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Abstract 
Ampelmann provides a service transferring people and cargo from a host vessel to offshore structures. 

Due to the increase in the diversity of offshore structures, a study is started to investigate how 

Ampelmann can join the market of working with floating structures. An Ampelmann system 

compensates vessel motions of the host vessel and connects via a gangway to a target structure, which 

currently are fixed structures or a barely moving, large vessels. The gangway is exerting a constant 

force on the target structure to stay connected. Connecting to relatively small floating bodies, using 

this operational method, creates a dynamic interaction between the forces exerted by the gangway 

and the response of the floating body. To study whether this dynamic interaction should be 

implemented in the workability analyses of Ampelmann, the workability including and excluding the 

dynamic interaction is studied and the result is compared. 

Potential new projects for Ampelmann are transferring maintenance personal onto CALM buoys. 

CALM buoys are on- and offloading buoys for tankers to mainly transport crude oil to an onshore 

facility. The current method of calculating the workability, which shows how well an Ampelmann 

system can operate for a certain project, is based on a kinematic approach. In a numerical, time-

domain model (aNySIM), the dynamic interaction of the gangway forces and the response of the CALM 

buoy is implemented. 

Full-scale Ampelmann tests show that the gangway forces can be modeled as damping forces in the 3 

degrees of freedom of the gangway. A sensitivity study shows that the ratio between the 

hydrodynamic damping of the buoy and the gangway damping is governing in the effect of the 

gangway forces affecting the response of the buoy. According to diffraction calculations of the buoy, 

the hydrodynamical damping can vary significantly in the frequency spectrum. For low- and high-

frequency waves the hydrodynamical damping of the buoy is significantly lower than in the mid-

frequency spectrum. 

The numerical model in aNySIM and a python model, based on the analytical approach, are used to 

study the result of the dynamic interaction using low-frequency wave conditions for in-plane motion. 

Both models show that for low-frequency wave conditions the gangway forces decreases the 

amplitude of the response of the buoy up to 10%. 

To reach the goal of this thesis the numerical model in aNySIM is extended to 3d, implementing all 

degrees of freedom for the buoy and the gangway. Using this model, a workability study is performed 

to study the effect of the dynamic interaction. For every sea state the response of the buoy is 

simulated, monitoring the operational limits of the Ampelmann system. Comparing the workability 

results of a model including the dynamic interaction and of a model based on a kinematic approach, 

show an improvement in workability of 1% due to the gangway damping forces. 
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1. Introduction 
 

1.1 Background 
Ampelmann is a Dutch, Delft-based offshore 
company, which provides services in safe people 
and cargo offshore transfer. The head office is 
located in Delft and to reach the international 
offshore market Ampelmann has 13 offices across 
the globe. Its vision is to make offshore access as 
easy as crossing the street. Before motion-
compensated people transfer, people transfer was 
mainly done by “basket transfer”, in which a crane 
lifts a basket of people from a vessel to an offshore 
platform (Figure 1-1) 

There are significant risks attached to this method 

of people transfer and the operability is highly 

dependent on the weather conditions. To make 

people and cargo transfer safer and more efficient, Ampelmann found a new method to do this by 

compensating vessel motions and form a bridge between the vessel and platform.  

By continuously monitoring the motions of the vessel, these motions can be compensated with 

respect to the fixed world. This compensation is done by a Stewart platform, which is an important 

component of the Ampelmann system. With six hydraulic cylinders the vessel motions are 

compensated continuously, creating a deck that is not or barely moving with respect to the fixed 

world. From this deck a gangway is connected to the target platform that forms a bridge between the 

host vessel and the target structure. With this technique Ampelmann provides safe and efficient 

people and cargo transfer to make it possible to keep on working in a safe manner up to 3m significant 

wave height (Ampelmann, 2019). 

The offshore market is changing, 10-20 years 

ago the offshore market was mainly focused 

on oil and gas but now the market for 

renewables, maintenance and 

decommissioning is growing. Due to this 

change, the walk-to-work vision of 

Ampelmann extends their current market. 

Not only should oil and gas platforms be easily 

accessible, but other structures come to mind, 

such as wind turbines, (small) floating vessels, 

CALM buoys, etc.  

When the Ampelmann system is connected 

to a fixed offshore structure (Figure 1-2), the 

gangway exerts a constant force to the 

structure. For a fixed structure this force is not any significance, but for floating bodies it might be. 

The station keeping mechanisms for these floating structures may not be designed for high external 

Figure 1-1 Basket transfer. 

Figure 1-2 An Ampelmann system connected to a fixed offshore 
platform. 
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forces. This makes it an interesting research topic for Ampelmann to look into the influence of an 

Ampelmann system on floating bodies. 

1.2 Problem description 
Currently the biggest markets for Ampelmann are oil and gas platforms, wind turbines or very large 

vessels like FPSO’s. When an Ampelmann system connects to these large fixed or floating structures, 

the gangway applies a constant force to maintain the connection between the vessel and the target 

structure. Ampelmann likes to expand its market share. Vessel-to-vessel transfer is considered as a 

promising market for Ampelmann, where people or cargo will be transferred to relatively small 

floating structures. This will introduce a dynamic aspect into the combined system of a coupled 

Ampelmann system and a floating vessel. Large vessels or fixed platforms will slowly or not move with 

respect to the connected gangway resulting in very little motion at the end of the gangway. When the 

gangway is connected to a smaller vessel, the motions of the target vessel will cause the gangway to 

move. This will lead to internal forces of the gangway, which will act on the target structure, which 

has not been accounted for in research by Ampelmann so far. 

A workability study of the Ampelmann system tells a customer how well the Ampelmann system 

performs for a certain operation. This tells the customer how much the operational time of the 

operation improves by including an Ampelmann system in a project. With the current approach of 

calculating the workability, it is assumed that the force that is applied by the gangway on the target 

structure does not influence the motions of the target structure. For fixed platforms and large floating 

structures this assumption is easily explained by the size of the target structures compared to the 

Ampelmann system and host vessel.  

With vessel-to-vessel connection, the size of the 

target vessel is considerably smaller and the 

motions of the target vessel might be influenced 

by the forces caused by the Ampelmann system. 

The dynamic interaction of a floating body and 

the Ampelmann system may influence the 

workability of the coupled system, which will be 

studied in this thesis. 

The central case in this thesis is based on an 

innovative project of Ampelmann Operations 

where an Ampelmann system will be connected 

to a Catenary Anchored Leg Moored buoy (CALM buoy) that is used for on- and offloading oil tankers 

offshore (Figure 1-3). This case and the new coupling mechanism of a target vessel and a connected 

gangway serves as the foundation of the research objective. 

‘Determine the impact on the workability affected by dynamic interaction of an Ampelmann system 

connected to a CALM buoy’ 

  

Figure 1-3 Visual representation of a connected Ampelmann 
system to a CALM buoy. 
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1.3 Constraints 
The operational configuration consists of 3 bodies; (1) the host vessel, (2) an A-type Ampelmann 

system and (3) the CALM buoy, which can be seen in Figure 1-4. The Ampelmann system is dynamically 

coupled with the host vessel and the CALM buoy. The dynamic interaction between the host vessel 

and Ampelmann system has been studied by Wiegerink (Wiegerink, Modelling of Coupled Vessel-

Ampelmann systems for Workability Studies, 2015), so this will not be the focus of this thesis. The 

primary focus of this thesis is the dynamic interaction between the Ampelmann system and the CALM 

buoy.  

 

Figure 1-4 Configuration coupled system. 

To be able to focus on the interaction between the Ampelmann system and the CALM buoy, 

constraints will apply to the configuration of the 3 bodies. The host vessel is being kept in place by a 

dynamic positioning (DP) system and it is assumed that the DP system is working perfectly. 

Furthermore the assumption is made that the residual motions of the host vessel are fully 

compensated by the hexapod of the Ampelmann system. Moreover, external effects such as wind and 

current are not included in the scope of this study and only waves are implemented in the 

environmental conditions of the model.  

To connect the Ampelmann system to a CALM buoy requires a new connection method (Sreedharan, 

2016). The Ampelmann system will be connected to the buoy using a magnet, which can freely rotate. 

It is assumed that the magnet will never disconnect.  

To study the coupling effects of the Ampelmann system and the CALM buoy, the numerical model is 

linearized as much as possible. The main linearization is the linearization of the mooring lines within a 

certain working range.  
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1.4 Method 
To reach the goal of this study, the thesis is divided into sub-objectives. The main objective is to study 

the coupling effect between an Ampelmann system and a CALM buoy. The first sub-objective is to 

create a hydrodynamic model of the CALM buoy. The frequency dependent hydrodynamic properties 

of the CALM buoy are calculated in a diffraction software called Diffrac. These hydrodynamic 

properties are used in a hydrodynamic, numeric, time-domain simulation software (aNySIM) to 

simulate the response of the CALM buoy to certain wave conditions. The numerical model of the CALM 

buoy consists of two parts; the floating buoy and the mooring lines. The properties of these 

components are based on the CALM buoy from a current Ampelmann project in Papua New Guinea.  

aNySIM provides tools to easily change the environmental conditions and insert simple external forces 

but to implement the more complex coupling mechanism between the Ampelmann system and the 

CALM buoy an external script is used to implement the coupling mechanism. Simulations of the 

numerical model results in time-series of the response of the buoy and the gangway. These responses 

are analyzed in a workability study which compares the workability study including and excluding the 

dynamic interaction. The schematic overview of the method of this thesis is shown in Figure 1-5. 

  

 

Figure 1-5 Schematic overview approach. 

The coupling effect of the Ampelmann system and CALM buoy will at first be studied in plane-motion 

to study the effect of the important parameters of the coupled system. The Ampelmann forces are 

implemented in the numerical model and the effect on the response of the buoy will be studied. An 

analytical approach for the in-plane motion is used to set up the equations of motion of the buoy 

including the external Ampelmann forces. From this approach the parameters of the damping forces 

are found and the effect of the parameters is studied.  
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To perform a workability study all the degrees of freedom of the buoy and gangway are implemented. 

This results in a fully 3 dimensional model. The operational limits of the gangway are used to set up 

the criteria for the workability study. With the known wave scatter diagram as wave input, the time-

series for each sea state are computed by the numerical model, which is used for the workability study. 

The results of the workability study are used to determine whether the dynamic interaction of the 

Ampelmann system and a CALM buoy affects the workability and if it should be included for further 

projects. 

1.5 Reading guide 
In chapter 2 more detailed information about the components of the coupled system is given. Chapter 

3 elaborates how the hydrodynamic properties of the moored buoy are calculated and why this is 

done. In chapter 4 the hydrodynamic properties of the CALM buoy are used, creating a numerical 

time-domain model and the structure of the model is explained, including the external script, which 

is written to study the coupling mechanism for in-plane motion. An analytical approach is used in 

chapter 5 to study the coupling of the gangway forces and the in-plane motion of the CALM buoy. This 

study shows the effect of the buoy and gangway parameters which can vary the effect on the dynamic 

coupling. In chapter 6 the workability study is performed with time-series from the numerical model. 

To perform a realistic workability study the model is extended to a 3d model. With these results the 

thesis is concluded in chapter 7 including recommendations for Ampelmann and further studies. 
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2. Ampelmann system and CALM buoy 
 

2.1 Ampelmann system 
The idea of the Ampelmann system was founded during an offshore wind conference in Berlin.  Would 

it be possible to compensate vessel motions with an upside-down flight simulator? This idea has been 

worked out and was found to be a success. This resulted in the Ampelmann system containing 6 

hydraulic cylinders that can compensate vessel motions in 6 degrees of freedom (J. van der Tempel, 

2007). This makes it possible to connect a gangway to a platform that is not or barely moving with 

respect to the target structure. The Ampelmann system consists of 2 major components; the hexapod 

and the gangway. All major components of an A-type Ampelmann system, that is used in this thesis, 

are shown in Figure 2-1. 

 

 

Figure 2-1 A-type Ampelmann system. 

 Hexapod 
The technique of compensating the vessel motion is based on a flight simulator that has been turned 

upside-down. Instead of creating motions to simulating airplane motions, the motions are being 

compensated. This is done by a Stewart platform including 6 hydraulic cylinders which makes it 

possible to compensate in 6 degrees of freedom. The OCTANS motion sensor in the Ampelmann 

system measures the motions in 6 degrees of freedom and this information is converted into cylinder 

motions to counter the measured vessel motions at the location of the gangway. The 6 cylinders are 

connecter via gimbals to the bottom frame at the bottom of the hexapod, and to the Mercedes frame 

on the topside of the hexapod.  
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 Gangway and transferdeck 
The gangway including the transferdeck makes it possible to transfer people from the host vessel to 

the target structure. The transferdeck is the access point for people to access the gangway. Prior to 

operation, people walk on the transferdeck via the gangway which is located on deck of the vessel. 

When the people are located on the transferdeck the hexapod engage and the gangway will connect 

to the target structure. The gangway and transferdeck have 3 degrees of freedom; slewing, luffing and 

telescoping, which are shown in Figure 2-2. 

 

Figure 2-2 Degrees of freedom for the gangway including transferdeck. 

The slewing ring between the transferdeck and the Mercedes frame makes it possible to rotate the 

gangway and transferdeck. The luffing cylinders at the transferdeck are connected to the gangway 

which creates a luffing motion of the gangway. Extending and retracting the gangway is called 

telescoping. This is done by a telescoping cable inside the gangway, which is driven by hydraulic 

pumps.  
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2.2 CALM buoy 
A CALM buoy is a widely used on- and offloading terminal which often is located relatively close to 

shore. They have been deployed in varying locations, water depths and environmental conditions. A 

CALM buoy system consists of a floating buoy that is moored to the seabed via catenary anchored 

mooring lines. A turntable is mounted on top of the buoy, which weathervanes in the orientation of 

the least resistance, making it possible for the on- or offloading vessel (tanker) to orientate in an 

optimal manner. Floating connection hoses makes it possible for the tankers to connect to the CALM 

buoy and start the on- or offloading process. The CALM buoy is connected via subsea hoses to a 

Pipeline End Termination (PLET) which is the end of the subsea pipeline to transport the fluids to the 

onshore storage facility. The complete configuration of a connected CALM buoy to a tanker is shown 

in Figure 2-3. 

 

 

Figure 2-3 Connected CALM buoy configuration. 
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The CALM buoy used in this thesis is the PNG–Kumul Marine CALM for Oil Search Limited. The most 

important properties of this buoy are given in Table 2-1 (sofec, 2018). 

Table 2-1 Properties CALM buoy. 

Property Value 

Diameter [m] 12,5 

Draft (operational) [m] 3,08 

Freeboard [m] 2,22 

COG w.r.t. keel [m, m, m] [6,25  0  2,65] 

Mass [tonnes] 281,6 

Radii of gyration, roll [m] 4 

Radii of gyration, pitch [m] 4 

Radii of gyration, yaw [m] 5 

 

 Catenary mooring 
Catenary anchored mooring lines are often used in shallow water. The mooring lines hang freely from 

the floating body and are connected to anchors on the seabed with relatively large distances from the 

floating body. This generates very long mooring lines compared to the water depth. The motions of a 

floating body disturb the equilibrium configuration of the mooring system in such a way that a 

restoring force is generated due to the weight of the mooring system. The length of the mooring lines 

increases excessively with increasing water depth, resulting in an increase in weight of the mooring 

lines that reduces the working payload of the floating body. To reduce this reduction in working 

payload it is a possibility to have a composite mooring line with different components along the 

mooring line. In the case of the thesis the mooring line only consists of one component. 

The used CALM buoy is catenary moored with 

a 6x1 mooring configuration with an angle of 

60 degrees between the lines in the horizontal 

plane (AMOG, 2017), which can be seen in 

Figure 2-5. Each mooring line consists of 95mm 

studless chain with an ABS grade R4 with an 

straight length of 420m. The anchor points are 

located with a radius of approximately 400m in 

the x-y-plane. The properties of the mooring 

line segment (Ramnäs Bruk, 2009) are shown 

in Table 2-2 and the detailed CALM buoy 

configuration can be found in Appendix 9.1. 

Table 2-2 Mooring lines properties. 

Property Value 

Length [m] 420 

Anchor points radius [m] 400 

Anchor depth [m] 37 

Diameter mooring line [m] 0,095 

Axial stiffness [kN] 812e3 

Break load [kN] 9001e3 

Submerged weight per meter [kg/m] 172 

Figure 2-4 SOFEC CALM buoy. 

Figure 2-5 Top view mooring configuration. 
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2.3 Host vessel 
The vessel on which the Ampelmann system will be installed 

during actual operation is a tugboat, the Svitzer Vision. To 

include the host vessel in the model later on, very specific 

properties of the vessel are required which are not all available 

for this vessel. Since the host vessel is not a prior part of the 

model, it is sufficient to use a host vessel with similar governing 

properties and dimensions. In collaboration with MARIN a 

comparable vessel has been found with all specific details 

required for the model. Table 2-3 shows the main particulars 

of the Svitzer Vision (Svitzer, 2018) and the model vessel 

provided by MARIN. 

Table 2-3 Properties of the Svitzer vision and the host vessel used. 

Property Svitzer Vision MARIN model 

Length between perpendiculars (LPP) [m] 50 50 

Breadth [m] 16 13,5 

Draft [m] 5,5 4,25 

Mass [ton] Unknown 2153 

COG wrt keel [m,m,m] Unknown [24,5  0  5,75] 

Radii of gyration, roll [m] Unknown 4,72 

Radii of gyration, pitch [m] Unknown 12,5 

Radii of gyration, yaw [m] Unknown 12,5 

 

2.4 Location 
The buoy used in this thesis is located in the Gulf of Papua, Papua New Guinea. It lies at the Kumul site 

in the Northwestern Gulf of Papua near the Omati river delta with global coordinates 

Lat. 08° 07′ 54″ S, Long. 144° 34′ 24″ E. 

 

    

Figure 2-7 Global  location of CALM buoy. Figure 2-8 Zoomed location of CALM buoy. 

Figure 2-6 Svitzer Vision. 
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3. Hydrodynamic model 
 

3.1 Introduction 
In this thesis Diffrac is used to calculate the hydrodynamic properties of the floating bodies. Diffrac is 

an in-house software package constructed by MARIN, which calculates the wave loads and motion 

responses of floating bodies including their hydrodynamic interaction. Diffrac generates a 

hydrodynamic database for the frequency dependent properties as; added mass, potential damping, 

force response amplitude operators (RAO’s), quadratic transfer functions (QTF’s). This chapter 

explains how the software works and how the diffraction model of the CALM buoy is built up and 

executed. 

3.2 EOM 
The dynamic response of the buoy is a key element. To find the hydrodynamic response, the equations 

of motion of the buoy will be solved. The equations of motion for the buoy follow from Newton’s 

second law, which states that the rate of change of momentum of a body is directly proportional to 

the force applied in the direction of the force. 

𝑑(𝑚𝑣)

𝑑𝑡
 =  𝐹   (3.1) 

This can be written in matrix form for all degrees of freedom. 

𝑀𝑋̈ = ∑𝐹 (3.2) 

Where 

𝑀 = The 6x6 mass matrix of the buoy 

𝑋̈ = The 6x1 acceleration vector of the buoy 
 ∑𝐹 = The 6x1 force and moment vector (1..3 = forces, 4…6 = moments) 
 
Without external forces acting on the buoy, the force and moment vector can be split into the wave-

exciting force from the incoming wave, 𝐹𝑤, which consists of the Froude-Krylov force, 𝐹𝑓𝑘, and the 

diffraction force, 𝐹𝑑, the radiation force from the 6 degrees of freedom of the body, 𝐹𝑟, and the 

hydrostatic reaction force 𝐹𝑠. 

Where according to Journée (J.M.J. Journée, 2008) these forces can be written as 

𝐹𝑤  =  𝐹𝑓𝑘 + 𝐹𝑑 (3.3) 

𝐹𝑟  =  −𝐴 𝑋̈  − 𝐶𝑋̇  (3.4) 

𝐹𝑠 = −𝐾𝑋   (3.5) 

Where it is assumed that these forces are calculated for a constant frequency. 

This shows that the radiation force has a part that is in phase with the acceleration and a part that is 

in phase of the velocity. Substituting equations 3.3-3.5 into 3.2 results in the equation of motion 

(equation 3.6). 

(𝑀 + 𝐴)𝑋̈  +  𝐶𝑋̇  + 𝐾𝑋 = 𝐹𝑤  (3.6) 

In Diffrac the equation of motion is calculated for a chosen frequency range with a selected frequency 

step. This results in a hydrodynamic database including frequency dependent added mass matrix A, 
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frequency dependent damping matrix C and the wave exciting force vector 𝐹𝑤. The mass matrix M 

and stiffness matrix K are calculated from the geometry of the buoy.  

Calculating the frequency dependent hydrodynamic properties, equation 3.6 will be written in the 

frequency domain.  

The wave exciting forces are proportional to the incoming waves which are a superposition of 

harmonic waves of different frequencies. When a harmonic wave is written as 𝜁 = 𝜁𝑎𝑒𝑖𝜔𝑡, with 𝜁𝑎 as 

the wave amplitude, and the body excitation is written as 𝑥 = 𝑋̃𝑒𝑖𝜔𝑡, with 𝑎 as the motion amplitude, 

the equation of motion in frequency domain can be written as 

−(𝑀 + 𝐴(𝜔))𝜔2𝑋̃𝑒𝑖𝜔𝑡  +  𝐶(𝜔)𝑖𝜔𝑋̃𝑒𝑖𝜔𝑡  + 𝐾𝑋̃𝑒𝑖𝜔𝑡  = 𝐹𝑤𝜁𝑎𝑒𝑖𝜔𝑡  (3.7) 

From equation 3.7 the response amplitude operator (RAO) is computed. The RAO determines the 

response of a floating body to the incoming wavefield.  

𝑅𝐴𝑂 = 
𝑋̃

𝜁𝑎
= 

𝐹𝑤

−𝜔2(𝑀+𝐴(𝜔))+𝑖𝜔𝐶(𝜔)+𝐾
  (3.8) 

3.3 Potential theory 
The hydrodynamic properties are calculated with 3D potential theory. The main assumptions that are 

made during this approach is that the wetted area stays constant, the fluid is incompressible, inviscid, 

irrotational and the fluid has no effect of surface tension. The potential function is derived such that 

the spatial derivatives are equal to the velocities of the water particles in that direction. 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ  𝑢𝑥 = 
𝜕𝜙

𝜕𝑥
, 𝑢𝑦 = 

𝜕𝜙

𝜕𝑦
, 𝑢𝑧 = 

𝜕𝜙

𝜕𝑧
   (3.9) 

The total potential of a floating body is a superposition of 3 potentials; the radiation potential due to 

the 6 DOF motions of the body (Φ𝑗), the potential due to the undisturbed incoming wave (Φ𝑤), and 

the potential due to the diffraction (Φ𝑑) as can be seen in equation 3.10. 

Φ = ∑ Φ𝑗  +  Φ𝑤
6
𝑗=1  + Φ𝑑   (3.10) 

For simplicity, equation 3.10 will be defined as 

Φ = Φ0 + Φ1 + Φ2 + Φ3 + Φ4 + Φ5 + Φ6 + Φ7 (3.11) 

Where 

Φ0 = Potential due to the undisturbed incoming wave 
Φ1…6 = Radiation potential due to the 6 DOF motions 
Φ7 = Potential due to diffraction of the undisturbed incoming wave 
 
To solve equation 3.11 a set of boundary of boundary conditions (Holthuijsen, 2007) has to be set. 

During the calculations the assumption is made that the body experiences small motions and small 

velocities such that only linear terms should be taken into account. 

The first boundary condition used is based on the mass balance equation 3.12. By substituting the 

spatial derivatives from the velocity potential function, the continuity equation can be found 

(equation 3.13). 

𝜕𝑢𝑥

𝜕𝑥
 +  

𝜕𝑢𝑦

𝜕𝑦
 + 

𝜕𝑢𝑧

𝜕𝑧
 =  0  (3.12) 
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𝜕2𝜙

𝜕𝑥2  + 
𝜕2𝜙

𝜕𝑦2   +  
𝜕2𝜙

𝜕𝑧2  =  0  (3.13) 

 

The second boundary condition follows from applying the linearized Bernoulli equation at the free 

surface. 

𝜕𝜙

𝜕𝑡
+ 

𝑝

𝜌
+ 𝑔𝑧 =  0  (3.14) 

𝜕𝜙

𝜕𝑡
+ 𝑔𝜂 =  0, 𝑎𝑡 𝑧 =  0  (3.15) 

For the third boundary condition, the kinematic boundary condition at the hull is applied. 

𝜕𝜙

𝜕𝑛
= 𝑣⃗ ∗ 𝑛⃗⃗  (3.16) 

For the forth boundary condition it is assumed that the sea bed is watertight. 

𝑢𝑧 = 0, 𝑎𝑡 𝑧 = −𝑑  (3.17) 

When the velocity potential is substituted, the following kinematic boundary condition at the sea bed 

is formulated. 

𝜕𝜙

𝜕𝑧
=  0, 𝑎𝑡 𝑧 = −𝑑  (3.18) 

To finalize the boundary conditions, the assumption is made that far away from the body there is no 

disturbance. 

𝑙𝑖𝑚𝑅→∞Φ = 0    (3.19) 

Until now, no wave conditions are included in this approach. To solve equation 3.11 an unidirectional 

regular wave will be introduced, which can be super positioned to solve equation 3.11 for an irregular 

wavefield. The unidirectional regular wave is required to find the undisturbed incoming wave potential 

Φ0, which is stated in the following equation 

Φ0  =
𝜁0𝑔

𝜔
∗

cosh(𝑘(ℎ0+𝑧))

cosh(𝑘ℎ)
𝑒𝑖𝑘(𝑥𝑐𝑜𝑠(𝜇)+𝑦𝑐𝑜𝑠(𝜇))   (3.20) 

Where 

𝜁0 = amplitude of the undisturbed wave [m] 
𝜔 = wave frequency [rad/s] 
𝑘 = wave number [rad/m] 
𝜆 = wavelength [m] 
𝜇 = wave direction measured from the x-direction [rad] 
ℎ0 = distance from the origin of the earth-fixed coordinate system to the sea bed [m] 
ℎ = water depth [m] 
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To find the radiation potential for every degree of freedom (Φ1…6) and the diffraction potential (Φ7) 

an equation has been computed, represented by a continuous distribution of single sources on the 

body surface. 

𝜑𝑗(𝑥, 𝑦, 𝑧) =  
1

4𝜋
∬ σ𝑗(𝑥, 𝑦̂, 𝑧̂) ∗ 𝐺(𝑥, 𝑦, 𝑧, 𝑥, 𝑦̂, 𝑧̂) ∗ 𝑑𝑆0)𝑆0

 𝑓𝑜𝑟 𝑗 = 1…7  (3.21) 

Where 

σ𝑗(𝑥, 𝑦̂, 𝑧̂) = The complex source strength on the mean wetted body surface due to motion of the body 

in the j-DOF 
𝐺(𝑥, 𝑦, 𝑧, 𝑥, 𝑦̂, 𝑧̂) = The Green’s function of source σ𝑗(𝑥, 𝑦̂, 𝑧̂) on point (𝑥, 𝑦, 𝑧) 

𝑆0 = the mean wetted body surface 
 
The Green’s function gives the impulse response of an inhomogeneous linear differential equation 

defined on a domain (J.M.J. Journée, 2008). It satisfies the Laplace equation and the boundary 

conditions at the seabed and the free surface. The influence of the radiation potential will die out at 

a far distance, which leads to the conclusion that the radiation potential satisfies the radiation 

boundary at infinity. Only the boundary condition at the wetted surface of the body remains. This 

boundary condition is used to find the unknown source strength σ𝑗 by substituting the source strength 

in the boundary condition. This means that the source strength at the surface of the body equals to 

the velocity of the body in that direction.  

The solution for all the potentials can be found by a complex operation, which is solved in Diffrac. 

From the velocity potentials the first-order pressures on the body are calculated.  

𝑝 = −𝜌(
𝜕Φ𝑟

𝜕𝑡
+

𝜕Φ𝑤

𝜕𝑡
+

𝜕Φ𝑑

𝜕𝑡
)  (3.22) 

The hydrodynamic forces and moments can be found by integrating the pressure over the wetted 

area. 

𝐹⃗ = 𝜌 ∬ (
𝜕Φ𝑟

𝜕𝑡
+

𝜕Φ𝑤

𝜕𝑡
+

𝜕Φ𝑑

𝜕𝑡𝑠0
)𝑛⃗⃗ ∗ 𝑑𝑆  (3.23) 

𝑀⃗⃗⃗ = 𝜌 ∬ (
𝜕Φ𝑟

𝜕𝑡
+

𝜕Φ𝑤

𝜕𝑡
+

𝜕Φ𝑑

𝜕𝑡𝑠0
)(𝑟 x 𝑛⃗⃗) ∗ 𝑑𝑆  (3.24) 

3.4 Panel distribution  
The submerged part of the buoy is modeled as a homogeneous cylinder with a draft of 2.76m and a 

diameter of 12.5m (AMOG, 2017). To use a discretized form of solving the potentials, the continuous 

body needs to be discretized. This is done by dividing the continuous circumference into discretized 

panels, which forms a mesh. The size of the panels needs to be chosen such that the frequency range 

of body motion is sufficiently big and that the discretization of the panels will not influence the results. 

A rule of thumb for the panel size regarding the frequency range is that the panel size should be 20% 

of the shortest wave, thus the highest frequency. According to equation 3.25, the panel size for a 

maximum frequency of 5 rad/s is 0.5m. 

𝜆 =  
𝑔

2𝜋
 𝑇2 (3.25) 
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To check whether the panel size influences the result, a convergence study has been done with an 

increasing panel size from 0.25m until 1.5m. From Figure 3-1 it can be seen that the panel size does 

not have a significant influence on the result. To keep the computational time as limited as possible it 

is desired to have the largest panel size possible, which decreases the amount of panels. Based on 

equation 3.25 and Figure 3-1 an average panel size of 0.5m is chosen which result in 1424 panels. 

 

Figure 3-1 Panel size convergence study. 

3.5 Configuration vessel and buoy 
Due to the constraints of this thesis, the host 

vessel will not be included in the numerical 

model, but the influence of diffraction of a host 

vessel side by side the buoy will be studied. The 

way the host vessel is positioned next to the 

vessel is shown in Figure 3-2. Studying the 

influence of diffraction is done by comparing 

the RAO’s of the buoy in a configuration where 

only the moored buoy is present, to a 

configuration where the moored buoy is 

positioned next to a host vessel. The mesh file of the host vessel is based on a vessel similar to the 

Svitzer Vision, and the main particulars can be found in Table 2-3. 

  

Figure 3-2 Configuration host vessel and buoy. 
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3.6 Added damping 
The total damping of a floating body consists of 2 parts; potential damping and viscous damping. 

Potential damping is caused by the motions of the body generating waves that radiate away from 

the body. These waves transport energy that dissipates from the oscillating body causing the motion 

to damp. Viscous damping is the result of the viscosity of the fluid causing friction. Potential 

damping is calculated by potential theory in Diffrac but viscous damping is difficult to calculate 

theoretically. Nowadays viscous damping is found by decay model testing which in not included in 

the scope of this thesis. Usually the viscous damping is a small part of the total damping for large 

floating structures. Since the buoy is a relatively small floating body, viscous damping should be 

added to have the buoy modeled as accurately as possible. Especially for roll and pitch motions of a 

buoy the total damping is largely underestimated if only potential damping is included (L..V.S. 

Sagrilo, 2002). Roll and pitch motions cause very little disturbance to the fluid which result in very 

little energy dissipated from the motion. But from model decay tests in previously done researches it 

shows that a forced roll motion decays faster than it should do according to only potential damping. 

Because of these reasons viscous damping is added manually in Diffrac to reach a higher accuracy of 

the buoy model. A rule of thumb (MARIN, 2011) is to set the total damping in roll and pitch to 3%  of 

the critical damping. To calculate the critical damping (𝐶𝑐𝑟𝑖𝑡)  first the natural frequency for each 

degree of freedom is calculated by solving equation 3.26 which follow from equation 3.7. 

det[𝐾 − 𝜔2(𝑀 + 𝐴(𝜔)] = 0   (3.26) 

The critical damping is calculated by equation 3.27 with the natural frequency known. 

𝐶𝑐𝑟𝑖𝑡 =  2(𝑀 + 𝐴𝜔𝑛
) 𝜔𝑛  (3.27) 
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3.7 Mooring stiffness 
Mooring lines have a significant impact on the response of the buoy. Even though the mooring lines 

are not physically present in the Diffrac model, they do impact the result of the diffraction model. The 

mooring lines add stiffness to the body that influences the response of the buoy. The motions of the 

body do not have any effect on the added mass, potential damping or the force RAO, but it does affect 

the QTF’s and second order wave forces. Due to this, at first the horizontal mooring stiffness is added 

in the Diffrac model. With this model, offset tests are done in aNySIM, finding the total stiffness matrix 

of the moored buoy and this is used for the final diffraction data.  

Figure 3-3 shows the horizontal restoring force of the moored buoy in the direction of a mooring line 

(AMOG, 2017) with a given offset. AMOG researched the effect of trenched mooring lines for this 

specific CALM buoy configuration, but for this research only the flat (blue) line is used.              Figure 

3-3 shows the linearity between the offset and horizontal restoring force until approximately 4 meter.  

 

             Figure 3-3 Horizontal restoring force vs offset. 

The horizontal restoring force in Figure 3-3 represents the total restoring force in the direction of a 

mooring line. Graphs are available for all mooring lines and they all show similar results (Appendix 

9.2). The stiffness of the moored buoy in surge and sway, 𝑘11, 𝑘22 respectively, are set to 50 kN/m 

according to the linearization of Figure 3-3. For the first run in Diffrac, the stiffness from the mooring 

lines in heave, roll and pitch are not included but only the hydrostatic stiffness is used in Diffrac. In 

chapter 4 the mooring lines are added in the numerical model and the total stiffness of the buoy is 

calculated. This is used to rerun Diffrac to get the hydrodynamical database as accurate as possible. 

Since unidirectional waves are used, the expected yaw motions are negligible and since there is no 

hydrostatic stiffness in yaw, this stiffness will remain zero. The hydrostatic spring stiffness for heave, 

roll and pitch, which follow from the Diffrac calculations, are compared with equations 3.28 and 3.29. 

𝑘33  =  𝜌𝑔𝐴𝑤𝑙  (3.28) 

𝑘44 = 𝑘55 =  𝜌𝑔∇GM  (3.29) 

In the stiffness matrix, coupling stiffness terms can arise due to coupled motion. The main coupling 

terms of a free-floating body are the coupling effects between heave and roll and vice versa (𝑘53, 𝑘35 

respectively). 𝑘53 and  𝑘35 occur if the center of floatation (LCF) does not coincide with the center of 

gravity (LCG) in the x-y-plane. Since the buoy is assumed to be a homogeneous cylinder, the LCG and 
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LCF are equal in the horizontal plane and the coupling terms does not exist. This results in the diagonal 

stiffness matrix for the moored buoy given below. 

𝑘 =

[
 
 
 
 
 
50 0 0 0 0 0
0 50 0 0 0 0
0 0 1270 0 0 0
0 0 0 7784 0 0
0 0 0 0 7784 0
0 0 0 0 0 0]

 
 
 
 
 

   

3.8 Results 
The results of different Diffrac models are discussed. For all the results, unidirectional head waves 

are used, which causes surge, heave and pitch responses of the buoy. 

 Mooring lines 
Mooring stiffness in surge and sway are added from the linearization of the mooring line forces from 

Figure 3-3. Including the mooring stiffness in the diffraction model will influence the RAO of the buoy 

in surge significantly and very slightly in pitch and roll. In Figure 3-4 and Figure 3-5 the blue line 

represents the free-floating buoy where the orange line represents the moored buoy. 

Comparing the surge RAO’s with and without mooring shows that the surge response of the buoy at 

low frequencies is lower than the unmoored buoy. Due to the introduced mooring stiffness, a natural 

frequency arises. After this peak, the RAO reacts similar to the RAO of the unmoored buoy. Since no 

additional stiffness is introduced in heave, and the heave motion is an uncoupled motion in the model, 

the RAO in heave is exactly the same for the moored and unmoored buoy. The pitch motion has a 

small coupling effect with the surge motion which results in a small decrease of the RAO peak.  

 

 

 

 

 

 

 

 

Figure 3-5 Pitch RAO moored and unmoored buoy. Figure 3-4 Surge RAO moored and unmoored buoy 
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 Added mooring stiffness 
To extend the accuracy of the diffraction model the mooring stiffness in all degrees of freedom is 

added. The total stiffness is derived from implementing the mooring lines in the numerical model and 

performing offset tests, done in chapter 4.4. Based on offset tests the stiffness matrix of the moored 

buoy is given below. 

𝑘 =

(

 
 
 

50 0 0 0 0 0
0 50 0 0 0 0
0 0 1303 0 0 0
0 0 0 11017 0 0
0 0 0 0 11017 0
0 0 0 0 0 2600)

 
 
 

   

The effect of heave and pitch will be studied since, due to unidirectional waves yaw motions will be 

negligible, and the surge stiffness has not changed. The blue line in Figure 3-6 shows the heave RAO 

with the damping matrix given in chapter 3.7 and the orange line shows the heave RAO with the 

damping matrix given in this chapter.  

 

It shows that the natural frequency slightly shifts to a higher frequency but the peak of the RAO is 

reduced. The pitch RAO (Figure 3-7) shows a larger difference in natural frequency shift and reduced 

peak. This is caused by the fact that the mooring lines add relatively more stiffness in pitch than in 

heave. 

 

 

  

Figure 3-6 Heave RAO comparing stiffness matrix. Figure 3-7 Pitch RAO comparing stiffness matrix. 
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 Diffraction 
The influence of the host vessel positioned next to the buoy is visible when comparing the heave RAO 

(Figure 3-8) and roll RAO (Figure 3-9) of the buoy with and without the host vessel present. The blue 

line shows RAO’s without diffraction included and the orange line shows the RAO’s with diffraction 

included. 

 

The influence of diffraction caused by the host vessel does change the heave RAO. The heave RAO 

shows 2 peaks, one at the natural frequency of the host vessel and one at the natural frequency of 

the buoy. Another interesting phenomenon is the introduced roll motion caused by diffraction of the 

waves which is visible in Figure 3-8.  

Figure 3-9 Roll RAO with and without diffraction. Figure 3-8 Heave RAO with and without diffraction. 
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4. Numerical dynamic model 
 

4.1 Introduction 
The dynamic interaction of the CALM buoy and the Ampelmann system is modeled in a numerical 

dynamic model in aNySIM, which is an in-house developed software package of MARIN. The structure 

of the numeric model is explained in this chapter including a deliberate explanation for each 

component. 

4.2 aNySIM 
aNySIM is a numerical, dynamic, multi-body software package combining various modules of MARIN 

software. It is a time-domain simulation software which can simulate coupled motion behavior of a N-

body system. The program uses the equations of motion, integrating the own inertia, added inertia, 

wave loads, damping loads and hydrostatic forces for each body. Besides being able implementing a 

number of floating bodies, additional modules can be coupled to them such as risers, mooring lines, 

DP-systems, etc. This modularity makes the software applicable for this thesis including the buoy, the 

mooring lines and external forces of the Ampelmann system. The frequency dependent added mass 

and hydrodynamic damping coefficients, which are derived from diffraction software, are transformed 

into inertia coefficients, retardation functions and response function (MARIN, 2018), which are given 

in equation 4.1.  

∑ (𝑀𝑘𝑗 + 𝐴∞)𝑥𝑗̈
6
𝑗=1 + ∫ 𝑅𝑘𝑗(𝑡 − 𝜏)𝑥̇(𝜏)

𝑡

0
𝑑𝜏 + 𝐾𝑘𝑗𝑥𝑗 = 𝐹𝑘(𝑡)    (4.1) 

Where  

𝑥𝑗 = motion in j-th mode 

𝐹𝑘(𝑡) = time varying force in the k-th mode 
R = matrix of retardation functions 
 
The time varying forces can be first and second order wave forces, but also external forces acting on 

the body. 

 Structure model 
The model configured in aNySIM consists of several parts directed from the ‘Main’ file. In this file the 

duration and the timestep of the simulation are determined. From the main file, 5 underlying files are 

used; ‘Environment’, ‘Bodies’, ‘Hydrodynamical database’, ‘Logging’ and ‘External forces’. In the 

‘Environment’ file the wind, wave and current conditions are defined. The ‘Bodies’ file implements all 

bodies in the simulation, which in this thesis are the buoy and the mooring lines. In the buoy file the 

geometric properties are defined and hydrostatic or hydrodynamic properties are be added. The 

mooring lines are defined by its material properties and by the configuration of the mooring lines.    

The hydrodynamical properties of the buoy are called in by the ‘Hydrodynamical database’ file. The 

‘Logging’ file determines the outputs of the simulation and these will be saved as time-series. The 

Ampelmann forces are calculated in the ‘External forces’ file which is coupled to the buoy. As a 

summary, the overview of all files and the layer they are in are shown in Figure 4-1. 
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Figure 4-1 Overview structure aNySIM model. 

4.3 Buoy 
The body of the buoy is modeled as a homogeneous solid cylinder without a skirt (Figure 3-2). The 
hydrodynamic and hydrostatic properties are derived in the hydrodynamical database. Due to 
approach of potential theory in Diffrac, viscous damping is not included in the hydrodynamical 
database. This results in a underestimated damping coefficient especially for roll and pitch motion 
(T.H.J. Bunnink, 2002). In consultancy with MARIN the added viscous damping used is 3% of the critical 
damping for roll and pitch. The 3% of the critical damping is based on several model tests performed 
by MARIN. The critical damping is calculated in Diffrac and verified by equation 3.27. This results in 
the following input parameters of the body of the buoy. 
 
Table 4-1 Parameters buoy in aNySIM. 

Parameter  

Diameter [m] 12,5 

Height [m] 6,56 

Additional viscous damping roll and pitch [kNms/rad] 𝒃𝟒𝟒 = 𝒃𝟓𝟓 430 

Mass [tonnes] 281,6 

Radius of gyration roll and pitch [m], 𝒌𝒙𝒙 = 𝒌𝒚𝒚 4 

Radius of gyration yaw [m] 5 

 

The stability of the floating buoy is tested in aNySIM with offset tests for heave, roll and pitch. The 

buoy has been given an initial offset and will be released. The restoring response showed that each 

motion is damped out until the buoy is back to its equilibrium. The results of the offset tests are shown 

in Appendix 9.4. 
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4.4 Mooring lines 
The configuration of the mooring lines consists of 6 mooring lines with a 60 degree angle between 

each of them in the horizontal plane. The complete mooring line configuration can be found in 

Appendix 9.1. The mooring lines used in this thesis consist of studless 95mm steel chains with ABS 

grade 4 and its properties are shown in Table 4-2. 

Table 4-2 Parameters mooring lines in aNySIM. 

Parameter  

Anchor depth [m] 37 

Diameter chain [mm] 95 

Length mooring leg [m] 420 

Axial stiffness [kN/m] 742,5e3 

Break load [kN] 9,04e3 

Mass per meter [kg] 180 

Submerged weight per meter [kN] 1,692 

 

For the kinematic approach of the workability study, conducted by Ampelmann, modelling the CALM 

buoy has been outsourced to AMOG consultancy. AMOG consultancy constructed a fully dynamic, 

non-linear model of the CALM buoy to create time series of the response of the buoy under specified 

environmental conditions (SOFEC, PNG CALM Buoy Design Loads Report, 2011). The inputs and results 

of the AMOG model will be used to build and validate the mooring lines in aNySIM. 

The numerical model of the buoy is linearized in this thesis, which results in a linearization of the non-

linear catenary anchored mooring lines (A. Umar, 2003). The mooring lines are modeled quasi-

statically, meaning that the inertia of the mooring lines is ignored. Figure 3-3 shows that the restoring 

force in each mooring line in the horizontal plane can be linearized up to an offset of 4m in the 

horizontal plane.  
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 Verification mooring lines 
The mooring lines in aNySIM are compared to the results of the model of AMOG. This is done by 

comparing the static response of the CALM buoy and the tension in the mooring lines. To verify the 

horizontal restoring mooring force a step force is exerted on the CALM buoy and the offset in the 

direction of the force is studied.  

 

Figure 4-3 shows the offset of the CALM buoy over time with the step force from Figure 4-2 

implemented. After a small overshoot the buoy responds linearly to the increasing step force which 

confirms the static linearity of the mooring lines up to an offset of 3m. The difference between the 

aNySIM model and the AMOG model is the stiffness of the mooring lines. From figure 4.2 it shows that 

the mooring stiffness in the horizontal plane is 50 kN/m while the aNySIM model shows a stiffness of 

40 kN/m. The difference in stiffness will result in a different response of the buoy compared to the 

AMOG data, but since the focus of this thesis lies at the coupling between the Ampelmann system and 

the CALM buoy, it is not required to copy the exact AMOG model.  

To test static linearity for the remaining degrees of freedom, the buoy has been given an increasing 

offset in each degree of freedom and the total force or moment on the buoy has been studied. The 

results are shown in Table 4-3, showing that within the tested range of static response of the buoy 

responds linearly. The working range of the static response tests are based on a maximum tilt of  the 

buoy, and a significant heave motion. 

Table 4-3 Results of static offset tests. 

Degree of freedom Offset step Resulting force/moment 

Heave 0,5 m 
1,0 m 
1,5 m 

652 kN 
1303 kN 
1955 kN 

Roll 0,1 rad 
0,2 rad 
0,3 rad 

-1424 kNm 
-2846 kNm 
-4264 kNm 

Pitch 0,1 rad 
0,2 rad 
0,3 rad 

-1425 kNm 
-2846 kNm 
-4264 kNm 

Yaw 0,1 rad 
0,2 rad 
0,3 rad 

-257 kNm 
-511 kNm 
-760 kNm 

 

 

 

Figure 4-3 Offset buoy in x-direction Figure 4-2 Step force in x-direction 
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The next step of validating the aNySIM model is to compare the equilibrium properties of the buoy to 

the AMOG model. The weight of the mooring lines introduces a pretension in the mooring lines, 

changing the draft of the free-floating buoy. The pretension and vertical force of the mooring lines are 

derived in the study of AMOG (SOFEC, Weight, Balance, Floatation & Stability Design Report for PNG 

CALM Buoy, 2011) and they are compared to the pretension and vertical force of the mooring lines 

modeled in aNySIM. Table 4-4 shows that forces in the mooring lines in equilibrium position of the 

AMOG model are very similar to those of the aNySIM model. 

Table 4-4 Comparison pretension and vertical force mooring line. 

 AMOG model aNySIM model 

Pretension per mooring line  13,00 MT 12,97 MT 

Vertical force per mooring line 10,67 MT 10,92 MT 

 

The draft of the CALM buoy, including the vertical force of the mooring lines, is calculated with 

equations 4.2-4.4.  

𝑀𝑏 𝑔 + 𝐹𝑚 = 𝐹𝑏  (4.2) 

𝑀𝑏 𝑔 + 𝐹𝑚 = 𝜌𝑔𝑇𝐴  (4.3) 

𝑇 =
𝑀𝑏𝑔+𝐹𝑚

𝜌𝑔𝐴
   (4.4) 

With 

𝑀𝑏 =  Mass of the buoy [tonnes] 
𝐹𝑚  =  Total mooring force [kN] 
𝐹𝑏=  Buoyancy force [kN] 
𝑇  =  Draft [m] 
 
This results in a calculated draft of 2.76m, coinciding with draft of the moored buoy in aNySIM. The 

draft in aNySIM differs from the draft calculated by AMOG (3.08m). This can be explained by the 

differences of geometry of the buoy in aNySIM and AMOG. In aNySIM the buoy is modeled as a solid 

homogeneous cylinder without a skirt while AMOG included a skirt and a center well of the buoy. 

Another difference between both models is that in the AMOG model the operational hoses and chains 

are included (SOFEC, Weight, Balance, Floatation & Stability Design Report for PNG CALM Buoy, 2011) 

while in aNySIM these parts are not modeled. This can also change the draft of the CALM buoy. 
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 Effect simplifications modeled buoy 
The 2 main assumptions made in the aNySIM model of the 

CALM buoy are, the simplified geometry of the buoy, and the 

quasi-static mooring lines. Modeling the buoy as a solid 

cylinder removes the skirt of the buoy. The skirt (Figure 4-4) 

is a widening of the buoy at the bottom of the submerged 

part of the buoy adding damping in heave, roll and pitch (J.L. 

Cozijn, 2004). This has not been taken into account in the 

numerical model used in this thesis. Model tests of a buoy 

with a skirt are compared to a numerical model with a 

simplified skirt (T.H.J. Bunnink, 2002). The result of this study 

is that wave-exciting roll and pitch moments on the buoy are 

significantly affected by the skirt by mainly non-linear 

viscous damping effects. These effects cannot be derived 

from potential theory. Due to the fact that a skirt 

significantly affects the damping in roll and pitch, but can only be estimated by model tests, it has 

been decided not to implement the skirt in the geometry of the buoy. Additional viscous damping for 

roll and pitch is added manually as can be seen in Table 4-1.  

Modeling the mooring lines in a quasi-static manner will reduce the accuracy of the response of the 

modeled CALM buoy (J.L. Cozijn, 2004). In the study of Cozijn, the effect of this simplification is studied 

by comparing model tests, dynamically modeled simulations and quasi-statically modeled simulations. 

In quasi-static simulations, only the restoring forces of the mooring lines are included, which means 

that the drag and inertia loads of the mooring lines are not included. The lack of the dynamic behavior 

and hydrodynamic forces acting on the mooring lines will affect the response of the buoy. The natural 

frequencies and damping coefficients of the buoy will be affected by the dynamics of the mooring 

lines. Roll and pitch motions are overpredicted in irregular waves when the quasi-static approach is 

used. As mentioned before, the roll and pitch motion are difficult to model without model test 

verification. The added viscous damping added tries to model this as accurate as possible. The study 

of Cozijn also shows that the surge, sway and heave motions in irregular waves are overpredicted with 

the quasi-static approach. This will not be further investigated in this thesis making this study 

conservative. 

 

  

Figure 4-4 CALM buoy with skirt. 
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4.5 Ampelmann system 
The Ampelmann system will be modeled as external forces acting on the buoy. An in-plane 

configuration is used to study the effect of the gangway forces on the CALM buoy. The degrees of 

freedom of the gangway and the CALM buoy are reduced to 2 degrees of freedom in the this plane; 

telescoping and luffing. This chapter explains the method of implementing the external forces in 

aNySIM. The approach of determining the forces for each degree of freedom of the gangway is 

explained. 

 Implementing external forces 
The forces acting on the buoy are calculated in an external file communicating with the files in aNySIM. 

The forces acting on the buoy, caused by the gangway of the Ampelmann system, are dependent on 

the motions of the buoy. The response of the buoy is both dependent on the incoming wave forces 

and the forces of the gangway. The motions of the buoy are implemented into the external force 

calculation file. These forces will be implemented onto the buoy, which affects the total forces acting 

on the buoy. The structure of this process is schematically shown in Figure 4-5. 

 

Figure 4-5 Schematic overview of implementing forces. 

The Ampelmann forces onto the buoy are calculated based on the response of the buoy, lagging one 

timestep. The size of the timestep is crucial to make sure that the buoy is responding to the correct 

Ampelmann forces. The timestep chosen in the simulations is 0.1s. This was first advised by MARIN 

since they use this timestep size for all of their simulations. A sensitivity check has been performed by 

replacing the hydrostatics of the buoy in heave by a spring-damper system to compare the response 

of simulations including only the hydrostatic response and including only the external spring-damper 

system. They are a perfect match for a timestep of 0.1s.  
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 In-plane model constraints 
To study the coupling effect of the gangway forces and the motions of the buoy, the dynamic model 

will be restricted to in-plane motions. In this in-plane movement, the moored buoy has 3 degrees of 

freedom; sway (translation in y-direction), heave (translation in z-direction), and roll (rotation around 

the x-axis). The incoming wave direction is fixed and unidirectional, and will be coming from y-

direction. The in-plane configuration of the model is shown in Figure 4-6. 

 

Figure 4-6 Schematic overview boundaries model. 

The location of the transferdeck, thus the rotation point of the gangway, is fixed in space according to 

the constraints set up in chapter 1.3. The coordinates of the transferdeck are indicated by 𝑦𝑡𝑑 , 𝑧𝑡𝑑 in 

the global coordinate system (given in blue) and will not vary in time. The connection point of the 

gangway onto the buoy is located at [6.25, 6.56] in the body fixed coordinate system (given in red) 

(SOFEC, PNG CALM Buoy Report, 2011), which is indicated by 𝑦𝑡𝑖𝑝(𝑡), 𝑧𝑡𝑖𝑝(𝑡). The global tip 

coordinates 𝑦𝑡𝑖𝑝(𝑡), 𝑧𝑡𝑖𝑝(𝑡) are dependent on the motion of the buoy and will vary in time. 

In this configuration the gangway has two degrees of freedom; luffing and telescoping. The luffing 

angle is indicated by 𝛼(𝑡) and the gangway length is indicated by L(t) which are dependent on the 

position of the buoy.   
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 Telescoping force 
The first degree of freedom that is studied is telescoping. The 

inertia of the gangway is neglected due to the relatively small 

mass of the moving parts of the gangway (1.4 tonnes) 

compared to the mass of the buoy (281 tonnes). Full-scale 

testing, done by Ampelmann, shows that the telescoping force 

consists of a damping force which is linearly dependent on the 

telescoping velocity, and a friction force which is fixed in 

magnitude but is always in opposite direction of the 

telescoping velocity. The friction force is caused by telescoping 

cables that pulls the T-boom of the gangway. From the 

Ampelmann tests, and the assumption of neglecting the mass 

of the gangway, the telescoping force is represented as a 

damper. Figure 4-7 shows the schematic representation of the 

moored buoy including the telescoping damper. The damper 

can still rotate around the rotation point at the transferdeck, 

but it does not introduce a force caused by rotation. The 

telescoping force is calculated by equation 4.5. 

𝐹𝑡𝑒𝑙(𝑡)  =  −(𝐶𝑡𝑒𝑙 𝑣𝑡𝑒𝑙 (𝑡)  + 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑡))       (4.5) 

With the following parameters from the Ampelmann tests 

𝐶𝑡𝑒𝑙  =  9.894  
𝑁𝑠

𝑚
 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  =  4.500 𝑁  

 
The tip velocity of the gangway is equal to the velocity of the buoy at the connection point. This results 

that the motions of the buoy will determine the telescoping velocity. The approach calculating the 

telescoping velocity is calculating the length of the gangway and taking the time derivative of the 

gangway length to find the telescoping velocity. The length of the gangway is calculated by equation 

4.6. 

𝐿(𝑡) = √(𝑦𝑡𝑑 − 𝑦𝑡𝑖𝑝(𝑡))
2
+ (𝑧𝑡𝑑 − 𝑧𝑡𝑖𝑝(𝑡))

2
   (4.6) 

Equation 4.6 can be rewritten as 

𝐿2(𝑡) =  (𝑦𝑡𝑑 − 𝑦𝑡𝑖𝑝(𝑡))
2
+ (𝑧𝑡𝑑 − 𝑧𝑡𝑖𝑝(𝑡))

2
  (4.7) 

And taking the time derivative of equation 4.7 results in the telescoping velocity given in equation 

4.8. 

𝑣𝑡𝑒𝑙(𝑡) =  𝐿(𝑡)̇ =
−𝑦𝑡𝑖𝑝̇ (𝑡)(𝑦𝑡𝑑−𝑦𝑡𝑖𝑝(𝑡))−𝑧𝑡𝑖𝑝̇ (𝑡)(𝑧𝑡𝑑−𝑧𝑡𝑖𝑝(𝑡))

𝐿(𝑡)
   (4.8) 

 

 
 
 

Figure 4-7 Schematic representation telescoping 
gangway. 
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The final step of calculating the telescoping force is implementing friction force. The friction force is 

only changing direction but maintaining the same magnitude. To ensure a smooth transition between 

positive and negative values of the friction force it is written according to equation 4.9 including the 

tangent hyperbolic function. Since the result of the tangent hyperbolic function should be either 1 or 

-1, also for low telescoping velocities, the telescoping velocity is multiplied by 5 inside the tangent 

hyperbolic function. 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑡)  =  tanh(5 𝑣𝑡𝑒𝑙 (𝑡)) 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛   (4.9) 

In aNySIM it is only possible to implement external forces in the global coordinate system. The 

direction of the telescoping force is always in line with the gangway, which position changes in time. 

𝑦𝑡𝑖𝑝(𝑡) and 𝑧𝑡𝑖𝑝(𝑡) are known at all time in the 

simulations, so the telescoping force can be projected into 

the global coordinate system. This is shown in Figure 4-8. 

Projecting the local velocities of the buoy into the direction 

of the gangway the luffing angle is calculated by equation 

4.10. 

sin(𝛼) =
𝑧𝑡𝑑−𝑧𝑡𝑖𝑝(𝑡)

𝐿(𝑡)
  (4.10) 

This results in the following telescoping forces at the tip 

location of the buoy in the global coordinate system. 

𝐹𝑦𝑡𝑒𝑙(𝑡) =  −𝐹𝑡𝑒𝑙(𝑡)𝑐𝑜𝑠(𝛼(𝑡))  (4.11) 

𝐹𝑧𝑡𝑒𝑙(𝑡) =  −𝐹𝑡𝑒𝑙 (𝑡)𝑠𝑖𝑛(𝛼(𝑡)) (4.12) 

 

 

 

 

 

Figure 4-8 Projection telescoping force. 
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 Luffing force 
The second degree of freedom for the in-plane motion of the gangway is luffing. During luffing the 

gangway rotates around the rotation point at the transferdeck. For luffing it is also assumed that the 

inertia of the gangway is negligible.  Again, the gangway can be modeled with only a damper since the 

result of the full-scale tests conclude that the spring stiffness can be neglected. The major difference 

between telescoping and luffing is that the damper which is modelling the force, caused by the motion 

of the gangway, is a rotational damper. Figure 4-9 shows the schematic representation of the CALM 

buoy including the luffing damper. As a result from the full-scale tests done by Ampelmann it shows 

that friction can be neglected. The rotational luffing damper applies a moment at the connection point 

of the gangway on the buoy. The luffing moment is given by equation 4.13. 

𝑀𝑙𝑢𝑓(𝑡) = 𝐶𝑙𝑢𝑓 𝛼̇(𝑡)  (4.13) 

With the damping coefficient following from the Ampelmann tests. 

𝐶𝑙𝑢𝑓  =  746.840 
𝑁𝑚𝑠

𝑟𝑎𝑑
 

Implementing the luffing moment in aNySIM is done by 

converting the luffing moment to a luffing force, which is 

always perpendicular to the gangway and is fixed at the tip 

location of the buoy. This is shown in Figure 4-9 with the 

luffing force calculated by equation 4.14. 

𝐹𝑙𝑢𝑓(𝑡) =
𝐶𝑙𝑢𝑓 𝛼̇(𝑡)

𝐿(𝑡)
   (4.14) 

The angular luffing velocity is the time derivative of the 

luffing angle 𝛼(𝑡). This results in equation 4.15 for the 

luffing velocity. 

𝛼̇(𝑡) =
−𝐿(𝑡)𝑧𝑡𝑖𝑝̇ (𝑡)−(𝑧𝑡𝑑−𝑧𝑡𝑖𝑝(𝑡))𝐿(𝑡)̇

𝐿2(𝑡) cos(𝛼)
  (4.15) 

Implementing the luffing force at the tip location of the 

buoy in aNySIM it is required to project the luffing force 

in the global coordinate system. This projection is shown 

in Figure 4-10. With equations 4.16 and 4.17 for the 

projected luffing forces. 

𝐹𝑦𝑙𝑢𝑓(𝑡) =  −𝐹𝑙𝑢𝑓(𝑡)𝑠𝑖𝑛(𝛼(𝑡))   (4.16) 

𝐹𝑧𝑙𝑢𝑓(𝑡) =  𝐹𝑙𝑢𝑓(𝑡)𝑐𝑜𝑠(𝛼(𝑡))    (4.17) 

 

 

 

  

Figure 4.9. Luffing force 

 

Figure 4-9 Schematic overview luffing force. 

Figure 4-10 Projection luffing force. 
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5. Analytical approach 
 

5.1 Introduction 
To study the effect of the gangway forces on the response of the buoy in the y-z plane, the equations 

of motions of the buoy including the gangway forces are set up analytically. For the analytical approach 

the CALM buoy including the hydrostatic and hydrodynamic properties are schematically represented. 

With this representation of the CALM buoy, a free-body analyses is performed, resulting in the 

equations of motion of the CALM buoy for sway, heave and roll. The damping forces introduced by 

the gangway are included in the total damping matrix of the buoy and via a sensitivity study the 

governing parameters are studied. The equations of motion are solved using an ordinary differential 

equation solver written in Python. Finally the aNySIM model is compared with the Python model and 

the effect of the gangway forces on the response of the buoy are determined.  

5.2 Mass-spring-damper system 
Studying the coupling effect of the gangway on the buoy, the model configuration used in chapter 4 

(Figure 4-6) are used to create a schematic representation of the hydrodynamic buoy including the 

mooring lines and the gangway forces. The schematic representation is shown in Figure 5-1.  

 

Figure 5-1 Schematic representation of a CALM buoy in the y-z-plane. 

The total damping and stiffness of each degree of freedom of the buoy are implemented as an 

equivalent linear damper, linear spring, rotational damper or rotational spring. 𝐾22, 𝐾33 and 𝐾44 are 

the equivalent stiffness in sway, heave and  roll respectively. The equivalent stiffness consists of 

hydrostatic stiffness of the buoy and linearized mooring stiffness. It is assumed that, due to the 

symmetrical configuration of the mooring lines, the complete mooring system can be replaced by a 

spring in each degree of freedom. The equivalent damping for sway,  heave and roll (𝐶22, 𝐶33 and 𝐶44 

respectively) consists of hydrodynamic damping calculated in the diffraction software and the added 
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viscous damping. The damper is implemented as a massless damper for telescoping and luffing which 

is identical to the gangway forces in the aNySIM model. 

5.3 Equations of motion 
The equations of motion of the CALM buoy are derived using the displacement method. The buoy had 

been given a certain displacement and velocity in each degree of freedom, which will result in forces 

and moments caused by the springs and dampers of the system. All forces will be projected into global 

y- and z-direction and the equation of motion will be set up. The equation of motion is of the form 

(𝑀 + 𝐴)𝑋̈ + 𝐶𝑋̇ + 𝐾𝑋 = 𝐹𝑤𝑎𝑣𝑒𝑠 + 𝐹𝑚𝑜𝑜𝑟𝑖𝑛𝑔 + 𝐹𝑔𝑎𝑛𝑔𝑤𝑎𝑦  (5.1) 

Where 

𝑀 = Mass matrix of the buoy 
𝐴 = Added mass matrix of the buoy 
𝐶 = Hydrodynamic damping matrix of the buoy 
𝐾 =  Hydrostatic stiffness matrix of the buoy 

𝑋̈ = N-dof vector of the acceleration of the buoy 

𝑋̇ = N-dof vector of the velocity of the buoy 
𝑋 = N-dof vector of the translation of the buoy 
𝐹𝑤𝑎𝑣𝑒𝑠 = The force vector of wave forces/moments  
𝐹𝑚𝑜𝑜𝑟𝑖𝑛𝑔 = The force vector of mooring forces/moments  

𝐹𝑔𝑎𝑛𝑔𝑤𝑎𝑦 = The force vector of the gangway forces/moments  

 
To combine the hydrostatic stiffness and hydrodynamic damping with the added stiffness of the 

mooring lines and the added damping of the gangway, the mooring and gangway forces can be written 

as 

𝐹𝑚𝑜𝑜𝑟𝑖𝑛𝑔(𝑡) =  −𝐾𝑚𝑋   (5.2) 

𝐹𝑔𝑎𝑛𝑔𝑤𝑎𝑦(𝑡) =  −𝐶𝑔𝑤𝑋̇  (5.3) 

Where  
𝐾𝑚 = Linearized stiffness matrix of  the mooring system 
𝐶𝑔𝑤 = Damping matrix of the inclined gangway 

 
Substituting equations 5.2 and 5.3 in equation 5.1 results in equation of motion given in equation 5.4. 

𝑀𝑒𝑞𝑋̈ + 𝐶𝑒𝑞𝑋̇ + 𝐾𝑒𝑞𝑋 = 𝐹𝑤𝑎𝑣𝑒𝑠   (5.4) 

Where  
𝑀𝑒𝑞 = The equivalent mass matrix of the buoy 

𝐶𝑒𝑞 = The equivalent damping matrix including the hydrodynamic damping and the damping of the 

gangway 
𝐾𝑒𝑞 =  The equivalent stiffness matrix including the hydrostatic stiffness and the linearized stiffness 

of the mooring lines 
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Limiting the response of the buoy to in-plane motions, will create 3X3 matrices and 3X1 vectors in the 

EOM of the following form 

𝑀𝑎𝑡𝑟𝑖𝑥 =  [

. .22 . .23 . .24

. .32 . .33 . .34

. .42 . .43 . .44

]               𝑉𝑒𝑐𝑡𝑜𝑟 =  [

. .2

. .3

. .4
] 

Where the subscript ‘2’  represents sway, ‘3’ represents heave and ‘4’ represents roll.  

5.4 Small angle approximation 
The equations of motion of the buoy are set up for sway, heave and roll separately. Sway and heave 

motions and velocities will result in uncoupled sway and heave responses, but roll motions and 

velocities will create a velocity of the connection point of the gangway in y- and z-direction. The 

damping forces of the gangway are linearly dependent to the velocities of the buoy at the connection 

point. To study the effect of the gangway forces on the response of the buoy it is beneficial to reduce 

the input parameters and to do so the small angle approximation is used. The velocities in y- and z- 

direction of the connection point of the gangway are calculated with and without the small angle 

approximation and the difference between both methods are analyzed. By using the small angle 

approximation it is assumed that the angle of a certain motion is small enough that the trigonometric 

function can be linearized around its equilibrium. The velocity of the connection point is projected in 

the direction of telescoping and luffing to conclude the effect of using the small angle approximation 

on the telescoping and luffing force separately.  

 Global velocity 
Figure 5-2 shows a positive roll motion of the buoy. The 

connection point of the gangway on the buoy is located at 

[𝑦𝑡𝑖𝑝, 𝑧𝑡𝑖𝑝] with respect of the cog of the buoy in the body-

fixed coordinate system. The buoy has been given a positive 

roll deviation, 𝜃, with respect to the equilibrium position to 

calculate the global velocity of the connection point caused 

by a positive roll velocity, 𝜃̇(𝑡). The global velocity will later 

be used to project the velocity into the direction of the 

telescoping and luffing gangway. 

The y- and z-velocity at the tip connection point in the body-

fixed coordinate system are found by analyzing the rigid 

body dynamics (Greenwoord, 2012) of the buoy which 

results in equation 5.5 and 5.6. 

𝑣𝑧𝑏(𝑡) = 𝑦𝑡𝑖𝑝 ∗ 𝜃̇(𝑡)  (5.5) 

𝑣𝑦𝑏(𝑡) = 𝑧𝑡𝑖𝑝 ∗ 𝜃̇(𝑡)  (5.6) 

The body-fixed velocities are projected into the global coordinate system. The global velocities are 

calculated by equation 5.7 and 5.8. 

𝑣𝑧𝑔(𝑡) = [ytip cos(𝜃(𝑡)) − 𝑧𝑡𝑖𝑝 sin(𝜃(𝑡))] 𝜃̇(𝑡)  (5.7) 

𝑣𝑦𝑔(𝑡) = −[ytip sin(𝜃(𝑡)) + 𝑧𝑡𝑖𝑝 cos(𝜃(𝑡))] 𝜃̇(𝑡)  (5.8) 

  

Figure 5-2 Projected velocities caused by roll. 
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 Luffing velocity 
The luffing force introduced by the gangway on the buoy depends on the velocity perpendicular to 

the gangway. The global velocity is projected into the luffing direction (Figure 5-3) which is used to 

find the luffing force. Determining the effect of the small angle approximation on the luffing force, the 

luffing velocity will be analyzed with and without the small angle approximation using a case study. 

 

Figure 5-3 Luffing velocity caused by roll motion. 

The luffing velocity (equation 5.9) is calculated by projection of the global velocities. 

𝑣𝑙𝑢𝑓 = cos(𝛼(𝑡)) 𝑣𝑧𝑔 + sin(𝛼(𝑡)) 𝑣𝑦𝑔  (5.9) 

Implementing equations 5.7 and 5.8 into equation 5.9 gives the luffing velocity in equation 5.10. 

𝑣𝑙𝑢𝑓 = [ytip (cos(𝛼(𝑡)) cos(𝜃(𝑡)) + sin(𝛼(𝑡)) sin(𝜃(𝑡))) + 𝑧𝑡𝑖𝑝(− cos(𝛼(𝑡)) sin(𝜃(𝑡)) +

sin(𝛼(𝑡)) cos(𝜃(𝑡))] 𝜃̇(𝑡)  (5.10) 

Using the small angle approximation for roll motion the trigonometric functions are simplified to 

cos(𝜃(𝑡)) ≈ 1 

sin(𝜃(𝑡)) ≈ θ(𝑡) 

And the luffing velocity including the small angle approximation becomes 

𝑣𝑙𝑢𝑓 = [ytip(cos(𝛼(𝑡)) + sin(𝛼(𝑡)) θ(t)) + 𝑧𝑡𝑖𝑝(− cos(𝛼(𝑡))𝜃(𝑡) + sin(𝛼(𝑡))]𝜃̇(𝑡)          (5.11) 

The last simplification that is studied in this chapter is the effect of neglecting the roll angle. When this 

is done the luffing velocity is calculated by equation 5.12. 

𝑣𝑙𝑢𝑓 = [ytip cos(𝛼(𝑡)) + 𝑧𝑡𝑖𝑝 sin(𝛼(𝑡))]𝜃̇(𝑡)  (5.12) 

A case study is used, determining the effect of calculating the luffing velocity by 3 different equations. 

The wave conditions used in the case study are derived from the most common sea state. Regular 

waves are coming in from y-direction (Figure 4-6) with a period of 4.5s and an amplitude of 0,75m. 

These environmental conditions are implemented in aNySIM to determine the range of the roll and 
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luffing angle, which are the variable parameters of the luffing velocity with a given roll velocity. Table 

5-1 shows the minimum and maximum angles for the case study. 

Table 5-1 Minimum and maximum angles case study. 

 Minimum Maximum 

Roll angle (𝜽) [rad] -0,17 0,14 

Luffing angle (𝜶) [rad] 0,12 0,27 

 

The effect of the small angle approximation is studied using a luffing velocity factor, 𝑘𝑙𝑢𝑓, which is 

independent of the roll velocity. The luffing velocity factor is defined according to equation 5.13. 

𝑘𝑙𝑢𝑓 =
𝑣𝑙𝑢𝑓 

𝜃̇
 (5.13) 

The luffing velocity factor is calculated for the minimum and maximum luffing angle following from 

Table 5-1. The only variable parameter for the luffing velocity factor is the roll angle. 

The results of the luffing velocity factor, calculated by equation 5.10 (red line), 5.11 (blue line) and 

5.12 (green line), are shown in  

The results are shown in Figure 5-4 and Figure 5-5.  

  

 

The luffing velocity factor calculated without any simplification (red) does not differ much (up to 1.6%) 

from the luffing velocity factor calculated with the small angle representation (blue) . When roll is not 

included at all, the luffing velocity factor differs significantly compared to the results without any 

simplifications (up to 17%). 

  

Figure 5-4 Luffing velocity factor (alpha=0.12 rad). Figure 5-5 Luffing velocity factor (alpha=0.27 rad). 



40 
 

 Telescoping velocity 
The telescoping force is introduced by the velocity of the gangway in the direction of the gangway. 

This is visualized in          Figure 5-6. The same approach, as what was used for calculating the luffing 

velocity, is used for calculating the telescoping velocity. 

 

         Figure 5-6 Telescoping velocity caused by roll motion. 

The telescoping velocity is calculated by equation 5.14. 

𝑣𝑡𝑒𝑙 = sin(𝛼(𝑡)) 𝑣𝑧𝑔 − cos(𝛼(𝑡)) 𝑣𝑦𝑔  (5.14) 

Implementing equation 5.7 and 5.8 into 5.14 leads to the telescoping velocity. 

𝑣𝑡𝑒𝑙 = [ytip (−cos(𝛼(𝑡)) sin(𝜃(𝑡)) + sin(𝛼(𝑡)) cos(𝜃(𝑡))) +

                            𝑧𝑡𝑖𝑝(− cos(𝛼(𝑡)) cos(𝜃(𝑡)) − sin(𝛼(𝑡)) sin(𝜃(𝑡))] 𝜃̇(𝑡)  (5.15) 

Including the small angle approximation results in equation 5.16. 

𝑣𝑡𝑒𝑙 = [ytip(−cos(𝛼(𝑡)) 𝜃 + sin(𝛼(𝑡))) + 𝑧𝑡𝑖𝑝(− cos(𝛼(𝑡)) − sin(𝛼(𝑡)) 𝜃]𝜃̇(𝑡)          (5.16) 

With neglecting the roll offset the telescoping velocity is given by equation 5.17. 

𝑣𝑡𝑒𝑙 = [ytip sin(𝛼(𝑡)) − 𝑧𝑡𝑖𝑝 cos(𝛼(𝑡))]𝜃̇(𝑡)  (5.17) 

In figure 5.7 and 5.8 the telescoping velocity factor is plotted versus the variable roll angle where the 

telescoping velocity factor, 𝑘𝑡𝑒𝑙, is defined as 

𝑘𝑡𝑒𝑙 =
𝑣𝑡𝑒𝑙

𝜃̇
  (5.18) 
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The exact telescoping velocity factor (red) only differs 2.5% with respect to the telescoping velocity 

factor calculated with the small angle approximation (blue). The difference between the exact 

calculation and the calculation without the roll angle implemented (green) differs up to 156% for a 

maximum roll angle.  

The results of the luffing and telescoping velocity factor calculated by 3 different equations show that 

the small angle approximation can and will be used in determining the damping forces caused by the 

gangway in the next chapters. 

  

Figure 5-7 Telescoping velocity factor (alpha = 0.12 rad). Figure 5-8 Telescoping velocity factor (alpha = 0.27 rad). 
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5.5 Telescoping damping matrix 
Using the displacement method the equations of motion for the buoy are derived.  The buoy is given 

an offset and a velocity in each degree of freedom separately and the forces caused by that 

displacement are set up in a free-body diagram based on Figure 5-1. This chapter includes the 

telescoping damper, and the luffing damper is studied in the next chapter. According to equation 4.5 

the telescoping force is linearly dependent on the telescoping velocity. The displacement method  

introduces a velocity in each degree of freedom which causes a telescoping velocity. The telescoping 

velocity by a displacement in Y, and Z are given by equation 5.19 and 5.20 

𝑣𝑡𝑒𝑙(𝑠𝑤𝑎𝑦) = cos(𝛼) 𝑌̇   (5.19) 

𝑣𝑡𝑒𝑙(ℎ𝑒𝑎𝑣𝑒) = sin(𝛼) 𝑍̇  (5.20) 

According to the small angle approximation, the telescoping velocity introduced by a roll displacement 

is given by equation 5.16. 

For each displacement the projected telescoping forces (equations 4.11 and 4.12) are implemented in 

the model and the equations of motion are set up. The free body diagram analyses of each degree of 

freedom is shown in Appendix 9.6. The equations of motion of the buoy including the telescoping 

damper can be rewritten in the form of equation 5.4. This results in the following equivalent mass 

matrix and equivalent stiffness matrix, where the hydrostatic stiffness values can be found with 

equations 3.28 and 3.29. 

 

𝑀𝑒𝑞 = [

𝑀 + 𝑎22 0 0
0 𝑀 + 𝑎33 0
0 0 𝐼𝑥𝑥 + 𝑎44

]  (5.21) 

𝐾𝑒𝑞 = [

𝐾22 + 𝐾𝑚𝑜𝑜𝑟𝑖𝑛𝑔22 0 0

0 𝐾33 + 𝐾𝑚𝑜𝑜𝑟𝑖𝑛𝑔33 0

0 0 𝐾44 +  𝐾𝑚𝑜𝑜𝑟𝑖𝑛𝑔44

]  (5.22) 
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The equivalent damping matrix shows the combined damping coefficients in equation 5.23. 

𝐶𝑒𝑞 = 

(5.23) 

Where  

𝑠(𝛼) = sin(𝛼(𝑡)) 
𝑐(𝛼) = cos(𝛼(𝑡)) 
 
The equivalent damping matrix shows that the inclined telescoping damper introduces coupling effect 

for all degrees of freedom in this model. The impact of the coupling terms are discussed later in this 

chapter.  

To verify the equivalent damping matrix, 2 scenarios are compared with a fixed luffing angle. At first 

the luffing angle is set to 0 rad (equation 5.24), which means that the telescoping  damper is placed 

horizontally. Secondly the luffing angle is fixed at 
𝜋

2
 rad (equation 5.25) to model a vertical damper. 

Both configurations are shown in Figure 5-9. 

 

Figure 5-9 Schematic representation of fixed luffing angle (alpha = 0 rad and π/2  rad). 

𝐶ℎ22 + 𝑐2(𝛼)𝐶𝑡𝑒𝑙 𝑠(𝛼)𝑐(𝛼)𝐶𝑡𝑒𝑙 𝑦𝑡𝑖𝑝𝐶𝑡𝑒𝑙(−𝑐2(𝛼)𝜃 + 𝑐(𝛼)𝑠(𝛼)) +

𝑧𝑡𝑖𝑝𝐶𝑡𝑒𝑙 (−𝑐2(𝛼) − 𝑐(𝛼)𝑠(𝛼)𝜃)  

 

𝑠(𝛼)𝑐(𝛼)𝐶𝑡𝑒𝑙 𝐶ℎ33 + 𝑠2(𝛼)𝐶𝑡𝑒𝑙 𝑦𝑡𝑖𝑝𝐶𝑡𝑒𝑙(−𝑠(𝛼)𝑐(𝛼)𝜃 + 𝑠2(𝛼)) +

𝑧𝑡𝑖𝑝𝐶𝑡𝑒𝑙(−𝑠2(𝛼)𝜃 − 𝑐(𝛼)𝑠(𝛼))  

 

 

𝑦𝑡𝑖𝑝𝐶𝑡𝑒𝑙(−𝑐2(𝛼)𝜃 +

𝑐(𝛼)𝑠(𝛼)) + 𝑧𝑡𝑖𝑝𝐶𝑡𝑒𝑙 (−𝑐2(𝛼) −

𝑐(𝛼)𝑠(𝛼)𝜃)  
 

 

𝑦𝑡𝑖𝑝𝐶𝑡𝑒𝑙(−𝑠(𝛼)𝑐(𝛼)𝜃 + 𝑠2(𝛼)) +

𝑧𝑡𝑖𝑝𝐶𝑡𝑒𝑙(−𝑠2(𝛼)𝜃 − 𝑐(𝛼)𝑠(𝛼))  

 

𝑦𝑡𝑖𝑝
2 𝐶𝑡𝑒𝑙(−𝑐(𝛼)s(𝛼)𝜃 + 𝑠2(𝛼)) +

𝑧𝑡𝑖𝑝
2 𝐶𝑡𝑒𝑙(𝑐

2(𝛼) + 𝑐(𝛼)𝑠(𝛼)𝜃 ) +

𝑧𝑡𝑖𝑝𝑦𝑡𝑖𝑝𝐶𝑡𝑒𝑙(−2𝑐(𝛼)𝑠(𝛼) − 𝑠2(𝛼)𝜃 +

𝑐2(𝛼)𝜃) + 𝐶ℎ44  
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The damping matrix for a fixed luffing angle of 0 rad shows that the damping in heave of the buoy is 

uncoupled, but there is coupling between sway and roll introduced by the telescoping damper. This is 

explained by the fact that the damping force caused by the telescoping damper introduces a force 

which does not goes through the COG of the buoy, and will create a moment with an arm 𝑧𝑡𝑖𝑝.  

𝐶𝑒𝑞(𝛼 = 0 𝑟𝑎𝑑) =  [

𝐶ℎ22 + 𝐶𝑡𝑒𝑙 0 −𝑦𝑡𝑖𝑝𝐶𝑡𝑒𝑙𝜃 − 𝑧𝑡𝑖𝑝𝐶𝑡𝑒𝑙

0 𝐶ℎ33 0

−𝑦𝑡𝑖𝑝𝐶𝑡𝑒𝑙𝜃 − 𝑧𝑡𝑖𝑝𝐶𝑡𝑒𝑙 0 𝑧𝑡𝑖𝑝
2 𝐶𝑡𝑒𝑙 + 2𝑧𝑡𝑖𝑝𝑦𝑡𝑖𝑝𝐶𝑡𝑒𝑙𝜃 + 𝐶ℎ44 

](5.24) 

When the damper has a luffing angle of 
𝜋

2
 rad, the same phenomena occur as mentioned before, but 

now the coupling is introduced for heave and roll, and sway damping is uncoupled. 

𝐶𝑒𝑞 (𝛼 =
𝜋

2
 𝑟𝑎𝑑) =  [

𝐶ℎ22 0 0
0 𝐶ℎ33 + 𝐶𝑡𝑒𝑙 𝑦𝑡𝑖𝑝𝐶𝑡𝑒𝑙 − 𝑧𝑡𝑖𝑝𝐶𝑡𝑒𝑙𝜃

0 𝑦𝑡𝑖𝑝𝐶𝑡𝑒𝑙 − 𝑧𝑡𝑖𝑝𝐶𝑡𝑒𝑙𝜃 𝑦𝑡𝑖𝑝
2 𝐶𝑡𝑒𝑙 − 2𝑧𝑡𝑖𝑝𝑦𝑡𝑖𝑝𝐶𝑡𝑒𝑙𝜃 + 𝐶ℎ44 

] (5.25) 
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5.6 Luffing damping matrix 
The second degree of freedom for in-plane motion of the gangway is luffing. The same analyses is 

done for luffing as was done for telescoping. At first the equations of motions are set up from which 

the damping matrix is derived. With the damping matrix the coupling effects due to luffing are studied. 

The luffing velocity introduced by a displacement in Y and Z are given by equation 5.26 and 5.27 

respectively. 

𝑣𝑙𝑢𝑓(𝑠𝑤𝑎𝑦) = sin(𝛼) 𝑌̇  (5.26) 

𝑣𝑙𝑢𝑓(ℎ𝑒𝑎𝑣𝑒) = cos(𝛼) 𝑍̇ (5.27) 

The luffing velocity caused by the roll displacement is given by equation 5.11 with the small angle 

approximation included. 

This case results in equations of motion with identical mass and stiffness matrices as was calculated 

for telescoping, but with a different damping matrix (equation 5.28). 

𝐶𝑒𝑞 = 

(5.28) 

To analyze the matrix, again the luffing angle is set to 0 rad (equation 5.29) and to  
𝜋

2
 rad (equation 

5.30) and the damping matrices are analyzed. 

  

𝐶ℎ22 + 𝑠2(𝛼)
𝐶𝑙𝑢𝑓

𝐿2
 −s(α)c(α)

𝐶𝑙𝑢𝑓

𝐿2
 𝑦𝑡𝑖𝑝

𝐶𝑙𝑢𝑓

𝐿2
(−𝑠(𝛼)𝑐(𝛼) − 𝑠2(𝛼)𝜃) +

𝑧𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 (𝑠(𝛼)𝑐(𝛼)𝜃 − 𝑠2(𝛼))  

−𝑠(𝛼)𝑐(𝛼)
𝐶𝑙𝑢𝑓

𝐿2
 𝐶ℎ33 + 𝑐2(𝛼)

𝐶𝑙𝑢𝑓

𝐿2
 𝑦𝑡𝑖𝑝

𝐶𝑙𝑢𝑓

𝐿2 (𝑐(𝛼)𝑠(𝛼)𝜃 + 𝑐2(𝛼)) +

𝑧𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2
(𝑐(𝛼)𝑠(𝛼) − 𝑐2(𝛼)𝜃)  

𝑦𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2
(−𝑠(𝛼)𝑐(𝛼) − 𝑠2(𝛼)𝜃) +

𝑧𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 (𝑠(𝛼)𝑐(𝛼)𝜃 − 𝑠2(𝛼))  

𝑦𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 (𝑐(𝛼)𝑠(𝛼)𝜃 + 𝑐2(𝛼)) +

𝑧𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2
(𝑐(𝛼)𝑠(𝛼) − 𝑐2(𝛼)𝜃)  

𝑦𝑡𝑖𝑝
2 𝐶𝑙𝑢𝑓

𝐿2
(𝑐2(𝛼) + 𝑐(𝛼)𝑠(𝛼)𝜃) +

𝑧𝑡𝑖𝑝
2 𝐶𝑙𝑢𝑓

𝐿2 (𝑠2(𝛼) − s(𝛼) c(𝛼) 𝜃) +

𝑦𝑡𝑖𝑝𝑧𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2
(−𝑐2(𝛼)𝜃 +

2𝑠(𝛼)𝑐(𝛼) + 𝑠2(𝛼)𝜃) + 𝐶ℎ44    
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Due to the fact that the rotational luffing damper results in forces perpendicular to the gangway the 

coupling effects of luffing and telescoping are opposite. For a luffing angle of 0 rad, the coupling 

between heave and roll are present due to the fact that the luffing damper acts as a vertical force 

when the luffing angle is 0, which is visible in equation 5.29. 

𝐶𝑒𝑞(𝛼 = 0)

[
 
 
 
𝐶ℎ22 0 0

0 𝐶ℎ33 +
𝐶𝑙𝑢𝑓

𝐿2 𝑦𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 − 𝑧𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 𝜃

0 𝑦𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 − 𝑧𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 𝜃 𝑦𝑡𝑖𝑝
2 𝐶𝑙𝑢𝑓

𝐿2 + 𝑦𝑡𝑖𝑝𝑧𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 𝜃 + 𝐶ℎ44]
 
 
 
  (5.29) 

The opposite occurs when the luffing angle is set to 
𝜋

2
 rad, where the force is horizontal and coupling 

occurs between sway and roll which can be seen from equation 5.30. 

 

𝐶𝑒𝑞(𝛼 =
𝜋

2
)

[
 
 
 𝐶ℎ22 +

𝐶𝑙𝑢𝑓

𝐿2 0 −𝑦𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 𝜃 − 𝑧𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2

0 𝐶ℎ33 0

−𝑦𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 𝜃 − 𝑧𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 0 𝑧𝑡𝑖𝑝
2 𝐶𝑙𝑢𝑓

𝐿2 + 𝑦𝑡𝑖𝑝𝑧𝑡𝑖𝑝
𝐶𝑙𝑢𝑓

𝐿2 𝜃 + 𝐶ℎ44]
 
 
 

 (5.30) 
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5.7 Sensitivity study telescoping force 
The parameters of the damping matrices are studied by varying the parameters and analyzing the 

effect of the variable parameter on the total damping force, first for luffing and secondly for 

telescoping.  

The damping matrix for luffing consists of 3 variable parameters; 𝛼(𝑡), 𝐶𝑡𝑒𝑙 and 𝐶ℎ. The luffing angle 

and telescoping damping are parameters inherent to the Ampelmann system and the motions of the 

buoy. The luffing angle can slightly be changed by placing the Ampelmann system elevated. The 

telescoping damping coefficient of the gangway cannot be changed at will, but the value, determined 

by the full-scale tests, does fluctuate. The hydrodynamic damping coefficient of the buoy is frequency 

dependent, so this value differs significantly with different environmental conditions. To see what the 

effect of these variable parameters are, the damping force in y- and z-direction and the damping 

moment in roll are calculated with varying one of these parameters at a time.  

The other parameters included in the damping force calculations are the velocities in sway, heave and 

roll. These velocities are kept constant to solely study the effect of the Ampelmann parameters and 

the varying hydrodynamic damping coefficients on the damping force. The last parameter which is 

included in the damping matrices is the roll angle, which in this case is also kept constant. The values 

of the velocities are chosen to be equal for sway and heave. The roll angle and roll velocity are the 

average values of a simulation in aNySIM with incoming regular waves with the most common sea 

state (A= 0.75m, T = 4.5s). When one parameter varies, the others are kept constant at the average 

values calculated in the simulation done for the most common sea state. The values of all parameters 

for the case study are shown in Table 5-2. 

Table 5-2. Parameters case study. 

 

 

 

 

 

  

Constant 
parameters 

 Varying parameters  

𝒗𝒚 [m/s] 1 𝜶 [rad] 0,2 

𝒗𝒛 [m/s] 1 𝑪𝒕𝒆𝒍 
𝑵𝒔

𝒎
 9854 

𝜽̇ [rad/s] 0,15 𝑪𝟐𝟐
𝑵𝒔

𝒎
   175.000 

𝜽 [rad] 0,1 𝑪𝟑𝟑 
𝑵𝒔

𝒎
  140.000 

  𝑪𝟒𝟒 
𝑵𝒎𝒔

𝒓𝒂𝒅
 430.000 
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 Luffing angle 
In the first case, the effect of the luffing angle on the total damping forces and moment are studied. 

The maximum allowable luffing angle is 0.3 rad for the Ampelmann system to be operational 

(Ampelmann Operations B.V., 2014). The luffing angle therefor varies between 0 and 0.3 rad.  

Due to the trigonometric functions in the damping matrix, Figure 5-10 shows that the damping forces 

and moments respond non-linearly. The damping forces are less non-linear compared to the damping 

moment (Figure 5-11) since the trigonometric functions in equation 5.23, for the damping forces are 

first-order, and in equation 5.23 the damping moment are first- and second-order. The force in y-

direction increases faster than the force in z-direction with increasing luffing angle. This can be 

concluded from matrix 5.24 and 5.25 where the luffing angle is set to 0 rad and 
𝜋

2
 rad. When the luffing 

angle is set to 0 rad, there is only coupling between roll and sway. So for small angles the telescoping 

damper will exert a higher force in y-direction compared to in z-direction. When analyzing the 

damping moment it can be seen that the damping moment is decreasing. For small angles the coupling 

between sway and roll creates a moment in opposite direction of the hydrodynamic roll damping 

moment. When the luffing angle increases the coupling between heave and roll becomes more 

significant, which creates a positive damping moment that reduces the slope of the damping moment. 

The effect of the varying luffing angle in this case is not changing the damping forces significantly. The 

increase of damping force in y-direction, at maximum luffing angle, is 2.8% compared to a luffing angle 

of 0 rad. The damping moment is changing significantly with a 33% decrease compared the damping 

moment with a luffing angle of 0 rad. This is for this case study where the velocities in sway and heave 

are positive and much higher than the roll velocity. This results in a larger influence of the coupling on 

the changing moment by the forces than the other way around, which will not always be the case. 

  

 
Figure 5-10 Damping force varying luffing angle. 

 
Figure 5-11 Damping moment varying luffing angle. 
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 Telescoping damping coefficient 
In this case the luffing angle is set to 0.2 rad and the telescoping damping coefficient varies. The 

damping coefficient is not manually adjustable but the value may differ in actual operation, compared 

to the tests. Studying the effect of the damping coefficient on the total damping forces and moment, 

𝐶𝑡𝑒𝑙  varies from 0 to 5 times the damping coefficient from the Ampelmann tests. 

Even though it is unlikely that the telescoping damping coefficient is miscalculated by Ampelmann 

with a factor of 5, this case is used to study the effect of a varying telescoping damping coefficient. 

Having a fixed luffing angle takes out all the trigonometric functions in the damping matrix force which 

will result in a linear damping matrix. Figure 5-12 shows that the damping forces in y- and z-direction 

increase linearly but with a different slope. Due to the projection of the telescoping force in y- and z-

direction with a relatively small angle, it can be said that the damping force in y-direction on the buoy 

experiences larger effect than the damping force in z-direction. The damping moment decreases with 

an increasing telescoping damping coefficient (Figure 5-13). This shows that the telescoping forces 

create an opposite moment compared  to the hydrodynamical moment.  

  

 
Figure 5-12 Damping force varying telescoping damping 
coefficient. 

 
Figure 5-13 Damping force varying telescoping damping 
coefficient. 
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 Hydrodynamic damping coefficient 
The last variable parameter which is studied, is the hydrodynamical damping of the buoy. The 

hydrodynamic damping is frequency dependent and can differ significantly with different 

environmental conditions. The hydrodynamic damping for sway, heave and roll are varied from 0  up 

to the maximum hydrodynamic damping derived from the diffraction software for each degree of 

freedom. The results are shown Figure 5-14, Figure 5-15 and Figure 5-16. Due to the big difference in 

hydrodynamic damping coefficients, the total damping forces and moment vary significantly. 

 

 
Figure 5-14 Damping force with varying hydrodynamic 
damping in sway. 

 
Figure 5-15 Damping force with varying hydrodynamic 
damping in heave. 

 
Figure 5-16 Damping moment with varying hydrodynamic 
damping in roll 
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5.8 Sensitivity study luffing force 
To study the effect of the varying parameters on the damping force and moment, the same approach 

is used as in chapter 5.7. The luffing force introduces one more variable parameter which is the 

gangway length. 

 Luffing angle 

 

The damping forces in y- and z-direction are close to linear for the working range of the luffing angles 

of the gangway. Figure 5-17 and Figure 5-18 show that the luffing angle does not influence the total 

damping force or damping moment significantly. The maximum deviation for the damping moment is 

about 2% of the initial value.  

 Luffing damping coefficient 

 
Figure 5-19 Damping forces luffing damping coefficient. 

 
Figure 5-20 Damping moment luffing damping coefficient. 

For a fixed luffing angle of 0.2 rad with a varying luffing damping coefficient it can be seen Figure 5-19 

that an increasing luffing damping coefficient, creates an increasing damping force in z-direction and 

a decreasing damping force in y-direction. This results that both forces either work with or against a 

positive roll motion. In this case they both increase the total damping moment as can be seen from 

Figure 5-20. The telescoping damping coefficient can be of big influence for the roll moment but 

realistically the value will not vary that much. 

Figure 5-17 Damping force varying luffing angle. Figure 5-18 Damping moment varying luffing angle. 
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 Hydrodynamic damping coefficient 
Figure 5-21, Figure 5-22, and Figure 5-23 show the effect of varying hydrodynamical damping 

coefficients on the total damping forces and moment for each degree of freedom. Also for luffing the 

hydrodynamic damping coefficient is significant for the total damping forces and moment acting on 

the buoy. 

 

 

 

 

 

 

 

 

 

 

Figure 5-21 Damping force varying hydrodynamic damping 
coefficient for sway. 

Figure 5-23 Damping moment varying hydrodynamic damping 
coefficient for roll. 

Figure 5-22 Damping force varying hydrodynamic damping 
coefficient for heave. 
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 Gangway length 
The gangway length is a new parameter in the sensitivity study compared to the telescoping damper. 

The gangway length can vary within its operational limits (Ampelmann Operations B.V., 2014). The 

effect of the gangway length in workably range, on the damping forces and moment, is plotted in 

Figure 5-24 and Figure 5-25. 

 

 

 

The varying length of the gangway does not affect the damping forces in y- and z-direction 

significantly. The effect of the varying gangway length does affect the damping moment. With an 

increasing gangway length it is shown that the gangway moment decreases non-linearly caused by the 

second order equation of the luffing force (equation 4.14 and 4.15). 

  

Figure 5-24 Damping force varying gangway length. Figure 5-25 Damping moment varying gangway length. 
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5.9 Solving equations of motion 
To study the effect of the damping force on the response of the buoy, the equations of motion are 

solved using an ordinary differential equation (ODE) solver written in Python. The equations of motion 

are solved for a case study with limited hydrodynamical damping to study the effect of the gangway 

damping on the response of the buoy. The response of the buoy calculated by the ODE solver is 

compared with the same case study performed in aNySIM. At first the method of building the ODE 

solver is explained and after the results are discussed. 

 Case study 
Following from the sensitivity study, the hydrodynamical damping of the buoy is a governing factor 

regarding the total damping forces and moment acting on the buoy. From the diffraction data of the 

buoy (Figure 5-26), it shows that for low- and high-frequency waves the hydrodynamic damping 

coefficient is relatively small, which makes the damping forces, caused by the gangway, more 

significant.  

 

Figure 5-26 Frequency dependent damping coefficients for sway, heave and roll. 

To verify this, a case study is used in this chapter with regular, unidirectional, low-frequency waves 

coming from y-direction (Figure 4-6). The amplitude of the regular waves are chosen to be 1.5m, to 

exert significant buoy motions. The period of the waves are set to 15s to have sufficiently low 

hydrodynamical damping. This case is purely set up to study the effect of the gangway damping on 

the response of the buoy, since it is expected that for these wave conditions the dynamic interaction 

plays a significant role. 
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 ODE solver 
An ODE solver is used to solve equation 5.4. To be able to solve equation 5.4 with the ODE solver, the 

second order differential equation is reduced to a first order differential equation. At first the 

equations of motion is in equation 5.31. 

𝑋̈ = (−𝐶𝑒𝑞𝑋̇ − 𝐾𝑒𝑞𝑋 + 𝐹𝑤𝑎𝑣𝑒𝑠) 𝑀𝑒𝑞
−1   (5.31) 

Equation 5.31 is reduced to a first order differential equation by changing the notation of the motions 

of the body (Chris Keijdener, 2017). Implementing vectors 5.32 and 5.33 in equation 5.31 results in 

the first order differential equation 5.34. 

𝑞 =

[
 
 
 
 
 
𝑦
𝑧
𝜃
𝑦̇
𝑧̇
𝜃̇]
 
 
 
 
 

  (5.32)   𝑞̇ =

[
 
 
 
 
 
𝑦̇
𝑧̇
𝜃̇
𝑦̈
𝑧̈
𝜃̈]
 
 
 
 
 

  (5.33) 

𝑞̇ = (𝑃 𝑞 + 𝐹𝑤𝑎𝑣𝑒𝑠)𝑀𝑒𝑞
−1  (5.34) 

With  

𝑃 = 

[
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

−𝐾22 0 0 −𝐶22 −𝐶23 −𝐶24

0 −𝐾33 0 −𝐶32 −𝐶33 −𝐶34

0 0 −𝐾44 −𝐶42 −𝐶43 −𝐶44]
 
 
 
 
 

   (5.35) 

And  

𝐹𝑤𝑎𝑣𝑒𝑠 = [

𝐹𝑦 sin (𝜔𝑡 + 𝜙𝑦)

𝐹𝑧 sin (𝜔𝑡 + 𝜙𝑧)
𝑀𝜃 sin (𝜔𝑡 + 𝜙𝜃)

]   (5.36) 

For solving the first order differential equation, the initial conditions are required. In the case study, 

the buoy will start at its equilibrium with no initial velocity or displacement, which results in the 

following initial conditions. 

𝑞𝑡0 = 

[
 
 
 
 
 
0
0
0
0
0
0]
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The values of the hydrostatic stiffness, hydrodynamic damping, added mass, wave forces and phase 

shifts are found with the results of the diffraction software (Appendix 9.3). The damping coefficients 

of the gangway are shown in equations 5.23 and 5.28. All the components of the first order differential 

equation are now known and can be solved using Python. The ODE solver solves equation 5.31 

numerically for a given timespan and timestep. To compare the results of this approach with the 

results from the aNySIM model, a simulation is performed with a duration of 300s and a timestep of 

0.1s. In programming, the state vector q is calculated for every timestep by equation 5.37 (Chris 

Keijdener, 2017). 

𝑞𝑛+1 ≈ q
n
+ Δ𝑡𝑞𝑛̇

  (5.37) 

The damping matrices contain time-dependent components such as luffing angle and gangway length. 

These components are dependent on the y- and z-location, and the roll position of the buoy. In the 

ODE solver, the damping matrix is recalculated for every timestep, which is also done in aNySIM. The 

ODE-solver function from Python solves equation 5.31 for every timestep, which computes time-series 

of the displacement and velocity of all 3 degrees of freedom of the buoy. The complete code of solving 

the first order differential equation is given in Appendix 9.7. 

 Comparing aNySIM and Python model 
To discuss the results of the aNySIM and Python model, at first the differences of both models are 

analyzed. Even though the model in aNySIM is linearized as much as possible, some non-linear effects 

occur. At first the mooring lines are tested on static linearity that is discussed in chapter 4.4.1. 

Dynamically the mooring lines may not act linearly. Especially in the case with long waves, the sway 

response has a high amplitude that changes the geometry of the mooring lines. When the buoy is at 

its maximum sway excitation, it can be seen (Figure 5-27) that the mooring line configuration is non-

symmetric. Figure 5-27 shows that at the maximum sway excitation of the buoy, the mooring lines 

have different angles with respect to the buoy. This results in a non-linear coupling effect of the 

stiffness of the mooring lines in heave caused by the sway motion of the buoy.  

 

Figure 5-27 Mooring configuration at maximum sway position of the buoy. 

This non-linear effect becomes visible plotting the total force of all 6 mooring lines combined in y-

direction and in z-direction (Figure 5-28). Figure 5-28 shows the total mooring force acting on the buoy 

in y-direction (blue line) and z-direction (orange line) for the wave conditions set up in the case study. 

It shows that the total mooring force acting on the buoy respond non-linearly in aNySIM. This has not 

been taken into account in the Python model, where the stiffness in all degrees of freedom of the 

system is assumed to be perfectly linear. 
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Figure 5-28 Total mooring forces acting on the buoy. 

The second difference of the aNySIM model compared to the Python model is the incoming waves. 

In aNySIM regular incoming waves are modeled with an amplitude of 1.5m and a period of 15s. From 

a spectrum analysis in aNySIM, which is shown in Figure 5-29, it is concluded that the incoming 

waves are not a perfectly regular waves with 1 frequency, but the frequency of the incoming waves 

has a spreading. 

 

Figure 5-29 Spectrum Analyses Incoming waves.  

The variety of the frequency of the incoming wave does influence the added mass and hydrodynamic 

damping of the buoy, since these values are frequency dependent. Again, in Python it is assumed that 

the incoming wave force is perfectly sinusoidal with a fixed amplitude, period and phase (equation 

5.36).  

To compare the numerical aNySIM model with the numerical model from Python, the sway and heave 

response of the buoy without the Ampelmann system are plotted in Figure 5-30 and Figure 5-31 

respectively. According to simulations from both models, the roll response of the buoy, caused by long 
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waves, is small enough to be neglected. The maximum roll excitation in these simulations is 0.04 rad, 

which is shown in Appendix 9.5.  

At first the sway response is analyzed. The response of the buoy computed by aNySIM and Python 

(Figure 5-30) shows 2 main differences; The amplitude in the first 100s of the simulation and the phase 

of both models.  

 

Figure 5-30 Sway response without gangway included by aNySIM and Python. 

Since the frequency dependent damping coefficient in aNySIM varies, the damping coefficient 

implemented in the Python model is not identical to the damping coefficient in aNySIM. The damping 

coefficient plays a significant role in the phase angle of a system. This can be explained by a varying 

damping coefficient with respect to the values of the mass, added mass and stiffness. The phase angle 

of a system is calculated by rewriting the transfer function of the system (Karl Johan Aström, 2003). 

Equation 5.38 shows the Laplace transformation of equation 5.4, which is used to write the transfer 

function for one degree of freedom in equation 5.39. 

(𝑀 + 𝐴)𝑠2𝑋(𝑠) + 𝐶𝑠𝑋(𝑠) + 𝐾𝑋(𝑠) = 𝐹𝑤𝑎𝑣𝑒𝑠(𝑠) (5.38) 

𝐻(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

(𝑀+𝐴)𝑠2+𝐶𝑠+𝐾
  (5.39) 

The transfer function is converted to the frequency domain by implementing 𝑠 = 𝑗𝜔 

𝐻(𝑗𝜔) =
𝑋(𝑗𝜔)

𝐹(𝑗𝜔)
=

1

−(𝑀+𝐴)𝜔2+𝐶𝑗𝜔+𝐾
  (5.40) 

Using the transfer function, the phase angle is calculated by equation 5.41. 

∠𝐻(𝑗𝜔) =  arctan (
𝐼𝑚 𝐻(𝑗𝜔)

𝑅𝑒 𝐻(𝑗𝜔)
)   (5.41) 

Implementing equation 5.40 in equation 5.41, leads to equation 5.42 for the phase angle. 

∠𝐻(𝑗𝜔) =  arctan (
−𝐶𝜔

−(𝑀+𝐴)𝜔2+𝐾
)  (5.42) 
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Equation 5.42 shows that a varying value for damping and added mass, affects the phase angle. The 

phase shift and different response in the first 100 seconds of both model can be explained by the non-

linearities in damping and/or added mass of the aNySIM model compared to the Python model. 

Analyzing the heave response computed by the aNySIM model and the Python model  also shows 

differences between results of the 2 models (Figure 5-31). 

 

Figure 5-31 Undamped sway response by aNySIM and Python. 

The heave response of both models oscillates around a different equilibrium. The average draft of the 

aNySIM model is lower than the average draft of the Python model. This can be explained by the fact 

that the pretension of the mooring lines is not included in the Python model but this is included in the 

aNySIM model. The non-linear effect of the mooring lines is also visible in the heave response of 

aNySIM. Figure 5-31 shows that the heave motion computed by aNySIM is not a perfect sinusoidal 

motion while the heave response from the Python model is. 

  



60 
 

5.10 Dynamic vs kinematic approach 
Even though the responses of the aNySIM model and Python model are not identical, it can be 

determined that the excitations of the sway and heave motion of the buoy in both models are very 

similar. Using both models, the effect of the damping forces of the gangway on the motions of the 

buoy are studied. Figure 5-32 and Figure 5-33 show the sway response computed by aNySIM and 

Python respectively with (blue line) and without (orange line) dynamic interaction included. It shows 

that the amplitude of the sway excitation is reduced by the gangway damper for both the aNySIM and 

Python model up to 9,5%. Besides the reduced amplitude for the sway motion, a small phase shift is 

visible in Figure 5-32 and Figure 5-33. This can be explained by the damping coefficients of the 

gangway and equation 5.42. 

 

Figure 5-32 Sway response computed by aNySIM. 

 

Figure 5-33 Sway response computed by Python. 
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Figure 5-34 and Figure 5-35 shows that the amplitude of the heave response for both models is 

reduced, by the added damping of the gangway, up to 10%. The phase shift is less relevant for the 

heave response due to the fact that the values of the added mass and stiffness coefficients are much 

higher for the heave motion than for the sway motion. Due to this, the effect of a changing damping 

coefficient is relatively small. The non-linearities of the mooring lines in aNySIM are visible in Figure 

5-34 where the heave response is not perfectly sinusoidal. Due to the linearized mooring stiffness in 

the Python model the heave response in Figure 5-35 is perfectly sinusoidal. 

 

Figure 5-34 Heave response computed by aNySIM. 

 

Figure 5-35 Heave response computed by Python. 
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5.11 Conclusion 
An analytical approach is used to set up the equations of motion of the CALM buoy in the y-z plane. 

The CALM buoy is modeled as a mass-spring-damper system with 3 degrees of freedom, where the 

hydrodynamic and hydrostatic properties of the buoy have been replaced by equivalent springs and 

dampers. Via the equations of motion, the equivalent damping matrix shows that the equivalent 

damping coefficients depend on the hydrodynamic damping coefficients, gangway damping 

coefficients, luffing angle, gangway length and roll angle. Via a sensitivity study it became clear that 

the hydrodynamic damping coefficient is the governing factor in the equivalent damping matrix. For 

low- and high-frequency waves the hydrodynamic damping coefficients of the buoy are minimal and 

in these frequency regions, the gangway damping coefficients is more relevant. To test this, a case 

study is used with relatively low hydrodynamical damping. The equations of motion, derived by the 

analytical approach, are used to verify the results of the aNySIM model by solving them with an ODE 

solver in python. The amplitude of the sway and heave motion are very similar in both models. The 

main difference between the aNySIM model and the Python model are the non-linear effects which 

do occur in aNySIM but not in Python. Large sway excitations of the buoy causes a non-symmetrical 

mooring configuration that responds differently compared to the linearized mooring stiffness used in 

Python. The sway and heave responses of both models have a phase difference that may be caused 

by the difference in damping coefficients in both models. Again in Python these coefficients are 

linearized to a constant value and in aNySIM the regular incoming wave does have a variance in 

frequency, which causes a variation in added mass and hydrodynamic coefficients of the buoy. Using 

the case study the influence of the gangway forces acting on the buoy is studied. Both models show 

that for low hydrodynamic damping, the gangway forces reduces the amplitude of the buoy motion 

in sway and heave up to 10% for this case study.  
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6. Workability study 
 

6.1 Introduction 
In this chapter a workability study is performed, comparing the workability of the Ampelmann system 

with and without dynamic interaction included in the model. The workability study determines what 

percentage of time the Ampelmann can be operational. To perform a complete workability study the 

gangway forces and motions of the buoy are analyzed in 3d. Using wave spectrum data, the 

workability study is performed by running time-domain simulations for all sea states. A MATLAB tool 

is used to calculate the workability based on the operational limits of the gangway that are defined by 

Ampelmann. The results of the workability derived by a kinematic approach are compared with the 

workability derived by a dynamic approach. 

6.2 3D configuration 
To perform a workability study the in-plane model is extended to a 3d model with incoming head 

waves with respect to the host vessel which is shown in figure Figure 6-1. 

 

Figure 6-1 Schematic representation of positioning host vessel. 

Two important additions are implemented in the aNySIM model to do a 3d analyses. At first the third 

degree of freedom of the gangway is added; slewing. Slewing means that the gangway rotates around 

its z-axis at the rotation point of the transferdeck. The second addition for the aNySIM model is that 

all forces are now dependent of 3 dimensional velocities of the connection point of the buoy, and of 

the 3 dimensional length of the gangway. 
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 Global velocities 
Calculating the damping forces of the gangway in 3d it is required to transform the body-fixed 

velocities, which are an output of aNySIM, to the global coordinate system. This is done by applying 

rotation matrices.  

Rotating around one specific axis results in an elemental rotation matrix. For the buoy this means that 

the elemental rotation matrices for roll (rotation around local x-axis), pitch (rotation around local y-

axis) and yaw (rotation around local z-axis) are respectively 

     𝑅𝑥 = [

1 0 0
0 cos (𝜙) −sin (𝜙)
0 sin (𝜙) cos (𝜙)

]  (6.1) 

    𝑅𝑦 = [
cos (𝜃) 0 sin (𝜃)

0 1 0
−sin (𝜃) 0 cos (𝜃)

]  (6.2) 

    𝑅𝑧 = [
cos (𝜓) −sin (𝜓) 0
sin (𝜓) cos (𝜓) 0

0 0 1

]  (6.3) 

The combined rotation matrix rotates the body fixed velocity vectors to the global coordinate system. 

This rotation matrix is formed by multiplying the elemental rotation matrices. A rotational matrix can 

transform the local coordinate system to the global coordinate system (active transformation), but it 

can also be used to transform the global coordinate system to the local coordinate system (passive 

transformation). The difference between the active and passive rotation matrix is the order of 

multiplying the elementary rotation matrices. Equation 6.4 is used to form the rotation matrix for 

active transformation.  

𝑅𝑙→𝑔 = 𝑅𝑧𝑅𝑦𝑅𝑥     (6.4) 

The global velocities of the buoy at the connection point of the buoy are calculated by multiplying the 

local velocities with the rotation matrix. 

𝑣𝑔 = 𝑅𝑙→𝑔𝑣𝑏       (6.5) 

With 

𝑣𝑔 = [

𝑣𝑔𝑥

𝑣𝑔𝑦

𝑣𝑔𝑧

] , 𝑣𝑏 = [

𝑣𝑏𝑥

𝑣𝑏𝑦

𝑣𝑏𝑧

]    
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 Telescoping force 
The length of the gangway in 3d is dependent on the 𝑥𝑡𝑖𝑝(𝑡), 𝑦𝑡𝑖𝑝(𝑡), 𝑧𝑡𝑖𝑝(𝑡) which are shown in Figure 

6-1. 

Equation 6.6 shows how the length of the gangway is calculated in 3d. 

𝐿(𝑡) = √(𝑥𝑡𝑑 − 𝑥𝑡𝑖𝑝(𝑡))
2
+ (𝑦𝑡𝑑 − 𝑦𝑡𝑖𝑝(𝑡))

2
+ (𝑧𝑡𝑑 − 𝑧𝑡𝑖𝑝(𝑡))

2
 (6.6) 

The time derivative of equation 6.6 is used to calculate the telescoping velocity. 

𝑣𝑡𝑒𝑙(𝑡) =  𝐿(𝑡)̇ =
−𝑥𝑡𝑖𝑝̇ (𝑡)(𝑥𝑡𝑑−𝑥𝑡𝑖𝑝(𝑡))−𝑦𝑡𝑖𝑝̇ (𝑡)(𝑦𝑡𝑑−𝑦𝑡𝑖𝑝(𝑡))−𝑧𝑡𝑖𝑝̇ (𝑡)(𝑧𝑡𝑑−𝑧𝑡𝑖𝑝(𝑡))

𝐿(𝑡)
   (6.7) 

The telescoping force in 3d is calculated by implementing equation 6.5 and 6.7 in equation 4.5. 

 Luffing force 
The luffing force in 3d is calculated by implementing equation 6.6 and 6.7 in equation 4.14. 

 Slewing force 
From Ampelmann tests it is derived that the slewing gangway causes a damping moment due to the 

internal damping of the gangway. The approach of calculating the slewing force is similar to the 

approach of calculating the luffing force. The slewing velocity is calculated by taking the time 

derivative of the slewing angle, which is dependent on the position of the buoy. The slewing angle is 

calculated by equation 6.8 using the righthand rule for positive slewing angles. 

sin(𝛽(𝑡)) =
𝑥𝑡𝑖𝑝(𝑡)−𝑥𝑡𝑑

𝐿(𝑡)
   (6.8) 

By taking the time derivative of equation 6.8, the slewing velocity is calculated by equation 6.9. 

𝛽(𝑡)̇ =
𝐿(𝑡)𝑥𝑡𝑖𝑝(𝑡)−(𝑥𝑡𝑖𝑝(𝑡)−𝑥𝑡𝑑)𝐿(𝑡)̇̇

𝐿2(𝑡) cos(𝛽(𝑡))
  (6.9) 

The rotational slewing damper causes a moment at the connection point of the tip caused by the 

connected gangway. This moment is projected on the buoy as a force perpendicular to the gangway 

which is visualized in Figure 6-2. 

 

Figure 6-2 Slewing force. 
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The slewing force is calculated with equation 6.10. 

𝐹𝑠𝑙𝑒𝑤𝑖𝑛𝑔(𝑡) =
𝐶𝑠𝑙𝑒𝑤𝑖𝑛𝑔 𝛽(𝑡)̇

𝐿(𝑡)
  (6.10) 

With the slewing damping coefficient derived from the Ampelmann tests. 

𝐶𝑠𝑙𝑒𝑤𝑖𝑛𝑔 = 453.390  
𝑁𝑚𝑠

𝑟𝑎𝑑
  

Implementing equation 6.6 and 6.9 into equation 6.10 finds the slewing force in 3d. 

 Global gangway forces 
The forces caused by internal damping of the gangway are all perpendicular to each other in 3D (Figure 

6-3), which results in the force vector (equation 6.11) where the slewing force is directed in the x-

direction of the local coordinate system, the telescoping force in y-direction and the luffing force in z-

direction. 

 

𝐹𝑔𝑤 = [

𝐹𝑠𝑙𝑒𝑤𝑖𝑛𝑔

𝐹𝑡𝑒𝑙𝑒𝑠𝑐𝑜𝑝𝑖𝑛𝑔

𝐹𝑙𝑢𝑓𝑓𝑖𝑛𝑔

]     (6.11) 

The force vector changes its orientation caused by luffing and slewing. To implement all gangway 

forces in aNySIM, they have to be transformed from the local gangway coordinate system to the global 

coordinate system. This is done by applying the same method as in chapter 6.2, but the rotation matrix 

is now based on the rotations of the gangway. The elementary rotation matrix for telescoping does 

not exist since telescoping causes a translation and not a rotation. The elementary rotation matrices 

for slewing and luffing are shown in equations 6.12 and 6.13. 

     𝑅𝑧 = 𝑅𝑠𝑙𝑒𝑤𝑖𝑛𝑔 = [

1 0 0
0 cos (𝛽) −sin (𝛽)
0 sin (𝛽) cos (𝛽)

]  (6.12) 

    𝑅𝑥 = 𝑅𝑙𝑢𝑓𝑓𝑖𝑛𝑔 = [
cos (𝛼) −sin (𝛼) 0
sin (𝛼) cos (𝛼) 0

0 0 1

]  (6.13) 

The order of multiplying the elemental rotation matrices follows from the fact that again active 

transformation is used to transform the force vector from the local coordinate system to the global 

coordinate system. Implementing equation 6.11-6.13 into equation 6.14, results in the global force 

vector caused by the Ampelmann system acting on the buoy. 

𝐹𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑅𝑠𝑙𝑒𝑤𝑖𝑛𝑔 𝑅𝑙𝑢𝑓𝑓𝑖𝑛𝑔 𝐹𝑔𝑤  (6.14)  

Figure 6-3 3D representation gangway forces 
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6.3 Operational limits 
An Ampelmann system can only operate within its operational limits. If these operational limits are 

exceeded, the Ampelmann system is not allowed to work. The boundaries of an Ampelmann system 

are determined by operational limits of the hexapod and gangway (Roethof, 2015). Since in this thesis 

it is assumed that the residual vessel motions, which are not compensated by the dp-system, are 

within the compensating limits of the hexapod, the limits of the hexapod are not included. The 

operational limits of the gangway are based on the mechanical limits of the Ampelmann system and 

on safety regulations based on seakeeping criteria of Nordforsk (NORDFORSK, 1987). Since the 

gangway is modeled as a massless damper the acceleration limits of the gangway are not included in 

the workability study. The mechanical limits of the gangway system result in a minimum and maximal 

gangway length and luffing velocity. The gangway length limitation is caused by the minimum and 

maximum telescoping length. According to the luffing cylinders specification, they have a limited 

working velocity. This is translated to the operational luffing velocity of the gangway (Ampelmann 

Operations B.V., 2014).  

Based on the seakeeping criteria of Nordforsk, Ampelmann has set up safety operational limits. This 

results that the luffing angle and the telescoping velocity of the gangway have certain limits. The 

operational limits which are included for the workability study, for an Ampelmann A-type, are shown 

in Table 6-1. 

Table 6-1 Operational limits gangway. 

 

 

 

 

 

  

Operational parameter Lower limit Upper limit 

Luffing angle [rad] -0,3 0,3 

Luffing velocity [rad/s] -0,05 0,05 

Gangway length [m] 19 23 

Telescoping velocity [m/s] -1 1 
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6.4 Sea states 
For the workability study, the responses of the buoy and gangway are different for different sea states. 

The conditions for long-term statistics are not stationary  which makes it not feasible to present the 

time-series of the wave by its surface elevation (Holthuijsen, 2007). The long term statistics at the 

location of the CALM buoy is observed and documented for a duration of 3 hours. A method to 

document the long term wave data is to collect the observations according to its significant wave 

height (Hs), its zero-crossing period (Tz) and its mean direction. The data is collected in a wave scatter 

diagram with on the horizontal axis the zero-crossing period and on the vertical axis the significant 

wave height. The percentage of observations per Hs-Tz combination are noted. Table 6-2 shows the 

wave scatter diagram of the location of the CALM buoy in Papua New Guinea (Argoss, 2016). 

Table 6-2 Wave scatter diagram Papua New Guinea (01-03-1997 – 28-02-2007). 

Hs  Tz lower 2 3 4 5 6 7 8 9 
 

lower upper 3 4 5 6 7 8 9 10 Total 

0 0,25 0,04 0,24 0,15 0,09 0,11 0,08 * - 0,71 

0,25 0,5 0,52 1,29 1,45 1,56 0,87 0,25 0,05 - 5,99 

0,5 0,75 1,25 3,97 4,52 4,45 2,23 0,62 0,08 - 17,12 

0,75 1 0,14 7,23 6,15 3,84 2,22 0,76 0,21 0,05 20,60 

1 1,25 - 3,89 10,57 2,96 1,26 0,50 0,08 0,04 19,30 

1,25 1,5 - 0,72 9,54 4,18 1,31 0,17 0,12 0,01 16,05 

1,5 1,75 - 0,06 5,47 3,81 0,94 0,12 0,02 0,05 10,47 

1,75 2 - * 3,25 1,58 0,69 0,14 - 0,05 5,71 

2 2,25 - - 0,67 1,47 0,19 0,03 - - 2,36 

2,25 2,5 - - 0,02 0,95 0,04 0,02 - - 1,03 

2,5 2,75 - - - 0,42 0,03 - - - 0,45 

2,75 3 - - - 0,1 0,03 - - - 0,13 

3 3,25 - - - * 0,04 - - - 0,04 

3,25 3,5 - - - - 0,01 - - - 0,01 

Total 
 

1,95 17,40 41,79 25,41 9,97 2,69 0,56 0,20 100,00 

* denotes values less than 0.01% 
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6.5 Workability approach and results 
With the sea states and operational limits known, all required inputs are present to create time-

series of the workability parameters of the Ampelmann system with the numerical model in aNySIM. 

The significant wave height and zero-crossing period of each sea state are implemented to create a 

Jonswap spectrum using head waves. The duration of the modeled time-series is equal to the 

duration of the observations of long-term statistics of the wave scatter diagram, which is typically 3 

hours, with a timestep of 0.1s. A study done by Bergmans (Bergmans, 2017) shows that for 

simulations from  a duration of 8000s, the number of time-series with a Jonswap spectrum with a 

randomized phase does not affect the result of the workability study. As a result of this study, every 

sea state is modeled once for the workability study in this thesis.  This creates a database of 64 time-

series in which for every timestep the values of each working limit of the gangway are saved. These 

time-series are analyzed in a MATLAB tool to calculate the operability per sea state. The operability 

of a sea state shows the percentage of time the Ampelmann system can be operational. If one of the 

workability limits exceeds its limit, it is assumed that for the next 300 seconds the operation cannot 

continue due to the fact that the gangway should clear all people, uncouple from the buoy and 

retract. The MATLAB tool calculates the percentage of time the Ampelmann system can be 

operational in a time span of 3 hours in a certain sea state. Table 6-3 shows the result of the 

operability per sea state with dynamic interaction of the gangway and the buoy included and Table 

6-4 shows the result of the operability per sea state by a kinematic approach. 

Table 6-3 Operability results with dynamic interaction. 

Hs  Tz lower 2 3 4 5 6 7 8 9 

lower upper 3 4 5 6 7 8 9 10 

0 0,25 1 1 1 1 1 1 - - 

0,25 0,5 1 1 1 1 1 1 1 - 

0,5 0,75 1 1 1 1 1 1 1 - 

0,75 1 1 1 1 0,89 0,89 0,97 1 1 

1 1,25 - 1 0,41 0,17 0,29 0,70 0,83 0,91 

1,25 1,5 - 0,97 0,02 0,01 0 0,07 0,28 0,52 

1,5 1,75 - 0,83 0 0 0 0 0,01 0,11 

1,75 2 - - 0 0 0 0 - 0 

2 2,25 - - 0 0 0 0 - - 

2,25 2,5 - - 0 0 0 0 - - 

2,5 2,75 - - - 0 0 - - - 

2,75 3 - - - 0 0 - - - 

3 3,25 - - - - 0 - - - 

3,25 3,5 - - - - 0 - - - 
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Table 6-4 Operability results by kinematic approach. 

Hs  Tz lower 2 3 4 5 6 7 8 9 

lower upper 3 4 5 6 7 8 9 10 

0 0,25 1 1 1 1 1 1 - - 

0,25 0,5 1 1 1 1 1 1 1 - 

0,5 0,75 1 1 1 1 1 1 1 - 

0,75 1 1 1 1 0,86 0,86 0,97 1 1 

1 1,25 - 1 0,35 0,16 0,27 0,63 0,73 0,91 

1,25 1,5 - 0,97 0,02 0,01 0 0,04 0,24 0,42 

1,5 1,75 - 0,32 0 0 0 0 0 0,02 

1,75 2 - - 0 0 0 0 - 0 

2 2,25 - - 0 0 0 0 - - 

2,25 2,5 - - 0 0 0 0 - - 

2,5 2,75 - - - 0 0 - - - 

2,75 3 - - - 0 0 - - - 

3 3,25 - - - - 0 - - - 

3,25 3,5 - - - - 0 - - - 

 

The highlighted cells in Table 6-3 and Table 6-4 show the changed values between both tables. In 

low- and high-frequency sea states it shows that the dynamic interaction of the gangway and the 

buoy does affect the operability significantly. To study what causes this, the operability of the 

individual operational limits are studied. In Appendix 9.8 the operability per sea state, per 

operational limit are given. It shows that the luffing velocity is the governing operational limit. 

Equation 4.15 shows that the luffing velocity depends on the heave motion of the buoy and 

telescoping length and telescoping velocity. Due to head waves and the geometry of the gangway 

with respect to the buoy, the telescoping length and velocity does not vary significantly, which is also 

the reason why these workability parameters are not governing. The heave motion of the buoy is the 

most important parameter considering the luffing velocity of the gangway.  

In chapter 5 it shows that the hydrodynamic damping of the buoy is the governing factor of the total 

damping force on the buoy. Analyzing the frequency dependent hydrodynamic damping in heave 

shows that for high- and for low-frequency sea states the hydrodynamic damping is significantly 

lower than for mid-frequency waves (Figure 5-26). The relatively low hydrodynamic damping in 

heave enables the damping forces of the gangway to play a more significant role in the total 

damping force acting on the buoy. It is clearly visible, when comparing Table 6-3 and Table 6-4, that 

the operability is improved when the dynamic interaction in included in low- and high-frequency sea 

states. 

Not only the zero-crossing period affects the response of the buoy but also the significant wave 

height. When looking at a fixed zero-crossing period it can be concluded that the higher the 

significant wave height, the lower the operability, since higher waves exert larger motions of the 

buoy. The mooring lines in the numerical model are linearized within a certain range and when the 

significant wave height increases the buoy moves outside this linear range. The results of the time-

series for large buoy motion show that the buoy has unrealistic results when the buoy exits the 

linear region. This results in very large surge motions, resulting in unrealistically high telescoping 

velocities and gangway lengths. In Table 6-3 and Table 6-4 it shows that according to the linearized 
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numerical model the Ampelmann is not operational in sea states with a significant wave height 

larger than 1.75m.  

Using this research it cannot be concluded whether the results for these high sea states are correct 

since only the linear response of the buoy is validated in this thesis. The effect of the dynamic 

interaction on the complete workability is not only dependent on the operability of one sea state but 

also on the probability of that sea state occurring. The workability is calculated by multiplying the 

operability with the probability of that sea state occurring. For  low- and high-frequency sea states, 

the dynamic interaction affects the workability significantly. The probability of these sea states 

occurring is small, which can be seen in Table 6-2. The results of the complete workability study are 

given in Table 6-5 and Table 6-6 with and without dynamic interaction, respectively. The effect of the 

dynamic interaction of the Ampelmann system results in a higher workability of less than 1% caused 

by the damping forces of the gangway. 

Table 6-5 Workability result with dynamic interaction. 

Hs  Tz lower 2 3 4 5 6 7 8 9   

lower upper 3 4 5 6 7 8 9 10 Total Cumul. 

0 0,25 0,04 0,24 0,15 0,09 0,11 0,08 - - 0,71 0,71 

0,25 0,5 0,52 1,29 1,45 1,56 0,87 0,25 0,05 - 5,99 6,70 

0,5 0,75 1,25 3,97 4,52 4,45 2,23 0,62 0,08 - 17,12 23,80 

0,75 1 0,14 7,23 6,15 3,42 1,98 0,74 0,21 0,05 19,91 43,72 

1 1,25 - 3,89 4,33 0,50 0,36 0,35 0,07 0,04 9,54 53,26 

1,25 1,5 - 0,70 0,20 0,04 0 0,01 0,03 0,01 0,98 54,24 

1,5 1,75 - 0,05 0 0 0 0 0 0,01 0,06 54,29 

1,75 2 - - 0 0 0 0 - 0 0,00 54,29 

2 2,25 - - 0 0 0 0 - - 0,00 54,29 

2,25 2,5 - - 0 0 0 0 - - 0,00 54,29 

2,5 2,75 - - - 0 0 - - - 0,00 54,29 

2,75 3 - - - 0 0 - - - 0,00 54,29 

3 3,25 - - - - 0 - - - 0,00 54,29 

3,25 3,5 - - - - 0 - - - 0,00 54,29 
Total  1,95 17,37 16,79 10,06 5,46 2,05 0,44 0,10 - - 

Cumul.  1,95 19,32 36,11 46,19 51,73 53,78 54,19 54,29 - - 
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Table 6-6 Workability result with kinematic approach. 

Hs  Tz lower 2 3 4 5 6 7 8 9   

lower upper 3 4 5 6 7 8 9 10 Total Cumul. 

0 0,25 0,04 0,24 0,15 0,09 0,11 0,08 - - 0,71 0,71 

0,25 0,5 0,52 1,29 1,45 1,56 0,87 0,25 0,05 - 5,99 6,70 

0,5 0,75 1,25 3,97 4,52 4,45 2,23 0,62 0,08 - 17,12 23,82 

0,75 1 0,14 7,23 6,15 3,30 1,91 0,74 0,21 0,05 19,73 43,55 

1 1,25 - 3,89 3,70 0,47 0,34 0,32 0,06 0,04 8,81 52,36 

1,25 1,5 - 0,70 0,19 0,04 0 0,01 0,03 0 0,97 53,33 

1,5 1,75 - 0,02 0 0 0 0 0 0 0,02 53,35 

1,75 2 - - 0 0 0 0 - 0 0,00 53,35 

2 2,25 - - 0 0 0 0 - - 0,00 53,35 

2,25 2,5 - - 0 0 0 0 - - 0,00 53,35 

2,5 2,75 - - - 0 0 - - - 0,00 53,35 

2,75 3 - - - 0 0 - - - 0,00 53,35 

3 3,25 - - - - 0 - - - 0,00 53,35 

3,25 3,5 - - - - 0 - - - 0,00 53,35 
Total  1,95 17,34 16,16 9,92 5,46 2,01 0,43 0,09 - - 

Cumul.  1,95 19,29 35,45 45,37 50,83 52,83 53,26 53,35 - - 

 

6.6 Workability per operational limit 
The governing operational limit is the luffing velocity of the gangway. Studying the importance of 

reducing the luffing velocity during operation, the workability per operational limits is calculated. The 

workability of each individual operational limit is calculated in the same manner as has been done for 

the total workability with and without the dynamic interaction. The results of the workability per 

operational limit are shown in Table 6-7. 

Table 6-7 Workability study per operational limit. 

Operational limit Workability with dynamic 
interaction 

Workability without dynamic 
interaction 

Luffing angle 99,88 98,21 

Gangway length 99,81 95,82 

Telescoping velocity 99,88 95,19 

 

The remaining operational limits besides luffing velocity are only exceeded in extreme sea states, 

which rarely occurs. The results from Table 6-7 show that with the assumptions made in this thesis 

the workability will improve significantly when the luffing velocity of the gangway can be reduced.  
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6.7 Conclusion 
For analyzing the influence of dynamic interaction of an Ampelmann system with a CALM buoy, a 

workability study is performed. To do a representative workability study, the gangway is modeled as 

massless dampers in 3d connected to the buoy. The results of the workability study with a dynamic 

approach are compared with the results of a kinematic approach. This shows that the dynamic 

interaction plays a significant role in improving the operability for high- and low-frequency sea states. 

The reason is that the governing operational limit, the luffing velocity of the gangway, is mainly 

influenced by the heave motion of the buoy. The total damping force of the buoy in heave mainly 

consists of the hydrodynamical damping force and the damping forces of the gangway. The results of 

the diffraction software show that the frequency dependent hydrodynamic damping coefficient for 

heave is significantly lower in the low- and high-frequency region compared to the mid-frequency 

region. This results in a more significant effect of the gangway damping forces in the total damping 

force of the buoy. Low- and high-frequency sea states are less likely to occur which means that 

dynamic interaction of the gangway and the buoy will not have significant effect on the total 

workability compared to the total workability done with a kinematic approach. The importance of the 

governing operational limit, the luffing velocity, is studied by comparing the workability of each 

operational limit individually. All other operational limits have a significantly higher workability, which 

means that in this thesis the complete workability improves if the luffing velocity of the gangway can 

be reduced.  
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7. Conclusion and recommendations 
 

During this thesis, it has been proven that the dynamic interaction of the gangway forces and the 

CALM buoy does affect the workability. Certain steps have been taken to reach the goal of this 

research, which are presented in this chapter, followed by recommendations for further studies 

regarding this topic. 

7.1 Conclusion 
To reach the goal of this thesis a numerical time-domain model is delivered where the coupling effect 

of a CALM buoy and an Ampelmann system is studied. The Ampelmann system is modeled as massless 

dampers, which are always connected to the CALM buoy. The gangway forces are dependent on the 

motions of the buoy. This model is used to study the effect of the damping forces, caused by the 

Ampelmann system, on the workability of the Ampelmann system.  

At first the model is restricted to in-plane motion in the y-z plane, reducing the degrees of freedom 

and to get a clear idea of the coupling effects of the gangway and the buoy. An analytical approach is 

used to set up the equations of motion of the buoy including the massless dampers representing the 

gangway of the Ampelmann system. A sensitivity study of the parameters of the damping forces shows 

that the ratio of the hydrodynamic damping coefficient and the gangway damping coefficient is 

governing. 

A diffraction model shows that the hydrodynamical damping of the buoy is minimal at low- and high 

frequency waves. This information is used to build a case study with low-frequency waves, analyzing 

the influence of the gangway forces on the response of the buoy. The equations of motion are solved 

in an ODE solver in Python, studying the effect of the dynamic interaction between the gangway and 

the CALM buoy, and to verify the aNySIM model. Both models show that the amplitude of the 

responses for sway and heave are very similar. The main differences between both models are the 

phase shift and linearity of the responses. In the Python model all parameters are fully linearized 

where in aNySIM non-linear effects of damping and mooring stiffness occurs. This results that 

especially in heave the CALM buoy responds not completely linear in aNySIM compared to the Python 

model. The roll response of the buoy, exerted by long waves, is negligible as shown by both models. 

Including the dynamic interaction in the case study, results in reduced response amplitudes up to 10% 

for sway and heave.  

To perform a workability study, the numerical model in aNySIM is extended to all degrees of freedom 

for the CALM buoy and the gangway. The sea states from the wave scatter diagram for the location of 

the buoy in Papua New Guinea are used to run time-domain simulations of the buoy with and without 

dynamic interaction. Every Hs-Tz combination of the wave scatter diagram is included in the Jonswap 

spectrum, creating unidirectional head waves for the buoy. The operational limits of the gangway are 

analyzed for every simulation and when, during the simulation, the operational limits are exceeded, 

the Ampelmann system cannot operate for a period of time. From these simulations the operability 

per sea state is calculated with dynamic interaction included and by a kinematic approach. The results 

show that the dynamic interaction significantly improves the operability in low- and high-frequency 

sea states. The operability for every operational limit is studied, which shows that the luffing velocity 

of the gangway is the limiting operational factor.  
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The workability depends on the operability per sea state and the probability of occurrence of this sea 

state. Low- and high-frequency sea states have a low probability of occurrence and thus a low impact 

on the total workability. The total workability is improved with almost 1% by including the dynamic 

interaction in the workability study. 
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7.2 Recommendations 
The research question has been answered by using different models. These models can be used for 

further research, and the accuracy of the model can be improved. The following recommendations 

based on this thesis are made: 

- Compare the responses of the aNySIM model and the Python model with the project in Papua 

New Guinea. The response of the buoy with and without a connected Ampelmann system can 

be measured and compared to the outcome of the aNySIM model and Python model. If the 

responses of the actual project and the models are comparable, it is recommended to not 

include the dynamic interaction in the workability analyses for projects with an A-type 

Ampelmann system and a CALM buoy. The workability is slightly affected by the dynamic 

interaction and including dynamic interaction extends the duration of the workability study 

significantly. When the Python model coincides with the response of the actual project, it can 

be used to perform quick checks for implementing or changing parameters. 

- Include the inertia of the gangway in the study. This will show if the inertia will affect the 

response of the buoy. A quick check can be done by including the inertia of the gangway in 

the EOM and implementing it in the ODE-solver in Python. With these results it can be decided 

to implement the inertia of the gangway in the aNySIM model to perform a workability study.  

- Verify the damping of the buoy by doing model tests. An estimation is made to determine the 

hydrodynamical damping, including viscous damping, and the accuracy can be studied by 

comparing offset model tests to offset tests in aNySIM. 

- Study the impact of different Ampelmann systems in the aNySIM model. This study shows that 

the ratio of the gangway damping and the hydrodynamical damping is an important aspect in 

the response of the buoy. Ampelmann has multiple systems with different parameters for 

each system such as the damping coefficients of the gangway, and the operational limits. 

These parameters might affect the workability, or introduce other governing operational 

limits.  
- Study the effect of residual motion of the Ampelmann system. In actual operation it might 

occur that the vessel motions are too big to compensate by the Ampelmann system. This 

results in residual motions of the transferdeck and gangway (Wiegerink, Modelling of Coupled 

Vessel-Ampelmann Systems for Workability Studies, 2015). The luffing velocity is one of the 

limitation factors that can be influenced by the residual motions. Even when residual motions 

are not present, but the host vessel is moving out of phase compared to the buoy, it can 

increase the luffing velocity. 

- Perform a sensitivity study about the effect of the size of the target vessel. If it can be said 

that from a certain size of buoy, the dynamic interaction does not play a significant role in the 

workability study, larger buoys are not required to study. 

- Expand the modularity of the model to change the target vessel. For future projects different 

CALM buoys, or other small vessel might be a target vessel for an Ampelmann project. The 

model can be adjusted such that the hydrodynamic database of the potential customer can 

be implemented and creating a diffraction model is not needed anymore. 

- Include dynamic mooring lines in the current aNySIM model. The mooring lines affect the 

response of the buoy. Due to linearization of the mooring lines the working range of the buoy 

is limited. Implementing dynamic mooring lines extends the working range and introduces 

non-linear mooring effect, which improves the accuracy of the aNySIM model. 
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- Build a tool in aNySIM to calculate the operability for every sea state automatically. In this 

thesis this is done manually. This consumes a lot of time which is not preferable using the 

model for different projects. 
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9. Appendices 
 

9.1 Buoy configuration 
 

 

Figure 9-1 Buoy configuration. 
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Figure 9-2 Mooring configuration. 
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9.2 AMOG Data 
 

 

Figure 9-3 Restoring force in direction mooring line 1. 

 

Figure 9-4 Restoring force in direction mooring line 2. 
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Figure 9-5 Restoring force in direction mooring line 3. 

 

Figure 9-6 Restoring force in direction mooring line 4. 
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Figure 9-7 Restoring force in direction mooring line 5. 

 

Figure 9-8 Restoring force in direction mooring line 6. 
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9.3 Diffraction results  
Table 9-1 Diffrac data (at omega = 0.4 rad/s, incoming angle = 90 deg). 

 𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4 𝑥 = 5 𝑥 = 6 

𝑎1𝑥 1.435E+02 -8.795E-06 5.427E-03 -1.559E-03 3.952E+01 -2.061E-06 

𝑎2𝑥 2.475E-04 1.442E+02 -6.098E-05 -3.548E+01 -1.017E-03 -3.141E-05 

𝑎3𝑥 -2.069E-04 5.077E-04 5.788E+02 -3.937E-03 1.171E-03 2.643E-05 

𝑎4𝑥 -3.386E-04 -4.197E+01 -6.370E-04 2.058E+03 -7.415E-03 -6.957E-05 

𝑎5𝑥 4.093E+01 7.149E-04 -3.342E-02 -2.407E-03 2.064E+03 -4.061E-05 

𝑎6𝑥 -3.097E-06 -2.361E-05 4.028E-06 4.839E-06 -3.682E-06 -9.213E-07 

𝑏1𝑥 3.193E-01 1.469E-05 -9.310E-05 -5.637E-05 4.483E-01 -1.726E-06 

𝑏2𝑥 -1.264E-06 3.219E-01 8.030E-05 -4.370E-01 2.299E-04 -9.495E-07 

𝑏3𝑥 6.266E-05 4.402E-05 4.862E+01 -8.804E-04 2.136E-04 1.406E-06 

𝑏4𝑥 -4.095E-05 -4.527E-01 1.410E-04 6.145E-01 -6.308E-05 1.016E-06 

𝑏5𝑥 4.499E-01 3.701E-05 3.131E-04 -1.809E-04 6.318E-01 -5.195E-06 

𝑏6𝑥 -2.565E-09 -4.122E-08 1.106E-06 5.131E-08 -9.804E-07 -1.164E-08 

𝐹𝑥 6.486E-04 1.236E+02 1.084E+03  1.738E+02 3.838E-03 3.352E-05 

𝜙𝑋 1.781E+02 8.992E+01 1.034E+00 2.699E+02 4.684E+00 3.316E+02 
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9.4 Offset tests aNySIM 

 

Figure 9-9 Decay test heave (+1m). 

 

Figure 9-10 Decay test roll (+0.15rad). 
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9.5 Roll response case study 
               

 

Figure 9-11 Roll response case study without dynamic interaction. 

 

Figure 9-12 Roll response case study without dynamic interaction. 
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9.6 EOM analyses 

 

Figure 9-13 FBD telescoping force with Y-displacement. 

 

Figure 9-14 FBD telescoping force with Z-displacement. 

 

Figure 9-15 FBD telescoping moment with Roll-displacement. 
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Figure 9-16 FBD luffing force with Y-displacement. 

 

Figure 9-17 FBD luffing force with Z-displacement. 

 

Figure 9-18 FBD luffing moment with Roll-displacement. 
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9.7 ODE Solver 

1. # -*- coding: utf-8 -*-   
2. """  
3. Created on Sun May  5 15:35:08 2019  
4.   
5. @author: mike.vanbeurden  
6. """   
7.    
8.    
9. # %% import libraries   
10. import numpy as np   
11. from scipy import interpolate   
12. from scipy.integrate import solve_ivp   
13. import plotter as pl   
14. import matplotlib.pyplot as plt   
15.    
16. # %% Parameters   
17.    
18. # %% Time independent coefficients   
19. m = 281600                              #kg   
20. a22 = 143500   
21. a33 = 578800   
22. a44 = 2058000   
23. kxx = 4                                     #m   
24. k22 = 50000                             #N/m   
25. k33 = 1270000                         #N/m   
26. k44 = 11017000                        #Nm/rad   
27. c22 = 39000                            #Ns/m   
28. c33 = 138890                            #Ns/m    
29. c44 = 427362                           #Nms/rad   
30. ctel = 9894.3                           #Telescoping damping coefficient [Ns/m]   
31. cluf = 746840                           #Luffing damping coefficient [Nms/rad]   
32. yb = 6.25   
33. zb = 3.8                                    #z   
34. ytd = 26   
35. ztd = 7.43   
36. beta = np.arctan(zb/yb);                     #rad   
37. r = (yb**2 + zb**2)**0.5   
38. ytip = (yb)     # calculating ytip for this time step   
39. ztip = (zb)       # calculating ztip for this time step   
40. L = np.sqrt((ytd-ytip)**2+(ztd-

ztip)**2)                        # calculating length gangway for this time step   
41. alpha = np.arctan((ztd-ztip)/(ytd-

ytip))                               # calculating alpha for this time step   
42. theta = 0   
43.    
44. # creating K-matrix   
45. K = np.array([[  k22, 0, 0],    
46.                [ 0, k33 , 0],   
47.                [ 0, 0 , k44]])   
48.    
49. # creating M-matrix   
50. M = np.array([[ m+a22 , 0, 0],    
51.                [ 0, m+a33 , 0],   
52.                [ 0, 0 , m*(kxx)**2 + a44]])   
53. # creating Ctel-matrix   
54. C1 = np.array([[ c22 +(np.cos(alpha))**2 * ctel , np.sin(alpha)*np.cos(alpha)*ctel,

 yb*ctel*(((-
np.cos(alpha))**2)*theta+np.cos(alpha)*np.sin(alpha))+zb*ctel*(((np.cos(alpha))**2)
-np.cos(alpha)*np.sin(alpha)*theta)],    

55.                [ np.sin(alpha)*np.cos(alpha)*ctel, c33 +(np.sin(alpha))**2 * ctel  
, yb*ctel*(((np.sin(alpha))**2)-np.cos(alpha)*np.sin(alpha)*theta)+zb*ctel*((-
np.sin(alpha))**2)*theta-np.cos(alpha)*np.sin(alpha)],   
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56.                [ yb*ctel*(((-
np.cos(alpha))**2)*theta+np.cos(alpha)*np.sin(alpha))+zb*ctel*(((np.cos(alpha))**2)
-np.cos(alpha)*np.sin(alpha)*theta), yb*ctel*(((np.sin(alpha))**2)-
np.cos(alpha)*np.sin(alpha)*theta)+zb*ctel*(((-np.sin(alpha))**2)*theta-
np.cos(alpha)*np.sin(alpha)) , yb*yb*ctel*(((np.sin(alpha))**2)-
np.cos(alpha)*np.sin(alpha)*theta)+zb*zb*ctel*(((np.cos(alpha))**2)+np.cos(alpha)*n
p.sin(alpha)*theta) + zb*yb*ctel*(-2*np.cos(alpha)*np.sin(alpha)-
np.sin(alpha)*np.sin(alpha)*theta+np.cos(alpha)*np.cos(alpha)*theta)+c44]])   

57. # creating M-matrix   
58. C2 = np.array([[ np.sin(alpha)*np.sin(alpha)*(cluf/(L*L)) ,-

np.sin(alpha)*np.cos(alpha)*(cluf/(L*L)), yb*(cluf/(L*L))*(-
np.sin(alpha)*np.cos(alpha)-
np.sin(alpha)*np.sin(alpha)*theta)+zb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)*the
ta-np.sin(alpha)*np.sin(alpha))],    

59.                [ -
np.sin(alpha)*np.cos(alpha)*(cluf/(L*L)), np.cos(alpha)*np.cos(alpha)*(cluf/(L*L)) 
, yb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)*theta+np.cos(alpha)*np.cos(alpha))+z
b*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)-np.cos(alpha)*np.cos(alpha)*theta)],   

60.                [ yb*(cluf/(L*L))*(-np.sin(alpha)*np.cos(alpha)-
np.sin(alpha)*np.sin(alpha)*theta)+zb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)*the
ta-
np.sin(alpha)*np.sin(alpha)), yb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)*theta+np
.cos(alpha)*np.cos(alpha))+zb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)-
np.cos(alpha)*np.cos(alpha)*theta) ,yb*yb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)
*theta+np.cos(alpha)*np.cos(alpha))+zb*zb*(cluf/(L*L))*(np.sin(alpha)*np.sin(alpha)
-np.sin(alpha)*np.cos(alpha)*theta)+yb*zb*(cluf/(L*L))*(-
np.cos(alpha)*np.cos(alpha)*theta+2*np.sin(alpha)*np.cos(alpha)+np.sin(alpha)*np.si
n(alpha)*theta) ]])   

61.    
62. C = C1 + C2   
63.    
64. # time span   
65. t0 = 0                                      # [s] start time simulation   
66. tend = 300                                   # [s] end time simulation   
67. stepsize = 3000                             # steps between start and end time   
68. ft = np.linspace(t0, t0+tend, stepsize)     # creating time matrix   
69.    
70. tspan = np.zeros([2])                       # creating time span matrix   
71. tspan[1] = t0+tend                          # end value of time span   
72. tspan[0] = t0                               # begin value of time span   
73.      
74. # force   
75. Hz = 1/15                                                   # define frequency of t

he force   
76. Fy =  167000 * np.sin(Hz * 2 * np.pi * ft - (np.pi/2))        # defining the force 

acting on the mass   
77. Fz =  1633500 * np.sin(Hz * 2 * np.pi * ft)        # defining the force acting on t

he mass   
78. Mtheta =  56733 * np.sin(Hz * 2 * np.pi * ft - (np.pi/2))        # defining the for

ce acting on the mass   
79.    
80. # %% initial conditions   
81.    
82. # y-direction   
83. y = 0                                       # start posittion   
84. ydot = 0                                    # start velocity    
85.    
86. # z-direction   
87. z = 0                                      # start posittion   
88. zdot = 0                                    # start velocity   
89.    
90. # angle theta   
91. theta = 0                                       # start posittion   
92. thetadot = 0                                    # start velocity    
93.    
94. # creating vector containing initial conditions   
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95. ic = np.array([y, ydot, z, zdot, theta, thetadot])   
96.    
97. # %% ODE solver   
98.    
99. # function used in ode solver   
100. def ode_function(t, y, C, Fy, Fz, Mtheta, L, alpha):   
101.     """defining conditions"""   
102.        
103.     # %%  interpolating forces and moment      
104.     Fy_int = interpolate.interp1d(ft, Fy, fill_value="extrapolate")   
105.     Fz_int = interpolate.interp1d(ft, Fz, fill_value="extrapolate")   
106.     Mtheta_int = interpolate.interp1d(ft, Mtheta, fill_value="extrapolate") 

  
107.        
108.     # taking the value of the force at this time step   
109.     Fy = Fy_int(t)   
110.     Fz = Fz_int(t)   
111.     Mtheta = Mtheta_int(t)   
112.        
113.     # %% calculating legnth gangway and angle of gangway   
114.     if t > 0:   
115.         ytip = (y[0]+yb) + (np.cos(beta+y[4])-

np.cos(beta))     # calculating ytip for this time step   
116.         ztip = (y[2]+zb) + (np.sin(beta+y[4])-

np.sin(beta))         # calculating ztip for this time step   
117.         L = np.sqrt((ytd-ytip)**2+(ztd-

ztip)**2)                        # calculating length gangway for this time step   
118.         alpha = np.arctan((ztd-ztip)/(ytd-

ytip))                               # calculating alpha for this time step   
119.        
120.         # creating Ctel-matrix   
121.         C1 = np.array([[ c22 +(np.cos(alpha))**2 * ctel , np.sin(alpha)*np.c

os(alpha)*ctel, yb*ctel*(((-
np.cos(alpha))**2)*theta+np.cos(alpha)*np.sin(alpha))+zb*ctel*(((np.cos(alpha))**2)
-np.cos(alpha)*np.sin(alpha)*theta)],    

122.                        [ np.sin(alpha)*np.cos(alpha)*ctel, c33 +(np.sin(alph
a))**2 * ctel  , yb*ctel*(((np.sin(alpha))**2)-
np.cos(alpha)*np.sin(alpha)*theta)+zb*ctel*(((-np.sin(alpha))**2)*theta-
np.cos(alpha)*np.sin(alpha))],   

123.                        [ yb*ctel*(((-
np.cos(alpha))**2)*theta+np.cos(alpha)*np.sin(alpha))+zb*ctel*(((np.cos(alpha))**2)
-np.cos(alpha)*np.sin(alpha)*theta), yb*ctel*(((np.sin(alpha))**2)-
np.cos(alpha)*np.sin(alpha)*theta)+zb*ctel*(((-np.sin(alpha))**2)*theta-
np.cos(alpha)*np.sin(alpha)) , yb*yb*ctel*(((np.sin(alpha))**2)-
np.cos(alpha)*np.sin(alpha)*theta)+zb*zb*ctel*(((np.cos(alpha))**2)+np.cos(alpha)*n
p.sin(alpha)*theta) + zb*yb*ctel*(-2*np.cos(alpha)*np.sin(alpha)-
np.sin(alpha)*np.sin(alpha)*theta+np.cos(alpha)*np.cos(alpha)*theta)+c44]])   

124.         # creating Cluf-matrix   
125.         C2 = np.array([[ np.sin(alpha)*np.sin(alpha)*(cluf/(L*L)) ,-

np.sin(alpha)*np.cos(alpha)*(cluf/(L*L)), yb*(cluf/(L*L))*(-
np.sin(alpha)*np.cos(alpha)-
np.sin(alpha)*np.sin(alpha)*theta)+zb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)*the
ta-np.sin(alpha)*np.sin(alpha))],    

126.                        [ -
np.sin(alpha)*np.cos(alpha)*(cluf/(L*L)), np.cos(alpha)*np.cos(alpha)*(cluf/(L*L)) 
, yb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)*theta+np.cos(alpha)*np.cos(alpha))+z
b*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)-np.cos(alpha)*np.cos(alpha)*theta)],   

127.                        [ yb*(cluf/(L*L))*(-np.sin(alpha)*np.cos(alpha)-
np.sin(alpha)*np.sin(alpha)*theta)+zb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)*the
ta-
np.sin(alpha)*np.sin(alpha)), yb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)*theta+np
.cos(alpha)*np.cos(alpha))+zb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)-
np.cos(alpha)*np.cos(alpha)*theta) ,yb*yb*(cluf/(L*L))*(np.sin(alpha)*np.cos(alpha)
*theta+np.cos(alpha)*np.cos(alpha))+zb*zb*(cluf/(L*L))*(np.sin(alpha)*np.sin(alpha)
-np.sin(alpha)*np.cos(alpha)*theta)+yb*zb*(cluf/(L*L))*(-
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np.cos(alpha)*np.cos(alpha)*theta+2*np.sin(alpha)*np.cos(alpha)+np.sin(alpha)*np.si
n(alpha)*theta) ]])   

128.         # combining both matrices   
129.         C = C1 + C2   
130.            
131. #        C3 = np.array([[ c22, 0, 0],    
132. #               [ 0, c33 , 0],   
133. #               [ 0, 0 , c44]])   
134. #           
135.            
136. #        print(C)   
137. #        print(alpha)               
138. #        L_vec = []   
139. #        alpha_vec = []   
140. #        L_vec.append(L)   
141. #        alpha_vec.append(alpha)   
142.            
143.     # %% creating system vector   
144.     dy = np.zeros([6])                                                      

 # creating output matrix dy       
145.        
146.     # defining state-vector   
147.     dy[0] = y[1]                                                            

                                            #    
148.     dy[1] = (Fy - K[0,0]*y[0] - C[0,0]*y[1] - C[0,1]*y[3] - C[0,2]*y[5]) * (

1 / M[0,0])         #    
149.     dy[2] = y[3]                                                            

                                            #   
150.     dy[3] = (Fz - K[1,1]*y[2] - C[1,0]*y[1] - C[1,1]*y[3] - C[1,2]*y[5]) * (

1 / M[1,1])         #    
151.     dy[4] = y[5]                                                            

                                            #   
152.     dy[5] = (Mtheta - K[2,2]*y[4] - C[2,0]*y[1] - C[2,1]*y[3] - C[2,2]*y[5])

 * (1 / M[2,2])     #   
153.     return dy   
154.        
155. # ODE solver   
156. sol_ode = solve_ivp(fun=lambda t, y: ode_function(t, y, C, Fy, Fz, Mtheta, L

, alpha), t_span=tspan, y0=ic, method='RK45', t_eval=ft, rtol=1e-07, atol=1e-07)   
157. # %% plotter   
158.    
159. pl.plot_3(sol_ode.t, sol_ode.y[0], sol_ode.y[2], sol_ode.y[4], label1='y', l

abel2='z', label3='theta')                # plotting the postion y, z and theta   
160. pl.plot_3(sol_ode.t, sol_ode.y[1], sol_ode.y[3], sol_ode.y[5], label1='ydot'

, label2='zdot', label3='thetadot')    # plotting the velocity ydot, zdot and theta
dot   
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9.8 Workability study 
Table 9-2 Numbering sea states. 

Hs  Tz lower 2 3 4 5 6 7 8 9 

lower upper 3 4 5 6 7 8 9 10 

0 0,25 1 5 12 22 34 48 * - 

0,25 0,5 2 6 13 23 35 49 58 - 

0,5 0,75 3 7 14 24 36 50 59 - 

0,75 1 4 8 15 25 37 51 60 64 

1 1,25 - 9 16 26 38 52 61 65 

1,25 1,5 - 10 17 27 39 53 62 66 

1,5 1,75 - 11 18 28 40 54 63 67 

1,75 2 - * 19 29 41 55 - 68 

2 2,25 - - 20 30 42 56 - - 

2,25 2,5 - - 21 31 43 57 - - 

2,5 2,75 - - - 32 44 - - - 

2,75 3 - - - 33 45 - - - 

3 3,25 - - - * 46 - - - 

3,25 3,5 - - - - 47 - - - 

 

Table 9-3 Results operability per parameter with dynamic interaction. 

Sea 
State 

Ftel Lmax Lmin Vtel Luffing angle Luffing velocity  Fraction combined  

1 1 1 1 1 1 1  1 

2 1 1 1 1 1 1  1 

3 1 1 1 1 1 1  1 

4 1 1 1 1 1 1  1 

5 1 1 1 1 1 1  1 

6 1 1 1 1 1 1  1 

7 1 1 1 1 1 1  1 

8 1 1 1 1 1 1  1 

9 1 1 1 1 1 1  1 

10 1 1 1 1 1 0,97  0,97 

11 1 1 1 1 1 0,83  0,83 

12 1 1 1 1 1 1  1 

13 1 1 1 1 1 1  1 

14 1 1 1 1 1 1  1 

15 1 1 1 1 1 1  1 

16 1 1 1 1 1 0,41  0,41 

17 1 1 1 1 1 0,02  0,02 

18 1 1 1 1 1 0  0 

19 1 1 1 1 1 0  0 

20 1 1 1 1 1 0  0 

21 1 1 1 1 1 0  0 
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22 1 1 1 1 1 1  1 

23 1 1 1 1 1 1  1 

24 1 1 1 1 1 1  1 

25 1 1 1 1 1 0,88  0,88 

26 1 1 1 1 1 0,17  0,17 

27 1 1 1 1 1 0,01  0,01 

28 1 1 1 1 1 0  0 

29 1 1 1 1 1 0  0 

30 1 1 1 1 1 0  0 

31 1 1 1 1 1 0  0 

32 0,83 0,8 0,88 0,72 0,88 0  0 

33 0,71 0,68 0,57 0,54 0,76 0  0 

34 1 1 1 1 1 1  1 

35 1 1 1 1 1 1  1 

36 1 1 1 1 1 1  1 

37 1 1 1 1 1 0,89  0,89 

38 1 1 1 1 1 0,29  0,29 

39 1 1 1 1 1 0  0 

40 1 1 1 1 1 0  0 

41 1 1 1 1 1 0  0 

42 1 1 1 1 1 0  0 

43 0,96 0,96 1 0,89 0,97 0  0 

44 0,58 0,57 0,7 0,54 0,68 0  0 

45 0,5 0,44 0,45 0,4 0,54 0  0 

46 0,52 0,38 0,19 0,23 0,85 0  0 

47 0,23 0,21 0,12 0,09 0,25 0  0 

48 1 1 1 1 1 1  1 

49 1 1 1 1 1 1  1 

50 1 1 1 1 1 1  1 

51 1 1 1 1 1 0,97  0,97 

52 1 1 1 1 1 0,7  0,7 

53 1 1 1 1 1 0,07  0,07 

54 1 1 1 1 1 0  0 

55 1 1 0,97 0,93 1 0  0 

56 0,87 0,87 0,88 0,8 0,9 0  0 

57 0,78 0,78 0,84 0,77 0,85 0  0 

58 1 1 1 1 1 1  1 

59 1 1 1 1 1 1  1 

60 1 1 1 1 1 1  1 

61 1 1 1 1 1 0,83  0,83 

62 1 1 1 1 1 0,28  0,28 

63 1 1 1 1 1 0,01  0,01 

64 1 1 1 1 1 1  1 

65 1 1 1 1 1 0,91  0,91 
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66 1 1 1 1 1 0,52  0,52 

67 1 1 1 1 1 0,11  0,11 

68 1 1 1 1 1 0  0 
 

Table 9-4 Results operability per parameter without dynamic interaction. 

Sea 
state 

Ftel Lmax Lmin Vtel Luffing angle Luffing velocity 
 

Fraction combined 

1 1 1 1 1 1 1  1 

2 1 1 1 1 1 1  1 

3 1 1 1 1 1 1  1 

4 1 1 1 1 1 1  1 

5 1 1 1 1 1 1  1 

6 1 1 1 1 1 1  1 

7 1 1 1 1 1 1  1 

8 1 1 1 1 1 1  1 

9 1 1 1 1 1 1  1 

10 1 1 1 1 1 0,97  0,97 

11 0,78 0,75 1 0,69 1 0,32  0,32 

12 1 1 1 1 1 1  1 

13 1 1 1 1 1 1  1 

14 1 1 1 1 1 1  1 

15 1 1 1 1 1 1  1 

16 1 1 1 1 1 0,35  0,35 

17 1 1 1 1 1 0,02  0,02 

18 1 1 1 1 1 0  0 

19 0,38 0,38 1 0,34 0,87 0  0 

20 0,64 0,64 1 0,59 0,77 0  0 

21 0,44 0,41 0,78 0,37 0,62 0  0 

22 1 1 1 1 1 1  1 

23 1 1 1 1 1 1  1 

24 1 1 1 1 1 1  1 

25 1 1 1 1 1 0,86  0,86 

26 1 1 1 1 1 0,16  0,16 

27 1 1 1 1 1 0  0 

28 1 1 1 0,99 1 0  0 

29 0,79 0,79 1 0,71 0,97 0  0 

30 0,64 0,64 1 0,58 0,79 0  0 

31 1 1 1 0,92 1 0  0 

32 0,18 0,17 0,67 0,13 0,29 0  0 

33 0,23 0,24 1 0,2 0,32 0  0 

34 1 1 1 1 1 1  1 

35 1 1 1 1 1 1  1 

36 1 1 1 1 1 1  1 

37 1 1 1 1 1 0,86  0,86 
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38 1 1 1 1 1 0,27  0,27 

39 1 1 1 1 1 0  0 

40 1 1 1 1 1 0  0 

41 0,61 0,61 1 0,53 0,76 0  0 

42 0,48 0,49 1 0,42 0,62 0  0 

43 0,67 0,66 0,89 0,6 0,7 0  0 

44 0,24 0,25 0,68 0,2 0,36 0  0 

45 0,24 0,24 0,47 0,21 0,24 0  0 

46 0,25 0,26 1 0,2 0,24 0  0 

47 0,02 0,02 0,45 0 0,03 0  0 

48 1 1 1 1 1 1  1 

49 1 1 1 1 1 1  1 

50 1 1 1 1 1 1  1 

51 1 1 1 1 1 0,97  0,97 

52 1 1 1 1 1 0,63  0,63 

53 1 1 1 1 1 0,04  0,04 

54 0,84 0,85 1 0,76 1 0  0 

55 0,59 0,59 1 0,5 0,79 0  0 

56 0,71 0,72 1 0,68 0,79 0  0 

57 0,51 0,51 1 0,44 0,62 0  0 

58 1 1 1 1 1 1  1 

59 1 1 1 1 1 1  1 

60 1 1 1 1 1 1  1 

61 1 1 1 1 1 0,73  0,73 

62 1 1 1 1 1 0,24  0,24 

63 0,83 0,82 1 0,71 0,97 0  0 

64 1 1 1 1 1 1  1 

65 1 1 1 1 1 0,91  0,91 

66 1 1 1 1 1 0,42  0,42 

67 0,94 0,94 1 0,93 1 0,02  0,02 

68 0,62 0,62 1 0,52 0,82 0  0 

 


