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Assessing life-cycle seismic fragility of corroding reinforced
concrete bridges through dynamic Bayesian networks

F. Molaioni & Z. Rinaldi
Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata,
Rome, Italy

C.P. Andriotis
Faculty of Architecture and the Built Environment, Delft University of Technology, Delft, The Netherlands

ABSTRACT: Bridge structures are exposed to several chronic and abrupt stressors, among
which the combined effects of corrosion and earthquakes pose a major threat to their long-term
safety. Probabilistic risk assessment frameworks that quantify and propagate uncertainties
inherent to these phenomena are necessary to mitigate this threat. This paper proposes
a dynamic Bayesian network for state-dependent seismic fragility functions, capturing corrosion
and seismic effects over time. Markovian transitions among deterioration states for different
bridge components are developed, combining chloride diffusion and corrosion propagation
models with non-stationary Gamma processes. State-dependent fragility curves are derived
based on non-linear dynamic time-history analyses given possible degradation configurations of
the structure, accounting for uncertainties in material, geometry, and deterioration parameters.
Record-to-record variability is captured using synthetic ground motions. Results on a 4-span
Gerber bridge showcase the suitability of the framework for describing life-cycle fragility, and
its capacity for embedding in advanced algorithmic decision-making workflows is discussed.

1 INTRODUCTION

Bridges are infrastructure constituents of key socioeconomic importance, supporting vital
road, rail, and pedestrian transportation systems. During their life-time, these structures must
endure several continuous and sudden exogenous stressors.

Depending on the construction materials and environmental exposure, deterioration phe-
nomena, such as corrosion, can have severe safety-reducing effects that increase over time (Vu
& Stewart 1998). These become particularly critical when combined with extreme event haz-
ards, such as those manifested in seismic-prone regions (Choe et al. 2008, Cui et al. 2018,
Ghosh & Padgett 2010, Shekhar & Ghosh 2021).

Over the past century, the bridge construction sector has greatly focused on reinforced con-
crete designs due to material availability, cost-effectiveness, and structural performance consid-
erations. A major deterioration factor for these structures, many of which are currently
approaching or have well exceeded their design life, is corrosion of steel rebars (Bertolini et al.
2005), which exacerbates typical structural weaknesses against seismic loads. Besides strength
and ductility reduction for the main concrete members due to rebar mass losses, corrosion also
affects the performance of smaller, yet critical, bridge compartments, such as steel bearings, e.g.
through plate thickness reduction, interlocking of sliding surfaces, and bolt failures (Mander
et al. 1996). As such, bridges are heterogeneous time-dependent systems, where local component
dynamics interact to eventually define global systemic behaviors and risks over the entire life-
cycle. Numerous studies have dealt with the quantification of seismic safety losses deteriorating
reinforced concrete bridges (Choe et al. 2008, Cui et al. 2018), also explicitly considering their
multi-component character (Ghosh & Padgett 2010, Shekhar & Ghosh 2021).

Properly assessing structural safety losses is prerequisite for our ability to efficiently main-
tain the massive stock of aging concrete bridges, which is, in turn, paramount both for
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minimizing the use of concrete in construction, thus curbing its major environmental impact,
and for streamlining the immense economic needs of structural interventions. In that sense,
managing structural integrity of existing bridges, requires not only at modeling of the afore-
mentioned mechanical deterioration phenomena and their uncertainties, but also making
these integrable with decision analysis frameworks.

In past years, the field of decision-making under uncertainties for existing structures has
focused on coupling stochastic deterioration models, Bayesian decision principles, and advanced
algorithmic procedures. Given the complexity of inspection and maintenance planning, featuring
numerous possible actions in highly probabilistic environments, the problem has been shown to
be efficiently defined within the global optimization framework of partially observable Markov
decision processes (Andriotis & Papakonstantinou 2019, Morato et al. 2022). At the core of this
formulation is expressing the deteriorating environment as a Dynamic Bayesian Network (DBN),
which allows for efficient uncertainty propagation and inference over multiple time steps.

To address this need, this paper proposes a DBN approach allowing for updatable state-
dependent seismic fragility functions, capturing long-term corrosion and seismic effects over time.
The framework is applied to a case study bridge, modeled as a multi-component system, whose
components are columns (COL), high type fixed bearings (HTFB), high type expansion bearings
(HTEB), and low type fixed bearings (LTFB). In Section 2, the entire approach is described.
First, the DBN structure is presented as well as the states which characterize it, namely the Corro-
sion Deterioration States (CDSs) and Seismic Damage States (SDSs). Then, the methodologies
for determining both the conditional probabilities for Markovian transition among different cor-
rosion damage states and the state-dependent seismic fragility curves are described. Section 3 is
devoted to the case study bridge description to which the approach is applied. Then, in Section 4,
the chloride corrosion probabilities over the lifetime of the structure are quantified and presented,
as well as the state-dependent fragility curves, and the longitudinal effects of corrosion on the seis-
mic fragility of column components. Finally, in Section 5, the main findings are summarized,
underlining the suitability of the framework for capturing life-cycle fragility, as well as for being
integrated with algorithmic decision-making workflows towards enhanced structural safety.

2 METHODOLOGY

2.1 DBN for life-cycle seismic fragility of deteriorating bridges

Seismic fragility functions represent the probability of a structure exceeding a seismic damage state
(SDS), which quantifies structural damage in a discrete space in terms of an Engineering Demand
Parameter (EDP), given an intensity measure (IM) of seismic action. As discussed in the previous
section, seismic fragility is expected to increase over time due to structural deterioration for aging
bridges. Therefore, encoding the corrosion intensity in a discrete space through the vector of cor-
rosion deterioration state (CDS) of the system components, and the structural damage of those
through the vector of seismic damage state (SDS), this probability can be expressed as:

PSDSJ = P(SDS; Z S|IM()_«,, CDS()_-t7 SDS();,_]) (1)

where, without loss of generality, IM can also refer to vectors.

In this study, as an IM, the Peak Ground Acceleration (PGA) of the ground motion is
used. For CDSs, rebars/bolts mass loss, My, [70], steel plates thickness reduction, PTR [mm],
and the additive coefficient of friction k., [-], accounting for the interlocking effects due cor-
rosion for expansion bearings, are used. The discretization and value ranges of these quantities
are given in Table 1 for each component type, i.e. the columns component (CDSco1 ), and the
bearings component (CDSgga). SDSs for each component are defined trough lognormal dis-
tribution of EDPs according to (Ghosh & Padgett 2010), with respective thresholds shown in
Table 2, for each component type. The inference of Eq. (1) requires, in general, the use of
a large number of analyses, that must combine the effects of corrosion and seismic action over
the structural lifetime. To solve this problem, a Dynamic Bayesian Network (DBN) for quan-
tifying the risk of aging bridges over their life-cycle is here developed and shown in Figure 1.
A DBN is a directed acyclic graphical model that is particularly suitable for modeling
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temporal patterns affected by uncertainties and can be used to easily solve inference problems.
In such a model, variables are introduced through nodes, while conditional probabilities
between these are represented by directed links. This way, it is possible to decompose the
entire problem into smaller, easier-to-compute components by evaluating each probabilistic
dependency with independent analyses.

The time-dependent nature of the seismic risk for aging structures is dynamically described
through time-slices connected by conditional probabilities among CDS nodes, for which the Marko-
vian assumption is considered. This way, CDS at time step t+1 depends only on the CDS in slice t:

t—1
Peps, = P(CDSy) ]0_[ P(CDS.,|CDS;) (2)

To complete the description of the probabilistic graphical model, the following transitions
between variables are introduced: the Markovian transition that describes the probability of
having a corrosion state CDS=j at time t+1, given the corrosion state CDS=i at the previous time
step t; and the state-dependent and time-invariant fragility functions, describing the probability of
the bridge reaching a seismic damage state SDS, given the IM and the corrosion deterioration
state CDS. It is worth noting that, as CDSs are discrete and the corrosion phenomenon is time-
dependent, Markovian transitions are described by non-stationary matrices, while fragilities are
continuous functions since the IM variable is not subject to discretization. In addition, Markovian
transitions between SDS nodes over time may be introduced to consider that the resulting struc-
tural damage carries over to the next time step if no repair action is not taken.

e

Figure 1. DBN for life-cycle seismic fragility of deteriorating bridges in this study. Overall model including
nodes and transitions (left); Interactions of components and system states within the single time step (right).

Table 1. Corrosion Deterioration States.

CDS 0 1 2 3
Component Parameter LB-UB LB-UB LB-UB LB-UB
Columns Mioss [V0] 0-0 0-15 15-30 30-45
Bearings Mioss [70] 0-0 0-15 15-30 30-45
Bearings PTR [mm] 0-0 0-3.5 3.5-5.1 5.1-6.5
Bearings Keorr [-] 0-0 0-0.35 0.35-0.64 0.64-0.92

* Mjoss = rebars/bolts mass lost, PTR = plates thickness reduction, k¢, = additive coefficient of friction for
expansion bearings.

2.2 Non-stationary transition for corrosion initiation and propagation

Non-stationary transitions among CDSs are calculated through a probabilistic analytical
assessment of the rebars/bolts mass loss, Mloss [%], over the life-time of the structure. The
other corrosion parameters, i.e., PTR [mm] and k., are assumed to follow the same transi-
tions in accordance with the CDSs defined in Table 1. In addition, the transition for corrosion
initiation and propagation are calculated separately to account for the two-phase nature of
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Table 2. Probabilistic seismic damage states thresholds.

Slight Moderate Extensive Complete
Component EDP M D M D M D M D
COL Curvature ductility [-] 129 059 2.1 0.51 3.52 0.64 5.24 0.65
HTEB-L Displacement [mm] 374 0.6 104.2 0.55 136.1 0.59 187 0.65
HTEB-T, HTFB, LTFB Displacement [mm] 6 0.25 20 0.25 40 0.47 187 0.65

* M = median of the lognormal distribution, D = Dispersion of the lognormal distribution, L = Longitudinal
direction, T = Transverse direction.

the phenomenon. Chloride corrosion occurs when the chloride content at the depth of the
bars, C, exceeds the critical threshold, C,,, and thus destroys the protective film of the reinfor-
cing bars, exposing them to aggressive agents. Chloride penetration into the concrete volume
is captured by Fick’s second law, under the assumption of constant chloride content at the
outer surface (Choe et al. 2008, Cui et al. 2018, Ghosh and Padgett 2010, Shekhar & Ghosh
2021), C, and considering the diffusion coefficient, D, through the model proposed in (fib
2006). The time to corrosion initiation, T, [years], which defines the transition from CDS=0
to CDS=1, is thus determined by discretizing the structure life-time in yearly time-slices and
determining the first slice when C(x,t)>C,;.

Corrosion propagation over time is a phenomenon governed by environmental and concrete
parameters and is strongly characterized by aleatoric uncertainties. To capture its random-
ness, the phenomenon is modeled through a Gamma process, in which the mean annual
increase in uniform bar penetration is calculated with the model proposed by (Vu & Stewart
1998) and considering a CoV of 0.5 (fib 2006). To calculate the mass loss for steel rebars/bolts,
which defines the CDS, a corrosion morphology model must be introduced. In this study, the
model proposed by (Val & Melchers 1997), which relates the maximum penetration in the
rebar with the mass lost through the pitting factor R (i.e., ratio between maximum and uni-
form penetration) is adopted. Furthermore, the pitting factor is considered as a random vari-
able to account for the randomness of the corrosion morphology, following the probability
distribution suggested in (Stewart & Al-Harthy 2008). The corrosion initiation time, T,
[years], is also required in the propagation model, thus, the statistics obtained through the ini-
tiation model are used to consider its variability. Therefore, changes in CDSs are evaluated
for each time step, 7, by calculating the annual increase in rebar/bolt mass losses.

Non-stationary transitions for both the initiation and propagation phases represents the
conditional probability of having CDS=; at time t+1, given that CDS=i at time-slice t. This
probability is estimated as:

CDS,;;=j ) CDS, =i
P(CDS,.; = JICDS, = i) = . ;;I(CD’SIHZ 5 =9 (3)

For this study a sample size of 10° Monte Carlo simulations has been observed to be suffi-
cient. More details on statistical properties adopted in this study for the random variables are
given in Section 3.

2.3 State-dependent fragility curves

The state-dependent and time-invariant fragility functions are estimated by comparing prob-
abilistic demand parameters and capacity limit states for structural components. Demand
parameters for structural components, are determined using nonlinear dynamic analysis, and
a suite of synthetic ground motions to account for the record-to-record variability (Vlachos
et al. 2018). To account for uncertainties in materials, construction details, model, and seismic
demand, 25 nominally identical but statistically different Finite Element (FE) models of
bridges were considered, for which 250 synthetic ground motions were applied, resulting in
a sample size of 6250 demand parameters. Three-dimensional FE models were set up using
OpenSees (McKenna 2011). The non-linear behavior of structural components is taken into
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account for those considered as most vulnerable with respect to seismic and deterioration phe-
nomena, i.e., COL, HTFB, HTEB, LTFB. For each structural component, 50 capacity values
were sampled as per Table 2, and compared with the 6250 demand parameters, resulting in
a total of 312500 SDS labels for component as a function of the IM.

This dataset was used for multinomial logistic regression, thus allowing the prediction of
the probability of belonging to a given SDS as a function of IM through the softmax function
(Andriotis et al. 2018). Therefore, the fragility for a limit state SDS=i is obtained through sum
of the softmax functions related to the SDSs > i:

zj: eﬁ(},ﬁ’ﬂljln(IM)

P(SDS, > i|IM,CDS) ==~ (4)
> &PoitB1in(IM)
0

where J is the number of SDSs defined in Table 2, plus one, to consider the possibility of not
activating any damage state. For the choice of multinomial logistic regression compared to other
methodologies to define fragility functions the interested reader is referred to (Yi et al. 2022).

2.4 Corrosion modeling of structural components

The non-linear behavior of columns due to steel reinforcement corrosion has been considered by
reducing as a function of M, the (i) reinforcement strength; (ii) concrete cover strength and stiff-
ness; and (iii) concrete core confinement. Steel rebar and bolt yielding strengths have been reduced
according to the degradation law for uniform and pitting corroded rebars proposed in (Impera-
tore et al. 2017). Note that the morphological nature of the corrosion is taken into account by
considering uniform corrosion law if pitting factor R is lower than 4, and pitting corrosion law if
R is higher than 4, thus identifying the type of corrosion as suggested in (Bertolini et al. 2005).

Concrete cover cracking following the expansion of the oxides produced by the corrosion
process is accounted as proposed in (Coronelli & Gambarova 2004), and evaluating the aver-
age crack opening due to corrosion oxides expansion with the model proposed by (Vidal et al.
2004). In (Coronelli & Gambarova 2004), it is also suggested to consider the concrete cover
stiffness reduction, which is accounted in this work in a simplified but safety-aware way, by
neglecting the presence of the concrete cover upon exceedance of an average crack width of
Imm. Confinement losses of the concrete core, evaluated as proposed in (Mander et al. 1988),
are accounted reducing the yielding strength of the stirrups. Bearings modeling approaches
are based on the extensive study by (Mander et al. 1996), in which the experimental behavior
of several types of steel bearings is compared with analytical methods, and in which valuable
suggestions for the finite element modeling are reported. Following this approach, the mech-
anical behavior of these components is studied and modeled separately, with regard to the
longitudinal and transverse direction of the bridge. For these components, the failure modes
considered, as well as the analytical approaches for estimating the ultimate strength, even in
the presence of corrosion, are referred to (Mander et al. 1996, Shekhar & Ghosh 2021).

3 CASE STUDY BRIDGE

The methodology described in the previous section is applied to an archetype 4-span bridge,
representative of a wide range of seismic-vulnerable and deterioration-sensitive existing
reinforced concrete bridges, present in infrastructure networks. The main geometrical features
and finite element modeling choices are summarized in Figure 2. The deck has six prestressed
I-beams, 1.5 m high, and presents two Gerber spans between half-joints. The column piers have
a double circular cross-section of 1.3m diameter. Seismically vulnerable features of the bridge
include the poor detailing of the columns as longitudinal reinforcement ratio equals 1% and cir-
cular stirrup spacing of 250mm, without any additional confinement in the dissipative zone.

For columns, nonlinear beam-column elements are used with appropriate (un)confined con-
crete and steel properties in OpenSees. The structural component is discretized along the
height into three distinct elements. This way, since wide value ranges for CDSs are considered,
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Figure 2. The studied 4-span Gerber bridge with respective geometrical and FE modeling features.

as shown in Table 1, the chance to have different corrosion intensity (Mj,s) Within the same
CDS along the height of the column is accounted, thus the possibility of plastic hinges in
zones away from the column base due to corrosion is captured (Yuan et al. 2017). The behav-
ior of the bearings is modeled through friction and hysteretic links in the direction where dis-
placements are constrained, and friction links only in the longitudinal direction for HTEB.
Pile foundations are modeled using soil-foundation springs with linear behavior, abutments
are modeled with linear translational springs, considering both passive and active stiffnesses.
Abutment-deck gaps are modeled trough gap elements.

Following the definitions of (Duracrete 2000), environmental effects of both “splash” zone, repre-
sentative of the use of de-icing salts, and “atmospheric zone” were compared. Moreover, “humid”
exposure is considered. For the evaluation of CDSs transitions, the following random variables are
assumed for components’ materials and geometry: a lognormal distribution with mean 30 mm and
CoV of 20% for the concrete cover depth; a discrete uniform distribution between [0.4,0.45,0.50] for
the water-cement ratio; a normal distribution with mean 293° K and CoV of 2% for the actual tem-
perature; and a Gumbel distribution with characteristics defined in (Stewart & Al-Harthy 2008) for
the pitting factor. In addition, the other random variables in the chloride propagation model are
assumed according to the values suggested in (Duracrete 2000, fib 2006, Choe et al. 2008). For the
bridge FE model, the following random variables are considered for material properties: a normal
distribution with a mean 43 MPa and CoV of 20% for the concrete mean cylindrical compressive
strength; a lognormal distribution with mean 520 MPa and CoV of 10% for the steel yielding
strength. The other material properties such as ultimate strain for (un)confined concrete, and steel
stifnesses, are adopted as suggested in (Cui et al. 2018). Regarding values for random variables
related to others modeling parameters, reference is made to (Nielson & DesRoches 2007).

4 RESULTS

In this section, the built model is applied for assessing the state-dependent fragility of the stud-
ied bridge. In Figure 3, the CDS probabilities, Pcps, for structural components over the struc-
tural lifetime, relatively to both “splash” and “atmospheric” zones, are shown; these are
generated by multiplying the observed non-stationary transitions by Eq (2). As expected,
a higher probability of corrosion activation and propagation for the “splash” zone is found,
as it is representative of a more chloride-aggressive environment. Environmental effects
resulted in the following CDS probabilities after 100 years for the “splash” zone: Pcps=o
=0.0289, Pcps=1=0.2342, Pcps=2=0.2374, Pcps=3=0.4995; and on the other hand, for the
“atmospheric” zone, the following CDS probabilities, Pcps, after 100 years are found: Peps=o
=0.9726, Pcps=1=0.0124, Pcpg=>=0.0064, Pcps=3=0.0085. The results of seismic nonlinear
dynamic analyses for column components are presented with respect to 4 corrosion scenarios,
i.e., DCSCOL =0& DCSBEA = 0, DCSCOL =1& DCSBEA = 0, DCSCOL =2& DCSBEA = O,
DCScor. = 3 & DCSgga = 0. In Figure 4 the respective state-dependent fragility curves for
column components are reported, thus showing the corrosion effects on their seismic safety.
The longitudinal effects of columns corrosion for their fragility for both “splash” and “atmos-
pheric” are shown in Figure 5; these are obtained by combining the above results on non-stationary

528



L T e e e Porm0
10 I./' ----- . PCDS:1
i S —‘:_:"'_;;;:.7__—__......\“1 s
o 1037 B L == Peps=2
n§ ? ...‘ ........ P(‘DS= 3
-5 R
13 { - Atmospheric
=
10 i . Splash
0

20 40 60 80 100
Years

Figure 3. Probability for corrosion deterioration states (Pcpg) of structural components over their lifetime.

CDS probability and state-dependent fragilities through the weighted sum of the logistic functions
based on Pcpg. This way, the suitability of the method for predicting time-varying fragility effects
due to exposure to chloride-aggressive environments over the structural life is highlighted.

5 CONCLUSIONS

In this paper, a dynamic Bayesian network for life-cycle seismic fragility assessment of aging
bridges is developed. The methodology is applied to a 4-span Gerber bridge case study, modeled
as a multi-component structural system, with components referring to different columns and bear-
ing types, to properly define seismic damage state characteristics under corrosion. Non-stationary
Markovian transitions among deterioration states of the structural components are estimated
through Monte Carlo simulation, and based on available probabilistic models for corrosion initi-
ation and propagation. The seismic fragility with respect to five states of seismic damage is
learned through multinomial logistic regression based on the results of nonlinear dynamic ana-
lyses, in which uncertainties in materials, geometry, modeling, seismic action and corrosion pro-
cess are accounted. The results confirm the sensitivity of seismic responses to corrosion effects,
and display how different aggressive environments can change the seismic safety of the bridge
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Figure 4. State-dependent fragility curves for the 4-span bridge columns. a) Comparison between scen-
arios CDScop= 0 and CDScoL= 2; b) Comparison between scenarios CDScoL= 1 and CDScoL = 3.
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components over time. The proposed approach is an important step towards effective and flexible
assessment and management of aging bridges structures. The DBN structure makes it possible to
add new variables in the probabilistic graph without affecting those presented here, as well as to
lend itself to advanced decision-support systems relying on Markov processes which can be con-
sistently to the derived transition probabilities. Along these lines, possible extensions include,
among others, consideration of residual structural capacity in the damage state definition, coup-
ling of component limit states with non-seismic loads, and incorporation of action and observa-
tion variables for fragility updates based on inspection and maintenance outcomes.
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