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In sports, inertial measurement units are often used to measure the orientation of

human body segments. A Madgwick (MW) filter can be used to obtain accurate

inertial measurement unit (IMU) orientation estimates. This filter combines two different

orientation estimates by applying a correction of the (1) gyroscope-based estimate in

the direction of the (2) earth frame-based estimate. However, in sports situations that

are characterized by relatively large linear accelerations and/or close magnetic sources,

such as wheelchair sports, obtaining accurate IMU orientation estimates is challenging.

In these situations, applying the MW filter in the regular way, i.e., with the samemagnitude

of correction at all time frames, may lead to estimation errors. Therefore, in this study,

the MW filter was extended with machine learning to distinguish instances in which

a small correction magnitude is beneficial from instances in which a large correction

magnitude is beneficial, to eventually arrive at accurate body segment orientations in

IMU-challenging sports situations. A machine learning algorithm was trained to make this

distinction based on raw IMU data. Experiments on wheelchair sports were performed

to assess the validity of the extended MW filter, and to compare the extended MW filter

with the original MW filter based on comparisons with a motion capture-based reference

system. Results indicate that the extendedMW filter performs better than the original MW

filter in assessing instantaneous trunk inclination (7.6 vs. 11.7◦ root-mean-squared error,

RMSE), especially during the dynamic, IMU-challenging situations with moving athlete

and wheelchair. Improvements of up to 45% RMSE were obtained for the extended

MW filter compared with the original MW filter. To conclude, the machine learning-based

extendedMW filter has an acceptable accuracy and performs better than the original MW

filter for the assessment of body segment orientation in IMU-challenging sports situations.

Keywords: madgwick filter, inertial measurement unit, orientation estimation, kinematics, sports,

machine learning
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INTRODUCTION

In sports, inertial measurement units are often used to measure
the orientation of human body segments (Camomilla et al.,
2018). When an inertial measurement unit (IMU) is attached
to a body segment, the orientation of the segment relative to
the earth field can be estimated using an orientation estimation
algorithm. Although optical motion capturing is widely accepted
as a reference system for kinematic measurements, IMUs are
often preferred over optical motion capture systems, since they
are generally small, wearable (wireless), cheap, and easy to use
outside the laboratory. IMU accuracy has shown its validity for
several applications in sports (Ahmadi et al., 2010; Bergamini
et al., 2013; Le Sage et al., 2013; Najafi et al., 2015; Miller and
Kaufman, 2019; Brouwer et al., 2020). Some examples of this
are upper body orientations during walking and running on a
treadmill (Miller and Kaufman, 2019), pelvis orientation during
swimming (Le Sage et al., 2013), and trunk orientation during
sports motions that last for only short time periods (<30 s) such
as sprint starts, tennis serves, and the golf swing (Ahmadi et al.,
2010; Bergamini et al., 2013; Najafi et al., 2015; Brouwer et al.,
2020).

An IMU generally consists of an accelerometer, a gyroscope,
and a magnetometer, which measure the three-dimensional (3D)
linear accelerations (including gravity), the angular velocity, and
the local magnetic field, respectively. To estimate the orientation
from these raw IMU signals, the data can be fused together using
an attitude and heading reference system (AHRS). A commonly
used AHRS method is to first obtain two different orientation
estimates that are subsequently combined. First, the orientation
of the IMU is estimated by integrating the angular velocity,
based on the gyroscope signals. As this orientation estimate is
distorted by integration drift, the gyroscope-based orientation
is “corrected” using a second orientation estimate; the IMU
orientation estimated relative to the direction of gravity (down;
based on the accelerometer) and the direction of the magnetic
field of earth (north; based on the magnetometer). The second
estimate will be referred to as the “earth frame-based” orientation
estimate. To estimate the earth frame-based orientation, it is
assumed that the accelerometer only measures gravity and that
the magnetometer only measures the magnetic field of the earth,
such that the orientation of the sensor relative to the earth frame,
i.e., down and north, is obtained.

In many applications, this assumption can be made, since
linear accelerations in directions other than gravity are much
smaller than gravity, such that they have a negligible effect on the
direction of the acceleration vector. However, in sports activities

characterized by relatively large and continuously present linear

accelerations (e.g., every push in speed skating or in wheelchair

propulsion) or by the presence of close magnetic sources (e.g.,
from a bike or a wheelchair), the accelerations in directions
other than gravity affect the direction of the acceleration vector
and the close magnetic sources affect the direction of the local
magnetic field. Therefore, during these sports activities, the earth
frame-based orientation estimate is often incorrect such that
the integration drift is corrected in the wrong direction. In this

study, such sports activities are referred to as “IMU-challenging
sports situations.”

Some studies solve this problem by combining data of the
IMU sensors with that of other sensor types such as force
sensors or GPS (Brodie et al., 2008; Zhang et al., 2016). These
sources provide additional (indirect) information about the
sensor orientation. Another (magnetometer-free) solution that
is used to detect the direction of gravity without assuming
that only gravity is measured is to attach multiple sensors on
connected body segments (Lee and Jeon, 2019; Weygers et al.,
2020). Although those approaches previously produced accurate
orientation estimates (Brodie et al., 2008; Zhang et al., 2016), the
benefits of using a single sensor (easy to use and cheap) diminish.
Obtaining accurate estimates based on one or two IMUs only is,
therefore, preferred.

To implement the algorithms in already existing sports
applications (e.g., smartphones or sports watches) and to enable
real-time orientation estimations, the computational efficiency of
the algorithms is of interest. A computationally efficient filter that
previously provided accurate results in sport settings based on
IMU signals only is the Madgwick (MW) filter (Madgwick et al.,
2011). The MW filter is resilient against short-term disturbances
(Kok and Schon, 2019) and is widely used in sports settings.
The filter combines the gyroscope-based estimate and earth
frame-based estimate by correcting the gyroscope estimate in
the direction of the earth frame-based estimate at each time
instance. In this way, the filter corrects for integration drift.
The magnitude of this correction, or correction size, is the
same at each time instance, and its value is, therefore, crucial
to performance (Madgwick et al., 2011). Since the optimal
correction size depends on the extent to which integration drift
is expected (which depends on the sensor used and the nature
of the measurements, i.e., static or dynamic Madgwick et al.,
2011), the correction size should be determined for each sensor
and application. Commonly, the correction size is determined
based on the smallest difference with a reference system and is
maintained henceforth (Madgwick et al., 2011; Brouwer et al.,
2020).

To obtain accurate orientation estimates in IMU-challenging
sports situations, applying a MW filter in the regular way, i.e.,
with the same correction size at all time frames, will lead to
estimation errors. During these sports situations, the correction
will be too small to correct for drift or too large such that drift is
corrected in the wrong direction (because of a wrong earth frame-
based orientation estimate). Therefore, during instances in which
the earth frame-based orientation estimate is likely to be wrong, it
may be beneficial to temporarily decrease the correction size, i.e.,
limit the impact of the earth frame-based estimate. In line with
this, the correction size should be increased again when the earth
frame-based orientation estimate is correct, such that the drift
can be controlled. Adapting the correction size in this way has
already led to improved orientation estimates in (aerial) vehicles
(Yoo et al., 2011; Valenti et al., 2015). However, these studies only
took the effect of acceleration into account and implemented self-
designed filters. To ensure usability in sports settings, we present
a proof of concept in which the widely usedMWfilter is extended
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with an adaptive correction size to make it applicable in IMU-
challenging sports situations. Since the combined effect of linear
accelerations and magnetic sources is expected to be indirect and
non-linear, machine learning was used to predict the right time
instances for each correction size.

In this study, the MW filter is extended with machine learning
to distinguish instances in which a small correction size (in
the direction of the earth frame-based orientation estimate) is
advantageous from instances in which a large correction size
is advantageous, to eventually arrive at accurate body segment
orientation in IMU-challenging sports situations. To this end, a
machine learning model was trained to classify whether or not
the earth frame-based estimate is likely to be correct based on
raw IMU data. Experiments were performed to assess the validity
of the extended MW filter, and to compare the extended with the
original MW filter. The experiments involved indoor wheelchair
sport activities. The presence of a wheelchair and the accelerate–
decelerate nature of this sport makes it a representative IMU-
challenging sport situation. During wheelchair propulsion, trunk
motion is used to prevent the chair from tipping over during
large accelerations and may be used to increase stroke length.
In addition, trunk motion causes continuous displacements of
the center of mass such that, e.g., rolling resistance is affected.
Therefore, trunk motion is expected to have a significant role
in wheelchair propulsion. Since wheelchair kinematics, such as
speed and rotational speed, can already be measured accurately
using IMUs in wheelchair match settings (van der Slikke
et al., 2015), adding instantaneous IMU-based trunk motion
would result in more information about the wheelchair-athlete
interaction, which is beneficial for training purposes.

The aim of this study was to investigate whether machine
learning-based classification could be used to extend the existing
MW filter and, in this way, improve the obtained body segment
orientation in IMU-challenging sports situations.

METHODS

Procedure
Eleven differently skilled participants (Table 1) performed a
series of wheelchair sport-specific activities with IMUs attached
to their wheelchair and trunk while simultaneously being
measured with an optical motion capture (MOCAP) analysis
system to serve as reference system. Video recordings were
made to distinguish between different activities afterward.

TABLE 1 | Subject characteristics (mean ± standard deviation).

Type N Age (years) Classa

Elite wheelchair athleteb 3 25.0 ± 3.0 3.2 ± 1.3

Active wheelchair user 3 46.3 ± 11.0 2.5 ± 0.5

Non-experienced user 5 25.0 ± 1.2 –

aThe classes were indicated by the points as used in (elite) wheelchair basketball.
bTwo wheelchair basketball players (premier league) and one wheelchair hockey player
(Dutch national team).

The experiment was approved by the ethical committee of
the Technical University of Delft. Prior to the experiment, the
participants were informed about the aim and procedure of the
study and provided a written informed consent.

Based on the obtained data, a machine learning-based
classification model was trained to classify for each time instance
whether a small or large correction size is advantageous. This
classification was used to extend the MW filter (see section
Filter Design). To assess the validity of the resulting extended
MW filter, trunk inclination was calculated based on MOCAP
data and IMU data processed with the extended MW filter.
Also, comparisons with the original (not extended) MW filter
were made.

Equipment
Two IMUs (NGIMU, X-IO Technologies, Colorado Springs,
CO, United States) were used to collect 3D inertial sensor data
of the trunk and the wheelchair with a sample frequency of
∼100Hz. A 10-camera optoelectric MOCAP system (OptiTrack
Prime, NaturalPoint, Inc., Corvallis) with a sampling rate of
120Hz was used to record the 3D orientation of the segments
of interest. The trunk marker cluster frame constituted of four
markers connected to a rigid body, and was attached to the
sternum (manubrium sterni). The wheelchair marker cluster
frame constituted of fivemarkers connected to different positions
on the wheelchair frame. The video camera (Casio Exilim, Casio,
Tokyo, Japan) recorded the entire track layout with a sample
frequency of 60 Hz.

Wheelchair Sport-Specific Activities
The wheelchair sport-specific test session is described in Table 2,
Figure 1 and covers the main aspects of wheelchair basketball,
tennis, rugby, triathlon, and racing. Certain tests were similar
to ones used in prior research on wheelchair IMUs (Pansiot
et al., 2011; van der Slikke et al., 2015), while tests 1, 10, and
11 in Table 2 were added to put more focus on trunk motion.
Prior to the session, the tests were explained, and participants
without wheelchair experience were instructed to ride in the
wheelchair for∼5min to familiarize with wheelchair propulsion.
The participants were instructed to adopt a neutral pose for
at least 20 s at the start and end of the session. All tests were
performed in a motion lab.

Data Pre-processing
Pre-processing of MOCAP Data
OptiTrack 3D position data of the frame and trunk markers
were acquired in Motive 2.2.0 (Natural Point), converted to
a C3D format, and imported in MATLAB (R2019b, The
Mathworks Inc., Portola Valley, CA, United States). Missing
values were interpolated if the duration of the gap was <

0.2 s and subsequently resampled from 120 to 100Hz by spline
interpolation. Based on the first sample of each time series, the
3D local coordinate frames of the trunk and the wheelchair were
determined based on the positions of the three markers with
the lowest number of missing values (Kontaxis et al., 2009). The
local marker coordinate frames with respect to the global marker
coordinate system were tracked over time.
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Pre-processing of IMU Data
First, the magnetometer (hard iron) offset of the IMU data was
corrected (MathWorks, 2020). Subsequently, sample frequency
deviations were corrected by resampling the data to 100Hz by
spline interpolation. Given the obtained 3D accelerometer, 3D
magnetometer, and 3D gyroscope data, the IMU orientation
was determined using the MW filter and the correction size
(Madgwick et al., 2011). First, an IMU orientation estimate was
obtained using the original MW filter to enable time alignment
of the IMU and marker data (see next paragraph). For this,
a correction size of 0.033 was used as reported by Madgwick
et al. (2011). A grid search for different beta values on the

TABLE 2 | All sport-specific tests, together with a description of each test and the

speed at which the participants were instructed to perform the test (see also

Figure 1). All tests were carried out in immediate succession.

Test Speed Description

1 Isolated trunk rotations No 3x flexion/extension,

left/right lateral flexion and

left/right axial rotation

2 Straight 5m Normal 3x sprint with static trunk

Straight 5m Low 3x

Straight 5m Normal 3x

Straight 5m High 3x

3 Straight skid High 2x sprint (stop with skidding

wheels)

4 Slalom Normal Around 3 cones (Figure 1B)

Slalom High Around 3 cones (Figure 1B)

5 8 shape Normal (Figure 1C)

8 shape High (Figure 1C)

6 U turn Normal 180 clockwise turn

(Figure 1D)

U turn High 180 clockwise turn

(Figure 1D)

U turn Normal 180 anti clockwise turn

(Figure 1D)

U turn High 180 anti clockwise turn

(Figure 1D)

7 Turn on spot Normal 360 clockwise turn

Turn on spot Normal 360 anti clockwise turn

Turn on spot High 360 clockwise turn

Turn on spot High 360 anti clockwise turn

8 Star twist Free Star wise bi-directional

rotation

Star twist Free As previous, combined with

back-and-forth movement

(Figure 1E)

9 Collision Free 2 × 2m sprint and collision

against a block of 30 kg

(Figure 1F)

10 Tennis movements No Do two service- and two

backhand motions with

tennis racket

11 Ball handling No Pick up ball from the ground

(2x) and throw ball away

with one hand

current dataset supported the use of this value. Second, the earth
frame-only estimate (without gyroscope data) was obtained,
which will be used to generate the classification model (see
section Data Analysis). For this estimate, the direction of the
acceleration vector was regarded “down” and the direction of the
magnetometer vector was regarded “north.”

FIGURE 1 | (A–F) Track layout with dimensions in cm (A) corresponding to

the tests as explained in Table 2. Cones and collision block (CB) were

removed during test parts in which they were not used. During tests with ‘no’

speed, the wheels of the wheelchair were blocked. This figure was adopted

from (van der Slikke et al., 2015).
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Determining Trunk Inclination
To convert the IMU- and MOCAP-based orientations into a
one-dimensional inclination angle between the trunk and the
wheelchair, a helical approach was used. First, the rotation matrix
between the proximal (wheelchair) segment and the distal (trunk)
segment were obtained. Subsequently, this rotation matrix was
represented relative to the first static sample, in which the person
was positioned in neutral pose. Neutral pose was considered
0 degrees trunk inclination, in which positive values indicate
trunk flexion. Accordingly, the helical angles could be calculated
(Blankevoort et al., 1990). After obtaining the helical angles of
both IMU and MOCAP systems, they were synchronized with
respect to time by cross-correlation of the helical angle time series
(Rhudy, 2014). After synchronization, the helical angles were
determined again to ensure that all orientations were relative to
the same static (neutral pose) sample.

Data Analysis
Filter Design
Using the data collected, trunk inclination angles are determined
using the original MW filter and the extended MW filter, which
are explained in more detail in this section. Figure 2 (left)
shows a representation of the original MW filter, which corrects
for integration drift on the gyroscope-based estimate (1qω,t)
based on the earth frame-based estimate. The earth frame-
based correction (1qam,t) is determined by a gradient descent
algorithm based on the accelerometer and magnetometer data
(Madgwick et al., 2011). Subsequently, the correction step is
normalized to a pre-determinedmagnitude, the correction size or
ß, such that the resulting orientation at time t (qIMU

t ) is calculated
according to Equation 1. The correction size is the only parameter
to be tuned when using the MW filter.

qIMU
t = qIMU

t−1 + (1qω,t− β 1qam,t)1t (1)

Figure 2 (right) shows the proposed extension of the MW filter.
Instead of one correction size (ß), two different correction sizes
were determined for the extended filter; a large correction size
for situations in which the earth frame-based estimate is expected
to be correct, and a small correction size otherwise. To apply
each correction size at the right instance in time, the validity
of the earth frame-based estimate should be determined based
on the raw IMU data (which is the only available data at this
point). Therefore, the MW filter was extended with a machine
learning-based classification model that predicts whether or not
the earth frame-based estimate will be correct based on IMUdata.
Accordingly, this prediction will be used to adapt the correction
size (ß) to a high value when a correct earth frame-based estimate
was predicted (i.e., ßhigh) and to a low value (i.e., ßlow) otherwise.
This “decoding” results in a correction size for each instance in
time, i.e., ßt, which is an input of the MW filter (see Figure 2).
Figure 3 shows a step-by-step explanation of model generation,
implementation, and validation.

Model Generation

Label Samples
To generate the classification model, training samples were
created with known input (raw IMU data) and output (labeled

correct (Camomilla et al., 2018) or in-correct [0] earth frame-
based orientation estimate) data. These output labels were
obtained by comparing the “earth frame-only” orientation
estimate with the MOCAP-based orientation on a sample-to-
sample basis. A sample was labeled “correct” (i.e., 1) if the
difference between the “earth frame-only” and the MOCAP-
based trunk inclination was < 1 degree + noise, and was
labeled “incorrect” (i.e., 0) otherwise. To determine noise, the
standard deviation of the difference between the MOCAP-based
inclination and the earth frame-only estimate during 20 s neutral
pose were assessed for all the participants and accordingly
averaged. The labels were saved as “EFcorrect.”

Labeling this way may cause some samples to be falsely
labeled “correct” because of coincidental intersections between
the MOCAP system and a deviating earth frame-only estimate.
Therefore, a second, more conservative outcome variable was
defined in which a sample is labeled “correct” only if the
maximal difference of five consecutive samples (that sample, two
preceding samples and two following samples) was < 1 degree
+ noise. These labels were saved as “EFcorrect_S5.” The labels of
“EFcorrect” and “EFcorrect_S5” were determined for all samples
and added to the dataset.

Model Training
First of all, the participants were divided into a training set,
a validation set, and a test set (with six, three, and two
participants, respectively, see Figure 3). The training set included
one elite, one active, and four non-experienced wheelchair
users, the validation set included two active and one non-
experienced wheelchair user, and the test set included two elite
wheelchair athletes. Subsequently, all data were imported in
Python (version 3.7, Python Software Foundation, Wilmington,
DE, United States) to performmachine learning. Before learning,
all input data were standardized by z-normalization (Goldin
and Kanellakis, 1995), and the training data were balanced (by
randomly removing samples of the majority class) such that
the number of samples labeled 1 was equal to that labeled 0
(Pedregosa et al., 2011). Accordingly, the 18 features (two sensors
with each 3D accelerometer, magnetometer, and gyroscope
[2∗3∗3]) were ranked on importance by recursive feature
selection on a random forest classification algorithm (Pedregosa
et al., 2011) with a leave-one-subject-out cross-validation (LOSO-
CV) on the training set (Pedregosa et al., 2011). By LOSO-CV,
the model is trained on all-but-one participant of the training
set, and accordingly evaluated on the participant that was left
out. Subsequently, the feature ranking was used to select the
best number of features. The five best sets (based on precision,
recall and F1-score of the LOSO-CV) were selected for further
model training.

To determine which learning algorithm is the most suitable,
four different classification algorithms were trained. Since the
data are tabular and relations are expected to be non-linear, a
Gaussian Naive Bayes algorithm, a logistic regression, a decision
tree algorithm, and a random forest algorithm were compared
(Pedregosa et al., 2011). Also, the two different outcome variables
(EFcorrect and EFcorrect_S5) were compared. Since five sets
were left from the feature selection procedure, 40 models (four
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FIGURE 2 | A simplified block diagram of the MW filter (left) and a block diagram of the machine learning (ML)-based extended MW filter (right). Within the extended

MW filter, the correction size (ß) may change over time (i.e., ßt), which differs from the original application of the MW filter. The filters use IMU data consisting of 3D

gyroscope data (ωIMU
t ), 3D magnetometer data (mIMU

t ), and 3D accelerometer data (aIMUt ) as input and IMU orientation (qIMUt ) as output. Note that the white box in the

left figure corresponds to the white box in the right figure.

FIGURE 3 | Overview of the model generation, implementation and validation steps, and corresponding in- and outputs in this study. Model implementation for the

original MW filter (left blue) is compared with that of the extended MW filter (right blue) as proposed in this study. Model generation and validation is done using

MOCAP data, and was performed only once. Those steps are, therefore, indicated by dashed lines (- -). Before the classification model was chosen, several models

were trained, implemented, and compared with MOCAP data, after which the best model was selected (see model selection) using data of the validation set. This loop

is indicated by gray dashed lines (- -). The solid lines indicate the steps that should be taken each time one wants to estimate the IMU orientation. Note that the light

blue box corresponds to the light blue box in Figure 2.
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learning algorithms, two outcome variables, and five sets of
features) were trained.

Implementation

Decode to βt and Apply MW Filter
After applying a model, the outcome matrices that consist of
predicted 1’s (correct earth frame-based estimation) and 0’s were
decoded to ßhigh and ßlow, respectively. Subsequently, the IMU
orientations were calculated by the MW filter, and the helical
angles were determined (see Figure 3). The best values for ßhigh
and ßlow were chosen by applying the extended MW filter
on the EFcorrect labels of the training and validation set. All
combinations of ßlow from 0 to 0.01 (steps of 0.001) and ßhigh
from 0.5 to 1 (steps of 0.025) were applied. The RMSE between
the IMU-based trunk inclination and the MOCAP-based trunk
inclination was used to determine the final values for ßhigh
and ßlow.

Model Selection
After training all the 40 models, the best model was selected
by comparing the models on the validation data. Therefore, all
the models were fit to the validation data, and trunk inclination
angles were determined. The best model was selected based on
the lowest mean absolute error (MAE) and RMSE between the
IMU-based angles and theMOCAP-based angles. To evaluate the
performance of the final classification model, precision, recall,
and accuracy were reported. Also, the hyperparameters of the
particular algorithm were tuned using by random search LOSO-
CV on the training set. Subsequently, the final model was trained
on the training set and was implemented on the test set to assess
its performance.

Validation
To determine the accuracy of trunk inclination based on the
extended MW filter and to determine the difference between
the extended and the original MW filter, the mean error, RMSE,
and MAE with respect to the MOCAP-based inclination angles
were determined for both filters. Also, the correlation between
trunk inclination determined using MOCAP data and the trunk
inclination determined using the IMU data with both filters
was determined.

To compare the filters for activities with different levels
of dynamics, a distinction was made between “slow to
moderate sprints” (Table 2.2 with speeds “normal” and “low”),
“fast sprints” (Tables 2.2, 2.3 with speed “high”) and “agility
exercises” (Tables 2.4–2.9). The parts were selected manually
using the video frames. For each of the three parts, MOCAP-
based trunk inclination was plotted against the original and
extended MW filter-based trunk inclination to assess eventual
angle dependencies. Also, a Bland–Altman analysis (Bland
and Altman, 1986) was performed on the three parts to
compare mean differences and 95% confidence intervals between
MOCAP-based trunk inclination angles and those determined
by the extended MW filter. To compare situations in which the
wheelchair was fixed to the ground, i.e., “fixed wheelchair” part,
and in which it was not, sprints and agility exercises were taken
together to represent the “free wheelchair” part. Mean error,

TABLE 3 | Performance of the eight models left after selecting the final set of

features in terms of mean absolute error (MAE) and root-mean-squared error

(RMSE) between MOCAP-based trunk inclination and the trunk inclination of the

extended MW filter based on validation data.

Classification

algorithm

MAE (◦) RMSE (◦)

EFcorrect EFcorrect_S5 EFcorrect EFcorrect_S5

Decision tree 9.6 9.2 13.3 13.4

Random forest 8.9 10.3 13.6 15.8

Naive bayes 14.2 14.4 23.5 24.0

Logistic regression 11.7 12.0 18.7 18.9

MAE, and RMSE between both filters and the MOCAP-based
trunk inclination were determined for both the fixed wheelchair
part and the free wheelchair part. In addition, the evolution
of trunk inclination over time was presented for isolated trunk
rotations (Table 2.1). in the fixed wheelchair part and for both
star twists (Table 2.8) in the free wheelchair part.

To gainmore insight into the behavior of themachine learning
model, an analysis was performed of the situations in which small
and large correction sizes were applied and their durations.

RESULTS

Eleven participants were included (six in training set, three in
validation set, two in test set) with a mean session duration of
14.6min. Of this, 14.4% of the samples was labeled 1 (<2.27◦

difference with MOCAP-based trunk inclination) according to
the criteria as defined for “EFcorrect,” and 12.5% of the samples
were labeled 1 for “EFcorrect_S5.” After balancing, the training
set consisted of 155,032 and 133,426 samples for EFcorrect and
EFcorrect_S5, respectively, with equally represented labels.

Implementation
Applying the extended MW filter on labeled data for different
values for ßhigh and ßlow yielded the smallest RMSEs with the
reference system when ßhigh ranged from 0.925 to 1, and when
ßlow ranged from 0 to 0.003. Therefore, the mean of these values
was taken such that ßhigh = 0.9635 and ßlow = 0.0015.

Based on feature selection, the final set of features consisted
of ax, trunk,my, trunkmx, trunk, mz,wheelchair , and mx,wheelchair , in
which x represents the sagittal axis (forward-backward), y
represents the transversal axis (left-right), and z represents the
longitudinal axis (up-down). Using this feature set, the models
were trained and implemented to determine trunk inclination.
The IMU-based trunk inclination based on the different models
were compared with the MOCAP-based trunk inclination (see
Table 3). The smallest difference with the MOCAP-based trunk
inclination was found for the fandom forest classification with
label “EFcorrect.” Compared with the labeled data, this model
showed a precision, recall, and accuracy of 0.9, 0.95, and
0.86, respectively.
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Validation
To gain more insight into the performance of the original
and the extended MW filters, comparisons were presented for
parts in which the wheelchair could move (free wheelchair)
and could not move (fixed wheelchair), separately (see Table 4).
Results indicate that the extended MW filter outperforms the
original MW filter and performs particularly better during “free
wheelchair” instances (MAE decreased from 9.5 to 5.9◦ and
RMSE from 11.7 to 7.6◦, on average) with improvements by
up to 47% MAE and 45% RMSE. During “fixed wheelchair”
instances, the models show equal performances with average
RMSEs of 6 and 5.3◦ for the original and the extendedMWfilters,
respectively. The extended MW filter showed correlations of 0.86
(fixed wheelchair) and 0.92 (free wheelchair) with the MOCAP
data, which were stronger than those of the original MW filter in
all situations.

Figure 4 shows the trunk inclination of the original (blue) and
the extended MW filters (red) against the reference system for
isolated trunk rotations and startwists (Tables 2.1, 2.8). Instances
in which ßhigh was applied are indicated by the black dots in
Figure 4. Figure 5 shows the trunk inclination of both filters
against the MOCAP-based inclination for three “free wheelchair”
parts of the session. Bland–Altman analyses reveal a mean
difference of 3.5◦ for slow to moderate sprints, 1.4◦ for fast
sprints, and 2◦ for agility exercises between extended MW filter-
based and MOCAP-based trunk inclination. The corresponding
95% limits of agreement were −7.6 and 14.6◦ (slow to moderate
sprints), −12.3 and 15.2◦ (fast sprints), and −13 and 16.9◦

(agility exercises).
To gain more insight into the behavior of this model, the time

instances in which large or small correction sizes were applied
were analyzed. The black dots in Figure 4 indicate that ßhigh was
most common in static situations, while ßlow was most common
in dynamic situations. The duration of successive ßlow-instances
had a median of 0.05 and 0.03 s for subjects 1 and 2 in the test
set, respectively, and ranged from 0.01 to 15.3 s for subject 1
and from 0.01 to 2.05 s for subject 2. The median duration of
successive ßhigh-instances was 0.03 and 0.05 s for subjects 1 and 2,
respectively, and duration ranged from 0.01 to 0.99 s for subject
1 and from 0.01 to 34.3 s for subject 2.

DISCUSSION

The aim of this study was to explore whether machine learning-
based classification could be used to extend the MW filter
to make it applicable for highly dynamic situations (where
assumptions on earth-frame based estimates are invalid). We
specifically studied the proposed algorithms for estimating the
instantaneous trunk inclination in wheelchair sports. Results
indicate that the extended MW filter performs better than the
original MW filter in assessing instantaneous trunk inclination
(7.6 vs. 11.7◦ RMSE), especially during the dynamic IMU-
challenging situations with moving athlete and wheelchair.
Compared with the extended MW filter, the difference between
the original filter and the reference system increased for lower
trunk inclination angles. This might be because of the slight

underestimation of large trunk inclination angles by the IMU-
based approaches, such that deviations due to drift are mainly
visible at lower inclination angles, while they diminish at
higher angles.

To the knowledge of the authors, no previous studies
investigated the accuracy of IMU-based body segment
orientation during wheelchair activities or other dynamic
IMU-challenging situations. Therefore, only trunk inclination
accuracy of the fixed wheelchair parts, i.e., the less dynamic parts,
allows for comparison with previous studies. The 5.3◦ RMSE
for trunk inclination in this study is comparable with the trunk
inclination accuracy of 5◦ RMSE during postural disturbances
when walking on a treadmill (Miller and Kaufman, 2019) and
the 3–4.9◦ RMSEs for the estimation of trunk orientation during
dynamic sports motions with both legs on the ground (Brouwer
et al., 2020). Although the latter results were more accurate,
the measurement duration was much shorter (<30 s Brouwer
et al., 2020) than the session durations in this study (∼15min).
Also, some studies reported somewhat better accuracies of the
IMU-based estimation of body segment orientations (Mazzà
et al., 2012; Bergamini et al., 2013; Shull et al., 2017), but those
studies measured for very short periods (Bergamini et al., 2013)
or studied tasks with a small range of motion (Mazzà et al., 2012;
Shull et al., 2017). Of the mentioned studies, all studies reported
a Kalman filter (Mazzà et al., 2012; Bergamini et al., 2013; Shull
et al., 2017; Miller and Kaufman, 2019) or a MW filter (Brouwer
et al., 2020) as AHRS, and all studies validated the IMU-based
estimations using an optical motion capture system. Overall, it
can be concluded that the better performance of the method
of the authors for highly dynamic situations has not been gone
at the cost of a lower accuracy than that of previously reported
results during less dynamic situations.

Since, to the knowledge of the authors, trunk inclination
accuracy during highly dynamic sports situations is not reported
in the literature yet, comparing the results of the original
and the extended MW filters of this study may provide
more insight. A major difference between the filters is their
performance during dynamic situations; the extended MW filter
performed better than the original MW filter in the dynamic
“free wheelchair” situations. This can be explained by the
extent to which accelerations were present in these situations.
When the wheelchair is propelled, continuous accelerations and
decelerations are present, and the magnitude of accelerations
is determined by the acceleration of the wheelchair plus the
acceleration of the trunk relative to the wheelchair. Therefore, the
earthframe-based estimate is wrong relatively often during “free
wheelchair” instances causing the original filter to deviate, while
the extended MW filter remains accurate by reducing the impact
of this estimate. A similar trend was obtained from the time
evolution of IMU-based trunk inclination in which the filters
perform equally well in long-term static pose, while the original
MW filter shows an increasing deviation during dynamic
instances. Moreover, during static instances following dynamic
instances, the extended MW filter immediately increases the
correction size to “reorient” toward the earth frame-based
estimate such that accumulated drift is corrected at once. For the
original filter, this “reorientation” takes much longer, which may
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TABLE 4 | Comparison of the mean error, mean absolute error (MAE), root-mean-squared error (RMSE), and correlation (r) between the MOCAP data and the original MW

filter and between the MOCAP data and the extended MW filter.

Condition MW filter Mean error (◦) MAE (◦) RMSE (◦) r

S1 S2 S1 S2 S1 S2 S1 S2

Fixed wheelchair Original −1.3 0.3 4.5 4.3 5.5 6.5 0.88 0.95

Extended 0.0 2.2 4.1 4.0 5.2 5.4 0.88 0.97

Free wheelchair Original −8.2 −5.5 10.2 8.8 12.4 11.0 0.72 0.80

Extended 1.6 2.7 5.4 6.5 6.8 8.4 0.87 0.86

Results were presented for parts in which the wheelchair could not move (fixed wheelchair), and for parts in which the wheelchair could move (free wheelchair) for subject 1 (S1) and
subject 2 (S2) of the test set.

FIGURE 4 | Typical plots of the trunk inclination angles over time of the original MW filter (red) and that of the extended MW filter (blue) for the isolated trunk rotations

in a static wheelchair, i.e., Test 1, (upper figure) and star twists in a free wheelchair, i.e., Test 8 (lower figure). The MOCAP-based trunk inclination is indicated by the

gray surface (which is interrupted at some time frames because of insufficient marker visibility). The black dots indicate time instances at which ßhigh was applied. The

data was from one of the test subjects, a three-point elite wheelchair basketball athlete.

be a second explanation for the larger errors observed at smaller
inclination angles for the original MW filter.

From the previous paragraphs, it may be concluded that
the extended MW filter provides considerable improvements
compared with the original MW filter. Crucial for this
performance is the machine learning-based classification model.
To gain more insights into the behavior of this model, the time
instances at which large or small correction sizes were applied
were analyzed. As expected, ßlow was most common in dynamic
situations such that the orientation estimate was hardly affected
by (wrong) earth frame-based estimates, whereas ßhigh was most
common in static situations such that the effect of drift was
limited. Since the orientation estimates during ßlow instances
rely mainly on integrating the gyroscope signal, integration drift

will accumulate for each successive ßlow instance. Therefore, the
duration of successive ßlow instances should not be too long.
According to the durations observed in this study (maximum
durations of 15.3 and 2.05 s with only two occurrences >10 s),
it is assumed that drift was corrected before it may have
caused any noteworthy deviations. In general, this relatively
simple machine learning model seems to predict the most
“advantageous” correction size in each instance well and seems
suitable for AHRS extension. Although theMWfilter was used in
this study, applying this extension to other orientation estimation
filters may be promising as well.

Although the extended MW filter performed better compared
with the original MW filter, the question whether the method can
be seen as sufficiently accurate depends on its application and the
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FIGURE 5 | Scatter plots of the inclination of the original filter (red) and that of the extended filter (blue) against the MOCAP-based trunk inclination for the “agility” part

(left), “slow-mod sprint speed” part (middle) and “fast sprint speed” part (right) of subject 1 (upper three figures) and 2 (lower three figures) in the test set.

aim that is to be accomplished. McGinley et al. (2009) performed
a systematic review on the reliability of 3D kinematic gait
measurements with regard to clinical interpretation. According
to McGinley et al. (McGinley et al., 2009), errors below 5◦

will be widely considered acceptable to reasonable, while errors
exceeding 5◦ may mislead interpretation. Since gait motions
considerably differ from body motions during wheelchair
propulsion and the range of trunk motion during wheelchair
sports will exceed that of body segments during clinical gait, the
minimal acceptable error may be somewhat higher in wheelchair
propulsion. Considering the 7.6◦ RMSE obtained here and a
range of motion of 70–80 degrees (see Figures 4, 5) during
wheelchair propulsion, the system should be able to differentiate
trunk inclinations higher than 11% of the range of motion.
For application in wheelchair sports, trunk inclination angle
can be used to approximate the center of mass displacement
or to analyse motion patterns. A RMSE of 7.6◦ or 11% is
expected to have an effect on above-mentioned analyses of
trunk inclination only to a limited extent and will, therefore, be
regarded acceptable.

In this study, external validity had priority above acquiring the
smallest possible error, and it was aimed to avoid any unnecessary

complexity, such that sports scientists will be able to implement
the extended MW filter with limited effort. In this regard,
some choices were made that may have influenced the final
results. Some examples that might have produced more accurate
results are (1) measuring all participants in the same wheelchair
instead of using their own wheelchair, (2) compensate for
magnetic distortions in the motion lab by performing a specific
“mapping” of the laboratory (de Vries et al., 2009), (3) start a new
measurement for each specific exercise, (4) optimize ßhigh and
ßlow after training the final model, and (5) add more refinement
in ß values, instead of only ßhigh and ßlow. To put the focus
on external validity and repeatability, these examples were not
applied. Therefore, we expect the results to be well-translatable
and implementable to sports and rehabilitation practice.

Limitations
Although this study provided useful outcomes with regard
to orientation estimation in dynamic sports situations, some
limitations should be noted. First of all, the trunk markers that
were used to determine the MOCAP-based trunk inclination
were placed on the upper sternum (to ensure visibility), while
the trunk IMU was attached to a lower location on the
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sternum using a chest strap (to enhance reproducibility and
usability and to limit skin artifacts). Since the sternum is rigid,
the use of different locations was assumed to have no effect
on the measurements. Second, in this study, helical angles
were used to determine trunk inclination during wheelchair
sports activities. Therefore, caution should be exercised in
generalizing the results of this study to situations in which trunk
motion is analyzed in terms of anatomical angle definitions.
Third, a relatively low number of subjects was included in
this study. However, since the results of the measurements
with the subjects in the test set showed the same trends
and was based on over 100,000 samples, similar results are
expected to be obtained when a larger sample of subject
was included.

Future Perspectives
For measuring trunk inclination in wheelchair sports, the
machine learning-based extended MW filter is ready for use.
Since differently skilled participants were used in this study, it
may be assumed that the extended MW filter works well for
trunk inclination estimation in all types of wheelchair users, for
all types of wheelchairs, and in both rehabilitation as well as
(elite) sports practice. Measuring trunk inclination during on-
site wheelchair sports offers many opportunities. When trunk
inclination is combined with wheelchair kinematics during
wheelchair sports (van der Slikke et al., 2015), the (simplified)
kinematic state of the wheelchair-athlete combination can
be obtained. In this way, center of mass displacement can
be approximated, and field-based power losses and power
production can be more accurately obtained than based
on the wheelchair motions only. This enables more insight
into training load, fitness, and the effect of different push
techniques. Also, information about trunk inclination can be
fed back directly to the coach and/or athlete for specific
training purposes.

For application in other IMU challenging sports situations,
it is expected that the extended MW filter will also work.
From the raw IMU data, only two simple additional steps,
(1) run the classification model on the raw IMU data
(ax, distal segment ,my, distal segment ,mx, distal segment ,mz, proximal segment ,
mx, proximal segment), and (2) decode the outcomes to ßhigh and
ßlow (0.9635 and 0.0015 in this study), have to be performed to
convert the original MW filter into the proposed extended MW
filter. These steps are schematically represented on the left side of
Figure 3. After obtaining ßt, the MW filter can be executed such
that IMU-orientation is obtained. The approach to determine
the best values for ßhigh and ßlow is equal to that in the original
MW filter (Madgwick et al., 2011) and may differ between
sensors and situations. Although the classification model should
be verified for other sports, it is expected to be transferable to
other situations since (1) the model was based on raw IMU
data only and (2) works on a sample-to-sample basis such that
differences in movement pattern should not cause any problems.
If only one IMU was used, or accelerations in multiple directions
(relative to the IMU) were common, a custom-made random
forest classification model is recommended for optimal results.

CONCLUSION

The extended MW filter with machine learning-based
classification improved orientation estimation in sports
applications that are challenging for IMU usage. The extended
MW filter resulted in accurate trunk inclination angles during
wheelchair sport-specific exercises. During exercises in which the
wheelchair was moved unrestrictedly, the extended MW filter
performed better than the original MW filter. During situations
in which the wheelchair was static (by blocking the wheels), both
the original and the extended MW filters performed equally well.
In conclusion, the extended MW filter is a promising application
for the estimation of body segment orientation using IMUs in
highly dynamic sports situations and is ready to be used in (elite)
wheelchair sports and rehabilitation practice.
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