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Traffic congestion and crash rates can be reduced by introducing variable speed limits
(VSLs) and automatic incident detection (AID) systems. Previous findings based on loop
detector measurements have revealed that drivers reduce their speeds while approaching
traffic congestion when the AID system is active. Notwithstanding these behavioural
effects, most microscopic traffic flow models assessing the impact of VSLs do not describe
driver response accurately.
This study analyses the main factors that influence driver deceleration behaviour while

approaching traffic congestion with and without VSLs. The Dutch VSL database was linked
to the driver behaviour data collected in the UDRIVE naturalistic driving study. Driver
engagement in secondary tasks and glance behaviour were extracted from the video data.
Linear mixed-effects models predicting the characteristics of deceleration events were esti-
mated.
The results show that the maximum deceleration is high when approaching a slower lea-

der, when driving at high speeds and short distance headways, and close to the beginning
of traffic congestion. The minimum time headway is short when driving at high speeds and
changing lanes. Certain drivers showed higher decelerations and shorter time headways
than others. Controlled for these main factors, smaller maximum decelerations were found
when the VSLs were present and visible, and when the gantries were within close proxim-
ity. These factors could be incorporated into microscopic traffic simulations to evaluate the
impact of AID systems on traffic congestion more realistically. Further research is needed
to clarify the link between engagement in secondary tasks, glance behaviour and deceler-
ation behaviour.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Real-time traffic information and dynamic speed limits can contribute to reduce crash risk, traffic congestion, and levels
of emission. Real-time traffic information is communicated to drivers using variable message signs (VMSs) and speed limits
are dynamically regulated using variable speed limits (VSLs). VMSs and VSLs have been widely implemented to increase dri-
ver awareness of the traffic situation downstream and reduce the variation in speed across road users and road sections. The
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introduction of VSLs has resulted in a significant decrease in the number of injury crashes, which can be mainly attributed to
a reduction in rear-end crashes (De Pauw, Daniels, Franckx, & Mayeres, 2018). To decrease the crash rates and maintain the
traffic flow, different traffic management techniques are used in case of dense traffic, accidents, adverse weather conditions,
construction works, and special events (Fuhs, 2010). An example of a traffic management technique is automatic incident
detection (AID). AID systems have been installed on motorways to warn drivers of slowmoving traffic downstream in several
European countries and in the United States since the 1980s (Martens, 2013). In the Netherlands, the AID system registers
when the driving speed is lower than 35 km/h using loop detectors and sets a VSL of fifty kilometres per hour on the gantries
downstream from that point. The first and the second gantry upstream indicate seventy flashing VSL and fifty flashing VSL to
allow drivers to reduce their speed in time while approaching traffic congestion.

AID systems might have both intended and unintended impacts (behavioural adaptations) on driver behaviour (Martens,
2013). The intended impacts are that drivers reduce their speed, increase their time headway, and improve their attention.
Previous studies have shown that VSLs can increase speed homogeneity (Van Nes, Brandenburg, & Twisk, 2010) and speed
compliance (Hoogendoorn, Harms, Hoogendoorn, & Brookhuis, 2012; Lee & Abdel-Aty, 2008). These changes in driver beha-
viour should reduce driver error and crash probability while approaching traffic congestion. Despite the potential impacts on
traffic safety, there is very little empirical evidence of behavioural adaptations with AID systems (Martens, 2013). Previous
studies have shown that drivers could reduce the speed in the segment where the VMS is displayed and compensate for the
reduction by increasing their speed downstream (Boyle & Mannering, 2004). Furthermore, drivers might fail to notice unex-
pected changes in the VSLs (Harms & Brookhuis, 2016) and may have a lower ability to detect VSL changes with flashing
lights and waves (Harms & Brookhuis, 2017).

Previous studies have shown that AID systems can reduce the speed differences between vehicles (Hourdos, Liu, Dirks,
Liu, Huang, Sun, & Xiao, 2017; Smulders, 1990; Van den Hoogen & Smulders, 1994) and the average maximum deceleration
while approaching traffic congestion (Van Lint et al., 2020). These studies were based on data collected with loop detectors,
which measure vehicle speeds and counts at specific locations and most often provide aggregated measurements during a
certain interval of time (e.g., one minute). Road operators are currently interested in understanding whether the investment
in roadside VSLs is a cost-effective strategy for the future (Van Lint et al., 2020). With the introduction of new in-vehicle
technologies, in-vehicle systems could be used for sensing the traffic conditions downstream and regulate the speed. Loop
detector measurements, however, provide limited insights into the main elements that impact driver behaviour while
approaching traffic congestion. Driver behaviour might be influenced by the characteristics of the traffic flow, the road,
and the drivers. For instance, drivers could decrease their speed because the next vehicle ahead (direct leader) slows down
or because they see the VSLs on the gantries. Furthermore, drivers may fail to respond to the VSLs because they are looking
off-road and are engaged in non-driving tasks. Rear end crashes may occur when a lead vehicle suddenly brakes while the
driver is not paying attention to the forward roadway (Dingus et al., 2006). The highest crash risk is related to tasks as phon-
ing with a hand-held device, reaching for objects in the cabin, writing, reading and observing objects outside (Dingus et al.,
2016). A deeper understanding of these behavioural mechanisms can be achieved by analysing data of individual drivers col-
lected in naturalistic driving experiments (Carsten, Kircher, & Jamson, 2013). Section 1.1 provides an overview of existing
studies on driver behaviour with congestion warning systems and variable speed limits. Section 1.2 presents the research
gaps and the research objectives.

1.1. Background

This section discusses driving simulator studies and on-road studies analysing the impact of in-vehicle and roadside con-
gestion warning messages on driver behaviour on motorways. Notably, most studies available in literature focused on in-
vehicle congestion warnings including a text message or a pictogram. To date, the impact of VSLs on traffic congestion have
been mainly analysed at an aggregate level based on loop detector data (for a review, see Jomaa, Yella, and Dougherty
(2013)).

Several studies have analysed the impact of in-vehicle congestion warning systems on driver behaviour on motorways in
driving simulator experiments. Alm and Nilsson (2000) showed that drivers reduced their speed earlier, had a lower level of
self-reported workload, and maintained a similar minimum distance to the congestion tail with the warning messages. Van
Driel, Hoedemaeker, and Van Arem (2007) found that the warnings resulted in a lower percentage of time headways shorter
than two seconds while approaching traffic congestion. In a follow-up study, Brookhuis, Van Driel, Hof, Van Arem, and
Hoedemaeker (2009) showed that congestion warnings did not have an impact on the mental workload measures. Popiv,
Rommerskirchen, Bengler, Duschl, and Rakic (2010) found that drivers started to brake earlier and with smaller maximum
decelerations with the warning system. Similarly, Totzke, Naujoks, Mühlbacher, and Krüger (2012) found that drivers started
to decelerate in advance when they were informed about the distance to the beginning of a congestion tail that required a
sudden deceleration. Messages without the distance to the congestion tail and messages that required a smooth deceleration
did not have an impact. In a follow up study, Naujoks and Totzke (2014) found higher maximum speeds, lower minimum
time to collision in light traffic, and higher engagement in secondary tasks when the system was available than when it
was not available. When the system was available, old drivers showed a larger reduction in minimum time to collision while
young drivers showed higher engagement in secondary tasks. To summarize, these studies analysed the effect of few inde-
pendent factors on driver responses to in-vehicle VMSs using descriptive statistics and statistical tests.
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Few studies investigated the effect of roadside congestion warning messages on driver behaviour based on driver simu-
lator experiments. Reinolsmann et al. (2018) analysed the impact of different VMS locations, designs, and distances from
congestion on speed, maximum deceleration, and glance behaviour in motorways using descriptive statistics. The results
showed that congestion warning messages installed on gantries one kilometre before the beginning of congestion resulted
in lower speeds and smaller maximum decelerations than no warning messages. Drivers who drove at high speeds deceler-
ated harder and closer to the beginning of congestion. Glances were shorter and more frequent on VMSs installed on gantries
than on cantilevers. They concluded that the impact of congestion warning messages on driver behaviour is influenced by
visibility conditions and proximity to the incident.

Very few studies have analysed the impact of advisory systems on driver performances on the motorway based on on-
road experiments. Farah et al. (2012) analysed the impact of different in-vehicle VMSs (e.g., traffic congestion, roadworks,
weather) based on data collected in a controlled on-road experiment (pre-set route). The results showed that most drivers
reduced their speeds (mean reduction = 8.5 km/h) after receiving a congestion warning message. Based on the same exper-
iment, Farah and Koutsopoulos (2014) investigated the impact of in-vehicle VMSs on driver acceleration and deceleration
behaviour in a car-following model. The results showed that drivers older than 45 decelerated less when the system was
on. The authors concluded that the warning system harmonizes the responses of drivers from different age groups and
has a beneficial impact on traffic safety.

Recent studies have also developed models that predict driver behaviour with VSLs based on SHRP2 naturalistic driving
data. Wang, Hallmark, Savolainen, and Dong (2018) analysed the vehicle speed on rural two-lane horizontal curves in dif-
ferent traffic conditions as a function of road geometry, posted speed limit, VSLs and driver characteristics. They selected
traces on curves with a high posted speed limit (45 mph or 55 mph) and calculated the mean speed in each curve. In a regres-
sion model, they found that the mean speed was lower when the VSL was activated. In addition, the mean speed decreased
with sharper curves and lower posted speed limits, when guardrails and arrow signs were installed, when a direct leader was
present, when driving at night, when the driver was a female, and when the driver was older than 25 years.

1.2. Knowledge gap and research objective

Previous studies have analysed the impact of congestion VMSs on driver behaviour based on data collected in driving sim-
ulator experiments. Most studies analysed the effect of in-vehicle VMSs and only Reinolsmann et al. (2018) analysed the
impact of roadside VMSs. These studies investigated the impact of a limited number of factors using descriptive statistics
and statistical tests. Few studies were based on on-road experiments and proposed a comprehensive analysis of the main
factors influencing driver response to VMSs and VSLs while approaching traffic congestion. Farah et al. (2012) and Farah
and Koutsopoulos (2014) focused on in-vehicle warning messages only based on data collected in a controlled on-road
experiment. Wang et al. (2018) focused on the impact of VSLs on curves in rural roads only based on naturalistic driving data.
In addition, these studies did not capture explicitly the impact of glance behaviour and secondary task engagement on the
deceleration behaviour characteristics (for a review on glance behaviour, secondary task engagement, and driver perfor-
mances based on naturalistic driving data, see Varotto, Jansen, Bijleveld, & Van Nes (2021)).

The research objective of the current study is to identify the main factors influencing driver deceleration behaviour while
approaching traffic congestion with and without the AID system. The maximum deceleration (Popiv et al., 2010;
Reinolsmann et al., 2018; Van Driel et al., 2007; Van Lint et al., 2020) and the minimum time headway (Naujoks &
Totzke, 2014) during the events (event characteristics) are analysed to capture adaptations in the longitudinal control task
of drivers. The maximum deceleration is used as an indicator of driver aggressiveness while approaching traffic congestion.
The minimum time headway is chosen as a measure of the quality of the longitudinal control task when following a vehicle.
These behavioural characteristics are often used to describe driver response in microscopic traffic models and to identify
safety relevant traffic situations. The impact of the traffic conditions, driver characteristics, glance behaviour, secondary task
engagement and characteristics of the environment (e.g., VSLs active or inactive on the gantries) on the event characteristics
are analysed using linear mixed-effects models. For this analysis, the driver behaviour data collected in the UDRIVE natural-
istic driving study (Van Nes, Bärgman, Christoph, & Van Schagen, 2019) were linked to the Dutch VSL database and the state
of the driver was extracted from the video data. Naturalistic driving studies are particularly suitable to analyse driver man-
agement of different task activities because participants are not directly instructed to engage in secondary tasks as in driving
simulator and test track experiments (Carsten et al., 2013). The integrated database was used to extract events in which the
AID system was active in another study (Varotto et al., 2021). In that study, we analysed the main factors influencing driver
compliance with the VSLs, which was defined based on the speed of the driver downstream the gantry. In a logistic regres-
sion model, we found that the factors associated with speed compliance differ depending on which VSL the driver
encounters.

The paper is structured as follows. Section 2 presents the naturalistic driving database, the VSL database, the annotation
method of the driver state, and the statistical analysis methods. Section 3 describes the linear mixed-effects models predict-
ing the maximum deceleration and the minimum time headway during events while approaching traffic congestion. Finally,
Section 4 presents the main factors influencing the event characteristics and recommendations for future research.
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2. Method

The method section presents the naturalistic driving data, the data processing procedures and the data analysis methods
in this study. Section 2.1 describes the naturalistic driving database used in the present study. Section 2.2 describes the pro-
cedure to match the driver behaviour data with the national road database, the gantry locations, and the VSLs posted in each
gantry using the GPS coordinates and the timestamps. Section 2.3 describes how the deceleration events while approaching
traffic congestion were extracted from the driver behaviour data. Section 2.4 presents the annotation procedure of the video
data during the events. Section 2.5 introduces the linear mixed-effects models developed to analyse the main factors influ-
encing driver deceleration behaviour.

2.1. UDRIVE database

Passenger car driver behaviour data were collected in the Netherlands within the UDRIVE project (Van Nes et al., 2019).
Thirty-three drivers with a minimummileage of 10,000 km per year were recruited in the population of the Netherlands and
participated in the experiment. The sample comprised eighteen males and fifteen females. Three drivers were 18–29 years
old, ten 30–39 years old, nine 40–49, and eleven 50–65 years old. Before joining the experiment, all drivers were instructed
on the project and signed a standard informed consent form. The UDRIVE data acquisition system was installed in ten leased
vehicles (Renault Clio IV). The instrumented vehicles were driven by each participant for six months in 2015–2017. One
vehicle was shared by multiple participants in the same household. The data acquisition system registered, amongst others,
date and time, GPS coordinates, speed, acceleration, distance headway and leader speed (from MobilEye smart camera), and
seven video cameras recording the road environment, the driver and the passenger (Fig. 1). The data were registered at 1 Hz
frequency (GPS position) and 10 Hz frequency (e.g., speed). In total, 230,842 km were driven in 3727 h.

2.2. Variable speed limit database and road database

The executive agency of the Dutch Ministry of Infrastructure and Water Management (Rijkswaterstaat) provided the vari-
able speed limits posted on the Dutch motorway network in 2015–2017. Each state change of a specific gantry at a certain
time is registered in the variable speed limit database as a single observation. The position of each gantry is identified by the
number of the motorway and the closest hectometre pole (maximum error due to hectometre pole spacing = 50 m). The vari-
able speed limits were integrated into to the UDRIVE database by projecting location-based information (e.g., car position,
gantry positions) to a common hectometre pole grid. First, the coordinates in the UDRIVE database were transformed from
the GPS system into the Dutch grid (Rijksdriehoek [RD]) system. Next, each RD coordinate was linked to the closest road in
Fig. 1. Seven camera views of the UDRIVE database at the encounter of an active VSL: front left, front centre, front right, cockpit, driver face, cabin, and feet.
Faces have been covered to respect the privacy of the participating driver and passengers. This figure was originally presented in Varotto et al., (2021).
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the National Road Database (Nationaal Wegenbestand) (Rijkswaterstaat, 2017). The closest road calculated was compared to
the closest road calculated in the previous observations to account for potential errors in the coordinates. The number of the
motorway, the driving direction, and an identification number for the road section were retrieved from the National Road
Database. The closest gantry in front of (next gantry) and behind (previous gantry) the driver were identified by projecting
the RD coordinates on a hectometre pole grid and comparing the hectometre pole numbers with the National Road Database.
The state of the gantry, the date and time of the last state change, and the distance to the gantry were assigned to each RD
coordinate in the UDRIVE database. The executive agency of the Dutch Ministry of Infrastructure and Water Management
provided also the road number and the hectometre number of the road sections where the electronic speed control was
active. These data were incorporated into the UDRIVE database.

2.3. Event selection

The events were identified based on the driver behaviour characteristics of the subject vehicle and of the leader (speed,
acceleration, distance headway and relative speed) in the UDRIVE database. The original data extracted from the database
were resampled at 10 Hz and synchronized using linear interpolation. The road type was identified based on the classifica-
tion in the road database and the posted speed limit in the UDRIVE database. We analysed only observations on road seg-
ments classified as motorway mainline and with a posted speed limit between 100 km/h and 130 km/h. In this study, traffic
congestion was identified as a situation in which the mean speed of the subject vehicle and of the direct leader were lower
than 70 km/h for at least 10 s. This assumption was made in order to include congestion situations with and without gantries
and AIDs. The mean speed was chosen based on the mean speeds at level of service (LOS) E proposed by the Highway Capac-
ity Manual (Transportation Research Board, 2010) (80 km/h) and suggested by the SHRP2 codebook (Virginia Tech Trans-
portation Institute, 2015) (between 50 and 75 km/h depending on the posted speed limit). In these traffic conditions, any
disruptions of the traffic stream can create a wave that propagates upstream and produce a breakdown. We did not analyse
situations in which traffic congestion was not detected or traffic congestion was detected at less than 2500 m after the
entrance of the motorway. The analysis focused only on events that occurred on the motorway segment closer than
2500 m before the beginning of traffic congestion. In this motorway segment, a direct leader was present all the time or part
of the time. The events were discarded when the distance to the previous and to the next gantry were unknown or when the
gantry states were unknown. The events were detected based on the longitudinal deceleration and on the speed of the sub-
ject vehicle. The event was considered of interest when three conditions were met. First, the subject vehicle decelerated
more than 0.5 m/s2 for a minimum duration of 1 s. Second, the speed at the beginning of the event was higher than
50 km/h. Third, the speed decrement during the event was larger than 5 km/h. The event terminated when the vehicle decel-
erated less than 0.5 m/s2. This threshold was selected to exclude small decelerations that might be part of regular driving
behaviour as suggested by Deligianni, Quddus, Morris, Anvuur, and Reed (2017). Multiple events were detected for each con-
gestion situation when a single driver decelerated and accelerated multiple times. When the end of an event and the begin-
ning of the next event occurred within 1 s, the two events were merged. This interval was chosen because it is similar to the
reaction time of drivers. The above criteria imply that there was no fixed event duration.

2.4. Annotation

The videos related to each event were manually inspected and coded by four annotators using a dedicated toolbox devel-
oped in Microsoft Visual Studio 2017. The visualization toolbox allowed the annotators to load trips, to pause and play videos
at a self-chosen playback speed, and to perform annotation using an array of labelled buttons. The annotation was conducted
during three weeks in July 2019. During the first day, the annotators received a formal training consisting in the annotation
of five events and a plenary consultation to achieve a common agreement on the variables annotated. The events were ran-
domly distributed across the four annotators.

For each event, the following variables were coded once: weather circumstances (limited sight or not), density of the
environment (open, half open, closed), and whether the driver took an exit lane by the end of the event. Three variables were
annotated in the 5 s before the beginning of the event at a frame-by-frame resolution. These variables were: glance direction
(eyes on and off road), secondary task engagement (yes or no), and gantry visibility (gantry not visible, gantry visible and VSL
inactive, gantry visible and VSL active). The driving lane (counted from the central reservation) and a variable that indicated
if the driver was passing a weaving section, entry lane, or exit lane were annotated at a frame-by-frame resolution in the 5 s
before and during the event. The gantry passing time (if present) and the variable speed limit within the driving lane were
annotated both during the 5 s before the event and during the event itself. The annotation of the driving lane allowed us to
recognise if drivers were subject to the AID sequence when the VSLs differed across the driving lanes. Notes on playback
errors (e.g., video not loading or asynchronous camera views) and on drivers with sunglasses (i.e., impossible glance anno-
tation) were used to remove the associated events from analysis. The annotators manually coded the level of traffic density
(low, medium, high traffic density) in the interval 10 s after the beginning of traffic congestion (i.e., following the events). The
level of traffic density was defined based on the levels of service (LOS A-B, LOS C-D, LOS E-F) in the Highway Capacity Manual
(Transportation Research Board, 2010). This classification of the traffic density levels was used in the SHRP2 project (Virginia
Tech Transportation Institute, 2015) and has shown high levels of inter-rater reliability in previous studies (Hankey, Perez, &
McClafferty, 2016). If the traffic density was classified as low, the corresponding events were removed from subsequent anal-
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yses. The interrater reliability of the annotation was investigated based on statistical measures as described in Varotto et al.
(2021). The variables analysed in Section 3 resulted to be eligible based on the reliability tests. Measures based on secondary
task engagement, weather conditions, presence of ramps and weaving sections did not meet the reliability criteria and were
excluded from the analysis.

2.5. Statistical analysis

The main factors influencing the maximum deceleration and the minimum time headway (event characteristics) are anal-
ysed in linear mixed-effects models. Linear mixed-effects models allow to investigate the unconditional marginal effect of
several explanatory variables on the event characteristics capturing correlations between repeated observations for the same
driver (Deligianni et al., 2017; Farah, Bianchi Piccinini, Itoh, & Dozza, 2019; Oviedo-Trespalacios, Haque, King, & Washington,
2017; Varotto, Farah, Bogenberger, Van Arem, & Hoogendoorn, 2020; Varotto, Farah, Toledo, Van Arem, & Hoogendoorn,
2018). The models predicting the event characteristics (EvChar) for driver n at time t are given by equation (1):
Yn tð Þ ¼ lþ k � Xn tð Þ þ c � #n þx � tn tð Þ ð1Þ

where l is the mean, k is the vector of parameters related to the explanatory variables Xn tð Þ, c is the parameter associated
with the driver-specific error term #n � N 0;1ð Þ, and x is the parameter associated with the observation-specific error term
tn tð Þ � N 0;1ð Þ. Relevant explanatory variables that can be included are the driver behaviour characteristics of the subject
vehicle and of the direct leader, driver glance behaviour metrics, driver characteristics, characteristics of the motorway seg-
ment and of the environment. The driver-specific error term captures unobserved preferences that influence all responses by
the same individual driver. The probability density function of the event characteristics conditional on the value of #n is
given in Eq. (2):
P Yn tð Þ ¼ log EvCharn tð Þð Þj#nð Þ ¼ 1
x

/
log EvCharn tð Þð Þ � l� k � Xn tð Þ � c � #n

x

� �
ð2Þ
The linear mixed-effects models were estimated using the package ‘nlme’ (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team,
2019), which allows to explicitly define a residual variance-covariance structure and to choose maximum likelihood (ML) or
restricted maximum likelihood (REML) estimation methods. REML methods produce unbiased estimates of the residual
variance-covariance parameters accounting for the loss in degrees of freedom due to the estimation of the fixed effects
(Harville, 1977). The marginal and conditional R2 measures were calculated using the package ‘MuMIn’ (Barton, 2019) in
the software R (R Core Team, 2019). The marginal R2

m captures the variance explained by the fixed factors while the condi-

tional R2
c captures the variance explained by both fixed and random factors (Nakagawa, Johnson, & Schielzeth, 2017;

Nakagawa & Schielzeth, 2013). The estimated marginal means of the event characteristics were calculated using the package
‘ggeffects’ (Lüdecke, 2018). The estimated means, the confidence intervals and the prediction intervals were calculated
changing one independent variable while keeping all the other variables fixed. The confidence intervals capture the uncer-
tainty about the fixed effect parameters while the prediction intervals capture the uncertainty about both fixed and random
effect parameters.

In this study, the event characteristics are assumed to be influenced by the driver behaviour characteristics at the begin-
ning of the event and by the glance behaviour metrics registered 3 s before the beginning of the event. The time interval was
chosen based on previous studies in literature (Peng, Boyle, & Hallmark, 2013). Other time intervals (2 s and 5 s) were also
explored and resulted in similar findings. We investigated bivariate correlations between the event characteristics and the
explanatory variables using both Pearson-product moment correlations (rP) and Spearman rank-order correlations (rS). We
selected the explanatory variables in the final specification of the linear mixed-effects models depending on their interpre-
tation (non-redundant variables) and statistical significance (p-value < 0.05). All continuous variables were centred in the
mean value. The impact of each explanatory variable was tested statistically by comparing alternative model specifications
using ML estimation methods and likelihood ratio tests. We tested first the variable that resulted to have a high or medium
correlation with the event characteristics. Variables that had a very similar interpretation (e.g., different glance behaviour
metrics) were separately included in the model. The correlation matrix of the parameters was inspected each time the model
was estimated. This stepwise procedure allowed us to detect potential cases of multicollinearity between explanatory vari-
ables. Substantial changes in the parameters when a variable was added or a significant likelihood ratio test when the
parameters of multiple variables were non-significant were considered potential indicators of multicollinearity. Explanatory
variables that had a similar interpretation were tested separately against each other and merged when they did not have a
significantly different effect on the event characteristics. Variables that did not have a significant effect were omitted one by
one. When a variable was missing for some observations (e.g., a direct leader was not identified by the MobilEye and the
distance headway was unavailable), we included a binary variable indicating the missing values in addition to the original
variable (dummy variable adjustment method). Different specifications of the residual covariance parameters were com-
pared using REML estimation methods and likelihood ratio tests. Congestion-specific and trip-specific error terms did not
result in a significant improvement in goodness of fit and therefore were not included in the final specification of the models.
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3. Results

The result section discusses the main factors influencing the characteristics of deceleration events while approaching traf-
fic congestion. Section 3.1 provides an overview of the events using descriptive statistics. Section 3.2 discusses the estima-
tion results of the linear mixed-effects models predicting the maximum deceleration and the minimum time headway.
Section 3.3 presents the out-of-sample validation analysis of the linear mixed-effects models estimated.

3.1. Descriptive statistics

Using the selection procedure described in Section 2.3, we identified 645 traffic congestion situations. In the first 10-s of
the congestion situations, all of which were validated through annotation, the mean of the subject vehicle mean speed was
55.52 km/h and the mean of the speed standard deviation was 6.830 km/h. We identified 1060 deceleration events while
approaching the beginning of traffic congestion. These events occurred in 440 distinct trips by 29 drivers. The number of
events per congestion situation was between 1 and 8 (Median = 1) and the number of events per driver was between 2
and 116 (Median = 30.00). The event duration was between 1.1 s and 24.9 s (Median = 4.700 s, Mean = 5.709 s). The max-
imum deceleration during the events was between 0.550 m/s2 and 8.761 m/s2 (Median = 1.500 m/s2, Mean = 1.715 m/s2). A
direct leader was present (all the time or part of the time) in 1028 events. The minimum time headway during these events
was between 0.1163 s and 5.508 s (Median = 1.101 s, Mean = 1.336 s).

A direct leader was present at the beginning of 90.19% of the events. Most events occurred within 2000 m before the next
gantry (94.62%) or within 2000 m after the previous gantry (93.77%). In addition, 32.17% of the events occurred when the
next gantry was closer than 2000 m and a VSL within the AID sequence was active on the driving lane: 14.53% when the
seventy flashing VSL was active, 12.26% when the fifty flashing VSL was active, and 5.38% when the fifty VSL was active.
To gain insights into the general characteristics of these events, we present the descriptive statistics of the driver behaviour
characteristics and the characteristics of the road segment in Table 1. The mean values suggest that drivers decelerated more
often when they were close to the beginning of traffic congestion and when they approached a slower vehicle.

We conducted correlation analysis to investigate the relations between the maximum deceleration, the minimum time
headway, the traffic conditions, the infrastructure characteristics, and the driver characteristics. High maximum decelera-
tions were observed close to the beginning of traffic congestion (rP ¼ �0:32, rS ¼ �0:45). The correlations between the
maximum deceleration and the other explanatory variables available were weak ( rj j < 0:20Þ. Short minimum time head-
ways were observed when a leader was present (rP ¼ �0:38, rS ¼ - 0:25) and the distance headway was short (rP ¼ 0:77,
rS ¼ 0:76) at the beginning of the event. The correlations with the other explanatory variables were weak ( rj j < 0:20Þ. Fur-
ther analysis is needed to capture the impact of multiple explanatory variables simultaneously on the maximum decelera-
tion and on the minimum time headway.

3.2. Linear mixed-effects models

3.2.1. Maximum deceleration
This section describes the model selection procedure and presents the results of the final model predicting the maximum

deceleration. As discussed in section 2.5, the final model is the outcome of an extensive selection procedure, in which several
model specifications were estimated and compared using statistical tests. The next paragraphs describe which explanatory
variables were tested, which tests were significant and which direction significant impacts had. The description follows the
order in which the variables were tested in the model development phase. We did not detect potential cases of multi-
collinearity between the explanatory variables. The equation of the final model is presented in Appendix A, Eq. (3). The
goodness-of-fit measures are reported in Table 2 and the estimation results in Table 3. The logarithmic transformation of
the maximum deceleration is consistent with the empirical findings and resulted in a significant improvement in goodness
of fit compared to a linear specification. Most parameters related to the explanatory variables in Table 3 are statistically sig-
nificant at the 5% level. The R2 measures indicate that the explanatory variables capture 25.7% of the variability in the max-
imum deceleration and that the driver-specific error term captures an additional 3.4%.

Most driver behaviour characteristics of the subject vehicle and of the direct leader have a significant impact on the max-
imum deceleration. Drivers decelerated less aggressively at lower speeds. They also decelerated less when there was no
Table 1
Statistics of the driver behaviour characteristics and the characteristics of the road segment at the beginning of the events.

Variable Description Min. Median Mean Max.

Speed Speed of the subject vehicle in km/h 70.14 97.16 97.79 130.7
DHW Distance headway (front bumper to rear bumper) in m 5.079 35.34 41.40 122.1
Relative speed Relative speed (leader speed - subject vehicle speed) in km/h �48.57 �4.667 �6.089 22.35
DistCong Distance to the beginning of traffic congestion in m 20.68 330.5 583.19 2498
DistNextGantry Distance to the next gantry in m 2.58 251.7 754.7 33,494
DistPrevGantry Distance from the previous gantry in m 9.14 312.21 1678 43,671
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Table 2
Statistics of the linear mixed-effects model predicting the maximum deceleration.
The log likelihood measures are calculated using ML methods while the R2 measures
using REML methods.

Statistics

Number of parameters associated with the explanatory variables 9
Number of drivers 29
Number of observations 1060
Constant log likelihood �880
Final log likelihood �703

R2
m ¼ r2

f

r2
f
þ cDð Þ2þ xDð Þ2

0.257

R2
c ¼ r2

f þ cDð Þ2
r2
f þ cDð Þ2þ xDð Þ2

0.291

Table 3
Estimation results of the linear mixed-effects model predicting the maximum deceleration. The parameters are estimated using REML methods. The driver
behaviour characteristics and the characteristics of the road segment are measured at the beginning of each single event. The R package ‘nlme’ used for model
estimation provides the test statistics of the fixed effects only.

Variable Description Parameters Estimate t-stat. p-value

– Mean maximum deceleration lD 0.585 8.08 <0.0005
Speed Speed of the subject vehicle in km/h kDSpeed 0.00999 7.38 <0.0005

RelSpeed Relative speed (leader speed - subject vehicle speed) in km/h kDRelSpeed �0.0133 �6.91 <0.0005

DHW Distance headway (front bumper to rear bumper) in m kDDHW
�0.00501 �6.21 <0.0005

NoLead Binary variable equal to 1 when there is no leader kDNoLead �0.288 �4.82 <0.0005

DistCong Distance to the beginning of traffic congestion in m kDDistCong �0.000453 �16.79 <0.0005

NextGantryClose Binary variable equal to 1 when the next gantry is closer than 2000 m kDGantryClose �0.0839 �2.34 0.020

PrevGantryClose Binary variable equal to 1 when the previous gantry is closer than 2000 m kDGantryClose �0.0839 �2.34 0.020

pGantryVisAct Proportion of time when the gantry is visible and active during the 3 s before the
beginning of the event

kDpGantryVisAct �0.0855 �2.24 0.025

Next*70*,*50* Binary variable equal to 1 when the next gantry is closer than 2000 m, the AID is
active on the driving lane, and the next VSL is *70* or *50*

kDNext�70�;�50� �0.126 �3.73 0.0002

Age Age of the driver in years kDAge 0.00377 1.84 0.076 a

#D
n

Driver-specific error term cD 0.102 – –

tDn Observation-specific error term xD 0.466 – –

Note: a the parameter associated with the driver age resulted in a significant improvement in goodness of fit based on the likelihood ratio test and ML
estimation methods.
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direct leader, when the distance headway was large, and when they were following a faster vehicle (positive relative speed).
Drivers decelerated less when they were far from the beginning of traffic congestion. Changing lane during the event did not
have an impact on the maximum deceleration.

Certain characteristics of the road segment influenced significantly the maximum deceleration. Drivers decelerated less
when the previous or the next gantry were within 2000 m. The impact of distance to the previous and to the next gantry
were tested separately against each other and did not differ significantly. Moreover, drivers decelerated less when they were
close to the next gantry, when the AID sequence was active on the driving lane, and when the next VSL was either seventy
flashing or fifty flashing. The impact did not differ significantly between seventy flashing and fifty flashing VSLs. Proximity to
the fifty VSL within an AID sequence did not have a significant impact on the maximum deceleration. The number of lanes
did not have a significant impact. The presence of an electronic speed control system did not have a significant impact on the
maximum deceleration. Exiting the motorway at the end of the event did not influence significantly the maximum
deceleration.

The visibility of the gantry had a significant impact on the maximum deceleration. Drivers decelerated less aggressively
when the proportion of time during which the gantry was visible and active was higher. The glance behaviour of the driver
did not have a significant impact on the maximum deceleration. Likewise, proportion of time with eyes off road, percentage
of long glances off road, and count of switches between on and off-road glances did not have a significant impact.

Younger drivers decelerated less than older drivers. The gender did not have a significant impact on the maximum decel-
eration. The driver-specific error term resulted in a significant improvement in goodness of fit, meaning that certain drivers
decelerated differently from others. Congestion-specific and trip-specific error terms did not improve the model signifi-
cantly, indicating that no evidence was found for differences in the maximum deceleration between congestion situations
and trips.

To analyse the effect of changes in the explanatory variables on the maximum deceleration, the maximum deceleration
was calculated for observations in which only one variable was changed while keeping all the other variables fixed (speed:
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97.79 km/h; distance headway: 41.41 m; relative speed:�6.089 km/h; distance to congestion onset: 583.19 m; previous and
next portal: closer than 2000 m; portal visibility: 23.0% of the time; AID sequence: inactive; driver age: 45 years old). The
characteristics of the baseline observation were chosen based on the mean values in the sample. The maximum deceleration
associated with the baseline observation was equal to 1.517 m/s2. Fig. 2 presents the results for the continuous variables and
Fig. 3 presents the results for the nominal variables. All results are consistent with previous discussions in this section. When
we compare the different variables, we notice that low relative speeds have the strongest impact on the maximum deceler-
ation. In addition, high speeds, short distance headways, proximity to the beginning of congestion, and the driver-specific
error term have a large impact on the maximum deceleration.

3.2.2. Minimum time headway
This section presents the results of the final model predicting the minimum time headway. To develop this model, several

model specifications were estimated and compared using statistical tests as described in Section 2.5. The next paragraphs
describe the explanatory variables tested, the test results and the direction of significant impacts. The equation of the final
model is presented in Appendix A, Eq. (4). The goodness-of-fit measures are presented in Table 4 and the estimation results
in Table 5. The logarithmic transformation of the minimum time headway is consistent with empirical findings and resulted
in a significant improvement in goodness of fit compared to a linear specification. All parameters associated with the
explanatory variables in Table 5 are statistically significant at the 5% confidence level. The R2 measures show that the
explanatory variables capture 72.1% of the variability in the minimum time headway and that the driver-specific error term
captures an additional 0.6%.

Most driver behaviour characteristics of the subject vehicle and of the direct leader have a significant impact on the min-
imum time headway. Drivers had larger time headways at lower speeds. They also had larger time headways when there was
no direct leader at the beginning of the event (i.e., when they were approaching a new leader), when the distance headway
was large, and when they were approaching a faster vehicle (positive relative speed). The logarithmic transformation of the
distance headway resulted in a significant improvement in goodness of fit compared to a linear specification. The minimum
time headway was larger when the driver did not change lane during the event. The distance to the beginning of traffic con-
gestion did not have a significant impact on the minimum time headway.

In terms of characteristics of the road segment, four significant effects on the minimum time headway were found. Dri-
vers had larger time headways when they were closer than 2000 m to the next gantry, the AID sequence was active on the
Fig. 2. Impact of the continuous explanatory variables on the maximum deceleration during the event. Black solid lines denote the marginal means, dark
grey ribbons indicate the 95% confidence intervals, and light grey ribbons denote the 95% prediction intervals. The variables are listed as follows: (a) speed,
(b) distance headway, (c) relative speed, (d) distance to the beginning of congestion, (e) proportion of time when the portal is visible and active, (f) driver
age. The axis scales are chosen based on the minimum and the maximum values available in the data. To improve the readability, the vertical axis is
interrupted at maximum deceleration equal to 3.75 m/s2.
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Fig. 3. Impact of the nominal explanatory variables on the maximum deceleration during the event. Black dots denote the marginal means, dark grey error
bars indicate the 95% confidence intervals, and light grey error bars denote the 95% prediction intervals. The vertical axis scale is chosen based on the
minimum and the maximum values available in the data. To improve the readability, the axis is interrupted at maximum deceleration equal to 2.75 m/s2.

Table 4
Statistics of the linear mixed-effects model predicting the minimum time headway.
The log likelihood measures are calculated using ML methods while the R2 measures
using REML methods.

Statistics

Number of parameters associated with the explanatory variables 7
Number of drivers 29
Number of observations 1028
Constant log likelihood �898
Final log likelihood �231

R2
m ¼ r2

f

r2
f
þ cDð Þ2þ xDð Þ2

0.721

R2
c ¼ r2

f þ cDð Þ2
r2
f þ cDð Þ2þ xDð Þ2

0.727

Table 5
Estimation results of the linear mixed-effects model predicting the minimum time headway. The parameters are estimated using REML methods. The driver
behaviour characteristics and the characteristics of the road segment are measured at the beginning of each single event. The R package ‘nlme’ used for model
estimation provides the test statistics of the fixed effects only.

Variable Description Parameters Estimate t-stat. p-value

– Mean minimum time headway lT 0.0508 2.54 0.011
Speed Speed of the subject vehicle in km/h kTSpeed �0.0136 �17.26 <0.0005

RelSpeed Relative speed (leader speed - subject vehicle speed) in km/h kTRelSpeed 0.00692 5.57 <0.0005

DHW Distance headway (front bumper to rear bumper) in m kTDHW
0.908 44.02 <0.0005

NoLead Binary variable equal to 1 when there is no leader kTNoLead 3.94 48.27 <0.0005

LaneChange Binary variable equal to 1 when one or more lane changes are executed during the
event

kTLaneChange �0.307 �8.07 <0.0005

Next50 Binary variable equal to 1 when the next gantry is closer than 2000 m, the AID is active
on the driving lane, and the next VSL is 50

kTNext50 0.105 2.46 0.014

Prev50 Binary variable equal to 1 when the previous gantry is closer than 2000 m, the AID was
active on the driving lane, and the previous VSL was 50

kTPrev50 0.105 2.46 0.014

Female Binary variable equal to 1 when the driver is a female kTFemale
0.0711 2.55 0.017

#T
n

Driver-specific error term cT 0.0461 – –

tTn Observation-specific error term xT 0.302 – –
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driving lane, and the next VSL was fifty. A similar impact was found immediately after the fifty VSL. Several other factors did
not reach statistical significance. The distance from the previous gantry and to the next gantry did not have a significant
impact on the minimum time headway, neither did proximity to the seventy and the fifty flashing VSLs within an AID
sequence. The number of lanes did not have a significant impact. The presence of an electronic speed control system did
not have a significant impact on the minimum time headway. Exiting the motorway at the end of the event did not influence
significantly the minimum time headway.

The glance behaviour of the driver did not have a significant impact on the minimum time headway. Proportion of time
with eyes off road, percentage of long glances off road, and count of switches between on and off-road glances did not have a
significant impact. In addition, the visibility of the gantry did not have a significant impact on the minimum time headway.
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Female drivers had larger minimum time headways than male drivers. The age did not have a significant impact. The
driver-specific error term resulted in a significant improvement in goodness of fit based on the log likelihood values, mean-
ing that certain drivers had a different minimum time headway from others. Congestion-specific and trip-specific error
terms did not improve the model significantly, indicating that no significant differences in time headways were found
between congestion situations and trips.

The effect of changes in the explanatory variables on the minimum time headway was analysed by calculating the min-
imum time headway for observations in which only one variable was changed while keeping all the other variables fixed. In
the baseline observation, the speed was equal to 97.57 km/h, the distance headway was 41.41 m, and the relative speed was
�6.278 km/h. Furthermore, an AID sequence was not active on the driving lane, the previous and the next portal were closer
than 2000 m, and the driver was male. The characteristics of the baseline observation were chosen based on the mean values
in the sample. The minimum time headway associated with the baseline observation was equal to 1.197 s. Fig. 4 presents the
results for the continuous variables and Fig. 5 presents the results for the nominal variables. All findings are consistent with
previous discussions in this section. When we compare the different variables, we notice that short distance headways at the
beginning of the event have the strongest impact on the minimum time headway. Controlled for the initial distance head-
ways, we observe that high speeds and changing lanes also have a large impact on the minimum time headway.

3.3. Validation analysis

This section provides a validation analysis of the linear mixed-effects models in Table 3 and Table 5 compared to linear
mixed-effects models that contain only the constant. The purpose of this validation analysis is to understand the ability of
the models to predict the behaviour of individual drivers not included in the estimation sample. The models should be
applied to other empirical databases to understand their prediction abilities. Given that no other similar databases are avail-
able, an out-of-sample approach has been used. The models were estimated based on the observations of 80% of the drivers
and validated based on the observations of the 20% of the drivers not included in the estimation sample. We used a five-fold
cross validation method due to the small number of drivers (Hastie, Tibshirani, & Friedman, 2009). We randomly assigned
the drivers to five groups, estimated the models on four groups, and validated the models on the group not included in the
estimation sample. We repeated the procedure five times.

The performances of the models on the validation samples were evaluated based on the Root Mean Square Error (RMSE)
of the model with constants only and of the linear mixed-effects models. The RMSE captures the prediction errors between
the maximum deceleration (or the minimum time headway) predicted by the model and the maximum deceleration (or the
minimum time headway) observed. The smaller the RMSE, the higher the accuracy achieved.

The RMSE of the models on the validation samples are presented in Table 6 (maximum deceleration) and in Table 7 (min-
imum time headway). The last column of each table presents the accuracy improvement. The results indicate that the linear
mixed-effects models have smaller mean prediction errors than the models with constants only on all validation samples.
Comparing the results in Table 7, we note that the linear mixed-effects model predicting the minimum time headway shows
the smallest accuracy improvement when it is validated on group 1. This result means that certain drivers in this group
showed a different behaviour in maintaining a minimum time headway than the other drivers. Further research is needed
to explain the source of these differences that might be related to driving styles or personality traits. The main conclusion is
that the linear mixed-effects models developed are suitable to forecast the behaviour of individual drivers not included in
the estimation sample.
Fig. 4. Impact of the continuous explanatory variables on the minimum time headway during the event. Black solid lines denote the marginal means, dark
grey ribbons indicate the 95% confidence intervals, and light grey ribbons denote the 95% prediction intervals. The variables are listed as follows: (a) speed,
(b) distance headway, (c) relative speed. The axis scales are chosen based on the minimum and the maximum values available in the data. To improve the
readability, the vertical axis is interrupted at minimum time headway equal to 3.75 s.
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Fig. 5. Impact of the nominal explanatory variables on the minimum time headway during the event. Black dots denote the marginal means, dark grey error
bars indicate the 95% confidence intervals, and light grey error bars denote the 95% prediction intervals. The vertical axis scale is chosen based on the
minimum and the maximum values available in the data. To improve the readability, the axis is interrupted at minimum time headway equal to 2.75 s.

Table 6
Five-fold cross validation of the linear mixed-effects model predicting the maximum deceleration. C indicates the model that contains only the constant and bb
denotes the linear mixed-effects model.

Validation subsample Drivers Observations RMSE cð Þ RMSE bb� �
RMSE cð Þ�RMSE bb� �

RMSE cð Þ

1 6 208 0.555 0.473 0.1480
2 5 212 0.595 0.493 0.1703
3 6 213 0.505 0.454 0.0997
4 6 215 0.538 0.454 0.1560
5 6 212 0.600 0.525 0.1262
M 5.80 212 0.559 0.480 0.1400
SD 0.45 2.55 0.040 0.030 0.0276

Table 7
Five-fold cross validation of the linear mixed-effects model predicting the minimum time headway. C indicates the model that contains only the constant and bb
the linear mixed-effects model.

Validation subsample Drivers Observations RMSE cð Þ RMSE bb� �
RMSE cð Þ�RMSE bb� �

RMSE cð Þ

1 6 204 0.5800 0.3933 0.3218
2 5 203 0.5725 0.2822 0.5071
3 6 208 0.6270 0.3054 0.5129
4 6 208 0.5640 0.2692 0.5226
5 6 205 0.5742 0.2834 0.5065
M 5.80 206 0.5835 0.3067 0.4742
SD 0.45 2.06 0.0250 0.0501 0.0854
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4. Discussion and conclusions

This study analysed the main factors influencing driver deceleration behaviour while approaching traffic congestion with
VSLs. For this purpose, naturalistic driving data collected in the UDRIVE project were analysed using linear mixed-effects
models. This data analysis method allows to capture the impact of multiple explanatory variables and unobserved correla-
tions between observations for the same driver. The maximum deceleration and the minimum time headway were investi-
gated as indicators of driver aggressiveness and control task quality while approaching traffic congestions. These indicators
have been used in previous studies (Naujoks & Totzke, 2014; Popiv et al., 2010; Reinolsmann et al., 2018; Van Driel et al.,
2007; Van Lint et al., 2020). The results showed that low speeds, large distance headways, approaching a faster vehicle, prox-
imity to the gantries and the presence of VSLs on the gantries resulted in significantly smaller maximum decelerations and
larger minimum time headways during the events. The findings in this study must be interpreted with caution, due to lim-
itations related to the data collection method, the sample of participants, and the AID system analysed. The main conclusion
from this study is that proximity to the gantries and presence of VSLs have a beneficial impact on deceleration behaviour
while approaching traffic congestion. Section 4.1 discusses the main findings, Section 4.2 presents recommendations for
future research, and Section 4.3 presents recommendations for practice.

4.1. Main findings

The results showed that the main factors influencing large maximum decelerations are approaching a slower vehicle, high
speeds, short distance headways, proximity to the beginning of traffic congestion, and the driver-specific error term. A pos-
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sible interpretation could be that drivers decelerate more aggressively to reduce their speed quicker when they perceive a
higher feeling of risk and task difficulty (Fuller, 2011) due to the current traffic situation. In addition, drivers can be influ-
enced by the traffic conditions further downstreamwhen approaching traffic congestion. The significant differences between
drivers might be explained by individual driving styles, usage of navigation systems providing traffic advice, and familiarity
with traffic congestion at specific locations (e.g., commuting from home to work). Controlled for these main factors, closer
proximity to the gantries and presence of the seventy and fifty flashing VSLs resulted in smaller maximum decelerations.
These results are in line with previous findings on roadside VSLs based on loop detector data (Van Lint et al., 2020) and
on in-vehicle and roadside VMSs in driving simulator experiments (Popiv et al., 2010; Reinolsmann et al., 2018; Totzke
et al., 2012). Interestingly, smaller decelerations were also observed when the gantry was visible and active for a larger per-
centage of time before the beginning of the event. The findings suggest that drivers decelerate less aggressively when they
see active gantries. Further research is needed to investigate the potential link between glances and deceleration behaviour.

The results revealed that the main factors related to short minimum time headways, controlled for short initial distance
headways, are high speeds and changing lane during the event. A possible interpretation could be that drivers accept shorter
time headways when they want to experience higher feeling of risk and task difficulty (high speeds). In addition, drivers
could accept higher risks for a short period of time while changing lanes. Controlled for these main factors, proximity to
the gantry with the fifty VSL resulted in larger minimum time headways. This finding suggests that situations with high per-
ceived risk occur less often when the VSLs are active in dense traffic conditions. Further research is needed to analyse the
effect of glances on minimum time headway.

4.2. Recommendations for future research

This study analysed the main factors influencing deceleration behaviour while approaching traffic congestion on Dutch
motorways in a wide range of traffic situations, mostly non-safety critical. For instance, 56.9% of the events have a minimum
time headway larger than 1 s, which has been commonly used as a threshold for the identification of critical time headways
in previous studies (De Waard & Brookhuis, 1997; Fairclough, May, & Carter, 1997; Vogel, 2003). Therefore, the results can-
not be directly generalized to deceleration behaviour in safety critical traffic situations. Future studies are recommended to
focus on analysing the impact of the AID system on driver behaviour in safety critical situations based on a larger sample of
observations. The events were selected based on a minimum speed reduction (5 km/h) over a duration between 1.1 s and
24.9 s. Although further analysis is necessary, the main findings in this study are expected to be robust to more restrictive
criteria in terms of event duration around the median values (e.g., between 3 s and 7 s). Caution is needed to generalize the
findings to event durations in the extreme values, which might capture different types of behaviour. For example, during
short events, drivers usually pressed the brake pedal in response to the immediate traffic situation. In contrast, during long
events, drivers were more likely to release the gas pedal or shift gears than to press the brake pedal. Future studies are rec-
ommended to explore the link between event durations and characteristics based on a larger sample. In the current analysis,
a single value of the event characteristics (e.g., minimum time headway) during a time interval (i.e., the event) is used as
dependent variable. The analysis could be extended to account for the time dimension by using an aggregated value of
the event characteristics (e.g., mean time headway, or percentage of time when the time headway is shorter than one sec-
ond) during the event. To explore this direction, we included the mean event characteristics as dependent variables instead
of the minimum and of the maximum values in the models presented in Table 3 and in Table 5. All results were consistent
with the findings discussed in this study in terms of direction of the impact. Certain variables had a smaller impact on the
mean values than on the extreme values (e.g., proximity to the gantries and proportion of time when the gantry is visible and
active in the models predicting the deceleration). Although further analysis is necessary, the main factors identified in this
study are expected to have a similar impact on the mean deceleration and on the mean time headway during the events.
Another interesting direction for future research could be to investigate driver response time to traffic congestion. Further
work is also required to generalize the findings, which are affected by the characteristics of the Dutch AID system, to other
types of AID systems.

The number of participants in this study was relatively small (29) and the sample was not representative of the driving
population in terms of gender, age, and driving experience. The generalizability of the results towards the general driving
population is limited. For instance, the results showed that older drivers decelerated more aggressively than younger drivers
in the sample. However, this finding cannot be generalized to young drivers (18–21 years) and elderly drivers (>= 65 years)
in the general driving population, because they were not included in the sample. The results of the validation analysis indi-
cated that future studies should analyse more in-depth the impact of driver characteristics on deceleration behaviour in
order to improve the prediction accuracy of the models. Furthermore, all participants in this study drove a single vehicle
model. Further research is needed to generalize the results to other vehicle types and to vehicles equipped with in-
vehicle warning systems and advanced driving assistance systems as adaptive cruise control, which was not available in
the instrumented vehicle.

More research using different annotation methods is needed to assess the impact of secondary task engagement on driver
behaviour while approaching traffic congestion. In the current study, secondary task involvement was operationalized
according to the codebook used in the UDRIVE project (Carsten, et al., 2017). However, the interrater reliability of the anno-
tated secondary tasks was too low (Varotto et al., 2021), and therefore secondary tasks were not included in the analysis. An
alternative operationalization of secondary task engagement or an annotation procedure focusing on secondary tasks only
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might result in more reliable measures. In addition, the annotation could be extended to include the visibility of traffic con-
gestion during the events and the type of incident that caused congestion (e.g., road works or crashes). These factors might
have an impact on the responses of drivers and should be further investigated.

4.3. Recommendations for practice

The data collection methods (naturalistic driving data, variable speed limit database, and manual annotation) and the
data analysis methods (linear mixed-effects models) proposed in this study are suitable to in-depth analyse adaptations
in driver behaviour in real traffic conditions. The analysis of this integrated database provides insights that have a high level
of external validity, which cannot be achieved by other empirical data collection methods. The results allow us to quantify
explicitly the maximum deceleration and the minimum time headway of drivers while approaching traffic congestion in dif-
ferent circumstances. The findings are of interest to policymakers, companies, and researchers developing intelligent trans-
port systems and assessing the impact of these systems on traffic operations.

Driving assistance systems intending to mimic a human driving style while approaching traffic congestion may benefit
from including the main factors found in this study. Based on the current findings, future studies should focus on developing
systems that regulate the longitudinal control task based on the maximum deceleration drivers would apply and the min-
imum time headway drivers would keep. These systems should also accommodate variability between drivers based on indi-
vidual characteristics and within drivers based on characteristics of the infrastructure, including proximity to gantries and
presence of VSLs. To improve driver response when the VSLs on the gantries are not directly visible, the VSLs could also be
provided in in-vehicle devices using infrastructure to vehicle communication systems. Driving assistance systems grounded
on these findings should be adopted by drivers in a wider variety of traffic conditions.

The realism of microscopic traffic flowmodels that evaluate the impact of VSLs on traffic operations could be enhanced by
incorporating the main factors found in this study. The results in this study have indicated that there is a large variability
between and within drivers in deceleration behaviour, that can be explained by the traffic conditions, proximity to the gan-
tries, presence and visibility of VSLs, and observed and unobserved driver characteristics. To the best of the authors’ knowl-
edge, previous traffic simulation models have not been based on findings in naturalistic driving experiments. Based on the
empirical results in this study, future research should focus on developing a car-following model that describes driver decel-
eration while approaching traffic congestion as a function of the instantaneous behaviour characteristics. This advanced car-
following model should explicitly account for adaptation effects related to the proximity to gantries and to the presence of
VSLs (analogous to the car-following models including driver distraction by Hoogendoorn, Van Arem, and Hoogendoorn
(2013) and Saifuzzaman, Zheng, Mazharul Haque, and Washington (2015)). Such an advanced car-following model can be
implemented into a microscopic traffic flow simulation to predict the impact of VSLs on traffic operations with a higher level
of accuracy.
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Appendix A

This section describes the equations of the final linear mixed-effects models predicting the maximum deceleration and
the minimum time headway. The maximum deceleration MaxDecn tð Þ and the minimum time headway MinTHWn tð Þ during
the event at time t for driver n are presented in Eqs. (3) and (4):
log MaxDecn tð Þð Þ ¼ lD þ kDSpeed � Speed tð Þ þ kDRelSpeed � RelSpeed tð Þ þ kDDHW � DHW tð Þ þ kDNoLead � NoLead tð Þ
þ kDDistCong � DistCong tð Þ þ kDGantryClose � PrevGantryClose tð Þ þ kDGantryClose �NextGantryClose tð Þ
þ kDNext�70�;�50� �Next � 70�; �50 � tð Þ þ kDpGantryVisAct � pGantryVisAct tð Þ þ kDAge � Agen
þ cD � #D

n þxD � tDn tð Þ ð3Þ
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log MinTHWn tð Þð Þ ¼ lT þ kTSpeed � Speed tð Þ þ kTRelSpeed � RelSpeed tð Þ þ kTDHW � log DHW tð Þð Þ þ kTNoLead �NoLead tð Þ
þ kTLaneChange � LaneChange tð Þ þ kTNext50 �Next50 tð Þ þ kTPrev50 � Prev50 tð Þ þ kTFemale � Femalen

þ cT � #T
n þxT � tTn tð Þ ð4Þ
where lD and lT are the mean values, kD and kT are vectors of parameters related to the explanatory variables in Table 3 and
Table 5, cD and cT are the parameter associated with the driver-specific error terms #D

n � N 0;1ð Þ and #T
n � N 0;1ð Þ, and xD

and xT are the parameters associated with the observation-specific error terms tDn tð Þ � N 0;1ð Þ and tTn tð Þ � N 0;1ð Þ.
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