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Abstract
We consider spin-flip dynamics of Ising lattice spin systems and study the time evolution
of concentration inequalities. For “weakly interacting” dynamics we show that the Gaussian
concentration bound is conserved in the course of time and it is satisfied by the unique
stationary Gibbs measure. Next we show that, for a general class of translation-invariant
spin-flip dynamics, it is impossible to evolve in finite time from a low-temperature Gibbs
state towards ameasure satisfying theGaussian concentration bound. Finally, we consider the
time evolution of the weaker uniform variance bound, and show that this bound is conserved
under a general class of spin-flip dynamics.

Keywords Concentration inequalities · Spin-flip dynamics · Relative entropy · Space–time
cluster expansion · Analytic vectors · Gaussian concentration bound · Uniform variance
bound

1 Introduction

Concentration inequalities are important tools to understand the fluctuation properties of
general observables f (σ1, . . . , σn) which are functions of n random variables (σ1, . . . , σn),
where n is large but finite. For bounded random variables which are independent (or weakly
dependent) typically one can obtain so-called Gaussian concentration bounds for the fluc-
tuations of f (σ1, . . . , σn) about its expectation. In the context of lattice spin systems, one
has, e.g., σi ∈ {−1,+1}, with i ∈ [−n, n]d ∩Zd , and these random variables are distributed
according to a Gibbsmeasure. The “weak dependence” between themmeans for instance that
we are in the Dobrushin uniqueness regime, which is for instance the case at “high enough”
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temperature for every finite-range potential, or for low temperature with a “high enough”
external magnetic field. In this case a Gaussian concentration bound holds [8]. In contrast,
regimes of non-uniqueness are known in which only weaker concentration bounds, such as
moment bounds, hold [5]. In [6] it is shown that the Gaussian concentration bound implies
uniqueness of equilibrium states (translation-invariantGibbsmeasures). In [2],many applica-
tions of these concentration bounds are given (speed of convergence of the empirical measure
in the sense of Kantorovich distance, fluctuation bounds in the Shannon–McMillan–Breiman
theorem, fluctuation bounds for the first occurrence of a pattern, etc).

The Gaussian concentration bound implies volume large deviations for ergodic averages
of local observables, i.e., when it holds, the probability that empirical averages of local
observables deviate from their expectation is exponentially small in the volume over which
the empirical average is taken. This excludes sub-volume large deviations, which in the
context of equilibrium systems implies that the Gaussian concentration bound cannot hold
in a phase transition regime.

In this paper we are interested in the time evolution of the Gaussian concentration bound
under a stochastic evolution. More precisely we study the following questions in the context
of spin-flip dynamics of lattice spin systems:

1. When started from a probability measure satisfying the Gaussian concentration bound,
do we have this bound at later times?

2. When started from a probability measure which does not satisfy the Gaussian concentra-
tion bound, can this bound be obtained at finite times?

At the end of the paper we study the same questions for a weaker concentration bound,
namely the uniform variance bound.

The study of time-dependent concentration properties of a measure under a stochastic
evolution has several motivations. First, it reveals properties of transient non-equilibrium
states, i.e., when one heats up or cools down a system, then what are the concentration prop-
erties of the transient states in the course of this process? As mentioned before, the Gaussian
concentration bound is a signature of “high-temperature”, “strong uniqueness” or “strong
mixing”. When cooling or heating a high-temperature system, one can ask whether this sig-
nature of high-temperature behavior is conserved in the course of time, even if one cannot
make sense of intermediate temperatures in the course of the evolution, due to possible Gibbs-
non-Gibbs transitions [12]. Conversely, if one heats a system initially at low temperature,
can the Gaussian concentration bound hold at finite times, i.e., can one obtain this signature
of high-temperature behavior in finite time?

Second, semigroups corresponding to stochastic evolution are useful interpolation tools,
which give access to properties of measures which are not available in explicit (e.g. Gibbsian)
form. The study of time evolution of concentration properties gives insight in the concentra-
tion properties of such measures. An example is e.g. a spin-flip dynamics associated to two
different temperatures, where the stationary distribution is an example of a non-equilibrium
steady state about which little explicit information is available, as it will generically not
be a Gibbs measure (equilibrium state). If one can show the conservation of the Gaussian
concentration bound in the course of such a non-equilibrium time evolution, with constants
uniformly bounded in time, then one obtains also the Gaussian concentration bound for the
non-equilibrium steady state.

Third, the study of time-dependent concentration properties is related to the study of
Gibbs-non-Gibbs transitions [12]. Here in the regime where the time-evolved measure is not
Gibbs measure, one still would like to obtain some properties of these non-Gibbsian states.
E.g. if one starts a high temperature dynamics from the low-temperature Ising model with
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a weak magnetic field, it is known that one can have Gibbs-non-Gibbs transitions. On the
other hand, due to the magnetic field, the initial state satisfies the Gaussian concentration
inequality, and therefore if this inequality is conserved in the course of time, one obtains that
even in the non-Gibbsian regime, the measures in the course of time still satisfy the Gaussian
concentration inequality. One can also start from the low-temperature Ising model in the
phase transition regime and run a high-temperature dynamics. Then it is also known that in
the course of time the Gibbs property is lost, even if the dynamics eventually converges to
a high-temperature Gibbs state. It is then interesting so see whether the non-Gibbsian states
reached in the course of the time evolution can already have at finite times signatures of the
high-temperature behavior of the stationary state, such as the Gaussian concentration bound.
In the context of time evolution of Gibbs measures, one has generically two scenarios. In the
high-temperature regime, i.e., high-temperature initial Gibbs measure, and high-temperature
dynamics, the time-evolved measure is generically high-temperature Gibbs, and results of
this type are proved via some form of high-temperature (cluster, polymer) expansion, see
[10,12]. In the regime where the dynamics is high-temperature and the initial measure is
low-temperature, one typically has Gibbs-non-Gibbs transitions, i.e., after a finite time the
time-evolved measure is no longer a Gibbs measure, and sometimes (e.g. for independent
spin-flip dynamics starting from a low-temperature Ising state with positive small magnetic
field) the measure can become Gibbs again.

In the context of time-evolution of concentration inequalities, in [4] results so far are
restricted to dynamics of diffusive type, in a finite-dimensional context. Herewe are interested
in the setting of translation-invariant spin-flip dynamics in infinite volume, which is precisely
the context of Gibbs-non-Gibbs transitions in [12]. Guided by the intuition coming from
this context, one expects that a high-temperature dynamics should conserve the Gaussian
concentration bound.

We prove this result in the present paper, using the expansion in [10], i.e., under the
condition that the flip rates are sufficiently close to the rates of an independent spin-flip
dynamics.

Next we show that whenever one starts from a low-temperature initial state, i.e., in the
non-uniqueness regime, then for any finite-range spin-flip dynamics, at any later time the
distribution cannot satisfy theGaussian concentration bound. This can be thought of as a result
showing that in finite time one cannot obtain “high-temperature properties” when initially
started from a “low-temperature state”. This result is shown via an analyticity argument,
which shows that two different initial measures can never coincide in finite time, together
with the fact that if a measure satisfies the Gaussian concentration bound, then its lower
relative entropy density with respect to any other translation-invariant measure is strictly
positive. I.e., the existence of two time-evolved measures with zero relative entropy density
excludes the possibility that one of them satisfies the Gaussian concentration bound.

Finally, we show that a weaker concentration bound, the uniform variance inequality, is
generically conserved in the course of quasilocal spin-flip dynamics. This weaker bound
which is also valid for pure phases at low temperatures (such as the low-temperature Ising
model) implies that the variance of empirical averages of local observables decays like the
inverse of the volume over which the empirical average is taken. In particular, this excludes
divergence of susceptibility, i.e., critical behavior. Our result implies that in the course of a
time evolution started from a non-critical state, no critical state can be obtained. E.g. if one
heats up a low-temperature Ising model, in the limit one obtains a high-temperature state,
and in the course of the evolution one never reaches a state which looks like the Ising model
at the critical temperature.

123



5 Page 4 of 21 J.-R. Chazottes et al.

The rest of our paper is organized as follows. In Sect. 2we introduce somebasic context and
background on on Gibbs measures and spin-flip dynamics. In Sect. 3 we show conservation
of the Gaussian concentration bound under a strong high-temperature (or weak interaction)
condition. In Sect. 4 we prove that the Gaussian concentration bound cannot be obtained in
finite time if one starts froman initialGibbsmeasure in a non-uniqueness (“low-temperature”)
regime. In this section we also prove a non-degeneracy result, based on analyticity, which is
of independent interest. In Sect. 5 we show conservation of the uniform variance inequality
for general quasilocal spin-flip dynamics.

2 Setting: Lattice Spin Systems, Gibbs Measures, Markovian Dynamics

In this section we introduce some basic notation, definition of the Gaussian concentration
bounds, basic concepts about Gibbs measures, spin-flip dynamics and relative entropy. The
expert reader can skip this section, or go over it very quickly. We consider the state space
of Ising spins on the lattice Zd , i.e., � = {−1, 1}Zd

. For elements σ ∈ �, called “spin-
configurations”, we denote σi ∈ {−1, 1} the value of the spin at lattice site i ∈ Zd . When
we say “a probability measure μ on �”, we mean a probability measure on the Borel-σ -
field of �, equipped with the standard product of discrete topologies, which makes � into
a compact metric space. For η ∈ � we denote τiη the shifted or translated configuration,
defined via (τiη) j = ηi+ j . A function f : � → R is called local if it depends only on a
finite number of coordinates. By the Stone-Weierstrass theorem, the set of local functions
is dense in the Banach space of continuous functions C (�), equipped with the supremum
norm. For f : � → R we denote τi f the function defined via τi f (η) = f (τiη).

For a function f : � → R we denote the discrete gradient

∇i f (σ ) = f (σ i ) − f (σ )

where σ i denotes the configuration obtained from σ by flipping the symbol at lattice site
i ∈ Zd . We further denote

δi f = sup
σ∈�

∇i f (σ ).

We think of δi f as “the Lipschitz constant in the coordinate σi”. The symbol δ f means the
collection of δi f , i ∈ Zd , i.e., the “vector” of Lipschitz constants. For p ≥ 1 we define

‖δ f ‖p =
⎛
⎝ ∑

i∈Zd

(δi f )
p

⎞
⎠

1
p

.

For a continuous function f : � → R and a probability measure μ on �, we will write
either Eμ( f ) or

∫
f dμ for the integral of f with respect to μ. We can now define what we

mean by a Gaussian concentration bound for a given probability measure on �.

Definition 2.1 (Gaussian Concentration Bound) A probability measure μ on � is said to
satisfy the Gaussian concentration bound with constant C > 0, abbreviated GCB(C), if for
all continuous f : � → R we have

Eμ

(
e f −Eμ( f )

)
≤ eC‖δ f ‖22 . (1)

Observe that ‖δ f ‖2 is always finite for local functions. Note that a function f : � → R is
local if and only if there exists a finite subset of Zd (depending of course on f ) such that
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δi f = 0 for all i outside of that subset. For non-local continuous functions, inequality (1)
is meaningful only when ‖δ f ‖2 < +∞. By a standard argument (exponential Chebyshev
inequality applied to λ f , λ > 0, and then optimization over λ), the bound (1) implies the
“sub-gaussian” concentration inequality

μ
(
f − Eμ( f ) ≥ u

) ≤ e
− u2

4C‖δ f ‖22

for all u > 0.

Remark 2.1 The Gaussian concentration bound implies in particular “volume” large-
deviation upper bounds for empirical averages. More precisely, for a translation-invariant
measure satisfying (1), for a local function f , we have

μ

(∑
x∈�

τx f − Eμ( f ) ≥ u

)
≤ e−|�|C f u2 ,

withC f > 0. Therefore in the context of Gibbsmeasures (equilibrium states), it is impossible
to have the Gaussian concentration bound in the non-uniqueness regime. In this sense, the
Gaussian concentration bound can be seen as a signature of “high-temperature” or “weak
interaction” regime. The Gaussian concentration bound is (strictly) weaker than the log-
Sobolev inequality, which is the context of Gibbs measures is known to be equivalent with
strong uniqueness conditions [11].

2.1 Gibbs Measures

In the context of Gibbs measures, the Gaussian concentration bound is satisfied in the so-
called high-temperature regime, and more generally in regimes where the unique Gibbs
measure is sufficiently close to a product measure such as the Dobrushin uniqueness regime.
In this subsection we provide some basic background material on Gibbs measures which we
need in the sequel. We refer to [7] for more details and further background. Let S denote
the set of finite subsets of Zd . For � ⊂ Zd , we denote by F� the σ -field generated by
{σi , i ∈ �}.
Definition 2.2 A uniformly absolutely summable potential is a map U : S × � → R with
the following properties:

1. U (A, ·) only depends on σi , i ∈ A.
2. Uniform absolute summability:

sup
i∈Zd

∑
A∈S
A�i

sup
σ∈�

|U (A, σ )| < +∞.

A potential is called translation invariant ifU (A+ i, σ ) = U (A, τiσ) for all A ∈ S , σ ∈ �,
i ∈ Zd .

Given a uniformly absolutely summable potential U , and � ∈ S , we denote the finite-
volume Hamiltonian with boundary condition η ∈ �:

Hη
�(σ�) =

∑
A∩ ��=∅

U (A, σ�η�c )
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and the corresponding finite-volume Gibbs measure with boundary condition η

μ
η
�(σ�) = e−Hη

�(σ�)

Zη
�

where Zη
� = ∑

σ�∈��
e−Hη

�(σ�), the partition function with boundary condition η, is the
normalizing constant (and where �� is the restriction of � to �).

Definition 2.3 Let U be a uniformly absolutely summable potential. A measure μ is called
a Gibbs measure with potential U if its conditional probabilities satisfy

μ
(
σ�|F�c

)
(η) = μ

η
�(σ�)

for all � ∈ S , for all σ , and for μ-almost every η. We will write μ ∈ G (U ) to mean that μ
is a Gibbs measure for U .

We say that U satisfies the strong uniqueness condition if

c(U ) := sup
i∈Zd

1

2

∑
A�i

(|A| − 1) sup
σ,η ∈ �

|U (A, σ ) −U (A, η)| < 1. (2)

IfU satisfies (2) then the set ofGibbsmeasuresG (U ) is a singleton (uniqueGibbsmeasure, no
phase transition). The condition (2) implies the well-known Dobrushin uniqueness condition
(cf. [7, Chapter 8]).

If U is translation invariant then G (U ) contains at least one translation-invariant Gibbs
measure.

The following result is a particular case of the main theorem in [8] which states that, under
the Dobrushin uniqueness condition, one has the Gaussian concentration bound (1).

Theorem 2.1 [8] If U satisfies (2) then μ ∈ G (U ) satisfies GCB(C) with C = 1
2(1−c(U ))2

.

From the proof, one easily infers that also all the finite-volume Gibbs measures μ
η
� satisfy

GCB(C) whenever U satisfies (2), with a constant C that neither depends on the boundary
condition η nor on the volume �.

2.2 Relative Entropy Density and Large Deviations

Translation-invariant Gibbs measures with a translation-invariant uniformly absolutely
summable potential satisfy a level-3 large deviation principle with the relative entropy den-
sity as rate function [7, Chapter 15]. Let U be a translation-invariant uniformly absolutely
summable potential, and μ ∈ G (U ) be a translation-invariant Gibbs measure. Let ν be a
translation-invariant probability measure on �. The relative entropy density is defined to be
the limit

h(ν|μ) = lim
n→∞

h�n (ν|μ)

|�n | (3)

with �n = [−n, n]d ∩ Zd , |�n | = (2n + 1)d , and

h�n (ν|μ) =
∑

σ�n∈ ��n

ν(σ�n ) log
ν(σ�n )

μ(σ�n )
.

The relative entropy density exists for any μ ∈ G (U ) translation-invariant Gibbs measure,
and ν any translation-invariant probability measure. Moreover, the relative entropy density
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is the rate function of the so-called level 3 large deviation principle, i.e., in the sense of the
large deviation principle, it holds that

μ

⎛
⎝ 1

|�n |
∑
i∈�n

δτiσ ≈ ν

⎞
⎠ � e−|�n | h(ν|μ) .

(This is of course an informal statement where “≈ ν” means a neighborhood of ν in weak
topology, and “�” means asymptotic equivalence after taking the logarithm and dividing out
by |�n |.) In general, i.e., if μ is not a Gibbs measure, the limit defining (3) might not exist,
in that case we define the lower relative entropy density as

h∗(ν|μ) = lim inf
n→∞

h�n (ν|μ)

|�n | .

The following elementary lemma, which we formulate in the context of a finite set, with
a Markov transition matrix, shows that the relative entropy is decreasing under the action of
a Markov kernel.

Lemma 2.1 Let P(x, y) be a Markov transition function on a finite set S, x, y ∈ S, i.e.,
P(x, y) ≥ 0,

∑
y∈S P(x, y) = 1 for all x ∈ S. Let μ, ν be two probability measures on S

and let

H(μ|ν) =
∑
x∈S

μ(x) log
μ(x)

ν(x)

denote their relative entropy. Define μP(y) = ∑
x∈S μ(x)P(x, y) and similarly νP. Then

we have

H(μP|νP) ≤ H(μ|ν).

Proof Defineμ12(x, y) = μ(x)P(x, y) and similarlyν12(x, y) = ν(x)P(x, y). These define
two joint distributions of a random variable (X , Y ) on S × S. Then the first marginals of
μ12, ν12 are μ, resp. ν, and the second marginals are μP , resp. νP . Moreover, because∑

y∈S P(x, y) = 1, we get

H(μ12|ν12) =
∑

(x,y)∈ S×S

μ(x)P(x, y) log
μ(x)P(x, y)

ν(x)P(x, y)
=

∑
x∈S

μ(x) log
μ(x)

ν(x)

= H(μ|ν).

Therefore, by the chain rule for relative entropy (see e.g. Lemma 4.18 in [13]) we obtain

H(μ|ν) = H(μP|νP) + D

where D is the conditional divergence of X “knowing” Y , i.e.,

D =
∑
y∈S

μP(y)
∑
x∈S

μ12(x |y) log μ12(x |y)
ν12(x |y) .

Because D is non-negative, we obtain the desired inequality. ��
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2.3 Dynamics: Definitions and Basic Inequalities

2.3.1 Dynamics and Generator

The basic question we are interested in is how the inequality GCB(C) is affected by applying
aMarkovian dynamics to the probability measureμ. For this dynamics, we consider spin-flip
dynamics with flip rates c(i, σ ) at site i ∈ Zd satisfying the following assumptions.

Condition A:

1. Strict positivity: inf i∈Zd , σ∈� c(i, σ ) > 0.
2. Locality:

sup
i∈Zd

∑

j∈Zd

sup
σ∈�

(
c(i, σ j ) − c(i, σ )

)
< +∞.

This condition ensures existence of the dynamics with generator L defined below in (4).
In Sect. 3 we will consider weakly interacting dynamics and need more stringent condi-

tions:

Condition C:

1. Strict positivity: inf i∈Zd , σ∈� c(i, σ ) > 0.
2. Finite-range property: There exists R > 0 such that c(i, σ ) depends only on σ j , for j

such that | j − i | ≤ R.

If c(i, σ ) = c(0, τiσ), σ ∈ �, i ∈ Zd , then we say that the flip rates are translation invariant
where we remind the notation (τiσ) j = σi+ j .

The dynamics is defined via the Markov pre-generator L acting on local functions via

L f (σ ) =
∑

i∈Zd

c(i, σ )
(
f (σ i ) − f (σ )

)
. (4)

As proved in [9, Chapter 1], under Condition A, the closure of L (in C (�) equipped
with the supremum norm) generates a unique Feller process. This process generated by L
is denoted {σ(t), t ≥ 0}, and σi (t) denotes the spin at time t at lattice site i . We denote Eσ

expectation in the process {σ(t), t ≥ 0} starting from σ , and Pσ the corresponding path-
space measure. We denote the semigroup S(t) f (σ ) = Eσ [ f (σ (t))], which acts as a Markov
semigroup of contractions on C (�). Via duality, S(t) acts on probability measures, and for
μ a probability measure on �, we denote by μS(t) the time-evolved measure, determined
by the equation

∫
f dμS(t) =

∫
S(t) f dμ.

We also introduce the non-linear semigroup V (t) f = log S(t) e f , which is a family of
non-linear operators satisfying the semigroup property, i.e., V (t + s) = V (t)V (s), s, t ≥ 0.
This non-linear semigroup appears naturally in the context of time-evolution of the Gaussian
concentration bound.

Finally, notice that
(
eV (t) f

)
(σ ) =

∫
e f (ξ) δσ S(t)(dξ) (5)
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whereas

S(t) f (σ ) =
∫

f (ξ) δσ S(t)(dξ). (6)

2.3.2 Some Basic Facts for Spin-Flip Dynamics

In the study of existence and ergodicity properties of the Markovian dynamics {σ(t) : t ≥ 0}
an important role is played by the matrix indexed by sites i, j ∈ Zd and defined by

�i j = sup
σ∈�

(
c(i, σ j ) − c(i, σ )

)
.

We have the pointwise estimate (see [9, Chapter 1])

δi S(t) f ≤ (et� δ f )i , i ∈ Zd , t ≥ 0

where et� δ f denotes the bounded operator (in �1(Zd)) et� working on the “column vector”
δ f . If the rates are translation invariant, i.e., then we have �i j = γ ( j − i), i.e., � acts as a
convolution operator:

(�δ f )i = (γ ∗ δ f )i =
∑

j∈Zd

γ (i − j) δ j f

and as a consequence

(et� δ f )i =
∑

j∈Zd

γt (i − j) δ j f .

The so-called uniform ergodic regime, or “M < ε regime” (see [9]), is the regime where
the dynamics admits a unique invariant measure to which every initial measure converges
exponentially fast in the course of time. In that case there exists α > 0 such that

‖δS(t) f ‖22 ≤ ‖ et� δ f ‖22 ≤ e−αt ‖δ f ‖22 (7)

see [3, Theorem 3.3]. In general, for a spin-flip dynamics generated by (4), we have that �

is a bounded operator in �2(Zd), i.e.,

‖δS(t) f ‖22 ≤ K (t)‖δ f ‖22 (8)

for some time-dependent constant K (t) > 0. Finally, we mention a useful fact about the
relative entropy density.Using the elementaryLemma2.1, and finite-volume approximations,
one obtains the following implication for a translation invariant spin-flip dynamics with rates
satisfying condition A

h(ν|μ) = 0 ⇒ h
(
νS(t)

∣∣ μS(t)
) = 0, ∀t > 0.

This will be used later on, in Sect. 4.

3 Time Evolution of the Gaussian Concentration Bound

In this sectionwe show conservation of theGaussian concentration bound underweakly inter-
acting spin-flip dynamics, i.e., dynamics sufficiently close to independent spin-flip dynamics.

More precisely if we start the process {σ(t) : t ≥ 0} from a probability measure μ

satisfying GCB(C), then we are interested in the following questions:
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1. Is it the case that under the time evolution {σ(t), t ≥ 0}, the time-evolved measure μS(t)
still satisfies GCB(Ct ), and if yes, how does the constant Ct evolve?

2. If the dynamics admits a unique stationary measure ν, does this measure satisfy GCB(C)?

3.1 A General Result and Conservation of GCB for Independent Dynamics

We start with the following general result which states that if the Gaussian concentration
bound holds at time t > 0 when starting from a Dirac measure δσ with a constant that does
not depend on σ , then the Gaussian concentration bound holds at time t > 0 when started
from any initial measure satisfying the Gaussian concentration bound.

Theorem 3.1 Let {σ(t), t ≥ 0} be such that for all σ ∈ � the probability measure δσ S(t)
satisfies GCB(Dt ) where the constant Dt does not depend on σ . Let μ be a probability
measure satisfying GCB

(
Cμ

)
. Then, for all local functions f we have

log
∫

e f −∫
f dμS(t) dμS(t) ≤ Dt‖δ f ‖22 + Cμ‖δ(S(t) f )‖22. (9)

As a consequence, we obtain the following results:

1. μS(t) satisfies GCB(C(μ, t)) with C(μ, t) ≤ Dt + K (t)Cμ, where K (t) is defined in
(8).

2. In the uniformly ergodic case (M < ε regime, cf. (7)), there exists
α > 0 such that μS(t) satisfies GCB(C(μ, t)) with

C(μ, t) ≤ Dt + Cμ e−αt .

If furthermore, supt Dt < ∞, then also the unique stationary measure ν satisfies
GCB(Cν) with Cν ≤ supt Dt < +∞.

Proof Start from the left-hand side of (9). Use that (5), (6) to rewrite
∫

e f −∫
f dμS(t) dμS(t)

=
(∫ (

S(t) e f
)

(σ ) dμ(σ)

)
e− ∫

f dμS(t)

=
∫ [(∫

e f (ξ)−∫
f (ζ ) δσ S(t)(dζ ) δσ S(t)(dξ)

)
eS(t) f (σ )−∫

S(t) f (ζ ) dμ(ζ )

]
dμ(σ)

≤ eDt‖δ f ‖22
∫

eS(t) f (σ )−∫
S(t) f (ζ ) dμ(ζ ) dμ(σ)

≤ eDt‖δ f ‖22 eCμ‖δS(t) f ‖22 .

In the two last steps we first used that δσ S(t) satisfies GCB(Dt ), i.e., we have the inequality∫
e f (ξ)−∫

f (ξ) δσ S(t)(dξ) δσ S(t)(dξ) ≤ eDt‖δ f ‖22

for all σ . Second, we used the fact that μ satisfies GCB
(
Cμ

)
. The consequences (1) and (2)

now follow immediately. ��
The following corollary shows that for independent spin-flip dynamics, Gaussian concentra-
tion is conserved.
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Corollary 3.1 Assume that in the process {σ(t), t ≥ 0} the coordinates {σi (t) : t ≥ 0} evolve
independently. If μ satisfies GCB

(
Cμ

)
, then there exists α > 0 such that at any later time,

μS(t) satisfies GCB(C(μ, t)), with

C(μ, t) = e−αt Cμ + Dt (10)

with supt Dt < +∞.

Proof First notice that if P is a product measure on {−1, 1}Zd
then P satisfies GCB(C) with

a constant C that is not depending on the marginal distributions, see [1]. For independent
spin-flip dynamics, δσ S(t) is a product measure. Therefore, for that case, the assumption of
Theorem 3.1 is satisfied, with Dt uniformly bounded as a function of t . Furthermore, because
the flip rates are assumed to be bounded from below, the process {σ(t), t ≥ 0} is uniformly
ergodic, and as a consequence we obtain (10). ��

3.2 Weakly Interacting Spin-Flip Dynamics

The result for independent spin-flip dynamics (i.e., Corollary 3.1) can be generalized to a
setting of weakly interacting dynamics, which was studied before in [10] in the context of
time-evolution of Gibbs measures. The setting is such that the rates are sufficiently close to
the rates of independent rate 1 spin-flip dynamics, such that a space–time cluster expansion
can be set up. In particular, these conditions imply that there exists a unique invariant measure
which is a Gibbs measure in the Dobrushin uniqueness regime.

More precisely, the assumptions on the rates are those of condition C, with one extra
assumption forcing the rates to be close to a constant:

c(i, σ ) = 1 + ε(i, σ ), with sup
σ∈�

|ε(i, σ )| < ε0 (11)

where ε0 ∈ (0, 1) is a constant depending on the dimension, specified in [10].
The important implication of the space–time cluster expansion developed in [10] which

we need in our context is the following. The measure δσ S(t) is a Gibbs measure which is
in the Dobrushin uniqueness regime, uniformly in t > 0 and σ . More precisely, δσ S(t) is a
Gibbs measure with uniformly absolutely summable potential Ut

σ satisfying

sup
i∈Zd

∑
A∈S
A�i

|A| sup
σ,η ∈ �,t≥0

∣∣Ut
σ (A, η)

∣∣ < 1. (12)

More precisely, in [10] an exponential norm

sup
i∈Zd

∑
A∈S
A�i

ea|A| sup
σ,η ∈ �,t≥0

∣∣Ut
σ (A, η)

∣∣

where a > 0 is small enough, is shown to be finite, and going to zero when ε0 → 0, which
is stronger than (12).

Using Theorem 3.1, combined with Theorem 2.1, we obtain the following result.

Theorem 3.2 Let {σ(t), t ≥ 0} be a spin-flip dynamics satisfying the conditions C, and the
extra weak interaction condition (11). Then we have

1. If μ satisfies GCB
(
Cμ

)
, then there exists C(μ, t) < ∞ such that μS(t) satisfies

GCB(C(μ, t)).
2. The unique stationary measure ν satisfies GCB(Cν) for some Cν < ∞.
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4 No-Go from Low-Temperature Gibbs Measures to Gaussian
Concentration Bound

In this section we consider a complementary regime, i.e., starting from an initial distri-
bution where GCB is not satisfied, such as a translation-invariant Gibbs measure in the
non-uniqueness regime. We prove that it is impossible to go from such a Gibbs measure in
the non-uniqueness regime towards a probability measure which satisfies GCB(C) in finite
time. One can interpret this result as the fact that one cannot acquire in finite time strong
“high-temperature” properties from a low-temperature initial state. We prove this result first
for finite-range spin-flip dynamics, and then extend to infinite range under appropriate con-
ditions.

We start with an abstract “non-degeneracy” condition on the Markov semigroup.

Definition 4.1 (Non-degenerate Markov semigroup) We say that the Markov semigroup
(St )t≥0 of a spin-flip dynamics is non-degenerate if for every pair of probability measures
μ �= ν, we have μS(t) �= νS(t) for all t > 0.

Then we have the following general result which shows that under the evolution of a non-
degenerate semigroup one cannot go from “low temperature” to “high temperature” in finite
time.

Theorem 4.1 Let μ+ �= μ− denote two translation-invariant Gibbs measures for the same
translation-invariant potential. Assume that the Markov semigroup is non-degenerate. Then
for all t > 0, μ+S(t) cannot satisfy GCB(C).

Proof Because μ+ �= μ− are two translation-invariant Gibbs measures for the same
translation-invariant potential, we conclude that h(μ−|μ+) = 0 and, as a consequence,
h(μ−S(t)|μ+S(t)) = 0, for all t > 0. By non-degeneracy, μ−S(t) �= μ+S(t). By [6], we
have that if μ+S(t) satisfies GCB(C), then for all ν translation invariant h∗(ν|μS(t)) > 0,
which contradicts h(μ−S(t)|μ+S(t)) = 0. ��

The following lemma shows that independent spin-flip is non-degenerate.

Lemma 4.1 Letμ, ν be twodifferent probabilitymeasures on�. If S(t)denotes the semigroup
of independent rate one spin-flip dynamics, then at any later time t > 0, μS(t) �= νS(t).

Proof Define, for A ∈ S , σA = ∏
i∈A σi . Then we have LσA = −2|A|σA and as a conse-

quence,

S(t) σA = e−2|A|t σA. (13)

If μS(t) = νS(t) for some t > 0 then it follows from (13) that

e−2|A|t
∫

σA dμ = e−2|A|t
∫

σA dν

and therefore
∫

σA dμ = ∫
σA dν. Because linear combinations of the functions σA are

uniformly dense in C (�), we conclude that μ = ν, which leads to a contradiction. ��

In the next subsection, we use analyticity arguments to show non-degeneracy for general
translation-invariant finite-range spin-flip dynamics.
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4.1 Analyticity and Non-degeneracy of Local Spin-Flip Dynamics

In this section we show that for general finite-range translation-invariant spin-flip dynamics,
for μ a probability measure on �, and for a (uniformly) dense set of continuous functions
f the map t �→ ∫

S(t) f dμ can be analytically extended to a strip in the complex plane of
which thewidth does not depend onμ. This implies non-degeneracy in the sense ofDefinition
4.1. We start with setting up the necessary notation.

We remind the notation σB = ∏
i∈B σi for B a finite subset ofZd . For a finite set B ⊂ Zd

we define the associated translation-invariant operator

LB =
∑

i∈Zd

σB+i∇i .

In case B = ∅ we make the convention σB = 1, i.e., L∅ = ∑
i∈Zd ∇i is the generator of rate

1 independent spin flips.
A general finite-range translation-invariant spin-flip generator can then be written in terms

of these “building block” operators as follows

LB :=
∑
B∈B

λ(B)LB (14)

where B is a finite collection of finite subsets of Zd , and where λ : B → R. For notational
simplicity, we suppressed the dependence on the coefficient λ(·) in (14). In the following
lemma we produce a uniform estimate for LBn LBn−1 · · · LB1σA.

Lemma 4.2 We have the uniform estimate

‖LBn LBn−1 · · · LB1σA‖∞
≤ 2n |A|(|A| + |B1|)(|A| + |B1| + |B2|) · · · (|A| + |B1| + · · · + |Bn−1|). (15)

Proof First notice that the boundholdswhen A = ∅because in that case LBn LBn−1 · · · LB1σA =
0. So we consider A �= ∅. Let us first deal with n = 1. Notice that

∇i σA = −2 σA1(i ∈ A)

where 1(·) denotes the indicator function. Next notice that σGσF = σG�F for G, F finite
subsets ofZd andG�F = (G∩Fc)∪(F∩Gc) the symmetric difference. Then we compute

LB1σA = −2
∑
i ∈A

σ(B1+i)�A.

As a consequence

‖LB1σA‖∞ ≤ 2 |A|.
Let us denote for n sets C1, . . . ,Cn

�n
i=1Ci = C1�C2� · · · �Cn .

Then, by iteration, using ‖σA‖∞ = 1, we obtain

LBn LBn−1 · · · LB1σA

= (−2)n
∑
i1∈A

∑
i2∈(B1+i1)�A

. . .
∑

in∈A�(�n−1
k=1(Bk+ik ))

σA�(�n
k=1(Bk+ik )).
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Now use that |C�D| ≤ |C | + |D|, and ‖σA�(�n
k=1(Bk+ik ))‖∞ = 1, to further estimate

∥∥∥∥∥∥∥
∑
i1∈A

∑
i2∈(B1+i1)�A

. . .
∑

in∈A�(�n−1
k=1(Bk+ik ))

σA�(�n
k=1(Bk+ik ))

∥∥∥∥∥∥∥∞
≤ |A|(|A| + |B1|) · · · (|A| + |B1| + · · · + |Bn−1|).

The lemma is proved. ��
We can then estimate L n

B σA.

Lemma 4.3 LetB ∈ 2Z
d
denote a finite set consisting of finite subsets ofZd , and letLB as

in (14). Denote K := maxB∈B |B| and M := maxB∈B |λ(B)|. Then we have
‖(L n

B σA)‖∞ ≤ 2nMn |B|n(|A| + K )nn!. (16)

As a consequence

∞∑
n=0

tn

n!
(
L n

B σA
)

is a uniformly convergent series for t < t0 with t0 = 1
2M|B |(|A|+K )

.

Proof We have

L n
B σA =

∑
Bn∈B

. . .
∑
B1∈B

(
n∏

i=1

λ(Bi )

)
LBn · · · LB1(σA).

The result then follows via (15) using that |B| ≤ K for B ∈ B via the inequality

|A|(|A| + |B1|) · · · (|A| + |B1| + · · · + |Bn−1|)
≤ |A|(|A| + K ) · · · (|A| + (n − 1)K )) ≤ (|A| + K )nn!.

The consequence is immediate from (16). ��
Proposition 4.1 LetLB denote a finite-range translation-invariant spin-flip generator as in
(14). The set of analytic vectors is uniformly dense in the set of continuous functions.

Proof The set of analytic vectors is by definition the set of functions such that there exists
t > 0 such that

∞∑
n=0

tn

n! ‖L
n
B f ‖∞

is a convergent series. Let us denote by A the set of analytic vectors. Notice that A is a
vector space.

By Lemma 4.3 it follows that σA ∈ A for all finite A ⊂ Zd . As a consequence, A
contains all local functions and as we saw before, the set of local functions is uniformly
dense in C (�). ��
Proposition 4.2 Let μ and ν denote two probability measures on the configuration space �.
LetLB denote the generator of a translation-invariant finite-range spin-flip dynamics as in
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(14). Let S(t) denote the corresponding semigroup. LetA denote the set of analytic vectors.
Then for every f ∈ A , the map

ψ f (t) : t �→
∫

S(t) f dμ −
∫

S(t) f dν

extends analytically to the set

�r := {z ∈ C : dist(z,R+) ≤ r}
for some r > 0 which depends on f (but not on μ, ν).

Proof By assumption, there exists r > 0 such that

∞∑
n=0

tn

n! ‖L
n
B f ‖∞

converges for t ≤ r , which implies that ψ f (z) can be extended analytically in

B(0, r) = {z ∈ C : |z| ≤ r} ⊂ C.

Now notice that the same holds when we replace f by S(s) f , by the contraction property:

∞∑
n=0

tn

n! ‖L
n
B (S(s) f )‖∞ =

∞∑
n=0

tn

n! ‖S(s)(L n
B f )‖∞ ≤

∞∑
n=0

tn

n! ‖L
n
B f ‖∞.

More precisely, for all s, ψS(s) f (·) can be extended analytically in

B(0, r) = {z ∈ C : |z| ≤ r} ⊂ C

where r does not depend on s. This implies the statement of the proposition, because, via the
semigroup property

ψS(s) f (t) = ψ f (s + t).

The proof is finished. ��
Corollary 4.1 Let μ and ν denote two probability measures on the configuration space �.
LetLB denote the generator of a translation-invariant finite-range spin-flip dynamics as in
(14). Let S(t) denote the corresponding semigroup. If μ �= ν then μS(t) �= νS(t) for all
t > 0.

Proof Assume on the contrary that μS(t) = νS(t) for some t > 0, then by the semigroup
property μS(s) = νS(s) for all s ≥ t . Let f ∈ A be an analytic vector such that

∫
f dμ �=∫

f dν. Then it follows that the functionψ f (s) = ∫
S(s) f dμ−∫

S(s) f dν satisfiesψ f (0) �=
0. On the other hand, because μS(s) = νS(s) for all s ≥ t , it follows ψ f (s) = 0 for all
s ≥ t . This contradicts the analyticity of ψ f . ��

4.2 Generalization to a Class of Infinite-Range Dynamics

The assumption of finite range for the translation-invariant flip rates can be replaced by an
appropriate decay condition on the rates. This is specified below. We assume now that the
generator is of the form

LB =
∑
B∈B

λ(B) σB LB
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where as before LB = ∑
i∈Zd σB+i∇i . We assume now that B is an infinite set of finite

subsets of Zd and that we have the bound

∑
B∈B :|B|=k

|λ(B)| ≤ cψ(k) (17)

where c ∈ (0,+∞) is a constant andwhereψ(k) is a positivemeasure on the natural numbers
such that for some u > 0

∞∑
k=0

euk ψ(k) = F(u) < +∞. (18)

In the following lemma we obtain a bound which allows us to estimate ‖L n
B σA‖∞.

Lemma 4.4 Let ψ be a positive measure onN such that (18) holds for some u > 0. Then for
any positive integer n we have

∑
0≤ k1, ... , 0≤ kn

n∏
j=1

⎛
⎝1 +

j∑
�=1

k�

⎞
⎠

n∏
m=1

ψ
(
km

) ≤ eu n! u−n F(u)n .

Proof We have

∑
0≤ k1, ... , 0≤ kn

n∏
j=1

⎛
⎝1 +

j∑
�=1

k�

⎞
⎠

n∏
m=1

ψ
(
km

)

≤
∑

0≤ k1, ... , 0≤ kn

(
1 +

n∑
�=1

k�

)n n∏
m=1

ψ
(
km

)

= eu
∑

0≤ k1, ... , 0≤ kn

e−u
(
1+∑n

j=1 k j
) (

1 +
n∑

�=1

k�

)n n∏
m=1

(
eu km ψ

(
km

))

≤ eu n! u−n F(u)n

where we used that vn e−v/n! < 1, for all v > 0 and n. ��

We can then show that the bound of Lemma (15) still holds.

Proposition 4.3 Under (17) and (18), we have the bound

‖L n
B σA‖∞ ≤ n! κn, n ≥ 1,

for some κ > 0. As a consequence, local functions are analytic vectors, and the Markovian
dynamics generated by LB is non-degenerate.
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Proof We estimate as in the proof of Lemma 4.3, using (18). Let u > 0 be as in (18), and
A �= ∅. Then

‖L n
B σA‖∞
≤ 2n

∑
B1∈B

· · ·
∑

Bn∈Bn

×
∑
i1∈A

∑
i2∈(B1+i1)�A

· · ·
∑

in∈A�(�n−1
k=1(Bk+ik ))

‖σA�(�n
k=1(Bk+ik ))‖∞

n∏
i=1

|λ(Bi )|

≤ 2n
∞∑

k1=0

· · ·
∞∑

kn=0

∑
B1∈B ,|B1|=k1

· · ·
∑

Bn∈B ,|Bn |=kn

|A|(|A| + k1) · · ·

× (|A| + k1 + k2 + · · · + kn)
n∏

i=1

|λ(Bi )|

≤ 2ncn
∞∑

k1=0

· · ·
∞∑

kn=0

|A|(|A| + k1) · · · (|A| + k1 + k2 + · · · + kn)
n∏

i=1

ψ(ki )

≤ |A|n 2ncn eu n! u−n F(u)n

≤ n! κn

for some 0 < κ < +∞. With this bound, we can proceed as in the proof of the finite-range
case (Lemma 4.3, Propositions 4.1, 4.2). ��

5 Uniform Variance Bound

In this section we consider the time-dependent behavior of a weaker concentration inequality,
which we call the “uniform variance bound”. In the context of Gibbs measures, contrarily to
GCB, this inequality can still hold in the non-uniqueness regime (for the ergodic equilibrium
states), see [5] for a proof of this inequality for the low-temperature pure phases of the Ising
model.

Definition 5.1 (UniformVariance Bound)We say thatμ satisfies the uniform variance bound
with constant C (abbreviation UVB(C)) if for all f : � → R continuous

Eμ

[
( f − Eμ( f ))2

] ≤ C‖δ f ‖22. (19)

Remark 5.1 The bound (19) implies that ergodic averages of the form (
∑

x∈� τx f )/|�| (with
f a local function) have a variance which is bounded by C f /|�|. In particular this excludes
convex combinations of pure phases (non-ergodic states), and critical behavior (states at the
critical point). The result which we show below (Theorem 5.2) thus shows that when started
from an initial measure satisfying (19), non-ergodic or critical behavior cannot be obtained
in finite time.

Notice that, in contrast with the Gaussian concentration bound, the inequality (19) is
homogeneous, i.e., if (19) holds for f then for all λ ∈ R, it also holds for λ f . Furthermore, if
(19) holds for a subset of continuous functions which is uniformly dense inC (�) (such as the
set of local functions), then it holds for all f ∈ C (�) by standard approximation arguments.
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This implies that if we can show the validity of (19) for a set of functionsD ⊂ C (�) such that
∪λ∈[0,+∞)λD contains all local functions, we obtain the validity of (19) for all f ∈ C (�).

The following proposition shows that a weak form of Gaussian concentration is equivalent
with the uniform variance bound.

Definition 5.2 (Weak Gaussian Concentration Bound) We say that a probability measure μ

satisfies the weak Gaussian concentration bound with constant C if for every f : � → R

continuous there exists λ0 = λ0( f ) > 0 such that for all λ ≤ λ0

Eμ

(
eλ( f −Eμ( f ))

)
≤ eCλ2‖δ f ‖22 . (20)

Proposition 5.1 A probability measure μ satisfies the weak Gaussian concentration bound
with constant C if and only if it satisfies the uniform variance bound.

Proof Assume thatμ satisfies the weakGaussian concentration boundwith constantC . From
(20) we derive, for f : � → R continuous,

Varμ( f ) = lim
λ→0

Eμ

(
eλ( f −Eμ( f ))

) − 1

λ2
≤ lim

λ→0

eCλ2‖δ f ‖22 −1

λ2
= C‖δ f ‖22.

which is the uniform variance bound. Conversely, assume that the uniform variance bound
holds, and let f : � → R be a continuous function. Then use the elementary inequality

eλx −1 − λx ≤ λ2e x2
2 , valid for for 0 ≤ λx ≤ 1, together with ex ≥ 1 + x , to conclude that

for λ ≤ 1
2‖ f ‖∞+1 , we have

Eμ

(
eλ( f −Eμ( f ))

)
≤ 1 + λ2eVarμ( f )

2
≤ 1 + λ2 e

2
C‖δ f ‖22 ≤ e

λ2e
2 C‖δ f ‖22 .

��
The following theorem is the analogue of Theorem 3.1 for the uniform variance bound.

Theorem 5.1 Assume that for all σ , the probability measure δσ S(t) satisfies UVB(C(σ, t)).
If μ satisfies UVB(C) and is such that

∫
C(σ, t) dμ(σ) < +∞, then also μS(t) satisfies

UVB(C(μ, t)) with

C(μ, t) ≤ CK (t) +
∫

C(σ, t) dμ(σ)

where K (t) is as in (8).

Proof Let f : � → R be a continuous function. Then we compute, using (8):

VarμS(t)( f ) =
∫

f 2 dμS(t) −
(∫

f dμS(t)

)2

=
∫ (

S(t)( f 2) − (S(t) f )2
)
dμ + Varμ(S(t) f )

=
∫

Varδσ S(t)( f ) dμ(σ) + C‖δS(t) f ‖22

≤
(∫

C(σ, t) dμ(σ)

)
‖δ f ‖22 + CK (t)2‖δ f ‖22.

The theorem is proved. ��
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Corollary 5.1 Assume that the spin-flip rates satisfy the weak interaction condition of Sect.
3.2, then the dynamics conserves the uniform variance bound.

Proof Under the weak interaction condition, δσ S(t) satisfies GCB(C) with a constant that
does not depend on σ . By Proposition 5.1 δσ S(t) satisfies UVB(C) with a constant that does
not depend on σ . The conclusion follows from Theorem 5.1. ��

The following theorem shows that the high-temperature condition of corollary 5.1 is not
necessary, and in fact, the uniform variance inequality is robust under any local spin-flip
dynamics, i.e., under the condition C of Sect. 2.3.

Theorem 5.2 Assume that μ satisfies the uniform variance inequality (19). Let S(t) denote
the semigroup of a spin-flip dynamics condition A of Sect. 2.3. Then μS(t) satisfies the
uniform variance inequality for all t > 0.

Proof Let us denote the time-dependent quadratic form

ψ(t; f , g) = S(t)( f g) − (S(t) f )(S(t)g)

as well as the usual carré du champ quadratic form

�( f , g) = L( f g) − gL f − f Lg.

Notice that

Varδσ S(t)( f ) = ψ(t; f , f )(σ ). (21)

An simple explicit computation shows that

�( f , f ) =
∑

i∈Zd

c(i, σ )( f (σ i ) − f (σ ))2

which by the boundedness of the rates implies the estimate

‖�( f , f )‖∞ ≤ ĉ ‖δ f ‖22 (22)

with ĉ = supσ∈�,i∈Zd c(i, σ ). We then compute

d

dt
(ψ(t; f , f )) = L(S(t) f 2) − 2S(t) f LS(t) f

= L
[
S(t) f 2 − (S(t) f )(S(t) f )

] + 2�(S(t) f , S(t) f ).

As a consequence, using ψ(0; f , f ) = 0, by the variation of constants method we obtain

ψ(t; f , f ) = 2
∫ t

0
S(t − s) �(S(s) f , S(s) f ) ds.

Therefore, using (22) combined with the contraction property of the semigroup, we obtain,
via (8)

‖ψ(t; f , f )‖∞ ≤ 2 ĉ
∫ t

0
‖δS(s) f ‖22 ds ≤ 2 ĉ

(∫ t

0
K (s)2 ds

)
‖δ f ‖22.

Now use (21) to conclude

Varδσ S(t)( f ) ≤ C‖δ f ‖22
with C = 2 ĉ

(∫ t
0 K (s)2 ds

)
not depending on σ .

Via Theorem 5.1, we obtain the statement of the theorem. ��
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Remark 5.2 Remark that we did not use the finite range character of the spin-flip rates, neither
the translation invariance. I.e., as soon as the flip rates are uniformly bounded, and are such
that the Markovian dynamics with these rates can be defined, we obtain that the uniform
variance bound is conserved in the course of time.

Finally, we show the analogue of Theorem 3.1 for more general inequalities including
moment inequalities.

Definition 5.3 Let F : R → R be a convex function, J : [0,∞) → R a continuous
increasing function, andC > 0 a constant. Thenwe say thatμ satisfies the (F, J,C) inequality
if for all continuous f : � → R with ‖δ f ‖2 < +∞ we have

∫
F( f − Eμ( f )) dμ ≤ J(C‖δ f ‖2).

To fit the examples we saw so far: we have UVB(a) corresponds to F(x) = x2, J(x) =
x2,C = √

a, whereas GCB(a) corresponds to F(x) = ex , J(x) = ex
2
,C = √

a. More
general moment inequalities correspond to F(x) = |x |p, J(x) = |x |p .

The following theorem is then the analogue of Theorem 3.1 for the (F, J,C) inequality.

Theorem 5.3 Assume that δσ S(t) satisfies the (F, J,C) inequality with constant C that does
not depend on σ . Then if μ satisfies the (F, J,Cμ) inequality, so does μS(t) for all t > 0.

Proof We write, using pt (σ, dη) for the transition probability measure starting from σ , and
abbreviating

∫
f dμS(t) =: μ(t, f )

∫
F( f − μ(t, f )) dμS(t)

=
∫

pt (σ, dη)F

(
f (η) −

∫
f (ξ) pt (σ, dξ) +

∫
f (ξ) pt (σ, dξ) − μ(t, f )

)
dμ(σ)

≤ 1

2

∫
pt (σ, dη)F

(
2

(
f (η) −

∫
f (ξ) pt (σ, dξ)

))
dμ(σ)

+ 1

2

∫
F

(
2

(
S(t) f −

∫
S(t) f dμ

))
dμ(σ)

≤ 1

2
J(2C‖δ f ‖2) + 1

2
J(2Cμ‖δS(t) f ‖2)

≤ 1

2
J(2C‖δ f ‖2) + 1

2
J
(
2Cμ

√
K (t) ‖δ f ‖2

)

≤ J
((
2C + 2Cμ

√
K (t)

)‖δ f ‖2
)
.

Here in the last two steps we used (8), combined with the fact that J is increasing. ��
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