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ABSTRACT 
The increasing availability of urban-scale, open-access datasets can support decision-
making in urban planning, in particular in relation to climate resilience and climate 
change mitigation. Such data-driven initiatives however often neglect the central role 
of urban dwellers, whose activities create the demand for energy and mobility in urban 
areas. This is due in large part due to the difficulty of data collection at this scale, along 
with privacy concerns arising from any such data collection effort. The use of wearable 
technologies for self-reported comfort feedback from urban dwellers provides a 
promising opportunity for citizens to actively participate in the adaptation of urban 
areas to better support outdoor comfort and climate resilience. 
In this work, subjective feedback data from 22 participants in a longitudinal test in 
Seoul, South Korea was collected through a smartwatch application. Participants were 
required to wear a smartwatch for 4–6 weeks, during which time their location as well 
as environmental and physiological data were collected. Participants were also 
requested to complete hourly micro-surveys, in which they were asked about their 
activities, location, thermal preference, clothing level, comfort adaptations, and mood. 
This information was complemented by an urban scale dataset comprising building 
geometries and data from 1000+ weather stations over the same period. 
This cross-scale dataset was then used to investigate the relationship between urban 
form and environmental parameters with occupants’ survey responses. The relationship 
between indoor comfort and environmental parameters in the case study is discussed, 
with recommendations for further research into this topic. The use of machine learning 
to leverage the combination of spatial, temporal, and subjective preference data to 
predict occupants’ outdoor comfort as a function of their urban environment is also 
explored.  
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INTRODUCTION 
The increasing availability of data in urban environments, from sources such as urban 
weather stations, smart meters, telecommunications providers, and remote sensing, can 
provide valuable information to decision makers in urban planning. These dynamic and 
complex information streams have not only digitized the planning profession but 
increased the intractability of urban modeling and participatory planning, making urban 
analytical methods indispensable (Yap et al. 2022). In particular, distributed weather 
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stations combined with modeling techniques can provide insight into the effects of 
urban morphology on land surface temperatures and the urban heat island (Maiullari 
2023, Jeon et al. 2023). Such insights can be valuable tools to planning urban 
interventions to ensure outdoor and indoor thermal comfort and support urban climate 
resilience (Mei and Yuan 2022). 
 
At the same time, the use of wearable technologies in research to measure physiological 
and behavioral data to help understand the health and well-being of building occupants 
throughout their daily activities is gaining interest (Becerik-Gerber et al. 2022). 
Environmental data combined with occupant feedback and physiological information 
can be used to train personalized comfort models to support optimal building system 
controls, post-occupancy evaluation, and spatial recommendations in activity-based 
workspaces (Jayathissa et al. 2020). Similarly, outdoor climate information combined 
with sensing technologies can also be used to investigate outdoor thermal perception 
and walkability in urban environments (Peng et al. 2022). By deploying humans as 
sensors in urban areas, researchers have collected urban-scale datasets on humans’ 
subjective perception and physiological and environmental measurements to 
investigate noise distraction and thermal preference across a diversity of spaces (Miller 
et al. 2023). 
 
In this paper, we explore the use of urban-scale data from GIS and distributed weather 
sensors along with physiological data and subjective feedback from participants to 
investigate indoor and outdoor thermal comfort in a dense urban area. For this purpose, 
we recruited 22 study participants, who wore smartwatches that collected their 
physiological and location information and prompted them to complete hourly micro-
surveys on their location, activities, and subjective comfort over a 4–6-week period. 
This information is complemented by an urban-scale dataset including building 
geometries and environmental data from 1000+ sensors in the city of Seoul, South 
Korea. This information is used to explore the use of this data to train personal comfort 
models in indoor and outdoor environments and present their limitations and 
suggestions for future research. 
 
METHODOLOGY 
This work entailed the collection of an urban-scale dataset about the city of Seoul, South 
Korea, along with a building occupant-scale dataset about participants’ physiology, 
location and subjective feedback over a 4- to 6-week period. A general description of 
the data collection effort is presented in Mosteiro-Romero et al. (2024).  
 
Study participants were recruited from the student population at Chung Ang University 
in Seoul. Before participation, they completed an onboarding survey in which 
demographic information was collected (gender, age, height, weight) as well as 
completing surveys to establish their sensitivity to their environment rated on a 7-point 
scale (Pluess et al. 2023), their satisfaction with life score on a 7-point scale (Diener et 
al. 1985) and their score on the big five personality traits, again on a 7-point scale 
(Gosling et al. 2003). Participants were required to wear a smartwatch on weekdays 
from 9 am to 7 pm for a minimum of four weeks, during which time they received 
hourly reminders to complete a micro-survey through the smartwatch application Cozie. 
As seen in Fig. 1, the micro-survey questions related to their location, activity, thermal 
preference, mood, and any adaptive comfort adaptations they might have undertaken in 
the previous hour. During this time, their location was also recorded, as well as 
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physiological information from the smartwatches’ health kit data. After selecting 
relevant health-related parameters and dropping parameters with insufficient 
information, the following health-related parameters were selected: heart rate, 
environmental audio exposure, stand time, and walking distance. 
 

 
Figure 1. Distribution of survey responses for all participants at the end of the study. 
 
Participants who completed a minimum of 100 surveys in less than four weeks were 
invited to extend their participation for another two weeks, meaning that the duration 
of the study for all participants varied from 4 to 6 weeks, with a minimum of 100 
surveys per participant. Participant data collection was carried out in October and 
November 2023. The goal was to capture participants’ responses during the fall period, 
when Seoul’s climate transitions from a hot and humid season to a cold, dry winter. 
 
Urban scale data was collected in order to be used as potential explanatory variables to 
predict occupants’ thermal preference responses during the period of analysis. The 
urban scale dataset comprised open-access data from geographic information systems 
(GIS) along with data from 1000+ weather sensors distributed throughout the city of 
Seoul. 
 
The distributed urban weather sensors (Fig. 2) recorded the minimum, mean and 
maximum values of each 19 parameters at hourly resolution. The most interesting 
parameters were selected based on their relevance to comfort perception and after 
cleaning up the available data the following parameters were selected: air temperature, 
relative humidity, wind speed, fine particulate matter (PM2.5) and coarse particulate 
matter (PM10). The distribution of air temperatures during the period of study (Fig. 2) 
shows a high variability in maximum recorded temperatures during the two-month 
period of analysis.  
 
Participants’ physiological records and survey responses were then related to the 
weather data for the closest weather sensor at the time when the information was 
recorded. Given the high variability of wind speeds throughout an urban area, the wind 
speed at the closest weather station might not actually be close to the one experienced 
by the participant. Furthermore, the collected wind speed data had a particularly large 
number of missing records. Therefore, the average wind speed at urban scale was used 
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for all records as an indicator of whether the record happened during a generally windy 
time.  
 

 
Figure 2. Distribution of the weather sensors located throughout Seoul, showing each 
sensor’s minimum (left) and maximum (right) recorded air temperature during the 
period of study. The boundaries of the districts of Seoul are shown in gray, whereas 
major green areas and water bodies are shown in green and blue, respectively. 
 
In addition to weather data, the potential role of urban form features on participants’ 
comfort perception was also explored. First, shapefiles containing the footprints of all 
buildings in Seoul, major green spaces and major waterways were obtained from 
Seoul’s open data portal. Three of the most important climate-related morphological 
variables (Maiullari 2023) were used as potential explanatory variables for participants’ 
thermal comfort during the study, namely the Floor Space Index (FSI), Ground Space 
Index (GSI) and Open Space Ratio (OSR). For each weather sensor, a buffer b was first 
defined (100 m, 200 m and 300 m in radius), and the urban form parameters were 
calculated as follows: 
 
𝐹𝑆𝐼! =
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where GFA is the gross floor area for buildings within buffer b, Afootprint is the building 
footprint within that buffer area, and Ab is the buffer area (i.e., 𝐴! = 𝜋 ∙ 𝑏)). 
 
Based on this information, the goal of this study was to rank the variables that most 
affected occupants’ thermal preference responses and to train a machine learning model 
to predict occupants’ perception in outdoor and indoor spaces. A random forest (RF) 
classifier was used for this purpose, as it has been widely used for comfort-related 
studies and shown to perform better than other algorithms (Jayathissa et al. 2020, 
Guerra-Santin and Upasani 2023), especially during fall (Bai et al. 2022). 
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RESULTS 
As seen in Fig. 1, most responses (2500) were collected indoors, with only 265 collected 
outdoors, plus 156 collected on public transportation. Therefore, the indoor responses 
are analyzed first.  
 
Indoor thermal preference  
The importance of each of the explanatory variables in predicting occupants’ thermal 
preference votes is shown in Fig. 3. These results show the outdoor temperature as the 
most important feature by far, which is expectable. Several other variables appear to 
have comparable feature importances, such as current mood, activity and clothing, and 
the three urban form parameters. Participants’ demographics and personality traits, on 
the other hand, appear to have a more modest effect. 
 

 
Figure 3. Mean decrease in impurity of each of the explanatory variables as predictors 
for occupants’ indoor thermal preference votes. 
 
An obvious limitation here is the lack of information on the indoor environment at the 
time of the surveys. While Fig. 4 shows that there is indeed some relationship between 
indoor comfort preference responses and outdoor temperatures, these vary by room type, 
as the indoor environmental quality of each space that occupants responded in might 
vary. This is somewhat of a limitation in deploying wearables in the wild, as done in 
this study. Nevertheless, the distributions in responses for different room types still 
show that participants were generally more satisfied and had more consistent responses 
when they occupied room types where they had control of their environment (home, 
private workspace) than when they occupied rooms in which they had less control, 
especially classrooms, libraries and public transportation. In planning smart building 
systems, therefore, it is important to not only include occupant behavior in the learning 
process, but also allow users to control their spaces to maintain their thermal comfort. 
 
Outdoor thermal preference 
In order to test the features in the outdoor environment that most affected occupants’ 
thermal preference in the case study area, a random forest (RF) classifier was trained 
using the outdoor environment, urban form features, participant demographics and 
preferences, health kit data and survey responses as explanatory variables. 
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Figure 4. Distribution of occupants’ thermal preference responses as a function of 
outdoor air temperature for different locations. 

 

 
Figure 5. Feature importance with 10-fold cross-validation showing the influence of 
different explanatory variables on the results of the RF classifier model. 
 
The resulting feature importances with 10-fold cross validation are shown in Fig. 5. 
Again, unsurprisingly, the main explanatory variable is outdoor air temperature, with 
other environmental features (wind speed, relative humidity) also showing a significant 
contribution. Information from the smartwatch health kit data also appear to have a 
significant influence, especially audio exposure, walking distance and heart rate. 
Participant demographics and personality traits again appear to have a lower influence. 
Given the observed importances, a simplified model using those six top features was 
also created and the performance of each was tested using the micro F1-scores with 10-
fold cross validation. Given that the number of instances of each thermal preference 
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label was unbalanced (i.e., there were many more “No Change” votes, and more “Prefer 
Cooler” votes than “Prefer Warmer”), the weighted F1-score was also explored. 
 
The F1-scores and confusion matrices for each case are shown in Fig. 6. The model 
using all features has a mean micro F1-score of 0.65, which is comparable to studies on 
thermal comfort using the Cozie application in Singapore (Jayathissa et al. 2020) and a 
similar smartwatch application in the Netherlands (Guerra-Santin and Upasani 2023). 
The weighted F1-score of 0.62 is lower than the mean score for Bai et al. (2022)’s RF 
model for fall (0.7227), though somewhat comparable to the performance of the other 
ML models they considered. The model can be seen to overpredict “No Change” votes, 
which might again be related to the unbalanced nature of the dataset. The model using 
the top six features, on the other hand, performs worse in terms of both scores, 
especially the weighted F1, and shows an even higher overprediction of “No Change” 
votes. 
 

All features 
Micro F1: µ=0.65, σ=0.03 

Weighted F1: µ=0.62, σ=0.04 

 

Selected features 
Micro F1: µ=0.63, σ=0.03 

Weighted F1: µ=0.58, σ=0.04 

 

Figure 6. Confusion matrix for the RF classification model using all features (left) 
compared to the model using only the top six most important features. 

 
CONCLUSION AND IMPLICATIONS 
This paper explored the use of wearable technologies and urban-scale datasets to assess 
building occupants’ indoor and outdoor thermal comfort preferences over a 4- to 6-
week period in Seoul, South Korea. The preliminary results shown here show some 
insights into the main features affecting occupants’ thermal comfort, as well as some 
promising directions for future research. In terms of indoor comfort, given that no 
information about indoor environmental quality in the buildings that users occupied, no 
predictive model was trained. Nevertheless, the outdoor environment was still found to 
be of primary importance in the resulting thermal preferences reported by building 
occupants. Analyzing the results by room type showed that occupants were generally 
more comfortable in rooms where they had control over their environment, however 
future work could be conducted in order to combine the results from wearable 
technologies with sensor data in specific case study buildings. Furthermore, the main 
features affecting outdoor comfort were also explored, and found to be mainly related 

283



 

ASim2024, The 5th Asia Conference of the IBPSA 
December 8th – 10th, 2024, Osaka, Japan 

not only to outdoor environment features (air temperature, wind speed, relative 
humidity), but also occupants’ noise exposure, walking distance and heart rate. It is 
worth investigating further the urban specific features in which occupants gave those 
responses that might have affected their reported thermal preferences. In the specific 
case presented here, other features such as urban form parameters and participant 
demographics were found to have relatively minor impacts on their perceived comfort. 
However, while the results of the RF classifier model to predict participants’ thermal 
preference were in line with values observed in the literature, they still present room 
for improvement, and future work to include larger cohorts of participants and different 
seasonal characteristics should be considered. 
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