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Abstract
Nature has been optimizing for millions of years the aerodynamics of dragonflies. The main goal of
the present thesis is to understand these mechanisms so that they can be further applied in future
bio-inspired designs.

To start with, the experimental and numerical methodology is described (chapter 3). Next, a
single flapping wing is studied under different conditions (chapter 4). Reynolds number, angle of
attack, wing shape and corrugation effects are characterized. It is shown that dragonflies leading
edge vortex is responsible for a great amount of lift production. Leading edge vortex circulation
increases with Reynolds number, and so does lift. However, drag is also found to be a crucial
contributor to the force balance that sustains dragonflies hovering. Additionally, corrugation effects
improve aerodynamic efficiency in the studied flow regime.

Finally, wing-wing interaction effects are studied numerically in a whole dragonfly chapter 5. It
is illustrated that phase changes between hindwings and forewings can maximize force production or
be tuned to achieve a more stable and efficient hovering. However, not all phases are appropriate for
maximum efficiency. Phase has to be tuned to maximize wake-capturing mechanisms and therefore
flying efficiency. Finally, vorticity removal mechanisms are depicted to maintain a clean and uniform
background flow that optimizes hovering efficiency.

Thesis Supervisor: Stefan Hickel
Title: Full Professor
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Chapter 1

Introduction

Dragonflies belong to the insect order Odonata. Odonata contains both dragonflies Anisoptera and

damselflies Zygoptera. Dragonfly origins can be traced back to 250 million years ago, see Figure 1-1,

when the Odonata subdivided into damselflies and dragonflies. Data has been found that proves

that the first dragonflies were much bigger that the ones existing today, with wing spans of 70 𝑐𝑚

[58]. However, they quickly reduced their size to adapt to the predominant smaller size of other

insects. This makes sense, as dragonflies with a smaller size consume less energy, and therefore did

not need to hunt so many small insects. Despite this, morphological features of dragonflies have

remained almost unchained for almost 200 million years. This tends to indicate that according to

Darwin´s evolutionary theory, their physiology was already well developed since long ago. Their

hunting abilities were clearly superior to other insects, and they quickly expanded all across the

globe. Nowadays, more than 3000 dragonfly species are known, and they can be found in the five

continents [58].
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Figure 1-1: Species evolution of Odonata into dragonflies and damselflies.

[58]

Dragonflies are insects with notable flying capabilities. Pantala Flavescens, widely known as the

globe skimmers, cross the Indian Ocean during their life span, a distance of more than 6000 km

[16]. This is one of the largest known migrations of insects, and is a remarkable feat that shows

the superior endurance and efficient flight of dragonflies. Moreover, apart from their stamina and

long range capabilities, they are also incredibly agile flyers. This species is considered one of the

"high-performance" flying insects [7]. Taylor [116] was able to measure speeds up to 5 𝑚𝑠−1, 100

times per second their body length. To put this into perspective, the fighter jet F-35 Lightning, can

only reach maximum speeds of 35 times per second their body length [50]. Moreover, dragonflies can

achieve maximum accelerations of 6𝑔 and turn rates of more than 1000 degrees per second, almost

three 360 degree turns in a second, see Figure 1-2.

Additionally, dragonflies have much more degrees of freedom during flight than a conventional

aircraft or helicopter. They can fly backwards, forwards, upwards, downwards, hover, glide, acceler-

ate and do quick turns, and even fly upside down [138]. All these flight modes are achieved thanks to

the independent control of each of their four wings. Subtle changes of phase, amplitude or feathering

angle of each wing are key to achieve such remarkable aerodynamic characteristics. They can even

control their tail position to balance their centre of mass and achieve a great longitudinal stability

[79].
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Figure 1-2: Flight performance of nine species of Odonata. PDF showing the frequency of each type
of maneuver.

[16]

These accelerations and maneuverability are unattainable by most insects. Dragonflies in nature

have capture success rates from 83 % to 97 % [82] [32]. This is a strikingly high success rate, and it is

rare that other animal species can even come close to these numbers [82]. This puts into perspective

the dominance and superiority of dragonflies agility, being almost unavoidable killers.

Several researchers have considered dragonflies as especially efficient flyiers. For example, Wang

[127] asserted that dragonflies "are some of the best hoverers" due to the incredibly high lift coeffi-

cients they can achieve: between 2 and 6. Note than maximum steady lift coefficients of dragonfly

wings are around 1, which means that dragonflies are able to control super-lift via highly unsteady

aerodynamics. The natural question that follows is if these insects are still superior when compared

to modern flying systems created by humans. This is going to be studied for hovering, the flying

mode that is going to occupy most of the present thesis. Helicopters are clearly the reference to take

when considering dragonfly hovering. A first, comparison could be done looking at the Hovering

Efficiency in its dimensional form:

𝐻𝐸,𝐷 =
𝑚

𝑃
, (1.1)

where 𝑚 is the mass that can be sustained in hovering provided a given power consumption 𝑃 .

Following this definition, 𝐻𝐸,𝐷 as high as possible would be desirable. Liu [65] did a comparative

analysis of insects typical 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 = 1
𝐻𝐸,𝐷 and human-made propulsive systems. It can be

seen that the 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 required to lift a mass is one order of magnitude smaller in insects
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using flapping mechanisms, see Figure 1-3a. This seems to clearly indicate that insects flapping

technique, and in particular dragonflies, have a superior efficiency. However, this is not so simple,

as only systems with equivalent 𝐷𝑖𝑠𝑘 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 = 𝐷𝐿 = 𝑚
𝑆 (𝑆 is the disk area for propellers or wing

area for insects) should be compared. The reason for this can be explained following a simple disk

actuator model [88]. In hovering, thrust 𝑇 should be equal to weight 𝑊 = 𝑚𝑔 so:

𝑊 = 𝑚𝑔 = 2𝜌𝑆𝑉 2
𝐷 → 𝑉𝐷 =

√︂
𝑚𝑔

2𝜌𝑆
(1.2)

𝑃 = 𝑇𝑉𝐷 = 𝑚𝑔𝑉𝐷 =
(𝑚𝑔)3/2√

2𝜌𝑆
→ 𝑚

𝑃
=

√︂
2𝜌𝑆

𝑚
(𝑔)−3/2 = (𝑔)−3/2

√︀
2𝜌

1√
𝐷𝐿

, (1.3)

where 𝑉𝐷 is the induced velocity, and 𝜌 the density, both at the actuator disk. It can be seen

how indeed the dimensional hover efficiency depends on the disk loading 𝐷𝐿. This scaling with 1√
𝐷𝐿

was proved in detail with different modern propellers in Qin et al. study [88], see Figure 1-3b.

(a) Comparison of 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 = 1
𝐻𝐸,𝐷

of insects and different types of human-made
propulsive systems. [65]

(b) Analysis of 𝐻𝐸,𝐷 of modern propellers and depen-
dence with Disk Loading. Red line indicates predicted
scaling with 1√

𝐷𝐿
. [88]

Figure 1-3: Analysis of hovering efficiencies of insects and actual propulsive systems.

Therefore, to take into account the 𝐷𝑖𝑠𝑘 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 dependence, a new parameter is going to be

defined:

𝐻𝐸,𝐶 =
𝑚

𝑃

√
𝐷𝐿. (1.4)

Two helicopters are going to be compared with generic dragonfly species using this new Hovering

Efficiency definition: AeroVelo Atlas and CH53 E Super Stallion. AeroVelo Atlas was designed

as an extreme case with a minimum Disk Loading, so as to minimize the required power to lift
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for a certain mass. See in Figure 1-4a how the disk area is exaggeratedly increased. Because of

this, the non corrected Hovering Efficiency 𝐻𝐸,𝐷 of the AeroVelo Atlas is the biggest one of the

three vehicles as it can be seen in 𝑇𝑎𝑏𝑙𝑒 1.1. However, when a fair comparison is done, that is the

optimal lift generation strategy given a disk area and the mass of the object, then it is seen that the

dragonfly (S. sanguineum) has a similar performance compared to the Super Stallion. Nevertheless,

S. sanguineum 𝐻𝐸,𝐷 was found using a quasi-steady approximation, and Sun et al. reported that

it underestimates by a 50% the power which is needed for a given mass. For this reason, a well

resolved computational study of Aeschna juncea is also included [114]. Indeed, it can be seen how

the final 𝐻𝐸,𝐶 for dragonflies is lower, less than half of the value obtained with the CH53 E Super

Stallion.

Flyer Type Mass [𝑘𝑔] Surface [𝑚2] HE, D [𝑘𝑔/𝑊 ] HE, C [𝑘𝑔𝑁
1/2

𝑊𝑚 ]

Dragonfly (S. san-

guineum), quasi-steady

[124]

0.000130 0.000320 0.0584 0.0372

Dragonfly (Aeschna

juncea), CFD [114]

0.000754 0.00180 0.0272 0.0176

AeroVelo Atlas [66] 128 1300 0.174 0.0546

CH53 E Super Stallion

[66]

33000 460 0.00449 0.0380

Table 1.1: Propeller system characteristics for hovering. HE = Hovering Efficiency, D = Dimensional,
C = Corrected.

Based on the previous observation, it may seem that dragonflies are less efficient fliers than

modern helicopters. However, it is important to mention that helicopters and dragonflies do not

actuate at similar 𝑅𝑒 numbers, which is really important when assessing the lift to drag ratio 𝐿/𝐷

of the blades/wings. Lian et al. [63] determined that for lower 𝑅𝑒 the ratio 𝐿/𝐷 decreases due

to a thicker boundary layer profile and sooner detachment of the flow (low energetic boundary

layer). Dragonflies and Micro Air Vehicles (MAVs) in general tend to fly at much lower 𝑅𝑒 than

helicopters. This lowers the aerodynamic efficiency 𝐿/𝐷 of conventional airfoil/blade configurations

an order of magnitude [91]. The coefficient 𝐻𝐸,𝐶 would also decrease an order of magnitude, as it is

proportional to the aerodynamic efficiency in helicopters. Consequently, based on this preliminary

study, at low Reynolds numbers which are characteristic of MAVs, flapping becomes a superior

alternative to rotatory wings. In the literature other studies have been done comparing rotatory

and flapping wings for low Reynolds numbers [11][135]. Overall there is consensus that flapping

wings have a superior aerodynamic performance at sufficiently low Reynolds numbers (𝑅𝑒 < 10000)

and high lift coefficients (𝐶𝑙 > 1). Given that dragonflies fly at around (𝑅𝑒 ≈ 1000) and have really
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high lift coefficients in hovering (𝐶𝑙 = 2 to 4) [124], flapping is the optimal flying strategy.

All in all, this indicates that dragonflies flapping technique and configuration are a serious can-

didate to improve current efficiency in near hovering manoeuvres for low Reynolds number regimes

in MAVs.

(a) AeroVelo Atlas. [66] (b) CH53 E Super Stallion. [53]

Figure 1-4: Analysis of hovering efficiencies of insects and actual propulsive systems.

Dragonflies flapping has been proved to be an efficient alternative to conventional propellers which

are used for hovering. However, is this the same for example for other flying modes such as forward

flight? The answer is that for sufficiently high speeds, fixed wings configurations with propfans

are much more efficient than flapping [65]. The reason for this is that fixed wings can achieve

flight at a constant and optimal angle of attack, with maximum aerodynamic efficiencies 𝐿/𝐷.

When flapping occurs, local angle of attack varies, and therefore the wings are not always flying at

optimal conditions. On the other hand, for relatively slow flight conditions, steady aerodynamics is

not sufficient, and unsteady flapping is needed to generate enough lift. At these flying conditions

flapping becomes a much more viable alternative. Moreover, helicopters which are the other human-

made alternative, do not behave properly in forward flight, because of the reverse flow region that

is created inside of the disk, see Figure 1-5. On the other hand, dragonflies can avoid this by tuning

the pitch angle of their wings to have optimal incidence angles at different speeds.

In summary, dragonflies display an outstanding agility and maneuverability, and at the same time

are efficient flyers. Consequently, having analyzed the flight envelope and performance of dragonflies,

it can be inferred that in slowly flying or hovering vehicles and at low Reynolds numbers, when there

is not enough dynamic pressure to fly with steady aerodynamics, it might be a good a idea to consider

these insects in order to improve flight efficiency and manoeuvrability.
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Figure 1-5: Reverse flow region in helicopter disk in forward flight.

[55]
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Chapter 2

Literature Review

2.1 Flying mechanisms and kinematics

The first step when trying to study the aerodynamics of a dragonfly is understanding the kinematics

that they follow. Once this is understood, then different aerodynamic phenomena can be identified.

Dragonflies have four wings with several degrees of freedom in each wing. For this reason a formalism

to identify these complex kinematics is going to be provided below.

In order to characterize the kinematics of the periodic movement of dragonfly wings, a Cartesian

system X𝐵 is attached to the body of the dragonfly, with the x𝐵 axis aligned with the body

pointing towards the tail, the z𝐵 axis defining the symmetry plane x𝐵 − z𝐵 between the right and

left wings, and the y𝐵 axis so as to have a right-hand-side-oriented Cartesian system, see Figure 2-1.

The Cartesian system X𝐵 will be centered in the center of mass of the dragonfly body during its

implementation in the Multibody solver, Appendix A. The body system X𝐵 is oriented with respect

to the inertial reference system X0 following a 3-1-3 intrinsic Euler rotation: yaw 𝜓𝐵 , pitch 𝜃𝐵 and

roll 𝜑𝐵 . Then, a Cartesian system is attached to each wing of the dragonfly, X𝑊1, X𝑊2, X𝑊3

and X𝑊4. These wings systems X𝑊 will be placed in the center of rotation of each wing in the

Multibody solver implementation. The z𝑊 axis of each wing will be contained within the torsion

axis (leading edge approximation in many cases due to stiffness of the veins), pointing outwards

from the body to the wing tip for the right wings (right looking from behind of the insect tail), and

inwards from the wing tip to the body for the left wings. Each wing x𝑊 axis will be defined so

that the plane x𝑊 − z𝑊 contains the wing (assuming flat plate wings, with no deformation), and is

pointing towards the tail. The y𝑊 axis is oriented in each wing to have a right-hand-side-oriented

Cartesian system, see Figure 2-2.

To orient the wings with respect to the body reference frame X𝐵 , the Euler angles will be used.

In particular, following the literature [7] [8] [9], a 3-1-3 intrinsic rotation will be used, see Figure 2-2.
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Figure 2-1: Yaw, pitch and roll, 3-1-3 intrinsic rotation for body reference system X𝐵 .

The wing reference system X𝑊 is initially oriented (𝜓 = 0∘, 𝜃 = 𝜋
2
∘, 𝛾 = 𝜋

2
∘) with the x𝑊 axes

of all wings aligned with the body x𝐵 body axis. Additionally, all wings will have the axis z𝑊

pointing in the same direction as y𝐵 for the initial position. First, starting from the initial position

(𝜓 = 0∘, 𝜃 = 𝜋
2
∘, 𝛾 = 𝜋

2
∘) a 𝜋

2 − 𝛾 rotation will be done around the z𝑊 axis. This rotation will

define the stroke plane of both left and right wings. Second, a 𝜓 rotation (the flapping angle) will

be done around the x𝑊 axis for the right wing, and a −𝜓 rotation for the left wings. The maximum

amplitude of the flapping angle is denoted with Φ. Third, a 𝜋
2 − 𝜃 rotation around the z𝑊 axis, that

defines the feathering (pitch) angle for both right and left wings. With this, the full kinematics of

the dragonfly are defined.

Dragonflies tend to fly following constant stroke plane angles 𝛾 ≈ 60∘ [74] [100]. It is important

to note that during this document the stroke plane (and other wing angles) are defined with respect

to the body axis X𝐵 . In the literature the wing angles are sometimes referred to the inertial

system X0 [123] [96], but in this case the stroke plane is not constant anymore [9]. The flapping

angle follows a sinusoidal distribution, with maximum speed at the middle of the downstroke [115].

The amplitude of the flapping cycle varies slightly depending on the power requirements, while the

frequency tends to be invariant [86]. Finally, dragonflies tune the feathering angle of their wings

during the flapping cycle to control different aerodynamic phenomena that will be explained in more

detail in section 2.2. It has been observed [115] [100] that dragonflies tend to vary the phases of the

flapping cycles between each wing depending on the flying mode. In particular, counter-stroking

or 180∘ phase between ipsilateral wings has been observed in hovering [26] [123]; near 90∘ phase

or phased-stroking in forward flight [98] [123]; and 0∘ phase or synchronized-stroking in accelerated

flight [98] [123] [26]. All the present literature on these flying modes, and in addition gliding and

turning maneuvers will be reviewed in the following subsections subsection 2.1.1, subsection 2.1.2,

subsection 2.1.3 and subsection 2.1.4.
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Figure 2-2: Chosen kinematic parameters of a generic dragonfly wing and body.

2.1.1 Counter-stroking, hovering

Hovering is the first step to understand flying insects. Once a stable force that is able to compensate

weight is developed and understood, small changes on the applied direction of the force might achieve

all kinds of different flight maneuvers. For this reason, hovering is going to be studied in more detail.

First, general hovering strategies in animals are going to be considered, so as to have a good picture

of insect hovering techniques. Second, dragonfly hovering is going to be studied in more detail.

Animals hovering

Animals can be classified into three types according to their hovering strategy [40]: horizontal stroke,

inclined stroke and vertical stroke. This classification is based on the flapping stroke plane of the

animal, which greatly defines the aerodynamic mechanisms that are being used.

First, the horizontal stroke in going to be analyzed. Weis-Fogh and Torkel [132] noted that this

flapping strategy can be seen in animals such as hummingbirds. Moreover, Weis-Fogh and Torkel

[133] discovered that most insects in nature use this flapping strategy. This hovering mechanism can

be seen in Figure 2-3a, the bird claps its wings forwards and backwards, maintaining the leading

edge in an horizontal plane. The main aerodynamic mechanism that makes this possible can be

seen in Figure 2-3b. During the stroke from left to right the drag has the opposite sign compared

to the other half of the cycle. Therefore the drag forces cancel, and the net force over the cycle

is only vertical, allowing this way hovering. The aerodynamic cycle is quite similar to that of an

helicopter, but this time the wings follow a translational motion instead of a circular one. Ellington

[41] hypothesized that this translational flapping might have the advantage to recover part of the
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(a) Horizontal flapping of a bird. Above, side-
way view of the bird. Below, view of the bird
from above. [40]

(b) 2D section of the wing during horizontal flapping.
[130]

Figure 2-3: Horizontal stroke hovering.

wake energy released in the previous half stroke. During the first half of the cycle, when the wing

is going from left to right, the wake has an induced component of velocity going also from left to

right. When the flapping is reversed, the previously induced velocity gives an additional dynamic

pressure to the wing that enhances lift. This is unique to translational flapping, and it is not used

in an helicopter, where the wake is just propagated downstream following an helical path, without

energy recovering.

Weis-Fogh and Torkel [133] also discovered an interesting aerodynamic phenomenon that en-

hanced lift production in horizontal flapping: clap and fling. The key of this mechanism is to avoid

the well known "Wagner Effect", that is, to avoid the lift delay due to the vortex shed when there

is a huge lift increase at the wing. First, looking at B in Figure 2-4 the two wings are approaching

to each other. When the upper edges of both wings join, phase C, a kind of hinge is created that

only allows air to go downwards. The rotation of the wings in the last phase of the clap expels

downwards the air between both plates, phase E, and due to Newton action-reaction principle, a

super-lift component is created. However, the most relevant part of the cycle in terms of lift is yet to

come: the fling. The wings keep its rotation, and a huge space without air is created just above the

plates, phase F, which creates a huge suction and therefore creates a down wash that tries to cover

this void space. This of course generates an enormous lift during a short instant of time, due to this

suction. The most relevant fact is that this down wash creates two opposite sign vortices attached

to the top of each wing, see phase H. Due to Kelvin theorem, the net vorticity in the flow should
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Figure 2-4: Sketch of the "clap and fling" technique.
[133]

remain constant. This implies that in normal flapping when a vortex is created that generates lift,

another opposite sign vortex is shed downstream. However, this shed vortex diminishes the circu-

lation attached to the wings, and produces the "Wagner Effect", which is a temporarily reduced

lift that keeps later on recovers its intensity when the shed vortex is moving further downstream.

On the other hand, with this "fling" mechanism, instead of having a shed vortex downstream, the

opposite sign vorticity is attached to the other wing and is used in an effective way to produce lift.

Moreover, a huge circulation is attached to both wings since the beginning of the horizontal stroke,

see phase I, which implies great lift with no time lag, or no "Wagner Effect".

The "clap and fling" has been reported [132] to be a really useful way of producing unsteady

forces, and has been implemented in most of the recently bio-inspired MAVs: DARPA’s Humming-

bird [57], FW-MAV [84], DelFly [34], RoboBee [134], etc. Weis-Fogh and Torkel [133] also realized

that "clap and fling" was quite common in nature. However, Rüppell [96] only did observe a kind of

"clap and fling" in 1 of the 16 cases studied in various dragonfly species. This tends to suggest that

dragonflies rarely use this technique, and might be using other aerodynamic mechanisms. Rüppell

hypothesized that the clapping phase might be damaging for the wings, and therefore the insects

with largest life spans tend to avoid it.

The next type of hovering is the inclined stroke hovering. This is much more infrequent in nature

than horizontal hovering [132]. It is done for example by small passerine birds [76], bats (Figure 2-5a)

[75] and dragonflies [74]. These animals appear to generate relatively small forces on the upstroke.

The dragonfly Aeschna Juncea L. [74] strongly supinates its wings on the upstroke, making the angle

of attack near zero, and reducing the pressure drag. However, during the downstroke it uses large

angles of attack to create a vertical force. In the horizontal flapping strategy drag was cancelled,

and only lift was giving a net resultant across the cycle. On the other hand, due to the inclined

flapping, drag also starts to be relevant and contributes greatly to lift during the downstroke, see
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(a) Bat inclined stroke sequence. [75]
(b) 2D section of the wing during inclined flapping.
[130]

Figure 2-5: Inclined stroke hovering.

Figure 2-5b. This mechanism is completely different to horizontal flapping, and might be also the

reason why dragonflies do not benefit so much from "clap and fling".

Finally, the third type of flapping observed in nature is vertical flapping. This is by far the less

common stroke. The Large Cabbage White butterfly Pieris brassicae L was the only animal reported

by Ellington and Porter [40] to do this. The main sustaining force is the pressure drag. The pressure

drag during the downstroke is bigger than the skin friction of the upstroke, and consequently a net

vertical force is produced. This asymmetry between the upstroke and downstroke are achieved by a

greater supination that minimizes the angles of attack during the upstroke.

Dragonflies hovering

Norberg [74] was the first one to notice that dragonflies tend to vary the phase between ipsilateral

wings between different maneuvers. He observed the dragonfly Aeschna Juncea L. during free flight

and hovering, Figure 2-6. The position of the body was slightly pitching down: 𝜃𝐵 = −2∘ and

𝜑𝐵 = 0∘. The flapping frequency 𝑓 in the three specimens was 36, 36 and 37 𝐻𝑧. The stroke plane

was defined as 59.8∘ with respect to the horizontal, which is equivalent to 𝛾𝑊 = 57.8∘ in body axis.

Norberg [74] and later other authors [8][9] stated that a sinusoidal representation of the flapping

and feathering angle of the wing was able to capture quite accurately its kinematics. Norberg found

the following approximation of the flapping angle kinematics in the stroke plane:

𝜓𝐹 = 5 + 30𝑠𝑖𝑛(2𝜋𝑓𝑡) (2.1)

𝜓𝐻 = 15 + 30𝑠𝑖𝑛(2𝜋𝑓𝑡), (2.2)
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Figure 2-6: Kinematics of forewings and hindwings in dragonfly Aeschna Juncea L. during free flight
and hovering. [74]

where 𝜓𝐹 and 𝜓𝐻 are the flapping angles of the forewings and hindwings respectively in degrees.

Norberg facilitated the data from his research to Savage [103], and he further described the flapping

cycle in a more precise manner, see Figure 2-7.

Nevertheless, Norberg [74] was not able to quantify the feathering angle 𝜃𝑊 of the wings, although

he observed a strong rotation and supination at the end of the downstroke and upstroke. The

particular feature of hovering was the phase between ipsilateral hindwings: the hindwings led the

forewings by almost 180∘. This phase is convinient to achieve a more uniform lift with smaller force

fluctuations [131] and it is also appropiate to extract energy [94] from forewing-hindwing interaction.

Despite a good description of the stroke plane and flapping angles, the feathering angles during

hovering of dragonflies in free flight have been reported in literature in a limited way. Rüppell

[96] did an extensive study of dragonfly and damselfly kinematics for several species. Of all his

16 study cases, only one case was associated with pure hovering: dragonfly Aeshna Cyanea. The

main relevant properties of this hovering case can be found in Figure 2-8. Flapping frequencies

are identical to those measured by Norberg. Stroke plane with respect to the horizontal is also

quite similar, 50∘. Rüppell reported different and slightly higher stroke amplitudes for the hindwing

and forewing, but this could be perfectly explained by the different species. The major and most

remarkable difference is that in this hovering case the phase shift was 72∘, far away from the 180∘

case reported by Norberg. This phase is more characteristic from the cases reported for forward

flight, and might indicate that dragonflies can also hover within a wide range of out-of-phase flapping

configurations. What is more interesting from Rüppell results, is that he provides the angle of attack
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Figure 2-7: Detailed flapping kinematics of Aeschna Juncea L..
[103]

𝛼 at the middle of the downstroke and upstroke for both, the forewing and hindwing, see Figure 2-8.

This can be converted to pitch angle of the wing plane relative to the horizontal plane as follows

(assuming flapping contained in stroke plane):

𝜃𝐷0 = 𝛼𝐷𝑊 − 𝛾𝑊 (2.3)

𝜃𝑈0 = 𝜋 − 𝛼𝑈𝑊 − 𝛾𝑊 , (2.4)

where 𝑈 and𝐷 stand for the upstroke and downstroke respectively. Using the previous expression

the following pitch angles relative to the horizontal plane are found:

𝜃𝐷𝑓 = −5∘ (2.5)

𝜃𝐷ℎ = −10∘ (2.6)

𝜃𝑈𝑓 = 65∘ (2.7)

𝜃𝑈ℎ = 65∘. (2.8)

Now it can be devised the coordination between the stroke plane and the angle of attack. During

the downstroke dragonflies tend to maintain almost an horizontal wing to maximize the vertical

force. However, during the upstroke the wing has to be placed with a near 90∘ pitch to minimize
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Figure 2-8: Summary of Aeshna Cyanea properties in pure hovering.
[96]

pressure drag that gives negative vertical force. It is interesting to see that the studied dragonfly

does not reach the 90∘ during the upstroke. This might be due to the induced velocities in the flow

field during consecutive flapping cycles, that modify the relative velocities that sees the wing. It

may also be due to other unknown aerodynamic effects, or just physiological limitations. This will

be inspected in more detail in section 2.2.

Rüppell [96] was the only case in the literature were the feathering angles were provided during

pure hovering. Despite the limited information provided by Ruppel (only mid stroke feathering

angles), assuming periodical movements a first approximation can be obtained for the missing feath-

ering angles. More studies were done with free flight dragonflies [8] [9] [26] [123], however, in all

these cases dragonflies were moving with accelerated, forward and turning maneuvers. Apparently

it is quite difficult to film dragonflies during pure hovering. From all the 16 cases filmed in [96]

only one was pure hovering. Azuma et al. did not film one single case in pure hovering. This might

indicate that dragonflies do not frequently use hovering. The explanation for this could be that

dragonflies invest much more energy for pure hovering than for flying at slow speeds, see Figure 2-9.

For example, Anax Parthenope invests two times more energy for hovering than for uniform flight

at 1.5 𝑚/𝑠. Therefore it makes sense that dragonflies tend to avoid the most energy demanding

modes, unless it is strictly necessary.

Additionally to free flight, studies have been done with tethered dragonflies [131], but in these

cases dragonflies tend to escape with much more brusque maneuvers and kinematics resembling those

of accelerated and forward flight, so they might not follow the desired hovering regime. For example,

Wang and Russell [131] were able to reconstruct both the feathering and flapping angle in Libellula

Pulchella (Figure 2-10a), however, the phase between wings was almost the one associated with

accelerated flight and ascending flight [123]. On the other hand, stroke plane (53∘ for the forewing

and 44∘ for the hindwing) and frequencies (33.4 Hz) are similar to those reported by Norberg [74]

and Azuma et al. [9], so despite the different phase, their 3D kinematic reconstruction might contain
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Figure 2-9: Power consumption at different flight speeds of dragonfly Anax Parthenope.
[9]

useful information to recreate hovering flight.

A summary of the pure hovering kinematics detected in dragonflies are shown in Table 2.1. Due

to the lack of information of actual dragonfly kinematics, several strategies have been followed in

various computational and experimental studies to model hovering flight. A review of the techniques

used to model the kinematics in the literature can be seen in Table 2.2.

First, it can be seen that all the modeled stroke frequencies oscillate between 27.5∘ and 40∘. The

most common flapping frequency is the one described by Norberg [74] and Rüppell [96]: 36𝐻𝑧.

There is also a quite good agreement on the established stroke plane, 60∘, which was the one

described by Norberg [74] with respect to the horizontal reference frame.

Most of the flapping angles follow a sinusoidal distribution, with the values described by Norberg

[74]. Sun et al. [114] also have a sinusoidal distribution but with a slightly higher amplitude than the

one observed by Norberg [74]. Savage [103] is the only one that refines more the flapping trajectory.

Thanks to Norberg, Savage [103] obtained more detailed data of the flapping trajectory published

in [74].

Finally, the least described parameter, the feathering angle 𝜃, is the one that presents more

discrepancies. Given the limited data available, some authors [129] [109] [52] [70] opted to reconstruct

the feathering angle with a sinusoidal distribution, taking the values from Rüppell [96]. Other

authors [114] [103] [67] decided to maintain a constant feathering angle during the downstroke and

upstroke, with rotation only during supination and pronation phases. Finally, Hu et al. chose to
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(a) Extraction of 3D kinematics in tethered dragonfly
Libellula Pulchella. [131]

(b) Deviation from the stroke plane observed in flap-
ping kinematics. From left to right: translational
(oval), eight and double-eight. [136]

Figure 2-10: Actual wing kinematics reported during dragonfly flight.

Type Species Author Hz Stroke
Plane

Flapping
Angle

Feathering
Angle

Phase
Ipsilat-
eral

Free Flight,
pure hover-
ing

Aeschna
Juncea L.

Norberg
[74]

36 57.8∘ Yes, 1 𝑠𝑖𝑛
mode

No 180∘

Free Flight,
pure hover-
ing

Aeshna
Cyanea

Rüppell
[96]

36 50∘ F,
60∘ H

Yes, 1 𝑠𝑖𝑛
mode

Only mid
stroke

72∘

Tethered,
¿pure hover-
ing?

Libellula
Pulchella

Wang
and Rus-
sell [131]

33.4 53∘ F,
44∘ H

Yes, de-
tailed
flapping

Yes, detailed
feathering

22∘

Tethered,
¿pure hover-
ing?

Libellula
Luctuosa

Somps
and
Luttges
[112]

28 55∘ Yes, 1 𝑠𝑖𝑛
mode

−10∘ to 0∘

downstroke,
90∘ to 100∘

upstroke,

50∘ to
100∘

Table 2.1: Kinematics reported of living dragonflies in nature during hovering.
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implement a higher order Fourier series described by Azuma [8] for free flight dragonflies without pure

hovering. Azuma asserted than only one Fourier mode was not sufficient to capture the feathering

angle kinematics, and therefore, Hu et al. decided to implement a higher order Fourier series, despite

the data being measured in a slow forward flight.

Until now, most of the computational and numerical studies done in the literature consider

flapping contained within the stroke plane, see Table 2.2. However, it has been reported [131] that

dragonflies deviate their stroke slightly from the stroke plane (Figure 2-10a). A few different patterns

have been observed: translational (oval), eight figure and double-eight figure, see Figure 2-10b. Xu

et al. [136] noticed that the eight figure produces slightly higher lift force as well as thrust. Little

attention has been paid to this topic and most studies (Table 2.2) have simplified the kinematics

assuming a constant stroke plane, as initially described by Norberg [74].

Overall dragonflies have several degrees of freedom in each wing, and they can control them

independently [138]. In particular, dragonflies and bigger flies are the only insect that have three

independent degrees of freedom per wing [116]: flapping within stroke plane, feathering and normal

movement with respect to the flapping plane. This is achieved by a complex combination of direct

and indirect muscles. For example, the periodic contraction and relaxation of Dorso Ventral and

Bassaral muscles (Figure 2-11a) work as a lever that produces the flapping movement of the wings.

All these muscles are connected to the first, second and third axillaries, which are the joints between

the wing and torax, see Figure 2-11b. Wang [128] suggested that feathering is achieved passively

by the inertia and loads on the wing. Nevertheless, dragonflies have muscles that control feathering

angles [35], and even though they may be helped by passive rotation during pronation and supination,

they certainly adjust their pitch angle depending on each maneuver [8]. Most of the state of the

art bio-inspired MAVs, such as Delfly II [34] or Robobee [134], use passive feathering and do not

have an active way to control pitch. On the one hand, this might be beneficial in terms of weight as

they do not have to carry additional mechanisms to allow active feathering, but on the other hand

they are incapable of controlling in more detail the aerodynamics of each stroke (Dynamic Stall,

Leading Edge Vortex growth, Vortex Interation, etc.) The fact that heavier insects (dragonflies and

bigger flies) and most birds [116] have active control of feathering angle might indicate that for

heavy enough vehicles, the benefit of a more controlled flapping might overshadow the extra weight

required.
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Table 2.2: Kinematics implemented in computational and experimental studies of hovering dragon-
flies. Wing angles are described with respect to the inertial (horizontal) reference frame.
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(a) Main direct muscles involved in flapping. [35]
(b) Joints (axillary) that connect the wing to the tho-
rax of the dragonfly. [35]

Figure 2-11: Dragonfly morphology of wing muscles and joints.

2.1.2 Phased-stroking, forward flight

The kinematics in forward flight of dragonflies have been reported in much more detail in the

literature [8] [9] [99][123] [125] than pure hovering, see Figure 2-12. Several analysis that include a

detailed description of both, the flapping and feathering angle, were done by several authors.

When dragonflies fly forwards they shift the phase between forewing and hindwings to angles

between 54∘ and 100∘ [125]. The reason why this shift occurs is believed to be the vortex interaction

between forewing and hindwing [126]. This will be inspected in more detail in section 2.3.

Azuma and Watanabe [8] studied in detail the flapping and feathering angles of dragonfly Sym-

petrum frequens in forward flight, 𝑉 = 0.54 𝑚𝑠−1. They explained that the flapping motion was

included within a stroke plane 𝜃𝑊 of 50∘ and 40∘ with respect to body axis and the horizontal

respectively (𝜃𝐵 = 10∘). The beating frequency was 𝑓 = 41.5𝐻𝑧. Azuma and Watanabe considered

that Fourier series with only one term was sufficient to fully described the flapping kinematics:

𝜓𝑓 = −3− 43𝑐𝑜𝑠(2𝜋𝑓𝑡) (2.9)

𝜓ℎ = 2− 47𝑐𝑜𝑠(2𝜋𝑓𝑡+ 77),

where both expressions are in degrees, and 𝜓𝑓 is forewing 𝜓ℎ hindwing. Note how the hindwing

leads the forewing by 77∘.

However, Azuma and Watanabe observed that only one Fourier mode was not sufficient to capture
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Figure 2-12: Wings kinematics in forward flight for Libellula Pulchella.
[99]

the complexity of the feathering angle, and for this reason they used a three term Fourier series:

𝜃𝑓 = 98− 77𝑐𝑜𝑠(2𝜋𝑓𝑡− 49)− 3𝑐𝑜𝑠(4𝜋𝑓𝑡+ 67)− 8𝑐𝑜𝑠(6𝜋𝑓𝑡+ 29) (2.10)

𝜃ℎ = 93− 65𝑐𝑜𝑠(2𝜋𝑓𝑡+ 18) + 8𝑐𝑜𝑠(4𝜋𝑓𝑡+ 74) + 8𝑐𝑜𝑠(6𝜋𝑓𝑡+ 28).

It is also probable that this complex feathering pattern is observed during pure hovering. Nev-

ertheless, only one single feathering mode was reported in free hovering flight, see subsection 2.1.1,

so this might be a clear limitation.

Azuma and Watanabe [9] continued their analysis of dragonflies in forward flight. This time they

studied two specimens (A and B) of dragonfly Anax parthenope Julius at four different velocities:

𝑉 = 0.7, 1.5, 2.3, 3.2 𝑚𝑠−1. They discovered that the phase difference between ipsilateral wings

tended to increase at higher speeds, see Figure 2-13. Moreover, the stroke plane angle 𝛾 measured

from horizontal line is increased in faster forward flight. Note how the stroke plane with respect to

body axis is maintained more or less constant. Dragonflies tend to swing their wings always within

the same stroke plane angle relative to their bodies, because their muscles are designed to work in a

specific range of angles. This is the reason why in this document the angles are defined with respect

to body axis, see Figure 2-2. However, when they increase flight speed, they incline their body
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Figure 2-13: Main kinematic parameters of dragonfly Anax Parthenope Julius. 4 experiments per-
formed, 3 with specimen A, and 1 with specimen B.

[9]

forwards, reducing the body pitch angle 𝜃𝐵 . This way they align their body with the horizontal at

higher flight speeds and reduce drag [9]. On the other hand, at low speed and hovering having a

high body pitch angle 𝜃𝐵 has been suggested to be beneficial in terms of stability, due to passive

pendulum stability [93].

Another important aspect is that Azuma and Watanabe [9] did notice that dragonflies tend

to increase the amplitude of their flapping when they need more thrust. On the other hand, the

frequency remained almost constant in these situations. Further studies have hypothesize that this

is due to limited speed of insect flapping reflexes [116]. Azuma and Watanabe [9] also provided an

analytic expression for the flapping angle with only one Fourier mode:

𝜓 = 𝜓0 + 𝜓1𝑐𝑜𝑠(2𝜋𝑓𝑡+ 𝛿𝜓), (2.11)

where the coefficients can be obtained from Figure 2-13 for each case. The experimental data

and the analytical model can be seen in Figure 2-14 for each experiment. For the feathering angle,

once again it was considered that 1 Fourier mode was not enough, so they provided the a Fourier

series with 4 terms:
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Figure 2-14: Flapping angle 𝜓 within the stroke plane. ∘, forewing; ◇, hindwing. (A) Experimient
1 (𝑉 = 0.7 𝑚𝑠−1); (B) Experimient 2 (𝑉 = 1.5 𝑚𝑠−1); (C) Experimient 3 (𝑉 = 2.3 𝑚𝑠−1); (D)
Experimient 4 (𝑉 = 3.2 𝑚𝑠−1).

[9]
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𝜃 = 𝜃0 +

4∑︁

𝑛=1

𝜃𝑛𝑐𝑜𝑠(2𝑛𝜋𝑡+ 𝛿𝜃), (2.12)

where the specific coefficients for each case can be found in [9].

Wakeling and Ellington [123] did a similar analysis for dragonfly Sympetrum sanguineum, but

this time they included a difference: they did not only consider flapping within the stroke plane,

they also reported the elevation angle of the wing over and under the stroke plane. This way they

confirmed that dragonflies used both translational and double-eight flapping figures, see Figure 2-

10b. They also provided the coefficients for 5 terms Fourier series that described in detailed the

flapping angle and deviations from the stroke plane. On the other hand, Wakeling and Ellington

only did focus on the flapping and did not report feathering. Larger body pitch angles were reported

and a higher flapping frequency variation. It was also confirmed the previous findings by Azuma

and Watanabe [9], such as fixed stroke plane with respect to body axis.

Finally, Russell [99] did an analysis of tethered dragonflies in a wind tunnel. He reported in detail

(only graphs, no Fourier series) flapping angle, out of stroke plane deviations and feathering angles,

see Figure 2-12. No new relevant findings were added with respect to the previously mentioned

kinematics.

2.1.3 Synchronized and non-symmetric stroking, accelerated flight and

turning maneuvers

Dragonflies tend to synchronize the flapping of ipsilateral wings when they want to accelerate [115],

see Figure 2-16. This way they get a huge peak of acceleration in a short period of time. They also

tend to maintain a constant flapping frequency and increase the amplitude of the stroke [9].

Wakeling and Ellington [123] were the first to measure dragonflies in different maneuvers that

required acceleration. They detailed the flapping angles and the elevation of the wing over the stroke

plane, but not the feathering angles. They provided a fifth order Fourier series for the flapping and

elevation angle. Almost all dragonflies Sympetrum sanguineum with high accelerations had a near

synchronous flapping. Figures of eight (Figure 2-10b) and ovals were observed during acceleration

strokes.

Wang et al. reported accelerated flight during a turning manoeuvre. This kinematics had the

peculiarity of an asymmetry between left and right wings: the flapping amplitude and angles of

attack during the downstroke of the outer wings were bigger. This asymmetry provided a yawing

and rolling torque that was enough for making the turn. As previously done by Azuma and Watanabe

[9], the flapping angles were considered simple enough to be described by only one Fourier mode,

see Figure 2-17a. However, the feathering angle was described by a Fourier series with 3 terms, see
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Figure 2-15: Flapping angle 𝜓 with respect to the stroke plane. Span position, ∘, 0.75𝑅; ◇, 0.50𝑅; △,
0.25𝑅. (A) Experimient 1 (𝑉 = 0.7 𝑚𝑠−1); (B) Experimient 2 (𝑉 = 1.5 𝑚𝑠−1); (C) Experimient
3 (𝑉 = 2.3 𝑚𝑠−1); (D) Experimient 4 (𝑉 = 3.2 𝑚𝑠−1). [9]
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Figure 2-16: Wings kinematics of dragonfly Libellula pulchella in accelerated flight.
[99]

Figure 2-17b. Frequencies were not modified during the turning maneuvers, just the amplitude of

the strokes.

Alexander [5] also studied the turn of dragonflies and discovered two possible maneuvers:

1. Conventional: increase amplitude (more common) and/or angle of attack of outer wings during

the turn. This causes a roll into a bank. Then the lift vector points sideways and allows the

turn. This maneuver is typical in fast forward flight, and it is the same mechanism used by

conventional aircraft during turns.

2. Yaw turn: at slow speeds dragonflies can turn using the drag of their wings in a similar fashion

as a turn in a kayak by rowing. This causes a yaw turn without roll.

More recently, Li and Dong [62] tracked the wing kinematics of dragonfly Erythemis Simplicicollis

with high frame-rate cameras. A detailed description of one turning maneuver was provided, with

the wing kinematics of each wing. No Fourier series was given, only the graphs and plots of the

kinematics.

2.1.4 Free flight, gliding

Dragonflies have been considered to have the best gliding performance of all insects [122]. They are

capable of gliding 40 chord lengths in one complete wing beat and they use gliding in hot weather

to dissipate the accumulated heat in their body, and therefore avoid overheating [115].

Wakeling and Ellington [122] measured the gliding performance of real dragonflies. This was

done by considering the descent slope during gliding. In Figure 2-18, the polar of three specimens of

dragonfly S. sanguineum can be seen. They compared this with the reported polars of many other
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(a) Flapping angle. [125] (b) Feathering angle. [125]

Figure 2-17: Kinematics of dragonfly Polycanthagyna melanictera Selys during a turning maneuver.

Figure 2-18: Experimentally measured polar of three specimens of dragonfly S. sanguineum forewing
and hindwing.

[122]
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(a) Dragonfly Anax parthenope julius. 𝐴 forwing, 𝐵 hind-
wing. (b) Flat plate.

(c) Cambered plate. (d) Comparison flat vs artificial corrugation

Figure 2-19: Lift vs drag coefficient for different airfoils. 𝑅𝑒 = 2× 104.
[80]

insects, and the aerodynamic efficiency 𝐿/𝐷 was higher than the ones measured in many other

insect species. More importantly, looking closer at the polars it can be seen that for large angles of

attack lift is maintained almost constant. This is something quite peculiar which is not observed in

conventional airfoils, which have a steep stall and a dramatic lift decrease. Corrugation and specific

wings geometry is the secret after this, and it will be inspected in more detail in section 2.4.

A similar study was done by Okamato et al. [80], where they compared the gliding performance

of dragonfly wings, flat and cambered plates. They discovered that dragonfly corrugated wings

(Figure 2-19a) had a better performance than flat plates, specially at high angles of attack. Moreover,

they realized that is was better to have thin airfoils, than thick ones (Figure 2-19b). Cambered plates

(Figure 2-19c) where the only ones that showed a better performance than dragonfly wings. In fact,

it has been detected [115] that dragonflies camber their wings due to inertia and aerodynamic forces,

especially next to the wing tip, so they might be benefiting from this aerodynamic feature. Finally,

it was observed that not all types of corrugation were beneficial. In Figure 2-19d, it can be seen

that one corrugation pattern outperforms the flat plate, while the other one does not.
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2.2 Aerodynamics and lift generation

In the previous section, section 2.1, the kinematics of dragonflies were analyzed, with special atten-

tion to hovering. Now, we are going to decipher the aerodynamics behind those strategic flapping

strategies. In this section only the aerodynamic mechanisms of one single flapping wing are going

to be inspected. Once this is understood, interaction between two ipsilateral wings will be studied

in section 2.3.

First, the quasi-steady approximation is going to be explained in subsection 2.2.1. Then, un-

steady aerodynamics (subsection 2.2.2) are going to be studied in more detail, including several

topics observed in dragonfly aerodynamics, such as dynamic stall, leading edge vortex (LEV), vor-

tex interaction, etc.

2.2.1 Quasi-steady approximation and wake models

The quasi-steady approximation was used in the first aerodynamic studies of dragonflies. Weis-Fogh

[132] and Ellington [41] included several approximations within their quasi-steady analysis. First,

they assumed incompressible and inviscid flow, which led to the formulation of Navier Stokes in

terms of a potential function. Additionally, in the quasi-steady approximation they assumed that

the wing is following a succession of steady steady state solutions, in which the history of events is

not considered. Finally a 2D approximation of a flat plate was considered. With these assumptions

the circulation around the flat plate Γ is given by [41]:

Γ = 𝜋𝑐𝑈𝑠𝑖𝑛𝛼+ 𝜋𝜔𝑐2
(︂
3

4
− 𝑥0

)︂
, (2.13)

where 𝑐 is the chord of the airfoil, 𝑈 the translating velocity, 𝜔 the angular velocity and 𝑋0 the

non-dimensional coordinate where the translation is done. This theoretical framework was developed

by Glauert [48], who proposed a quasi-steady model and predicted that the critical point (rotation

axis that gives 0 lift) resides at a distance of 3/4 chord lengths from the leading edge. The critical

point in a flat plate is going to be relevant when analyzing pronation and supination of the wing, at

the end of the upstroke and downstroke respectively.

Additionally, the Kutta–Joukowski theorem theorem has to be included to obtain the resulting

lift 𝐿 from the circulation Γ, velocity 𝑈 and density 𝜌:

𝐿 = 𝜌Γ𝑈. (2.14)

Using the previously defined quasi-steady model, Weis-Fogh [132] found maximum lift coefficients
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Figure 2-20: Above, ratio of quasi-steady circulation Γ𝑞 to instantaneous circulation Γ, and quasi-
steady lift and instantaneous lift. Below, ratio of quasi-steady lift and instantaneous lift. Flat plate
suddenly set into transitional motion. 𝜆 is the number os chords covered by the flat plate.

[41]

in dragonflies of 1 (see lift coefficients of steady flight in gliding, Figure 2-19a). However, Ellington

[40] reported that during his measurements of dragonflies in free flight, lift coefficients between 2

and 6 were found. Ellington suggested that this was due to the strong unsteadiness of the flow.

Therefore, the quasi-steady approximation was no longer valid.

To solve this without solving the whole Navier Stokes equations, several approximations have

been done. The main idea is to assume incompressible and inviscid flow, which seems to be a quite

accurate approximation given the Reynolds numbers observed in dragonflies, 𝑅𝑒 ≈ 1000 [49]. Sane

[102] suggested a refined quasi-steady model for 3D wings. He did the weighted average across the

2D section along the span and included the lift and drag data of dragonfly wings that was measured

experimentally by Wakeling and Ellington [123]. Additionally, Sane also included the added mass

effect to model the acceleration of the surrounding fluid. He obtained decent results, but he noted

that it was important to consider the effect of the wake, which was neglected in the quasi-steady

model. In Figure 2-20 the effect of the wake can be seen in a flat plate suddenly set into transitional

motion. The quasi-steady circulation around this plate is not the one predicted by the quasi-steady

model, because the vortices shed at the wake are modifying the circulation at the flat plate. Only

after the shed vortices are far away enough downstream, the vorticity at the flat plate approaches

the quasi-steady values. This was the so called Wagner effect that was mentioned in section 2.1.1,

and the reason why "Clap and Fling" was found to be so efficient in horizontal flapping.
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(a) Sketch of modelled vortex. [87]

(b) Vorticity field of inviscid Navier-Stokes solution.
The dot shows the position of the vortex within the
approximated solution. [87]

Figure 2-21: Modelling wake vorticity.

To model the wake, which was missing in the previously mentioned approximations, the Kelvin

theorem has to be applied: the net circulation does not vary in an inviscid flow. Therefore, the

vortices that are shed at the wake are caused by variations of vorticity around the airfoil. Pullin and

Wang [87] used this theorem to calculate the vorticity which was shed into the wake. Then, they

added a model to advect the vorticity at the wake, and additionally they considered vortex growth.

In Figure 2-21b the results of their model can be seen. The black done represents the position of

the vortex in their model, and it is superimposed over the discrete solution of the vorticity equation.

The position of the shed vortex follows quite accurately the numerical solution, and they obtained

quite reasonable results with their approximation. Their prediction outperformed the results from

Theodorsen theory and Wagner effect, mainly because these theories only consider vortex shedding

at the trailing edge. However, they modeled both, vortex shedding at the leading and trailing edge,

see Figure 2-21a. This approximation was much more accurate in insect wings: the leading edge

vortex (LEV) clear breaks up due to sharp leading edge of insect wings at relatively small angles

of attack [90]. Therefore, by considering a discrete LEV and trailing edge vortex (TEV) and their

advection, a quite good approximation of the wake influence can be achieved.

In summary, unsteady effects are vital due to the high flapping frequency of dragonflies. A quasi-

steady approximation with the added mass effect still lacks the influence of the wake. Approximations

to model the wake influence can be done by advecting the vortices which are shed at the wing due

to the Kelvin theorem. In particular, it is key to model both, the LEV and TEV.

2.2.2 Unsteady methods

The lack of accuracy of the quasi-steady methods for dragonfly hovering has led many authors [112]

[40] [44] to suggest that unsteady effects are key in the aerodynamics of the insect. In the previous

section, subsection 2.2.1, the main unsteady mechanisms were identified: added mass effect and wake
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(a) Dynamics stall mechanism of translating and
pitching airfoil. [72]

(b) Different wake detachment mechanisms depend-
ing on the airfoil thickness. [21]

Figure 2-22: Modelling wake vorticity.

effect. These phenomena could be modeled with simplistic models that capture the data observed

experimentally. However, its application is limited and inaccurate when the wake becomes really

complex (accumulation of vortices in hovering at the same spot) and does not model dissipation

for really large times. In this section a more in depth approach of all the unsteady aerodynamics

governing dragonfly flight is going to be taken. The aim here is to understand the essence of the

most important factors that define dragonfly aerodynamics during hovering. For this, fully resolved

Navier-Stokes simulations and experiments are going to be considered.

Dynamic stall

It was seen in subsection 2.2.1 that a TEV and LEV were generated during the flapping motion of

a 2D flat plate. This mechanism is known as dynamic stall, and occurs when the flow cannot be

attached anymore to the airfoil. First, a shear layer is created due to the velocity difference between

the flow attached to the airfoil and the upper flow, see 𝑎) in Figure 2-22a. Then this shear layer

rolls up forming a pair of LEV and TEV, 𝑏) in Figure 2-22a. The rollers continue to grow with time

𝑐) in Figure 2-22a, and eventually they are shed donwstream 𝑑) in Figure 2-22a.

There is substantial difference in the formation mechanism of dynamics stall depending on the

thickness of the airfoil, Figure 2-22b. Particularly for thick airfoils, detachment occurs first at the

trailing edge, creating a trailing edge shear layer that propagates towards the leading edge while

rolling up due to the Kelvin-Helmholtz instability. However, for thin airfoils, the leading is so sharp

that the flow immediately detaches for low angles of attack, when the stagnation point leaves the

leading edge [90]. This causes a more sudden recirculating bubble at the leading edge, that evolves

and grows to form a LEV. This LEV keeps growing until it is detached. Note that dragonfly wings

are quite thin and have sharp leading edges, so this second mechanism is found in their flapping.

Once the thickness of the airfoil has been considered, there are two other non-dimensional param-

eters that govern dynamic stall during flapping: the rate between rotation (pitch) and translation

(plunge); and the Reynolds-number.

Ol et al. compared pure plunge to pitch-plunge, and realized that with conveniently chosen pitch
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Figure 2-23: Comparison of lift coefficients for pure-plunge and pitch-plunge.
[81]

angles, dynamic stalled could be postponed during flapping. In Figure 2-23 it can be seen that the

lift coefficient during pure plunge reach higher values, however they also have a large hysteresis effect

because of the deep stall. With pitch-plunge, deep dynamic stall could be controlled, achieving an

slightly higher average lift coefficient across the cycle. For better understanding, the vorticity plots

of PIV and numerical results are shown in Figure 2-24. Indeed, in the pitch-plunge case the flow

is slightly detached, however, the pitch controls the growth of the LEV. On the other hand, for

pure plunge, the flow is completely detached and a LEV appears and grows. When the LEV is big

enough, it can not be maintained attached anymore, and it is shed. This causes a huge decrease in

lift, and it takes some time before it recovers the previous lift values (deep dynamic stall). Based

on this, it can be inferred that it is crucial to avoid at all cost the shedding of the LEV. Moreover,

using pitch to reduce effective angle of attack (the so called Kramer effect) can be used to control

the size of the LEV and its shedding.

Finally, the Reynolds number effect is going to be considered. Ol et al. visualized the flow field

around a thin airfoil at different Reynolds numbers (Figure 2-25). They observed that dynamic

stall displayed a quite different behaviour depending on the Reynolds number. For smaller Reynolds

numbers, the flow suffered Kelvin-Helmholtz instabilities, and was greatly detached from the upper

surface. However, for higher Reynolds numbers, the boundary layer displayed a much more energetic

behaviour and the flow was attached close to the upper surface. They also noted that the rollers

caused by the Kelvin-Helmholtz instability were much smaller in size at high Reynolds numbers.

The LEV only grows in a limited way for 𝑅𝑒 = 10𝐾, 20𝐾. For these cases, the flow had big enough

rollers and was sufficiently detached to form a clearly visible LEV.

Visbal et al. also analyzed dynamic stall for different Reynolds numbers. In particular, they

noted a quite interesting fact. If the flapping frequency is high enough, the LEV does not have time
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(a) Pitch-plunge. [81]

(b) Pure plunge. [81]

Figure 2-24: Vorticity contours. Left, PIV measurements. Right, CFD simulation.

Figure 2-25: Reynolds number effect during pitch-plunge mode. Smoke visualization.
[81]
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(a) 2D vorticity contours. [120]
(b) 3D iso-vorticity contours. [120]

Figure 2-26: Dynamic stall. 3D numerical simulation. 𝑅𝑒 = 10𝐾. High frequency, small amplitude
during pure plunge.

enough to grow and be shed. Therefore, in every cycle a new LEV is created and adds up to the

previous series of LEV that did not have time to be shed. This creates an extremely complex vortex

structure, see Figure 2-26b. This convoluted structure is not beneficial for lift, as a lot of energy is

wasted in random vorticity that does not contribute to the vertical momentum component.

In conclusion, dragonflies sharp leading edge causes leading edge dynamic stall when they are

flapping. This leads to a roll-up of vorticity and the creation of a LEV. The growth of the LEV

can be controlled combining pitch-plunge motion to adjust the angle of attack. Additionally, high

Reynolds number withstand higher effective angles of attack before the roll-up and creation of the

LEV. Finally, it is important to let the LEV grow in a clean upstream flow, to have a coherent

structure that maximizes lift production. For this, it is necessary to get rid of the LEV created in

the previous cycle.

2.2.3 Leading edge vortex stability and 3D structure

In previous sections a 2D LEV was identified, and the mechanism that creates it, dynamic stall,

was studied. This LEV is extremely relevant for lift production according to the Kutta–Joukowski

theorem. For this reason, the 3D structure of the vortex is going to be studied in more detail.

Thomas et al. studied the critical points of the 3D LEV generated during the downstroke of a

dragonfly and identified that it had a U shape. They used smoke visualization with a tethered

dragonfly, see Figure 2-27. Moreover, they confirmed that it was caused due to dynamic stall.

Similar LEV structures caused by dynamic stall have been identified in other insects in nature,

see Figure 2-28b. Dragonflies have the peculiarity that they maintain the structure of the LEV

above their thorax, connecting this way the LEV from both wings. This does no happen in other
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Figure 2-27: Characteristic smoke patterns associated with the forewing downstroke in normal
counterstroking flight. The video images show a tethered hawker Aeshna grandis. Visualizations are
shown for 5 spanwise stations along the wing (A–E), marked by colour-coded slices in the figure.

[117]

insects, see Figure 2-28a, and it seems to be beneficial in terms of additional lift at the thorax and

a more stable vortex.

Ellington [39] also studied the structure of the LEV in dragonflies. He used smoke visualization

of dragonflies and a self-made flapping device. He also confirms the findings by Thomas et al. [117]:

3D 𝑈 vortex shape caused by leading edge dynamic stall.

On top of the 3D LEV structure a more detailed interpretation of the vortex elements was

provided by Fujita et al. [46]. A vortex beneath the main LEV was identified, see Figure 2-28b.

This vortex, the so called 𝑙𝑎𝑚𝑏𝑑𝑎 𝑣𝑜𝑟𝑡𝑒𝑥, had a counterclockwise vorticity. Ellington [39] and

Thomas [117] were not able to identify it with smoke visualization because it was surrounded by the

clockwise LEV. The lambda vortex induces velocity in vortex 1 away from the flat plate, and this

means that it favors LEV detachment. This was seen in section 2.2.2 to be negative, as it suddenly

decreases the enhanced lift, entering into deep dynamic stall.

Despite, the existence of a lambda vortex that favors LEV detachment, Ellington [39] and Thomas

et al. observed that dragonflies maintain their LEV attached during the whole downstroke, and it

is only shed during supination. This phenomenon was quite surprising, as dragonflies flap their

wings with really high angles of attack during the downstroke (45 to 60∘), and the shedding of

the LEV was supposed to occur at much smaller angles of attack [120]. Ellington [39] provided a

possible explanation for this phenomenon. He realized that dragonflies had axial flow (from wing

root to tip) during its flapping (Figure 2-30b). The LEV is only shed once it is so big that it can

no longer be maintained attached. Consequently, Ellington [39] hypothesized that the spanwise
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(a) Sketch of LEV observed for several insects. [117]

(b) Smoke visualization
(blue) of the LEV in a
tethered dragonfly. [39]

Figure 2-28: Different 3D LEV structures.

Figure 2-29: Creation of a secondary vortex structure that has opposite circulation: the lambda
vortex (colored in red).

[46]
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(a) Upper view of the wing. Circulation intensity of
the LEV across the span. [39] (b) Measured axial velocity (from root to tip) across

the span. [39]

Figure 2-30: 3D LEV structure.

(a) Sketch of the experiment with a trapped vortex. [95]

(b) Experiment. Active spanwise suction to
generate super lift. [42]

Figure 2-31: Stabilizing the LEV. Spanwise blowing.

flow was advecting vorticity away from the wing to control the growth of the LEV, and avoid this

way detachment. This way he justified the conical LEV structure that he measured (Figure 2-30a),

growing in size towards the tip, and advecting vorticity in the spanwise direction. These attached

vortices stabilized by spanwise blowing have also been observed in swept wings at high angles of

attack in forward flight [12], for example in birds such as swallows or delta wings.

The stabilization of vorticity by axial flow is a concept that has been proved in literature. Cornish

[33] stated that vortices are prone to develop 3D structures, as it is a more stable form. He observed

this in a Karman vortex street, that naturally tended to develop 3D conical structures. Rossow

[95] proved experimentally that a vortex could be trapped using axial flow, see Figure 2-31a. He

demonstrated that incredibly high lift coefficient of up to 8 were achievable thanks to this mechanism.

Erickson [42] did a similar experiment: he created a trapped vortex with two movable flaps, and

stabilized it with axial flow. It Figure 2-31b it can be seen how with increasing axial flows more

intense vortices (that lead to higher lift coefficients) can be stabilized.
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(a) LEV visualization with bubbles. A) LEV for
various 𝑅𝑜 and 𝑅𝑒. B) Visualization of vortex
bursting at high 𝑅𝑒. C) Point of the stroke where
LEV bursting occurred at different angles of at-
tack, 𝑅𝑒 = 1400. [61]

(b) Sketch of the observed LEV mechanisms.
Reynolds number 𝑅𝑒, non dimensional stroke am-
plitude 𝐴* and Rossby number 𝑅𝑜. [61]

Figure 2-32: LEV dependence with Rossby and Reynolds numbers.

Even though vortex stabilization by axial blowing has been demonstrated, the hypothesis made

by Ellington [39] has been questioned in the literature, in experiments [13] [15] [27] and simulations

[111]. It is agreed that around Reynolds number around 100 axial flow intensity is non-enough to

stabilize the LEV by vorticity convection. On the other hand, Birch et al. [15] and Shyy et al. [111]

detected that spanwise flows starts to be important and dominate LEV at Reynolds number 1000.

More importantly, despite the differences of spanwise flow at various Reynolds numbers, in all cases

the LEV was found to be stable. Lentink and Dickinson [61] were able to find an explanation that

justified LEV attachment for lower Reynolds numbers, without the existence of axial flow. They

argued that in this viscous regimes, the boundary layer had an Eckman distribution, which allowed

for Eckman pumping. This phenomenon was able to attach the LEV to the flat plate, and avoided

vorticity shedding. They also noted that for higher Reynolds numbers vorticity advection was able

to stabilize the LEV, as at this regime spanwise flow was relevant.

Apart from the Reynolds number dependence Lentink and Dickinson [61] also realized that LEV

stability was strongly related to the ratio between Coriolis and inertial forces, the so called Rossby

(𝑅𝑜) number:

𝑅𝑜 =
𝑈2

𝑐

Ω𝑈
=

𝑈2

𝑐
𝑈
𝑅𝑔
𝑈

=
𝑅𝑔
𝑐
, (2.15)

where 𝑅𝑔 is the rotation radius, and 𝑐 the chord of the airfoil. In a 3D flapping wing the

rotation section of each 2𝐷 section changes. For this reason Lentink and Dickinson [61] decided to
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Figure 2-33: LEV vortex stability with higher aspect ratios AR.[68]

consider the tip radius to characterize each rotating wing, being therefore the Rossby number equal

to the aspect ratio of the wing. Several additional conclusions can be extracted from Lentink and

Dickinson´s work [61] that help to better understand vortex stability, Figure 2-32b:

1. For higher 𝑅𝑜 numbers (higher aspect ratio wings) the LEV was more unstable. In pure

translational movement (𝑅𝑜 = ∞) neither low 𝑅𝑒 (Eckman pumping) nor high 𝑅𝑒 mechanisms

(spanwise vorticity advection) were able to stabilize the LEV. In particular, Luo et al. [68]

verified this behaviour computationally. See in Figure 2-33 how for larger aspect ratio wings

the LEV is no longer stable near the tip. Note that the LEV becomes unstable in their study

at the span length 𝑦
𝑐 = 3 , which is equivalent to 𝑅𝑜 = 3.

2. The larger the stroke amplitude 𝐴* the more time the vortex had to grow. This is specially

relevant in cases were the LEV vorticity is not removed: high 𝑅𝑜. Therefore, the LEV keeps

growing and reaches a point where it is so big that I can no longer remain attached.

3. At low 𝑅𝑒 the vortex remained laminar. However, at around 𝑅𝑒 = 1400 vortex bursting was

observed near the wing tip, Figure 2-32a. The closer to the tip the higher the velocity, so

it makes sense that some sections may be experiencing transition. However, despite vortex

bursting, lift and vortex structure were preserved. When bursting occurs the flow transitions,

but the vortex remains attached to the leading edge. Himmelskamp effect [59] could be a

possible explanation for this phenomenon.
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Lentink and Dickinson [61] were not able to explain why did the spanwise flow towards the

tip occurred. Aono et al. [6] visualized the pressure field near a rotating wing and he discovered

that there was an adverse pressure gradient towards the wing tip. He reasoned that the increasing

strength of the LEV from the base toward the tip (higher effective velocity towards the tip) was the

reason for this pressure suction. The question now is, why does at lower 𝑅𝑒 number decrease the

spanwise flow? This was not mentioned in Aono et al. work, but here it is hypothesized that at lower

𝑅𝑒 circulation is less intense due to viscous diffusion, causing this way less suction difference towards

the wing tip. For example, in Stokes regime (𝑅𝑒 > 1) it is known [56] that an airfoil loses almost

all circulation. However, it was already observed negligible spanwise flow already at 𝑅𝑒 = 100 [13]

[15] [27] [111], far away from creeping flow regime, so there might be another possible explanation.

Recent numerical simulations [23] have shown that circulation in a revolving wing is indeed highly

dependent on 𝑅𝑒 number, see Figure 2-34a. For 𝑅𝑒 = 10 circulation is almost negligible, so it seems

that way above 𝑅𝑒 = 1 the wing displays a typical creeping flow behaviour. 𝑅𝑒 = 500 is the critical

point where viscous effect start to be negligible. These results agree with Aono et al. pressure

gradient hypothesis, and the observations at 𝑅𝑒 = 100 [13] [15] [27] [111] and 𝑅𝑒 = 1400 [15] [111].

As noted first by Lentink and Dickinson [61] LEV intensity is also highly dependent on the stage

of the stroke. The stroke is usually quantified in literature with the number of chords covered by the

wing tip: 𝜆 = 𝑠
𝑐 . At the beginning of the stroke circulation is really weak and non-stationary forces

dominate due to the added mass effect of the surrounding fluid, see Figure 2-34a. When the wing

tip covers a larger distance, more circulation is accumulated at the leading edge and this enhances

lift enormously. Nevertheless, in revolving wings vorticity reaches a point after approximately 4c of

travel where it achieves stationary state [24], although in low 𝑅𝑒 regimes the maximum vorticity

a reached before, as less circulation is allowed in the steady state due to viscous diffusion. It was

also observed in literature [25] that the sooner the maximum stroke velocity is reached, the sooner

the steady state vortex is achieved, being the limit around 2.5 chords with an almost impulsively

accelerated stroke.

Chen et al. [24] were able to give a comprehensive understanding of the vortex dynamics. They

divided LEV development into three different stages (Figure 2-34b):

1. Initial LEV vortex begins to grow, while it is advected downstream.

2. LEV vortex continues to grow. Vortex starts to roll up and vorticity is advected towards the

wing due to vortex self induction. This limits vortex growth, and at the same time vorticity

stretching increases LEV strength.

3. In the final stage vortex reaches a steady state. Steady equilibrium is reached when spanwise

vorticity destruction is equal to production. Apart from the conventional spanwise vorticity

advection, another key destruction mechanisms has been identified in literature [23]: vorticity
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(a) Circulation and lift coefficient variation with
Reynolds number. [23]

(b) Circulation increase with time in a revolving
wing. Contours of vorticity and sketches display
the three different stages in the formation process
of a LEV. [24]

Figure 2-34: Stable LEV in a revolving wing.

tilting due to non-inertial reference frame. Spanwise vorticity (LEV) is converted into down-

stream vorticity, and tangential vorticity (tip vortex) is rotated to negative spanwise vorticity,

substracting this way circulation from the LEV. This establishes a dynamic exchange of LEV

and tip vortex vorticity that controls the growth of the LEV.

In summary, a stable and attached LEV caused by dynamic stall is observed in insects. This

vortex enhances force production and in dragonflies it has been observed to continue across the tho-

rax, connecting both wings LEV. Dragonflies typically have 𝑅𝑒 ≈ 1000, which means that according

to Chen et al. [23] they are able to develop the maximum possible non-dimensional circulation, as

they do not suffer viscous diffusion that diminished the intensity of their LEV. Moreover, according

to Chen et al. [25] and observing typical dragonfly aspect ratios (𝐴𝑅 ≈ 6 [40]) maximum vortex

size is achieved around half of the stroke in dragonflies. Rossby numbers of dragonflies are typically

around 6, which according to Lentink and Dickinson [61] should guarantee vortex stability at all 𝑅𝑒

numbers. In particular, at dragonflies Reynolds numbers stability of LEV is achieved mainly due

to vortex spanwise advection and vortex tilting [23]. At this 𝑅𝑒 numbers vortex bursting around

half of the wing is also expected according to Lentink and Dickinson [61] observations. Note that

actual dragonflies have corrugated wings and previous studies have been done with flat plates, so

there could be slight differences in the LEV structure, see section 2.4.

2.2.4 Drag as a vertical force

The separation of lift and drag was convenient for an airfoil for at least two reasons. First, at a

small angle of attack, the lift is many times the drag. Second, in steady forward flight, the efficiency

is measured by the lift-to-drag ratio. Neither of these applies to a hovering insect, so a completely

new approach has to be followed to understand dragonfly aerodynamics.

The first studies of dragonflies already observed that steady aerodynamics were not sufficient

to explain the high lift coefficients of dragonflies. Unsteady phenomena, such added mass effect or
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(a) Drag vs lift usage at different
flight regimes in dragonflies. [7]

(b) Ai) horizontal stroke observed in most insects. Bi) inclined stroke
observed in dragonflies. [130]

Figure 2-35: Drag role during dragonflies hovering.

LEV were then considered to address these discrepancies. However, only lift component (normal

to the stroke path) was consider in the first estimates of Ellington [40] [39] and Weis-Fogh [132]

[133]. Azuma et al. [7] were the first to realize that drag also played a crucial role in the production

of vertical force in insects. They observed that drag importance increased at low flight speed, see

Figure 2-35a. During pure hovering almost 40% of the total vertical force was produced by drag.

Wang et al. [130] numerically studied the importance of drag in the typical inclined stroke of

dragonflies. Due to the high angles of attack drag was relevant specially during the downstroke,

where drag could support about 76 % of the dragonfly weight. Therefore, it can be seen that in

pure hovering the lift-to-drag ratio is not a good indicator of the hovering performance. Wang et

al. [130] explained that this could also be a possible explanation for the high lift coefficients derived

in the free flying dragonflies. Unsteady aerodynamics was not the only explanation, drag was also

missing. Dynamic stall (unsteady effects) can increase 𝐶𝐿 to 2, but not to 4. Here drag plays a role.

In section 2.1.1 it was seen that the three existing flapping strategies observed in nature are

horizontal, inclined and vertical stroke. In horizontal stroke, Figure 2-35b Ai, vertical force produc-

tion can only be produced via lift. Therefore, drag is not desired and is a waste of energy. Given

that at insect flying regimes lift-to-drag ratios are quite low (around 2 - 5 [9]), flapping efficiency in

horizontal stroke is low. On the other hand, in the typical inclined stroke of dragonflies (stroke plane

of ≈ 60∘, see notation section 2.1) used by dragonflies, Figure 2-35b Bi, both drag and lift can be

used to produce vertical force. This means that drag is now desired and can in fact maximize total

vertical force production. This is a novel approach of producing vertical force, and makes sense at

low 𝑅𝑒 such as the ones observed in insects. As it is commonly said: if you can not beat them, join

them.

An important concept should be noted before we proceed with the discussion. Let´s define the

vertical force coefficient as: 𝐶𝐹 =
√
𝐿2+𝐷2

1
2𝜌𝜔

2𝑅2
𝑔𝑆

, where 𝑆 is the wing surface, 𝜔 the angular velocity, 𝑅𝑔
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(a) Dependence of stroke-averaged coefficients with the angle of at-
tack and stroke amplitude. First row, actual measurements during
the experiment. Second row, coefficients obtained with quasi-steady
model. First, second and third columns, lift, drag and lift/drag re-
spectively. [101]

(b) Average lift to power ratio.
Dependence on angle of attack
and stroke amplitude. [101]

Figure 2-36: Experimental flapping of a flat plate.

the radius of gyration and 𝐿 and 𝐷 the lift and drag. Note that lift and drag should be oriented

such as the resultant points in the vertical direction. Then, the ratio of force to power is defined

as the Figure of Merit 𝐹𝑀 , 𝐹𝑀 = 𝐹
𝑃 ≈ 1

𝜔𝑅𝑔
. Operating the previous expressions the following is

obtained:

𝑊 = 𝐹 = 𝐶𝐹
1

2
𝜌𝜔2𝑅2

𝑔𝑆 ≈ 𝐶𝐹
1

2
𝜌

1

𝐹𝑀2
𝑆 → 𝐹𝑀 =

√︂
𝐶𝐹 𝜌𝑆

2𝑊
. (2.16)

What is important from the previous expression is that in order to maximize the force to power

ratio 𝐹𝑀 for a given insect of weight 𝑊 and wing surface 𝑆, the force coefficient 𝐶𝐹 should be max-

imized. This is the reason why inclined flapping is beneficial in dragonflies: drag can be effectively

used on top of lift to maximize the total force production. Inclined stroke plane is just an strategy

to redirect the total force vector in the vertical direction.

The question now is, how can force production be maximized? In this section only the down-

stroke and upstroke are going to be studied. Rotation phenomena during pronation and supination

will be studied in a separate section, subsection 2.2.5, as it involves slightly different aerodynamic

phenomena.

First, the dependence of stroke-averaged coefficients with the angle of attack is going to be

considered. Sane et al. [101] studied strokes with different angles of attack, and experimentally

measured the averaged lift and drag coefficients, see Figure 2-36a. Maximum averaged lift coefficients
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were observed with angles of attack of 60∘. On the other hand, drag coefficients reached maximum

values around 80∘. However, in this experiment they used an horizontal stroke, so only lift is useful,

drag is just a waste of energy. For this reason the maximum efficiency 𝐿
𝑃

is achieved around 50∘

with maximum lift coefficients, as it is seen in Figure 2-36b. Moreover, they also noted that strokes

with amplitudes around 60∘ were more energetically efficient. Dickinson et al. [36] did a similar

experiment and provided a numerical approximation for the averaged coefficients during a revolving

stroke with a flat plate:

𝐶𝐿 = 0.225 + 1.58𝑠𝑖𝑛(2.13𝛼− 7.2) (2.17)

𝐶𝐷 = 1.92− 1.55𝑐𝑜𝑠(2.04𝛼− 9.82), (2.18)

where 𝛼 is the stroke angle of attack in degrees. The numerical regression and the experimental

data can be seen in Figure 2-37a. From the analysis done before,
√︀
𝐶2
𝐿 + 𝐶2

𝐷 should be maximum

during an inclined downstroke to optimize the Figure of Merit 𝐹𝑀 . Using Dickinson et al. data,

an optimal stroke angle of attack during the downstroke of ≈ 85∘ is obtained. Moreover, the stroke

plane angle should be ≈ 70∘ to direct the total force into the vertical direction. This stroke value

is close to the observations of Norberg [74], 60∘, and shows that dragonflies indeed use drag as the

main component to hover during the downstroke.

In subsection 2.2.3 it was seen that the LEV plays a crucial role in the development of lift

force. However, now it has been seen that drag is also relevant, so the following question follows:

is the LEV also beneficial for drag? The answer is yes. Dickinson et al. [36] showed that for pure

translational flapping (Rossby number is ∞), where no spanwise vorticity blowing nor vortex tilting

occur, the LEV is detached. However, when revolving wings were used, a stable LEV was obtained,

see Figure 2-32b. Lentink et al. [61] saw that indeed in revolving wings (LEV attached) both lift

and drag were much higher, Figure 2-37b, compared to a translational wing (LEV detached). This

answers the question that was posed before. LEV enhances lift as well as drag production.

Summarizing, dragonflies orient their stroke plane to direct the resultant force of both lift and

drag in the desired direction. This way by using drag during the downstroke they are able to reach

much higher force coefficients. According to the Figure of Merit that was studied, this minimizes

the power consumption for hovering for a given mass. Finally, the LEV is crucial as it maximizes

the production of lift and drag, and therefore allows to reach a much more efficient hovering.

2.2.5 Rotational force and wake capture

Until now only translation and revolving wings during downstroke and upstroke have been studied.

It has been seen the importance of dynamic stall and a stable LEV to maximize force production.
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(a) Results for non-acceleration stroke, without rotation. A) Lift
coefficient with time, and angle of attack. B) Drag coefficient
with time, and angle of attack. C) Force coefficient versus angle
of attack and D) Lift-drag polars.[36]

(b) Lift-drag polars for different 𝑅𝑒 num-
bers (see colour intensity in legend). Blue
triangles, pure translational wings with un-
stable LEV; yellow triangles, unidirectional
revolving wing with stable LEV; yellow cir-
cles, reciprocally revolving wing with stable
LEV.[61]

Figure 2-37: Flapping of a flat plate. Experimental results.

However, flapping aerodynamics also has an important stage that has not been addressed: pronation

and supination of the wings. At the end of each upstroke and downstroke, insect wings are rotated to

start the next stroke. This rotation has been proven to contribute significantly to the average vertical

force during a flapping cycle. For example, rotation phases contribute to 35 % lift in Drosophilia

[36]. Ellington studied the importance of rotational lift using linear potential theory [41]. This

approximation gives an idea of the forces per unit of length contributing during rotation:

𝐿𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑦 ≈ 1

4
𝜌𝜋𝑐2

[︂
𝑑2𝑧

𝑑𝑡2
− 𝑑𝜔

𝑑𝑡
𝑐(�̂�0 −

1

2
) + 𝜔𝑈

]︂
(2.19)

𝐿𝑠𝑡𝑒𝑎𝑑𝑦 ≈ 𝜋𝜌𝑈𝜔𝑐2
(︂
3

4
− �̂�0

)︂
+ 𝜋𝜌𝑈2𝑐𝛼. (2.20)

�̂�0 is the non-dimensional (with the chord 𝑐) point of rotation measured from the flat plate leading

edge, 𝜔 the rotation speed, 𝑧 the vertical displacement, 𝛼 the angle of attack, 𝜌 the density and

𝑈 the upstream velocity. 𝐿𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑦 includes the added mass effect due to translational acceleration
1
4𝜌𝜋𝑐

2 𝑑2𝑧
𝑑𝑡2 and rotational acceleration − 1

4𝜌𝜋𝑐
3 𝑑𝜔
𝑑𝑡 (�̂�0 − 1

2 ). Note how rotational acceleration scales

with 𝑐3, so rotational forces would contribute more to low aspect ratio wings. The term 1
4𝜌𝜋𝑐

2𝜔𝑈

is the added mass effect caused by the rotation of the surrounding flow at speed 𝑈 , and could be
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regarded as a Coriolis force.

𝐿𝑠𝑡𝑒𝑎𝑑𝑦 refers to the circulatory lift. The second steady lift term, 𝜋𝜌𝑈2𝑐𝛼 refers to the classical

circulatory lift found during pure translation. The first component can be referred as the Magnus

effect [107], 𝜋𝜌𝑈𝜔𝑐2
(︀
3
4 − �̂�0

)︀
. Dickinson et al. [36] were able to prove the importance of Magnus

effect during the rotation phase of wings. They considered an experimental set up with a flat

plate that was able to translate and rotate independently. They studied three different rotation

schemes with respect to the translational stroke, see Figure 2-38a: advanced, symmetrical and

delayed rotation. They noticed that with advanced rotation (𝑈 > 0, 𝜔 > 0), Magnus effect (called

rotational circulation in red in Figure 2-38b) contributed effectively to positive vertical forces, while

delayed rotation gave a negative vertical component (𝑈 < 0, 𝜔 > 0). This aligns perfectly with the

predictions of linear potential theory (Coriolis and Magnus terms, 1
4𝜌𝜋𝑐

2𝜔𝑈 and 𝜋𝜌𝑈𝜔𝑐2
(︀
3
4 − �̂�0

)︀

respectively). Consequently, using potential theory it can be estimated for example that during

supination (rotation at the end of the downstroke) advanced rotation is desired, to make sure 𝜔 and

𝑈 have the same sign, and contribute to a positive Coriolis term 1
4𝜌𝜋𝑐

2𝜔𝑈 . Moreover, Dickinson et

al. [36] proved that the rotational axis, which is exactly 0.75 for linear inviscid potential flow with

a flat plate [41], can be extended with good agreement for viscous flows (𝑅𝑒 ≈ 1000) and non-linear

oscillations, see Figure 2-39a. This is useful because during supination (non-linear rotation), it can

also be inferred that the position of the axis of rotation should be placed close to the leading edge

�̂�0 ≈ 0 to produce vertical force via Magnus term 𝜋𝜌𝑈𝜔𝑐2
(︀
3
4 − �̂�0

)︀
.

Flapping wings follow a periodical stroke. This means that the wings faces the flow history

from previous strokes. Consequently, flow history and wake capture is also important, and was

not included in the previous model. Dickinson et al. [36] and James M. Birch et al. [14] observed

experimentally that correctly tuning wing rotation phase has a great impact in terms of vertical force

production. Figure 2-39b shows three rotation strategies at the end of an horizontal stroke. The wing

was coming from the left, so it has a wake with an induced velocity going from left to right. Then it

turned around and in the figure is shown at the beginning of the next stroke, going from right to left.

Depending on the pitch angle of the airfoil during the beginning of the next stroke, this horizontal

induced flow can be pushed downwards (advanced) or upwards (delayed). Therefore, advanced

rotation produces positive vertical force, and vice versa. This is what they called wake capturing.

Lentink et al. [61] also observed the explained phenomenon in revolving wings, see Figure 2-37b.

Between concurrently revolving wings (periodical strokes) and unidirectional revolving wings (no

direction reversal), it was seen that the overall forces (especially the drag) were higher in the wing

that had periodical strokes, as the wing perceived a higher dynamic pressure due to the wake induced

in the previous half stroke.

In conclusion, the rotational phase contributes to a great percentage of the average forces during

the flapping cycle. Added mass effects can be due to translation, rotation or Coriolis accelerations.
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(a) Stroke trajectory and forces on the flat plate.
Three rotation cases: advanced, symmetrical and
delayed. [36]

(b) Isolated vertical force associated with pure rota-
tion. Two phenomena can be distinguished: wake
capture and rotation circulation. [36]

Figure 2-38: Vertical forces in hovering depending on point of the stroke where rotation is started.

(a) Circulation measured in actual flat plate de-
pending on the axis of rotation. [36]

(b) Flow field visualized with PIV. Three rotation
cases at the end of the horizontal left to right stroke.
[36]

Figure 2-39: Wake capture and dependence of circulation with rotational axis.
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With flapping and pitching phase, Magnus effect and Coriolis added mass effect can be tuned to

enhance vertical force production during wing pronation and supination. Additionally, wake capture

is important to improve flying efficiency. The idea is basically to convert kinetic energy from the

previous stroke into useful force production.

2.3 Wings interaction

Until now the aerodynamics of one ipsilateral single flapping wing has been studied. However,

dragonflies have two pairs of wings. Is this really beneficial? This is the question that is going to be

inspected in this section.

Platzer et al. [86] discovered that if an steady airfoil (2D) was placed rearward of an oscillatory

airfoil, propulsive efficiency of such a configuration is close to 100 percent and is nearly independent

of the reduced frequency. The key is that the energy carried away in vortices within the wake of

the first oscillatory airfoil, is being converted into thrust by the second steady airfoil, instead of

being swept away with the flow. Based on this observation they suggested that the wing-vortex

interactions generated by the dragonfly are a way of trapping with the hindwings the energy from

the free vortices shed by forewing, and this enhances lift.

Hu et al. [54] studied more in detail the interaction between the hindwings and forewings. They

measured the forces experimentally and determined that there was a huge dependence on the phase

shift between ipsilateral wings. They concluded that in-phase flapping gave a higher lift coefficient

(averaged through stroke cycle), Figure 2-40a. This agreed with observations from Ellington [40]

and Weis-Fogh [133], as dragonflies used in phase flapping for accelerated maneuvers, where a higher

lift coefficient was required. On the other hand, Usherwood and Fritz-Olaf et al. [118] did a similar

experiment, but they measured a higher average lift of both wings combined (Figure 2-40b), with

the hindwing leading the forewing by 25∘.

These previous results clearly disagree with each other. To further clarify these results flow

visualization are going to be studied. Broering and Lian [19] studied wings interaction with a

2D simulation. Even though it was seen in subsection 2.2.3 that 2D simulations do not correctly

represent the physics of 3D LEV, their analysis provides useful information to clarify previous

disagreements. Broering and Lian modelled wing flapping at different phase shifts and with different

horizontal spacing. They discovered that what really matters is the interaction of the wake of the

forewing with the hindwing. In Figure 2-41a they simulated a scenario where the phase shift and

spacing was different, however, it can be seen how the wake of the forewing interacts with the

hindwing a really similar way. More importantly, when they computed the force coefficient of this

scenario in Figure 2-41b they realized that they were almost identical if the forewing wake-hindwing

interaction was replicated. This is probably the main reason why Hu et al. [54] and Usherwood
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(a) Lift coefficient with phase difference.
Experimental results for hindwing and
forewing. [54]

(b) A) Combined lift force [N]. B) Average lift to drag ratio. C)
Combined figure of merit FM. [118]

Figure 2-40: Performance dependence with phase shift between forewing and hindwing.
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(a) Vorticity plot. a) and c) have 180∘ phase difference and 0.25𝑐
spacing. b) and d) have 90∘ phase difference and 1𝑐 spacing. [19]

(b) Lift and thrust coefficient
during the stroke cycle. Three
different phases and spacings are
studied. [19]

Figure 2-41: Advection of vorticity in the wake is what really conditions the forces. This depends
on phase and distance between ipsilateral hindwinds.

and Fritz-Olaf et al. [118] results did not agree. They used a different spacing between their wings

in their experiments. Therefore, it can be concluded that there is no universal phase shift that

optimizes flapping properties. All depends on the actual relative position between the wings, and

for this a detailed study of wake advection is required.

However, there is still the unknown of how vorticity shed into the wake affects each wing. For

example, in Figure 2-40a it can be seen how the lift performance of the hindwing decreases, while

on the other hand the forewing increases. To answer this question the flow field induced at the wake

is going to be seen in more detail. Hu et al. were able to measure with PIV the flow field of two

wings following Norberg´s [74] kinematics. In Figure 2-42a it can be seen the flow field generated

at the wake during the downstroke. The wake has an induced downward velocity, the blue area

sketched in Figure 2-42b. On the other hand, the LEV area has local velocity going upwards due

to the circulation. Now let´s imagine that the represented wing in Figure 2-42b is the hindwing,

therefore, the forewing sweeping plane would be to the right, next to the LEV region. In this region

the forewing during the downstroke will find an induced upwash (due to the hindwing LEV) that

goes against its movement, and that increases the dynamic pressure. This is the reason why lift

coefficients are increased so much when the hindwing is more or less in phase with the forewing in

Figure 2-40a and Figure 2-40b. On the other hand, if we consider that the flat plate in Figure 2-42b

is the forewing, then the hindwing would be placed to the left of the sketch. In theory if the hindwing

and forewing strokes are parallel, it seem that they should not interfere. However, the blue region

of the forewing is advected downwards following the streamline indicated in black, and enters in the
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(a) PIV visualizations of the flow field. Vector field and vorticity
field in the background are shown. [54]

(b) Sketch of the flow dynamics during
downstroke. The blue region is the wake.
Induced velocities of the flow are shown
with blue arrow. The red arrow shows the
movement direction of the flat plate. Con-
nected black dots indicate streamlines of
particles inside of the wake.

Figure 2-42: Velocity field in the wake of a flapping plate.

path of the hindwing. This downwash decreases the effective angle of attack of the hindwing and its

dynamics pressure (less relative velocity of the hindwing during the downstroke when most of lift

production happens), and is the reason why the hindwing suffers a decrease in lift relative to the

forewing, see Figure 2-40a.

In the previous scenarios it was seen that depending on the interaction, the relative velocity

of the flow field to the flat plate can be increased or decreased. Moreover, there is also a really

important phenomenon that was not mentioned before: the LEV growth and shedding. Varying

incoming flow speed can have a great effect and modify completely the dynamics of the LEV. For

example, in Figure 2-43 see how the wake greatly increases the LEV in j) (in-phase flapping), while

in k) (90∘ phase) and l) (180∘ phase) the LEV is diminished.

Nevertheless, in hovering there is an added difficulty: vortices are accumulated near the stroke

planes of the hindwing and forewing in successive strokes. Given dragonflies Reynolds numbers,

this vortices take some time to dissipate. Moreover, there is no 𝑈∞ velocity to advect this vortices.

As a consequence, vortex structures are accumulated as shown in Figure 2-44. Having a coherent

vortex structure is an opportunity for energy extraction and optimization. However, if the wake

gets too chaotic, this may start to be negative. To solve this Jane Wang [129] devised a mechanism

to shed vorticity: dipoles. Dipoles induce each other a velocity in the same direction. This causes

automatically the advection of the structures away from the stroke plane if they are oriented in the

right way, see Figure 2-45. It is important to highlight once again that some of these results, such as

dipole advection, were done in 2D. It is already known that 3D mechanisms are completely different
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Figure 2-43: Vorticity contours of 2D numerical simulations. Blue indicates clock-wise vorticity and
red counter-clock-wise vorticity. First column: single airfoil. Second column: in phase flapping, 0∘.
Third column: phased stroking, 90∘. Fourth column: counter stroking, 180∘. Each row contains the
exact same point of the stroke of the hindwing. [20]
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Figure 2-44: 2D numerical simulation. LEV accumulation during hovering. [109]

Figure 2-45: Dipole self induction as a mechanism of vortex shedding. [129]

(non-inertial rotational effects in revolving wings, spanwise blowing ...), so this may not be valid

anymore.

In summary, wake interaction presents at the same time a challenge and opportunity for flap-

ping optimization. The most relevant parameter is the relative distance between a wing’s wake and

another wing. Stroke phasing and wing spacing are two possible ways of controlling this relative

distance. This allows to orient every wing in an efficient way regarding the incoming wakes. More-

over, it was seen that the two main mechanisms that lead to force modification during wing-wing

interaction are variations of relative velocity and modification of LEV dynamics. Finally, in order to

control vortex accumulation during hovering, dipoles self-induction may be a good solution, although

its effectiveness has to be verified in 3 dimensional flows.

56



(a) Summary of flow visualization of 2D corrugated
sections in the literature. [30]

(b) Numerical flow visualization of 2D corrugated air-
foil. Background colour indicates the absolute veloc-
ity. On top streamlines are represented. [10]

Figure 2-46: Flow visualization around corrugated wings.

2.4 Corrugation

Most of the studies that have been done in literature used a simplified model of the wing. Normally,

a flat plate is the chosen alternative. Nevertheless, actual insects and in particular dragonflies have

corrugated wings. However, a question arises here: are all the conclusions and observations regarding

wing flapping (LEV stability, LEV structure, vorticity shedding, etc) still valid with corrugated

wings? In this section the current understanding of corrugation effects is going to be assessed.

2.4.1 Steady analysis

First, steady analysis of flow around a corrugated airfoil is going to be considered. Overall, exper-

imental [78] [92] and numerical [30] [10] [119] studies agree that in steady flight, a profiled airfoil

around the corrugation is created, see Figure 2-46a. In particular, the profiled airfoil has a higher

camber and thickness, and this increases the lift coefficient [10] [119], when compared to a flat plate.

Within the corrugation valleys recirculation areas are created. Therefore, corrugation seems to trap

vortices around the airfoil, and also increases effective thickness due to these trapped structures.

Moreover, corrugation profile is not something random. Barnes et al. [10] showed numerically that

varying slightly the corrugation shape can have a huge effect in the overall aerodynamic behavior of

the wing. For example, in Figure 2-46b it can be seen how in the geometry from the left, a stable

vortex is created in the second valley (consider leading edge as first valley) of the upper side of the

wing. This vortex pushes the flow that has passed the second valley towards the airfoil, and therefore

maintains attached the flow. However, in the corrugation pattern from the right, there is no stable

vortex in the second valley. Therefore, the flow is detached, and the effective camber increases much

more. Consequently, it can be concluded that trapped vortices can help to maintain attached the

flow. Nevertheless, the geometry has to be specially tuned for each angle of attack. It is uncertain

if this behavior will remain over a wide range of angles of attack for a fixed geometry.

Trapped vortices can also be understood as wheels that push smoothly outer streamlines. See

in Figure 2-47a how a clear profiled airfoil is created, and how in each valley the recirculation zones
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act like a kind of wheel pushing the flow downstream. In fact, due to these recirculation regions it

can be seen in Figure 2-47b how at some points of the airfoil negative skin friction coefficients are

reached [119]. Additionally, in Figure 2-47b Vargas et al. [119] compared an airfoil that had the same

profile as the profiled corrugated airfoil. It is really interesting to see how indeed the recirculation

regions are able to decrease the global skin friction, while maintaining similar lift coefficient. Note

that the non corrugated airfoil was designed to have the same profile, so it has similar streamlines,

which mean similar lift coefficient. The trick here is that drag is not only skin friction, there is

also pressure drag. However, quite surprisingly, Vargas et al. computations demonstrate that even

though pressure drag increases slightly in the corrugated airfoil, there is an overall drag reduction.

It has been seen that corrugation may be a promising alternative in terms of postponing flow

detachment and drag reduction. However, until now only 2D man-made corrugation has been

analyzed. Actual 3D corrugation patterns of insects might unveil some optimization that could be

useful to understand. There are very few papers in the literature that have regarded this. Chitsaz

et al. [29] did an experiment with an actual 3D dragonfly wing. However, they were not able to

resolve the vortices scales around the airfoil due to PIV resolution. Despite this, they observed

that a Karman vortex street appeared, which was created by the wake oscillations generated by the

unstable shear layer. Based on this they hypothesized that the laminar trapped vortex intensity

oscillated in time, due to the instability of the shear layer of the profiled airfoil, and after leaving

the leading edge leads to the Karman vortex street. This agrees with the drag time-dependent

oscillations that Vargas et al. [119] observed in the friction coefficient.

Additionally, a numerical study [30] with the same actual geometry as Chitsaz et al. [29] was done.

They observed (Figure 2-48a) a complex vortex structure that interacted in a three dimensional way

depending on the spanwise evolution of corrugation. Therefore, they realized that 2D simplification

were lacking a lot of complex phenomena, such as spanwise vortex interaction. In particular, the

3D spanwise corrugation acted as channels that advected streamlines from the root to the tip. This

channels might be related to the 3D spanwise vorticity, which was key in the leading edge vortex

stability (subsection 2.2.3), see Figure 2-48a. Finally, it is interesting to mention that their numerical

simulations gave higher lift and drag for the corrugated wing, see Figure 2-48b. This means that

corrugation interacts more strongly with the surrounding flow. It was derived in subsection 2.2.4

that in flapping it is desired a higher force coefficient, so that the same force can be obtained with

less energy. Consequently, corrugation is clearly beneficial for this purpose.

2.4.2 Unsteady analysis

In previous section steady analysis were done of corrugated wings. However, as is has been seen,

unsteady effects are clearly dominant in flapping wing aerodynamics. In this section the effects of

corrugation for the unsteady case are going to be investigated.
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(a) a) Streamlines around a corrugated 2D section. b) Sketch
of recirculation region in the corrugation valleys acting like a
"wheel". [119]

(b) Skin friction coefficient at different Reynolds numbers. a) and c) suction surface;
b) and d) pressure surface. a) and b) 𝑅𝑒 = 10000; c) and d) 𝑅𝑒 = 5000. [119]

Figure 2-47: Understanding the vortex dynamics within the corrugated valleys.
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(a) Numerical simulation of actual dragonfly 3D
geometry. Steady forward flight (no flapping).
Streamlines are coloured with velocity norm. a)
𝛼 = 5∘ b) 𝛼 = 10∘ c) 𝛼 = 20∘ d) 𝛼 = 40∘. [30]

(b) Lift and drag comparison between a flat and corrugated
wing. Wing corrugation was obtained with micro-CT from
actual dragonflies. [30]

Figure 2-48: Numerical simulation of 3D corrugated wing.

Fujita and Iima [45] studied the unsteady effects in a corrugated airfoil with a 2D simulation.

They realized that corrugation could greatly affect the LEV evolution: it could be shattered into

smaller components of vorticity, and also trapped withing the corrugation valleys, see Figure 2-49a.

Moreover, the vortices that were shattered could interact with each other. In Figure 2-49a vortex

1 is being pushed towards the airfoil by vortex 2, while vortex 2 is being thrown away by vortex 1.

Therefore, some vortex can remain attached for larger periods while others are shed almost instantly.

Eldredge et al. [38] reported a secondary structure next to the LEV, the so called lambda

vortex. This lambda vortex had opposite vorticity to the leading edge, and was associated with its

detachment. Fujita and Iima [45] also realized that this lambda vortex could be modified thanks to

corrugation. See in Figure 2-49b c) how the lambda vortex is trapped between corrugation valleys,

and was also shattered. Fujita and Iima [45] hypothesized that this effect could be tuned to delay

the shedding of the LEV.

Unfortunately, there are almost no studies exploring corrugation effects in unsteady flow. The 2D

results are limited as it was shown in subsection 2.2.3, because 2D profiles do not include effects like

3D spanwise advection that allow to stabilize the LEV. Therefore, the LEV shedding observed by

Fujita and Iima [45] will probably not occur in 3D. This means that LEV shattering by corrugation

probably has a completely different behavior.
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(a) Snapshots of vorticity at different points of the stroke.
Blue clockwise, red counter-clockwise. [45]

(b) Zoom into the leading edge region where
the lambda vortex occurs. a) and b) pressure
coefficient 𝐶𝑝. c) and d) vorticity plots. [45]

Figure 2-49: Numerical simulation of a 2D flapping wing. Comparison between corrugated and flat
plate.
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2.5 Conclusions and summary of literature review

Dragonfly kinematics are reported in the literature in a limited way, specially for hovering. There is a

good description of the flapping angles, stroke plane angles and frequencies, but the feathering angle

data is not sufficient. This implies that bio-inspired flapping dynamics can not be fully modelled

and therefore understood using solely insect data.

Based on this, another approach has to be followed to understand how wings should be flapped

to have efficient hovering. For this, a good understanding of the key known aerodynamic phenomena

of flapping is required. Once the simple building blocks that characterize flapping aerodynamics are

available, it is possible to understand how to properly combine them to have an efficient stroke.

That is the reason why in the literature review a thoroughly investigation of these building blocks

was done. The main identified building blocks were the following ones:

1. Dynamic Stall, see section 2.2.2.

2. Leading Edge Vortex, see subsection 2.2.3.

3. Drag as Vertical Force, see subsection 2.2.4.

4. Wing Rotation, see subsection 2.2.5.

5. Wake Capture, only one wing, subsection 2.2.5; two wings, section 2.3.

6. Corrugation, see section 2.4.

Dynamics Stall is well understood and described in the literature. The initial shear layer

caused by dynamic stall rolls-up to create a stable and attached 3D Leading Edge Vortex. The

Leading Edge Vortex is really interesting because it provides a huge amount of lift and drag

while it remains attached. The key point is, how can it remain attached? The literature has brought

some light to this issue. Several hypothesis have been suggested, such as axial flow, Coriolis effect,

Eckman pumping and vorticity tilting. The reality seems to be a combination of all these factors,

that varies with the Reynolds and Rossby numbers, but there is still much more work to be done to

clarify the dependencies.

Another important concept is that flapping is quite unconventional, it uses Drag as Vertical

Force. This a key mechanism that has been widely overlooked in the literature. All literature was

focused on unsteady lift effects until only a few years ago. However, it is now known that most of

the vertical force during the downstroke comes from drag. The limited dragonfly kinematics data

seems to confirm this.

During a periodical stroke flapping wings have to turn around at some point. Thanks to classical

lift theory, recent numerical simulations and experiments, Wing Rotation is well understood.

Added mass effects, classical circulatory lift, and Magnus effect define the forces during the rotation
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of the wing. The axis of rotation and point of rotation within the stroke cycle, have to be tuned

according to this components to maximize force production in the desired direction.

The advantage of having periodical strokes is that it is possible to use in an efficient way the

wasted energy shed into the wake during previous cycles, the Wake Capture. Early in the literature

it was pointed that dragonflies have different phases between ipsilateral wings depending on the

maneuver. Therefore, researchers started to replicate these different phases to see what was the

optimal one. However, there are two main problems with this: each research group had their own

experimental or numerical set up; and they only looked at the results that were interesting to them,

in most cases the forces. These leads to several papers pointing to different optimal phasing and

flapping strategies. The main problem here is that by using a slightly different set up, the underlying

physics change completely and give different results. Initially it was thought that the main factor

for wake capture was phasing (what they observed in the insects), however, what is important is the

detailed wake vortices interaction with each wing. These interactions depend indeed on phasing, but

also depend on other geometrical factors of the flapping system (distance between wings, frequency

of flapping, etc), which were varied between most research papers. Recent papers have tried to solve

this by looking at the detailed flow field and wake interactions with numerical simulations. The

problem here is that for simplicity they tend to use 2D simulations. Nevertheless, while inspecting the

Leading Edge Vortex stability it was seen that it changes dramatically between 2D (unstable) and

3D (stable). Consequently, most of the literature conclusions cannot be applied to three dimensional

systems.

Corrugation was the last building block that was analyzed. Corrugation has been widely over-

looked in the literature. Most previous building blocks were analyzed using flat plates. There are

some results of steady corrugated airfoils in 2D and 3D. However, these papers only provide steady

aerodynamic coefficients, and it is known that most force comes from unsteady flow. It has only

been reported one 2D case of unsteady corrugated flapping. As it is in 2D it also does not capture

the three dimensional non-inertial effects that completely change vortex dynamics. It may be that

insects only use corrugation to improve bending stiffness, without any aerodynamics effects, but this

has not been proved up to date.

Finally, the relationship between all building blocks is by far the less researched topic in the

literature. Typically a paper only analyzes some effects within one of the building blocks. However,

a flapping system should be regarded as a mixture of building blocks where all elements have some

relevance. For example, at what point of the growth of the Leading Edge Vortex growth should

Wake Capture start? Is the Leading Edge Vortex stability affected by Wing Capture? What

is the desired Wing Rotation to shed vortices adequately and have Wake Capture? Can a certain

Corrugation pattern increase the stability of the Leading Edge Vortex? These issues have not

been answered in the literature, and are certainly relevant to understand and improve flapping.
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Overall all these questions are equivalent to trying to optimize the flapping stroke during hovering.

This is going to be the main topic of the thesis. Moreover, to deal with the optimal stroke a good

understanding of each building block is required. Therefore, the focus will be placed on improving

the understanding of the less well known building blocks, specially Wake Capture, Corrugation,

Drag as Vertical Force and Leading Edge Vortex stability. In particular, numerical simulations

and experiments of a single flapping wing will be first used to delve into the concepts of Drag as

Vertical Force and Leading Edge Vortex stability. Later on, Corrugation effects will be

inspected with simulations of an actual dragonfly wing. Finally, all building blocks will be placed

together in a whole dragonfly flying in hovering mode.
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Chapter 3

Methodology

To delve into the challenges posed in the literature review chapter 2 two approaches will be fol-

lowed: numerical simulations and experiments. The goal is to reinforce the validity of the claims by

comparing each method when possible. Numerical simulations will be used alone in cases where the

experiment was not possible to be conducted due to technical or time constraints.

3.1 Numerical formulation

To simulate aerodynamic phenomena a model for the fluid-solid interaction is required. In particular,

given the low flapping speeds the fluid model will be the incompressible Navier Stokes equations:

𝜕𝑢𝑖
𝜕𝑡

+
𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= − 𝜕𝑃

𝜕𝑥𝑖
+

1

𝑅𝑒

𝜕2𝑢𝑖
𝜕𝑥2𝑗

(3.1)

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0. (3.2)

To discretize the equations a finite volume approach implemented in INCA [4] is implemented. A

staggered grid is used to avoid pressure-velocity decoupling. A second order centered discretization

is used. Time stepping is done with a explicit RK3 scheme. Incompressibility is imposed in every

step by solving the Poisson equation with a Krylov-Poisson solver (BiCGstab with Strong Implicit

Procedure preconditioner [85]). To impose the boundary conditions at the object surface a conserva-

tive cut-cell immersed boundary method is used. In particular, to avoid CFL restrictions with small

cells created by geometry intersection, a merging procedure is used [83]. The fluid solver was coupled

to a Multibody Solver that was specifically developed for these simulations. For brevity, the detailed

description of the Multibody Solver and all the verification cases are included in Appendix A.
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3.1.1 Verification cases

Fixed 2D cylinder

The first case is going to be a fixed cylinder immersed in a uniform flow in two dimensions. The

fluid problem is non-dimensionalized with the cylinder diameter 𝐷, the uniform upstream velocity

𝑈 and the kinematic viscosity 𝜈. The Reynolds number is based on the diameter of the cylinder:

𝑅𝑒 = 𝑈𝐷
𝜈 = 100.

The domain dimensions are [−20, 30] × [−20, 20]. A structured and staggered grid is used to

discretize the domain. Adaptive mesh refinement (AMR) is used in both 𝑥 and 𝑦 directions, refining

towards the cylinder, see Figure 3-1a.

The slip boundary conditions are enforced at the upper and lower surfaces. Upstream a uniform

velocity 𝑈 = 1 is given (non-dimensionalized parameter). Downstream, constant total pressure is

enforced. At the cylinder surface a no-slip boundary condition is applied.

First, grid independence is achieved with a grid refinement study, see Table 3.1. 𝑛 is defined as

the number of cells projected along the 𝑥 direction of the cylinder. The parameters which are studied

for grid convergence are the average lift and drag coefficients 𝐶𝐿 and 𝐶𝐷; the semi-amplitude of the

lift oscillations ̃︁𝐶𝐿 =
𝐶𝑚𝑎𝑥

𝐿 −𝐶𝑚𝑖𝑛
𝐿

2 ; and the Strouhal number (based on the period of lift oscillations,

𝑇 ) 𝑆𝑡 = 𝐷
𝑇𝑈 .

(a) Simulation domain. (b) Zoom into the cylinder.

Figure 3-1: Structured grid, with AMR (n = 16).
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n CD CL
̃︁CL St

16 0.98 -0.21 0.096 0.157

32 1.46 0.19 0.43 0.163

64 1.39 0.029 0.36 0.166

128 1.38 0.0026 0.35 0.166

Table 3.1: Grid convergence of the 2D cylinder simulation. 𝑅𝑒 = 100.

Note how the semi-amplitude of the lift oscillations ̃︁𝐶𝐿 is not exactly zero in Table 3.1. In theory
̃︁𝐶𝐿 should be exactly zero due to the symmetry of the problem, so it can be seen as an indicator

of the error in the solution (statistics where converged through a long enough period). For the

two coarser grids the convergence in ̃︁𝐶𝐿 is non-monotonic due to the non-linearity of the equations

and the fact that the grid is too coarse. However, for 32 ≤ 𝑛 monotonic convergence of all the

parameters is observed. For 𝑛 = 128 errors of order 10−3 are achieved. This grid resolution is going

to be considered as enough to provide grid independence, given the typical modeling errors observed

in the literature, Table 3.2.

Figure 3-2: Snapshot of the instantaneous vorticity field in the 2D cylinder simulation. 𝑅𝑒 = 100.
𝑛 = 128.

A snapshot of the instantaneous vorticity field of the grid-independent solution is shown in

Figure 3-2. See how the expected vortex shedding occurs in the wake of the cylinder.

Finally, the grid-independent solution is compared with other results of the same problem found

in the literature, see Table 3.2. A quite good agreement can be seen.
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Reference CD
̃︁CL St

Experiment [51] 1.3 - -

Experiment [43] - - 0.165

Numerical [97] 1.38 0.300 0.169

Numerical [64] 1.35 0.344 0.164

Numerical [17] 1.36 0.25 -

Present, numerical ( 𝑛 = 128 ) 1.38 0.35 0.166

Table 3.2: Comparison of present results with the literature. 𝑅𝑒 = 100.
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3D rotating sphere

A 3D rotating sphere with a uniform upstream flow is assessed in this section. Rotation occurs with

uniform non-dimensional angular speed Ω* = 𝐷𝜔
2𝑈∞

, where 𝐷 is the sphere diameter, 𝜔 the angular

speed around the 𝑦 axis, and 𝑈∞ the upstream flow at infinity aligned with the 𝑥 axis direction, see

Figure 3-3. In particular, two rotation speeds are inspected, Ω* = 0 and Ω* = 0.25. The Reynolds

number is 𝑅𝑒 = 𝑈∞𝐷
𝜈 = 100, where 𝜈 is the kinematic viscosity of the fluid. First, it should be

mentioned that the wake remains steady over the range of Ω* considered. The steady structure

of the wake can be seen in Figure 3-3 and Figure 3-5a. A comparison of the streamlines with the

results from Niazmand and Renksizbulut [73] can be seen in Figure 3-5b. As it can be appreciated,

the topology of the streamlines matches perfectly the reference.

Figure 3-3: 𝑅𝑒 = 100. Ω* = 0.25. Q criterion isocontours coloured by streamwise vorcity (𝜔𝑥).
Yellow, downstream vorticity orientation; purple, upstream vorticity orientation.

Next, the mean drag and lift coefficient in the vertical direction are defined as:

𝐶𝐷 =
𝐹𝑥

1
2𝜌∞𝑈

2
∞𝜋

𝐷2

4

𝐶𝐿,𝑧 =
𝐹𝑧

1
2𝜌∞𝑈

2
∞𝜋

𝐷2

4

.

The total forces can also be decomposed into the pressure and viscous components. These are plotted

in Figure 3-4a and Figure 3-4b. A good agreement is observed with the literature, specially with

the results from Giacobello et. al [47].
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(a) Averaged drag coefficient.

(b) Averaged lift coefficient in 𝑧 direction.

Figure 3-4: Comparison of lift and drag coefficient for different non-dimensional rotation speeds Ω*.
𝑅𝑒 = 100. References used: Giacobello [47], Kurose [60] and Niazmand [73]

.
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(a) Present simulation. (b) Reference in [73].

Figure 3-5: Comparison of streamlines contained on the 𝑥 − 𝑧 plane (only considering 𝑢 and 𝑣
components), see axis system Figure 3-3. 𝑅𝑒 = 100. Ω* = 0.25.
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Single 2D pendulum immersed in a fluid

Finally, a 2D pendulum in free fall immersed in a fluid flow is considered. The fluid solver is coupled

to a Multibody Solver to allow for the fluid-solid dynamics interaction. For brevity, the detailed

description of the Multibody Solver and all the verification cases are included in Appendix A. The

results from [71] are considered, in particular, the test case with pendulum mass 𝑚 = 5000 𝑘𝑔 and

pendulum’s bob radius 𝑟 = 0.015 𝑚 is used. Other relevant parameters defined in the reference

for the simulation are: pendulum length 𝐿 = 0.2 𝑚, fluid density 𝜌 = 1000 𝑘𝑔/𝑚3, fluid dynamic

viscosity 0.01 𝑘𝑔/(𝑚 𝑠), gravitational acceleration 𝑔 = 9.81 𝑚/𝑠2 and initial angular displacement

𝜃0 = − 3𝜋
10 𝑟𝑎𝑑.

(a) Non-dimensional vorticity. (b) Adaptive mesh (base). Background colored by
vorticity.

Figure 3-6: Present results in test case selected from. [71]

To study mesh convergence three levels of adaptive mesh refinement are compared with the

reference. Once again to compare the level of refinement, 𝑛 is defined as the number of cells projected

along the 𝑥 direction of the pendulum’s bob. The coarse mesh has 𝑛 = 16, the base mesh has 𝑛 = 32

and the fine mesh 𝑛 = 64. Results for the three refinement levels are shown in Figure 3-7. It can be

concluded that the results from the present fluid solver with the coupled multibody solver converge

to the reference values.
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Figure 3-7: Convergence of pendulum trajectory with mesh refinement. Reference from [71].
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3.2 Experiment design

The experiment that will be described next was conducted thanks to California Institute of Technol-

ogy facilities and resources. The goal of this experiment is to provide a physically relevant case that

can contribute to answer the questions of the literature review. In particular, a single flapping plate

has been chosen, as it was feasible with the time and resources available, while it can also illustrate

many of the most relevant phenomena explored in the literature review.

The experiment was designed to have one degree of freedom, rotation around the 𝑧 axis. The

𝑧 axis rotation was achieved with a servo-motor that moved a shaft connected to the flat plate. In

Figure 3-8a the CAD design and the actual experiment can be seen in more detail. The tank was

filled with distilled water at 20∘𝐶, 𝜈 = 10−6[𝑚2/𝑠]. The vertical force (lift) was measured with two

1D load cells (in red in Figure 3-8a). Each load cell connects the edges of the beam to the two

support structures in each side of the tank. The torque (drag torque) was measured with a reaction

torque sensor, in yellow in Figure 3-8a and Figure 3-9a.

(a) CAD design of the the experiment.

(b) Actual experiment set
up.

Figure 3-8: Experiment design. The laser sheet for PIV (blue) is active in both pictures.

A more detailed view of the CAD design can be seen in Figure 3-9a. The servo-motor (dark grey,

top of the image) was connected via four separators to a torque sensor (in yellow). Then, this torque

sensor was attached to a fixed support (aluminium beam). The shaft (in black) is connected to the

servo motor via a coupling, colored in green. Also note that the shaft goes across the hole-through

torque sensor, that has a bigger inner diameter (14 mm) than the outer diameter of the shaft (12
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mm). At the bottom of Figure 3-9b, the shaft passes through a bearing to remove the radial loads

from the torque sensor and improve the stability of the system.

Note that all the torque caused by the fluid forces goes up through the shaft, then reaches

the coupling, next the servo-motor, and finally the torque sensor that is fixed to the beam. It is

important to highlight that the torque sensor is measuring both, fluid and inertia torque. To remove

the inertia forces, all experiments were done twice, once with the tank full of water, and another

one with an empty tank. Neglecting the fluid forces caused by air (around a thousand times smaller

than in water), the measurements in air represent solely the inertia forces of the system. Therefore,

subtracting both cases, the torque caused by the fluid can be isolated as:

𝑇𝑓𝑙𝑢𝑖𝑑 = 𝑇𝑤𝑎𝑡𝑒𝑟 − 𝑇𝑎𝑖𝑟. (3.3)

Additionally, the load cells measure the forces of all the elements on the beam, however, all the

elements are passive and only the fluid forces produce a varying vertical force in time.

The flat plates were 3D printed using California Institute of Technology facilities, see Figure 3-10.

Five different wing designs were tested, each of them with a different angle of attack (AoA): 10∘,

25∘, 45∘, 70∘ and 90∘. The radius of gyration of the root 𝑅𝑟 of all flat plates was 50 𝑚𝑚. The span

𝑏, chord 𝑐 and thickness 𝑡 of the flat plates was 50 𝑚𝑚, 25 𝑚𝑚 and 2.5 𝑚𝑚 respectively.

To visualize and get a better understanding of the LEV dynamics, planar PIV was implemented,

see Figure 3-11. A 445 𝑛𝑚 blue laser with a maximum power of 20 watts was used. The laser power

was tuned as the minimum possible to not be exposure limited by the camera. A convergent lens was

selected to create a laser sheet. A camera with 1936 x 1216 pixel resolution was placed perpendicular

to the laser sheet. Flow fields were reconstructed using cross-correlation with a Gaussian regression

to get subpixel resolution. All PIV results presented in this document are taken when the wing is

perpendicular to the laser sheet. To assess the evolution of the LEV, the same flapping trajectories

were repeated but each time, starting at a different initial angle 𝜓0 from the perpendicular position

to the laser sheet (PIV measurement point), see Figure 3-12a and Figure 3-12b. This way when the

flat plate arrives to the measurement point (perpendicular to the laser sheet), the LEV would have

been developing for different distances depending on the initial 𝜓0.

3.2.1 Error analysis

3.2.2 Servo-motor

The servo-motor has a deadband width of 1 𝜇𝑠. The PWM signal oscillates between 1000 and 2000

𝜇𝑠, and the amplitude of oscillations is 190∘. Consequently, the angular resolution in the trajectories

is:
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(a) CAD design. Yellow, hole-through torque
sensor; dark grey (top), servo-motor; green, cou-
pling; light grey, support beam; black, shaft.

(b) Actual experiment set up.

Figure 3-9: Zoom into the experiment set up.

Figure 3-10: 3D printed wings with different angles of attack. Blue bottom, 90∘; grey middle, 10∘;
grey top, 25∘.

∆𝜓 =
1

1000
190 = 0.19∘. (3.4)
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Figure 3-11: Photo of the planar PIV laser sheet with the flat plate at 𝜓0 = 0∘. Note that the photo
was not taken neither with the camera used for PIV, nor from the position of the PIV camera.

(a) 𝜓0 = 90∘. (b) 𝜓0 = 20∘.

Figure 3-12: CAD of the 90∘ AoA flat plate at two different initial positions 𝜓0. For reference,
𝜓0 = 0∘ is the position of the flat plate perpendicular to the depicted blue laser sheet.

The temporal resolution is limited by the bandwidth of one cycle of the PWM signal:

∆𝑡 = 20000𝜇𝑠 = 0.02𝑠. (3.5)

3.2.3 PIV

Using the first order term from a Taylor series the uncertainty can be estimated as [31]:

𝜖𝑈 =

√︃(︂
𝜕𝑈

𝜕∆𝑡
𝜖Δ𝑡

)︂2

+

(︂
𝜕𝑈

𝜕∆𝑥
𝜖Δ𝑥

)︂2

→ 𝜖𝑈
𝑈

=

√︂
𝜖Δ𝑡
∆𝑡

+
𝜖Δ𝑥
∆𝑥

. (3.6)
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After pre-processing the images, the particles move around 4 pixels every image, ∆𝑥 ≈ 4𝑝𝑥.

Additionally, the value of 𝜖𝑥 with Gaussian correlation is usually around 0.1 𝑝𝑥 [105]. 𝜖Δ𝑡
is given

by the exposure time of the camera, which was 498𝜇𝑠. On the other hand, ∆𝑡 is given by the frame

rate of the camera, 𝑓 = 100𝐻𝑧. With these values the estimated error bound is:

𝜖𝑈
𝑈

=

√︂
𝜖Δ𝑡
∆𝑡

+
𝜖Δ𝑥
∆𝑥

= 5%. (3.7)

Finally, also comment on the importance of having an adequate particle displacement within

two frames. Literature indicates that a 1/4 interrogating window displacement is optimal for PIV

[105], see Figure 3-13a. As indicated ∆𝑥 ≈ 4𝑝𝑥, which means that 16 𝑝𝑥 is the optimal size for

the interrogating windows. Also the seeding density was adjusted to have around 6 particles per

interrogating window, so that a good correlation factor is obtained [105].

More importantly, in flapping wings a huge component of the noise in the planar PIV measure-

ments is going to come from the out of plane displacement of particles, see Figure 3-13b. The laser

thickness ∆𝑧 was 14𝑝𝑥. Assuming a quite pessimistic scenario, in which all particles are orthogonal

to the laser sheet, it gives ∆𝑥/∆𝑧 = 4/14 = 2/7 displacement between frames. This is a reasonable

value as most of the particles will remain within the laser sheet between two frames, giving this way

a good correlation [105].

(a) In plane particle displacement
within the interrogation window. (b) Out of plane particle displacement.

Figure 3-13: Selection of image sampling rate for PIV and analysis of out of place displacement.
[106]
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Chapter 4

Experimental and numerical analysis

of a single flapping wing
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4.1 Comparison between experiments and numerical simula-

tions

In this section the results for a flat plate flapping at a uniform velocity 𝜔 are inspected (instantaneous

acceleration). The angle of attack of the flat is 𝛼 = 70∘, which is similar to the angle of attack of

insect wings like dragonflies during the downstroke [39]. Also remark that the typical flapping angle

amplitude of dragonflies is around 𝜓 = 60∘, see section 2.1, so only this range of flapping angles is

going to be inspected. The Reynolds number is defined based on the radius of gyration at the tip

of the flat plate (𝑅𝑔 = 𝑅𝑟 + 𝑏), and the chord length 𝑐 (see section 3.2 for more details of the wing

geometry):

𝑅𝑒 =
𝜔𝑅𝑔𝑐

𝜈
, (4.1)

where 𝜈 = 10−6𝑚2/𝑠 is the kinematic viscosity of water at 20∘𝐶 .

Remark that the Strouhal number, given a certain non-dimensional flapping trajectory, is always

the same independent of characteristic length of the wing 𝑅 and flapping frequency scaling 𝑓 :

1. Unsteady term ≈ 𝑈
𝑡 ≈ 𝑓2𝑅

2. Advection term ≈ 𝑈2

𝑅 ≈ 𝑓2𝑅,

where 𝑈 is the characteristic flow speed and 𝑡 the characteristic time.

Finally, comment that experiments did have force and torque measurements. However, these

measurements where only valid when flapping was fast enough, so that forces can be clearly distin-

guished from measurement noise (note that force signal scales with the velocity squared). This was

practical for 𝑅𝑒 > 20000 for the present set up. This is a regime where dragonflies and most insects

do not fly. Additionally, doing DNS at this regime is not possible with the computational resources

available for this thesis. Therefore, it was decided to only use PIV which works well for slower

flapping regimes (the ones observed in insects) and compare with DNS that can be fully resolved in

these lower Reynolds numbers.

4.1.1 3D structure of the LEV

The LEV of a flapping wing presents a complex 3D structure [22]. This will be inspected in this

section via experiments and numerical simulations. In particular, 2D slices of the flow field are going

to be inspected and latter on, 3D structures will be visualized in the numerical simulations.

First, looking at the flapping angle 𝜓0 = 20∘, Figure 4-1, when the LEV starts to grow, it can be

seen that at 0.75𝑏, the flow field has higher velocity magnitude. This makes sense, as towards the tip
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velocity is higher. Therefore, due to the higher velocity towards the tip, circulation of the LEV and

TEV grow faster for the same flapping angle. This can be appreciated looking at the streamlines

that define the recirculation regions of the flow. A quite good agreement in both the experiment

and simulation can be seen, specially for the 0.25𝑏 slice. It will be seen later on that the flow in the

numerical simulations and experiments transitions to turbulence at the tip. Therefore, due to the

chaotic nature of turbulence it is expected that exact instant correlation between experiment and

simulation are worse close to the tip.

(a) 0.25𝑏, 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙.

(b) 0.25𝑏, 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙.

(c) 0.75𝑏, 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙.

(d) 0.75𝑏, 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙.

Figure 4-1: 𝜓0 = 20∘. Streamlines colored by velocity magnitude of the flow field at different span
section. Flat plate flapping to the right. Shadow region colored in red. 𝑅𝑒 = 392.7. Instantaneously
accelerated plate, constant 𝜔. 𝛼 = 70∘.

Next, at 𝜓0 = 40∘, Figure 4-2, the LEV remains closely attached to the flat plate at 0.5𝑏 in the

experiment, while in the numerical simulation it is still attached but it is shifted slightly upwards. On

the other hand, the LEV is more separated close to the tip at 0.75𝑏, in both the experiment and the
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simulation, due mainly to the faster circulation growth in this region. Also note the chaotic nature

of the flow in both experiment and simulation for this section. As mentioned before transition close

to the tip occurred, and for this reason the section closer to the tip is starting to depict a chaotic

behavior. Moreover, the TEV is starting to be detached. The reason for this detachment is the

following: LEV and TEV create a jet of momentum downwards and to the right (generates huge lift

and drag, in the opposite direction of the jet). Then, this jet cuts the circulation of the TEV and

detaches it from the flat plate. This is the reason why the TEV is usually detached much faster than

the LEV in flapping wings. Also note that this is beneficial as the TEV contributes to negative lift

(Kutta-Joukowski theorem), so getting rid of it would enhance lift production.

(a) 0.5𝑏.

(b) 0.5𝑏.

(c) 0.75𝑏.

(d) 0.75𝑏.

Figure 4-2: 𝜓0 = 40∘. Streamlines colored by velocity magnitude of the flow field at different span
section. Flat plate flapping to the right. 𝑅𝑒 = 392.7. Instantaneously accelerated plate, constant 𝜔.
𝛼 = 70∘.

To better understand the 3D structure of the LEV, the Q-criterion isocontours of the numerical
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simulation at a flapping angle 𝜓 = 40∘ are shown in Figure 4-3. See how the LEV is attached

and grows towards the tip, due to the faster spinning velocity. Additionally, observe how the

LEV structure becomes more complicated and transitions close to the tip. This was also noticed

in previous experiments, for example in the mechanical flapping done in [61], see Figure 2-32a.

They observed at a slightly higher Reynolds number with hydrogen bubbles how the LEV structure

transitions at half the span, quite similar to what happened here. Also note how for high Reynolds

numbers, circulation shedding occurs due to transition (see the structures at the wake of the flat

plate coming from the LEV), which controls the size of the LEV.

Figure 4-3: 𝜓 = 40∘. Q-criterion isorcontours colored by background vorticity. Slice colored by
velocity magnitude. Re = 392.7. 𝛼 = 70∘.

Finally, in Figure 4-4 special attention is placed to the LEV structure and spanwise blowing.

First, note how the streamlines projected on the LEV go towards the tip. This spanwise blowing

is what is known as Coriolis spanwise blowing, and controls the growing (and therefore stabilizes)

the LEV structure close to the root. Also note that at around half of the span of the flat plate the

LEV is suddenly separated from the flat plate surface. The reason for this is the collision of two

spanwise flows going in opposite directions, one coming from the root vortex and the other from

the tip vortex. This causes ejection of mass away from the flat plate and contributes to the LEV

detachment. This will be inspected in more detail in section 4.3.
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Figure 4-4: 𝜓 = 40∘. Vorticity isocontour colored by wall distance. Velocity streamlines projected
on the isocontour. Re = 392.7. 𝛼 = 70∘.
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4.1.2 Analysis of the wake

In this section the structure of the wake is going to be inspected in more detail. Once again

experiments and numerical simulations are going to be compared. The wake is going to be studied

through vertical slices taken once the flat plate has just passed, see Figure 4-5a where the location

of the laser sheet is presented in white. In Figure 4-5b the superimposed PIV images depict the

placement of the wing with respect to the slice, and in Figure 4-5c the resolved vector field is

presented.

(a) PIV results with 𝜓 = 40∘. Streamlines colored
by vorticity. Mid span, 0.5𝑏. In white the location of
the laser sheet used to inspect the wake with PIV.

(b) Superimposed snapshots of the PIV particles.
Figure 4-5a looked from the left.

(c) Resolved PIV vector field.

Figure 4-5: 𝜓0 = 20∘. Wake results for 𝑅𝑒 = 392.7. Instantaneously accelerated flat plate, 𝛼 = 70∘.

At the beginning of the flapping movement, 𝜓 = 20∘, if the spanwise blowing component is

inspected (Figure 4-6a and Figure 4-6b), it can be seen that two jets in opposite directions emerge:

the LEV at the root (left part of the image) blows from left to right, while the LEV at the tip

blows from right to left. These two jets collide at around 3/4 of the span. Because the flow is

incompressible, to preserve volume, a jet away from the flat plate is created. This creates a vertical

blowing (and another blowing component outside of the image plane which is not shown) that pushes

the LEV away from the flat plate and favors its detachment. This phenomenon can be seen in both

the PIV and numerical results. In Figure 4-6a the estimated position of the vortex core is shown with

a red line. Note how the upwards vertical blowing that occurs at around half of the span goes exactly
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through the vortex core. For this reason at around half the span, the LEV suddenly separated when

the 3D LEV structure was visualized in Figure 4-3. In the literature a lot of emphasis has been

placed in spanwise blowing as the leading stabilizing effect [61]. However, here it is shown that it

can also be a dangerous component that enhances detachment. This will be inspected in more detail

in section 4.3.

(a) Velocity vector field colored by spanwise velocity
component, experimental.

(b) Spanwise velocity component, numerical.

(c) Velocity vector field colored by vertical velocity
component, experimental.

(d) Velocity vector field colored by vertical velocity
component, numerical.

Figure 4-6: 𝜓0 = 20∘. Wake results for 𝑅𝑒 = 392.7. Instantaneously accelerated flat plate, 𝛼 = 70∘.

Next, when the flapping angle keeps increasing (Figure 4-7a and Figure 4-7b) it is observed that

vertical downwash blowing only happens close to the root, where the LEV was seen to be stable

and well attached in Figure 4-3 and Figure 4-4. The stable LEV close to the root is responsible

for a vertical downwash that will generate lift. Once the LEV is pushed further away from the flat

plate at around half the span, the vertical downwash is no longer effective as seen for 𝜓0 = 40∘ and

𝜓0 = 60∘, which implies a lost of lift production.

86



(a) Velocity vector field colored by vertical velocity
component, experimental.

(b) Vertical velocity component, numerical.

Figure 4-7: 𝜓0 = 40∘. Wake results for 𝑅𝑒 = 392.7. Instantaneously accelerated flat plate, 𝛼 = 70∘.

(a) Velocity vector field colored by vertical velocity
component, experimental.

(b) Vertical velocity component, numerical.

Figure 4-8: 𝜓0 = 60∘. Wake results for 𝑅𝑒 = 392.7. Instantaneously accelerated flat plate, 𝛼 = 70∘.

Finally, the experimental spanwise blowing results are compared with those found in a paper

published in Nature [13]. In the mentioned paper they were testing the effect of spanwise blowing on

the stability of the LEV. To test this they placed the fins in two positions showed in Figure 4-10: at

the LEV and at the TEV. They were expecting to find spanwise blowing at the height of the LEV,

case a), so placing the fins there should disrupt the stability of the mentioned structure. However,

they saw that with the fins near the trailing edge, the decrease in vorticity and force production was

much higher, a 25% drop in net force. Additionally, with the fences at the leading edge, they did

not alter force generation relative to the fenceless wing. The authors were shocked by this results as

they expected spanwise flow to be blowing through the leading edge, and removing vorticity (similar
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to a delta wing of the Concorde), and they were not able to explain these findings. Based on the

current results, now it is clear why this happened. In Figure 4-9 it can be seen how the spanwise flow

was close to the leading edge at the root, however, it fell back to the trailing edge pretty soon, due

to the tip vortex jet. For this reason when they placed the fins at the trailing edge it affected much

more the spanwise blowing. By doing this they removed the Coriolis advection close to the trailing

edge (were it was dominant). To preserve mass a jet was generated outwards from the flat plate

when the spanwise blowing met the fin, and this probably caused the LEV separation from the wing

at the root. The most important lesson from this is that Coriolis spanwise blowing is responsible

for mass removal, and not always for vorticity removal. In fact, what it is desired is to control mass

accumulation between the LEV and the flat plate, as this would push the LEV away from the flat

plate and cause its separation. However, there is no need to remove this mass just when it has

already arrived at the LEV core. Note that the flow circulates around the outer part of the LEV

before arriving to the region between the vortex core and flat plate. Therefore, mass removal could

occur anywhere along this trajectory, not just at the vortex core. In particular, it is seen that this

mass removal starts to occur mainly downwards from the LEV structure, not allowing it to reach

the vortex core. Due to this, mass has already been removed before arriving at the vortex core, and

there is no need for further spanwise blowing at the LEV core to control its size.
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(a) 𝜓0 = 20∘. (b) 𝜓0 = 40∘.

(c) 𝜓0 = 60∘.

Figure 4-9: PIV resolved spanwise velocity component. Wake results for 𝑅𝑒 = 392.7. Instanta-
neously accelerated flat plate, 𝛼 = 70∘. Approximated position of the LEV core indicated with a
red line.
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Figure 4-10: Fins placement in experiment published in [13].
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4.2 Reynolds number effect

Depending on the specific dragonfly species, they can fly at a very different Reynolds number. For

reference, smaller dragonflies have a characteristic Reynolds number of the order of a 100, while

bigger dragonflies can have Reynolds numbers up to 10000 [2]. This gives a great range of possible

flow regimes, and it will be seen in this section that this affects the stability and structure of the

LEV. The Reynolds number is defined as in the previous experiment, see Equation 4.1.

First, the evolution of the LEV and TEV is presented after 20∘ and 40∘ of flapping, in Figure 4-11

and Figure 4-12. The first remarkable difference is that around 𝑅𝑒 = 196.35, the LEV near the wing

tip starts to become unstable and is lifted upwards. For higher Reynolds numbers, it can be seen

how the tip becomes completely unstable and a group of smaller vorticity structures emerge. The

range of Reynolds numbers where the turbulent and laminar LEV structure are present agrees with

the experiments in [61] (see Figure 2-32a). For 𝑅𝑒 = 392.7, the Reynolds number of the present

experiment, the tip vortex is completely unstable, as it was observed in the PIV measurements. For

this reason exact correlations between structures in the PIV and simulation could not be expected.

It is important to mention the different mechanisms to control the amount of circulation in the

LEV at different Reynolds numbers. As a remainder, the amount of circulation was crucial as it is

generally agreed that when the LEV grows too much the structure can no longer be adhered and is

detached. For high Reynolds numbers, when the flow transitions, vortex shedding occurs specially

close to the tip. This can be observed in the simulations as the main mechanism to control LEV

size. Note how for example at 𝑅𝑒 = 392.7 the LEV core is still attached, but there is a substantial

amount of vorticity that was shed away due to the instability at the tip. On the other hand, for low

Reynolds numbers a completely different mechanism occurs. In Figure 4-11 and Figure 4-12 two

Q-criterion isocontours were visualized, the same two for all figures. The transparent Q-criterion

isocontour has a value of an order of magnitude less that the solid one. Q-criterion aims to represent

the strength of a vortex, therefore, the solid vortex core indicates the presence of a strong vortex,

while the transparent isocontour shows a much weaker vortex core. For higher Reynolds number it

can be seen that both isocontours are almost identical. This means that the vortex core is contained

within a certain spatial location, and its vorticity is not spread away due to diffusion. However,

for the lower Reynolds numbers, it can be seen that vorticity is diffused quite rapidly away from

the vortex core. This is another way of removing vorticity for low Reynolds numbers. Most studies

inspected in the literature review only look at 2D flapping. The vorticity removal in low Reynolds

numbers should be similar is 2D and 3D flows. On the other hand, turbulence transition occurs due

to vortex stretching, which is specific of 3D flows.
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(a) Re = 39.27 (b) Re = 78.54

(c) Re = 196.35 (d) Re = 392.7

(e) Re = 3927

Figure 4-11: 𝜓0 = 20∘. Q-criterion isocontours colored by spanwise vorticity for different Reynolds
numbers. Instantaneously accelerated flat plate, 𝛼 = 70∘.
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(a) Re = 39.27 (b) Re = 78.54

(c) Re = 196.35 (d) Re = 392.7

(e) Re = 3927

Figure 4-12: 𝜓0 = 40∘. Q-criterion isocontours colored by spanwise vorticity for different Reynolds
numbers. Instantaneously accelerated flat plate, 𝛼 = 70∘.
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Figure 4-13: 𝜓0 = 20∘. 𝑅𝑒 = 392.7. Violet and red: slices at different spanwise distances, colored by
spanwise vorticity. Yellow and blue: slices parallel to the flapping plane colored by vorticity normal
to the flapping plane. Instantaneously accelerated flat plate, 𝛼 = 70∘.

It was seen that around 𝑅𝑒 = 196.35 an instability occurred. To visualize this, slices of the

spanwise and tip vorticity are shown in Figure 4-13. First, it can be clearly seen the mechanism

of vortex shedding at the LEV and at high Reynolds numbers. Second, at the tip the vorticity

component normal slice is shown. See how a Kelvin Helmholtz type instability occurs in the sharp

shear layer of the tip vortex. This also occurs for example in the wake of a cylinder, the Von-Karman

vortex street: periodic opposite sign vorticity shedding. The reason why this begins at the tip is the

higher flow velocity in this region.

Finally, to better understand the structure and importance of the LEV, slices of the spanwise

vorticity and vertical downwash velocity are shown in Figure 4-14. It can be noticed that for low

Reynolds numbers the LEV remains as a coherent structure well attached to the leading edge.

However, for higher Reynolds numbers, transition occurs, and vorticity shedding is responsible for

controlling the circulation in the LEV structure. Remark that just by looking at the LEV core,

the circulation (surface integral in the slice of vorticity) is larger for the high Reynolds number

cases. This was observed before in the literature, see Figure 2-34a from [23]. When increasing

the Reynolds numbers the LEV loses less circulation from its core due to vorticity diffusion and

dissipation. Therefore, circulation keeps increasing until around 𝑅𝑒 = 500 as observed by [23].

At this point circulation starts to be controlled by the vortex shedding mechanism and reaches a
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maximum. On the other hand, the vertical downwash is correlated with lift production: Newton’s

third law, action reaction principle. For lower Reynolds numbers the downwash is clearly smaller, and

keeps increasing with the Reynolds number until the vorticity shedding mechanism starts. Point out

as seen in the literature review that lift is also correlated with the circulation of the LEV, according

to Kutta–Joukowski theorem, see Equation 2.14. In Figure 4-15 the reader can verify that indeed

for the higher Reynolds number regimes, when the circulation is higher, the lift coefficient is higher.

This agrees with the previously justified correlation between the three components: circulation of

the LEV, vertical downwash and lift. Observe how the lift coefficient starts oscillating when the

LEV transitions and the flow becomes turbulent. The lift coefficient is defined for all other plots

analyzing the flat plate as:

𝐶𝐿 =
𝐹𝑧

1
2𝜌(𝜔𝑅)

2𝑆
, (4.2)

where 𝑅 = 𝑅𝑟 + 𝑏 (see section 4.1 ) is the tip distance to the center of rotation, 𝐹𝑧 the vertical

force, 𝜔 the angular velocity, 𝜌 the density and 𝑆 the area of the flat plate.

Based on this analysis it may seem clear that a dragonfly should fly in higher Reynolds regimes,

to maximize lift production. However, animals want to minimize the power requirements when doing

a task, for example hovering. Therefore, the quantity of interest is not the lift coefficient by its self,

but the power required to get that lift. The power coefficient is defined as:

𝐶𝑃 =
𝑃

1
2𝜌(𝜔𝑅)

3𝑆
. (4.3)

With this new definition it can be seen in Figure 4-15b that when the LEV becomes unstable

performance decreases. With higher Reynolds numbers the flow indeed generates a stronger LEV

with more circulation and therefore more lift, as claimed before in the literature [23]. However, this

is not the final truth. Power requirements due to drag are also crucial. In the literature review it was

observed that a lot emphasis was placed on 2D LEV dynamics. However, this overlooked transition

of the LEV, which causes higher energy requirements during flapping. This is presumably crucial in

the actual aerodynamics of dragonflies.
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(a) Re = 39.27 (b) Re = 78.54

(c) Re = 196.35 (d) Re = 392.7

Figure 4-14: 𝜓0 = 20∘. Black and red: slices at different spanwise distances, colored by spanwise
vorticity. White and purple: velocity slices parallel to the flapping plane colored by vertical velocity.
Instantaneously accelerated flat plate, 𝛼 = 70∘.
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Figure 4-15: Comparison of lift and power coefficient dependence with Reynolds number. 𝐴𝑜𝐴 =
70∘, instantaneously accelerated flat plate.

4.3 Angle of attack effect

As explained in the literature review when reviewing dragonfly kinematics (see section 2.1), drag-

onflies in hovering typically have an angle of attack of 70∘ during the downstroke, the part of the

flapping cycle where most of the vertical force is generated. For this reason in previous sections it

was placed a lot of emphasis on this angle of attack. However, now a more in depth inspection of

the angle of attack dependence is going to be performed.

To comprehend the LEV dependence on the angle of attack several Q-criterion isocontours colored

by spanwise vorticity are shown for two flapping angles 𝜓 = 20∘ Figure 4-16 and 𝜓 = 40∘ Figure 4-

17. The first thing that can be noticed is that the LEV coherent structure is more stable at lower

angles of attack. Also note how the TEV is shed much faster for 𝐴𝑜𝐴 = 25∘ while remains attached

much longer to the higher angles of attack. The reason for this is that the at high angles of attack

the lack of momentum in the wake is more extended, and therefore the TEV cannot be so easily

advected. The fact that the TEV is not shed has probably a negative effect on the stability of the

LEV, as the flow it induces tends to push the LEV upwards and away from the leading edge.
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(a) 𝐴𝑜𝐴 = 25∘ (b) 𝐴𝑜𝐴 = 45∘

(c) 𝐴𝑜𝐴 = 70∘

Figure 4-16: 𝜓0 = 20∘. Q-criterion isocontours colored by spanwise vorticity for different AoA.
Instantaneously accelerated flat plate, 𝑅𝑒 = 392.7.
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(a) 𝐴𝑜𝐴 = 25∘ (b) 𝐴𝑜𝐴 = 45∘

(c) 𝐴𝑜𝐴 = 70∘

Figure 4-17: 𝜓0 = 40∘. Q-criterion isocontours colored by spanwise vorticity for different AoA.
Instantaneously accelerated flat plate, 𝑅𝑒 = 392.7.

Looking closer at the initial detachment of the LEV in Figure 4-16a, it can be seen that close

the tip there seems to be a lift-up mechanism that pushes the LEV away from the flat plate, at

approximately 3/4 of the span. To inspect why this is happening in more detail the plate plate is

visualized from the wake downstream in Figure 4-18. A slice of the spanwise velocity is displayed

with the streamlines projected on top. See how there are two jets (blue coming from the root vortex

and red coming from the tip vortex) of opposite sign spanwise velocity colliding at around 3/4 of the

span, just where the lift up mechanims of the LEV was observed. As the flow is incompressible and

is bounded by the flat plate, it has to be ejected away from it. This explains the lift-up mechanism

of the LEV and shedding at 3/4 of the span. Remark that this lift-up mechanism was also seen in

the experiment, see subsection 4.1.2.
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(a) 𝐴𝑜𝐴 = 25∘ (b) 𝐴𝑜𝐴 = 45∘

Figure 4-18: 𝑅𝑒 = 392.7. Flapping plate viewed from downstream. Slice colored by spanwise
velocity component with projected streamlines. Blue (from root to tip) and red (from tip to root).
Q-criterion that denotes the position of the LEV also colored with the same spanwise velocity color
code.

To visualize the lift-up mechanism close to the tip, slices of the spanwise vorticity are shown in

Figure 4-19. It can be clearly seen that indeed, at the point where both jets collided vorticity is

shed upwards and away from the plate. The natural question to ask would be why this is stronger

for higher angles of attack. The reason is that for higher angles of attack the tip and root vortex

are more intense and the collision of opposite jets is consequently stronger. Additionally, it was

seen that for higher angles of attack the TEV is not shed, and therefore it is also injecting another

jet of mass from the lower part of the flat plate that will collide with the two other jets. All these

components destabilize the LEV and cause its shedding.

Once the overall flow structure has been discussed, more focused is going to be placed into the

actual quantities of interest such as lift and drag. First, going back to Figure 4-19a, observe how the

vertical downwash is less intense for 𝐴𝑜𝐴 = 25∘, increases its intensity for 𝐴𝑜𝐴 = 45∘ and finally due

to the large detachment of the LEV, at 𝐴𝑜𝐴 = 70∘ it lowers a bit its intensity. This is reflected in

the lift coefficient in Figure 4-20a. Once again the same three elements correlate: lift, LEV intensity

and downwash. Note also in the lift coefficient the more abrupt oscillations at 𝐴𝑜𝐴 = 70∘ due to

the more unstable LEV.

Conversely, the drag coefficient in Figure 4-19b keeps increasing for larger angles of attack, as

expected due to the higher momentum deficit in a larger wake. If the goal of a dragonfly is to

have a high acceleration and do sudden maneuvers, then even though the lift is slightly smaller

for 𝐴𝑜𝐴 = 70∘ total force production
√︀
𝐶2
𝐿 + 𝐶2

𝐷 would be higher. Also it should be considered

that dragonflies can vary their stroke plane to orient the resultant force
√︀
𝐶2
𝐿 + 𝐶2

𝐷 in the desired

direction, see Figure 2-35b and subsection 2.2.4 for a more detailed explanation of how dragonflies
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can redirect the resultant force. In Figure 4-19c the optimal stroke plane 𝛾 is calculated for each

angle of attack to redirect the result force in the vertical direction, that is for pure hovering. For

reference, as it was explained in section 2.1, the typical stroke plane for hovering in dragonflies is

𝛾 = 60∘. Note that with 𝐴𝑜𝐴 = 70∘ which is also the observed angle of attack during dragonfly

downstroke, they would be close to fully aligning the resultant force with the vertical direction. Also

note that force results correspond to a flat plate, which is not exactly an actual dragonfly wing

geometry. In section 4.5 a much closer vertical alignment is observed for 𝐴𝑜𝐴 = 70∘ with an actual

corrugated dragonfly wing.

(a) 𝐴𝑜𝐴 = 25∘ (b) 𝐴𝑜𝐴 = 45∘

(c) 𝐴𝑜𝐴 = 70∘

Figure 4-19: 𝜓0 = 20∘. 𝑅𝑒 = 392.7. Violet and red: slices at different spanwise distances, colored by
spanwise vorticity. White and blue: slices parallel to the flapping plane colored by vertical velocity.
Instantaneously accelerated flat plate, 𝛼 = 70∘.
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Figure 4-20: Assessment of flat plate at different angles of attack. Instantaneously accelerated flat
plate, 𝑅𝑒 = 392.7.

So far it was concluded that 𝐴𝑜𝐴 = 70∘ maximizes the amount of force production out of the

alternatives inspected. Nevertheless, as it was mentioned before, it is also important to look at the

amount of energy invested in this process. This is done in Figure 4-20c. Now, another perspective

emerges. 𝐴𝑜𝐴 = 70∘ might be optimal for large force production, but is not optimal from the point of

view of energy consumption. This agrees with observations done in nature, for example for dragonfly

Anax Parthenope hovering is estimated to be a quite energy consuming flying mode [9], see Figure 2-

9. In fact, because of the high energy consumption, dragonflies tend to avoid this flying mode as

much as possible, and for this reason hovering kinematics were one of the least documented flying

modes in the literature review subsection 2.1.1. Another relevant question is whether it is really

necessary such a high amount of force production for hovering. Steady lift generation mechanisms

only achieved lift coefficient of around 1 see Figure 2-18. However, Wakeling et al. [122] estimated

that a much higher lift coefficient was required for actual hovering, close to 5. Then the community

reasoned that unsteady lift mechanisms were necessary to explain this phenomenon. However, even
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with unsteady aerodynamics they were not close to the expected value. The reason for this is that

they were looking only at the lift, but they did not consider the drag and the ability of dragonflies

to use it as vertical force by modifying the stroke plane. With the current analysis it can be clearly

seen that with 𝐴𝑜𝐴 = 70∘ dragonflies mostly rely on drag as a mechanism to sustain hovering.

4.4 Start up effect

All the previous numerical results were obtained with an infinite acceleration at 𝑡 = 0 to reach

the uniform angular flapping velocity. However, in the experiment this was not the case, as an

infinite acceleration is not possible. Given the response time of the servomotor used, 𝑡 = 0.02𝑠 (see

subsection 3.2.1), a realistic acceleration response has been defined with:

𝜓(𝑡, 𝜔, 𝑘) =
𝜔𝑡2

1 + 𝑡
+
𝑒𝜔𝑡/𝑘 − 1

𝑒𝜔𝑡/𝑘 + 1

(︂
𝜔𝑡− 𝜔𝑡2

1 + 𝑡

)︂
, (4.4)

where 𝜔 = �̇� is the flapping speed, 𝑡 is the dimensional time in seconds and 𝑘 = 0.004 [𝑠−1]

is tuned to get the acceleration in the response time of the servomotor. The trajectories of the

immediately accelerated and realistic profile are shown in Figure 4-21.

Three slices used for the PIV comparison are shown in Figure 4-22, Figure 4-23 and Figure 4-

24. It can be seen that the are some differences due to the fact that the flow transitioned and is

chaotic. For this reason it could not be expected an identical correlation between PIV and simulation.

However, overall the general flow profile is pretty similar. The Q-criterion isocontours in Figure 4-25

show the same conclusions: not identical flow features due to the chaotic regime but overall similar

flow structures. Moreover, when looking at the lift coefficient in Figure 4-26 a quite good agreement

is observed. The main difference that can be observed, is that there is a negative lift coefficient

at the beginning in the modified trajectory. That is due to the overshoot in the flapping speed in

Figure 4-21b, that leads to a negative acceleration after the initial start-up.

Based on this analysis it can be concluded that the start-up effect that presumably happened in

the experiment does not affect significantly the flow features, and therefore all analysis done with

an immediate accelerated wing is also valid.

103



0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
t[s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030
ψ

[r
ad

]
k = 0.004
k = 0

(a) 𝜓, 𝑓𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
t[s]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

ψ̇
[r

ad
/

s]

k = 0.004
k = 0

(b) �̇�, 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

Figure 4-21: Evolution of the flapping angle and angular speed with time for the different start ups.

(a) 𝑘 = 0 (b) 𝑘 = 0.004

Figure 4-22: 𝜓0 = 20∘. Streamlines colored by velocity magnitude projected onto the slice. 0.75𝑏.
𝛼 = 70∘.
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(a) 𝑘 = 0 (b) 𝑘 = 0.004

Figure 4-23: 𝜓0 = 40∘. Wake results for 𝑅𝑒 = 392.7. 𝛼 = 70∘.

(a) 𝑘 = 0 (b) 𝑘 = 0.004

Figure 4-24: 𝜓0 = 60∘. Wake results for 𝑅𝑒 = 392.7. 𝛼 = 70∘.
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(a) 𝑘 = 0 (b) 𝑘 = 0.004

Figure 4-25: 𝜓0 = 20∘. Q-criterion isocontours colored by spanwise vorticity for different AoA.
Instantaneously accelerated flat plate, 𝑅𝑒 = 392.7.
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Figure 4-26: Comparison of the lift coefficient for the instantaneously accelerated flat plate 𝑘 = 0
and the flat plate accelerating with a transient 𝑘 = 0.004. 𝑅𝑒 = 392.7.
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4.5 Corrugation and actual dragonfly wing analysis

Previously a detailed experimental and numerical study of a flat plate was conducted. Important

conclusions were drawn regarding Reynolds numbers and angle of attack effects. However, the

wing geometry was not representative of an actual dragonfly wing. In this study a real dragonfly

Neurobasis Daviesi hindwing is going to be inspected. This geometry was generated with a detailed

3D scan with Micro CT of the actual dragonfly wing in [28]. The reconstructed geometry of the

STL with cutcell intersections of the mesh used in the simulations is shown in Figure 4-27a. This

gives an idea of the mesh resolution and the details of the wing geometry that will be perceived by

the flow. Additionally, to inspect the effects of corrugation a smooth version of the corrugated wing

is also going to be studied, see Figure 4-27b.

Regarding the flapping trajectory, the angle of attack of the wing is set to 𝐴𝑜𝐴 = 70∘, which once

again is the observed angle of attack during dragonfly downstroke. The angle of attack is defined

with a linear regression of the wing geometry, that basically fits the least square error plane going

across the wing points. Once this plane is characterized, the angle of attack can be defined as the

the angle between the fitted plane an the flapping plane trajectory. The Reynolds number is defined

as:

𝑅𝑒 =
𝜔𝑅𝑐

𝜈
(4.5)

𝑐 =
𝑆𝑊
2𝑅

, (4.6)

where 𝜔 is the flapping angular velocity, 𝑅 the distance of the axis of rotation to the wing tip

and 𝑐 the mean chord defined based on the wet surface 𝑆𝑊 of the STL. Based on this definition

𝑅𝑒 = 91.7. This stands in the lower end of dragonfly species Reynolds numbers [2]. This low

Reynolds number was selected for two reasons:

1. Ability to resolve all the flow scales (DNS) with a reasonable computational cost.

2. Stability of the LEV. It was seen before with a flat plate that at 𝑅𝑒 = 196.35 the LEV already

started to oscillate and became unstable. In this case a fully stable and coherent LEV structure

is desired to inspect it in detail. Lowering more the Reynolds number would also give a stable

LEV, but its circulation intensity and force production would be lower, see Figure 4-15.

Once the simulation set up has been described, the results are going to be analyzed. The flow

field is going to be inspected via streamlines after 𝜓 = 40∘ of flapping, see Figure 4-28. First, observe

how most of the suction that is later responsible for lift and force production occurs in the corrugated

channels of the wing. This will be inspected later in more detail. Second, two types of streamlines

are shown. The black streamlines denote the flow in the vortex core. Note how the vortex core is
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advected from the root to 3/4 of the span in a spiral way. However, the vortex core from the tip is

also advected in the opposite direction towards 3/4 of the span. These are exactly the opposite jets

that met at 3/4 of the span which were also detected with the flat plate, see Figure 4-18. Due to mass

conservation in an incompressible flow, and the presence of the wing, this generated the previously

called lift-up mechanism. This is observed in the green streamlines, which are generated upstream

from the flat plate. Note how exactly at around 3/4 of the span, the flow coming from upstream is

not able to do a small radius circle, as it happened close to the root. The upstream flow is forced at

3/4 of the span to be lifted away from the wing to preserve mass because of the two opposite jets

at the vortex core, the so called lift-up mechanism. Most of the authors in the literature realize of

the jet at the vortex core which advects flow from the root to the tip, due to the so called Coriolis

spanwise blowing, but up to the author’s knowledge no one has realized before of the importance

of the so called here lift-up mechanism when the Coriolis spanwise blowing meets the opposite get

generated by the tip vortex. This is crucial because it changes completely the morphology of the

LEV, and gives a clear mechanism to try to avoid its lift-up: avoid somehow the collision of the two

opposing jets. Also observe that when the lift-up mechanism kicks in, the suction disappears, which

basically makes the last 1/4 of the wing useless in terms of lift and force production.

(a) 3D geometry obtained by Micro CT in [28]. Re-
constructed geometry by cutcell intersection with the
STL file.

(b) Smooth version and original corrugated wing.

Figure 4-27: Dragonfly species Neurobasis Daviesi hindwing.
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(a) Neurobasis Daviesi hindwing, perspective 1 (b) Neurobasis Daviesi hindwing, perspective 2

Figure 4-28: 𝜓0 = 40∘, 𝛼 = 70∘ and 𝑅𝑒 = 91.7. Green streamlines start upstream from the wing
and are advected downstream. Black streamlines are generated along the the vortex core. Wing
surface colored by pressure (suction red, pressure blue).

(a) Slices and isocontours colored by spanwise veloc-
ity (red, from root to tip; blue, from tip to root)

(b) Spanwise vorticity isocontour, colored by span-
wise velocity (red, from root to tip; blue from tip to
root). Streamlines projected onto the isocontour.

Figure 4-29: 𝜓 = 20∘, 𝛼 = 70∘ and 𝑅𝑒 = 91.7. Corrugated wing.

To better appreciate the spanwise flow structure, isocontours of spanwise velocity magnitude are

shown at Figure 4-29a. The LEV vortex core region has spanwise blowing from the root to the tip,

specially close to the wing mid span and root. However, note that a huge jet of opposite spanwise

velocity is generated at tip, going from the tip to the root. They collide at the position of the LEV

at around 3/4 of the span as explained before. This can be better visualized in Figure 4-29b. See

how at the vortex core position the projection of the streamlines collide in two opposite directions,
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creating the so called lift-up effect.

Next, the effects of corrugation are going to be inspected. The wings colored by pressure are

shown in Figure 4-30. Vorticity contours that define the position of the leading edge vortex look

quite similar. However, the pressure distribution on the wing surface is significantly different. In the

corrugated wings intense suction is distributed over the corrugated channels of the wing, while in the

smooth version, suction is distributed uniformly. Looking at Q-criterion isocontours in Figure 4-31 it

can be seen that the corrugated channels indeed play an important role. They transport momentum

and vorticity in the spanwise direction, and additionally as seen before create a concentrated suction

spot.

(a) 𝜓0 = 20∘, 𝑐𝑜𝑟𝑟𝑢𝑔𝑎𝑡𝑒𝑑 (b) 𝜓0 = 40∘, 𝑐𝑜𝑟𝑟𝑢𝑔𝑎𝑡𝑒𝑑

(c) 𝜓0 = 20∘, 𝑠𝑚𝑜𝑜𝑡ℎ (d) 𝜓0 = 40∘, 𝑠𝑚𝑜𝑜𝑡ℎ

Figure 4-30: 𝜓0 = 20∘, 𝛼 = 70∘. Slices colored by spanwise vorticity for two different flapping
angles. 𝑅𝑒 = 91.7. Wing surface colored by pressure (suction green, pressure blue).
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(a) 𝜓0 = 2.5∘, 𝑄− 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 0.3, 𝑐𝑜𝑟𝑟𝑢𝑔𝑎𝑡𝑒𝑑. (b) 𝜓0 = 40∘, 𝑄− 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 1, 𝑐𝑜𝑟𝑟𝑢𝑔𝑎𝑡𝑒𝑑.

(c) 𝜓0 = 40∘, 𝑄− 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 1, 𝑠𝑚𝑜𝑜𝑡ℎ.

Figure 4-31: 𝛼 = 70∘ and 𝑅𝑒 = 91.7. Q-criterion isocontours colored by spanwise vorticity. Stream-
lines projected onto the isocontour.

To quantify the effects of these variations of the flow field the following quantities are defined:

𝐶𝐿 =
𝐿

1
2𝜌(𝜔𝑅)

2 𝑆𝑊

2

(4.7)

𝐶𝐷 =
𝐷

1
2𝜌(𝜔𝑅)

2 𝑆𝑊

2

(4.8)

𝐶𝑃 =
𝑃

1
2𝜌(𝜔𝑅)

3 𝑆𝑊

2

, (4.9)

where 𝐿 is the lift, 𝐷 the drag, 𝑃 the power, 𝜌 the density, 𝜔 the rotation speed, 𝑆𝑊 the wet surface

111



of the wing and 𝑅 the distance between the rotation axis and the wing tip.

The effect of the corrugation can be now quantified, see Figure 4-32. The main difference is

that the lift coefficient is higher in the corrugated wing, Figure 4-32a. On the other hand, the

drag coefficient stays almost identical Figure 4-32b. This allows to have higher efficiency in terms

of total force generated for a given power, Figure 4-32c. The reason for this, is that the gain

in lift, does not contribute to the power budget, as the lift is orthogonal to the flapping plane.

This is a very relevant finding: corrugation enhances flying efficiency in hovering for the Reynolds

number inspected. Finally, as explained in previous sections dragonflies can point the resulting force

upwards. For this the optimal stroke plane at each time is shown Figure 4-32d. Observed, how now

with an actual dragonfly wing (see results before in Figure 4-20d for comparison with the flat plate),

this value is much closer to the stroke plane angle observed in nature of 𝛾 = 60∘, specially for the

corrugated version.
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(d) Optimal stroke plane angle 𝛾 to have force pro-
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Figure 4-32: 𝛼 = 70∘ and 𝑅𝑒 = 91.7. Comparison of corrugated and smooth wing.

In Figure 4-33 the shear stress magnitude is shown for two spanwise slices in the corrugated
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and smooth wings. See how there are small differences in the shear stress profile specially close to

the wing boundary. However, in Figure 4-32a the lift was decomposed into its viscous and pressure

components. See how due to the Reynolds number the pressure component dominates. Consequently,

the shear stress magnitude differences are not responsible for the lift coefficient disparities that were

observed. Therefore, as shown in Figure 4-32a the pressure component should be the one responsible

for the change.

(a) 0.75 span, corrugated. (b) 0.75 span, smooth.

(c) Half span, corrugated. (d) Half span, smooth.

Figure 4-33: Shear stress magnitude (red high, blue low). 𝛼 = 70∘, 𝜓 = 40∘ and 𝑅𝑒 = 91.7.
Comparison of corrugated and smooth wing.

In Figure 4-34 a pressure slice is shown at half the span. Looking closely at the leading edge, it

can be seen that a second high suction spot is generated only in the corrugated version. This occurs

exactly in the corrugation channels, as it was clearly visualized in Figure 4-28 and Figure 4-30. The

key is that the normal vector to the wing surface, exactly where the suction spots in the corrugation
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channels are, is almost vertical. Therefore pressure suction generates solely lift and not drag in the

corrugation channel as seen in Figure 4-32. Therefore, the increase in force production does not

contribute to power requirements (lift orthogonal to flapping plane), and force production is more

energetically efficient in the corrugated wing.

(a) Corrugated. (b) Smooth.

Figure 4-34: Pressure field contours (blue suction, red pressure). 𝛼 = 70∘, 𝜓 = 40∘ and 𝑅𝑒 = 91.7.
Comparison of corrugated and smooth wing. Slice at half span.
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Chapter 5

Numerical analysis of wing-wing

interaction effects

5.1 Numerical set up

5.1.1 Hovering

The kinematics are defined according to the 3-1-3 Euler intrinsic rotation defined in Figure 2-2, with

the same axis convention as in the plot:

𝛾𝐹 = 𝜋/3 (5.1)

𝛾𝐻 = 𝜋/3 (5.2)

𝜓𝐹 = −7𝜋

36
𝑠𝑖𝑛(2𝜋𝑓𝑡) (5.3)

𝜓𝐻 = −7𝜋

36
𝑠𝑖𝑛(2𝜋𝑓𝑡+ 𝜓0) (5.4)

𝜃𝐹 =
7𝜋

18
− 5𝜋

9
𝑠𝑖𝑛(2𝜋𝑓𝑡) (5.5)

𝜃𝐻 =
7𝜋

18
− 5𝜋

9
𝑠𝑖𝑛(2𝜋𝑓𝑡+ 𝜓0). (5.6)

The subindex 𝐻 and 𝐹 refer to the hindwing and forewing respectively. 𝛾 is the stroke plane

angle (first 3-axis rotation in 3-1-3 sequence), 𝜓 the flapping angle (second 1-axis rotation in 3-1-3

sequence) and 𝜃 the feathering angle (third 3-axis rotation in 3-1-3 sequence). In Figure 2-2 the

exact definition of each angle is given in more detail. The Cartesian axis used in the simulation and

to analyze the results are shown in Figure 5-1 and the center of the Cartesian system is placed at the

beginning of the dragonfly head, in the symmetry plane. This will be useful because the application
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point of the resultant force will be defined based on the 𝑥 coordinate starting from the head. The

center of rotation from the hindwings non-dimensionalized with the body length (from head to tail)

is 𝑥𝐻/𝐿 = 2 and 𝑥𝐹 /𝐿 = 1 for the forewings.

The stroke plane has been defined according to the work done by Norberg [74]. The flapping

trajectory uses a slightly larger amplitude than the one found by Norberg, to find a compromise

with the large flapping amplitudes reported by Ruppell [96]. Finally, the feathering angle has been

matched to the range of mid downstroke and mid upstroke angles of attack reported by Ruppell [96]

during hovering. The phase between hindwings and forewings is going to be varied to inspect its

effect.

The Reynolds number defined based on the tip velocity is defined as:

𝑅𝑒 =
2𝜋 7𝜋

36𝑅𝐻𝑐

𝜈
(5.7)

𝑐 =
𝑆𝐻𝑊
2𝑅𝐻

, (5.8)

where 𝑆𝐻𝑊 is the wet surface of the hindwing, 𝑅𝐻 the distance from the rotation axis to

the hindwing tip. In particular, for all the following simulations 𝑅𝑒 = 85.25. This is in the

low end of Reynolds numbers for dragonflies, and would be the flow regime of a dragonfly like

𝑁𝑎𝑛𝑛𝑜𝑝ℎ𝑦𝑎 𝑝𝑦𝑔𝑚𝑎𝑒𝑎. Once again this range is selected to avoid transition. Remark that once the

flapping non dimensional trajectory is given, there is no Strouhal number dependence with size or

frequency scaling 𝑓 , as explained in section 4.1.

Finally, wings and body geometry are taken from [137].

5.1.2 Forward-flight

In this flapping mode a slight change is going to be done in the initial pitch angle of the hindwing:

𝛾𝐹 = 𝜋/3 (5.9)

𝛾𝐻 = 𝜋/3 (5.10)

𝜓𝐹 = −7𝜋

36
𝑠𝑖𝑛(2𝜋𝑓𝑡) (5.11)

𝜓𝐻 = −7𝜋

36
𝑠𝑖𝑛(2𝜋𝑓𝑡+ 𝜓0) (5.12)

𝜃𝐹 =
7𝜋

18
− 5𝜋

9
𝑠𝑖𝑛(2𝜋𝑓𝑡) (5.13)

𝜃𝐻 =
11𝜋

18
− 5𝜋

9
𝑠𝑖𝑛(2𝜋𝑓𝑡+ 𝜓0). (5.14)

The phase angle is set to 𝜓0 = 𝜋, counter-stroking. All the rest Reynolds number and geometric

definition still apply. This apparent insignificant change will completely change the resultant forces
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Figure 5-1: Q-criterion isocontours colored by z-vorticity component. Hovering 𝜓0 = 0∘. End of
fourth flapping cycle: 4.00 t/T.

and flow fields. The aim of this is to show the versatility of dragonfly of adjusting their force

production with the feathering angle. This is probably a much faster way of suddenly varying force

production, as modifying the stroke plane would take much more time, and according to Ruppell

[96] did not observe a significant variation of this parameter in the studied dragonflies.

5.2 Comparison between different flapping strokes

In Figure 5-2 a selection of two snapshots for each stroke is shown. All plots visualizing in detail the

flapping strokes and the flow are included in Appendix B. Additionally, the detailed contribution

of each body component across the four flapping cycles is shown in Appendix C. Here for brevity

only numerical quantities of the flapping cycles will be analyzed, and when required the reader will

be referred to Appendix B or Appendix C for a better understanding of the flow dynamics.

To analyze the flapping strokes the following non dimensional coefficients are defined:

𝐶𝐿 =
𝐹𝑦

1
2𝜌(2𝜋𝑓𝑅𝐹 )

2𝑆𝑇
(5.15)

𝐶𝐷 =
𝐹𝑥

1
2𝜌(2𝜋𝑓𝑅𝐹 )

2𝑆𝑇
(5.16)
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𝐶𝑃 =
𝑃

1
2𝜌(2𝜋𝑓𝑅𝐹 )

3𝑆𝑇
(5.17)

𝑆𝑇 = 𝑆𝐻𝑊 + 𝑆𝐹𝑊 , (5.18)

where the total surface of the four wings 𝑆𝑇 is computed with the wet surface of one hindwing

and one forewing. 𝑅𝐹 is the distance from the gyration axis to the forewing tip. The lift coefficient

𝐶𝐿 is defined to show the non-dimensional vertical force, 𝑦 − 𝑎𝑥𝑖𝑠 in Figure 5-1. The drag refers to

the force pointing in the 𝑥− 𝑎𝑥𝑖𝑠 direction.

(a) 3.20 t/T, hovering 𝜓0 = 0∘ (b) 3.80 t/T, hovering 𝜓0 = 0∘

(c) 3.20 t/T, hovering 𝜓0 = 90∘ (d) 3.80 t/T, hovering 𝜓0 = 90∘
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(e) 3.20 t/T, hovering 𝜓0 = −90∘ (f) 3.80 t/T, hovering 𝜓0 = −90∘

(g) 3.20 t/T, forward flight (h) 3.80 t/T, forward flight

Figure 5-2: Q-criterion, colored by z-vorticity component.

To compare the different flapping strokes the mean quantities in Table 5.1 are shown. Also

comment on the fact that the mean quantities are computed based on the fourth flapping cycle. As

seen in Figure C-1, Figure C-2, Figure C-3 and Figure C-4 the quantities are well converged for

the fourth flapping cycle, so this values can be considered as the steady state flapping values of the

dragonfly. First, in Table 5.1 observe how phased-stroking 𝜓0 = 0∘ is the stroke with higher lift

production. This agrees with the observations from [115] and [124]: dragonflies typically use phased

stroking for rapid acceleration maneuvers. Not only is the stroke with higher force production on

average, but also has a huge acceleration production at the beginning of the stroke, see the lift

comparison of all lift strokes in Figure 5-4. This explains the position of dragonfly wings at rest.

They put their wings as shown in Figure 5-3 (exactly the kinematic position of 𝑡/𝑇 = 3 in Figure 5-4

and 𝜓0 = 0∘) , and start to flap in phase with both wings. This gives them a maximum acceleration
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in the initial moments of their fly, which will be crucial to rapidly approach their prey from rest.

However, this huge acceleration comes at a cost: power requirements. As shown in Table 5.1 this

stroke is the most expensive in terms of power requirements on average. For this reason, unless

desired in extreme maneuvers dragonflies have been observed to modify the phase for a more energy

efficient flapping [74] [96]. Additionally, it should be remarked that modifying the phase between

wings can also result in a much more stable hovering. Looking at the lift root mean square, it can be

seen that for example with 𝜓 = −90∘ the vertical oscillations of the dragonfly during hovering would

decrease significantly. This more uniform lift generation for 𝜓0 = −90∘ can be clearly appreciated

in Figure 5-4.

Another important concept is the drag coefficient. In all defined strokes it can be seen that the

vertical force dominates, but there is still non-zero contribution on average in the forward direction.

That means, these strokes would not be pure hovering strokes, dragonflies would be moving slightly

forwards. A bit more tuning would be required to modify the kinematics to maintain pure hovering.

Additionally, it is interesting to observe that the modification done to the hindwing pitch angle,

has completely changed the so called forward stroke. Now the lift coefficient has been decreased

significantly, and the negative drag increased in magnitude more than two times. In Figure C-2d it

can be clearly seen that indeed the new increase of drag magnitude is due to the modified hindwing,

while the forewing is still responsible for providing a minimum lift amount to maintain flight level.

This means with this tiny adjustment the dragonfly would stop a potential upwards maneuver to

move forwards really fast. This was achieved with a relatively small variation of the pitch angle,

and exemplifies the versatility that offers the adjustment of the feathering angle with four wings.

Figure 5-3: Norfolk-hawker dragonfly at rest [1].

Next, the pitching moment will be inspected, which is going to be expressed through the 𝑥𝐹

position of the equivalent points were the resultant force should be applied to provide that pitching
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moment. The value 𝑥𝐹 is non-dimensionalized in terms of the dragonfly body length (from head to

tail) 𝐿. In Figure 5-7 this mentioned value is represented for all strokes. It can be seen that it varies

across the flapping strokes, but on average in Table 5.1, its value is relatively small. For hovering,

it is almost the same in all cases, and the application force point would be just in the dragonfly

abdomen, quite close to where they usually have their center of mass [18]. That means that in the

hovering strokes the dragonfly as expected would have a very small pitching moment. However, for

the forward stroke, the point of force application shifts to a point in front of the head, away from

the mass center, which would create a positive pitching moment, following the sign convection used

in Figure 2-1. Consequently, in the forward flapping, the dragonfly would move forwards and would

also increase the pitch angle.
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Coefficient ℎ𝑜𝑣𝑒𝑟 𝜓0 = 90∘ ℎ𝑜𝑣𝑒𝑟 𝜓0 = −90∘ ℎ𝑜𝑣𝑒𝑟 𝜓0 = 0∘ 𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝐶𝐿 0.2007 0.2158 0.2270 0.0576

𝐶𝐿,% 2 𝑓𝑜𝑟𝑒𝑤𝑖𝑛𝑔𝑠 33.41 31.19 34.31 0.1531

𝐶𝐿,% 2 ℎ𝑖𝑛𝑑𝑤𝑖𝑛𝑔𝑠 67.45 69.78 66.87 129.3

𝐶𝐿,% 𝑏𝑜𝑑𝑦 -0.8710 -0.9746 -1.181 -33.77

𝑟𝑚𝑠(𝐶𝐿) 0.5140 0.3931 0.6473 0.1531

𝐶𝐷 -0.0810 -0.0809 -0.0846 -0.1567

𝐶𝐷,% 2 𝑓𝑜𝑟𝑒𝑤𝑖𝑛𝑔𝑠 25.03 32.49 57.04 10.49

𝐶𝐷,% 2 ℎ𝑖𝑛𝑑𝑤𝑖𝑛𝑔𝑠 75.34 68.25 44.60 89.64

𝐶𝐷,% 𝑏𝑜𝑑𝑦 - 0.3712 -0.7480 -1.646 -0.1318

𝑟𝑚𝑠(𝐶𝐷) 0.3124 0.1993 0.3055 0.2974

𝐶𝑃 0.2261 0.2122 0.2427 0.2120

𝐶𝑃 ,% 2 𝑓𝑜𝑟𝑒𝑤𝑖𝑛𝑔𝑠 42.46 45.73 43.90 46.20

𝐶𝑃 ,% 2 ℎ𝑖𝑛𝑑𝑤𝑖𝑛𝑔𝑠 57.54 54.27 56.10 53.80

𝐶𝑃 ,% 𝑏𝑜𝑑𝑦 0.000 0.000 0.000 0.000

𝑟𝑚𝑠(𝐶𝑃 ) 0.2750 0.2557 0.3066 0.2773

𝑥𝐹

𝐿 0.0399 0.0430 0.0427 -0.0321

Table 5.1: Statistics of each dragonfly body component and stroke type in the 4th flapping cycle.

Next, the individual effects of the hindwings on the forewings Figure 5-8 and of the forewings

on the hindwings Figure 5-9 are going to be inspected for the different strokes. In particular, the

goal is going to be to understand what types of flow interactions are desired between hindwings and

forewings. First, looking at Table 5.1 it can be seen that even though introducing phase difference

between hindwings and forewings is benefitial, for 𝜓0 = −90∘ more lift is achieved at a lower power

requirement, compared to 𝜓0 = 90∘. To understand why this happened, the reader should look

at the vertical velocity slices from Figure B-9c and Figure B-9d, the most efficient phasing stroke
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Figure 5-4: Lift coefficients of all strokes. 4th flapping cycle.

3.0 3.2 3.4 3.6 3.8 4.0
t/T

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

C
D

ψ0 = 0◦,hover
ψ0 = 90◦,hover
ψ0 =−90◦,hover
ψ0 = 180◦, f orward

Figure 5-5: Drag coefficients of all strokes. 4th flapping cycle.

𝜓0 = −90∘. It can be seen that in this optimal phasing the hindwing is following the wake of the

forewing during the upstroke. Upstroke should be considered as something in general negative for

hovering that dragonflies want to minimize. The reason is basically that they are consuming energy

by moving the wings upwards, but they are not able to convert this energy into useful lift. However,
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Figure 5-6: Power coefficients of all strokes. 4th flapping cycle.
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Figure 5-7: x-coordinate of the point of resultant force application, non-dimensionalized with the
length of the dragonfly wing body. 4th flapping cycle.

they need to have an upstroke in order to later have a downstroke. Therefore, if both wings require

an upstroke, then it is optimal if just one of them leads (the forewing in Figure B-9c and Figure B-

9d) a gets all the power consumption, while the other one just follows the wake and makes use of

the energy waste done by its wing pair (the hindwing in Figure B-9c and Figure B-9d). Observe,
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how this is translated into power savings for the hindwing during the upstroke phase, 𝑡/𝑇 = 3.4

to 𝑡/𝑇 = 3.7 for 𝜓0 = −90∘ in Figure 5-9c. On the other, hand the forewing Figure 5-8c still has

similar power consumptions than the one with 𝜓0 = 90∘ because it had to lead. However, overall

the stroke is more efficient.

Finally, comment on another important issue related to energy harvesting during the upstroke.

In Figure B-9c and Figure B-9d it was seen that the hindwing followed the wake of the forewing

during the upstroke. This added the upwash of the two upstrokes, creating a bigger upwash effect,

see Figure B-9d. However, in Figure B-9e the hindwing pronates and recovers part of this upwash

pushing it once again downwards. That is, the hindwing is converting the energy wasted during the

synchronized upstrokes of both wings that did not contribute to lift, and is pushing it downwards,

generating therefore a lift gain that can be observed in Figure 5-9a for 𝜓0 = −90∘, between the

pronation and start of the downstroke 𝑡/𝑇 = 3.8 and 𝑡/𝑇 = 4. Also note that this increase in lift

does increase power consumption Figure 5-9c, but in a smaller way compared to the lift gain.

Therefore, two important lesson can be learnt from wing interaction effects:

1. Wake capturing during the upstroke can prevent one of the two wings of also wasting a lot

of useless energy (in terms of no lift production), decreasing this way the follower-wing power

consumption during the upstroke.

2. During the upstroke it is inevitable to generate an upwash jet, which provides negative lift.

This is of course negative. If pronation and the start of the downstroke is tuned appropriately,

this upwash can be reconverted into downwash, generating extra lift at smaller additional

power requirement.

Moreover, it was seen that phasing can produce a more stable hovering, and that as seen in nature,

phased stroking produces the maximum force, but at a higher power cost.
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Figure 5-8: 2 forewings results. Hindwing effects on the forewings.
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Figure 5-9: 2 hindwings results. Forewings effects on the hindwings.
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5.3 Self-induced-dipole vorticity removal

When dragonflies flap continuously in a similar place in space, vorticity accumulation can create

a chaotic flow that makes flying less energy efficient [109], see for example Figure 2-44. This is

specially true for higher Reynolds numbers, where diffusion and dissipation mechanisms are almost

negligible to get rid of the created vorticity generated by the wings.

To avoid this, Wang [129] hypothesized a dipole self induction as a mechanism of vortex shedding.

In the literature review, Figure 2-45 the mentioned mechanism is shown. This was done in 2

dimensions and with a simple flat plate, so it was still to be proved that this could be extended for

a real insect flapping.

Interestingly, this mechanism has been observed in the 3D dragonfly flapping in hovering. For

example, look at Figure B-1 to see the downwards ejection of vortex structures. Nevertheless, Wang’s

mechanism cannot be easily identified in these plots. For this reason, only vorticity slices are shown

in Figure 5-10. Looking now at the vorticity slices, Wang´s dipole-self-induction mechanism is

evident. Each vortex in the dipole induces a velocity component to the other vortex downwards and

away from the dragonfly. Also, in case the reader did not noticed, the temporal sequence of the

plots is shifted to show an entire cycle of the self-induced-dipole mechanism, that is Figure 5-10a

starts with 3.60𝑡/𝑇 and ends with 3.40𝑡/𝑇 . However, the evolution of vorticity looks like time just

goes forwards. The reason for this is the periodicity of the cycle that reflects that in the fourth cycle

statistics are well converged.
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(a) 3.60 t/T (b) 3.80 t/T

(c) 4.00 t/T (d) 3.20 t/T

(e) 3.40 t/T

Figure 5-10: Self induction dipole mechanism in a dragonfly with 𝜓0 = 0∘, phased-stroking. Slices
with z-vorticity.
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Chapter 6

Conclusions

In the present document dragonfly aerodynamics have been inspected both numerically and experi-

mentally. The goal of the thesis has been to identify aerodynamic mechanisms that allow dragonflies

to have such an excellent flying performance. In the future some of these findings could be useful to

improve aerodynamic efficiency for low Reynolds number vehicles, such as Micro Air Vehicles.

First, the computational methodology was developed to answer the challenges posed in the

literature review chapter 2. A multibody solver was developed in Fortran to solve N-body three-

dimensional body problems with any given constraints between each body, Appendix A. For this,

Euler parameters were used to avoid the singularities of the Euler angles. A matrix was created with

the dynamics of each body and its constraints, and afterwards it was inverted with LU decomposition

to obtain the Euler parameter accelerations of each body. The system was integrated in time with

an implicit Newmark algorithm. Additionally, a novel correction was added to analytically impose

constraints after time integration and avoid constraints-drifts for large time integrations. The solver

was extensively validated through numerous test cases (subsection 3.1.1), first in an uncoupled way,

and second coupled to the fluid solver INCA. Thanks to the usage of high performance computing

the computational methodology provided a useful insight into most of the physical concepts that

were set as relevant in the literature review. The main limitation of numerical simulations was the

impossibility of exploring the higher Reynolds number regime of bigger dragonflies. After transition

the flow structures became extremely small and required a very high amount of computational

resources to be resolved with DNS. It would be interesting to study in the future the structure of the

leading edge vortex in fully turbulent regimes, as this could provide insights into useful mechanisms

for larger size vehicles.

Second, the experimental methodology was designed to represent meaningful physics that comple-

ment and improve the conclusions derived from numerical simulations. An experiment was designed

during a stay at California Institute of Technology (section 3.2): a servo-motor connected to a flap-
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ping flat plate immersed in a water tank with PIV measurements. This allowed to obtain velocity

vector fields projected in the laser plane. This was later used to compare and further assess the

developed multibody-fluid solver. A reasonable agreement was found in the results. The leading

edge and trailing edge vortices were identified, and the velocity magnitude at the wake and at slices

perpendicular to the flat plate agreed well between the experiment and simulation. However, due

to the transition of the leading edge vortex, this led to a chaotic flow and exact correlation could

not be achieved. Nevertheless, both experiment and simulation detected the same flow instabilities

and resembled the flow structure accurately in the regions where the flow was more stable: close

to the flat plate root and in the early flapping stages. The main limitation of the experiment was

the inability to measure forces in the low Reynolds numbers where it was feasible to do direct nu-

merical simulation. The wings had to flap very fast in the experiment in order to measure force

signals that were not obscured by sensors noise. In the future it would be interesting to improve

the experimental set up by changing water by a more viscous flow such as mineral oil. This way it

would still be possible to flap faster and measure forces while maintaining a lower Reynolds number

that is more meaningful for dragonfly aerodynamics. On the other hand, planar PIV also had a

clear limitation as it is only allowed to access two dimensions of the flow. This was mitigated by

conducting experiments at several slices to inspect the 3D structure of the leading edge vortex. It

would be interesting to use for example stereoscopic PIV to get a better idea of the whole flow field

and compare it with the numerical simulations.

One of the more relevant findings regarding Leading Edge Vortex stability was the existence of

the spanwise advection mechanism at the wake, commonly justified in the literature by the Coriolis

spanwise blowing. However, the novelty of the spanwise blowing in this case, is that it was redirected

to the trailing edge. This justifies the lack of spanwise blowing at the vortex core that surprised

the authors of a well-known paper published in Nature [13]. This phenomenon occurred due to

the presence of the tip-vortex that generated a strong opposite jet that collided with the spawise

blowing, and redirected it downwards. In later numerical simulations this was further explored with

detailed visualizations of the flow, section 4.3. It could be clearly seen the two opposing jets colliding

at around 3/4 of the span, one caused by the Coriolis spanwise blowing and root vortex, and the

other caused by the tip vortex. This generated a "lift-up" mechanism that occurred both in the

inspected flat plate, and in an actual corrugated dragonfly wing geometry (section 4.5). The result

of this "lift-up" mechanism was the sudden growth of the leading edge vortex.

Additionally, with numerical simulations special emphasis was placed on exploring detailed flow

dynamics and different flow regimes that could not be achieved with the experiment and affected

Leading Edge Vortex stability. Reynolds number was varied (section 4.2) and it was seen that

around Reynolds 300, the tip vortex transitioned via a Kelvin-Helmholtz type instability. This

chaotic regime was the one in which the experiment was done, and for this reason exact correlation
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could not be expected. The instability at the tip destabilized all the leading edge vortex structure.

Moreover, low Reynolds numbers mechanisms of vorticity removal via diffusion; and high Reynolds

numbers mechanisms via vortex shedding due to the Kelvin-Helmholtz instability were identified.

These mechanisms were able to control the growth of the leading edge vortex, and therefore avoided

its sudden detachment and deep dynamics stall. The investigation of Reynolds number dependence

of the Leading Edge Vortex stability was quite insightful to determine typical transition param-

eters, as the Leading Edge Vortex changes dramatically after transition. Previous literature has

overlooked this issue because most simulations have been done in 2D where no vortex stretching

exists and transition mechanisms could not be inspected.

Moreover, the effects of the Leading Edge Vortex in relevant quantities such as force produc-

tion and energy requirements were analyzed for a flat plate at different Reynolds numbers section 4.2.

First, it was shown that total force production increased with circulation growth of the leading edge

vortex, as expected due to the Kutta–Joukowski theorem. Moreover, circulation grew with the

Reynolds number (and lift consequently), because vorticity diffusion decreased with Reynolds num-

ber, and therefore low Reynolds number mechanisms were not able to remove vorticity fast enough

to control vortex growth. Nevertheless, when transition kicked in vortex shedding was the mecha-

nism responsible for decreasing circulation and therefore controlling lift growth for higher Reynolds

number. However, in the range of Reynolds number inspected, force production always increased

with Reynolds number. This might seem to indicate that natural fliers should then tend to fly at

higher Reynolds number. On the contrary, this is not so clear, because even though total force pro-

duction increased, when the leading edge vortex became unstable the ratio of total force production

to power requirements decreased. This quantity is of more interest to animals as energy expenditure

is limited and they desire to accomplish the maximum possible force with the minimum possible

energy consumption. In summary, findings seem to indicate that for the studied flat plate, flying at

the highest possible Reynolds numbers before transition is the most energy efficient alternative.

Next, angle of attack effect on the Leading Edge Vortex was studied. It was seen that

hovering is energetically expensive due to the high lift coefficient that is required. This agreed

well with the observation made in the literature review: dragonflies tend to avoid hovering for

more energetically efficient regimes. Furthermore, only lift coefficient is typically considered in the

force budget, however, in dragonflies flapping it was illustrated that most of the force production is

achieved via drag. It was shown that dragonflies are able to use Drag as Vertical Force thanks

to adjustments in the stroke plane. In fact, it was proven that for the studied flat plate and actual

corrugated dragonfly wings, they are able to orient the total force production almost completely

vertically, given the dragonfly kinematics that have been observed in nature. This was one of the

main unknowns of the first authors that tried to unveil dragonfly aerodynamics, as without drag

contribution it is not possible to justify the force coefficients that are observed in nature.
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Furthermore, Corrugation effects were inspected section 4.5. So far it was well known in the

literature that corrugation effects had a positive effect in providing the right stiffness to the dragonfly

wings, while maintaining a light structure. However, up to the author´s knowledge, there have

not been actual aerodynamic benefits found with an actual corrugated wing in dynamic flapping.

Nevertheless, it was found that for Reynolds numbers in the low end of dragonfly species, corrugation

channels advect spanwise flow and vorticity and create an additional suction, that was not found in

the equivalent smooth wing. Due to the corrugation channels geometry, this suction was oriented

solely in the vertical direction, and therefore only contributed to lift. As lift is orthogonal to the

flapping trajectory, this did not increase power requirements. Consequently, it was found that for an

actual dragonfly wing corrugation increases lift at no energy cost, and therefore improves flapping

efficiency. Nevertheless, this was only identified for one Reynolds number, which is in the low range

of dragonflies Reynolds numbers. Further studies should be done to see if this can be extended

for higher Reynolds numbers and other insect wing. If different species wings show this benefit, a

general pattern of corrugation could be extracted that might be extensible to many different type

of vehicles.

Finally, all the building blocks that were identified in the literature review were placed together

into the final numerical study of a whole dragonfly section 4.1. Several strokes were inspected to

unveil the intricacies of wings interaction and Wake Capture. Remark that the study was also

done for relatively low Reynolds numbers to assure stability of the leading edge vortex and guarantee

DNS resolution at a reasonable cost. It was found that phased stroking is justifiably the observed

acceleration stroke used by dragonflies: it provides the maximum force production. However, it

also demands more power requirements, so for this reason dragonflies introduce phase between their

forewings and hindwings, to achieve more energy efficient flapping. Additionally, phase was found

to accomplish a more stable hovering, as it provided a more uniform lift distribution across the

flapping cycle. On the other hand, feathering angle was discovered to be a powerful strategy to

suddenly change force production and its orientation. Furthermore, two Wake Capture strategies

to introduce phasing between wings in an efficient way were identified: energy harvesting of the

follower-wing from the leading-wing wake during the upstroke, and upwash conversion into downwash

during the pronation and start of the downstroke. To conclude, the dipole-self-induction mechanism

that was characterized in 2 dimensions by Wang [129] was found to apply for and actual dragonfly

hovering stroke. This was the first time this hypothesis was tested with an actual 3D dragonfly

with realistic kinematics. Thanks to this mechanism dragonflies are able to remove vorticity in high

Reynolds numbers regimes, and therefore still maintain and efficient stroke in a relatively clean flow.
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Appendix A

Multibody solver

The multibody solver used to solve the solid dynamics and couplings between all the parts of the

dragonfly (4 wings and 1 body) is presented in this chapter. This solver has been implemented in

Fortran and coupled to TU Delft research code INCA. The solver has been developed for a generic

problem of N bodies, with different constraints between them. Forces at every timestep on every

solid can be applied externally. In particular, for the dragonfly problem, external forces on each

body element are determined by INCA fluid solver.

The structure of the chapter is the following: first, the mathematical formulation of the dynamic

problem is formulated in section A.1; second, verification cases of the multibody solver are discussed

in section A.2. All verification cases in this chapter are of the multibody solver without being coupled

to INCA fluid solver. Fluid coupling will be discussed in next chapter, chapter 3.
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A.1 Theoretical formulation

A.1.1 Kinematic equations

All the equations of motion are going to be formulated considering a Cartesian inertial system X0

of reference at r0 = 0. Additionally, a number of solid bodies 𝑁 is going to be defined, so that the

position of the center of mass of each rigid body in the Cartesian inertial system of reference X0 is

ri0, 𝑖 = 1, ..., 𝑁 . Finally, 𝑁 systems of reference attached to each body are defined: Xj, 𝑗 = 1, ..., 𝑁.

Based on these newly defined body systems of reference, Xj, the position of each body can be

expressed in several systems of coordinates: rij, 𝑖 = 1, ..., 𝑁 ; 𝑗 = 0, 1, ..., 𝑁 . A sketch of this

notation can be observed in Figure A-1.

Figure A-1: Sketch of the notation used in the different reference systems and position of each body.

Next, the orientation of each reference system Xj has to be defined with respect to the inertial

reference system X0. For this, the Euler Angles are used. In particular, the 3-1-3 Euler rotation is

chosen, see Figure A-2. The first rotation is done around the 𝑧 axis, precession 𝜓; the second around

the 𝑥 axis, nutation 𝜃; and finally a third rotation again around the 𝑧 axis, intrinsic rotation 𝜑.
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Figure A-2: (3-1-3) rotation sequence with Euler angles.

[37]

Based on this rotation system, a rotation matrix A𝑘 can be defined that relates the position of any

body in different reference systems Xj. In particular, we are interested in the relation between the

inertial coordinates of two generic bodies 𝑖 and 𝑘 (𝑖 ̸= 𝑘) and their coordinates in body coordinates.

This is going to be useful when applying constraints between bodies 𝑖 and 𝑘:

ri0 = rk0 +A𝑘r
i
k, (A.1)

where A𝑘 would be the rotation matrix between systems of reference Xk and X0. This rotation

can be expressed in terms of the 3-1-3 Euler sequence as follows [37]:

A𝑘 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝜓)− 𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛(𝜓) + 𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜓)− 𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜓) −𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜓) + 𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜓) 𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜓) −𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜓) 𝑐𝑜𝑠(𝜃)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.2)

However, there is a problem with the Euler angles, they have singularities that lead to nu-

merical instabilities in numerical solvers [108]. To solve this, Euler parameters were devised,

𝜃 = [𝜃0, 𝜃1, 𝜃2, 𝜃3]
𝑇 , which are an extension of the Euler angles. They can be related to the 3-

1-3 sequence of Euler angles as follows:

137



𝜃0 = 𝑐𝑜𝑠(𝜃/2)𝑐𝑜𝑠

(︂
𝜓 + 𝜑

2

)︂
(A.3)

𝜃1 = 𝑠𝑖𝑛(𝜃/2)𝑐𝑜𝑠

(︂
𝜓 − 𝜑

2

)︂
(A.4)

𝜃2 = 𝑠𝑖𝑛(𝜃/2)𝑠𝑖𝑛

(︂
𝜓 − 𝜑

2

)︂
(A.5)

𝜃3 = 𝑐𝑜𝑠(𝜃/2)𝑠𝑖𝑛

(︂
𝜓 + 𝜑

2

)︂
. (A.6)

Note that with the Euler parameters there is one more degree of freedom. Of course, a solid

body only has three rotation degrees of freedom, so to maintain this the following relationship of

the Euler parameters must be preserved:

3∑︁

𝑘=0

(𝜃𝑘)
2 = 𝜃𝑇𝜃 = 1. (A.7)

The rotation matrix A𝑘 can be expressed using these new Euler parameters [108]:

A𝑘 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1− 2(𝜃2)
2 − 2(𝜃3)

2 2(𝜃1𝜃2 − 𝜃0𝜃3) 2(𝜃1𝜃3 + 𝜃0𝜃2)

2(𝜃1𝜃2 + 𝜃0𝜃3) 1− 2(𝜃1)
2 − 2(𝜃3)

2 2(𝜃2𝜃3 − 𝜃0𝜃1)

2(𝜃1𝜃3 − 𝜃0𝜃2) 2(𝜃2𝜃3 + 𝜃0𝜃1) 1− 2(𝜃1)
2 − 2(𝜃2)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (A.8)

Velocity can be obtained by deriving Equation A.1 with respect to time:

ṙi0 = ṙk0 +A𝑘ṙ
i
k + Ȧ𝑘r

i
k. (A.9)

ṙik will be set to zero in many cases of interest, for example, when there is a fix constraint between

two rigid bodies 𝑖 and 𝑘. The matrix Ȧ𝑘 can be rewritten as [108]:
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Ȧ𝑘r
i
k = −A𝑘˜̄r

𝑖
𝑘Ḡ𝑘�̇�𝑘 (A.10)

˜̄r𝑖𝑘 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −(𝑟𝑖𝑘)3 (𝑟𝑖𝑘)2

(𝑟𝑖𝑘)3 0 −(𝑟𝑖𝑘)1

−(𝑟𝑖𝑘)2 (𝑟𝑖𝑘)1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A.11)

Ḡ𝑖
𝑘 = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−𝜃1 𝜃0 𝜃3 −𝜃2

−𝜃2 −𝜃3 𝜃0 𝜃1

−𝜃3 𝜃2 −𝜃1 𝜃0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (A.12)

This way of expressing Ȧ𝑘 is more convenient because now all derivatives of Euler parameters

are included in the term �̇�𝑘, and can be obtained directly from solving a linear system of equations

given a certain constraint between two bodies 𝑖 and 𝑘. Also note that (𝑟𝑖𝑘)3 refers to the third

component of the vector rik. Additionally, ˜̄r𝑖𝑘 will remain constant if bodies 𝑖 and 𝑘 have a constraint

(fixed distance) between each other, and this also another reason why this notation is so convenient.

This will be explained in more detail afterwards, in subsection A.1.4. With this, Equation A.9 can

be rewritten as:

ṙi0 = ṙk0 +A𝑘ṙ
i
k −A𝑘˜̄r

𝑖
𝑘Ḡ𝑘�̇�𝑘, (A.13)

where the term ṙk0 refers to the displacement of the centre of mass of body 𝑘 with respect to the

inertial system 𝑋0, and −A𝑘˜̄r
𝑖
𝑘Ḡ𝑘�̇�𝑘 to the relative rotation motion within the reference system of

body 𝑘. It also useful to realize that the term Ḡ𝑘�̇�𝑘 refers to the angular velocity vector in body

coordinates: Ḡ𝑘�̇�𝑘 = �̄�𝑘.

Finally, the accelerations are going to be found deriving Equation A.14 once again with respect

to time:

r̈i0 = r̈k0 +
𝜕

𝜕𝑡

(︀
A𝑘ṙ

i
k

)︀
−A𝑘

𝜕

𝜕𝑡

(︀
˜̄r𝑖𝑘Ḡ𝑘

)︀
�̇�𝑘 − Ȧ𝑘˜̄r

𝑖
𝑘Ḡ𝑘�̇�𝑘 −A𝑘˜̄r

𝑖
𝑘Ḡ𝑘�̈�𝑘. (A.14)

Once again it is interesting to mention that in case of a rigid constraint between bodies 𝑖 and 𝑘,

the terms 𝜕
𝜕𝑡

(︀
A𝑘ṙ

i
k

)︀
−A𝑘

𝜕
𝜕𝑡

(︀
˜̄r𝑖𝑘Ḡ𝑘

)︀
�̇�𝑘 are equal to zero.
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A.1.2 Kinetic energy and generalized forces

The kinetic energy of body 𝑘 in the inertial reference 𝑇0𝑘 is defined as:

𝑇0
𝑘 =

1

2

∫︁

𝑉 𝑘

𝜌𝑖ṙi
T

0 ṙi0𝑑𝑉
𝑘 (A.15)

which is a weighted integral over all the point 𝑖 in the body 𝑘. The volume of body 𝑘 is 𝑉 𝑘,

and the density at a generic point 𝑖 within this body 𝑘 is 𝜌𝑖. Substituting Equation A.14 into

Equation A.15 it is obtained the following:

𝑇0
𝑘 =

1

2

∫︁

𝑉 𝑘

𝜌𝑖

[︃

ṙ𝑘0
𝑇

�̇�
𝑇

𝑘

]︃
⎡
⎢⎢⎢⎣

I

−Ḡ𝑇
𝑘
˜̄r𝑖

𝑇

𝑘 A𝑘
𝑇

⎤
⎥⎥⎥⎦

[︃

I −A𝑘˜̄r
𝑖
𝑘Ḡ𝑘

]︃
⎡
⎢⎢⎢⎣
ṙ𝑘0

�̇�𝑘

⎤
⎥⎥⎥⎦ 𝑑𝑉

𝑘, (A.16)

where the term A𝑘ṙ
𝑖
𝑘 was set to zero, because in a rigid body the distance between points 𝑖 and

𝑘 in the body frame X𝑘 is constant. If the inner matrix multiplication is done, it yields:

𝑇 𝑘0 =
1

2

∫︁

𝑉 𝑘

𝜌𝑖

[︃

ṙ𝑘0
𝑇

�̇�
𝑇

𝑘

]︃
⎡
⎢⎢⎢⎣

I −A𝑘˜̄r
𝑖
𝑘Ḡ𝑘

𝑆𝑌𝑀 Ḡ𝑇
𝑘
˜̄r𝑖𝑘
𝑇 ˜̄r𝑖𝑘Ḡ𝑘

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ṙ𝑘0

�̇�𝑘

⎤
⎥⎥⎥⎦ 𝑑𝑉

𝑘. (A.17)

The previous expression can be written in a more compact notation using q̇𝑘0 =

⎡
⎢⎢⎢⎣
ṙ𝑘0

�̇�𝑘

⎤
⎥⎥⎥⎦ and

M𝑘 =
∫︀
𝑉 𝑘 𝜌

𝑖

⎡
⎢⎢⎢⎣

I −A𝑘˜̄r
𝑖
𝑘Ḡ𝑘

𝑆𝑌𝑀 Ḡ𝑇
𝑘
˜̄r𝑖𝑘
𝑇 ˜̄r𝑖𝑘Ḡ𝑘

⎤
⎥⎥⎥⎦ 𝑑𝑉

𝑘:

𝑇 𝑘0 =
1

2
(q̇𝑘0)

𝑇M𝑘q̇𝑘0 , (A.18)

where q̇𝑘0 are the generalized coordinates of reference frame X𝑘, which is fixed to body 𝑘; and

M𝑘 is the inertia matrix of body 𝑘 in body reference frame X𝑘.

Now each term of the inertia matrix M𝑘 is going to be studied in more detail:
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M𝑘 =

∫︁

𝑉 𝑘

𝜌𝑖

⎡
⎢⎢⎢⎣

I −A𝑘˜̄r
𝑖
𝑘Ḡ𝑘

𝑆𝑌𝑀 Ḡ𝑇
𝑘
˜̄r𝑖𝑘
𝑇 ˜̄r𝑖𝑘Ḡ𝑘

⎤
⎥⎥⎥⎦ 𝑑𝑉

𝑘 (A.19)

m𝑘
𝑟𝑟 =

∫︁

𝑉 𝑘

𝜌𝑖I 𝑑𝑉 𝑘 (A.20)

m𝑘
𝑟𝜃 = −

∫︁

𝑉 𝑘

𝜌𝑖A𝑘˜̄r
𝑖
𝑘Ḡ𝑘 𝑑𝑉

𝑘 (A.21)

m𝑘
𝜃𝜃 =

∫︁

𝑉 𝑘

𝜌𝑖Ḡ𝑇
𝑘
˜̄r𝑖𝑘
𝑇 ˜̄r𝑖𝑘Ḡ𝑘 𝑑𝑉

𝑘 (A.22)

The term m𝑘
𝑟𝜃 of the inertia matrix M𝑘 can be further simplified [108] if a rigid body is considered

with the body reference system: m𝑘
𝑟𝜃 = 0. Consequently, the inertia matrix can be computed more

easily. The kinetic energy can be written with this simplification as:

𝑇0
𝑘 =

1

2

(︁
q̇r
𝑘
0

)︁𝑇
m𝑘
𝑟𝑟q̇r

𝑘
0 +

1

2

(︁
q̇𝜃

𝑘
0

)︁𝑇
m𝑘
𝜃𝜃q̇𝜃

𝑘
0 (A.23)

Then, the generalized forces have to be defined Q𝑘
0 . The virtual work of externally applied forces

is:

𝛿W𝑘
0 =

(︀
Q𝑘

0

)︀𝑇
𝛿q𝑘0 =

[︃

Q𝑘
𝑟0
𝑇

Q𝑘
𝜃0

𝑇

]︃
⎡
⎢⎢⎢⎣
𝛿r𝑘0

𝛿𝜃𝑘

⎤
⎥⎥⎥⎦ (A.24)

(Q𝑟)
𝑘
0 are exactly the forces in inertial coordinates, because the Cartesian coordinates were not

modified: (Q𝑟)
𝑘
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝐹𝑥

𝐹𝑦

𝐹𝑧

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

However, the generalized forces for the Euler parameters are different than the x,y,z moments

typically used. Since working with x,y,z moments is more intuitive, these can be converted to (Q𝜃)
𝑘
0

equating the virtual work in both coordinate systems:

𝑀𝑥𝛿𝛼𝑥 +𝑀𝑦𝛿𝛼𝑦 +𝑀𝑧𝛿𝛼𝑧 = 𝑄𝜃0𝛿𝜃0 +𝑄𝜃1𝛿𝜃1 +𝑄𝜃2𝛿𝜃2 +𝑄𝜃3𝛿𝜃3, (A.25)

where [𝑀𝑥,𝑀𝑦,𝑀𝑧] and [𝛿𝛼𝑥, 𝛿𝛼𝑦, 𝛿𝛼𝑧] are respectively the moments and differential angle dis-
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placements around the three Cartesian inertial axis; and [𝑄𝜃0 , 𝑄𝜃1 , 𝑄𝜃2 , 𝑄𝜃3 ] and [𝛿𝜃0, 𝛿𝜃1, 𝛿𝜃2, 𝛿𝜃3]

the generalized forces and differential Euler parameters displacements. Based on this equation, the

following relationships can be obtained for one differential displacement of the Euler parameters:

𝑄𝜃0 =𝑀𝑥
𝜕𝛼𝑥
𝜕𝜃0

+𝑀𝑦
𝜕𝛼𝑦
𝜕𝜃0

+𝑀𝑧
𝜕𝛼𝑧
𝜕𝜃0

(A.26)

𝑄𝜃1 =𝑀𝑥
𝜕𝛼𝑥
𝜕𝜃1

+𝑀𝑦
𝜕𝛼𝑦
𝜕𝜃1

+𝑀𝑧
𝜕𝛼𝑧
𝜕𝜃1

(A.27)

𝑄𝜃2 =𝑀𝑥
𝜕𝛼𝑥
𝜕𝜃2

+𝑀𝑦
𝜕𝛼𝑦
𝜕𝜃2

+𝑀𝑧
𝜕𝛼𝑧
𝜕𝜃2

(A.28)

𝑄𝜃3 =𝑀𝑥
𝜕𝛼𝑥
𝜕𝜃3

+𝑀𝑦
𝜕𝛼𝑦
𝜕𝜃3

+𝑀𝑧
𝜕𝛼𝑧
𝜕𝜃3

. (A.29)

After operating this results in [37]:

(Q𝜃)
𝑘
0 =

1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝜃1 −𝜃2 −𝜃3

𝜃0 𝜃3 −𝜃2

−𝜃3 𝜃0 𝜃1

𝜃2 −𝜃1 𝜃0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑀𝑥

𝑀𝑦

𝑀𝑧

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (A.30)

A.1.3 Solid dynamic equations

In previous section, subsection A.1.3, the kinetic energy of each body 𝑘 of the system in inertial

coordinates was determined, 𝑇 𝑘0 . Now, the Lagrange equation is going to be used to determine the

solid dynamic equations of each body of the system. Note that here no constraints are defined, each

body evolves freely under the action of a user defined generalized force.

𝑑

𝑑𝑡

(︂
𝜕𝑇 𝑘0
𝜕q̇𝑘0

)︂
− 𝜕𝑇 𝑘0
𝜕q𝑘0

= (Q𝑘
0)
𝑇 . (A.31)

The derivatives give the following expressions [108]:
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𝑑

𝑑𝑡

(︂
𝜕𝑇 𝑘0
𝜕ṙ𝑘0

)︂
= (𝑟𝑘0 )

𝑇m𝑘
𝑟𝑟 (A.32)

𝑑

𝑑𝑡

(︂
𝜕𝑇 𝑘0

𝜕�̇�𝑘

)︂
= �̈�

𝑇

𝑘m
𝑘
𝜃𝜃 + �̇�

𝑇

𝑘 Ḡ
𝑇
𝑘m

𝑘
𝜃𝜃

˙̄G𝑘 (A.33)

𝜕𝑇 𝑘0
𝜕𝜃𝑘

= 0𝑇 (A.34)

𝜕𝑇 𝑘0
𝜕r𝑘0

= −�̇�
𝑇

𝑘 Ḡ
𝑇
𝑘m

𝑘
𝜃𝜃

˙̄G𝑘. (A.35)

Applying Lagrange identity, the following system of equations for body 𝑘 is obtained:

⎡
⎢⎢⎢⎣
m𝑘
𝑟𝑟 0

0 m𝑘
𝜃𝜃

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
r̈𝑘0

�̈�𝑘

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(Q𝑟)
𝑘
0

(Q𝜃)
𝑘
0 − 2 ˙̄G𝑇

𝑘m
𝑘
𝜃𝜃Ḡ𝑘�̇�𝑘

⎤
⎥⎥⎥⎦ . (A.36)

However, with this the system of equations is still incomplete. An additional equation that

imposes the requirement 𝜃𝑇𝑘 𝜃𝑘 = 1 is needed. This is so as to preserve the correct definition of the

Euler parameters. In particular if we derive this expression with respect to time two times we have:

𝜃𝑇𝜃 = 1 (A.37)

�̇�
𝑇
𝜃 = 0 (A.38)

�̈�
𝑇
𝜃 = −�̇�

𝑇
�̇�. (A.39)

Then, the constraint of the Euler parameters is imposed in the acceleration form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m𝑘
𝑟𝑟 0 0

0 m𝑘
𝜃𝜃 𝜃𝑘

0 𝜃𝑇𝑘 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r̈𝑘0

�̈�𝑘

𝜆𝜃

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(Q𝑟)
𝑘
0

(Q𝜃)
𝑘
0 − 2 ˙̄G𝑇

𝑘m
𝑘
𝜃𝜃Ḡ𝑘�̇�𝑘

−�̇�
𝑇

𝑘 �̇�𝑘

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A.40)

, note how the Lagrange multiplier 𝜆𝜃 was introduced as a forcing term to impose the mentioned
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equation. Also remark that the mass matrix, denoted as M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m𝑘
𝑟𝑟 0 0

0 m𝑘
𝜃𝜃 𝜃𝑘

0 𝜃𝑇𝑘 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is a symmetric

matrix. This guarantees the existence of a unique solution if the body 𝑘 has non-zero mass and

inertia [108].

A.1.4 Constraints

Some of the most common holonomic constraints are going to be defined in the present multibody

solver. More user defined constraints can be added to the system in a similar fashion: adding the

desired constraint equation and a Lagrange multiplier to force the system to follow the constraint.

First, the holonomic rotation constraints are going to be defined. A generic slave body 𝑘 is going

to have fixed some of its angles to a master body 𝑖. Therefore, the slave body 𝑘, X𝑘, is going to

follow a chosen number of angles (0, 1, 2 or 3) of the master body X𝑖. The possible fixed angles are

𝛼𝑥0 , 𝛼
𝑦
0 , 𝛼

𝑧
0, rotations around the axis of the inertial reference system X0. For example, a body 𝑘 is

forced to follow 𝛼𝑥0 and 𝛼𝑧0 of a master body 𝑖. However, in this case 𝛼𝑦0 or the translation degrees of

freedom are not constrained. As the system of equations of a generic body 𝑘 solves the accelerations,

Equation A.40, the holonomic constrains are going to be imposed based on the accelerations:

G*
𝑘�̈�𝑘 = G*

𝑖 �̈�𝑖, (A.41)

where the matrix G* is defined as:

G = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−𝜃1 𝜃0 −𝜃3 𝜃2

−𝜃2 𝜃3 𝜃0 −𝜃1

−𝜃3 −𝜃2 𝜃1 𝜃0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A.42)

G* = 𝑟𝑜𝑤𝑠_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑(G). (A.43)

The function 𝑟𝑜𝑤𝑠_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 truncates the input matrix and constructs a matrix removing

the rows that are not constrained. For example, in the previous example where 𝛼𝑥0 and 𝛼𝑧0 were
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constrained,

G* = 𝑟𝑜𝑤𝑠_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑(G) = 2

⎡
⎢⎢⎢⎣
−𝜃1 𝜃0 −𝜃3 𝜃2

−𝜃3 −𝜃2 𝜃1 𝜃0

⎤
⎥⎥⎥⎦ . (A.44)

Also note the usefulness of defining a generic master body 𝑖, if this body is the inertial reference

system X0, then the constrained body 𝑘 would have zero 𝛼𝑥0 and 𝛼𝑧0 rotation.

Second, the holonomic constraints for translation degrees of freedom are going to be defined. In

this a generic point in the reference frame of the slave body r𝑃𝑘 is fixed to a point in the reference

frame of the master body r𝑃𝑖 . This mathematically can be expressed using the kinematic equations,

Equation A.1:

ri0 +A𝑖r
P
i = rk0 +A𝑘r

P
k , (A.45)

where the distances r𝑃𝑘 and r𝑃𝑖 are constant as they are a point belonging to a rigid body in the

solid reference frame. Once again, the constraints have to be translated to accelerations. For this

the kinematic relationship in Equation A.14 is used, but the terms with 𝜕
𝜕𝑡 are set to zero, due to

the rigid constraint:

r̈k0 − Ȧ𝑘˜̄r
𝑃
𝑘 Ḡ𝑘�̇�𝑘 −A𝑘˜̄r

𝑃
𝑘 Ḡ𝑘�̈�𝑘 = r̈i0 − Ȧ𝑖˜̄r

𝑃
𝑖 Ḡ𝑖�̇�𝑖 −A𝑖˜̄r

𝑃
𝑖 Ḡ𝑖�̈�𝑖. (A.46)

In this model, the three translation degrees of freedom are constrained. However, in order to set

a more general scenario, the same procedure as with the rotation constraints is going to be followed.

Only a number between 0 and 3, both included, are going to be constrained within the inertial

reference frame axes X0. For example, only 𝑥0 and 𝑧0 are constrained, so only rows 1 and 3 are

imposed. Finally it results:

(r̈k0)
* − (Ȧ𝑘)

*˜̄r𝑃𝑘 Ḡ𝑘�̇�𝑘 − (A𝑘)
*˜̄r𝑃𝑘 Ḡ𝑘�̈�𝑘 = (r̈i0)

* − (Ȧ𝑖)
*˜̄r𝑃𝑖 Ḡ𝑖�̇�𝑖 − (A𝑖)

*˜̄r𝑃𝑖 Ḡ𝑖�̈�𝑖 (A.47)

(r̈0)
* = 𝑟𝑜𝑤𝑠_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑(r̈0) (A.48)

(A)* = 𝑟𝑜𝑤𝑠_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑(A) (A.49)

(Ȧ)* = 𝑟𝑜𝑤𝑠_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑(Ȧ), (A.50)

with this, the kinematic equations of the constraints have been imposed. However, in the dynamic
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equations, Lagrange multipliers have to be included as a forcing term to impose these boundary

conditions. Assume once again a slave 𝑘 and a master body 𝑖. The slave body dynamic equations

would be [108]:

m𝑘
𝑟𝑟 r̈

𝑘
0 + (𝜆𝑘𝑟 )

* = (Q𝑟)
𝑘
0 (A.51)

m𝑘
𝜃𝜃�̈�𝑘 + (G*

𝑘)
𝑇 (𝜆𝑘𝜃)

* − (A*
𝑘
˜̄r𝑃𝑘 Ḡ𝑘)

𝑇 (𝜆𝑘𝑟 )
* = (Q𝜃)

𝑘
0 − 2 ˙̄G𝑇

𝑘m
𝑘
𝜃𝜃Ḡ𝑘�̇�𝑘, (A.52)

where the Lagrange multipliers (𝜆𝑘𝑟 )* = 𝑟𝑜𝑤𝑠_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑(𝜆𝑘𝑟 ) and (𝜆𝑘𝜃)
* = 𝑟𝑜𝑤𝑠_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑(𝜆𝑘𝜃)

are defined to force the dynamic evolution of the slave body 𝑘 following the kinematic constrains.

Note that once again the Lagrange multipliers are also reduced based on the number of actual con-

straints that were selected for the displacements 𝑟 and rotations 𝜃. The Lagrange multiplier (𝜆𝑘𝑟 )
*

physically represents the force applied by the slave body 𝑘 to the master body 𝑖, and projected into

the inertial reference system X0. On the other hand, (𝜆𝑘𝜃)* is the momentum in the inertial reference

system. The term −(A*
𝑘
˜̄r𝑃𝑘 Ḡ𝑘)

𝑇 (𝜆𝑘𝑟 )
* reflects the fact that if the force applied at the constraint

point is not in the centre of mass, ˜̄r𝑃𝑘 ̸= 0, it is going to give momentum to the body 𝑘.

The tricky part comes when defining the master body 𝑖 equations:

m𝑖
𝑟𝑟 r̈

𝑖
0 − (𝜆𝑘𝑟 )

* = (Q𝑟)
𝑖
0 (A.53)

m𝑖
𝜃𝜃�̈�𝑖−(G*

𝑖 )
𝑇 (𝜆𝑘𝜃)

* + (A*
𝑖
˜̄r𝑃𝑖 Ḡ𝑖)

𝑇 (𝜆𝑘𝑟 )
* = (Q𝜃)

𝑖
0 − 2 ˙̄G𝑇

𝑖 m
𝑖
𝜃𝜃Ḡ𝑖�̇�𝑖. (A.54)

It can be seen that there are new terms that did not appear in the slave equations. These terms

stem from the third Newton Law: the law of action and reaction. The force supplied to the slave

body 𝑘 to follow its constraints has a reaction of the opposite sign on the master body. Note how

the matrices −(G*
𝑖 )
𝑇 , (A*

𝑖
˜̄r𝑃𝑖 Ḡ𝑖)

𝑇 also changed to index 𝑖 because now forces and moments of the

constraints in system X0, (𝜆𝑘𝑟 )*, (𝜆
𝑘
𝜃)

*, have to be converted to the reference system of the master

body 𝑖.

Finally, the system of equations of a generic slave body 𝑘 and a master body 𝑖 that are constrained

between each other can be expressed as:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m𝑖
𝑟𝑟 0 0 0 0 0 −(I*)𝑇 0

0 m𝑖
𝜃𝜃 𝜃𝑖 0 0 0 (A*

𝑖
˜̄r𝑃𝑖 Ḡ𝑖)

𝑇 −(G*
𝑖 )
𝑇

0 𝜃𝑇𝑖 0 0 0 0 0 0

0 0 0 m𝑘
𝑟𝑟 0 0 (I*)𝑇 0

0 0 0 0 m𝑘
𝜃𝜃 𝜃𝑘 −(A*

𝑘
˜̄r𝑃𝑘 Ḡ𝑘)

𝑇 (G*
𝑘)
𝑇

0 0 0 0 𝜃𝑇𝑘 0 0 0

−I* A*
𝑖
˜̄r𝑃𝑖 Ḡ

𝑇
𝑖 0 I* −A*

𝑘
˜̄r𝑃𝑘 Ḡ𝑘 0 0 0

0 −G*
𝑖 0 0 G*

𝑘 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r̈𝑖0

�̈�𝑖

𝜆𝜃𝑖

r̈𝑘0

�̈�𝑘

𝜆𝜃𝑘

(︁
𝜆𝑘𝑟

)︁*

(︁
𝜆𝑘𝜃

)︁*

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Q𝑟)
𝑘
0

(Q𝜃)
𝑘
0 − 2 ˙̄G𝑇

𝑘m
𝑘
𝜃𝜃Ḡ𝑘�̇�𝑘

−�̇�
𝑇

𝑘 �̇�𝑘

(Q𝑟)
𝑘
0

(Q𝜃)
𝑘
0 − 2 ˙̄G𝑇

𝑘m
𝑘
𝜃𝜃Ḡ𝑘�̇�𝑘

−�̇�
𝑇

𝑘 �̇�𝑘

(Ȧ𝑘)
*˜̄r𝑃𝑘 Ḡ𝑘�̇�𝑘 − (Ȧ𝑖)

*˜̄r𝑃𝑖 Ḡ𝑖�̇�𝑖

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.55)

Once again the resulting system is symmetric. Now, apart from non-zero mass and inertia mo-

ments, non-linearly-dependent constraints are also required to guarantee the existence and unique-

ness of the solution (non-singular matrix). For whatever multibody problem that has to be defined,

this block matrix slave-master has to be set for the number of bodies that is desired. This gives

the possibility to implement the solver in a general way, for a N body problem with user defined

constraints.
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A.1.5 Constraints controller

During simulations, it is sometimes interesting to move the relative position between master-slave

bodies. For example, take as an example an airfoil with a flap, Figure A-3. The inertial frame is the

reference frame X0, the airfoil is attached to reference frame X1 and the flap is attached to reference

frame X2. Initially the airfoil has all its degrees of freedom fixed to the inertial reference frame

X0, and the flap has all its degrees of freedom fixed to the airfoil X1. However, after sometime of

simulation of steady flight in a fluid solver a maneuver of landing wants to be simulated. Therefore

the angle of attack of the airfoil has to be increased, therefore the relative pitching angle between

systems X0 and X1 has to be modified. Also the flap has to be deflected during the landing, so the

relative pitching angle and position X1 and X2 is modified. This can be done with a constraints

controller.

Figure A-3: System of an airfoil and a flap. Modified configuration for landing.

To impose the relative displacement between two constrained bodies an relative prescribed ac-

celeration is going to be prescribed between the master and the slave:

G*
𝑘�̈�𝑘 = G*

𝑖 �̈�𝑖 + (𝛼𝑝𝑟𝑒𝑠
𝑖−𝑘)* (A.56)
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(r̈k0)
* − (Ȧ𝑘)

*˜̄r𝑃𝑘 Ḡ𝑘�̇�𝑘 − (A𝑘)
*˜̄r𝑃𝑘 Ḡ𝑘�̈�𝑘 = (r̈i0)

* − (Ȧ𝑖)
*˜̄r𝑃𝑖 Ḡ𝑖�̇�𝑖 − (A𝑖)

*˜̄r𝑃𝑖 Ḡ𝑖�̈�𝑖 + (𝑟𝑝𝑟𝑒𝑠
𝑖−𝑘)*.

(A.57)

Note how the prescribed angular and translation accelerations have also been reduced to account

only for the actual constrained dimensions:

(𝑟𝑝𝑟𝑒𝑠
𝑖−𝑘)* = 𝑟𝑜𝑤𝑠_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑(𝑟𝑝𝑟𝑒𝑠𝑖−𝑘) (A.58)

(𝛼𝑝𝑟𝑒𝑠
𝑖−𝑘)* = 𝑟𝑜𝑤𝑠_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑(𝛼𝑝𝑟𝑒𝑠

𝑖−𝑘). (A.59)

The dynamic equations accounting for forces and momentum do not have to be modified. The

Lagrange multipliers will automatically adjust themselves to achieve the relative acceleration between

the two reference systems. This is really useful, for example in the airfoil-flap configuration, the

Lagrange multipliers will tell the needed forces and moments in the inertial frame to achieve the

desired manoeuvres. With these the internal actuators between the wing and flap can be designed,

for example.

A.1.6 Solver of the systems of equations

The numerical solver of the system of equation was chosen considering that the multibody system

is not going to have too many bodies. That is, more or less no more than 10 bodies, and matrices

smaller than 100 × 100. In this scenario, a direct numerical method is appropriate. In particular,

LU decomposition with partial pivoting was chosen. The partial pivoting was selected because in

the present formulation there are zeros in the diagonal that can make the numerical method diverge

during the pivoting. The advantage of this numerical method is that it finds the exact solution

(except for truncation errors) if the matrix of the system is non-singular [121]. This is true as it was

explained before when the mass and inertia of each body are non-zero, and when non-redundant

constraints have been provided. Therefore, a well defined multibody system should always be solved

in a correct way by the chosen method.

The system to be solved is defined as: Ax = b. The LU decomposition is defined in the following

way: PA = LU. The numerical algorithm consists of two steps:

1. LU factorization with partial pivoting.

2. Solve the system:

Ly = Pb

Ux = y.

149



The computational cost is governed by the LU decomposition step, and scales with 𝑁3, given a

matrix of dimensions 𝑁×𝑁 . This scaling is quite strong and there are other numerical methods that

have a much better scaling with matrix size, iterative methods or conjugate gradient for example

[121]. That is the reason why the direct solver strategy was chosen given the condition that the

number of bodies to be solved was not high. In case many more bodies are included in the system

other solving strategies have to be used.

A.1.7 Time integration

A Newmark integration family has been chosen as an integrator for the solid dynamic equations.

q̇𝑡+Δ𝑡 = q̇𝑡 +∆𝑡 [(1− 𝛾)q̈𝑡 + q̈𝑡+Δ𝑡] (A.60)

q𝑡+Δ𝑡 = q𝑡 +∆𝑡q̇𝑡 + (∆𝑡)2
[︂
(
1

2
− 𝛽)q̈𝑡 + 𝛽q̈𝑡+Δ𝑡

]︂
. (A.61)

The main reason for choosing this solver is that it offers a range of first, second and third order

implicit schemes, just by modifying the parameters of the model 𝛾 and 𝛽. Moreover, the scheme is

unconditionally stable for [113]:

1

2
≤ 𝛾 ≤ 2𝛽. (A.62)

In Table A.1 a summary of some of the most popular Newmark schemes are shown:

Description 𝛾 𝛽 Order Stability Type

Trapezoidal rule 1
2

1
4 2 Unconditional Implicit

Linear acceleration 1
2

1
6 2 Conditional Implicit

Fox-Goodwin 1
2

1
12 3 Conditional Implicit

Table A.1: Family of Newmark integration schemes.

[113]

During the present document, the Trapezoidal rule is going to be used, due to its unconditional

stability and second order convergence.

The Newmark methods are implicit because they require the acceleration at 𝑡+∆𝑡. This means

that a iterative process has to be followed to solve the equations. The used algorithm for one implicit

time step is depicted below:
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𝑞_𝑟𝑒𝑠 = 1

𝑑𝑞_𝑟𝑒𝑠 = 1

𝑖 = 1

while (𝑞_𝑟𝑒𝑠 ≥ 𝜖).𝐴𝑁𝐷.(𝑑𝑞_𝑟𝑒𝑠 ≥ 𝜖) do

A = 𝑓1(q𝑖, q̇𝑖)

b = 𝑓2(q𝑖, q̇𝑖)

Aq̈𝑖+1 = b

q̇𝑖+1 = q̇𝑡 +∆𝑡 [(1− 𝛾)q̈𝑡 + q̈𝑖+1]

q𝑖+1 = q𝑡 +∆𝑡q̇𝑡 + (∆𝑡)2
[︀
( 12 − 𝛽)q̈𝑡 + 𝛽q̈𝑖+1

]︀

q𝑖+1 = 𝛼q𝑖+1 + (1− 𝛼)q𝑖

dq𝑖+1 = 𝛼dq𝑖+1 + (1− 𝛼)dq𝑖

q_res =
√︀
||qi+1 − qi||

dq_res =
√︀
||dqi+1 − dqi||

𝑖 = 𝑖+ 1

end while

q𝑡+Δ𝑡 = q𝑖+1

dq𝑡+Δ𝑡 = dq𝑖+1

An additional relaxation step was added in the previous algorithm. This can help with the

convergence of the Newmark integration. Even though the numerical scheme is implicit, the iterative

steps to achieve the implicit convergence are explicit and can diverge. That is the reason why the

relaxation factor 𝛼 is included. Normally, during the present simulations the time step is small

enough (due to presence of the fluid scales) that almost no relaxation is needed, and the residuals

converge to machine precision within 4-5 sub iterations.

A.1.8 Additional corrections

Euler parameters norm

Euler parameters add an additional degree of freedom and to solve this, the norm of the Euler

parameters should be equal to 1, see Equation A.37. As the multibody solver solved for the acceler-

ations, the constraint was imposed in its acceleration form, Equation A.39. However, the integration

of acceleration is not exact. It has discretization error due to the finite time step. This means that

the norm of the Euler parameters starts to have a drift, and does not fulfil its definition.

To solve this issue the following iterative correction was imposed for every body 𝑘:

𝜃𝑘 =
𝜃𝑘√︁
𝜃𝑇𝑘 𝜃𝑘

. (A.63)
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Therefore, the iterative algorithm of the Newmark integration is modified in the following way:

𝑞_𝑟𝑒𝑠 = 1

𝑑𝑞_𝑟𝑒𝑠 = 1

𝑖 = 1

while (𝑞_𝑟𝑒𝑠 ≥ 𝜖).𝐴𝑁𝐷.(𝑑𝑞_𝑟𝑒𝑠 ≥ 𝜖) do

A = 𝑓1(q𝑖, q̇𝑖)

b = 𝑓2(q𝑖, q̇𝑖)

Aq̈𝑖+1 = b

q̇𝑖+1 = q̇𝑡 +∆𝑡 [(1− 𝛾)q̈𝑡 + q̈𝑖+1]

q𝑖+1 = q𝑡 +∆𝑡q̇𝑡 + (∆𝑡)2
[︀
( 12 − 𝛽)q̈𝑡 + 𝛽q̈𝑖+1

]︀

q𝑖+1 = 𝛼q𝑖+1 + (1− 𝛼)q𝑖

dq𝑖+1 = 𝛼dq𝑖+1 + (1− 𝛼)dq𝑖

𝜃 = 𝜃√
𝜃𝑇 𝜃

q_res =
√︀
||qi+1 − qi||

dq_res =
√︀
||dqi+1 − dqi||

𝑖 = 𝑖+ 1

end while

q𝑡+Δ𝑡 = q𝑖+1

dq𝑡+Δ𝑡 = dq𝑖+1

Note how the correction is done just before calculating the residuals. This means that the method

will not converge until the Euler parameters norm is corrected to be equal to one, up to machine

precision error.

Position correction of constraints

Another problem observed during the simulations was that, due to the discretization error of the

Newmark integration, the constraints were not fulfilled for large integration times. The reason

for this is that the constraints are imposed in the acceleration terms, Equation A.47. Therefore,

accelerations fulfilled the constraints, but the numerical integration leads to the accumulation of

discretization error in the actual position of the constraints. To solve this, a correction was included

that forces the bodies to follow the actual constraints position. The reduced position of each slave

body 𝑘,
(︀
rk0

)︀*, is corrected as:

(︀
rk0

)︀*
=

(︀
ri0
)︀*

+ (A𝑖)
*
rPi − (A𝑘)

*
rPk . (A.64)

For the correction of the Euler angles constraints applies:
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G*
𝑘�̈�𝑘 = G*

𝑖 �̈�𝑖. (A.65)

Note that the position and Euler parameters constraints corrections of the master body 𝑖 always

have to be updated before of the constrained slave body 𝑘. An analogy could be made with a tree,

which will be called the "tree system", where the slaves depend on each upper element of the branch.

For example, in Figure A-4, to include the correction for body 3, the corrections for bodies 2 and 0

are required. Therefore, each level of the "tree system" has to be corrected before going to the next

one.

Figure A-4: Dependencies of constraints within the "tree system".

Finally, the algorithm for one implicit time step is:

𝑞_𝑟𝑒𝑠 = 1

𝑑𝑞_𝑟𝑒𝑠 = 1

𝑖 = 1

while (𝑞_𝑟𝑒𝑠 ≥ 𝜖).𝐴𝑁𝐷.(𝑑𝑞_𝑟𝑒𝑠 ≥ 𝜖) do

A = 𝑓1(q𝑖, q̇𝑖)

b = 𝑓2(q𝑖, q̇𝑖)

Aq̈𝑖+1 = b

q̇𝑖+1 = q̇𝑡 +∆𝑡 [(1− 𝛾)q̈𝑡 + q̈𝑖+1]

q𝑖+1 = q𝑡 +∆𝑡q̇𝑡 + (∆𝑡)2
[︀
( 12 − 𝛽)q̈𝑡 + 𝛽q̈𝑖+1

]︀

q𝑖+1 = 𝛼q𝑖+1 + (1− 𝛼)q𝑖

dq𝑖+1 = 𝛼dq𝑖+1 + (1− 𝛼)dq𝑖

𝜃 = 𝜃√
𝜃𝑇 𝜃

𝑡𝑟𝑒𝑒𝑙𝑒𝑣𝑒𝑙 = 0
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for (𝑡𝑟𝑒𝑒_𝑙𝑒𝑣𝑒𝑙 = 0, 𝑓𝑖𝑛𝑎𝑙_𝑡𝑟𝑒𝑒_𝑙𝑒𝑣𝑒𝑙) do

𝑐𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛(q𝑖+1)

𝑡𝑟𝑒𝑒_𝑙𝑒𝑣𝑒𝑙 = 𝑡𝑟𝑒𝑒_𝑙𝑒𝑣𝑒𝑙 + 1

end for

q_res =
√︀
||qi+1 − qi||

dq_res =
√︀
||dqi+1 − dqi||

𝑖 = 𝑖+ 1

end while

q𝑡+Δ𝑡 = q𝑖+1

dq𝑡+Δ𝑡 = dq𝑖+1

It should be remarked that once again the correction is done just before calculating the residuals.

Consequently, the algorithm will not converge until the accelerations are adjusted to fulfill the actual

constraints position.

A.2 Verification cases

The multibody solver is now going to be tested with different verification cases. First, a Simple

Pendulum is proposed to assess one single constraint, subsection A.2.1. Second, the preservation

of inertia moments and the Euler parameters are verified with a Pivoting Body, subsection A.2.2.

Third, a Spherical Body is selected because it has analytical solution, and shows that the algorithm

is working correctly in a 3D problem, subsection A.2.3. Finally, several bodies are tested with a

Double Pendulum, subsection A.2.4. All the simulations are given using a .𝑡𝑥𝑡 file as an input, see

??

A.2.1 Simple Pendulum

The simple pendulum is going to be characterized by the length of the pendulum 𝑙, its mass 𝑚, 𝑥

moment of inertia 𝐼𝑥 (around its centre of mass), the gravity 𝑔, and the nutation angle 𝜃 that defines

its position, see Figure A-5. The pendulum has attached the reference system 𝑋1. It oscillates in

the 𝑦 − 𝑧 plane and it is fixed at �⃗� = [0, 0, 0] to the inertial reference system 𝑋0. The pendulum is

placed initially at 𝜃0 with zero velocity. The dynamic equations of the pendulum are [89]:

(︀
𝑚 𝑙2 + 𝐼𝑥

)︀
𝜃 +𝑚 𝑔 𝑙 𝑠𝑖𝑛(𝜃) = 0. (A.66)
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Figure A-5: Variables that define the simple pendulum verification case.

[89]

Note how in Equation A.66 the pendulum has a non-zero inertia moment around its 𝑥 axis. This

differential equation does not have an analytical solution. Therefore, in order to assess the validity

of the numerical solution it will be linearized assuming small angles 𝜃:

(︂
1 +

𝐼𝑥
𝑚 𝑙2

)︂
𝜃 +

𝑔

𝑙
𝑠𝑖𝑛(𝜃) =

(︂
1 +

𝐼𝑥
𝑚 𝑙2

)︂
𝜃 +

𝑔

𝑙

(︀
𝜃 +𝑂(𝜃3)

)︀
= 0. (A.67)

Now an analytical solution exists:

𝜃 = 𝜃0𝑐𝑜𝑠(𝜔𝑡) +𝑂(𝜃30) (A.68)

𝜔 =

√︃
𝑔

𝑙
(︀
1 + 𝐼𝑥

𝑚 𝑙2

)︀ . (A.69)

First, a small angle is going to be chosen 𝜃0 = 0.001, so that the error done during linearization

is smaller than the integration error. Then the dimensionless variables are defined: 𝑔 = 2, 𝑙 = 1,

𝑚 = 1, 𝐼𝑥 and 𝜔 = 1. The comparison of the analytical expression and the obtained numerical

solution is shown in Figure A-6. The integration was done between 𝑡 = 0 and 𝑡 = 50, and with

𝑁 = 500 time steps. It can be seen how the agreement is quite good.
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Figure A-6: Simple pendulum. Comparison of analytical (black line) and numerical solution (blue
x). 𝑁 = 500, 𝑡 = 0 to 𝑡 = 50. 𝜔 = 1 and 𝜃0 = 0.001 [𝑟𝑎𝑑].

Furthermore, in Equation A.40 the error between the linearized analytical 𝜃(𝑡) and the numerical

solution 𝜃𝑒𝑥𝑎𝑐𝑡(𝑡) is shown. As expected the error increases linearly with time. Moreover, it can be

seen that the error diminishes when the time step is reduced. In particular, it can be seen that the

error convergence is approximately second order, for a half the time step, the error is reduced more

or less four times. This will be inspected in more detail later.

Also, in this analysis is important to mention that the error done during the linearization process

is way below the numerical error: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟 = 𝑂(10−9) and 𝜃 − 𝜃𝑒𝑥𝑎𝑐𝑡 = 𝑂(10−5). Con-

sequently, the analytical solution can be considered as exact for this degree of time step refinement.
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Figure A-7: Simple pendulum. Analysis of numerical error with time for 𝑁 = 500 and 𝑁 = 1000.
𝑡 = 0 to 50. 𝜔 = 1 and 𝜃0 = 0.001 [𝑟𝑎𝑑].

Next, the non-linear solution, for large values of 𝜃0 is going to be studied. The new parameters

are going to be slightly modified for large angles: 𝑔 = 2, 𝑙 = 1, 𝑚 = 1, 𝐼𝑥, 𝜔 = 1 and 𝜃0 = 𝜋
2 .

Once again, the pendulum will oscillate in the 𝑦 - 𝑧 plane, and it will be fixed to �⃗� = [0, 0, 0]. In

Figure A-8a the trajectory in the 𝑦 - 𝑧 plane is shown for 𝑡 = 0 to 𝑡 = 5. The nutation angle

evolution with time is shown in Figure A-8b.
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(a) 𝑦 - 𝑧 trajectory.
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(b) 𝜃(𝑡) as function of time.

Figure A-8: Simple pendulum. 𝑁 = 500000, 𝑡 = 0 to 5. 𝜔 = 1 and 𝜃0 = 𝜋
2 [𝑟𝑎𝑑].

In this case, the previous analytical solution is no longer valid. Therefore, to study the con-
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vergence with the time step, a reference solution 𝜃𝑟𝑒𝑓 is considered of 𝑁 = 500000. This solution

has a discretization error order of magnitudes lower than solutions with a smaller 𝑁 , so it can be

considered as exact for convergence analysis. More precisely, the discretization error is going to be

defined as:

𝜖𝑁 =

𝑁∑︁

𝑖=1

|𝜃𝑁𝑖 − 𝜃𝑟𝑒𝑓𝑖 |/𝑁 (A.70)

The convergence of the discretization error with the number of time steps 𝑁 is shown in Figure A-

10. Observing the slope, it is seen clearly that the integration scheme has second order convergence.

This agrees with the theoretical analysis of the Newmark scheme with 𝛾 = 0.5 and 𝛽 = 0.25, as

explained in Table A.1.
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Figure A-9: Simple pendulum. Convergence of numerical error with the number of time steps 𝑁 .
𝑡 = 0 to 5. 𝜔 = 1 and 𝜃0 = 𝜋

2 [𝑟𝑎𝑑]. Newmark Trapezoidal time integration.

Next, the preservation of energy is studied. Total energy is computed from kinetic and potential

energy:

𝐸 =
1

2
𝐼𝑥𝜃

2 +
1

2
𝑚(�̇�2 + �̇�2 + �̇�2)−𝑚 𝑔 𝑧 = 𝐸𝑟𝑒𝑓 (A.71)

In the initial condition �⃗� = [0, 1, 0], ˙⃗𝑥 = [0, 0, 0] and 𝜃 = 0, so it can be inferred that 𝐸𝑟𝑒𝑓 = 0.

The preservation of the total energy is going to be computed using the following expression:
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𝜖𝑁𝐸 =

𝑁∑︁

𝑖=1

|𝐸𝑁𝑖 − 𝐸𝑟𝑒𝑓𝑖 |/𝑁. (A.72)

Energy preservation converges also as second order, see Figure A-10. This makes sense, as in

Newmark integration with the Trapezoidal rule, the velocities also have second order convergence,

[113].
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Figure A-10: Simple pendulum. Energy preservation with the number of time steps 𝑁 . 𝑡 = 0 to 5.
𝜔 = 1 and 𝜃0 = 𝜋

2 [𝑟𝑎𝑑]. Newmark Trapezoidal time integration.
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Figure A-11: Simple pendulum. Energy preservation with time. 𝑁 = 500000 and 𝑡 = 0 to 5. 𝜔 = 1
and 𝜃0 = 𝜋

2 [𝑟𝑎𝑑]. Newmark Trapezoidal time integration.

It is also interesting to see energy preservation with time. This is observed in Figure A-11.

Energy preservation oscillates with time during the swings of the pendulum. However, there is

a linear dissipative trend with increasing time (the second oscillation has a lower positive peak).

The reason for this is that the Trapezoidal Newmark integration is slightly dissipative [113]. On

the one hand this guarantees the unconditional stability, but on the other hand, makes the system

dissipative.

Finally, the effects of the implemented corrections is going to be assessed, see subsection A.1.8.

First, the correction for the constraints is assessed. During the integration, constraints were imposed

in accelerations and this derived in shifts of the constraints position for large time integration. The

error of the constraints (in this case position constraints, but can also be angles, see subsection A.1.4)

is going to be defined as:

𝜖𝑁𝐶 =

𝑁∑︁

𝑖=1

(︁
|𝑥𝑖| − |⃗𝑙|

)︁
/𝑁. (A.73)
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Figure A-12: Simple pendulum. Convergence of constraints error with time step 𝑁 . 𝑡 = 0 to 5.
𝜔 = 1 and 𝜃0 = 𝜋

2 [𝑟𝑎𝑑]. Newmark Trapezoidal time integration.

Figure A-12 shows how the corrections effectively remove this drift in the constraints position,

achieving machine precision (double precision 10−16 residuals). Without the constraints correction

the drift of the constraints has a second order convergence, the same as the body coordinates

convergence shown in Figure A-9. The reason for this is that both constraints and body coordinates

are integrated with a second order Newmark Trapezoidal scheme.

The norm of the Euler parameters should also be one. Nevertheless, this was also imposed in

the acceleration terms, and for large time integration the norm suffered a drift away from one. To

prove the validity of the correction the following error is defined:

𝜖𝑁𝜃 =

𝑁∑︁

𝑖=1

(︁
|𝜃𝑖 − 1|

)︁
/𝑁. (A.74)

Once again the same behavior is observed. The correction reduces the error to machine precision,

while a second order drift occurs without correction.

161



102 103 104 105

N

10−15

10−13

10−11

10−9

10−7

10−5

10−3

∑
N i=

1(
|~ θ

i|−
1)
/N

With Euler parameters correction
Without Euler parameters correction

Figure A-13: Simple pendulum. Analysis of numerical error with time for 𝑁 = 500 and 𝑁 = 1000.
𝑡 = 0 to 5. 𝜔 = 1 and 𝜃0 = 𝜋

2 [𝑟𝑎𝑑]. Newmark Trapezoidal time integration.

Finally, it should be remarked that convergence studies in Figure A-9 and Figure A-10 were

done with the corrections applied, and it was observed that the corrections did not influence body

coordinates error convergence. However, it is interesting to keep the exact position of constraints

during long time simulations, so as to preserve the geometry between different bodies, for example

relative position between a flap and a wing. It is not desirable to reach a steady state where the flap

has moved away from the wing several meters. Euler parameters norm criterion is also important

and has to be maintained: to convert this parameters back Euler angles with physical meaning,

and therefore process solution data, the mathematical definition with norm equal to one has to be

fulfilled.

A.2.2 Euler-Poinsot solid

Poinsot solid is a rigid body that has its position fixed to a point in an inertial system 𝑋0. Therefore,

its translations are constrained, but it has free rotation. Moreover, exterior forces do not give

momentum with respect to the fixed point [104]. Intuitively, an example of a Poinsot solid would

be a gyroscope.

In this case, the mass 𝑚 of the Poinsot solid is not relevant, as translational degrees of freedom

are fixed. What is important is the inertia tensor:
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I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝐴 0 0

0 𝐵 0

0 0 𝐶

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (A.75)

where for simplicity it was assumed that only the diagonal terms are non zero. Moreover, in

order to have an analytical solution, a body with axial symmetry is assumed: 𝐴 = 𝐵 ̸= 𝐶, see

Figure A-14.

(a) Prolate, 𝐴 = 𝐵 > 𝐶. (b) Oblate, 𝐴 = 𝐵 < 𝐶.

Figure A-14: Axial symmetric Poinsot solid. Schematic of Euler angle velocities with 3-1-3 notation.
HO is the angular momentum, and 𝜔 the angular velocity. 𝑧1 is the inertial axis, and 𝑧 the one
attached to the body reference frame. [69]

Given these conditions, the dynamic equations can be integrated and the following solution is

obtained [69]:
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𝜃 = 0 (A.76)

�̇� =
𝐷𝜇

𝐴
(A.77)

�̇� =
𝐶𝜇

𝐴
𝑐𝑜𝑠(𝜃0)

(︂
𝐴

𝐶
− 1

)︂
, (A.78)

where 𝐷 and 𝜇 are integration constants related to the angular velocity of the Poinsot solid. 𝜓, 𝜃

and 𝜑 are the three Euler angles with the 3-1-3 convention. In this case for simplicity, the following

test case parameters are going to be defined: 𝐴 = 1, 𝐵 = 1, 𝐶 = 2, 𝜇 = 1 and 𝐷 = 1. The initial

conditions for the test case are: 𝜃0 = 𝜋
3 , 𝜑0 = 0, 𝜓0 = 0, 𝜃0 = 0, 𝜑0 = − 1

4 and 𝜓0 = 1. With this

particular conditions, the analytical solution is:

𝜃(𝑡) =
𝜋

3
(A.79)

𝜓(𝑡) = 𝑡 (A.80)

𝜑(𝑡) = −1

4
𝑡. (A.81)

The comparison between the analytical solution and the numerical results is done in Figure A-15.

For 𝑁 = 50, a quite good agreement is achieved as it can be observed. The discontinuities in the

angle 𝜓 are due to the definition of Fortran trigonometric functions.

The error of a generic Euler angle 𝐸𝑢_𝐴𝑛𝑔 with a discretization of 𝑁 time steps is defined as:

𝜖𝐸𝑢(𝑡) = 𝐸𝑢_𝐴𝑛𝑔𝑁 (𝑡)− 𝐸𝑢_𝐴𝑛𝑔𝑒𝑥𝑎𝑐𝑡(𝑡). (A.82)

This error is plotted for the three Euler angles in Figure A-16. 𝜃100 and 𝜃50 are almost overlapped,

because the error in 𝜃 is several orders of magnitude smaller. This is due to the null acceleration in 𝜃,

so there is no error propagation through the Newmark integration. 𝜓 and 𝜑 show a linear increase of

the error with time, and also a quadratic convergence with time discretization refinement. Therefore,

for a large integration time, the time step size also has to be decreased if the numerical error has to

be below a certain threshold.
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Figure A-15: Poinsot solid. Comparison of numerical and exact solution. 𝑡 = 0 to 10. 𝑁 = 50.
Newmark Trapezoidal time integration.
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Figure A-16: Poinsot solid. Analysis of numerical error with time for 𝑁 = 50 and 𝑁 = 100. 𝑡 = 0
to 10. Newmark Trapezoidal time integration.

Finally, the error convergence is inspected in more detail in Figure A-17. The error is averaged

throughout all the time domain as follows:
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𝜖𝑁𝐸𝑢 =

𝑁∑︁

𝑖=1

|𝐸𝑢_𝐴𝑛𝑔𝑁𝑖 − 𝐸𝑢_𝐴𝑛𝑔𝑟𝑒𝑓𝑖 |/𝑁. (A.83)

Here it can be clearly seen that the error convergence is second order, as it was observed in

previous cases. Once again, this proves the correct implementation of the Newmark algorithm,

Table A.1. 𝜃 error does not converge because it is not integrated: acceleration is automatically set

to zero due to the dynamic equations 𝜃 = 0, and its non-zero value is probably due to the numerical

precision provided during the initial conditions set up.
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Figure A-17: Poinsot solid. Analysis of convergence of numerical error with time step size. 𝑡 = 0 to
10. Newmark Trapezoidal time integration.

A.2.3 Spherical Pendulum

The Spherical Pendulum is a well known of problem of solid mechanics. It consists of a point mass

(zero inertia tensor around its centre of mass) that is fixed at a distance 𝑙 to an inertial system 𝑋0,

see Figure A-18.
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Figure A-18: Spherical pendulum. Analysis of convergence of numerical error with time step size.
𝑡 = 0 to 10. Newmark Trapezoidal time integration.

The point mass 𝑚 is going to be under the effect of a uniform gravitational field: �⃗� = [0, 0,−𝑔]𝑋0 .

This configuration does not have an analytic solution for a generic set of initial conditions 𝜃, 𝜓, 𝜃

and �̇� [77]. However, for some specific initial conditions, a solution exists. In particular, for the

following initial conditions, a perpetual circular motion in the 𝑥 − 𝑦 plane is achieved, centrifugal

force is balanced with gravity and cable tension:

𝜃 = 𝜃0 (A.84)

�̇� = −
√︂

𝑔

𝑙 𝑐𝑜𝑠(𝜃0)
(A.85)

𝜓 = 𝜓0 (A.86)

𝜃 = 0. (A.87)
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Figure A-19: Spherical pendulum. Comparison of 𝜓 and 𝜃 between numerical solution with 𝑁 = 50
and exact values. 𝑡 = 0 to 2. Newmark Trapezoidal time integration.

Moreover, for this initial conditions the analytical solution of the centre of mass is a circumference

in the 𝑥− 𝑦 plane:

𝑥𝐶𝑀 (𝑡) = 𝑙 𝑠𝑖𝑛(𝜃0) 𝑐𝑜𝑠

(︂
𝜓0 −

√︂
𝑔

𝑙 𝑐𝑜𝑠(𝜃0)
𝑡

)︂
(A.88)

𝑦𝐶𝑀 (𝑡) = 𝑙 𝑠𝑖𝑛(𝜃0) 𝑠𝑖𝑛

(︂
𝜓0 −

√︂
𝑔

𝑙 𝑐𝑜𝑠(𝜃0)
𝑡

)︂
(A.89)

𝑧𝐶𝑀 (𝑡) = −𝑙 𝑐𝑜𝑠(𝜃0). (A.90)

During this test case, the following parameters are going to be used: 𝑔 = 9, 𝑙 = 1, 𝜓0 = −𝜋
2 ,

𝜃0 = 𝜋
4 . The movement is going to be characterized by 𝜓 and 𝜃, see Figure A-19. For 𝑁 = 50 a

quite good agreement between the numerical and analytical solution is obtained. 𝜃 remains constant

and 𝜓 keeps decreasing with a uniform speed. 𝜓 experiences a jump between −𝜋 and 𝜋 due to the

definition of the trigonometric functions in Fortran.
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Figure A-20: Spherical pendulum. Comparison of 𝑥 and 𝑦 between numerical solution with 𝑁 = 50
and exact values. Newmark Trapezoidal time integration.

Then, in Figure A-20 the trajectory in the 𝑥− 𝑦 plane of the centre of mass of the pendulum is

shown. It can be seen how for these initial conditions the pendulum is oscillating in the 𝑥− 𝑦 plane,

as it was expected. Once again, only for 𝑁 = 50 a quite good agreement is achieved.

Euler Angle error, which was defined in Equation A.82, is plotted as a function of time for 𝜓

and 𝜃 in Figure A-21. 𝜃50 and 𝜃100 cannot be distinguised because they are much smaller compared

to 𝜓50 and 𝜓100. The reason for this is that 𝜃 is a constant throughout integration and does not

propagate the integration error of its acceleration, as it is zero (this also occurred in subsection A.2.2).

Observing 𝜓 the error increases linearly with time, and shows a quadratic convergence with the time

step size. This coincides with the values expected from a Newmark Trapezoidal time integration,

Table A.1. The second order convergence is further verified in Figure A-22. Here the convergence

of the position of the pendulum is assessed, taking as an error the averaged norm of the deviation

from the reference:
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Figure A-21: Spherical pendulum. Euler Angles error evolution with time. Compared cases: 𝑁 = 50
and 𝑁 = 100. 𝑡 = 0 to 2. Newmark Trapezoidal time integration.
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Figure A-22: Spherical pendulum. Analysis of convergence of numerical error in position with time
step size. 𝑡 = 0 to 2. Newmark Trapezoidal time integration.

𝜖𝑁𝑥 =

𝑁∑︁

𝑖=1

|�⃗�𝑁 − �⃗�𝑟𝑒𝑓𝑖 |/𝑁. (A.91)
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Finally, in Figure A-23 and Figure A-24 energy preservation is studied. First, in Figure A-23 it

is shown that the energy conservation also follows a second order convergence, as it was expected.

Then, in Figure A-24 the evolution of energy conservation with time is presented for 𝑁 = 5000. It

can be seen how the method is slightly dissipative, as it was seen in subsection A.2.1. However, it is

interesting to see that at the end of the oscillation period, the energy seems to recover once again its

original value. The reason for this is that the error done during the Newmark integration depends on

the sign of the higher order derivatives of the acceleration, so depending on the particular scenario,

it may behave as dissipative or produce energy.
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Figure A-23: Spherical pendulum. Convergence of energy preservation with time step size. 𝑡 = 0 to
2. Newmark Trapezoidal time integration.
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Figure A-24: Spherical pendulum. Energy preservation evolution with time. 𝑁 = 5000. 𝑡 = 0 to 2.
Newmark Trapezoidal time integration.

A.2.4 Double Pendulum

A double pendulum is selected as the final test case to test the multibody solver. This system is

known to have a chaotic behaviour: a tiny perturbation in the initial conditions gives a completely

different solution for large time steps [110]. Moreover, two bodies are involved which make the system

non trivial. Consequently, this is a convenient system to test all the capabilities of the multibody

solver. In the present test case the movement is going to be studied only in the 𝑦0 − 𝑧0 plane, see

Figure A-25. Note that it could be resolved in 3D, because the Multibody solver is developed to

cover all the three dimensional degrees of freedom, however, for simplicity and to compare with

benchmark solution only 2D initial conditions are provided. Therefore, the initial system is going

to be defined by: 𝜃1 = 0, 𝜃2 = 𝜋
2 , 𝜃1 = 0, 𝜃2 = 0, 𝑙1 = 1, 𝑙2 = 1, 𝑚1 = 1, 𝑚2 = 1, 𝐼1 = 1 and

𝐼2 = 1. 𝑚 and 𝐼 refer to the mass and moment of inertia around the 𝑥 axis, the only rotation degree

of freedom that is important in the 2𝐷 oscillation. Moreover, gravity constant is defined as 𝑔 = 9,

down in the negative 𝑧0 direction.
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Figure A-25: Double pendulum. Sketch of the double pendulum system with parameters that define
the problem.

This problem does not have an analytical solution. Therefore, to compare results numerical

solutions from other authors are used [3]. The 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is defined using this code, with the same

initial conditions, an integration time between 𝑡 = 0 and 5, 𝑁 = 500000 time steps, and a 4𝑡ℎ order

𝑅𝑢𝑛𝑔𝑒−𝐾𝑢𝑡𝑡𝑎 integrator. Based, on the observed results, the discretization error of the 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

is much smaller than the cases with which it is compared, so it can be considered as an ”𝑒𝑥𝑎𝑐𝑡”

solution.

In Figure A-26 and Figure A-27 the 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 data is compared with the Multibody solver for

𝑁 = 50. It can be seen how the movement is chaotic, both pendulums start swinging following

complicated trajectories. Despite only having 50 time steps, a really good agreement is observed.
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Figure A-26: Double pendulum. Comparison of the 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑥−𝑦 coordinates with the numerical
data obtained with the Multibody solver for 𝑁 = 50. 𝑡 = 0 to 5. Pendulum 1 𝑋1, and pendulum 2
𝑋2. Newmark Trapezoidal time integration.
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Figure A-27: Double pendulum. Evolution of 𝜃 with time. Comparison of the 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 and
numerical data obtained with the Multibody solver for 𝑁 = 50. 𝑡 = 0 to 5. Pendulum 1 𝑋1, and
pendulum 2 𝑋2. Newmark Trapezoidal time integration.
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Then, the error in the position of the pendulums with time is analysed in Figure A-28. The error

is defined for a generic coordinate as:

𝜖𝑞 = 𝑞𝑁 − 𝑞𝑟𝑒𝑓 . (A.92)

Now the error evolution with time does not follow periodic or linear patterns as it was seen in the

previous test cases. The reason for this is that now the higher order derivatives of the acceleration do

not follow simple movements, so the residual during the time integration is also chaotic. However,

a linear trend can be seen in the amplitude of the oscillations: they increase linearly with time.

Moreover, between 𝑁 = 50 and 𝑁 = 100, a quadratic convergence is observed. It is curious to see

that the refined solution follows the same error shape of the one with 𝑁 = 50, but now with 4 times

less amplitude. This is of course once again due to the higher order derivatives of the acceleration,

which remain approximately the same throughout the path, but now ∆𝑡 is much smaller, so the

residual is scaled accordingly.
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Figure A-28: Double pendulum. Analysis of ∆𝑧 and ∆𝑦 position error with respect to the𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.
𝑡 = 0 to 5. 𝑁 = 50 and 𝑁 = 100. Newmark Trapezoidal time integration.

Second order convergence for this chaotic case is verified in Figure A-29. Here the error is defined

as in Equation A.91, an averaged of the position error within the time integration period. The results

are plotted with a solid line for pendulum 1, 𝑋1, and with a cross for pendulum 2, 𝑋2. In both

pendulums second order convergence is observed from the slope of the graph.
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Figure A-29: Double pendulum. Analysis of convergence of numerical error with time step size.
𝑡 = 0 to 5. Newmark Trapezoidal time integration.

Finally, energy conservation is studied in Figure A-30 and Figure A-31. Energy is defined as:

𝐸 =
1

2
𝑚1(𝑦1

2 + 𝑧1
2) +

1

2
𝑚2(𝑦2

2 + 𝑧2
2) +

1

2
𝐼2𝜃2

2
+

1

2
𝐼2𝜃1

2
+𝑚1𝑔𝑧1 +𝑚2𝑔𝑧2. (A.93)

Initially, the energy of the system is 𝐸0 = −18. Energy preservation converges with smaller time

steps, see Figure A-30, where a second order convergence is obtained. Energy conservation with

time is shown in Figure A-31. Most of the time the energy budget is negative, which means that

the integration is dissipative. Nevertheless, around 𝑡 = 5 the system seems to recover energy due to

integration error. Once again, second order convergence can be seen when the time step is refined.
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Figure A-30: Double pendulum. Energy preservation with smaller time steps. 𝑡 = 0 to 5. Newmark
Trapezoidal time integration.
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Figure A-31: Double pendulum. Energy conservation with time. 𝑡 = 0 to 5. 𝑁 = 5000 and
𝑁 = 10000. Newmark Trapezoidal time integration.
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Appendix B

Dragonfly strokes visualization

179



180



B.1 Hovering, phased-stroking 𝜓0 = 0∘

(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 4.00 t/T

Figure B-1: Q-criterion, colored by z-vorticity component.
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(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 4.00 t/T

Figure B-2: Vorticity z-component slices.
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(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 3.80 t/T

Figure B-3: Vertical y-velocity component slices.

183



184



B.2 Hovering, leading-hindwing 𝜓0 = 90∘

(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 4.00 t/T

Figure B-4: Q-criterion, colored by z-vorticity component.
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(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 4.00 t/T

Figure B-5: Vorticity z-component slices.
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(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 4.00 t/T

Figure B-6: Vertical y-velocity component slices.
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B.3 Hovering, leading-forewing 𝜓0 = −90∘

(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 4.00 t/T

Figure B-7: Q-criterion, colored by z-vorticity component.
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(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 4.00 t/T

Figure B-8: Vorticity z-component slices.

190



(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 4.00 t/T

Figure B-9: Vertical y-velocity component slices.
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B.4 Forward flight, counter-stroking 𝜓0 = 180∘

(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 4.00 t/T

Figure B-10: Q-criterion, colored by z-vorticity component.
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(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 4.00 t/T

Figure B-11: Vorticity z-component slices.
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(a) 3.20 t/T (b) 3.40 t/T

(c) 3.60 t/T (d) 3.80 t/T

(e) 4.00 t/T

Figure B-12: Vertical y-velocity component slices.
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Appendix C

Dragonfly results for the 4 first

strokes
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(c) Hovering, 𝜓0 = −90∘, leading-forewing
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(d) Forward flight, 𝜓0 = 180∘, counter-stroking

Figure C-1: Lift coefficients for different strokes. 4 first flapping cycles.
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(d) Forward flight, 𝜓0 = 180∘, counter-stroking

Figure C-2: Drag coefficients for different strokes. 4 first flapping cycles.
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(d) Forward flight, 𝜓0 = 180∘, counter-stroking

Figure C-3: Power coefficients for different strokes. 4 first flapping cycles.
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(c) Hovering, 𝜓0 = −90∘, leading-forewing
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(d) Forward flight, 𝜓0 = 180∘, counter-stroking

Figure C-4: Non-dimensional x-coordinate of point of force application. 4 first flapping cycles.
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