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H I G H L I G H T S

A DEM calibration strategy for binary 
mixture charging is presented.
Interaction parameters between mixture 
components and individual components 
were calibrated.
Calibration experiments used a single 
test to measure multiple KPIs at differ-
ent velocities.
Unknown parameters are calibrated us-
ing surrogate modeling and multi-objective 
optimization.
Verification showed good model accu-
racy at different charging velocities.
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 A B S T R A C T

In blast furnace ironmaking, a mixture of iron ore pellets and sinter is charged in layers at the furnace top, with 
particle velocities reaching up to ∼10 m/s at the stock surface. The inherent differences in particle size, shape, 
and density between pellets and sinter pose challenges for maintaining a uniform mixture during this high-
velocity charging, leading to segregation and uneven material distribution. This non-uniformity can negatively 
affect furnace efficiency and stability. Understanding segregation during charging is therefore crucial for 
optimizing the ironmaking process. The Discrete Element Method (DEM) can offer valuable insights, provided 
that the model parameters are calibrated and verified. This study presents a calibrated DEM model for a 
pellet–sinter mixture with a 50–50 mass ratio of both components. A novel high-velocity laboratory setup was 
used to simultaneously measure five different key performance indicators (KPIs) related to flow and packing 
behavior at various discharge heights, corresponding to different flow velocities. Calibration was performed 
at the highest flow velocity, representative of actual blast furnace conditions. The process involved creating 
response surface models for each KPI and using a multi-objective optimization approach with a desirability 
function to determine the model parameters. A step-wise calibration strategy was employed, first optimizing 
pellet and sinter interaction parameters individually, followed by calibration of the pellet–sinter interaction 
parameters. This approach proved effective, as the calibrated model accurately reproduced experimental data. 
Results also suggest that the calibration outcome is flow-invariant in this setup, with the model successfully 
predicting flow and packing behavior at lower discharge heights.
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Fig. 1. Illustration of pellet–sinter mixture charging to the furnace and the bunker loading process using skip cars.
1. Introduction

A blast furnace is a large-scale industrial reactor designed to trans-
form raw materials into liquid iron through a combination of thermal 
and chemical processes. It operates as a counter-current reactor, where 
a descending packed bed of raw materials, collectively referred to as 
the ‘‘burden’’, interacts with an ascending flow of hot gas. The burden 
consists of an ore mixture, primarily including pellets and sinter, along 
with coke. As illustrated in Fig.  1, these materials are loaded into 
the top bunkers using skip cars and subsequently charged through 
a rotating chute. The chute gradually reduces its inclination before 
rotating again, forming alternating layers of the ore mixture and coke 
within the packed bed. At the bottom of the furnace, a pressurized blast 
of hot gas is injected, initiating a series of mostly endothermic reactions 
as it rises through the bed. These reactions lead to the reduction and 
melting of the iron contained in the ore particles, ultimately collecting 
as molten iron at the bottom of the furnace.

For many years, researchers have pointed out that the permeabil-
ity distribution of the packed bed determines the efficiency of iron 
extraction process [1]. Uneven permeability can cause stability issues 
and increase coke consumption to sustain combustion efficiency. The 
permeability of the bed is generally influenced by its configuration,
i.e., the arrangement of materials after charging. Specifically, uniform 
bed permeability is achieved through a homogeneous distribution of 
materials across the layers. Given the simultaneous variation in particle 
size, density, and shape between pellets and sinter, segregation of the 
ore mixture is anticipated during the charging process. This segregation 
can significantly affect the homogeneity of the ore layers. However, 
the extent of segregation is difficult to quantify in real-time due to 
the extreme conditions within the blast furnace. The Discrete Element 
Method (DEM) has become a valuable tool for simulating the blast 
furnace charging process, providing insights into particle behavior 
during operation. DEM employs contact models to predict interactions 
between particles, material types, and the furnace walls. These simula-
tions offer critical understanding of how particle interactions influence 
2 
burden distribution and segregation. However, the accuracy of these 
predictions is highly dependent on the model parameters, which must 
be determined to ensure that the model’s predictions match real-world 
observations.

Determining DEM model parameters is inherently challenging, as 
no universal value exists for each particle due to the variability within 
materials. A practical approach is bulk calibration, where parameters 
are adjusted to align simulated bulk behavior with experimental data. 
Despite the widespread use of DEM in blast furnace simulations, model 
calibration practices still face several challenges [1]. For instance, the 
highest particle velocity in blast furnaces can reach 10–15 m/s at low 
chute angles, yet most calibration tests are conducted at much lower 
velocities. This raises concerns about the ability of existing models 
to accurately capture high-velocity behavior. Furthermore, calibration 
often relies on a single performance indicator, such as the angle of re-
pose, which may not provide a unique combination of parameters that 
can replicate experimental bulk behavior [2]. Another major limitation 
is the treatment of interaction parameters between different materi-
als, such as pellets and sinter. These parameters are often assumed 
rather than calibrated, introducing uncertainty into the modeling of 
mixture behavior. This is particularly concerning, as we previously 
demonstrated that pellet–sinter interaction parameters significantly in-
fluence the segregation behavior of the mixture during high-velocity 
charging [3].

In light of these limitations, the objective of this work is twofold. 
First, to calibrate the mixture model systematically at representative 
charging velocity, ensuring that a unique solution is found to the large 
set of model parameters. Secondly, to investigate to what extent a 
model calibrated at a certain velocity is capable of predicting material 
behavior at other velocities. To achieve these objectives, we employ a 
novel high-velocity calibration setup that characterizes flow and pack-
ing behavior using multiple key performance indicators (KPIs) across a 
range of velocities, with the highest velocity approximating industrial-
scale furnace conditions. It must be noted that effects such as particle 
breakage, which may occur at high velocities, are not considered in 
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this study, as degradation phenomena would require more advanced 
models and dedicated calibration beyond the current scope.

This paper is organized as follows. Section 2 introduces a step-
wise calibration strategy, where individual pellet and sinter parameters 
are first calibrated at the highest velocity, followed by the calibration 
of pellet–sinter interaction parameters. We describe the calibration 
process, which involves response surface modeling of the KPIs using 
DEM data, followed by a multi-objective optimization approach to 
determine parameter values that best match experimentally measured 
KPI values. Section 3 presents the results from lab experiments, and 
the calibration process, along with a verification step at different flow 
velocities. Finally, Section 4 summarizes the key findings and outlines 
potential directions for future research.

This work makes three key contributions to the calibration of ore 
mixture models for blast furnace charging. First, it presents a systematic 
calibration approach that accounts for both individual pellet and sinter 
interaction parameters as well as their mutual interaction parameters, 
ensuring a unique set of model parameters through the use of multiple 
KPIs. Second, it employs a carefully designed experimental setup that 
realistically replicates blast furnace flow conditions while enabling the 
simultaneous measurement of multiple KPIs. To our knowledge, such a 
setup has not yet been reported in blast furnace-related literature. Fi-
nally, this work introduces a two-step calibration strategy that reduces 
the number of required KPIs by first calibrating individual pellet and 
sinter parameters at high velocity before calibrating their interaction 
parameters. This structured approach streamlines the calibration pro-
cess and is expected to be broadly applicable to DEM-based mixture 
model calibration beyond the blast furnace context.

2. Calibration method

2.1. Calibration and verification strategy

In our previous work [1], we demonstrated that DEM models 
for blast furnace charging are commonly developed using the Hertz-
Mindlin contact model combined with rolling model C. These models 
have proven effective for blast furnace materials, which are coarse and 
free-flowing by nature. Fig.  2 summarizes the five different interactions 
occurring between particles and their surroundings in a DEM-based ore 
mixture model. When employing the Hertz-Mindlin model alongside 
rolling model C, these interactions are characterized by the static 
friction coefficient (𝜇𝑠), rolling friction coefficient (𝜇𝑟), and restitution 
coefficient (𝑒). Hence, a complete ore mixture model requires a total 
of 15 parameters to be calibrated – a significant number. Proper 
calibration practices require one KPI per parameter, meaning that 
directly calibrating the entire mixture model would necessitate a wide 
range of KPIs.

To address this challenge, a step-wise calibration approach is pro-
posed, as illustrated in Fig.  3. The idea is to start by calibrating the 
complete set of interaction parameters associated with the pellet and 
sinter models, i.e., the particle–particle (P–P/S–S) and particle–wall (P–
W/S–W) interaction parameters. Once calibrated, their values remain 
fixed and are used as inputs for the second calibration step, in which 
the pellet–sinter interaction parameters in the mixture model are cali-
brated. Since the pellet and sinter models each require six interaction 
parameters, the majority of parameters (12 out of 15) are determined 
during the first calibration step. By decomposing the calibration process 
in this way, the number of required KPIs for a unique solution is 
significantly reduced, from 15 to 6, thereby simplifying the overall 
calibration procedure.

In this work, a hopper discharge test with subsequent heap forma-
tion (shown schematically in Fig.  4) is employed as the calibration 
experiment. Given the need to calibrate multiple parameters at each 
step, the setup was specifically designed to enable the simultaneous 
measurement of multiple KPIs in a single test. The discharge height 
𝐻 is an operational variable in this setup, which can be adjusted up to 
3 
Fig. 2. Overview of the interactions in a DEM simulation involving a binary mixture 
of pellets and sinter particles.

a maximum value of 𝐻 = 4.665 m to achieve different flow velocities. 
The experiments are conducted at 𝐻 = [1 3 4.665] m, corresponding 
to flow velocities of 𝑣 =∼ [4.4 7.7 9.6] m∕s at the plate, as estimated 
using a free-fall calculation. Varying the flow velocity allows for an 
examination of its potential impact on the calibration results. Table  1 
presents a summary of the experiments, listing the materials tested at 
each discharge height. The highest flow velocity of 9.6 m/s, achieved at 
𝐻 = 4.665 m, closely matches the velocity observed at the blast furnace 
stock level during charging [1]. Thus, the models are calibrated at this 
configuration. After calibrating the pellet and sinter models, an initial 
verification is conducted at 𝐻 = 4.665 m to confirm the calibration 
outcome. The calibrated models are then further tested at 𝐻 = 1 m 
and 𝐻 = 3 m to evaluate whether re-calibration is needed at different 
flow velocities. Due to time constraints, the verification at 𝐻 = 1 m 
and 𝐻 = 3 m is performed only for the pellet and sinter models.

2.2. Calibration parameters and targets

The calibration experiment facilitates the measurement of five KPIs 
that capture material flow and packing behavior:

• KPI 1: the hopper discharge time (𝑡𝑑)
• KPI 2: the heap mass (𝑚ℎ)
• KPI 3: the 2D heap contour (front view)
• KPI 4: the heap center height (𝐻𝑐)
• KPI 5: the heap porosity (𝜙ℎ)

Traditionally, the heap shape is characterized using the angle of 
repose, but this metric becomes less reliable at the high discharge veloc-
ities used in this work, leading to flattened heap tops as will be shown 
later in Section 3. Determining the angle of repose is straightforward 
for heaps with a distinct peak; however, the flattening of heap tops be-
comes more pronounced with increasing discharge height, introducing 
subjectivity in measuring the angle of repose. It will also be shown that 
the angle of repose shows a lack of sensitivity to variations in discharge 
height, while the flattened tip is sensitive to the discharge height. This 
indicates that the angle of repose alone does not sufficiently capture 
the heap shape. Since one of the objectives of this study is to evaluate 
whether a model calibrated for specific flow conditions can accurately 
predict material behavior under different conditions, it is essential to 
select KPIs that can distinguish between flow regimes. Therefore, we 
use the entire heap contour as a calibration target, providing a more 
comprehensive and reliable alternative to the angle of repose.

While the ideal KPI for calibrating a high-velocity DEM model de-
signed to predict mixture segregation would be the segregation index, 
this approach would require a larger experimental setup with signifi-
cantly more material, increasing complexity and time. Instead, we focus 
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Fig. 3. Step-wise strategy for calibrating a pellet–sinter mixture model. Abbreviations: P = pellet, S = sinter, W = wall, 𝜇𝑠 = sliding friction coefficient, 𝜇𝑟 = rolling friction 
coefficient, 𝑒 = restitution coefficient.
Table 1
Experimental setup configurations for tests with pellet, sinter, and the pellet–sinter mixture 
(50/50). Differences in configurations are based on the discharge height and, consequently, 
the flow velocity achieved at the plate.
 
Material

Configuration

 𝐻 = 1 m 𝐻 = 3 m 𝐻 = 4.665 m  
 𝑣 =∼ 4.4 m∕s 𝑣 =∼ 7.7 m∕s 𝑣 =∼ 9.6 m∕s  
 Pellet verification verification calibration + verification 
 Sinter verification verification calibration + verification 
 Mixture – – calibration + verification 
Fig. 4. Simplified representation of the setup used in calibration experiments, high-
lighting the KPIs that can be measured.

on the five aforementioned KPIs, as prior studies [4–8] demonstrate 
that calibrating based on bulk flow behavior is sufficient to develop 
reliable segregation models.

Despite the use of these five KPIs, the calibration process faces the 
challenge of an underdetermined system, as the pellet and sinter models 
each include six parameters. To resolve this, we fix the particle–wall 
restitution coefficient in the pellet and sinter models (𝑒𝑃−𝑊  and 𝑒𝑆−𝑊 , 
respectively) based on values reported in the literature, reducing the 
parameter space to five adjustable variables per model. This approach 
ensures that the remaining parameters can be effectively calibrated 
using the available KPIs, providing a systematic and reliable foundation 
for model development.
4 
2.3. Calibration workflow

Following the step-wise strategy outlined in Fig.  3, the calibration 
process is conducted separately for the pellet, sinter, and mixture 
models. The workflow presented in Fig.  5 details the steps involved 
in this process, which are applied to each model individually. The 
underlying principle of the method is that by predicting how the KPIs 
behave across the entire parameter space, we can identify the optimal 
combination of parameter values required to match the experimentally 
measured KPIs in our DEM simulation. This involves minimizing the 
difference between the simulated and measured KPI values, effec-
tively framing the calibration as an optimization problem. This section 
provides a detailed explanation of each step.

2.3.1. Lab testing
Experimental setup and procedures

The experimental setup is shown in Fig.  6, with its primary compo-
nents outlined below; key elements are italicized for easy identification 
in the figure. To contain dust generated during high-velocity discharge 
tests, the setup is enclosed within a laboratory enclosure, which is 
connected to a dust extraction system (not shown in Fig.  6) to remove 
airborne particles from the test area. The hopper (with key dimensions 
shown in Fig.  7) is mounted to an overhead crane, enabling it to be 
positioned above the container at adjustable discharge heights 𝐻 , up 
to a maximum of 𝐻 = 4.665 m. The hopper’s outlet valve (not shown 
in Fig.  7) is remotely controlled to open once the hopper is positioned 
at the desired height 𝐻 . For stability, a hopper guide is attached to 
the hopper to restrict lateral movement. This guide fits securely into a 
wooden reference frame fixed to the enclosure, ensuring that the hopper 
moves only vertically above the container.

The container is equipped with a heap formation arrangement, as 
shown in Fig.  8. The purpose of the heap formation arrangement is to 
facilitate the formation of a stable heap. It features a collection plate with 
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Fig. 5. Steps involved in the calibration and verification of DEM models.
side ledges that guide heap formation as material is discharged from 
the hopper. The plate is positioned atop a bench scale which measures 
and records the mass on the collection plate, and is equipped with 
a display. Framed windows are installed above the collection plate to 
confine the heap at the front and back, while any material spilling 
from the sides is collected in the container. The window frames are 
constructed from wood, the panes are made of acrylic, and all other 
structural components are fabricated from steel.

The test procedure is as follows. At the start of each test, the hopper 
is filled with material and elevated to a height 𝐻 . Once positioned, 
the hopper is secured to a surrounding structure to ensure stability. 
A GoPro Hero12 is mounted in front of the hopper and turned on to 
record the material flow at the outlet at 240 FPS. The hopper outlet 
is then opened remotely, allowing material to discharge directly onto 
the bench scale to form a heap, and once discharge is complete, the 
recording is terminated.
Experimental plan

Given the calibration strategy to calibrate the pellet, sinter and 
pellet–sinter interactions parameters separately, we conduct experi-
ments using pellets, sinter, and a 50/50 mass mixture of both. For each 
test, the hopper is filled to a fixed level, resulting in masses of 176.4 kg 
for pellets, 150 kg for sinter, and 160.4 kg for the mixture. Recall from 
Section 2.1 that 𝐻 = [1 3 4.665] m for the experiments with pellets 
and sinter, and 𝐻 = 4.665 m for experiments with the mixture. Each 
5 
test case with pellets is repeated three times, and the tests with sinter 
and the mixture are repeated five times.
Measurement of KPIs

And the end of each experiment, the KPIs are extracted as follows:

1. Hopper discharge time (𝑡𝑑 , KPI 1)
The total discharge time is determined through frame-by-frame 
video analysis using Wondershare Filmora. The start of discharge 
is identified as the moment the hopper outlet valve begins to 
move, while the end of discharge is marked when the last 
particle completely exits the hopper. The discharge time is then 
calculated as the time difference between these two events.

2. Heap mass (𝑚ℎ, KPI 2)
The final mass of the heap is directly read from the bench scale 
display.

3. 2D heap contour (KPI 3)
A front-view photograph of the heap is taken and processed in
Matlab, as shown in Fig.  9. It must be noted that only the red-
dashed portion of the photograph in Fig.  9 is analyzed, as the 
windowpane obstructs the left and right edges (each 0.015 m 
wide). Consequently, only the central 0.47 m of the heap is 
considered. The heap contour is extracted by converting the RGB 
image to a binary format, a process facilitated by the distinct 
contrast between the nearly uniform color of the heap particles 
and the green background. Initially, the extracted contour is 
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Fig. 6. Photograph of the experimental setup, highlighting its main components. 
The setup is housed within an enclosure designed to contain dust generated during 
experiments. While the enclosure can be fully closed, the door is open in this image 
for visibility. The dust removal system, connected to a cyclone on the left side of the 
enclosure, is not visible in the photograph.

Fig. 7. Dimensions of the hopper used in the experiments.

represented in pixel coordinates. To convert the contour from 
pixels to physical dimensions, the 𝑥- and 𝑦-coordinates are scaled 
by a factor of 0.47∕𝑁 , where 𝑁 is the number of pixels in 
𝑥-direction.

4. Heap center height (𝐻𝑐 , KPI 4)
After converting the heap contour to centimeter units, the center 
height 𝐻𝑐 is determined in Matlab. The center height represents 
the 𝑦-coordinate corresponding to 𝑥 = 0.25 m. Since the heap 
contour is defined by discrete data points, interpolation is used 
to estimate the precise height at 𝑥 = 0.25 m.
6 
5. Heap porosity (𝜙ℎ, KPI 5)
A handheld Intel® RealSense™ 3D scanner captures the top sur-
face of the heap, as shown in Fig.  10. The heap volume 𝑉ℎ
is computed by determining the volume between the captured 
surface and the collecting plate. The bulk density 𝜌𝑏 is then 
calculated as 
𝜌𝑏 =

𝑚ℎ
𝑉ℎ

(1)

For the pellet and sinter experiments, the heap porosity is then 
calculated as 
𝜙ℎ = 1 −

𝜌𝑏
𝜌𝑝

(2)

where 𝜌𝑝 is the particle density which is measured for pellet and 
sinter as described in Appendix  A.

2.3.2. DEM virtual experiments
Simulation setup

The physical experiments are replicated in a virtual environment us-
ing Altair® EDEM™ (version 2023) on the DelftBlue high-performance 
cluster [9] with a single GPU (NVIDIA Tesla V100S-PCIE-32 GB). The 
setup dimensions are consistent with the experimental configuration, 
and all structural components are modeled as steel. Consequently, the 
pellet/sinter experiments involved two material types: pellet (P)/sinter 
(S) particles and steel walls (W), while experiments with the mixture 
include all three materials. As stated in Section 2.1, the interactions 
between these materials are described using the Hertz-Mindlin (no-slip) 
contact model with an elastic–plastic spring–dashpot rolling friction 
model (model C). Detailed descriptions of the contact models are 
available in the literature [10,11], and the input parameters used in 
this study are summarized in Table  2.

The particle densities and size distributions for pellet and sinter 
were measured using 3D scanning, as described in Appendix  A. The 
particle size distributions are presented in Fig.  12a, expressed in terms 
of the equivalent spherical diameter, which is derived from the mea-
sured volume distributions. The particle shapes used in the simulations 
are shown in Fig.  12b. Since pellets are nearly spherical in reality, they 
are modeled as spheres. For sinter, four randomly selected particles 
were scanned, and their shapes were approximated in EDEM using 
clumps by fitting spheres to the corresponding STL files. In general, 
clump accuracy improves with an increased number of spheres and 
the use of smaller spheres. However, both factors significantly raise 
computational cost. In this study, clumps were limited to a maximum of 
44 spheres and the resulting clump volumes deviated by 1%–8% from 
the volumes of their corresponding STL templates. The Young’s moduli 
and Poisson’s ratio of all materials are taken from literature, as well 
as the particle–wall restitution coefficients between pellet and steel. 
Numerical integration is performed using the Euler scheme with a time 
step set to 10% of the Rayleigh time step (𝛥𝑡𝑅), which is 𝛥𝑡𝑅 = 9.2×10−5

s for simulations with pellet and 𝛥𝑡𝑅 = 1.1×10−5 s for simulations with 
sinter and the mixture.

Each simulation consists of two main parts: the filling of the hopper 
and the discharging of the material into the container. A virtual volume 
(see Fig.  11a) is used for the generating particles using a dynamic 
factory. The simulation procedure is as follows. At 𝑡 = 0 s, the 
factory stats generating the required amount of material. In the mixture 
simulations, two factories are connected to the virtual domain, each 
producing half of the total mixture mass. At 𝑡 = 3 s, the hopper outlet is 
opened, allowing the material to flow (see Fig.  11b), and the simulation 
ends at 𝑡 = 15 s, once all the material has settled in the container.
Design of Experiments

In the DEM simulations, 𝜇𝑠, 𝜇𝑟, and 𝑒 values are allowed to vary 
between 0 and 1, defining the parameter space for calibration. The 
Box–Behnken Design (BBD) [14] was employed as an efficient and 
robust method to explore how the KPIs vary across the parameter space. 
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Fig. 8. Dimensions of the heap formation setup used in the experiments.
Fig. 9. Illustration of how the heap contour is extracted at the end of an experiment. The example shown is from a pellet experiment, with the same methods applied to sinter 
and mixture experiments.
Fig. 10. Illustration of how the heap volume is extracted at the end of an experiment. 
The example shown is from a pellet experiment, with the same methods applied to 

sinter and mixture experiments.

7 
BBD is particularly advantageous as it enables accurate estimation of 
linear, interaction, and quadratic effects of parameters (factors) while 
minimizing the number of experimental runs required [15]. In this 
design, each factor is assigned three coded levels: −1 (low), 0 (medium), 
and 1 (high). The factors and their corresponding levels in each model 
are detailed in Table  3. For each model, one center point was used 
per factor, leading to 45 runs for the pellet and sinter models, and 15 
runs for the mixture model. The experimental design diagrams (EDDs) 
are presented in Appendix  B. Each run in the EEDs was repeated three 
times.



R. Roeplal et al. Powder Technology 467 (2026) 121382 
Fig. 11. Schematic of a pellet simulation setup showing (a) the virtual volume used for generating the required amount of materiel in the hopper and (b) the hopper discharging 
onto the bench scale.
Table 2
Hertz-Mindlin model parameters used in this work. Abbreviations: P = pellet, S = sinter, W = wall, t.b.d. = to be determined.
 Parameter (symbol) Pellet (P) Sinter (S) Steel wall (W) 
 Particle size distribution see Fig.  12a N/A  
 Particle shape see Fig.  12b N/A  
 Density (𝜌) [kg/m3] 3602 3449 7800 [12]  
 Poisson’s ratio (𝜈) 0.25 [13] 0.25 [13] 0.30 [12]  
 Young’s modulus (𝐸) [Pa] 2.5 × 108 [13] 2.5 × 108 [13] 5.2 × 1011  
 Restitution coefficient (𝑒) P t.b.d. t.b.d. 0.64 [12]  
 S t.b.d. t.b.d. 0.40 [12]  
 Static friction coefficient (𝜇𝑠) P t.b.d. t.b.d. t.b.d.  
 S t.b.d. t.b.d. t.b.d.  
 Rolling friction coefficient (𝜇𝑟) P t.b.d. t.b.d. t.b.d.  
 S t.b.d. t.b.d. t.b.d.  
Table 3
Factors and levels used in the Box–Behnken design. Abbreviations: P = pellet, S = sinter, W = wall, 𝜇𝑠 = sliding 
friction coefficient, 𝜇𝑟 = rolling friction coefficient, 𝑒 = restitution coefficient.
 Model Factors (coded) Factor levels
 −1 (low) 0 (mid) 1 (high) 
 

Pellet model

𝑒𝑃−𝑃  (𝑋1) 0.1 0.5 0.9  
 𝜇𝑃−𝑃

𝑟  (𝑋2) 0.0 0.45 0.9  
 𝜇𝑃−𝑃

𝑠  (𝑋3) 0.1 0.5 0.9  
 𝜇𝑃−𝑊

𝑟  (𝑋4) 0.0 0.45 0.9  
 𝜇𝑃−𝑊

𝑠  (𝑋5) 0.1 0.5 0.9  
 

Sinter model

𝑒𝑆−𝑆 (𝑋6) 0.1 0.5 0.9  
 𝜇𝑆−𝑆

𝑟  (𝑋7) 0.0 0.45 0.9  
 𝜇𝑆−𝑆

𝑠  (𝑋8) 0.1 0.5 0.9  
 𝜇𝑆−𝑊

𝑟  (𝑋9) 0.0 0.45 0.9  
 𝜇𝑆−𝑊

𝑠  (𝑋10) 0.1 0.5 0.9  
 
Mixture model

𝑒𝑃−𝑆 (𝑋11) 0.1 0.5 0.9  
 𝜇𝑃−𝑆

𝑟  (𝑋12) 0.0 0.45 0.9  
 𝜇𝑃−𝑆

𝑠  (𝑋13) 0.1 0.5 0.9  
8 
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Fig. 12. Morphological features of pellet and sinter particles: (a) Cumulative particle size distributions and (b) particle shapes.
Fig. 13. Visualization of the STL of a pellet heap (left) and the alphaShape created 
using the STL vertices (right).

Extraction of KPIs
At the end of each simulation, all five KPIs are extracted from 

simulation data in Matlab. In EDEM, the maximum 𝑦-position of par-
ticles in the flow is recorded every 0.01 s, enabling straightforward 
determination of the hopper discharge time by identifying the time 
step at which the maximum 𝑦-position falls below 𝑦 = 𝐻 meters after 
the discharge valve is opened. Additionally, the positions of individual 
particles at the final time step are analyzed to identify those within 
the bench-scale container. Knowing the mass of each particle, the total 
mass on the bench scale is calculated. To determine heap porosity, the 
bulk heap volume is required, which is obtained by exporting the heap 
geometry as an STL file at the end of the simulation. This STL file, 
representing particles as triangular surface meshes, is imported into
Matlab. Using the alphaShape tool, a bounding volume is constructed 
from the triangle vertices (see Fig.  13), allowing for the computation 
of the heap’s bulk density and porosity based on Eqs. (1) and (2). The 
heap contour and center height are determined using the same method 
as in the experimental counterpart, based on a front-view image of the 
heap.

2.3.3. Response surface modeling
Response surface modeling is a statistical method used to identify 

and optimize the relationships between key factors and targeted re-
sponses. The factors are the interaction parameters 𝜇𝑠, 𝜇𝑟, and 𝑒 and KPI 
1–5 serve as the calibration targets, which we aim to use as response 
variables. For the pellet and sinter models, which involve five factors, 
we develop five response surface models (RSMs) to obtain a set of 
equations that result in a unique solution. The mixture model, which 
includes only three factors, requires only three RSMs, using KPI 1–3 as 
the response variables. Fig.  14 provides a summary of the three models 
to calibrate, along with their respective factors and responses.
9 
Since responses must be measurable and expressed as numerical 
values, KPIs 1, 2, 4 and 5 can be directly used as response variables. 
However, KPI 3 (heap contour) must be transformed into a single 
value to serve as a response variable. To achieve this, we quantify the 
similarity between the simulated heap contour and the experimental 
heap contour as the response variable corresponding to KPI 3. This can 
be done using the mean squared error (MSE) between the experimental 
heap height and simulated height at specific values of 𝑥, which is 
calculated by 

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1

[

𝑦𝑠(𝑥𝑖) − 𝑦𝑒(𝑥𝑖)
]2 (3)

where 𝑥𝑖 is the horizontal position, 𝑦𝑠(𝑥𝑖) and 𝑦𝑒(𝑥𝑖) are the height of the 
pile at position 𝑥𝑖 in the simulation and experiment, respectively, and 
𝑁 is the total number of heap contour points used for the comparison. 
Fig.  15 illustrates this concept with 𝑁 = 11, in our calculations we use 
𝑁 = 100.

The RSMs are constructed by fitting mathematical equations to 
the simulation data, establishing relationships between factors and 
responses. The fitting process is performed in R-Studio. Starting with 
a linear model and sequentially adding higher-order interactions, we 
determined the best fitting regression model for each response vari-
able. The accuracy and reliability of the models are evaluated using 
statistical metrics such as adjusted 𝑅2 and lack-of-fit (LoF) tests.

2.3.4. Multi-objective optimization
RSMs provide a set of equations that describe how the responses 

(KPIs) change in relation to the factors (parameter values). For each 
KPI, the objective is to identify the combination of factors that yields an 
RSM-predicted value as close as possible to the experimental measure-
ment. As multiple KPIs are involved, the task becomes one of finding 
the optimal factor combination that satisfies all objectives, which leads 
to a multi-objective optimization problem. The desirability function 
approach [16,17] is widely used for handling such problems, as it 
converts multiple response objectives into a single composite desirabil-
ity score. This method assigns a desirability score to each response 
based on predefined criteria, typically ranging from 0 (undesirable) 
to 1 (fully desirable). By maximizing the overall desirability function, 
the optimal factor settings that best satisfy all KPIs can be identified. 
To identify optimal parameter values, a multi-objective optimization 
was performed using the desirability function approach. This technique 
allowed for the simultaneous optimization of multiple responses by 
assigning weights and combining them into a single desirability score. 
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Fig. 14. Overview of factors (𝑋1 ,… , 𝑋13) and responses (KPIs) for each model.
Fig. 15. Graphical representation of the comparison between simulated and experi-
mental heap contours using 𝑁 = 11 contour points.

The parameters that maximized the overall desirability were selected 
as the optimal calibration parameters for the DEM model.

The steps involved in the desirability function approach are briefly 
outlined as follows for 𝑁 factors and 𝑀 responses. First, a set of sample 
points (grid) is generated, corresponding to different combinations 
of the factors (𝑋1,… , 𝑋𝑁 ). Using the response surface models, the 
response 𝑌 𝑝

𝑖  is then computed for each of these sample points. We 
determine the relative difference between the predicted response 𝑌 𝑝

𝑖
and its experimental counterpart 𝑌 𝑒

𝑖  as 

𝑍𝑖 = abs
(

𝑌 𝑝
𝑖 − 𝑌 𝑒

𝑖
)

∕𝑌 𝑒
𝑖 (4)

and transform the calculated value into a ‘‘desirability’’ score (𝑑𝑖) 
as [17] 

𝑑𝑖 =

⎧

⎪

⎨

⎪

⎩

1, if 𝑍𝑖 ≤ 𝐿,
(

𝑈−𝑍𝑖
𝑈−𝐿

)𝑠
, if 𝐿 < 𝑍𝑖 ≤ 𝑈,

0, if 𝑍𝑖 > 𝑈.

(5)

where 𝑠 is a shape parameter controlling the steepness of the de-
sirability curve and 𝑈 and 𝐿 are the upper and lower limits of 𝑍𝑖, 
respectively. Note that 𝑑𝑖 is an array containing desirability values 
across all sample points for response 𝑖 ranging from 0 (undesirable) to 
1 (highly desirable). The individual desirability arrays corresponding 
to each response variable are then aggregated into a single, overall 
desirability score (𝐷), which is determined by [17] 

𝐷 =
𝑀
∏

𝑖=1

(

𝑑𝑤𝑖
𝑖
)1∕

∑

𝑤𝑖 (6)

where 𝑤𝑖 is the weight assigned to the 𝑖th response, reflecting its 
relative importance. Finally, 𝐷 is maximized to identify the optimal 
solution across all objectives. In this work, we set 𝑠 = 1 to obtain 
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Table 4
Measured values of the hopper discharge time (𝑡𝑑 ) for experiments with pellet, sinter 
and the pellet–sinter mixture (50/50). Results are presented as mean values with 
associated standard deviations, based on 𝑁 experiments for each case: 𝑁 = 10 for 
sinter experiments, 𝑁 = 5 for pellet and mixture experiments.
 Material Mass in hopper (kg) 𝑡𝑑 (s)  
 Pellet 176.4 5.24 ± 0.28 
 Sinter 150.0 4.62 ± 1.00 
 Mixture 160.0 4.40 ± 0.31 

a linear desirability curve, 𝑤 = 1 to assign equal importance to all 
responses and use 𝐿 = 0.00 and 𝑈 = 0.05 for each response, indicating 
that a maximum relative difference of 5% is considered acceptable.

Fig.  16 illustrates the steps described in applying the desirability 
function approach. This figure pertains to the calibration of the pellet 
and sinter models, where five response surface models are used for 
optimization according to Fig.  14. The same approach is applied to the 
calibration of the mixture model; however, only three response surface 
models are utilized.

3. Results

3.1. Experimental results

Table  4 presents the measured hopper discharge times for pellets, 
sinter, and the pellet–sinter mixture. On average, pellets take the 
longest to discharge; however, the sinter exhibits a relatively large 
standard deviation in discharge time. This variability is likely caused by 
interactions between the highly non-spherical sinter particles and the 
hopper walls, which are not perfectly smooth due to welds and grooves 
from its construction. Fig.  17 illustrates this with a photograph taken 
at the end of a sinter charging test, showing sinter particles stuck at the 
outlet, where their sharp edges latch onto the grooves.

Fig.  18 presents the heap mass formed on the bench scale for pellets, 
sinter, and their mixture at different discharge heights (𝐻). For both 
pellets and sinter, the heap mass decreases as 𝐻 increases, which aligns 
with expectations: greater discharge heights lead to higher impact 
velocities, causing more material to rebound from the heap. As shown 
in Fig.  19, the heap peak flattens with increasing 𝐻 , a trend observed 
for both pellet and sinter heaps. Additionally, the sinter heap becomes 
more asymmetric at higher 𝐻 . It is important to note that although the 
overall heap shape changes with 𝐻 , the heap angle remains relatively 
constant before the heap starts to flatten. This indicates that the repose 
angle in this setup is not highly sensitive to flow velocity, supporting 
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Fig. 16. Steps involved in calculating the overall desirability from the factors (𝑋1 ,… , 𝑋13) and the RSMs.
Fig. 17. Photograph taken at the end of a sinter charging experiment, showing 
accumulated sinter particles at the hopper outlet.

Table 5
Measured values of the heap center height (𝐻𝑐 , in cm) for all experiments, with 
different discharge heights (𝐻). Results are presented as mean values with associated 
standard deviations, based on 𝑁 experiments for each case: 𝑁 = 3 for pellet 
experiments, 𝑁 = 5 for sinter and mixture experiments.
 Material 𝐻 = 1 m 𝐻 = 3 m 𝐻 = 4.665 m 
 Pellet 20.15 ± 0.31 17.79 ± 0.58 16.31 ± 0.42  
 Sinter 24.26 ± 0.43 20.88 ± 0.66 19.88 ± 0.45  
 Mixture N/A N/A 17.86 ± 0.54  

our decision, as discussed in Section 2.2, to refrain from using the 
repose angle as a calibration target.

Across all discharge heights, the sinter heap consistently retains a 
higher mass. Given the lower density of sinter particles, this suggests 
that the sinter heap’s volume is consistently larger than that of the 
pellet heap. This observation is confirmed by Fig.  20, which compares 
the heap contours of the materials at different 𝐻 values. The difference 
is likely due to the spherical shape of pellet particles, which roll more 
easily and are less prone to forming stable heaps compared to sinter 
particles under the same conditions. The heap mass of the mixture falls 
between that of the pellet and sinter heaps, reflecting intermediate be-
havior that is consistent with its composition. The heap center heights 
extracted from these profiles are summarized in Table  5.
11 
Fig. 18. Measured values of the heap mass (𝑚ℎ) for all experiments, with different 
discharge heights (𝐻). Error bars represent standard deviations based on 𝑁 experiments 
for each case: 𝑁 = 3 for pellet experiments, 𝑁 = 5 for sinter and mixture experiments.

Table 6
Measured values of the heap porosity (𝜙) for all experiments, with different discharge 
heights (𝐻). Results are presented as mean values with associated standard deviations, 
based on 𝑁 experiments for each case: 𝑁 = 3 for pellet experiments, 𝑁 = 5 for sinter 
and mixture experiments.
 Material 𝐻 = 1 m 𝐻 = 3 m 𝐻 = 4.665 m 
 Pellet 0.42 ± 0.02 0.44 ± 0.02 0.47 ± 0.01  
 Sinter 0.48 ± 0.01 0.47 ± 0.02 0.47 ± 0.01  

Fig.  21 shows the bulk density values of pellet, sinter, and the 
pellet–sinter mixture. The sinter heap consistently exhibits a lower 
bulk density compared to the pellet heap, which can be attributed to 
the irregular shapes of the sinter particles. As the discharge height 
increases, the bulk density of the sinter heap increases, indicating a 
denser packing, while the opposite trend is observed for the pellet heap. 
This is also reflected in Table  6, which shows that the porosity of the 
sinter heap decreases with increasing 𝐻 while the opposite is true for 
the pellet heap.

3.2. RSM and optimization

The simulation results based on the BBD approach are presented 
in Appendix  C. The reported response values represent the average 
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Fig. 19. Comparison of heap profiles at different heights for (a) pellet and (b) sinter.

of three replications per run. Using the data from Tables  C.1–C.3, we 
developed response surface models (RSMs) for each response. The gen-
eral form of the RSM for pellets, incorporating main effects, interaction 
effects, and quadratic effects of the factors (𝑋1,… , 𝑋5), is given by 
𝑌 𝑍 = 𝐴 + 𝐵𝑋1 + 𝐶𝑋2 +𝐷𝑋3 + 𝐸𝑋4 + 𝐹𝑋5

+ 𝐺𝑋1𝑋2 +𝐻𝑋1𝑋3 + 𝐼𝑋1𝑋4 + 𝐽𝑋1𝑋5

+ 𝐾𝑋2𝑋3 + 𝐿𝑋2𝑋4 +𝑀𝑋2𝑋5

+ 𝑁𝑋3𝑋4 + 𝑂𝑋3𝑋5

+ 𝑃𝑋4𝑋5

+ 𝑄𝑋2
1 + 𝑅𝑋2

2 + 𝑆𝑋2
3 + 𝑇𝑋2

4 + 𝑈𝑋2
5

(7)

where 𝑌  represents the response variable. The RSMs for sinter follow 
the same structure, with the factors 𝑋1,… , 𝑋5 replaced by 𝑋6,… , 𝑋10, 
respectively. For the mixture system, which involves three factors 
(𝑋11, 𝑋12, 𝑋13), the general form of the RSMs is 
𝑌 𝑍 = 𝐴 + 𝐵𝑋11 + 𝐶𝑋12 +𝐷𝑋13

+ 𝐸𝑋11𝑋12 + 𝐹𝑋11𝑋13

+ 𝐺𝑋12𝑋13

+ 𝐻𝑋2
11 + 𝐼𝑋2

12 + 𝐽𝑋2
13

(8)

The coefficients corresponding to each RSM for pellet, sinter and the 
mixture are summarized in Table  7. As shown in Table  8, the models 
show adequate values of the statistical metrics and therefore capable 
of describing complex, non-linear relationships between the factors and 
responses.

The multi-objective optimization process was conducted to deter-
mine the optimal values of the models’ parameters such that there is 
12 
Fig. 20. Reconstructed contours of the heaps formed at different discharge heights 
(𝐻). Shaded areas represent standard deviations based on 𝑁 experiments for each 
case: 𝑁 = 3 for pellet experiments, 𝑁 = 5 for sinter and mixture experiments.

a maximum deviation of 5% between experimental and RSM-predicted 
KPI values. The optimal (calibrated) interaction parameter values for all 
models are summarized in Table  9. The overall desirability associated 
with these solutions for the pellet, sinter and mixture models were 0.51, 
0.56 and 0.41, respectively.

3.3. Verification

The parameter values listed in Table  9 are applied to our DEM 
models with a heap height of 𝐻 = 4.665m to assess how well the 
simulated KPIs align with the experimental ones. Table  10 presents 
this comparison, demonstrating that the calibrated parameters enable 
the models to reproduce the experimental KPIs for pellets, sinter, and 
the mixture with good accuracy. The relative difference between DEM 
predictions and experimental values ranges from 0.02% to 5.53%, 
which is consistent with reported errors in the DEM literature for model 
calibration using response surface modeling [18–27].
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Table 7
Coefficients for the general response surface model (RSM) equations for pellets, sinter, and the mixture. Eq.  (7) applies to pellets and sinter, where 𝑌  represents 𝑡𝑑 , 𝑚ℎ, 𝜙ℎ, 𝐻𝑐
and 𝑀𝑆𝐸. Eq.  (8) applies to the mixture, where 𝑌  represents 𝑡𝑑 , 𝑚ℎ and 𝑀𝑆𝐸.
 Pellet Sinter Mixture

 𝑡𝑑 𝑚ℎ 𝜙ℎ 𝐻𝑐 𝑀𝑆𝐸 𝑡𝑑 𝑚ℎ 𝜙ℎ 𝐻𝑐 𝑀𝑆𝐸 𝑡𝑑 𝑚ℎ 𝑀𝑆𝐸  
 A 4.6381 46.1048 0.4583 0.2008 0.066 4.858 44.364 0.4873 0.221 0.168 4.765 2.732 0.05  
 B 0 −4.6704 −0.0113 −0.0264 −0.014 0 0 −0.00837 0 −0.002 0 0 0.001  
 C 0.451 8.795 0.0076 0.0485 0.015 0.263 2.617 0.01197 0.021 0.036 0.18 1.983 0.01  
 D 0.5658 8.4458 0.0126 0.0518 −0.008 0.708 3.504 0.02938 0.037 −0.023 0.515 4.64 −0.015  
 E 0.1096 0 0 0 0 0.068 0 0 0 0 0 0 −0.003  
 F 1.2515 0 0 0 0 1.077 2.147 −0.00417 0.013 0 0 0 −0.002  
 G 0 −2.9496 −0.0045 −0.021 −0.029 0 0 0 0 −0.005 0.015 0.484 0.017  
 H 0 −0.2157 −0.0086 −0.0082 −0.024 0 0 −0.00586 0 −0.007 0 0 0  
 I 0 0 0 0 0 0 0 0 0 0 0 −0.661 −0.001  
 J 0 0 0 0 0 0 0 −0.0021 0 0 −0.236 −3.934 0.024  
 K 0 4.8044 0.0037 0.0309 0.022 0 0 0 0 0.044  
 L 0 0 0 0 0 0 0 0 0 0  
 M 0 0 0 0 0 0 0 0 0 0  
 N 0 0 0 0 0 0 0 0 0 0  
 O 0 0 0 0 0 0 0 5.21E−05 −0.006 0  
 P 0 0 0 0 0 0 0 0 0 0  
 Q 0 −3.8128 −0.0041 −0.01969 −0.008 0 0 −0.00239 0 −0.0002  
 R −0.1718 −2.4308 −0.0058 −0.0161 0.017 −0.049 −0.632 −0.00385 −0.005 −0.006  
 S −0.2993 −6.8921 −0.0067 −0.0389 0.015 −0.316 −4.677 0 −0.036 0.025  
 T −0.982 0 0 0 0 −0.007 0 0 0 0  
 U −0.0335 0 0 0 0 −0.275 −0.871 0 −0.005 0  
 Z 1 1 1 1 0.384 1 1 1 1 0.222 1 1 0.343  
Fig. 21. Measured values of the heap bulk density (𝜌ℎ) for all experiments, with 
different discharge heights (𝐻). Error bars represent standard deviations based on 𝑁
experiments for each case: 𝑁 = 3 for pellet experiments, 𝑁 = 5 for sinter and mixture 
experiments.

Table 8
Metrics showing the goodness-of-fit of the developed RSMs.
 Material RSM LoF 𝑝-valuea Adj. 𝑅2

 

Pellet

𝑡𝑑 0.47 0.96
 𝑚ℎ 0.50 0.92
 𝜙ℎ 0.77 0.90
 𝐻𝑐 0.40 0.93
 𝑀𝑆𝐸 0.16 0.63

 

Sinter

𝑡𝑑 0.68 0.99
 𝑚ℎ 0.98 0.98
 𝜙ℎ 0.28 0.99
 𝐻𝑐 0.26 0.98
 𝑀𝑆𝐸 0.48 0.63

 
Mixture

𝑡𝑑 0.54 0.98
 𝑚ℎ 0.27 0.99
 𝑀𝑆𝐸 0.20 0.88

a Guideline [14]: 𝑝 > 0.1
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Table 9
Calibrated parameter values for pellet, sinter and the pellet–sinter mixture. Abbrevia-
tions: 𝑝 − 𝑝 = particle–particle, 𝑝 −𝑤 = particle–wall.
 Material model 𝑒𝑝−𝑝 𝜇𝑝−𝑝

𝑟 𝜇𝑝−𝑝
𝑠 𝜇𝑝−𝑤

𝑟 𝜇𝑝−𝑤
𝑠

 Pellet 0.1 0.08 0.57 0.15 0.86
 Sinter 0.5 0.06 0.49 0.09 0.54
 Mixture 0.1 0.28 0.34 N/A N/A

The uncertainties in the simulated heap mass and heap center 
height are of the same order of magnitude as those observed in the 
physical experiments. In contrast, the DEM-predicted porosity exhibits 
significantly lower variability than the experimental measurements, 
whereas the predicted discharge times show greater variability than 
those recorded in the laboratory. This discrepancy in predicted ver-
sus observed variability, despite accurate mean values, has also been 
reported by Fransen et al. [28]. As in their study, the mismatch is 
likely attributable to modeling assumptions related to particle shape. 
As discussed in Section 2, the high experimental variability in sinter 
discharge times is likely due to the complex geometries of sinter parti-
cles, particularly their sharp edges, which can interact with welds and 
grooves in the hopper wall. These interactions are not fully captured in 
the DEM model for two main reasons. First, while the clump representa-
tions used in the DEM simulations approximate the overall geometry of 
sinter particles, they lack sharp edges. Accurately reproducing surface 
roughness would require an impractically high number of constituent 
spheres per clump. This level of detail is not feasible with current 
computational resources. Second, the experimental hopper walls in-
clude imperfections that are not fully represented in the DEM geometry. 
As a result, additional particle–wall interactions are excluded. These 
modeling limitations likely contribute to the observed discrepancies in 
discharge time variability.

Nonetheless, the mean sinter discharge time is predicted with high 
accuracy. The good agreement between the calibrated DEM models and 
the experimentally observed behavior is further illustrated in Fig.  22. 
The plots highlight the overall good match between the simulated and 
experimentally measured heap contours for pellets, sinter, and the mix-
ture at 𝐻 = 4.665m. The Concordance Correlation Coefficient (CCC), 
which quantifies the similarity between the simulated and experimental 
average heap contours, shows values greater than 0.97 in all cases, 
indicating a substantial match [29].
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Table 10
Comparison of experimental and simulated KPI values after model calibration at 𝐻=4.665 meters.
 KPI (unit) Material Exp. Sim. Difference

 
𝑡𝑑 (s)

Pellet 5.24 ± 0.28 4.95 ± 0.02 −5.53%
 Sinter 4.62 ± 1.00 4.65 ± 0.05 +0.65%
 Mixture 4.40 ± 0.31 4.58 ± 0.03 +4.09%

 
𝑚ℎ (kg)

Pellet 40.63 ± 0.21 38.63 ± 0.21 −4.92%
 Sinter 42.58 ± 0.63 41.70 ± 0.58 −2.07%
 Mixture 41.96 ± 0.42 41.33 ± 0.41 −1.50%

 
𝐻𝑐 (cm)

Pellet 16.32 ± 0.41 16.08 ± 0.30 −1.47%
 Sinter 19.88 ± 0.45 19.88 ± 0.50 +0.02%
 Mixture 17.86 ± 0.54 18.48 ± 0.27 +3.47%

 
𝜙ℎ (–) Pellet 0.47 ± 0.01 0.451 ± 0.001 −4.04%

 Sinter 0.47 ± 0.01 0.474 ± 0.004 +0.85%
Fig. 22. Comparison of simulated and experimental heap profiles for different materials 
at different heights. Shaded areas represent the standard deviation with 𝑁 = 3 for 
experiments with pellet and 𝑁 = 5 for experiments with sinter and the mixture.

To assess whether our pellet and sinter models, calibrated at high 
velocity (∼ 9.6 m∕s), remain valid for lower flow velocities, we tested 
the calibrated parameters in simulations with 𝐻 = 1m and 𝐻 =
14 
3m, corresponding to estimated velocities of ∼ 4.4 and ∼ 7.7 m∕s, 
respectively. According to Table  11, the relative differences between 
simulated and experimental KPI values is still in the same order of 
magnitude as the differences observed at 𝐻 = 4.665 m. Considering the 
heap shape, Fig.  23 demonstrates that the simulated and experimental 
heap contours match well for both pellet and sinter at 𝐻 = 1m and 
𝐻 = 3m. These results suggest that, for this system and these materials, 
the calibration outcome is flow invariant.

4. Conclusions and recommendations

This study introduced a step-wise calibration strategy for model-
ing a pellet–sinter mixture under high-velocity conditions (∼9.6 m/s). 
A novel calibration setup was employed, enabling the simultaneous 
measurement of five KPIs in a single hopper discharge experiment. 
By adjusting the discharge height, the setup also provided control 
over the flow velocity. The combination of this calibration strategy 
and experimental setup allowed us to achieve two key objectives: (1) 
ensuring a unique calibration solution by assigning one KPI to each 
parameter and (2) assessing the validity of the calibrated models across 
different operating conditions by verifying their performance at lower 
flow velocities (∼ 7.7 and 4.4 m/s). The key conclusions and insights 
from this work are as follows:

• The step-wise calibration approach for mixtures proved effective, 
as the calibrated mixture model accurately captured the exper-
imentally measured average KPI values at a discharge height 
of 4.665 m, with a maximum deviation of 5.5%. This shows 
that parameters calibrated for individual material models can 
be successfully applied to a mixture model of those materials, 
followed by the calibration of the interaction parameters.

• The combination of response surface methodology and the desir-
ability function approach is a robust method for calibrating DEM 
models using multiple KPIs.

• Experimental results demonstrated that KPI values depend on dis-
charge height (flow velocity). The calibrated models, developed at 
the highest flow velocity, successfully captured this dependency, 
indicating that the calibration is flow-invariant in this setup.

• Determining the angle of repose through piling is challenging in 
high-velocity flows, as the distinct heap peak becomes less promi-
nent with increasing flow velocity, making it difficult to identify 
which regions of the heap to use for calculation. However, the 
steepness of the heap at both the far left and right sides seems to 
remain constant across different flow velocities, indicating that it 
could be treated as a flow-invariant KPI. Therefore, the overall 
heap shape is a more reliable KPI when calibrating a model for 
specific flow conditions.

• The calibrated models based on randomly selected sinter shapes 
showed strong predictive capabilities for average KPI values, both 
for sinter alone and for the pellet–sinter mixture. However, the 
model did not fully capture the experimentally observed variabil-
ity, particularly in sinter discharge time. This limitation may be 
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Table 11
Comparison of experimental and simulated KPI values after model calibration at 𝐻=4.665 meters.
 KPI (unit) 𝐻 Material Exp. Sim. Difference

 
𝑚ℎ (kg)

1 m Pellet 45.53 ± 0.45 42.92 ± 0.28 −5.73%
 Sinter 45.84 ± 0.45 44.58 ± 0.03 −2.75%
 3 m Pellet 42.33 ± 0.55 40.10 ± 0.10 −5.27%
 Sinter 43.60 ± 0.25 42.66 ± 0.11 −2.16%

 
𝐻𝑐 (cm)

1 m Pellet 20.15 ± 0.31 19.67 ± 0.08 −2.38%
 Sinter 24.26 ± 0.43 24.28 ± 0.27 +0.08%
 3 m Pellet 17.79 ± 0.58 17.06 ± 0.31 −4.10%
 Sinter 20.88 ± 0.66 21.11 ± 0.24 +1.10%

 
𝜙ℎ (-)

1 m Pellet 0.415 ± 0.020 0.450 ± 0.001 +8.43%
 Sinter 0.483 ± 0.010 0.484 ± 0.001 +0.21%
 3 m Pellet 0.438 ± 0.023 0.451 ± 0.001 +2.97%
 Sinter 0.466 ± 0.015 0.479 ± 0.002 +2.79%
Fig. 23. Comparison of simulated and experimental heap profiles for different materials at different heights. Shaded areas represent the standard deviation with 𝑁 = 3 for 
experiments with pellet and 𝑁 = 5 for experiments with sinter and the mixture.
attributed to the selection or clump accuracy of the sinter shapes. 
Further investigation is needed to better understand the influence 
of particle shape on KPI variability and to improve predictive 
accuracy.

These findings demonstrate the effectiveness of the proposed cali-
bration strategy and establish a solid basis for applying the developed 
mixture model to high-velocity blast furnace charging simulations. To 
extend the model’s applicability to full-scale furnace modeling, the 
following directions are recommended for future work:

• Verify model performance using the segregation index: The mix-
ture model developed in this work was not evaluated for its ability 
to capture segregation behavior, due to time and resource lim-
itations. However, since the model is intended for blast furnace 
15 
charging applications where segregation plays a critical role, such 
verification should be considered in future work.

• Develop and validate particle up-scaling strategies: The current 
mixture model is based on true (unscaled) particle size distri-
butions and uses non-spherical particles represented by clumps 
to simulate 160 kg of ore. In contrast, real blast furnace op-
erations involve hundreds of tonnes of material, making direct 
application of the current model computationally infeasible. To 
enable industrial-scale simulations, particle up-scaling strategies 
must be explored and validated against operational data to ensure 
reliability of the up-scaled model.

• Investigate the generalizability of the calibrated mixture model: 
The mixture model was calibrated for a 50/50 mass-based mix-
ture of pellet and sinter, and the verification results confirmed its 
performance for this composition. A valuable direction for future 
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Table B.1
Experimental design diagram for establishing a pellet model, detailing the runs and corresponding factor 
values (𝑋1-𝑋5) for each run.

Run 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

1 −1 −1 0 0 0
2 −1 1 0 0 0
3 1 −1 0 0 0
4 1 1 0 0 0
5 −1 0 −1 0 0
6 −1 0 1 0 0
7 1 0 −1 0 0
8 1 0 1 0 0
9 −1 0 0 −1 0
10 −1 0 0 1 0
11 1 0 0 −1 0
12 1 0 0 1 0
13 −1 0 0 0 −1
14 −1 0 0 0 1
15 1 0 0 0 −1
16 1 0 0 0 1
17 0 −1 −1 0 0
18 0 −1 1 0 0
19 0 1 −1 0 0
20 0 1 1 0 0
21 0 −1 0 −1 0
22 0 −1 0 1 0
23 0 1 0 −1 0

Run 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

24 0 1 0 1 0
25 0 −1 0 0 −1
26 0 −1 0 0 1
27 0 1 0 0 −1
28 0 1 0 0 1
29 0 0 −1 −1 0
30 0 0 −1 1 0
31 0 0 1 −1 0
32 0 0 1 1 0
33 0 0 −1 0 −1
34 0 0 −1 0 1
35 0 0 1 0 −1
36 0 0 1 0 1
37 0 0 0 −1 −1
38 0 0 0 −1 1
39 0 0 0 1 −1
40 0 0 0 1 1
41 0 0 0 0 0
42 0 0 0 0 0
43 0 0 0 0 0
44 0 0 0 0 0
45 0 0 0 0 0
research is to explore whether the same model can accurately rep-
resent other mixture compositions, thereby assessing its broader 
applicability, since the ore composition may vary in blast furnace 
operations.
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Appendix A. Particle density and PSD measurement

In this study, particle size was measured based on volume, fol-
lowing a two-step process. First, a set of pellet and sinter particles 
were scanned using X-ray computed tomography (CT). The volume of 
each particle (𝑉𝑝) was extracted using Dragonfly, while the particle 
mass (𝑚𝑝) was measured using a scale. The particle density was then 
calculated as 
𝜌𝑝 =

𝑚𝑝

𝑉𝑝
(A.1)

It is important to note that 𝑉𝑝 represents the envelope volume, as inter-
nal pores were not accounted for in the scans. The density calculation 
was based on 15 particles for both pellets and sinter, and the average 
values are reported in Table  2.

Next, the particle mass distributions for pellets and sinter were 
obtained by sampling each material and measuring the individual par-
ticle masses. These mass distributions were then converted to volume 
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Table C.1
Simulation results for pellets based on the EDD from Table  B.1, with each value representing the average of three replications per run.
 Run 𝑡𝑑 𝑚ℎ 𝑀𝑆𝐸 𝐻𝑐 𝜙ℎ  
 1 4.0100 33.5197 0.0007 0.1251 0.4465 
 2 5.0967 55.7326 0.0043 0.2595 0.4714 
 3 4.0633 30.1511 0.0015 0.1145 0.4349 
 4 4.5267 40.5656 0.0001 0.1647 0.4417 
 5 3.6300 31.3809 0.0015 0.1071 0.4394 
 6 5.0167 48.3614 0.0016 0.2210 0.4778 
 7 3.9033 23.1746 0.0040 0.0809 0.4374 
 8 4.5400 39.2924 0.0001 0.1618 0.4415 
 9 4.6433 46.2929 0.0009 0.2068 0.4651 
 10 4.7400 47.9065 0.0013 0.2121 0.4664 
 11 4.4433 36.5325 0.0002 0.1495 0.4413 
 12 4.4267 38.7926 0.0001 0.1554 0.4395 
 13 3.4233 43.7052 0.0005 0.1878 0.4686 
 14 6.0500 50.1544 0.0019 0.2310 0.4636 
 15 3.2833 35.7038 0.0003 0.1451 0.4477 
 16 5.9567 38.1153 0.0002 0.1557 0.4340 
 17 3.6233 28.2102 0.0023 0.0973 0.4317 
 18 4.1533 34.1265 0.0005 0.1309 0.4471 
 19 3.6900 31.0224 0.0015 0.1031 0.4368 
 20 5.4267 56.1562 0.0047 0.2605 0.4669 
 21 3.6733 32.9340 0.0007 0.1303 0.4461 
 22 4.0633 33.8496 0.0007 0.1289 0.4415 
 23 4.8267 52.7997 0.0027 0.2368 0.4620 

 

 Run 𝑡𝑑 𝑚ℎ 𝑀𝑆𝐸 𝐻𝑐 𝜙ℎ  
 24 4.9933 55.0883 0.0036 0.2420 0.4605 
 25 2.6567 29.1183 0.0020 0.1020 0.4512 
 26 5.0167 35.7133 0.0003 0.1434 0.4388 
 27 3.7533 50.4197 0.0019 0.2276 0.4638 
 28 6.1633 56.5576 0.0041 0.2548 0.4564 
 29 3.5867 29.7003 0.0017 0.1060 0.4370 
 30 3.6400 30.7594 0.0015 0.1071 0.4358 
 31 4.7667 46.9119 0.0011 0.2132 0.4665 
 32 4.9767 48.8268 0.0014 0.2197 0.4643 
 33 2.3967 25.7171 0.0034 0.0807 0.4442 
 34 5.1067 33.6835 0.0007 0.1269 0.4303 
 35 3.5867 44.3179 0.0006 0.1994 0.4704 
 36 6.1633 50.7879 0.0020 0.2320 0.4594 
 37 3.1933 41.6968 0.0003 0.1776 0.4660 
 38 5.3000 47.4914 0.0011 0.2086 0.4540 
 39 3.3933 43.5355 0.0004 0.1908 0.4611 
 40 5.9533 50.2688 0.0016 0.2192 0.4536 
 41 4.6167 46.9960 0.0009 0.2061 0.4590 
 42 4.6433 47.6600 0.0010 0.2031 0.4592 
 43 4.6400 47.0915 0.0010 0.2028 0.4592 
 44 4.6500 46.5801 0.0008 0.2049 0.4595 
 45 4.6633 47.1445 0.0010 0.2080 0.4591 
Table C.2
Simulation results for sinter based on the EDD from Table  B.1, with each value representing the average of three replications per run.
 Run 𝑡𝑑 𝑚ℎ 𝑀𝑆𝐸 𝐻𝑐 𝜙ℎ  
 1 4.5667 41.5630 0.00005 0.1999 0.4774 
 2 5.1533 46.2120 0.0011 0.2373 0.5038 
 3 4.5200 40.8297 0.00005 0.1871 0.4591 
 4 4.9600 46.7408 0.0007 0.2346 0.4857 
 5 3.8433 37.0293 0.0007 0.1521 0.4408 
 6 5.3833 42.4819 0.0004 0.2234 0.5116 
 7 3.8733 34.9315 0.0012 0.1446 0.4350 
 8 5.1133 44.5275 0.0004 0.2229 0.4824 
 9 4.8367 43.9556 0.0004 0.2240 0.4932 
 10 4.9200 44.2262 0.0004 0.2263 0.4955 
 11 4.7800 44.2366 0.0003 0.2140 0.4767 
 12 4.8300 44.2746 0.0003 0.2218 0.4791 
 13 3.5433 42.1239 0.0001 0.2100 0.4930 
 14 5.7433 46.0938 0.0007 0.2313 0.4895 
 15 3.4733 41.4836 0.0001 0.2017 0.4823 
 16 5.5667 45.5728 0.0005 0.2247 0.4705 
 17 3.5800 33.1600 0.0020 0.1300 0.4226 
 18 4.9633 40.4926 0.00005 0.1962 0.4834 
 19 3.9800 37.6691 0.0005 0.1619 0.4510 
 20 5.4933 45.2231 0.0010 0.2380 0.5068 
 21 4.4767 40.8147 0.00004 0.1908 0.4714 
 22 4.5667 41.3010 0.00003 0.1958 0.4730 
 23 4.9433 46.3014 0.0009 0.2355 0.4961 

 

 Run 𝑡𝑑 𝑚ℎ 𝑀𝑆𝐸 𝐻𝑐 𝜙ℎ  
 24 5.2167 46.2307 0.0009 0.2392 0.4945 
 25 3.2233 37.6316 0.0002 0.1805 0.4789 
 26 5.2767 42.0311 0.0001 0.2026 0.4676 
 27 3.6833 43.3834 0.0003 0.2182 0.4959 
 28 5.9500 47.9307 0.0013 0.2471 0.4910 
 29 3.7533 36.1631 0.0009 0.1509 0.4383 
 30 3.8900 36.5916 0.0009 0.1520 0.4403 
 31 5.1900 42.1991 0.0002 0.2174 0.4987 
 32 5.2800 43.1848 0.0004 0.2223 0.5039 
 33 2.6200 33.3795 0.0020 0.1147 0.4477 
 34 4.4733 37.5370 0.0006 0.1596 0.4394 
 35 3.7600 40.3493 0.0001 0.2063 0.5032 
 36 6.1533 44.0654 0.0005 0.2282 0.4951 
 37 3.4567 40.8429 0.0001 0.2041 0.4912 
 38 5.5467 44.8779 0.0005 0.2253 0.4811 
 39 3.5400 40.9562 0.0001 0.2015 0.4907 
 40 5.8267 46.3883 0.0007 0.2341 0.4820 
 41 4.8467 44.2215 0.0004 0.2221 0.4863 
 42 4.8700 44.5199 0.0004 0.2159 0.4892 
 43 4.8567 44.5925 0.0004 0.2236 0.4886 
 44 4.8600 44.6280 0.0003 0.2183 0.4853 
 45 4.8700 44.5479 0.0005 0.2231 0.4891 
Table C.3
Simulation results for the pellet–sinter mixture based on the EDD from Table B2, with 
each value representing the average of three replications per run.
 Run 𝑡𝑑 𝑚ℎ 𝑀𝑆𝐸  
 1 4.5400 39.8087 0.00003 
 2 4.9333 44.4751 0.0004  
 3 4.5733 39.6012 0.0001  
 4 4.8933 43.8056 0.0003  
 5 4.0300 34.7813 0.0007  
 6 5.1433 42.9999 0.0003  
 7 4.0733 33.5387 0.0009  
 8 4.9400 43.2776 0.0003  
 9 3.8100 32.2339 0.0013  
 10 4.8500 40.8457 0.0001  
 11 4.1433 34.7597 0.0006  
 12 5.2433 45.3094 0.0006  
 13 4.8267 42.8658 0.0002  
 14 4.8133 42.7009 0.0002  
 15 4.7733 43.2286 0.0002  
17 
distributions using the corresponding values of 𝜌𝑝. Finally, the data 
were transformed into equivalent spherical diameter distributions, as 
shown in Fig.  12.

Appendix B. Experimental design diagrams

The EDD for the pellet simulations is shown in Table  B.1. The EDD 
for the sinter simulations is identical, with 𝑋1-𝑋5 being replaced by 
𝑋6-𝑋10, respectively. The EDD for the mixture simulations is shown in 
Table  B.2.

Appendix C. DEM simulation results

See Tables  C.1–C.3.

Data availability

Data will be made available on request.
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