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A standard approach to quantum computing is based on the idea of promoting a classically simulable and
fault-tolerant set of operations to a universal set by the addition of “magic” quantum states. In this context,
we develop a general framework to discuss the value of the available, nonideal magic resources, relative to
those ideally required. We single out a quantity, the quantum-assisted robustness of magic (QROM), which
measures the overhead of simulating the ideal resource with the nonideal ones through quasiprobability-
based methods. This extends error mitigation techniques, originally developed for noisy intermediate-scale
quantum devices, to the case where qubits are logically encoded. The QROM shows how the addition of
noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit and
enables the construction of explicit protocols, interpolating between classical simulation and an ideal
quantum computer.

DOI: 10.1103/PhysRevLett.127.200506

Introduction.—Large-scale quantum computing would
allow us to solve computational problems that are intrac-
table for classical computers. Because of the fragility of
quantum information encoded in physical systems, quan-
tum error correction will be a central component of these
machines. However, several restrictions exist to the
possibility of achieving a “universal” set of fault-tolerant
quantum gates [1,2]. In a standard setting, the “stabilizer
operations” (which involve computational basis prepara-
tion and measurement, Clifford unitaries, partial trace, and
classical randomness [3,4]) are fault tolerant and hence
“free.” Curiously, the Gottesman-Knill theorem tells us that
these operations can be simulated efficiently on a classical
computer [3,5]. Stabilizer operations can be promoted to
universality by injecting magic states, which are thus a
“resource” for quantum computation. Magic states may
come at a limited rate, since their fault-tolerant preparation
involves complex distillation schemes [6–11]. Also, much
of the residual noise in an error corrected computation can
originate from these elements.
In this Letter, we go beyond the dichotomy free and

resourceful and think in terms of the resource content of an
ideal quantum resource relative to an available one. We
formulate questions such as “How valuable is an ideal
magic state, compared to its noisy version, as a function of
the noise level?” or “How valuable are the r available magic
states, compared to the t > r ideally needed?”. Our notion
of relative value stems from the overhead of simulating
ideal resources with nonideal ones through quasiprobabil-
ity-based error mitigation [12–16]. As such, it is endowed
with a clear operational significance.

Quasiprobability-based error mitigation is a technique
that allows one to remove bias from the outcome proba-
bilities of a measurement by expressing the ideal circuit
elements as linear combinations of nonideal ones. The
coefficients of the decomposition define a quasiprobability,
since they are real and sum to one. By sampling from the
absolute value of this quasiprobability and performing
the corresponding nonideal operations, one can remove
the bias at the price of a sampling overhead.
We extend these ideas from noisy intermediate-scale

quantum devices [12–16] to fault-tolerant quantum com-
puting. In this context, we single out a measure, the
quantum-assisted robustness of magic (QROM), which,
loosely speaking, is a distance of the ideal elements relative
to the available ones. The QROM provides a unified setting
to analyze several central computational and simulation
tasks, investigated separately in the literature: (1) Classical
simulation: classically sample from the outcome probabil-
ities of an ideal quantum circuit with tmagic T states jTi ¼
ðj0i þ eiπ=4j1iÞ= ffiffiffi

2
p

as input (t is known as the T count).
Having no quantum resources at hand, the QROM coin-
cides with the robustness of magic (ROM), a known
measure of the overhead of quasiprobability-based classical
simulation [4,17–19]. (2) Error mitigation in the quantum
error corrected regime: given a quantum circuit involving t
ideal T states, obtain the average of measurement outcomes
using a circuit with t noisy T states. The overhead is
measured by the QROM [20]. (3) Quantum-assisted simu-
lation: obtain the average of measurement outcomes of an
ideal quantum circuit involving t ideal T states, given that
we can inject only r < t noisy T states. This task can be
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seen as an intermediate scenario between classical simu-
lation (r ¼ 0) and error mitigation (r ¼ t), where some
quantum resources are available but fewer than what is
needed. The residual overhead is quantified by the QROM.
By analytically or numerically solving optimization

problems for the QROM, we construct quasiprobability-
based error mitigation and quantum-assisted simulation
algorithms in the error corrected regime and analyze how
the addition of quantum resources gradually interpolates
between a classical simulation and an ideal quantum
computation.
Quantum-assisted robustness of magic.—The QROM is

a generalization of the ROM and formalizes the idea of
robustness of an ideal quantum computational resource
relative to the (fewer, noisier) available ones. Consider a
quantum computerwheremagic states are injected bymeans
of t ancilla qubits. A resource state σr on r ≤ t qubits is
given, e.g., T states resulting from a number of distillation
rounds. Because of practical limitations, these states are, in
general, fewer and noisier than required by the ideal circuit.
In broad generality, one can denote by QtðσrÞ all the t-

qubit states achievable from the resource σr by means of
stabilizer operations. The relative robustness of a t-qubit
ideal resource ρt with respect to the available resource σr is

RðρtjσrÞ ¼ min

�
s ≥ 0

���� ρt þ sη
1þ s

∈ QtðσrÞ; η ∈ QtðσrÞ
�
:

ð1Þ
The relative robustness represents the minimum amount of
mixing between ρt and a state in QtðσrÞ such that the
resulting state is also in QtðσrÞ. Since all pure stabilizer
states on t qubits can be generated by applying t-qubit
Clifford unitaries to j0i⊗t [3], RðρtjσrÞ is the robustness
relative to a set given by stabilizer states augmented by the
available resources, as illustrated in Fig. 1.

The QROM is the negativity required to decompose the
ideal resource ρt in terms of the available ones in QtðσrÞ,

RðρtjσrÞ ¼ min
�X

x

jqxj
����ρt ¼

X
x

qxηx; ηx ∈ QtðσrÞ
�
:

ð2Þ

Note that qx ∈ R and
P

x qx ¼ 1, so qx defines a
quasiprobability. The two quantities just defined are closely
related, as they satisfy RðρtjσrÞ ¼ 1þ 2RðρtjσrÞ (see
Supplemental Material Sec. I [22]). When σr can be written
as a mixture of stabilizer states, the QROM reduces to the
well-known ROM of Ref. [17] [denoted by RðρtÞ], which
measures the overhead to classically simulate the resource
ρt via the Gottesman-Knill theorem. We will show that
RðρtjσrÞ has an analog interpretation in the presence of the
quantum resource σr. The QROM has desirable properties
of a resource theoretical measure [25], similar to those of
the Wigner negativity [26–29]: faithfulness, monotonicity,
convexity (see Supplemental Material Sec. II [22]).
In general, RðρtjσrÞ ≤ RðρtÞ. As we shall see, the

QROM makes quantitative the intuition that the available
quantum resources decrease the negativity and hence the
computational overhead. The QROM is an operationally
motivated concept suitable to study classical simulation,
quantum-assisted simulation, and error mitigation in the
error corrected regime under a unified umbrella.
Error mitigation in the quantum error corrected

regime.—The first task where the QROM plays a role is
error mitigation. We want to perform a quantum compu-
tation on n data qubits, which can be assumed to be
initialized in state j0i⊗n. The circuit involves Clifford
unitaries, typically taken from a fundamental gate set,
and T gates,

T ¼ j0ih0j þ eiπ=4j1ih1j: ð3Þ

The latter promote the computation to universality [30].
Since we assume our qubits to be logically encoded in a
suitable quantum error correcting code, we take all Clifford
operations to be perfect (this assumption will be relaxed
later). Each one of the t T gates is realized via a gate
teleportation gadget involving a T state jTi [25]. In
practice, T states will be noisy. While our approach is
general, for simplicity we focus on noisy magic states with
standard form

τδ ¼ ð1 − δÞτ þ δI=2; ð4Þ

where τ ¼ jTihTj, I is the identity matrix, and δ ∈ ½0; 1� is
the noise level [31]. The quantum computation terminates
with the measurement of a Pauli operator P. We want to
estimate its average hPi in the final state of the ideal circuit.
Since T states are noisy, the measured average cannot be

expected to be an unbiased estimator of hPi. In order to

FIG. 1. Relative robustness for a single qubit in the Bloch
sphere. The black dot represents the pure magic state jTi. The
orange, full octahedron represents the convex hull of stabilizer
states, while the orange shaded region is the set Q1ðτδÞ
representing all states achievable from the available resource
[a noisy T state τδ ¼ ð1 − δÞjTihTj þ δI=2 with δ ¼ 0.1] by
stabilizer operations. Geometrically, the relative robustness is the
minimum mixing needed to bring the T state inside Q1ðτδÞ (in
this case, mixing with ZτδZ).
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cancel the bias via error mitigation, first we find a
decomposition of the form in Eq. (2). Ideally we wish to
find an optimal decomposition according to Eq. (2) (with
ρt ¼ τ⊗t and σt ¼ τ⊗t

δ ), but in practice the decomposition
need not be optimal. Setting kqk1 ¼

P
x jqxj, the algorithm

works as follows: (1) Sample x with probability jqxj=kqk1.
(2) Run the quantum circuit with input ηx ⊗ j0ih0j⊗n [32].
(3) Measure the Pauli operator P, getting outcome p ¼ −1
or 1. (4) Output o ¼ pkqk1signðqxÞ.
Sampling M times and taking the arithmetic average of

the outputs, one obtains an unbiased estimator for hPi. By
Hoeffding’s inequality [33], after M ≥ 2 lnð2=ϵÞkqk21=Δ2

runs, the estimate is within additive error Δ of hPi with
probability 1 − ϵ (see Supplemental Material Sec. IV [22]).
Hence, this protocol cancels the error on hPi from the noisy
T states at the price of a sampling overhead. By using an
optimal decomposition,

M ¼ 2 lnð2=ϵÞRðτ⊗tjτ⊗t
δ Þ2=Δ2 ð5Þ

suffices. Since for an ideal quantum computer one needs
Mideal ¼ 2 lnð2=ϵÞ=Δ2 runs to obtain the same guarantee,
the QROM squared quantifies the overhead.
Finding the optimal decomposition in Eq. (2) is a convex

optimization problem [34] whose size scales superexpo-
nentially with the T count [35]. While such an approach is
unscalable, we obtain upper and lower bounds

Mðτ⊗tÞ
Mðτ⊗t

δ Þ ≤ Rðτ⊗tjτ⊗t
δ Þ ≤ ½Rðτ⊗kjτ⊗k

δ Þ�t=k: ð6Þ

Lower bounds can be derived from any convex magic
monotone M, see Supplemental Material Sec. V [22].
Taking M to be the dyadic negativity [36], we show that
Rðτ⊗tjτ⊗t

δ Þ grows exponentially with the T count t for any
δ ∈ ð0; 1�,

Rðτ⊗tjτ⊗t
δ Þ ≥ min

�
1

ð1 − δ=2Þt ; ½2ð2 −
ffiffiffi
2

p
Þ�t
�
:

The upper bounds are based on the submultiplicativity
of the QROM. Taking t to be divisible by k, τ⊗t ¼
τ⊗k ⊗ … ⊗ τ⊗k, decompositions for τ⊗k give (suboptimal)
block decompositions for τ⊗t. These can be used in
practical error mitigation protocols.
Let us start with k ¼ 1. The QROM is

RðτjτδÞ ¼
� ffiffiffi

2
p ¼ RðτÞ; δ > δth;
1

1−δ ; δ ≤ δth:
ð7Þ

Above a noise threshold δth ¼ 1 −
ffiffiffi
2

p
=2 ≈ 0.293 the ROM

is recovered [17]. The optimal decomposition for δ ≤ δth is
instead

τ ¼ 1 − δ=2
1 − δ

τδ −
δ=2
1 − δ

ZτδZ; ð8Þ

where Z is the Pauli z matrix. The threshold corresponds to
the point where the noisy magic state τδ enters the set of
stabilizer states (inner octahedron in Fig. 1). By tuning the
noise, the QROM interpolates between error mitigation and
classical simulation. The latter is recovered at δ ¼ δth, since
at that point the noise is so large that the quantum resources
can be classically simulated efficiently.
For k ¼ 2, 3 the situation is similar, but computing the

QROM exactly is hard. In Supplemental Material Sec. VI
[22] we obtain explicit decompositions whose performance
is presented in Fig. 2.
In the small error regime, realistic for quantum error

corrected setups (δ ≤ 10−2), global decompositions only
marginally outperform the single-qubit decomposition of
Eq. (8) [37]. Already at δ ¼ 10−2 and moderate overheads
(∼102) one can error mitigate in regimes (t ∼ 230) in which
classical simulation is currently unfeasible even with state-
of-the-art algorithms [36,38,39].
Error mitigation with noisy Cliffords.—So far, we

assumed that Clifford unitaries are ideal. In reality, they
have a residual noise. In this situation it is more natural to
perform error mitigation at the level of channels rather than
states. Consider a simple error model where each k ¼ 1, 2-
qubit Clifford UðkÞ is independently affected by depolari-
zing noise,

UðkÞ
δc

¼ ð1 − δcÞUðkÞ þ δcGk; ð9Þ

FIG. 2. QROM as a function of noise. kth root of the QROM of
τ⊗k with respect to τ⊗k

δ , as a function of the noise level δ.
R̄ðτ⊗kjτ⊗k

δ Þ are upper bounds for the corresponding QROM,
based on analytical decompositions. At δ ¼ δth, the k ¼ 2 (k ¼ 3)
upper bound recovers exactly (approximately) the ROM Rðτ⊗kÞ
of Ref. [17]. The black solid line represents the bound
Rboundðτ⊗tjτ⊗t

δ Þ1=t, which for small δ goes as 1þ δ=2. While
k ¼ 2, 3 outperform k ¼ 1, the improvement is modest for small
level of noise.
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where GkðρÞ ¼ I=2k for all ρ and δc ∈ ½0; 1� is the noise
level on the Cliffords. The noise affects not only the
Clifford unitaries on the data qubits, but also those involved
in the gate teleportation gadget. The implementable T
gates, denoted by T δ;δc, are then noisy both due to δ > 0

and δc > 0. Consider an ideal circuit realizing a unitary U

by a sequence of nð1Þc single-qubit Cliffords, nð2Þc 2-qubit
Cliffords and t T gates. To reproduce the expectation values
hPi of this ideal circuit, find a quasiprobability decom-
position U ¼ P

x qxAx, with Ax available noisy channels

(in this case, Ax ¼ T δ;δc , U
ðkÞ
δc

and compositions thereof).
The minimal negativity over all such decomposition is the
“channel QROM” RðUjfAxgÞ.
Given any decomposition, a protocol canceling the bias

on hPi due to noisy gates is obtained following steps 1, 3,
and 4 of the previous algorithm, but replacing step 2 with
(20) Run the noisy quantum circuit Ax.
As before, after M ≥ 2 lnð2=ϵÞkqk21=Δ2 runs, the esti-

mate is within error Δ of hPi with probability 1 − ϵ.
RðUjfAxgÞ2 is then the minimal sampling overhead. In
Supplemental Material Sec. VII [22] we obtain a (block)
decomposition of U by separately finding a quasiprob-
ability decomposition for T gates, 1- and 2-qubit Clifford
gates. For δ < δth, the corresponding sampling overhead
[which upper bounds RðUjfAxgÞ] is
�

2 − δ

ð1 − δÞð1 − δcÞ2
− 1

�
2t
�
1þ δc

2

1 − δc

�2nð1Þc
�
1þ 7δc

8

1 − δc

�2nð2Þc

:

For δc ¼ 0we recover 1=ð1 − δÞ2t, as expected from Eq. (7)
[40]. The T-gate overhead is rather close to the one found
for ideal Clifford gates.
Magic state distillation protocols [1] can be combined

with error mitigation, in order to decrease the initial T-state
error. In Fig. 3, we illustrate this by presenting the
maximum number of Cliffords and T gates whose noise
can be mitigated with moderate overhead (≤ 102) after
zero, one or two rounds of the Bravyi-Haah 14 ↦ 2 magic
state distillation protocol [7]. To highlight the performance
of the error mitigation stage, we assumed an ideal dis-
tillation protocol. However, we show in Supplemental
Material Sec. VIII [22] that also the noise in the Clifford
unitaries required in the distillation round can be error
mitigated.
Quantum-assisted simulation.—What happens when the

T count t of the ideal quantum circuit exceeds the available
resources? That is indeed a generic situation. Specifically,
suppose we have at our disposal only r < t noisy T states
and ideal Cliffords to simulate the circuit. We call this task
“quantum-assisted simulation,” as it interpolates between
classical simulation (where r ¼ 0) and error mitigation
(where r ¼ t).
Injection of insufficient T states, as well as noise on each

T, both lead to bias on the expectation value hPi, which can

be corrected by quasiprobability methods. To do so, find a
decomposition of the form in Eq. (2) with ρt ¼ τ⊗t and
σr ¼ τ⊗r

δ , with r a fraction of t. Then, apply the algorithm
steps 1–4 above. By construction, in step 2 of the protocol
at most r noisy magic states are injected, rather than the t
ideally required. Nevertheless, after taking

M ¼ 2 lnð2=ϵÞRðτ⊗tjτ⊗r
δ Þ2=Δ2 ð10Þ

samples, the output average will be within Δ of the ideal
average with probability 1 − ϵ. From

Rðτ⊗tjτ⊗r
δ Þ ≤ ½Rðτ⊗t=rjτδÞ�r; ð11Þ

explicit protocols can obtained by decomposing each t=r T
state using a single noisy T state.
We find analytical decompositions upper bounding

the QROM for t=r ¼ 2 and t=r ¼ 3 (see Supplemental
Material Sec. VI [22]). The performance of the correspond-
ing protocols is compared to the best-known classical
algorithms based on the ROM in Fig. 3. For δ ¼ 10−2

and t=r ¼ 3 (inject a third of the required T states), we get a
scaling overhead 1.45715t, compared to 1.667t of the best
classical algorithm given in Ref. [18]. Even injecting a
fraction of the required quantum resources leads to orders
of magnitude improvements over the classical protocol.
The previous protocol injects fewer magic states at the

price of a sampling overhead. Nevertheless, it still requires
an n-qubit quantum computer. However, suppose we only
have r < n noisy qubits and we want to use them to assist a
classical computer to estimate outcome probabilities of an
ideal circuit with T count t ¼ kr (k ¼ 2; 3;…). We can
proceed as follows. If P ¼ Π1 − Π−1, in steps 2-3 of the
previous algorithm we need to sample the measurement
outcome p ¼ �1 with probability

FIG. 3. Left: error mitigation and distillation. Maximum
number of T gates (t) and Cliffords (nc) that can be error
mitigated with moderate overhead (≤ 100) after 0, 1, and 2
rounds of ideal Bravyi-Haah 14 ↦ 2 distillation (from dark to
lighter). The initial noise parameters are δc ¼ 10−5 and
δ ¼ 5 × 10−2. We took the worst-case scenario where nc are
all 2-qubit Cliffords. Right: classical vs quantum-assisted sim-
ulation. Ratio between the quantum-assisted and classical number
of samples M=Mclassical needed to estimate the average value of a
Pauli observable with given precision, as a function of the noise δ
and the T count t of the circuit, for t=r ¼ 3 (inject a third of the
required T states).
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Tr½ΠpAðηx ⊗ j0ih0j⊗nÞ�; ð12Þ

where A is some (adaptive) Clifford circuit and ηx ∈
Qtðτ⊗s

δ Þ with s ≤ r. To sample from the above, we make
use of the extended Gottesman-Knill theorem [41] (also see
[38,39,42]). Given a description of A we classically obtain
in polyðnþ tÞ time a description of a new adaptive Clifford
circuit Ā involving at most s measurements. Then, from a
sample of Tr½ΠðpÞĀðτ⊗s

δ Þ� and a polyðnþ tÞ computation,
one can obtain a sample of Eq. (12). Steps 2 and 3 have now
been reduced to a task that can be performed on the s-qubit
noisy quantum computer. The number of required samples
is again quantified by the QROM Rðτ⊗t=rjτδÞr.
Discussion.—Our analysis led to practical protocols for

error mitigation in currently classical intractable regimes
and quantum-assisted simulation outperforming the best-
known quasiprobability-based algorithms. These proposals
appear relevant for a regime in which full magic state
distillation is unavailable. Alternative quantum-assisted
robustness of magic can also be defined, e.g., by restricting
stabilizer operations to account for specific architecture
limitations. In this regard it should be also noted that our
work, like all quasiprobability-based error cancellation
methods, is limited by the requirement of well-characterized
noise.We suggest that similar approaches can be envisioned
to boost alternative simulation methods based on the
stabilizer rank [36,38,39,43,44] or on generalized Wigner
functions [45,46].

Our work was supported by ERC Grant EQEC
No. 682726. A. C. acknowledges funding from the
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Research Foundation) under Germany’s Excellence
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Note added.—Recently, we became aware of an indepen-
dent effort to use error mitigation for universal quantum
computing via encoded Cliffordþ T circuits [47].
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