0824) (0.0697) (0.0535) (0.1514)

Renter - Peak -0.0649 0.0654 -0.0201 0.0286
(0.0488) (0.0878) (0.0151) (0.0356)

Renter - OffPeak 0.0536 0.0859 0.0348 0.1897
(0.1105) (0.0769) (0.0717) (0.1671)

Awareness Subgroup

ActiveMonitoring - Peak -0.1560"** -0.1721%** -0.0492%** -0.0693***
(0.0338) (0.0510) (0.0104) (0.0206)

ActiveMonitorng - OffPeak -0.1284 0.0403 -0.0834 0.0886
(0.0785) (0.0840) (0.0510) (0.1826)

Fixed-effects

ID-Hour Yes Yes Yes Yes

PriceArea-DateTime Yes Yes Yes Yes

Fit statistics

Observations 2,497,536 1,014,624 2,497,536 1,014,624

Clustered (ID) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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