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Chapter 1
Spectral Analysis of Large Reflexive
Generalized Inverse and Moore-Penrose
Inverse Matrices

Taras Bodnar and Nestor Parolya

Abstract A reflexive generalized inverse and the Moore-Penrose inverse are often
confused in statistical literature but in fact they have completely different behaviour
in case the population covariance matrix is not a multiple of identity. In this paper,
we study the spectral properties of a reflexive generalized inverse and of the Moore-
Penrose inverse of the sample covariance matrix. The obtained results are used to
assess the difference in the asymptotic behaviour of their eigenvalues.

1.1 Introduction

Let Yn = (y1, y2, . . . , yn) be the p × n data matrix which consists of n column
vectors of dimension p with E(yi ) = 0 and Cov(yi ) = Σ for i ∈ 1, . . . , n.
We assume that p/n → c ∈ (1,+∞) as n → ∞. This type of limiting
behavior is also referred to a “large dimensional asymptotics” or “the Kolmogorov
asymptotics”. In this case, the traditional estimators perform very poorly and tend
to over/underestimate the unknown parameters of the asset returns, i.e., the mean
vector and the covariance matrix.

Throughout this paper it is assumed that there exists a p × n random matrix
Xn which consists of independent and identically distributed (i.i.d.) real random
variables with zero mean and unit variance such that

Yn = Σ1/2Xn , (1.1)

where the matrix Σ1/2 denotes the symmetric square root of the population
covariance matrix Σ . Other square roots of Σ , like the lower triangular matrix
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of the Cholesky decomposition, can also be used. Note that the observation
matrix Yn consists of dependent rows although its columns are independent. It is
worth mentioning that although the assumption of time independence looks quite
restrictive in real-life applications, the model can be extended to dependent variables
(for instance, causal AR(1) models)1 by imposing more complicated conditions on
the elements of Yn (see, [2] for details) or by assuming an m-dependent structure
(e.g., [11] for a finite number of dependent entries, and [9] and [16] for a
possibly increasing number). Nevertheless, this will not change the main results of
our paper and would only make the proofs more technical. That is why we assume
independence for the sake of brevity and transparency.

The sample covariance matrix is given by (e.g., [13])

Sn = 1

n
YnY′

n = 1

n
Σ1/2XnX′

nΣ
1/2. (1.2)

Throughout the paper it is assumed that the sample size n is smaller than the
dimension p of random vectors yi , i = 1, . . . , n, that is p/n → c > 1 as n → ∞.
In this case the sample covariance matrix is singular and its inverse does not exist
(cf., [4, 6, 12]). On the other side, the inverse of the population covariance matrix
Σ is present in many applications from finance, signal processing, biostatistics,
environmentrics, etc. (see, e.g., [7, 8, 10]). In practice, the Moore-Penrose inverse
is usually employed (cf., [5, 12]), while the other types of the generalize inverse
(see, [15]) can also be used.

In this paper we compare the spectral properties of two generalized inverses of
the singular sample covariance matrix given by:

• Moore-Penrose inverse:

S+
n =

(
1

n
YnY′

n

)+
= 1

n
Yn

(
1

n
Y′

nYn

)−2

Y′
n = 1

n
Σ1/2Xn

(
1

n
X′

nΣXn

)−2

X′
nΣ

1/2

(1.3)

• Reflexive inverse

S−
n = Σ−1/2

(
1

n
XnX′

n

)+
Σ−1/2 = 1

n
Σ−1/2Xn

(
1

n
X′

nXn

)−2

X′
nΣ

−1/2

(1.4)

Although the Moore-Penrose inverse S+ can directly be computed from the
observation matrix Yn, the derivation of its stochastic properties might be chal-
lenging in some practical problems. On the other side, the computation of the
considered reflexive inverse S− is not possible in practice, but the derivation of

1Bai and Zhou [2] define a general dependence structure in the following way: for all
k, E(YjkYlk) = σlj , and for any non-random matrix B with bounded norm, it holds that

E
∣∣y�

k Byk − tr(BΣ)
∣∣2 = o

(
n2

)
where Σ = (σlj ).
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the stochastic properties is considerably simplified. The goal of this paper is to
quantify the difference between the two generalized inverse matrices with the aim
to develop a statistical methodology to assess the estimation errors when the Moore-
Penrose inverse is used. To this end, we note that a reflexive inverse is not uniquely
defined and that the stochastic properties of the reflexive inverse will be derived in
the special case of (1.4).

The rest of the paper is structured as follows. In the next section, we study
the asymptotic properties of S+ and S− by deriving two integral equations whose
solutions are the Stieltjes transforms of the limiting spectral distributions of S+ and
S−. These findings are used in Sect. 1.3, where the asymptotic behaviour of the
Frobenius norm of the difference between S+ and S− is investigated. Section 1.4
presents the results of a numerical illustration, while concluding remarks are
provided in Sect. 1.5.

1.2 Asymptotic Properties of S+ and S−

For a symmetric matrix A we denote by λ1(A) ≥ . . . ≥ λp(A) its ordered
eigenvalues and by F A(t) the corresponding empirical distribution function (e.d.f.),
that is

F A(t) = 1

p

p∑
i=1

1{λi(A) ≤ t},

where 1{·} is the indicator function. Furthermore, for a function G : R → R of
bounded variation the Stieltjes transform is introduced by

mG(z) =
+∞∫

−∞

1

λ − z
dG(λ); z ∈ C+ ≡ {z ∈ C : 
z > 0} .

Note that there is a direct connection between mG(z) and moment generating
function of G, ΨG(z) given by

ΨG(z) = −1

z
mG

(
1

z

)
− 1.

In Theorem 1.1 we present the expressions of the Stieltjes transform for S+ and S−.

Theorem 1.1 Let the p × n noise matrix Xn consist of i.i.d. real random variables
with zero mean and unit variance. Assume that Σ is nonrandom symmetric and
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positive definite with a bounded spectral norm and the e.d.f. Hn = FΣ converges
weakly to a nonrandom distribution function H . Then

(i) the e.d.f. F S+
n converges weakly almost surely to some deterministic c.d.f. P+

whose Stieltjes transformation mP satisfies the following equation:

mP+(z) = −1

z

(
2 − c−1 +

∫ +∞

−∞
dH(τ)

zτc(zmP+(z) + 1) − 1

)
;

(ii) the e.d.f. F S−
n converges weakly almost surely to some deterministic c.d.f. P−

whose Stieltjes transformation mP− satisfies the following equation:

mP−(z) = −1

z
− 1

z

+∞∫
−∞

dH(τ)

τcz2mP−(z)
(

1 − c
1−c−czmP− (z)

)
− 1

.

Proof

(i) The result of part (i) of the theorem was derived in Theorem 2.1 of [5].
(ii) In order to prove the asymptotic result in the case of S−

n , whose eigenvalues
are the same as those of the product of two matrices Σ−1 and S̃+

n =
1/nXn

(
1
n

X′
nXn

)−2
X′

n, we use subordination results of free probability (see,

e.g., [3]). Namely for two Borel probability measures μ and ν on [0,+∞)

(both are limits of F S̃+
n and FΣ−1

, respectively), there exist two unique analytic
functions F1, F2 : C \ [0,+∞) → C \ [0,+∞) such that

F1(z)F2(z)

z
= ημ(F1(z)) = ην(F2(z)) = η(z) , (1.5)

where η(z) = 1− z
gP− (1/z)

is the eta transform and gP− is the Cauchy transform

(the negative Stieltjes transform), i.e., gP−(z) = −mP−(z), for the limit of F S−
n

denoted by P−. In particular, from the first and the second equalities in (1.5)
we get that for any z ∈ C+ = {z : 
(z) > 0} such that F2 is analytic at z, the
function F2(z) satisfies the following equation:2

ην(F2(z)) = ημ

(
ην(F2(z))z

F2(z)

)
. (1.6)

2In fact, a similar equation also holds for F1 when one replaces μ and ν in (1.6) but for our purposes
it is enough to know one of them.
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On the other hand, from the last equality in (1.5) we have that gP−(z) satisfies
the equality

gP−(z) = 1

zF2(1/z)
gν

(
1

F2(1/z)

)
. (1.7)

Thus, we need first to find the so called subordination function F2(z) from (1.6)
and plug it into (1.7). For simplicity we further suppress the subindex of gP− .

Let

Θ(z) = F2(z)

zη(z)
(1.8)

and rewrite (1.6) using η(z) = ην(F2(z)) in the following way

η(z) = ημ

(
η(z)z

F2(z)

)
= ημ

(
1

Θ(z)

)
. (1.9)

Using the definition of the eta transform we get

1 − 1
1
z
g(1/z)

= 1 − 1

Θ(z)

1

gμ(Θ(z))

and, hence,

1

z
g(1/z) = Θ(z)gμ(Θ(z)) . (1.10)

From [5] we get that

gμ(z) = −mP−(z) = 1

z

(
2 − c−1 + mMP (1/z)

z

)
, (1.11)

where mMP (z) is the Stieltjes transformation of the Marchenko-Pastur law
given by (see, e.g., [1])

mMP (z) = 1

2cz

(
1 − c − z +

√
(1 + c − z)2 − 4c

)
. (1.12)
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Thus, Eq. (1.10) becomes

1

z
g(1/z) = Θ(z)

1

Θ(z)

(
2 − c−1 + mMP (1/Θ(z))

Θ(z)

)

= 2 − c−1 +
1 − c − 1

Θ(z)
+

√
(1 + c − 1

Θ(z)
)2 − 4c

Θ(z)2c 1
Θ(z)

= 1

2c

⎛
⎝2c − 2 + (1 + c − 1

Θ(z)
) +

√
(1 + c − 1

Θ(z)
)2 − 4c

⎞
⎠ ,

or, equivalently, by rearranging terms we obtain

2

(
c(

1

z
g(1/z) − 1) + 1

)
− (1 + c − 1

Θ(z)
) =

√
(1 + c − 1

Θ(z)
)2 − 4c ,

(1.13)

where by squaring of both sides, we get

(
c(

1

z
g(1/z) − 1) + 1

)2

−
(

c(
1

z
g(1/z) − 1) + 1

)
(1 + c − 1

Θ(z)
) + c = 0

or,

1 + c2(
1

z
g(1/z) − 1)2 + 2c(

1

z
g(1/z) − 1) − 1 + 1

Θ(z)

− c(
1

z
g(1/z) − 1)(1 + c − 1

Θ(z)
) = 0,

which yields

c(
1

z
g(1/z) − 1) + (1 − c) + 1

Θ(z)c( 1
z
g(1/z) − 1)

+ 1

Θ(z)
= 0 . (1.14)

From (1.14) we find Θ(z) as a function of g(1/z) expressed as

Θ(z) = 1 + c( 1
z
g(1/z) − 1)

c( 1
z
g(1/z) − 1)(c − 1 − c( 1

z
g(1/z) − 1))

(1.15)
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or, in terms of F2(z) given by

F2(z) = z − cz + cg(1/z)

c( 1
z
g(1/z) − 1)(c − 1 − c( 1

z
g(1/z) − 1))

1
z
g(1/z) − 1
1
z
g(1/z)

= z − cz + cg(1/z)

c(−z + 2cz − cg(1/z))

z2

g(1/z)
. (1.16)

At last, we use the property gν(z) = 1/z−1/z2gH (1/z) and plug F2(z) in (1.7).
This leads to

g(z) = 1

zF2(1/z)

(
F2(1/z) − F 2

2 (1/z)gH (F2(1/z))
)

= 1

z
− F2(1/z)

z
gH (F2(1/z)) = 1

z
− F2(1/z)

z

+∞∫
−∞

dH(τ)

F2(1/z) − τ

= 1

z
+

+∞∫
−∞

dH(τ)

τz/F2(1/z) − z
= 1

z
+

+∞∫
−∞

dH(τ)

−τcz3g(z)
(

1 − c
1−c+czg(z)

)
− z

.

The latter can be rewritten in terms of Stieltjes transform mP−(z) by

mP−(z) = −1

z
− 1

z

+∞∫
−∞

dH(τ)

τcz2mP−(z)
(

1 − c
1−c−czmP− (z)

)
− 1

(1.17)

and the second part of theorem is proved.

Although the Stieltjes transforms of two generalize inverse matrices are quite
different, they have one in common: besides the fact that they are equal for Σ = I,
we also observe that they become close to each other in case c tends to one from
the right. Thus, if p/n is close to one from the right, then there should be no
large difference in using the Moore-Penrose inverse S+ or the generalized reflexive
inverse S− asymptotically.

1.3 Quantification the Difference Between the Asymptotic
Behaviour of S+ and S−

Using the Stieltjes transforms computed in the case of S+ and S−, we are able
to compare their moments. In order to quantify this difference more carefully we
consider the quadratic or the so-called Frobenius norm of the difference between
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S+ and S− given by

‖S− − S+‖2
F = tr

(
(S− − S+)(S− − S+)�

)

= tr
(
S−S−) − 2tr

(
S+S−) + tr

(
S+S+)

= tr
(
S−S−) − tr

(
S+S+)

= ‖S−‖2
F − ‖S+‖2

F .

In Theorem 1.2 the asymptotic equivalents for both Frobenius norms are
provided.

Theorem 1.2 Under assumptions of Theorem 1.1 it holds almost surely as p/n →
c > 1

1/p‖S+‖2
F −→ c−1

⎛
⎜⎝ 1

m2
F (0)

− c

+∞∫
−∞

τ 2dH(τ)

(1 + τmF (0))2

⎞
⎟⎠

−1

,

(1.18)

1/p‖S−‖2
F −→ (1 + c(c − 1))

c2(c − 1)3

⎛
⎜⎝

+∞∫
−∞

dH(τ)

τ

⎞
⎟⎠

2

+ 1

(c(c − 1))2

+∞∫
−∞

dH(τ)

τ 2 ,

(1.19)

where mF (0) satisfies the following equation

1

mF (0)
= c

+∞∫
−∞

τdH(τ)

1 + τmF (0)
.

Proof In order to prove the statement of the theorem, we rewrite the Frobenius norm
of random matrix A for all z ∈ C+ in the following way

1/p‖A‖2
F = 1/ptr(A2) = − 1

2

∂2

∂z2

1

p

tr(A − 1/zI)−1

z

∣∣∣∣∣
z=0

= − 1

2

∂2

∂z2

mF A(1/z)

z

∣∣∣∣∣
z=0

. (1.20)

We start with A = S+. Let

Γn(z) = m
F S+ (1/z)

z
.
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Due to Theorem 1.1.i we get that Γ +
n (z) converges almost surely to deterministic

Γ +(z), which satisfies the following asymptotic equation

Γ +(z) = −
(

2 − c−1 +
∫ +∞

−∞
zdH(τ)

τc(Γ +(z) + 1) − z

)
. (1.21)

For the computation of 1/p‖S+‖2
F , the quantities Γ +(z), ∂

∂z
Γ +(z) and

∂2

∂z2 Γ +(z) should be evaluated at zero. We rewrite (1.21) in an equivalent way

Γ +(z) = −1 − c−1zmF (z), (1.22)

where mF (z) is the limiting Stieltjes transform of m
F 1/nY�Y , which satisfies the

following equation (see, e.g., [14])

mF(z) =
⎛
⎜⎝c

+∞∫
−∞

τdH(τ)

1 + τmF (z)
− z

⎞
⎟⎠

−1

. (1.23)

The advantage of (1.22) over (1.21) lies in the calculation of the derivatives,
which can be done easier by the former. Since the quantity mF (z) is bounded at
zero for c > 1, we immediately obtain

Γ +(0) ≡ lim
z→0+ Γ +(z) = −1 . (1.24)

The first derivative of Γ +(z) is given by

∂

∂z
Γ +(z) = −c−1mF (z) − c−1z

∂

∂z
mF (z) (1.25)

and, thus, taking the limit z → 0+ and using that ∂
∂z

mF (z) = O(1) as z → 0+, we
get

Γ ′ +(0) ≡ lim
z→0+

∂

∂z
Γ +(z) = −c−1mF (0) , (1.26)

where mF (0) satisfies the equation

1

mF(0)
= c

+∞∫
−∞

τdH(τ)

1 + τmF (0)
. (1.27)
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The second derivative of Γ +(z) is equal to

∂2

∂z2 Γ +(z) = −2c−1 ∂

∂z
mF (z) − c−1z

∂2

∂z2 mF(z). (1.28)

Denoting m′
F (z) = ∂

∂z
mF (z) and using (1.23) together with (1.27), we obtain

m′
F (0) ≡ lim

z→0+ m′
F (z) = lim

z→0+

c
+∞∫
−∞

τ2m′
F (z)dH(τ)

(1+τmF (z))2 + 1

(
c

+∞∫
−∞

τdH(τ)
1+τmF (z)

)2 =
m′

F (0)c
+∞∫
−∞

τ2dH(τ)

(1+τmF (0))2 + 1

1
m2

F (0)

or, equivalently,

m′
F (0) =

⎛
⎜⎝ 1

m2
F (0)

− c

+∞∫
−∞

τ 2dH(τ)

(1 + τmF (0))2

⎞
⎟⎠

−1

. (1.29)

Finally, the application of (1.28) and (1.29) together with ∂2

∂z2 mF (z) = O(1) as

z → 0+ leads to

Γ ′′ +(0) ≡ lim
z→0+

∂2

∂z2 Γ +(z) = −2
c−1

1
m2

F (0)
− c

+∞∫
−∞

τ 2dH(τ)

(1+τmF (0))2

.

Now, the first result of the theorem follows from (1.20).
Similarly, for the second identity of Theorem 1.2 we denote Γ −(z) as a limit of

Γ −
n (z) = m

F S− (1/z)

z
. (1.30)

Then using Theorem 1.1, the limiting function Γ −(z) satisfies the following
asymptotic equation

Γ −(z) = −1 −
+∞∫

−∞

zdH(τ)

τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z

. (1.31)
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Here we immediately get that Γ −(z) is bounded at zero and it holds that

lim
z→0+ Γ −(z) = −1, (1.32)

lim
z→0+

∂

∂z
Γ −(z) = − 1

c(c − 1)

+∞∫
−∞

dH(τ)

τ
, (1.33)

where, the result for the first derivative of Γ −(z) follows from the identity

⎛
⎜⎝1 − z

+∞∫
−∞

τc
(

1 − c(1−c)

(1−c−cΓ −(z))2

)
dH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)2

⎞
⎟⎠ ∂

∂z
Γ −(z)

= −
+∞∫

−∞

τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
dH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)2

= −
+∞∫

−∞

dH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)

−
+∞∫

−∞

zdH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)2

.

For the second derivative we get the following equality

(1 + O(z))
∂2

∂z2
Γ −(z) = 2

∂

∂z
Γ −(z)

+∞∫
−∞

τc
(

1 − c(1−c)

(1−c−cΓ −(z))2

)
dH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)2

− 2

+∞∫
−∞

dH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)2

+ O(z)

and taking the limit z → 0+ from both sides leads to

lim
z→0+

∂2

∂z2 Γ −(z) = 2
∂

∂z
Γ −(z)

c(1 − c(1 − c))

c2(c − 1)2

+∞∫
−∞

dH(τ)

τ
− 2

1

(c(c − 1))2

+∞∫
−∞

dH(τ)

τ 2

= −2
(1 + c(c − 1))

c2(c − 1)3

⎛
⎜⎝

+∞∫
−∞

dH(τ)

τ

⎞
⎟⎠

2

− 2
1

(c(c − 1))2

+∞∫
−∞

dH(τ)

τ 2 .

(1.34)

The second statement of the theorem follows now from (1.34) and (1.20).
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For a better visualization of the results of Theorem 1.2 from the statistical point
of view, we present its empirical counterpart. Here, the almost sure convergence of
the asymptotic equivalents are summarize in Corollary 1.1.

Corollary 1.1 Under assumptions of Theorem 1.1 for p/n → c > 1 holds almost
surely

1/p

∣∣∣∣∣∣‖S+‖2
F − c−1

(
p

m2
F (0)

− c||(Σ + mF (0)I)−1||2F
)−1

∣∣∣∣∣∣ → 0,

(1.35)

1/p

∣∣∣∣‖S−‖2
F − (1 + c(c − 1))

c2(c − 1)3

1

p

(
tr(Σ−1)

)2 − 1

(c(c − 1))2
||Σ−1||2F

∣∣∣∣ → 0,

(1.36)

where mF (0) satisfies asymptotically (approximately) the following equation

p

mF (0)
= c · tr(Σ + mF (0)I)−1 .

The results of Corollary 1.1 show how the Frobenius norms of both inverses
are connected with their population counterpart ||Σ−1||2F . Namely, looking on the
asymptotic behavior of ‖S+‖2

F one can easily deduce that it is not possible to
estimate ||Σ−1||2F consistently using the Moore-Penrose inverse because of the
nonlinearity which is present in (Σ + mF(0)I)−1. On the other side, it is doable
by reflexive generalized inverse S−

n . Indeed, using the proof of Theorem 1.2 one can
find that

1/p

∣∣∣∣tr(S−
n ) − 1

c(c − 1)
tr(Σ−1)

∣∣∣∣ → 0 ,

which together with (1.36) implies that

1/p

∣∣∣∣(c(c − 1))2
[
‖S−‖2

F −
(

1

(c − 1)
+ c

)
1

p

(
tr(S−)

)2
]

− ||Σ−1||2F
∣∣∣∣ → 0,

(1.37)

almost surely.
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1.4 Numerical Illustration

Using the results of the previous section, we present several numerical results to
quantify the difference ‖S− − S+‖2

F = ‖S−‖2
F − ‖S+‖2

F for some Σ . In order
to avoid the normalization 1/p we will use the normalized Frobenius loss (NFL)
expressed as

NFL = ‖S− − S+‖2
F

‖S+‖2
F

= ‖S−‖2
F

‖S+‖2
F

− 1, (1.38)

which measures the difference between S− and S+ normalized by the Frobenius
norm of the Moore-Penrose inverse. The application of (1.38) with S+ and S− as
in (1.3) and (1.4) leads to the so called empirical NFL, while the usage of the results
of Theorem 1.2 corresponds to the asymptotic NFL. The latter can be interpreted
how much both Frobenius norms differ asymptotically.

In Fig. 1.1 we present the results of a simulation study where the normalized
Frobenius losses are computed for several values of the concentration ratio c > 1
as a function of dimension p. For the sake of illustration, we provide the results
obtained for the samples generated from the multivariate normal distribution, while
similar values were also obtained for other multivariate distributions. We set the
mean vector to zero and, without loss of generality, use the diagonal covariance
matrix Σ with 20% of eigenvalues equal to one, 40% equal to three and the rest
equal to ten. The results for c = 1.07 confirm our expectations discussed after the
proof of Theorem 1.1, namely there is no large difference between both norms: NFL
is small and the empirical NFL converges quite fast to its asymptotic counterpart. By
increasing c we observe that the NFL increases indicating that both norms deviate
from each other. For example, in case c = 2 the asymptotic and empirical NFLs
are close to 1.2 what means that the Frobenius norm for reflexive inverse is more
than a double of the Frobenius norm of the Moore-Penrose inverse. This observation
becomes more severe for larger values of c. Moreover, for c = 10 we observe a bit
slower convergence of the sample NFL to its asymptotic value.

The obtained findings indicate that the usage of S+
n instead of S−

n must be done
with much care and are only reliable if the concentration ratio p/n is close to
one. Otherwise, one can not expect neither a good approximation of functionals
depending on the inverse covariance matrix nor consistent estimators for them.
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1.5 Summary

In many statistical applications the dimension of the data-generating process is
larger than the sample size. However, one still needs to compute the inverse of the
sample covariance matrix, which is present in many expressions. There are a plenty
of ways how to define a generalized inverse with the Moore-Penrose inverse and
reflexive generalized inverse matrices be the mostly used ones. While the former is
easily computable and is unique, the latter can not be calculated from the data. On
the other side, the behavior of the Moore-Penrose inverse in many high-dimensional
applications is far away from a satisfactory one, whereas the reflexive inverse obeys
very convenient statistical and asymptotic properties. Namely, the application of the
reflexive inverse allows to estimate functionals of the precision matrix (the inverse
of population covariance matrix) consistently in high-dimension.

In this work we study spectral properties of both inverses in detail. The almost
sure limits of the Stieltjes transforms of their empirical distribution functions of
eigenvalues (so-called limiting spectral distributions) is provided in the case the
dimension p and the sample size n increase to infinity simultaneously such that
their ratio p/n tends to a positive constant c greater than one. We discover that
both limiting spectral distributions differ considerably and only coincide when c

tends to one. The results are illustrated via the calculation of asymptotic normalized
Frobenius loss of both inverse matrices. Finally, we justify the obtained theoretical
findings via a simulation study.
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presentation of the paper.
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