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Preface

The focus of this thesis will be on the exploration of cluster synchronization and the calculation of an attrac-
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systems on networks and applications of abstract algebra. The combination of these two fields is especially
found in the first part of cluster synchronization in dynamical networks. It is for that reason that I studied
this topic extensively. The second part is about the determination of an attractor’s basin of attraction which
I found to be a difficult problem. Nonetheless, I was able to provide a conjecture about the size of this basin
that I could verify for all n-node ring networks with n an odd number smaller than nineteen.

I would like to thank my supervisor Johan Dubbeldam for his guidance, support and advice not only dur-
ing this process but also during my entire bachelor and master studies. In truth, this work would not have
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1
Introduction

Networks play an important role in many aspacts of modern day society. The general concept of a network in
which a system consisting of elements or nodes interact with one another is present across a vast range of ar-
eas such as biological systems, neuronal networks, social networks and power grids. For instance a foodweb
can be thought of as being a biological network where predators and prey form the network nodes whereas
the relations between them are represented by network links. This relation between predator and prey indi-
cates the feeding relationship in a certain habitat and is therefore often a directional relationship. This is in
contrast to many social networks where there are interactions in both directions, so called undirected net-
works. Besides this structural difference there may be more, among of which, the number of incoming and
outgoing links at a node and the coupling strengths between nodes as well as the type of coupling between
the network nodes. These aspects are instrumental in the way that networks operate. Besides the fact that
these aspects differ among the various networks there is also the observation that many networks tend to
change over time. For instance a growing demand for electricity tends to enlarge the structure of a power
grid. This structural growth may have effects on factors such as the reliability of power supply to consumers
and the robustness of the power grid. In order to maintain a reliable and stable network and to prevent power
outages from happening it is of importance to gain an understanding about the phenomena occuring in dy-
namical networks. Among the many phenomena that may occur in a general network, synchronization of
the network nodes and stability of the network dynamics, are of primary interest in this report. In regard
to synchronization of the network nodes we view a synchronized network as a system in which all elements
have the same behaviour whereas in stability of the network dynamics one focusses upon a state where the
system returns to its original state after a perturbation. In man-made networks it is often desirable to have
a combination of both aspects, i.e. a stable synchronous state. This stable synchronous state provides reli-
able network dynamics and plays a major role in for instance power grids. In a power grid one encounters
generators and consumers. A power grid which is in synchrony has generators of which their rotors move in
synchrony. This provides the consumers with a steady power supply. However, heavy fluctuations in demand
on the side of the consumers may break such a synchronous state. Therefore it is of practical importance to
also have stability in such a network. This stable synchronous state could also present itself in a more natural
way. For instance it also occurs in a swarm of fireflies which light up the night sky. At first, they light up in an
irregular pattern. However, after a while they tend to light up in synchony for a longer period of time.

These similarities in states among the various networks makes the fascinating phenemenon of synchrony a
popular topic of research. At first glance it might not be clear how one could investigate such a phenomenon
as it appears in such a broad context. There might be various possibilities since networks are distinctive in
structure and dynamics. However, it is convenient to describe them by means of a model. A model that rised
in popularity among the past years and which will play a central role throughout this report is the so-called
Kuramoto model. This model originates from behaviour presented in networks of chemical and biological
oscillators [15][16]. Throughout the years it became apparent that it arises in many more natural but also
engineered systems. This model forms the basis in the research of many different systems and is regularly
adjusted to incorporate specific features of networks [3]. In this report we will restrict ourselves to basic mod-
els which capture nonlinear interactions, the coupling strength between network nodes and the topological
structure of a network. Moreover, it allows us to study synchrony for a broad spectrum of networks.
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2 1. Introduction

In the Kuramoto model, the network nodes are treated as oscillators which are able to emit and receive signals
with a certain frequency. The state in which a particular subset of oscillators pulse at the same frequency is
known as cluster synchronization. In the particular case in which all oscillators in the network pulse at the
same frequency it is called global synchronization. Often a state of global synchronization is chosen over a
state in which there are different synchronized clusters. This state of global synchronization does not only
benefit consumers in man-made networks but also individuals in natural systems such as a swarm of fireflies
or a school of fish.

However, when a loss of synchrony occurs in these systems a transition is made to a state of asynchrony
or a state in which there are still some synchronized clusters. This last phenomenon of synchronized clusters
is what we intend to discuss in the coming chapters. In particular we will work towards a stability analysis of
such a cluster synchronized state. The approach which is taken in a stability analysis of synchronized clus-
ters is often different from a stability analysis for a global synchronized system. In a typical stability analysis
for global synchronization one linearizes a system of nonlinear coupled ordinary differential equations and
obtains a linear system which can be written by means of a coupling matrix [18]. Afterwards, one decouples
the system, often partially, by means of diagonalization of the coupling matrix. Finally the resulting eigen-
values in the coupling matrices of the untangled systems are determined and checked for having a negative
sign. The sign of these eigenvalues often depend on some parameters that are considered to be of practical
importance such as a coupling strength or a damping coefficient. By using this eigenvalue analysis it is pos-
sible to adjust networks such that they retain in a stable state which is less vulnerable for disruptions. This
approach is very convenient as it can be applied in many situations. However, when it comes down to the in-
vestigation of the phenomenon of stable synchronized clusters it is too restrictive. The trouble occurs where
one diagonalizes the entire system of equations. This operation does not provide us with a relation between
the resulting eigenvalues and the clusters appearing in the network dynamics. Luckily, there is an alternative
approach in which the linearized system is partially decoupled depending on the symmetries provided by
the networks dynamics [22]. In this way, it is possible to relate the network symmetries with the resulting
eigenvalues and determine the stability of the clusters. However, the theory is not yet fully developped and
faces some basic problems. One of these problems occurs when confronted with a network and all possible
cluster configurations have to be determined. Since networks tend to become large in size with many mutual
interactions, it is often not sufficient to achieve this goal solely by inspection. Moreover, methods that are
available could become computationally expensive. In the case of symmetric networks there is a promising
method available. This method is what we will use in the coming chapter about Cluster Synchronization.
In essence it uses the symmetry group given by the topological structure of the network. This group is then
written as a direct product of subgroups. These subgroups are then decomposed further until one reaches
the trivial group. All these instances within the direct products describe a state of a certain cluster within the
network.

Most of the tools that are used to achieve the goal of a stability analysis of clusters are well known and used in
many areas such as spectroscopy and quantum chemistry [24][10]. These techniques rely heavily on what is
called Representation Theory. We will only look at so-called linear representations of finite groups. This the-
ory combines the abstract notion of Groups with Linear Algebra. Since group structures or symmetry groups
are often difficult to grasp it is beneficial to write them in terms of matrices. These matrices or linear maps are
studied in Linear Algebra and tend to make the group structure more explicit. This relation between a group
and a set of matrices is provided by a structure preserving map which trasfers the group structure to a set
of matrices. Since we do not expect the reader to be very familiar with representation theory we will devote
much attention to the subject in the coming chapters. The theory about linear representations is well devel-
opped and we will devote much of our attention to only a tiny part. We recommend the interested reader to
take a look at [23] in which the subject is discussed more extensively.

Besides in the study of clusters by means of symmetry groups and their representations we will also use the
symmetry which is present in the Kuramoto model to study stability on a global scale. In particular, we will
focus upon the basin of attraction of a stable node in phase space. This basin of attraction defines a region
in phase space where every trajectory within this region will ultimatley find its way to the stable node. The
determination of the size of the basin of attraction with respect to a stable node is a difficult task. We study
this basin of attraction for only one network structure, namely a ring structure. In order to determine the
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size of the basin of attraction there is a theorem that stands out in many illustrative examples. However, for
many nonlinear systems it is likely not possible or computationally inefficient to verify the hypotheses of this
theorem. One of the problems that arises in the dynamical Kuramoto model is how to calculate all the equi-
libria. The difficulty of this problem is found in the nonlinear nature of the system of differential equations.
Therefore, one tries to verify most of these hypothesis by means of numerical approaches [25][4]. Numerical
approaches have succeeded in calculating all equilibria for relatively small networks, see chapter 4 and [2],
but fail for large networks. Therefore we try to make steps towards a more theoretical understanding. Al-
though this method still suffers from deficiencies, we do think that it might interest the reader and provide
insights in the way one could tackle this problem.

1.1. Background

The Kuramoto model forms the backbone in all dynamical systems we intend to discuss. The network nodes
are considered to be the oscillators of our network and provide the dynamics. The oscillators all have their
own angle which we will denote by θi . These angles change over time and this change is given for each
oscillator angle by a first order ordinary differential equation. In particular, the angles of the oscillators follow
the dynamics provided by the Kuramoto model which is given mathematically by [15].

dθi

d t
=ωi + K̃

n

∑
j

sin
(
θ j −θi

)
, 1 ≤ i ≤ n. (1.1)

These dynamics present the change in state of each oscillator i by means of their respective phase angles θi .
The total number of oscillators in the network is denoted by the parameter n, such that i ∈ {1, . . . ,n} holds. The
coupling between two angles is given by a sinusoidal function of the phase difference. The coupling strength
between the oscillators in the network is assumed to be constant and is denoted by the parameter K̃ . We will
often scale the parameter K̃ such that K := K̃ /n is used as coupling strength instead of K̃ . The structure of
the network is determined by the sum in each differential equation and this summation will be made explicit
later on whenever necessary.

The former Kuramoto model also extends to a model with second-order oscillators [5]. This means that
the angles satisfy second-order differential equations. The dynamics of such a model with inertia may be
captured by the following system of differential equations,

d 2θi

d t 2 = D̂i
dθi

d t
+ωi + K̃

n

∑
j

sin
(
θ j −θi

)
, 1 ≤ i ≤ n. (1.2)

This models includes parameters D̂i for each oscillator. We assume D̂i ≤ 0 for each oscillator such that it
serves as a damping parameter. This second-order differential equation simplifies if there is no damping, i.e.
D̂i = 0. In a similar way as in the first-order Kuramoto model we will also scale K̃ such that K := K̃ /n is used.

1.2. Outline

This thesis is organized as follows. We start with an introduction to Representation Theory in Chapter 2.
Here we discuss fundamental notions and intend to provide clarity by means of examples. These notions are
necessary for a formal treatment of an important algorithm which we will discuss in detail. This algorithm is
usually not covered in textbooks, but is often used in practice. At the end of Chapter 2 we apply this algorithm
in detail to a small three node network with simple dynamics.
In Chapter 3 we discuss the topic of cluster synchronization in symmetric networks. In particular, we discuss
this phenomenon in a symmetric network of moderate size. Here we deal with problems like how one could
deal with different cluster configurations and stability properties. After the treatment of clusters in dynamical
networks we move on to apply symmetries on a global scale in Chapter 4. In this chapter we consider the basin
of attraction of a stable node in ring networks where we make use of symmetries provided by the Kuramoto
model. In particular, we are interested in the size of the basin of attraction around a stable node. It turns out
that it can be determined theoretically for small networks. Afterwards, we show our findings in chapter 5.
We finalize this thesis in Chapter 6 with a conclusion including a recommendation and suggestions for future
research. In the appendix we included lengthy computations as well as details that are of less relevance. In
addition we provide the used codes that lead up to some of the results.





2
Representations of Finite Groups

Networks often show signs of symmetry. These symmetries may be present around different aspects of a net-
work. For instance a network may possess symmetry in the underlying topology or even symmetry in the
underlying dynamics of the network. In this chapter we will devote much of our attention to the mathemat-
ical tools that can be used to study these symmetries in networks. In particular, it will revolve around the
theory of representations of finite groups called Representation Theory. In Representation Theory, one com-
bines Group Theory and Linear Algebra to study symmetry operations on a certain structure. A structure may
be understood as an abstract mathematical structure such as a vector space or module, or less abstract such
as the nodes in a network or the structure of a molecule. Here, we will focus solely upon a set with the struc-
ture of a finite dimensional vector space. Since representation theory is an area in its own right, we intend to
cover only those subjects which enables the reader to understand the applications presented later on.

We start this chapter by introducing some common notions in the field of Representation Theory. We in-
tend to clarify these notions by providing some examples. Hereafter, it tends to become more theoretical as
we want to provide some mathematical theory about an algorithm that allows us to study the presence of
symmetries in networks. In the end, we discuss an application of this algorithm in detail. Before we move on
we want to emphasize that we used for most of the theory in this chapter the resources [23], [11] and [12].

2.1. Introduction to Representation Theory

In mathematics we describe symmetry operations often by means of elements of a group. We assume that
these groups are finite as we will only deal with networks that possess finitely many symmetries. Since groups
are often abstract in nature it will be useful to make them more explicit. This is achieved by means of a so-
called representation of a finite group. The definition can be stated as follows [23].

Definition 1 Let V be an n-dimensional vector space over the field C. A representation D of a finite group G is
a group homomorphism D : G → GL (V ), i.e. a map D : G → GL (V ) satisfying D

(
g1g2

) = D
(
g1

)
D

(
g2

)
for all

g1, g2 ∈G. The dimension of the vector space V is also called the degree of the representation D. If V is equipped
with an hermitian inner product 〈·, ·〉 and the map D also satisfies 〈D(g )v,D(g )w〉 = 〈v, w〉 for all v, w ∈V and
g ∈G then we call D a unitary representation.

Since we often deal with finite dimensional vector spaces V , we may choose a basis and identify the linear
invertible maps GL(V ) with invertible n ×n matrices over C, denoted by GLn(C). In this way, we may replace
the map in the former definition by D : G → GLn (C) and call D a matrix representation. Moreover, such a
representation is unitary if for all g ∈G it holds that the inverse of D(g ) is equal to the conjugate transpose of
D(g ). To get a better grasp of the definition we provide some examples.

Example 1 Suppose G is a finite group. The map D : G →GL1 (C) given by D(g ) = 1 for all g ∈G is a represen-
tation called the trivial representation. It is clearly a unitary representation.

Example 2 Suppose H is a subgroup of index 2 of the finite group G, i.e. H has two cosets in G. Let D : G →
GL1 (C) such that D(g ) = 1 for all g ∈ H and D(g ) =−1 otherwise. This is called the alternating representation.

5
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Example 3 Consider a finite group G with n elements. Order the elements of G, say g1, . . . , gn . Let V denote
an n-dimensional vector space with standard basis elements indexed by the group elements. More specifically,
denote the i -th standard basis element by egi for all 1 ≤ i ≤ n. We define an action µ of G on Cn , i.e. a map
µ : G ×Cn →Cn , by

µ(g , x) := g
(
x1eg1 +x2eg2 + . . .+xnegn

)= x1eg g1 +x2eg g2 + . . .+xneg gn (2.1)

where x := (x1, . . . , xn) ∈ Cn and g ∈ G. This group action defines a representation D : G → Sym (Cn) by setting
D(g )(x) := µ(g , x) which is called the (left) regular representation of G. For a specific group G it is often more
convenient to write the regular representation as a matrix representation. For instance, if we set G = A3 we
may order the elements as g1 := (1) followed by g2 := (123) and g3 := (132) and use the standard basis on C3

with this order such that the i -th standard basis element is denoted by egi for 1 ≤ i ≤ 3. In this case, the regular
representation of A3 reads,

D
(
g1

)=
1 0 0

0 1 0
0 0 1

 , D
(
g2

)=
0 0 1

1 0 0
0 1 0

 and D
(
g3

)=
0 1 0

0 0 1
1 0 0

 . (2.2)

Sometimes two representations provide the same action of the group G on the vector space V . This leads us
to a notion of isomorphic or equivalent representations.

Definition 2 A representation D : G → GL (V ) is called equivalent or isomorphic to another representation
D ′ : G → GL (W ) if there exists an invertible linear transformation α : V → W such that D(g ) = αD ′(g )α−1 for
all g ∈G.

The map α is also called a vector space isomorphism. This map preserves the action of the group, so in a
natural way we may view equivalent representations as being the same. Moreover, the relation provided in
the definition is an equivalence relation so we can partition the set of representations in equivalence classes.
In this way, many notions in Representation Theory are studied up to equivalence. In the case where V and
W have the same finite dimension, the condition D(g ) =αD ′(g )α−1 for all g ∈G says that the matrices D(g )
and D ′(g ) are similar for all g ∈G .

Example 4 Let {e1,e2, . . . ,en} denote the standard basis for Cn . Define the action µ of Sn on Cn , i.e. the map
µ : Sn ×Cn →Cn , by

µ (σ, x) :=σ (x1e1 +x2e2 + . . .+xnen) = x1eσ(1) +x2eσ(2) + . . .+xneσ(n) (2.3)

where x := (x1, . . . , xn) ∈Cn and σ ∈ Sn . This group action defines a representation D : Sn → Sym (Cn) by setting
D (σ) (x) = µ(σ, x) which is called the permutation representation of Sn as it permutes the coordinates of the
standard basis. In particular, for the symmetric group S2 := {σ1,σ2} where σ1 = (1)(2) and σ2 = (12) we may
write the permutation representation D : S2 →GL2 (C) explicitly as,

D(σ1) =
[

1 0
0 1

]
and D(σ2) =

[
0 1
1 0

]
. (2.4)

The permutation representation in 3.4 is equivalent to the representation D ′ :Z2 →GL2 (C) given by,

D ′(σ1) =
[

1 0
0 1

]
and D ′ (σ2) =

[
1 0
0 −1

]
. (2.5)

This is easily verified as D ′(σ2) is the diagonal matrix in the eigendecomposition of D(σ2).

It turns out that some representations can be viewed as being the building blocks of representations in gen-
eral. For representations of finite groups we call these building blocks irreducible representations. The formal
definition is presented below.

Definition 3 A non-zero representation D : G → GLn (C) is called irreducible if it has no nontrivial invariant
subspaces. This means that the only G-invariant subspaces of V are {0} and the whole space V , i.e. if for K ⊆V
we have D(g )(k) ∈ K for all g ∈G and k ∈ K then K = {0} or K =V .
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A well-known theorem of Maschke [23] tells us that the irreducible representations are indeed the building
blocks of representations in general. The result can be seen as an analogue of the unique factorization of
natural numbers into prime numbers.

Theorem 1 Every representation of a finite group is completely reducible, i.e. it can be written as a direct sum
of irreducible representations.

We will explain the aforementioned theorem in more detail as it plays a central role in the next section. Sup-
pose G is a finite group and D : G → GL (V ) is a representation of finite degree n and we have a direct sum
decomposition of the underlying vector space, V ∼= V1 ⊕V2 ⊕ . . .⊕Vn̂ , where each Vi in the direct sum is a
G-invariant subspace and n̂ ≤ n. A restriction of the former representation such that it acts on a certain G-
invariant subspace Vi of V leads to a representation D|Vi : G →GL (Vi ) which is called a subrepresentation of
the representation D . Equivalently, we call D|Vi : G → GL (Vi ) a subrepresentation of D : G → GL (V ) if Vi is
a subspace of V such that D|Vi (g ) = D(g )|Vi . By Maschke’s theorem it is always possible to find a direct sum
decomposition of the underlying vector space V such that we obtain a direct sum decomposition of D in irre-
ducible subreprentations D|Vi , i.e. D(g ) ∼=⊕n̂

i=1D|Vi (g ). This direct sum decomposition of D into irreducible
subrepresentations D|Vi is unique up to equivalence and order. As we will only deal with a finite dimensional
vector space V we are not only able to find a basis B for V but also bases B1, . . . ,Bn̂ for V1, . . . ,Vn̂ respectively.
Hence, it is often convenient to write the direct sum decomposition of our representation in irreducible sub-
representations in a block-diagonal matrix

[
D(g )

]
B
∼=



[
D|V1 (g )

]
B1

0[
D|V2 (g )

]
B2

. . . [
D|Vn̂−1 (g )

]
Bn̂−1

0 [
D|Vn̂ (g )

]
Bn̂


. (2.6)

The notation [·]Bi is often used in Linear Algebra books and indicates that we take the coordinates with re-
spect to the basis Bi . Since the chosen bases will be clear from the context we often suppress the brackets
notation [·]Bi and write D|Vi (g ) for

[
D|Vi (g )

]
Bi

. Moreover, to shorten notation we will write D (i )(g ) for the
subrepresentation D|Vi (g ) acting on subspace Vi in the direct sum decomposition of V . The equivalence pro-
vided by Maschke’s Theorem 1, written as in 2.6, will be very important in the next section as it turns out that
whenever we have the representations presented on both sides of the equivalence sign of 2.6, we are able to
determine a transformation matrix α that transforms one of these representations into the other. However,
in general it can be difficult to find the block diagonal representation in the right-hand side of 2.6.

Example 5 Let {e1, . . . ,en} denote the standard basis for Cn . The permutation representation of Sn denoted by
D : Sn →GLn (C) is not irreducible. The one-dimensional subspace

V1 :=
{

z ∈Cn : z = a
n∑

i=1
ei with a ∈C

}
(2.7)

is invariant under the action of Sn as it only re-orders the indices among the standard basis elements ei but
doesn’t affect the sum. Moreover, it has a n −1-dimensional orthogonal complement

V2 :=
{

z ∈Cn :
n∑

i=1
zi = 0

}
. (2.8)

which is Sn-invariant as well. Hence, Cn ∼= V1 ⊕V2. Notice that D|V1 : G → GL (V1) is irreducible as V1 is only
one-dimensional. The restriction of the permutation representation given by D|V2 : G → GL (V2) is called the
standard representation and it can be shown by means of Character Theory that this standard representation is
irreducible as well. This verifies Maschke’s theorem for the permutation representation of Sn .
In the special case n = 2 we consider the permutation representation as in 2.4. The two S2-invariant one-
dimensional spaces can be written as V1 = {(a, a) ∈ C2} and V2 = {(a,−a) ∈ C2}. The subrepresentation corre-
sponding to V1 satisfies D|V1 (g )(a) = D(g )|V1 (a) = a for all a ∈V1, so it is equivalent to the trivial representation



8 2. Representations of Finite Groups

D|V1 (σi ) = 1 where 1 ≤ i ≤ 2. The other subrepresentation must be given by D|V2 (σ1) = 1 and D|V2 (σ2) = −1
since σ2 is of order 2 and D|V2 (σ2) must have an order which divides the order of σ2 by the homomorphism
property. Hence, for g ∈ S2 we write

D(g ) ∼= [
D|V1 ⊕D|V2

]
(g ) ∼=

[
D|V1 (g ) 0

0 D|V2 (g )

]
=

[
D (1)(g ) 0

0 D (2)(g )

]
(2.9)

where the last equality is just a matter of notation. Notice that 2.9 coincides with the representation 2.5.

In order to cope with the difficulty of finding the representation on the right-hand side of 2.6 we provide some
tools that can be used for this purpose. Many of these, can be found in [23] and [1]. First, we write the block
diagonal representation on the right-hand side of 2.6 in a more convenient way. Fix 1 ≤ i ≤ n̂. Since it could be
the case that there are mi representations in the right-hand side of 2.6 which are equivalent to an irreducible
subrepresentation D (i ), we could treat them as if they were all the same. By picking a representative, say D ( j ),
among these mi equivalent representations we may replace the remaining mi −1 representations which are
equivalent to D ( j ) by D ( j ). In this way we find mutually inequivalent representatives, say D (1), . . . ,D (s), such
that along with a re-ordering of the summands in 2.6 we may rewrite 2.6 as,

D ∼=⊕s
j=1m j D ( j ) (2.10)

where
m j D ( j ) :=⊕m j

i=1D ( j ). (2.11)

The existence of such a complete set of representatives D (1), . . . ,D (s) follows from the fact that representation
equivalence as in definition 2 is an equivalence relation. We call each of the positive integers m j in 2.10, which
indicate how many representations in the right-hand side of 2.6 are equivalent to D ( j ), the multiplicity of D ( j )

in D . We set the multiplicity of an irreducible representation equal to zero if it is not a subrepresentation of
the representation D . It turns out, that it is possible to find these multiplicities for each representation. This
is achieved by means of the character of a representation.

Definition 4 Let G be a finite group and D : G → GL (V ) be a representation. The character of D is a map
χD : G →C defined by taking the trace of D(g ) with g ∈G, i.e. χD (g ) = Tr

(
D(g )

)
.

A basic property of characters is that they are constant on conjugacy classes. Indeed, by the homomorphism
property and trace property it holds that

χD
(
hg h−1)= Tr

(
D(h)D(g )D(h−1)

)= Tr
(
D(h)−1D(h)D(g )

)= Tr
(
D(g )

)=χD (g ). (2.12)

The character of a representation D : G →GL (V ) can be viewed as an element of the following set,

L (G) :=
{

f
∣∣∣ f : G →C

}
. (2.13)

This is an inner product space with pointwise addition and pointwise multiplication defined in the usual way
and an inner product given by, (

f1

∣∣∣ f2

)
:= 1

|G|
∑

g∈G
f1(g ) f2(g ). (2.14)

By using this inner product on characters one can easily verify whether two representations are equivalent or
not due to the following orthogonality relations.

Theorem 2 Let D and D̂ be irreducible representations. Then the following holds,(
χD

∣∣∣∣χD̂

)
=

{
1 if D ∼= D̂

0 if D 6∼= D̂ .
(2.15)

A consequence of these orthogonality relations is that it enables us to find the multiplicities m j of the irre-
ducible representations of a finite group G .

Corollary 3 A representation D : G → GL (V ) is irreducible if and only if
(
χD

∣∣χD
) = 1. In the case that D is

reducible we have a direct sum decomposition as in 2.10 and the multiplicities m j satisfy,

m j =
(
χD

∣∣∣∣χD( j )

)
. (2.16)

for each 1 ≤ j ≤ s.
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In order to get an overview of the possible number of irreducible representations of a finite group we will
make use of the following result [23].

Corollary 4 The number of irreducible representations of a finite group G is up to equivalence equal to the
number of conjugacy classes of G.

The next result relates the cardinality of the group to the degrees of the irreducible representations of this
group. It is often convenient to use it after one has applied Corollary 4. The Theorem is often called the
Dimensionality Theorem and is stated as follows [1].

Theorem 5 Let G be a finite group with n̂ irreducible representations D i of dimension di . Then di divides |G|
and the following formula holds,

|G| =
n̂∑

i=1
d 2

i . (2.17)

We will clarify many of the aforementioned results in the following example.

Example 6 Consider the symmetric group S3 on the 3 vertices (1,0) ,
(− 1

2 , 1
2

p
3
)

and
(− 1

2 ,− 1
2

p
3
)

of an equilat-
eral triangle. The vertices are labeled by the numbers 1,2 and 3 as depicted below. This group consists of six
distinct elements, so we write S3 := {E ,ρ,ρ2,σ1,σ2,σ3} where E denotes the identity element, ρ a rotation over
an angle 2π

3 around the incenter and each σi is a reflection in an angle bisector. In cycle notation we end up
with E := (1),ρ = (123),ρ2 := (132),σ1 := (12),σ2 := (23) and σ3 := (13).

x

y

3

2

1

σ1

σ3

σ2

Fig. 2.1: Triangle with angle bisectors.

Let D : S3 →GL3 (C) be the permutation representation of S3. Since the group S3 is generated by a rotation and
a reflection, we only write D explicitly for the elements ρ := (123) and σ1 := (12). We have,

D
(
ρ
)=

0 1 0
0 0 1
1 0 0

 and D (σ1) =
0 1 0

1 0 0
0 0 1

 . (2.18)

We intend to clarify the aforementioned results by computing the characters of each irreducible subrepresenta-
tion of D. Since we consider a symmetric group, it follows from Group Theory that elements within a conju-
gacy class have the same cycle type [7]. The symmetric group S3 has three cycle types, namely the three cycles
C1 := {ρ,ρ2}, the transpositions C2 := {σi : 1 ≤ i ≤ 3} and the one given by the identity element C3 := {E }. From
Corollary 4 we deduce that there are 3 irreducible representations of S3. The dimensions of these irreducible
representations follow from Theorem 5 which tells us that 6 = d 2

1 +d 2
2 +d 2

3 holds. Hence, we have one irre-
ducible representation of dimension 2 and two irreducible representations of dimension 1. The 2 inequivalent
irreducible one-dimensional representations are given by the trivial representation and the alternating repre-
sentation. The alternating representation is defined as D2(g ) = 1 for g ∈ A3 and D2(g ) =−1 for g ∈ S3 \ A3. In
order to determine a two-dimensional representation, we recall that the rotation and reflection matrices from
linear algebra rotate points in Euclidean space around the origin over an angle θ in counterclockwise direction
and reflect points over a line having an angle θ are given by respectively [1],[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
and

[
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

]
. (2.19)
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The angle θ is measured in both cases with respect to the positive axis in figure 2.1. By using the apropriate
angles in 2.19 we find

D3 (
ρ
)= [ − 1

2 − 1
2

p
3

1
2

p
3 − 1

2

]
and D3 (σ1) =

[ − 1
2

1
2

p
3

1
2

p
3 1

2

]
. (2.20)

It remains to be shown that this two-dimensional representation is irreducible. To this end, we compute the
inner product

(
χ

D3

∣∣χ
D3

)
which depends on the characters χD3

(
g
)

where g ∈ S3. Since characters are constant
on conjugacy classes by 2.12, it suffices to know the characters of D3 (E), D3

(
ρ
)

and D3 (σ1). By definition of a
character this leads to computing the traces for the two-dimensional identity matrix along with those in 2.20.
Consequently,

(
χ

D3

∣∣χ
D3

)= 1

6

(
1 ·χD3 (E)χD3 (E)+2 ·χD3 (ρ)χD3 (ρ)+3 ·χD3 (σ1)χD3 (σ1)

)
= 1

6
(1 · (2 ·2)+2 · (−1 ·−1)+3 · (0 ·0)) = 1

(2.21)

where the integers 1,2 and 3 in the first line indicate the size of each conjugacy class. By Corollary 3 it follows
that it is indeed an irreducible two-dimensional representation. In order to determine whether the preceding 3
irreducible representations occur as subrepresentations of D in 2.18, we first determine the characters of these
irreducible representations and collect them in a so-called character table. In this character table we write the
characters of the irreducible representations of S3 depending on both the conjugacy class as presented in the first
row and the irreducible representation under consideration as presented in the first column. Since the character
of a one-dimensional representation equals the one-dimensional matrix representation it is easy to fill up the
rows corresponding to trivial D1 and alternating representation D2. The last row presents the characters of D3

which we already derived in 2.21.

C1 C2 C3

D1 1 1 1
D2 1 -1 1
D3 2 0 -1

At last, with the formula of Corollary 3 we compute the multiplicities of the irreducible representations D1,D2

and D3.

m1 =
(
χD

∣∣χ
D1

)= 1

6

[
χD (E)χD1 (E)+2 ·χD (ρ)χD1 (ρ)+3 ·χD (σ1)χD1 (σ1)

]
= 1

6
[3 ·1+2 · (0 ·1)+3 · (1 ·1)] = 1

m2 =
(
χD

∣∣χ
D2

)= 1

6

[
χD (E)χD2 (E)+2 ·χD (ρ)χD2 (ρ)+3 ·χD (σ1)χD2 (σ1)

]
= 1

6
[3 ·1+2 · (0 ·1)+3 · (1 ·−1)] = 0

m3 =
(
χD

∣∣χ
D3

)= 1

6

[
χD (E)χD3 (E)+2 ·χD (ρ)χD3 (ρ)+3 ·χD (σ1)χD3 (σ1)

]
= 1

6
[3 ·2+2 · (0 ·−1)+3 · (1 ·0)] = 1

Thus, the alternating representation does not appear in the unique direct sum decomposition of representation
D in 2.18. This result can also be derived by taking the direct sum decomposition of C3 with n = 3 in the
preceding example into account. Since V2 for n = 3 in 2.8 is two-dimensional we look solely at V1 in formula
2.7. Notice V1 := {

(a, a, a) ∈ C3
}
. For x = (x1, x2, x3) ∈ V1 we have x1 = x2 = x3 so D|V1 : S3 → GL1 (V1) satisfies

D|V1 (g )(x) = D(g )(x) = x for all g ∈ S3, i.e. D|V1 is equivalent to the trivial representation D|V1 (g ) = 1 for all
g ∈ S3 and not equivalent to the alternating representation.
In conclusion we have D ∼= D1 ⊕D3. For convenience, we denote the resulting block diagonal representation by
D ′ := D1 ⊕D3. It is given explicitly by the following two matrices,

D ′ (ρ)=
1 0 0

0 − 1
2 − 1

2

p
3

0 1
2

p
3 − 1

2

 and D ′ (σ1) =
1 0 0

0 − 1
2

1
2

p
3

0 1
2

p
3 1

2

 . (2.22)

One can verify that this block-diagonal representation can also be found by writing the elements of the image
of D in terms of the basis, 


1p
3

2p
6

0

 ,


1p
3

− 1p
6

1p
2

 ,


1p
3

− 1p
6

− 1p
2


 . (2.23)
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2.2. The Algorithm

In Maschke’s Theorem 1, in particular in formula 2.6, we have seen that a representation can equivalently be
written by block diagonal matrices for each group element. The block diagonal form is easier to work with
and we will determine a single transformation matrix α that transforms each representation matrix D(g ) to
a block diagonal matrix as in the right-hand side of 2.6. In the following we cover the construction of an
important algorithm which enables us to compute the transformation α that provides the equivalence of the
two representations in 2.6 of Maschke’s Theorem 1. To this end, we assume from here on that D : G →GL (V )
is a unitary reducible representation of finite degree n. In addition, we assume g to be an element of the
finite group G . By Maschke’s theorem it follows that the representation is completely reducible and write the
representation as

D ∼=⊕n̂
i=1D (i ) (2.24)

where n̂ ≤ n a positive integer. It could be the case that a certain irreducible representations D (i ) in the direct
sum decomposition of D in 2.24 are equivalent to m` other irreducible representations in the same direct
sum. In that case we collect these equivalent representations by choosing a certain representative among
these equivalent representations, say D (`), and write

m`D (`) :=⊕m`

j=1D (`) = D (`) ⊕ . . .⊕D (`) (2.25)

Suppose we have a complete set of representatives of the equivalence classes of irreducible representations
which consists of s members. In that case we may re-enumerate such that the representatives are given by
D (1), . . . ,D (s) and simplify 2.24 as follows

D ∼=⊕s
j=1m j D ( j ) (2.26)

where s ≤ n̂ and each positive integers m j denotes the multiplicity of D ( j ) in D . If D ( j ) appears in 2.26 it
is called an irreducible constituent. Notice that in essence we obtain 2.26 from 2.24 by collecting all equiv-
alent irreducible representations. Similarly, we collect the underlying vector spaces V (i ) of the irreducible
representations D (i ) in 2.24 and write

V ∼=⊕s
j=1m j V ( j ) where m`V (`) :=⊕m`

j=1V (`) =V (`) ⊕ . . .⊕V (`) for ` ∈ {1, . . . , s}. (2.27)

This can be written in full length by introducing V (`)
j to be the j -th subspace in m`V `. Hence, 2.27 in full

length is given by,

V ∼=V (1)
1 ⊕ . . .⊕V (1)

m1
⊕V (2)

1 ⊕ . . .⊕V (2)
m2

⊕V (3)
1 ⊕ . . . . . . . . . . . . . . . . . . . . .⊕V (s)

ms
(2.28)

From here on let di denote the degree of the representation D (i ), i.e. the dimension of the underlying vector
space V (i ). Since V is a finite-dimensional vector space it is possible to find a basis for V . We denote the basis

elements by bi , j
d where the superscript i indicates that it corresponds to the subspace V (i ) and the superscript

j indicates that it corresponds to j -th subspace V (i )
j in mi V (i ) and the subscript d indicates that it is the d-th

basis element. Below we depicted all basis elements for only one block mi V (i ), but keep in mind that we have
s of these blocks as 1 ≤ i ≤ s.

W(i)
1 W(i)

2 . . . W(i)
d . . . W (i )

di

V(i)
1 bi ,1

1 bi ,1
2 . . . bi ,1

d . . . bi ,1
di

V(i)
2 bi ,2

1 bi ,2
2 . . . bi ,2

d . . . bi ,2
di

...
...

...
...

...

V(i)
j bi , j

1 bi , j
2 . . . bi , j

d . . . bi , j
di

...
...

...
...

...

V(i)
mi

bi ,mi
1 bi ,mi

2 . . . bi ,mi
d . . . bi ,mi

di

Fig. 2.2: Basis elements of block mi V (i )
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The enclosed symbols in figure 2.2 are the basis elements of mi V (i ). Notice that each row in figure 2.2 consist
of basis elements of some subspace in the direct sum of mi V (i ) as indicated by the first column outside the
enclosed region. For instance, the blue row corresponds to the j -th subspace V (i )

j of mi V (i ). Besides the

subspaces V (i )
j we could also consider the subspaces of mi V (i ) corresponding to columns of figure 2.2. The

basis elements in a column of figure 2.2 are denoted by W (i )
d for a d ∈ {1, . . . ,di } as can be seen in the first row

outside the enclosed region. In figure 2.2 we highlighted such a typical column in red. It consists of one basis
element from each V i

j in mi V (i ) and such a subspace for 1 ≤ i ≤ s and 1 ≤ d ≤ di can be written as

W (i )
d :=

{
bi , j

d : 1 ≤ j ≤ mi

}
(2.29)

Before we move on, we emphasize that our vector space V is of dimension n. Hence, the representation D is
of finite degree n and can be written as D : G →GLn (C) by choosing a basis. In this way, D(g ) can be viewed
as a matrix. Its entries will be denoted in the usual way, i.e. D`,γ(g ) for matrix entry (`,γ). At this point, we
are ready to introduce an important operator which enables us to obtain a special kind of basis of V solely
by making use of the representation D . The linear operator P i

d , j : V → V is defined for d , j ∈ {1, . . . ,di } and

i ∈ {1, . . . , s} as follows

P i
d , j := di

|G|
∑

g∈G
D (i )

j ,d

(
g−1)D(g ) (2.30)

where |G|denotes the cardinality of the group G which is finite by assumption. Notice that the operator in 2.30
depends on three indices d , j and i . All these operators will be referred to as projection operators although
we have not yet shown that they are projection operators. Before we dive into the details regarding these
projection operators we first discuss the special basis of V . The special kind of basis of V we intend to find is
called a symmetry adapted basis for V . It consists of vectors that make up the invertible linear transformation
α in D(g ) = αD ′(g )α−1 of definition 2 where D ′(g ) will be the block diagonal matrix of 2.6 [11]. This type of
basis is of interest as it allows us to simplify for instance a system of differential equations. Its definition is
given below.

Definition 5 A symmetry adapted basis of V is a basis B of V where B consists of basis elements of V , i.e.

B =
{

bi , j
d : 1 ≤ d ≤ di ,1 ≤ j ≤ mi ,1 ≤ i ≤ s

}
, (2.31)

such that each of the basis elements bi , j
d satisfy,

D(g )bi , j
l =

di∑
d=1

D (i )
d ,l (g )bi , j

d . (2.32)

Notice that formula 2.32 describes the equivalence of the two representations as shown in 2.6, i.e. it describes
the formula D(g )α=αD ′(g ) where D ′(g ) is the matrix representation in the right-hand side of 2.6 and α the

similarity transformation with columns given by elements of the form bi , j
d . Before we are able to find a sym-

metry adapted basis for V we first consider what it is that a projection operator does with such a symmetry
adapted basis. By means of these properties it will eventually be clear how we can construct a symmetry
adapted basis. The details are provided in the corollary below.

Corollary 6 Let D be a unitary and reducible representation of finite degree. Assume we have a symmetry
adapted basis B as stated in the preceding definition. The linear operators P i

d , j as defined in 2.30 satisfy,

1. The elements of a block scheme ml V (l ) as depicted in figure 2.2 are mapped onto zero if i 6= l .

2. The j -th column of mi V (i ) is mapped onto the d-th column of mi V (i ), the other columns are mapped
onto zero.

3. For fixed 1 ≤ d ≤ di and 1 ≤ i ≤ s the linear operator P i
d ,d is a projection of V onto the subspace W (i )

d .
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Proof: Let bl ,m
n ∈ B , then

P i
d , j bl ,m

n = di

|G|
∑

g∈G
D (i )

j ,d

(
g−1)D(g )bl ,m

n
(i )= di

|G|
∑

g∈G
D (i )

j ,d

(
g−1) di∑

p=1
D (l )

p,n(g )bl ,m
p =

di∑
p=1

(
di

|G|
∑

g∈G
D (i )

j ,d

(
g−1)D (l )

p,n(g )

)
bl ,m

p

In (i) we used the property of a symmetry adapted basis as given in (2.32). Since subrepresentations of a
unitary representation are unitary by restriction of the inner product we find for g ∈G ,

D (i )
j ,d

(
g−1) (i i )= D (i )

j ,d (g )−1 (i i i )= D (i )
d , j (g )

where in (ii) we used the homomorphism property of a representation and in (iii) we used the unitary matrix
property. This allows us to simplify the penultimate formula,

P i
d , j bl ,m

n =
di∑

p=1

(
di

|G|
∑

g∈G
D (i )

d , j (g )D (l )
p,n(g )

)
bl ,m

p
(i v)=

di∑
d=1

diδi ,lδd ,pδ j ,n
bl ,m

p

di
=

{
bi ,m

d if i = l , j = n.

0 otherwise.

where in (iv) we used Schur’s Orthogonality Relations. This shows that statement 1. holds as it corresponds
to the situation where i 6= l . Also, statement 2. follows as a necessary condition for a nonzero contribution is
that j = n. Finally, statement 3. holds as

P i
d ,d bl ,m

n =
{

bi ,m
d if i = l ,d = n.

0 otherwise.

which shows that for fixed 1 ≤ i ≤ s and 1 ≤ d ≤ di we end up with P i
d ,d bi ,m

d = bi ,m
d for 1 ≤ m ≤ mi , i.e. a

projection of V onto the subspace W (i )
d . ä

The former result makes it possible to find a symmetry adapted basis for each subspace mi V (i ). We will show
how this is done by means of the projection operator and the properties of Corollary 2. Fix 1 ≤ i ≤ s, i.e.
consider one block mi V (i ) as depicted in figure 2.2. Let a basis of W (i )

1 be given by{
bi ,1

1 , . . . ,bi ,mi
1

}
(2.33)

Notice, that we can find such a basis by taking any basis for V and computing P i
1,1b for each basis element b ∈

V . The result consists of vectors which span the subspace W (i )
1 as can be seen from statement 3 of Corollary

2. Since D is completely reducible we know that there exists a symmetry adapted basis for V . We denote this
symmetry adapted basis for V by {

v i , j
l : 1 ≤ i ≤ s,1 ≤ j ≤ mi ,1 ≤ l ≤ di

}
(2.34)

where the subspace W (i )
1 consists of elements of the form v i , j

1 with 1 ≤ j ≤ mi . Now, that we have two bases

for W (i )
i it is possible to write each element of the basis given by 2.30 as a linear combination of the symmetry

adapted basis elements of the same subspace W (i )
1 , i.e. with zk ∈C for all k we write

bi , j
1 =

mi∑
k=1

zi , j
k v i ,k

1 . (2.35)

The application of a linear projection operator P i
l ,1 which maps the first column W (i )

1 of block mi V (i ) to the

l-th column W (i )
l of block mi V (i ) yields,

P i
l ,1bi , j

1 =
mi∑

k=1
zi , j

k P i
l ,1v i ,k

1 =
mi∑

k=1
zi , j

k v i ,k
l (2.36)

where the last equality follows from Corollary 2. We give a name to the right-hand side of 2.36,

bi , j
l :=

mi∑
k=1

zi , j
k v i ,k

l (2.37)
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Thus, P i
l ,1bi , j

1 = bi , j
l . Since 2.33 is a basis for W (i )

1 and the projection operator P i
l ,1 maps onto the l -th column

W (i )
l for each 1 ≤ l ≤ di it follows that all bi , j

l with 1 ≤ l ≤ di and 1 ≤ j ≤ mi form a basis of block mi V (i ). This
procedure can be done for each 1 ≤ i ≤ s, resulting in a basis for V given by{

bi , j
l : 1 ≤ i ≤ s,1 ≤ j ≤ mi ,1 ≤ l ≤ di

}
. (2.38)

If we can show that the basis given by 2.38 is also a symmetry adapted basis, then we found an algorithm for
finding a symmetry adapted basis by means of the projection operators. It turns out, that it is indeed the case
that 2.38 is a symmetry adapted basis. We summarize the algorithm in the following corollary and prove that
the basis elements for V in 2.38 satisfy the required property of 2.32.

Corollary 7 The vectors bi , j
l in 2.38 form a symmetry adapted basis for V . The procedure as presented above

for obtaining a symmetry adapted basis can be summarized as follows.

1. Choose an arbitrary basis for V and evaluate P i
1,1b for all b in the chosen basis for V and for all 1 ≤ i ≤ s

where s denotes the number of inequivalent irreducible subrepresentations of the representation.

2. Construct for each 1 ≤ i ≤ s a basis for W (i )
1 as in 2.33 by getting rid of the zero vectors and linear de-

pendent vectors obtained in the previous step by application of P i
1,1 to all basis vectors b ∈V . Denote the

resulting basis elements by bi , j
1 with 1 ≤ i ≤ s and 1 ≤ j ≤ mi

3. Apply the projection operators P i
l ,1 as in 2.36 to the basis elements bi , j

1 obtained in the previous step. De-

note the result bi , j
l := P i

l ,1bi , j
1 in similar way as presented by 2.36 and 2.37. These vectors form a symmetry

adapted basis for V .

Proof: It suffices to show that the elements in 2.38 form a symmetry adapted basis for V . This means that it
suffices to show that 2.32 holds, i.e.

D(g )bi , j
l =

di∑
d=1

D (i )
d ,l (g )bi , j

d

Notice that

D(g )bi , j
l

(i )= D(g )P i
l ,1bi , j

1
(i i )= D(g )

di

|G|
∑

h∈G
D i

1,l

(
h−1)D(h)bi , j

1
(i i i )= di

|G|
∑

h∈G
D i

1,l

(
h−1)D(g h)bi , j

1

where (i) follows from the combination 2.36 with 2.37 and in (ii) we used the definition of the projection op-
erator P i

l ,1 and in (iii) we used the homomorphism property. Now we take a closer look at the term D i
1,l

(
h−1

)
appearing in the right-hand side of the former formula. The subscripts in D i

1,l

(
h−1

)
denote the entry (i , l )

of the matrix D i
(
h−1

)
. Now we use brackets to indicate exactly the same entry, i.e. we write

[
D i

(
h−1

)]
1,l for

D i
1,l

(
h−1

)
. In this way we derive for h, g ∈G ,

D i
1,l

(
h−1)= [

D i (
h−1)]

1,l

(i v)=
[

D i (
h−1g−1)D i (g )

]
1,l

=
di∑

d=1
D i

1,d

(
h−1g−1)D i

d ,l (g )

where in (iv) we used the homomorphism property. A simple substitution of this expression in the penulti-
mate formula yields,

D(g )bi , j
l = di

|G|
∑

h∈G

di∑
d=1

D i
1,d

(
h−1g−1)D i

d ,l (g )D(g h)bi , j
1 =

di∑
d=1

D i
d ,l (g )

di

|G|
∑

h∈G
D i

1,d

(
(g h)−1)D(g h)bi , j

1

(v)=
di∑

d=1
D i

d ,l (g )P i
d ,1bi , j

1
(vi )=

di∑
d=1

D i
d ,l (g )bi , j

d

where in (v) we used the definition of the projection operator P i
d ,1 and in (vi) the combination of the formulas

2.36 with 2.37. ä
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By means of the algorithm discussed in corollary 7 we are able to compute the similarity tranformation α

in D(g ) = αD ′(g )α−1 where D ′(g ) is a block diagonal matrix as in 2.6 for each g ∈ G . In the construction
described above we assumed D to be a unitary representation. By restriction of the inner product to an ap-
propriate subspace it follows that the subrepresentations D (i ) are unitary as well. If one takes a closer look at
the proof of Maschke’s Theorem 1 as presented in [23] or [14], it follows that the equivalence between D and
D ′ is given by a unitary matrix α. This unitary matrix can be computed by making a small adjustment to the
algorithm of Corollary 7. To this end, suppose we have performed steps 1 and 2 of Corollary 7. This means

that we have a basis bi , j
1 with 1 ≤ i ≤ s and 1 ≤ j ≤ mi for each W (i )

1 with 1 ≤ i ≤ s. Since we assume D to
be unitary it follows that the direct sum decomposition in 2.26 is orthogonal, see Maschke’s Theorem in [14].
This means that all these basis vectors are orthogonal. In order to find the remaining vectors we should apply
step 3 of Corollary 7 in which we find a basis for each V (i )

j . After applying step 3 of Corollary 7 we apply the

Gram Schmidt procedure. In that case we have found for each subspace V (i )
j a basis of pairwise orthonormal

vectors which are also orthogonal between the different V (i )
j due to the orthogonal direct sum decomposition

as presented in 2.27.

At this point we are equipped with a powerful algorithm by which we are able to derive a unitary transforma-
tion that brings a unitary reducible representation into a block diagonal form. In order to show an application
of this algorithm we present an example in the coming section.

2.3. Decoupling of ordinary differential equations.

Consider the following linear system of ordinary differential equations written in matrix formẋ1

ẋ2

ẋ3

=
0 1 1

1 0 1
1 1 0

x1

x2

x3

 (2.39)

We abbreviate this system by ẋ = Ax where A denotes the matrix in the right-hand side of 2.39 and x a 3×1
vector containing the components x1, x2 and x3. Note that this linear system of differential equations show
signs of symmetry. For instance if we replace x1 by x3, x2 by x1 and x3 by x2 we obtain the same dynamics as
we had before these replacements. If we repeat this process in which we rotate the indices i in xi among the
elements in the set {1,2,3}, then the dynamics will still remain the same. These symmetries of the system of
differential equations form a group which can be captured by Z3 := {E ,ρ,ρ2} where E ,ρ,ρ2 denote the iden-
tity element, rotation of the indices by one entry and two entries respectively. The nontrivial symmetries of
this symmetry group are depicted in the figure below.

In a linear analysis of such a system as in 2.39 one often diagonalizes the matrix A in order to decouple this
system of differential equations. But here we only block diagonalize the matrix A by employing the previous
discussed algorithm. This allows us to study the symmetries of system 2.39. In order to clarify our strategy,
we assume for the moment that we are in a position where we are allowed to apply the previous discussed
algorithm, i.e. that we have a unitary reducible representation D :Z3 →GL(V ). Here, we let D :Z3 →GL3 (C)
be the permutation representation which is always unitary and reducible,

D (E) =
1 0 0

0 1 0
0 0 1

 , D
(
ρ
)=

0 0 1
1 0 0
0 1 0

 , D
(
ρ2)=

0 1 0
0 0 1
1 0 0

 . (2.40)

Before we show how we go about the block diagonalization of matrix A, we first observe that we may block
diagonalize the permutation representation matrices D(g ) of 2.40 by means of a unitary transformation α as
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in the algorithm, i.e. by computing D ′(g ) = α−1D(g )α for each g ∈ G . Now, we define x̂ := α−1x . In this way
we rewrite ẋ = Ax as α ˙̂x = Aαx̂ and even as

˙̂x =α−1 Aαx̂ . (2.41)

If we can show that α−1 Aα takes on a block diagonal form we end up with a block diagonalization of 2.39. To
this end, we notice that up to ordering the dynamics of 2.39 remain the same as for each g ∈Z3 in the system

D(g )ẋ = AD(g )x . (2.42)

A simple substitution of ẋ = Ax into 2.42 yields D(g )A = AD(g ) for each g ∈ Z3. Hence, the matrix A com-
mutes with each of the representation matrices D(g ). Moreover, we have

D(g )A = AD(g ) ⇐⇒ α−1D(g )αα−1 Aα=α−1 Aαα−1D(g )α ⇐⇒ D ′(g )A′ = A′D ′(g ) (2.43)

where D ′(g ) := α−1D(g )α and A′ := α−1 Aα. By unitarity of D we have D ′(g )−1 = α−1D(g )Tα = D ′(g )T , so
entry (u, v) of A′ satisfies,

A′
u,v

(i )= ∑
s,t

(
D ′(g )T

)
u,s

A′
s,t D ′

t ,v (g ) =∑
s,t

D ′
s,u(g )A′

s,t D ′
t ,v (g )

(i i )=
di∑
x

dl∑
y

D (i )
x,ũ(g )A′

x,y D (l )
y,ṽ (g ) (2.44)

where (i) follows from 2.43 and in (ii) we observe that D ′(g ) is block diagonal as in 2.6, so we confined our-
selves to the nonzero contribution given by some subrepresentations D (i ) and D (l ) of which we denote their
entries by (x, ũ) and (y, ṽ) respectively. A summation over all group elements yields,

|G|A′
u,v =

di∑
x

dl∑
y

[ ∑
g∈G

D (i )
x,ũ(g )D (l )

y,ṽ (g )

]
A′

x,y . (2.45)

Next, we divide both sides by |G| and apply Schur’s orthogonality relations,

A′
u,v =

di∑
x

dl∑
y

[
1

|G|
∑

g∈G
D (i )

x,ũ(g )D (l )
y,ṽ (g )

]
A′

x,y =
{

1
di

∑di
x A′

x,y if x = y, ũ = ṽ , i = l

0 otherwise
(2.46)

This shows that we only have a nonzero contribution whenever blocks D ((i )) and D (l ) are equivalent. Thus,
A′ is a block diagonal matrix.

The only thing we need to be able to block diagonalize A, is the transformation matrix α that provides the
equivalence as in 2.6 of Maschke’s Theorem 1. But in order to apply the algorithm we need to know the
inequivalent irreducible subrepresentations of the representation in 2.40. By Corollary 4 we know that the
number of irreducible representations of the group Z3 follow from the distinct number of conjugacy classes
of this group. Since we have the following three conjugacy classes, C1 := {E }, C2 := {ρ} and C3 := {ρ2}. This
means we end up with three irreducible representations of Z3 which we denote by D (1), D (2) and D (3). By
means of the Dimensionality Theorem 5 we are able to determine the degree di of each irreducible represen-
tation D (i ). We have,

|Z3| =
3∑

i=1
d 2

i =⇒ 3 = d 2
1 +d 2

2 +d 2
3 =⇒ d1 = d2 = d3 = 1. (2.47)

Thus, D (1),D (2) and D (3) are all one-dimensional matrix representations. In order to show that each of these
irreducible representations occur as blocks in the block diagonalization we verify that each multiplicity mi

of D (i ) is equal to one. This is achieved by using Corollary 3 that relates the multiplicity mi to the character
χ

D(i ) of a subrepresentation. To this end, we construct the character table step-by-step. Since we only have to
deal with one-dimensional subrepresentations D (i ) their characters coincide with their images. Observe that
the one-dimensional subrepresentations D (i ) are in particular group homomorphisms, so they preserve the
identity element. The identity element in the multiplicative group GL1 (C) is 1. The result is presented in the
first column of the character table below. Moreover, the one-dimensional trivial subrepresentation is always
present which can be seen in the first row of the character table below.

C1 :=
{

E
}

C2 :=
{
ρ
}

C3 :=
{
ρ2

}
D (1) 1 1 1
D (2) 1
D (3) 1
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The group Z3 is of order three, so ρ3 = E . Hence by the homomorphism property of D (i ) the following holds,(
D (i )(ρ)

)3 = D (i ) (ρ3)= D (i ) (E) = 1 (2.48)

for each 1 ≤ i ≤ 3. This shows that the order of the image of ρ under D (i ) must divide 3 for all 1 ≤ i ≤ 3.
Consequently, its order is either 1 or 3. If its order is 1 we obtain the trivial representation D (1). If its order is
equal to 3, we identify the image of each subrepresentation D (i ) with the third roots of unity, i.e. D (i ) : Z3 →{
1ζ,ζ2

}
where we define ζ := exp

( 2πi
3

)
. There are clearly only two possibilities in defining D (2) and D (3). These

two possibilities complete the character table as shown below.

C1 :=
{

E
}

C2 :=
{
ρ
}

C3 :=
{
ρ2

}
D (1) 1 1 1
D (2) 1 ζ ζ2

D (3) 1 ζ2 ζ

It is important to notice that these three one-dimensional representations are irreducible and inequivalent.
We only show that D (2) is irreducible as it is verified analogously for the other two representations. Since,(

χ
D(2)

∣∣∣χD(2)

)
= 1

|Z3|
∑

g∈Z3

χ
D(2) (g )χD(2) (g ) = 1

3

[
1 ·1+ζ ·ζ+ζ2 ·ζ2

]
= 1 (2.49)

it follows from Corollary 3 that D (2) is irreducible. The inequivalence of the three representations follow from
Theorem 2 along with the fact that the three rows of the character table are orthogonal as the sum of the roots
of unity is equal to zero. The characters χD(i ) enable us to apply Corollary 3 to derive the multiplicities mi as
follows.

m1 := 〈χD ,χD(1)〉 := 1

|Z3|
∑

g∈Z3

χD (g )χD(i ) (g ) = 1

3
(3 ·1+0 ·1+0 ·1) = 1 (2.50)

m2 := 〈χD ,χD(2)〉 := 1

|Z3|
∑

g∈Z3

χD (g )χD(2) (g ) = 1

3

(
3 ·1+0 ·ζ+0 ·ζ2

)
= 1 (2.51)

m3 := 〈χD ,χD(3) := 1

|Z3|
∑

g∈Z3

χD (g )χD(3) (g ) = 1

3

(
3 ·1+0 ·ζ2 +0 ·ζ

)
= 1 (2.52)

By Maschke’s Theorem 1 we find the following decomposition,

D(g ) ∼= m1D (1)(g )⊕m2D (2)(g )⊕m3D (3)(g ) ∼=
D (1)(g ) 0 0

0 D (2)(g ) 0
0 0 D (3)(g )

 . (2.53)

We denote the representation in the right-hand side of 2.53 by D ′(g ) for each g ∈Z3. We can write this repre-
sentation explicitly as,

D ′ (E) :=
1 0 0

0 1 0
0 0 1

 , D ′ (ρ)
:=

1 0 0
0 ζ 0
0 0 ζ2

 and D ′ (ρ2) :=
1 0 0

0 ζ2 0
0 0 ζ

 . (2.54)

The block diagonal representation of 2.54 is equivalent to the representation in 2.40 and by means of the
algorithm we are able to find the similarity transformation between these representations. In order to apply
the first step of Corollary 7 we choose a basis for our vector space V . Here we choose the standard basis
{e1,e2,e3} where ei denotes the i -th standard basis vector. Since the vector P i

1,1e j is just the j -th column of

the matrix P i
1,1 it suffices to compute the matrices P i

1,1. Before we do this, we first simplify the projection
operators of 2.30 by using the unitarity of the subrepresentations.

P i
d , j := di

|Z3|
∑

g∈Z3

D (i )
j ,d

(
g−1)D(g ) = di

|Z3|
∑

g∈Z3

D (i )
j ,d

(
g
)−1 D(g ) = di

|Z3|
∑

g∈Z3

D (i )
d , j (g )D(g ) (2.55)
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This last expression is often easier to work with as it avoids taking the inverse of group elements. Finally, we
compute the matrices P i

1,1 as done below.

P 1
1,1 =

1

6

1 ·
1 0 0

0 1 0
0 0 1

+1 ·
0 0 1

1 0 0
0 1 0

+1 ·
0 1 0

0 0 1
1 0 0

= 1

6

1 1 1
1 1 1
1 1 1

 (2.56)

P 2
1,1 =

1

6

1 ·
1 0 0

0 1 0
0 0 1

+ζ ·
0 0 1

1 0 0
0 1 0

+ζ2 ·
0 1 0

0 0 1
1 0 0

= 1

6

 1 ζ2 ζ

ζ 1 ζ2

ζ2 ζ 1

 (2.57)

P 3
1,1 =

1

6

1 ·
1 0 0

0 1 0
0 0 1

+ζ2 ·
0 0 1

1 0 0
0 1 0

+ζ ·
0 1 0

0 0 1
1 0 0

= 1

6

 1 ζ ζ2

ζ2 1 ζ

ζ ζ2 1

 (2.58)

In step 2 of Corollary 7 we get rid of the linearly dependent columns in the matrices of 2.56-2.58. This yields
the following set of vectors, 1

6

1
1
1

 ,
1

6

 1

ζ

ζ2

 ,
1

6

 1

ζ2

ζ


 . (2.59)

These vectors are linear independent and span a three-dimensional space. Hence, there is no need for step 3
of Corollary 7. The only thing left to do is normalizing these vectors and write them as columns in a matrix to
obtain the unitary transformation matrix α,

α= 1p
3

1 1 1

1 ζ ζ2

1 ζ2 ζ

 . (2.60)

It is easily verified that the transformation matrix αmakes up the transformation from representation 2.40 to
representation 2.54. Moreover, it decouples the system of differential equations as shown in 2.46. Since,

α−1 Aα=αT Aα= 1

3

1 1 1
1 ζ ζ2

1 ζ2 ζ

0 1 1
1 0 1
1 1 0


1 1 1

1 ζ ζ2

1 ζ2 ζ

=
2 0 0

0 −1 0
0 0 −1

 (2.61)

it follows that system 2.39 becomes,  ˙̂x1
˙̂x2
˙̂x3

=
2 0 0

0 −1 0
0 0 −1

x̂1

x̂2

x̂3

 . (2.62)

In this example the block diagonalization of A by means of the algorithm yields the same result as an eigen-
decomposition of the matrix A. This is not always the cases as we will see in the next chapter.



3
Cluster Synchronization

Throughout the years Representation Theory found its way in the study of synchrony in networks. This phe-
nomenon of synchronization shows up in different man-made networks in which it is often an essential re-
quirement for it to operate. In these engineered systems one strives for global synchronization, i.e. a state in
which all network nodes are synchronized. This desirable phenomenon may prevent outages and provides
a normal operation. Besides its importance in many man-made networks it also occurs naturally in for in-
stance a swarm of animals such as fireflies. Fireflies light up, among other reasons, to identify other members
of their species. After a short period of time they tend to light up in synchrony. Due to the occurence of
this phenomenon of global synchronization in many natural systems as well as its importance in engineered
networks it became a popular topic of research and has undergone many developments in recent years. Be-
sides a state of global synchrony there are other states of operation in which a loss of synchrony occurs that
have gained attention as well. Since a loss of synchrony is often difficult to resolve and may lead to higher
operational costs for many man-made networks it is an important subject on its own. In networks with a
loss of synchrony there are often clusters of oscillators of which its members are still synchronized and where
there is a lack of synchronization between members of different clusters. This phenomenon is referred to as
cluster synchronization and fills up the gap between a global synchronous state and a asynchronous state.
Knowledge about the transition between a state of global synchronization and synchronization of clusters
may provide insights in how a network obtains and retains global synchronization. The stability of a global
synchronous state is often addressed via a master stability function [19]. This master stability function is ob-
tained via a decoupling of the variational equations which describe the dynamics of the network nodes. After
aquiring a master stability function it allows one to determine the stability by means of a stability measure
such as Lyapunov exponents. It turns out that a variety of variables play an important role in whether a net-
work attains a state of global synchrony. In particular, the topology of a network, its nodal dynamics as well
as the coupling between the nodes provide an essential contribution to the state of a network. In contrast
to this theory of synchronizing networks there is still much to explore in regard to cluster synchronization.
Recently published papers have shown that the usage of Representation Theory and Group Theory is well
suited for this job. This approach started with the work of Golubitsky and Stewart [8] [21]. It became appar-
ent that the symmetries in the topology of a network or its dynamics provide an important tool in the study of
network synchronization. It is even the case that the appearance of network symmetries may lead naturally
to synchrony. These network symmetries are often translated into mathematics via groups as we have seen
in previous chapters. A more general approach can be taken when one uses groupoids instead of groups. A
groupoid is an algebraic structure which generalizes the notion of a group. In a groupoid a product of two
elements is not necessarily defined while a group is always closed under its operation. In this report we will
restrict ourselves to group structures and advice the reader to look in [9] for a more general approach involv-
ing groupoids. Here we will follow the main thread of [22] and [20] which provides us with the theory for this
chapter. In these papers one assigns group structures to clusters of network nodes. This is exactly what we
will do and so their approach plays a central role in this chapter.

19
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3.1. Symmetry groups for network clusters

A network is described by means of its dynamics along with its topology. This yields a wide variety of possible
networks. Hence, we need to limit our scope and choose to deal solely with a particular symmetric network.
Nevertheless, the ideas presented below may still be generalized to arbitrary symmetric networks. Below, we
will only look at a symmetric ring network with eight nodes, see figure 3.1. The nodes are depicted by red
circles and are the oscillators in the network. These oscillators all have their own angle θi where i indicates
that we deal with the i -th oscillator. Notice that the numbering is provided next to each oscillator in figure
3.1. Each oscillator has its own natural frequency ωi and is coupled to its neightbours by a link with strength
K > 0. This eight node network will follow the dynamics provided by the Kuramoto model with second-
order oscillators. This means that the angles of each oscillator will change over time according to 1.2 for ring
networks,

θ̈i = D̂i θ̇i +ωi −K sin(θi −θi−1)−K sin(θi −θi+1) (3.1)

where 1 ≤ i ≤ 8. In order to obtain a ring structure we let the indices of the angles satisfy 0 := 8, 9 := 1.
Although we assume that the dynamics of each angle θi follows 3.1, it is often the case that the angles behave
differently among the network nodes. This is achieved in this network by differences in parameter values
such as the natural frequencies ωi , coupling strength K and damping parameters D̂i . The frequencies ωi

provide the intrinsic behaviour of each oscillator. The parameters D̂i are chosen such that D̂i ≤ 0 and these
reflect the damping properties in the system. For instance, if D̂i = 0 then there is no damping and we may
neglect the first-order derivatives in the system. Differences in these parameters have effects as they can
change the dynamics of the network. The coupling strength plays also a very important role since oscillators
with the same frequency ωi may behave differently over time due to the influence of their neighbours. Since
we are interested in oscillators within the eight node network which behave similarly we will group these
similar oscillators in a cluster. Since all oscillators within such a cluster behave similarly they form a so-called
synchronized cluster. This means mathematically that the oscillators within a cluster have angles with equal
time derivatives. If a synchronized cluster contains all network nodes, i.e. we have only one cluster with,

θ̇1 = θ̇2 = θ̇3 = θ̇4 = θ̇5 = θ̇6 = θ̇7 = θ̇8 (3.2)

then the network is in a global synchronous state. This particular state is often desired in networks, but
we will devote more of our time to states where there are multiple synchronized clusters, i.e. the angles of
oscillators between two different clusters have a difference in time derivative while the angles of oscillators
within each cluster have an equal time derivative. Below we aim to analyze these different synchronized
clusters. In particular, we are interested in how clusters retain their synchrony. For this we perform a stability
analysis which relies upon an approach which involves symmetries of the underlying network structure and
network dynamics. Before we dive into more details we first address the important problem of finding all
different clusters. For this, we take a closer look at the symmetry group provided by the network structure
of the regular octagon. It has a rotational symmetry of order 8 given by a rotation over an angle 2π/8 and a
reflection symmetry in each of the bisectors of its internal angles. This symmetry group is called the Dihedral
group of order 16 and is denoted D16. This group is generated by a rotation ρ over an angle of 2π/8 and a
reflection σ through a line. These elements satisfy ρ8 = E and σ2 = E where E denotes the idenity element of
the group. The symmetry group, D16, may be captured by the set,

D16 := {E ,ρ, . . . ,ρ7,σ,ρσ, . . . ,ρ7σ} with ρ = (12345678) and σ= (28)(37)(46). (3.3)

1

8

7

6

5
σ

4

3

2

ρ

Fig. 3.1: Ocagon.
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This symmetry group on the regular octagon has a rich structure, but it is important to notice that the network
dynamics may not be compatible with this symmetry group. For instance, if not all nodes have the same
dynamics then we cannot interchange the nodes with different dynamics by means of a symmetry presented
in the topological structure and expect the global network dynamics to be the same as before this operation.
However, when we deal with multiple synchronized clusters there may be a way around this problem. Since
the nodes within a synchronized cluster have similar dynamics they are allowed to be interchanged among
themselves. A way in which we may interchange these nodes within a synchronized cluster is described in
[22]. To explain their method, we take a closer look at the subgroups of D16. The group D16 has seventeen
nontrivial subgroups, with 3 subgroups of order eight, 5 subgroups of order four and 9 subgroups of order
two. These are all depicted in a so-called subgroup diagram in figure 3.2 below.

D16

〈σρ,ρ2〉 〈ρ〉 〈σ,ρ2〉

〈σρ5,ρ4〉 〈σρ3,ρ4〉 〈ρ2〉 〈σ,ρ4〉 〈σρ2,ρ4〉

〈σρ〉 〈σρ5〉 〈σρ7〉 〈σρ3〉 〈ρ4〉 〈σ〉 〈σρ4〉 〈σρ2〉 〈σρ6〉

〈E〉

Fig. 3.2: Subgroup diagram of D16.

This diagram depicts subgroups in descending order, so subgroups of order eight are given right below D16

and groups of order four below those of order eight and those of order two below those of order four. The
diagram ends in the trivial subgroup 〈E〉 of order one. It can be verified that the subgroups of order eight are
either isomorphic to the Dihedral group D8 or to the cyclic group Z8, this last group is the binary structure
obtained by addition modulo eight on the integers. Similarly, the groups of order four are either isomorphic
to the Klein Four group or to the cyclic groupZ4 of addition modulo four on the integers. Finally, all groups of
order two are isomorphic to Z2 of addition modulo two on the integers. Therefore, we will confine ourselves
from now on to these eight groups along with the trivial subgroups D16 and 〈E〉. These subgroups will provide
us with all allowed network configurations. For this, we restrict the action for each of these subgroups to a
certain cluster of our network. These groups will be referred to as being cluster groups since they act on a
cluster instead of the whole network. By taking direct products of these cluster groups we capture network
dynamics for different cluster configurations. The resulting direct products are groups and define a certain
permutation representation on the whole network. Note that the whole group D16 and the cyclic group Z8

need at least eight network nodes to act on. Therefore, we use these groups to describe global synchronization
in which there is only one cluster containing all network nodes. Moreover, the trivial group 〈E〉 can be used
on each network node which leads to a direct product group 〈E〉8, where the supercript indicates that this
direct factor is repeated eight times in the direct product. This direct product group yields a permutation
representation D : 〈E〉8 →GL8 (C) which sends the identity element E to the 8×8 identity matrix. This trivial
representation is not of much use here so we won’t discuss it anymore. The remaining subgroups will lead
to more than one cluster within our network and are therefore of more interest to us. We emphasize that we
abbreviate a direct product with n direct factors, G × . . .×G , for a group G by Gn and write all possibilities for
the allowed cluster configurations in a table to get an overview of the situation.

〈E〉8 Z4
2 Z3

2 ×〈E〉2 Z2
2 ×〈E〉4 Z2 ×〈E〉6 D8 ×Z2

2 D8 ×Z2 ×〈E〉2 D8 ×〈E〉4 D16

Z4 ×Z2
2 Z4 ×Z2 ×〈E〉2 Z4 ×〈E〉4 D8 ×Z4

Z2
4 Z6 ×〈E〉2

Z8

Table 3.1: Cluster configurations for a regular octagon.
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The former table shows a wide variety of allowed symmetry groups for network clusters within an octagon
shaped network. However, this characterization by means of direct products of clusters groups is not specific
enough as it may lead to network configurations that are dynamically impossible. Moreover, some cluster
configurations cannot be uniquely assigned to a specific network configuration. In order to explain these as-
sertions we take a closer look at the cluster configurationsZ2

4 andZ2
2×〈E〉4. The non-uniqueness follows from

the figures 3.3 and 3.4 below. In these figures we depicted network configurations corresponding to the clus-
ter configuration Z2

4. The clusters are indicated by color such that blue colored nodes belong to one cluster
and red colored nodes belong to another cluster. Hence, the dynamics between a red colored node and a blue
colored node is different, so the time derivative of their respective angles differ. In figure 3.3 we depicted a
network configuration which has an alternating pattern where a blue node is followed by a red node and vice
versa. Figure 3.4 shows a similar pattern where two blue nodes are followed by two red nodes and vice versa.
These figures show that there are at least two network configurations that are dynamically valid and both of
them correspond to the same cluster configuration Z2

4. In essence both of these network configurations may
lead to different dynamical behaviour. Due to the fact that there are many allowed network configurations
we will later choose only one network configuration for each allowed cluster configuration of table 3.1.
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Fig. 3.3: group Z2
4.
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Fig. 3.4: Group Z2
4.
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Fig. 3.5: Group Z2
2 ×〈E〉4.
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Fig. 3.6: Group Z3
2 ×〈E〉2.

The cluster configurations of figures 3.3 and 3.4 are dynamically valid. This is in contrast to all configura-
tions for Z2

2 ×〈E〉4. This may be observed from figure 3.5 above. In this figure we depicted the two clusters
containing two nodes by either red colored nodes or blue colored nodes. The remaining clusters which only
contain one node each are depicted by different colored nodes. It turns out that the dynamically valid net-
work configurations are those in which nodes within a synchronized cluster have neigbouring nodes with a
similar behaviour among themselves. This characterization is solely based upon the fact that we are not able
to block diagonalize the coupling matrix in a way as discussed in the previous chapter if this property is not
satisfied. In order to see what this means graphically, we consider figure 3.5 where one blue node neighbours
to an orange node while the other neighbours to a cyan colored node. Since the cyan colored node behaves
differently from the orange colored node it leads to an invalid configuration. Since we could not find any al-
lowed network configuration for this group we characterized it as an invalid cluster configuration. However, if
we merge two one-node clusters we obtain a valid configuration such as the one in figure 3.6. All of the invalid
cluster configurations are highlighted in blue in table 3.1. Hence, from now on we will solely focus upon the
remaining allowed cluster configurations. In order to deal with the non-uniqueness of the allowed network
configurations we limit our scope and choose the network configurations in which the node dynamics are
distributed equally or has the most alternating arrangement. Hence, we choose the network of figure 3.3 over
the one presented in figure 3.4. To avoid misunderstandings, we will show networks of table 3.1 graphically
whenever we use them.

In table 3.1 we have several allowed cluster configurations. Some of these cluster configurations can be con-
sidered as being the same. Notice that the product group D8 ×Z2

2 has more symmetries than Z4 ×Z2
2. These

groups are not isomorphic, but both direct factors Z4 and D8 will act on four network nodes. Therefore, both
cluster configurations lead to the same network configurations. The same holds for the groups D8 ×Z4 and
Z4×Z4 and groupsZ8 and D16. This observation motivates our decision to choose to consider only the groups
in the second and third column of table 3.1. One could argue that the groups in the sixth or last column have
more symmetries and lead to a better block diagonalization when we apply the unitary transformation ob-
tained from these groups to a certain coupling matrix of our network. However, the calculations involved to
obtain such a unitary transformation involve significantly more calculations. Also, in section 3.3 we show that
the groups in the second column allow us to merge clusters which shortens our computations substantially.
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3.2. Linearization of Kuramoto dynamics on a ring network.

In the former section we derived all allowed cluster groups for the eight-node network of figure 3.1. These
cluster groups correspond to a synchronized state of the entire network. In order to analyse the effects of
the different allowed synchronized clusters we intend to linearize the dynamics on the eight-node network
as given in 3.1 around a state of cluster synchrony. For this purpose we first rewrite each of the second-order
differential equations as a system of first-order differential equations. Let us introduce the notation, x1,i := θi

and x2,i := θ̇i . Then the second-order differential equation is written as system of two first-order differential
equations as follows,

ẋ1,i = x2,i

ẋ2,i = D̂x2,i +ωi −K sin
(
x1,i −x1,i−1

)−K sin
(
x1,i −x1,i+1

)
.

(3.4)

This system contains only first-order derivatives and allows us to linearize the system around a trajectory.
Since we have n second-order oscillators we obtain n of these systems and therefore 2n first-order differential
equations in total. We write the total system of 2n equations in vector form as,

ẋ1 = x2

ẋ2 = D̂x2 +ω−K f (x1).
(3.5)

The vector x1 has n entries of the form x1,i . Similarly, the vector x2 has n entries of the form x2,i . At last, the
vectorω contains n intrinsic frequencies. At this point, we combine the two equations by writing it as,

ẋ = F (x) (3.6)

where x = [x1, x2]T has 2n entries and the right-hand side of both equations in 3.5 is contained in F (x). Our
next goal is to linearize it around a state of cluster synchrony. For an arbitrary cluster group we denote a state
of cluster synchrony by the vector s. This vector contains for every node within the eight node network a
certain angle position and angle velocity which is determined by the synchronous state of each cluster. By
linearizing around such a state we are able to analyse the effects of small deviations in the angles positions
and angle velocities of the oscillators. To this end, we write x = s +δ where δ is a vector of arbitrarily small
deviations from the cluster synchronous state s. We substitute this expression into 3.6 and find by means of
linearization the following equation

ṡ + δ̇= F (s +δ) = F (s)+DF (s)δ+O
(
δ2) . (3.7)

The D in front of f shows that we deal with the Jacobian of f . We discard the second order terms in the
previous equation and simplify accordingly,

δ̇= DF (s)δ. (3.8)

We can work backwards and expand this expression by taking δ := [δ1,δ2]T where δ1 captures the deviations
with respect to the first n equations and δ2 the deviations with respect to the second n equations. This results
in a system of the form, [

δ̇1

δ̇2

]
=

[
0 I

−K D f (s1) D̂ I

][
δ1

δ2

]
. (3.9)

Here I denotes an n ×n identity matrix and D f (s1) is the Jacobian of f evaluated in a state of synchrony
s1 that corresponds to the deviations vector δ1. In particular, this Jacobian matrix consists of cosines and
it has row sums equal to zero. Its structure is given explicitly below where we used the abbreviation si , j for
cos(si − s j ) to get

D f (s1) =



s1,8 + s1,2 −s1,2 0 0 0 0 0 −s1,8

−s1,2 s1,2 + s2,3 −s2,3 0 0 0 0 0

0 −s2,3 s2,3 + s3,4 −s3,4 0 0 0 0

0 0 −s3,4 s3,4 + s4,5 −s4,5 0 0 0

0 0 0 −s4,5 s4,5 + s5,6 −s5,6 0 0

0 0 0 0 −s5,6 s5,6 + s6,7 −s6,7 0

0 0 0 0 0 −s6,7 s6,7 + s7,8 −s7,8

−s1,8 0 0 0 0 0 −s7,8 s1,8 + s7,8



.
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The system in 3.9 is a coupled system of ordinary differential equations which are linear in the deviations
vector. It describes how deviations in the angles affect the synchronous state. This last dynamical system
will therefore be suitable to study the stability of synchronous states. Since we only consider the first order
terms in the linearization of f we have to keep in mind that the analysis we are about to do is only valid for
small deviations. Besides this assumption we also assume that synchronized oscillators within a cluster have
not only equal derivatives but also equal angles. This means that for instance in the network configuration
of figure 3.4 we take s1,2 = s3,4 = s5,6 = s7,8 and s2,3 = s6,7. This allows us to simplify the Jacobian matrix
D f . In general, this assumption allows us to decouple the former linearized system by means of a unitary
transformation which is obtained by using representations based on cluster groups from table 3.1. We denote
the unitary transformation based on the cluster groups for the angles as in the previous chapter byα. By using
the substitution αδ it follows that system 3.9 can be written as[

δ̇1

δ̇2

]
=

[
0 I

−KαT D f (s)α D̂ I

][
δ1

δ2

]
(3.10)

where we used that αT D̂ Iα = αTαD̂ I = D̂ I by unitarity of the transformation matrix α. The lower left block
in the matrix of the previous system yields a block diagonalization of D f . We emphasize that αT D f (s1)α
only block diagonalizes under the assumption that all angles within a cluster are equal or in this case differ
by a multiple of 2π due to the invariance of the cosine function. The resulting block diagonal matrix has
in the upper left corner a block of dimension equal to the number of clusters in the network. This block
corresponds to deviations on a synchronized manifold. The other blocks correspond to deviations in the so-
called transverse manifold and we will call these blocks, transverse blocks [22]. These represent deviations
in a direction perpendicular to that of the synchronization manifold. Hence, these are the blocks that are of
importance in our stability analysis of synchronous states. To illustrate this we consider for the moment the
network configuration of figure 3.3. The tranformation αT D f (s)α results in a block diagonal matrix of the
form as depicted in figure 3.7.

B1 0 0 0

0 B2 0 0

0 0 B3 0

0 0 0 B4




Fig. 3.7: Block diagonal matrix.

The block diagonal matrix depicted above has a two-dimensional block B1, two one-dimensional blocks B2

and B3 and a four-dimensional block B4. Notice that the system in 3.10 is only partially decoupled by this
transformation due to two higher dimensional blocks B1 and B4. The block B1 corresponds to deviations on
a synchronization manifold while blocks B2 down to B4 correspond to deviations perpendicular to that of the
synchronization manifold [22]. The blocks B2, B3 and B4 are of interest to us as they can distort the cluster
synchronous state of figure 3.3. Since the block B4 has dimension 4×4 we diagonalize this matrix by using an
eigendecomposition. In this way, we further decouple the system of 3.10 by using a suitable transformation.
To make this explicit we write 3.10 according to the block diagonalization as depicted in figure 3.7.

δ̇1

δ̇2,1

δ̇2,2

δ̇2,3

δ̇2,4

=


0 I

−K B1 0 0 0

D̂I
0 −K B2 0 0
0 0 −K B3 0
0 0 0 −K P−1B4P




δ1

δ2,1

δ2,2

δ2,3

δ2,4


Here P denotes the matrix with eigenvectors resulting from the eigendecomposition of B4. It decouples the
differential equations such that we only need to consider the decoupled differential equations corresponding
to the deviations δ2,1 up to δ2,4. Hence we do not consider the first component δ1, but only the components
δ2,i where the index i refers to the deviations that correspond to the i -th block of figure 3.7. A stability analysis
for these deviations by means of Lyapunov exponents will determine the linear stability of the synchronous
state
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3.3. Merging clusters in a ring network.

Since there are many cluster configurations valid in our eight-node network, see table 3.1, we would have to
determine many similarity transformations. Luckily, there is a way to avoid such a cumbersome process. This
is done by merging clusters and we will treat this procedure below.

The table 3.1 contains several columns with different cluster groups. We did this on purpose since a clus-
ter group appearing below another cluster group within the same column can be formed by merging clusters.
Hence, if we start with a network that has a cluster group as presented at the top of one of the colmuns,
then we can work our way down the table to obtain a network having a cluster group at a bottom row of this
column. Moreover, if we have a unitary transformation corresponding to a permutation representation of a
cluster group at the top row of table 3.1, then we are just a small step away from a unitary transformation for
each of its underlying cluster groups. One way to go about this process of merging clusters is presented below
for the second column of table 3.1.

Consider the group Z4
2 := Z2 ×Z2 ×Z2 ×Z2 of order sixteen. This group can be viewed as an analogue of

the cartesian product for sets in which each entry has a group structure of addition modulo two on the inte-
gers. This cluster group is given in the first row and second column of table 3.1. This group can act on the
set of network nodes as depicted in figure 3.8 below where each direct factor Z2 represents the possibility to
interchange two network nodes having the same color.
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Fig. 3.8: Four clusters.

1

8
7

6

5

4
3

2

Fig. 3.9: Three clusters.
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Fig. 3.10: Two clusters.
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Fig. 3.11: One cluster.

Similarly, the network configurations of figure 3.9 up to figure 3.11 correspond to cluster groups Z4 ×Z2
2, Z2

4
and Z8. Our goal is to derive a unitary transformation based on a cluster group of the network configuration
in figure 3.8 to a unitary transformation that is based on a cluster group of the network configuration in fig-
ure 3.9. From there, we repeat this process and go from the network configuration in figure 3.9 to the one in
figure 3.10. Notice, that the transition from the network in figure 3.8 to that of figure 3.9 is given by merging
the clusters (2,6) and (4,8).

Before we merge clusters we first derive the unitary transformation with respect to the cluster group Z4
2. This

group is generated by four elements a := (1,0,0,0) ,b := (0,1,0,0) ,c := (0,0,1,0) and d := (0,0,0,1).
A permutation representation of this group is given by,

D (a) =



0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, D

(
b
)=



1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, D (c) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1


, D

(
d

)=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0


(3.11)

This group has sixteen conjugacy classes, each containing one group element. This follows from the fact that
the direct factors are abelian groups, so in particular the direct product itself is abelian. Hence, there are six-
teen irreducible representations and the Dimensionality Theorem tells us that they are all one-dimensional.
We let the conjugacy classes be defined as follows,

C1 =
{
E

}
,C2 =

{
a
}
,C3 =

{
b
}
,C4 =

{
c
}
,C5 =

{
d

}
,C6 =

{
ab

}
,C7 =

{
ac

}
,C8 =

{
ad

}
C9 = {bc},C10 =

{
bd

}
,C11 =

{
cd

}
,C12 =

{
abc

}
,C13 =

{
bcd

}
,C14 =

{
acd

}
,C15 =

{
abd

}
,C16 =

{
abcd

}
(3.12)
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Each character of an irreducible representation of our group coincides with the representation itself as they
are all one-dimensional. The character table is easily found since each element is either of order one or two
so it must be sent to either 1 or −1 by the homomorphism property. The character table is presented below.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

D (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D (2) 1 -1 1 1 1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1
D (3) 1 1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1
D (4) 1 1 1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 -1
D (5) 1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1
D (6) 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
D (7) 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
D (8) 1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 1
D (9) 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
D (10) 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1
D (11) 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 1 -1 1
D (12) 1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1
D (13) 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1
D (14) 1 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1
D (15) 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 -1 -1
D (16) 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1

Notice that all rows are orthogonal, so these are indeed inequivalent representations by Corollary 3. They
are necessarily irreducible being one-dimensional representations. At this point, we may calculate the uni-
tary transformation by means of the projection operator as given in 2.55. This is done in Matlab due to the
lengthy computation. It turns out that the unitary transformation, denoted by α, is as given in 3.13 below.

α= 1
2

p
2



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1


, β= 1

2

p
2



1 0 0 0 1 0 0 0

0 1p
2

0 1p
2

0 1p
2

0 1p
2

0 0 1 0 0 0 1 0

1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1


. (3.13)

At this point we only consider the matrix α, the matrix β is used later on. The clusters (2,6) and (4,8) can
be merged such that we only have three clusters instead of four. In this way we obtain the configuration as
presented in figure 3.9. The unitary transformation can then be obtained by repeating a similar computa-
tion as done above, but this time with a different symmetry group. The group we should use here is the one
corresponding to the merged clusters as in figure 3.9. This provides yet another permutation representation.
Since the resulting permutation representation will differ from the original one of 3.11 it will lead to a dif-
ferent unitary transformation. The computations we need in order to obtain a unitary transformation are
often long due to the fact that we have to determine all irreducible representations. Luckily, we can avoid
this long computation by using the structure of the unitary transformation we already found. We will explain
this process that we found in [22]. A closer look at the unitary transformation in 3.13 shows that the clusters
(2,6) and (4,8) have corresponding columns of the form (0,1,0,0,0,1,0,0)T and (0,0,0,1,0,0,0,1)T , i.e. a col-
umn with a nonzero contribution on the entries 2 and 6 for cluster (2,6) and a nonzero contribution on the
entries 4 and 8 for cluster (4,8). These are the second and fourth column in α. By taking the sum of these
columns we end up with a vector (0,1,0,1,0,1,0,1)T which has a one at each node within the merged cluster,
i.e. a one at position i for node i within the merged cluster (2,6,4,8). Next, we normalize this vector to get
1
2 (0,1,0,1,0,1,0,1)T . Now we remove the second and fourth columns of α which correspond to the clusters
(2,6) and (4,8). We replace one of these columns with the new column 1

2 (0,1,0,1,0,1,0,1)T . We choose to
delete the fourth column and replace the second column. This results in a matrix with only seven columns.
At this point, we are missing one column in order to form a basis. This missing column will be the orthogonal
complement of the column space, i.e. the nullspace of these seven columns. The kernel of the linear map
β in 3.13, that represents the transpose of this matrix with seven columns, is the linear span of the vector
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1
2 (0,1,0,−1,0,1,0,−1)T . This will be the missing column in our new similarity transformation. In summary
we obtain the similarity transformation α′ as given in 3.14 below.

α′ = 1
2

p
2



1 0 0 0 1 0 0 0

0 1p
2

0 1p
2

0 1 0 0

0 0 1 0 0 0 1 0

0 1p
2

0 − 1p
2

0 0 0 1

1 0 0 0 −1 0 0 0

0 1p
2

0 1p
2

0 −1 0 0

0 0 1 0 0 0 −1 0

0 1p
2

0 − 1p
2

0 0 0 −1



, α′′ = 1
2

p
2



1
2 0

p
3

2 0 1 0 0 0
1
2

1p
6

− 1
2
p

3
1p
2

0 1 0 0

1
2 −

√
2
3 − 1

2
p

3
0 0 0 1 0

1
2

1p
6

− 1
2
p

3
− 1p

2
0 0 0 1

1
2 0

p
3

2 0 −1 0 0 0
1
2

1p
6

− 1
2
p

3
1p
2

0 −1 0 0

1
2 −

√
2
3 − 1

2
p

3
0 0 0 −1 0

1
2

1p
6

− 1
2
p

3
− 1p

2
0 0 0 −1



. (3.14)

The matrix α′′ will be used later on. A similar computation can be carried out to obtain a similarity trans-
formation that corresponds to the network configuration of figure 3.10. From there on it is possible to find
a similarity transformation for the global synchronous state of figure 3.11 too. This can also be achieved in
one step by essentially the same process. To this end, we observe that in order to go from the network of
figure 3.9 to the one in figure 3.11 we need to merge the clusters (2,4,6,8), (1,5) and (3,7). Again, we have are
looking for columns in α′ with solely a nonzero contribution at entries indicated by the clusters. We see that
the first column corresponds to cluster (1,5), while the second and third column correspond to the clusters
(2,4,6,8) and (3,7) respectively. Hence, we take the sum of the vectors (1,0,0,0,1,0,0,0)T , (0,1,0,1,0,1,0,1)T

and (0,0,1,0,0,0,1,0)T . This results in a vector that becomes after normalizing, 8−1/2(1,1,1,1,1,1,1,1)T . We
replace the first column of α′ and replace the second and third columns by vectors containing only zeros.
The orthogonal complement is this time spanned by two vectors. These two vectors replace the two empty
columns. The result is the unitary transformation α′′ of 3.14.

This seems very convenient as it provides the possibility to go quickly from one cluster configuration to
another. However, the unitary transformation α′′ will be different than the one obtained by taking an in-
termediate step where one first merges clusters (1,5) and (3,7) of figure 3.9. To be more precise, the α′′ of 3.14
decouples the matrix in 3.10 in a different way than the unitary transformation obtained by an intermediate
step. In the first case, there appears a 2×2 block while in the last case this 2×2 block are two 1×1 blocks. We
rather have fewer large blocks after applying the similarity transformation. Hence, we only use the similarity
transformations that are obtained by taking all intermediate steps into account. To give the complete picture
we provide the two unitary transformations corresponding to figures 3.10 and 3.11 below by α

′′′
and α(i v)

respectively.

α′′′ = 1
2

p
2



1p
2

0 1p
2

0 1 0 0 0

0 1p
2

0 1p
2

0 1 0 0
1p
2

0 − 1p
2

0 0 0 1 0

0 1p
2

0 − 1p
2

0 0 0 1
1p
2

0 1p
2

0 −1 0 0 0

0 1p
2

0 1p
2

0 −1 0 0
1p
2

0 − 1p
2

0 0 0 −1 0

0 1p
2

0 − 1p
2

0 0 0 −1


, α(i v) =



1
2 − 1

2
1p
2

0 1 0 0 0
1
2

1
2 0 1p

2
0 1 0 0

1
2 − 1

2 − 1p
2

0 0 0 1 0
1
2

1
2 0 − 1p

2
0 0 0 1

1
2 − 1

2
1p
2

0 −1 0 0 0
1
2

1
2 0 1p

2
0 −1 0 0

1
2 − 1

2 − 1p
2

0 0 0 −1 0
1
2

1
2 0 − 1p

2
0 0 0 −1


. (3.15)

The unitary matrices α,α′,α′′′ and α(i v) are the matrices we use for the cluster configurations as given in
the second column of table 3.1. A similar computation can be carried out for the cluster group Z3

2 ×〈E〉2 as
presented in the third column of table 3.1. For this cluster group we have a network configuration as depicted
in figure 3.6. It turns out that a merge of two two-node clusters for this cluster configuration yields an invalid
network configuration. In particular, we are not able to carry out the process of merging clusters to obtain a
unitary matrix with a better diagonalization property.





4
Basin of Attraction

The dynamics of a network is often vulnerable to perturbations. For instance the dynamics of a power-grid
could be disturbed by the seasonal volatility in demand. Moreover, power-grids may also suffer under large
scale perturbations such as a power outage. The consequences of these different types of perturbations as
well as methods to analyze them has drawn much attention throughout the years. In the case of small pertur-
bations in network dynamics there are practical analytical tools available such as a linear analysis by means
of the Lyapunov exponents. On the other hand, the influence of large perturbations is often difficult to derive
analytically. This problem plays a central role in this chapter. We will analyse these large perturbations by
taking all points in phase space into account which tend to evolve towards a specific attractor of the dynami-
cal system. These points fall within the so called basin of attraction. This basin of attraction can be quantified
by a (higher dimensional) volume in phase space. Below, we intend to determine the basin of attraction of a
general n-node ring network capturing the dynamics provided by the Kuramoto model. We measure the size
of the basin of attraction by fitting a ball of appropriate dimensions. Moreover, we will provide a proof for the
largest ball we can fit inside the basin of attraction for a three node network, i.e. we determine the smallest
distance between the chosen attractor and its neighbouring equilibrium points.

The outline of this chapter is as follows. We start with a motivation of our approach to determine the size
of the basin of attraction. Next, we consider a simple ring network consisting of three oscillators. This toy
model serves to illustrate the ideas used in the general n-node ring network. Moreover, it shows that our
approach is computationally efficient for relatively low dimensions. At last we consider the general n-node
ring network where we point out the nontrivial generalization of the argument used in the three oscillator
network.

4.1. Motivation

The dynamics in the networks we are about to discuss follow the Kuramoto model as presented in (1.1). Since
we are in particular interested in ring networks which only have a coupling between neighbouring nodes.
This observation along with the assumption that ωi = 0 reduces the dynamics to,

dθi

d t
=−K sin(θi −θi−1)−K sin(θi −θi+1) (4.1)

for i = 1, . . . ,n and where we define θ0 := θn and θn+1 := θ1. In order to determine the size of the basin of at-
traction analytically it would be satisfactory to have information about the location of the equilibria of (4.1).
However, the nonlinearity due to the sine functions in (4.1) makes it very difficult to locate all equilibria. In
[26] the synchronization of a similar model is studied and a novel algorithm is provided to find equilibria.
Below we won’t find all equilibria explicitly, but we will find analytical expressions for the angles along with
an approximation for the minimal Euclidean distance between an attractor and any other equilibrium point.
To this end, we first reduce the dimension of system (4.1). This is done, by using a property of the equilibria
which can be readily verified. Note that if we find an equilibrium point of (4.1) then an equal adjustment of
each of its coordinates yields another equilibrium point, i.e. the equilibria of (4.1) form lines in phase space.

29
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Fig. 4.1: Phase plane with n = 2 and K = 1. Fig. 4.2: Rotated phase plane with n = 2 and K = 1.

In figure 4.1 we have depicted the phase plane corresponding to (4.1) with n = 2 and K = 1. We also added
three blue lines consisting of equilibrium points. Notice that there is a change in angle in the horizontal
direction as well as in the vertical direction. Since the dynamics is only present in the orthogonal direction
relative to each blue line it makes sense to rotate the vector field such that a blue line going through the origin
coincides with the θ2 axis. The result of such a ’rotation’ is given in figure 4.2. Here there is no change in angle
in the vertical direction, so θ̃2 will be constant. This is mathematically visible in the system corresponding
to the dynamics of figure 4.2 by the fact that the time derivative of θ2 will be equal to zero. Besides this re-
duction of dimension of the system of differential equations, we will also benefit from this rotation when we
try to determine the size of the basin of attraction by means of fitting a circle around an attractor. In order
to determine the radius of the circle we only need to measure in the θ̃1 direction in the rotated phase plane
while we need both directions in the original phase plane. As an example of an approximation of the basin of
attraction we depicted in both figures the same red circle of maximal radius 1

2

p
2π around the attractor (0,0).

For n = 2 it is relatively easy to determine the radius of the circle we try to fit in the basin of attraction. How-
ever, for large n this is still a crucial question that remains unanswered. To cope with this problem one often
searches for a way to apply a well known theorem of LaSalle [13]. For convenience, we first rewrite system
(4.1) as,

dθ

d t
=V (θ) (4.2)

where θ denotes a n ×1 vector containing the phase angles of each oscillator and V : Rn → Rn a vector field
with its i -th component given by the right-hand side of (4.1). At this moment we are able to formulate the
theorem of LaSalle as follows.

Theorem 8 [13]: Let V (θ) be a locally Lipschitz function defined over D ⊆ Rn and Ω ⊆ D a compact set that
is positively invariant with respect to (4.2), i.e. θ(0) ∈Ω implies θ(t ) ∈Ω for all t ≥ 0. Let L (θ) a continuously
differentiable function defined over D such that the total derivative L̇ (θ) satisfies L̇ (θ) ≤ 0 inΩ. Define E to be
the set of all points inΩwhere L̇ (θ) = 0. Let M be the largest invariant set in E with respect to (4.2), i.e. θ(0) ∈ M
implies θ(t ) ∈ M for all t ∈R. Then every solution starting inΩ approaches M as t →∞.

At this point we make a couple of remarks. All functions we will deal with are continuously differentiable over
Rn so in particular locally Lipschitz over a domain D ⊆ Rn . Besides this technicallity we are only interested
in the domain of attraction of the origin so the set E and in particular the set M will contain only the origin.
Since we want to determine the size of the basin of attraction radially we takeΩ to be a closed ball around the
origin excluding any other root of L̇ (θ).

The main issue in the application of this theorem is that it doesn’t tell you how to choose L(θ). We make
an attempt to apply this theorem by means of a natural choice for this function. We introduce our approach
in the following section for a complete network.
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4.2. A Complete Network

Suppose we have a ring network consisting of three oscillators, each following the dynamics provided by the
Kuramoto model. Since all oscillators are coupled to each other we call this a complete network. We assume
a constant coupling K > 0 and denote the phase angle of oscillator i by θi . Moreover, we set the natural
frequency ωi of each oscillator i equal to zero. This results in the following system of differential equations,

dθ

d t
=V (θ) (4.3)

where θ denotes a 3×1 vector containing the phase angles of each oscillator and V :R3 →R3 denotes a vector
field. More specifically we have

θ =
θ1

θ2

θ3

 and V (θ) =
−K sin(θ1 −θ3)−K sin(θ1 −θ2)
−K sin(θ2 −θ1)−K sin(θ2 −θ3)
−K sin(θ3 −θ2)−K sin(θ3 −θ1)


It can be readily verified that (4.3) is invariant under a cyclic permutation of the phase angles and a translation
of each phase angle by the same amount. These transformations are captured by the following expressions,

ρ : (θ1,θ2,θ3) 7→ (θ3,θ1,θ2) and τε : (θ1,θ2,θ3) 7→ (θ1 +ε,θ2 +ε,θ3 +ε) (4.4)

where ε > 0 arbitrarily. We will take advantage of the translation invariance τε as it enables us to rewrite
system (4.3) in a more convenient form. To this end, we observe that the translation invariance takes place in
the n := (1,1,1) direction. It turns out that a rotation of the vector field such that the θ3-axes collapses with n
reduces the dimension of (4.3) to only 2 dimensions. Moreover, it preserves the Euclidean distance between
points in phase space. Hence, it will not affect the size of the basin of attraction around any point in phase
space. To illustrate this rotation mathematically we provide the rotation matrices about the θ3 and θ1-axis
over angles ϕ3 and ϕ1 in counter-clockwise direction by

Rθ3 (ϕ3) =
cos(ϕ3) −sin(ϕ3) 0

sin(ϕ3) cos(ϕ3) 0
0 0 1

 and Rθ1 (ϕ1) =
1 0 0

0 cos(ϕ1) −sin(ϕ1)
0 sin(ϕ1) cos(ϕ1)

 (4.5)

respectively. The rotation which makes n coincide with the θ3-axis is done in two steps. First we rotate n about
the θ3-axis over an angleϕ3. Secondly, we rotate the result of the previous step about the θ1-axis over an angle
ϕ1. From figure (4.3) it is clear that the red colored arrow, which depicts the first and second component of n,
yields an angle of size ϕ3 = π

4 with respect to the θ2-axis.

θ1

θ2

ϕ3

[
1
1

]

Fig. 4.3: Rotation about the θ3-axis

θ2

θ3

ϕ1

[p
2

1

]

Fig. 4.4: Rotation about the θ1-axis

A simple substitution of ϕ3 = π
4 into the expression of Rθ3 (ϕ3) in (5.4) yields a rotated vector of n given by,

Rθ3

(π
4

)
·n =


1p
2

− 1p
2

0

1p
2

1p
2

0

0 0 1




1

1

1

=


0
p

2

1

 . (4.6)
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The result lies clearly in the θ2-θ3 plane. The red arrow in figure 4.4 is given by the result of (4.6) where we
neglect the first entry. Since we want an explicit representation of Rθ1

(
ϕ1

)
we determine both cos

(
ϕ1

)
and

sin
(
ϕ1

)
. Recall that cos

(
ϕ1

)
is equal to the dot product between the red vector and an arbitrary vector along

the θ3 axis divided by the product of their magnitudes, i.e.

cos
(
ϕ1

)= 1p
3 ·1

[p
2 1

] ·[0
1

]
= 1p

3
. (4.7)

The angleϕ1 is clearly in the interval [0,π]. Hence we writeϕ1 = arccos(x) where x = (p
3
)−1

by (4.7). A simple
derivation yields,

sin
(
ϕ1

)= sin(arccos(x)) = sin(ϕ1) =
√

1−cos2
(
ϕ1

)=√
1− (cos(arccos(x)))2 =

√
1−x2 =

√
2

3
(4.8)

By using (4.7) and (4.8) we are able to write Rθ1

(
ϕ1

)
explicitly and provide the final rotation,

Rθ1

(
ϕ1

)
Rθ3

(π
4

)
·n = Rθ1

(
ϕ1

) ·


0
p

2

1

=


1 0 0

0 1p
3

−
√

2
3

0
√

2
3

1p
3




0
p

2

1

=


0

0
p

3

 . (4.9)

These two rotations can be captured by a single rotation matrix R which is defined by R := Rθ1

(
ϕ1

)
Rθ3

(
ϕ3

)
.

In this way, the rotation of n can be done in only one step,

R ·n =


1p
2

− 1p
2

0

1p
6

1p
6

−
√

2
3

1p
3

1p
3

1p
3




1

1

1

=


0

0
p

3

 . (4.10)

The result clearly lies on the θ3 axis. This rotation matrix allows us to rotate the vector field of (4.3). Since
a vector field is a vector-valued function, it attaches to each point in the plane a vector. Hence, we need to
rotate each point by the same angle as the vectors that are attached to these points. This yields the rotated
version of (4.3),

dθ

d t
= RV

(
R−1θ

)
(4.11)

where R is a rotation matrix such as the one in (4.10). It can be readily verified that the rotation amounts to a
transformation θ 7→ R−1θ. Since R is a rotation matrix its inverse is equal to its transpose, i.e. R−1 = RT . This
property will simplify our next calculation in which we determine the rotated vector field explicitly. We have,

RV
(
R−1θ

)= RV




1p
2

1p
6

1p
3

− 1p
2

1p
6

1p
3

0 −
√

2
3

1p
3



θ1

θ2

θ3


= RV




θ1p
2
+ θ2p

6
+ θ3p

3

− θ1p
2
+ θ2p

6
+ θ3p

3

−
√

2
3θ2 + θ3p

3




= R


−K sin

(
θ1p

2
+

√
3
2θ2

)
−K sin

(p
2θ1

)
K sin

(p
2θ1

)−K sin
(
− θ1p

2
+

√
3
2θ2

)
K sin

(
− θ1p

2
+

√
3
2θ2

)
+K sin

(
θ1p

2
+

√
3
2θ2

)
=


−p2K sin

(p
2θ1

)− Kp
2

sin
(
θ1p

2
+

√
3
2θ2

)
+ Kp

2
sin

(
− θ1p

2
+

√
3
2θ2

)
−K

√
3
2 sin

(
θ1p

2
+

√
3
2θ2

)
−K

√
3
2 sin

(
− θ1p

2
+

√
3
2θ2

)
0

 .

Notice that the last entry is zero due to the fact that the θ3-axis of the original system coincides with the n
direction. This means that there is no change in dynamics along the θ3 axis of the rotated system, so we may
as well neglect this last equation and consider the dynamics given byθ̇1

θ̇2

=

−p2K sin
(p

2θ1
)− Kp

2
sin

(
θ1p

2
+

√
3
2θ2

)
+ Kp

2
sin

(
− θ1p

2
+

√
3
2θ2

)
−K

√
3
2 sin

(
θ1p

2
+

√
3
2θ2

)
−K

√
3
2 sin

(
− θ1p

2
+

√
3
2θ2

)
 (4.12)
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The figures below show the original three dimensional phase space from two different viewpoints. Figure 4.5
can be seen as the dynamics provided by the original dynamics given by three differential equations, while
figure 4.6 depicts the dynamics given by the two dimensional rotated system of differential equations. The
red ball indicates an approximation of the basin of attraction which we intend to find below. In figure 4.5 we
see diagonal lines which are lines consisting of equilibria. These diagonal lines are points in figure 4.6 due to
the different point of view of the dynamics depicted in figure 4.5.

Fig. 4.5: Phase space of 5.1 with K = 1. Fig. 4.6: Rotation phase space of 5.1 with K = 1.

In order to determine the basin of attraction of this rotated system of differential equations, we apply The-
orem 8 as presented in the motivation of this chapter. In this exposition we restrict our 3× 1 vector θ to a
2×1 vector containing only θ1 and θ2. Moreover, the sets D ⊆Rn andΩ⊆ D in Theorem 8 will be determined
along the way. First, we will find a suitable continuously differentiable function L : R2 → R. To this end, we
observe that (4.12) is a gradient system, i.e. there is a scalar function V̂ : R2 → R such that θ̇ = ∇V̂ (θ). The
scalar function V̂ (θ) may be written explicitly as,

V̂ (θ) = K cos
(p

2θ1

)
+K cos

(
θ1p

2
+

√
3

2
θ2

)
+K cos

(
− θ1p

2
+

√
3

2
θ2

)
. (4.13)

This provides us with the following candidate, L (θ) :=−V̂ (θ). To verify whether it satisfies the required con-
ditions of Theorem 8 we calculate its total derivative. Although it is not difficult to find it explicitly as shown
in Appendix A, we may also derive it as follows.

L̇ (θ) = d

d t

[−∇V̂ (θ)
]=−∇V̂ (θ) · θ̇ =−∇V̂ (θ) · [∇V̂ (θ)

]=−‖∇V̂ (θ)‖2 (4.14)

Hence, L̇ (θ) ≤ 0. Moreover, it shows that its roots coincide with the equilibria of our system of differential
equations in 4.12. Since we want to determine the size of the basin of attraction of the origin we want E as
in Theorem 8 to contain only the origin. By 4.14 it is clear that the origin is indeed a root of L̇ (θ). However,
there are more roots of L̇ (θ) over R2. These other roots need to be excluded from the ballΩ⊆R2 of Theorem
8. Moreover, we want this ball Ω to be as large as possible to obtain the best bound of the basin of attraction
in arbitrary radial direction. Therefore we determine the smallest Euclidean distance between the origin and
an arbitrary equilibrium of 4.12 by finding all roots of L̇ (θ). To find all roots of L̇ (θ) we turn our attention to
system 4.12 and see that the equilibria must satisfy,

sin
(p

2θ1

)
=−sin

(
θ1p

2
+

√
3

2
θ2

)
= sin

(
− θ1p

2
+

√
3

2
θ2

)
. (4.15)
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The last equality in 4.15 leads with the help of a little trigonometry to,

0 = sin

(
− θ1p

2
+

√
3

2
θ2

)
+ sin

(
θ1p

2
+

√
3

2
θ2

)
= 2cos

(
θ1p

2

)
sin

(√
3

2
θ2

)
(4.16)

If cos
( 1

2

p
2θ1

) = 0, then θ1 = 1
2

p
2(2k1 − 1)π with k1 ∈ Z and so sin

(p
2θ1

) = 0. This means that every term

in 4.15 vanishes. A substitution of θ1 = 1
2

p
2(2k1 −1)π in the first equation of 4.15 yields cos

(√
3
2θ2

)
= 0, i.e.

θ2 = 1
2

√
2
3 (2k2 −1)π. On the other hand, if sin

(√
3
2θ2

)
in 4.16 vanishes, we have θ2 =

√
2
3`2π. Consequently,

the first equality in 4.15 yields

0 = sin
(p

2θ1

)
± sin

(
1

2

p
2θ1

)
= 2sin

(
1

2

[p
2θ1 ± 1

2

p
2θ1

])
cos

(
1

2

[p
2θ1 ∓ 1

2

p
2θ1

])
(4.17)

Thus,

θ1 = 2

3

p
2`1π, θ1 = 2

p
2`1π, θ1 = 1

3

p
2(2`1 −1)π or θ1 =

p
2`1π. (4.18)

The roots that lie as close as possible to the origin lie
√

2
3π away from the origin and are given by(

0,±
√

2

3
π

)
and

(
±1

2

p
2π,± πp

6

)
. (4.19)

These six points are depicted in figure 4.7 by blue points lying on the red circle which provides an approxima-
tion of the basin of attraction. We also depicted six magenta colored points lying further away from the origin.
As can be seen in figure 4.8 we have a repeating hexagon shape and all equilibria of 4.12 are translations of
the blue and magenta colored points.

Fig. 4.7: Phase plane corresponding to 5.12 with K = 1. Fig. 4.8: Phase plane corresponding to 5.12 with K = 1.

For completeness we provide the magenta colored points of figure 4.7 explicitly,

(
±2

p
2
π

3
,0

)
and

(
±
p

2π

3
,±

√
2

3
π

)
. (4.20)

In order to complete the proof we need to show that a circle with a radius ε > 0 smaller than the one if fig-
ure 4.7 doesn’t let any trajectory leave this circle. More specifically, we need to show that the closed ball

B
[

0,
√

2
3π−ε

]
with ε > 0 sufficiently small is positively invariant with respect to 4.12. This we do not show

mathmetically as it may be observed from the direction fields.
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4.3. Ring networks of odd-dimension

In the previous section we succesfully determined the size of the basin of attraction of the origin of a com-
plete network with three oscillators. This three-oscillator network is not only a complete network but also
a ring network. Here, we will try to extend the ideas used in the previous section to ring networks of arbi-
trary size but with an odd number of oscillators. Ring networks are often encountered in practice, examples
include electrical circuits and communication networks such as computer networks. A malfunction within
such a network may cause severe problems. Thereby, it is of practical importance to gain insights into their
global dynamics to be able to prevent such problems from happening. We do this by studying the size of
the basin of attraction. This is often difficult due to nonlinearities in the dynamics as seen in the previous
section. The main tool to perform such a study about the basin of attraction is Theorem 8. It turns out that
the biggest obstacle is the unknown location of all equilibria in phase space. This wasn’t a problem for the
complete network of the previous section. However, for arbitrary networks it is even harder to find the best
radial bound of the basin by a number solely depending on the number of oscillators in the ring network.
The results presented in this section require many lengthy calculations for validating certain conditions of
Theorem 8, but for the most part they follow the same ideas as presented above. Therefore we choose to
move these computations to the appendix and solely address the main line of the argument as well as points
in the argument where we deviate from the case of the complete network as presented in the previous section.

We are dealing with dynamics provided by the n-dimensional system 4.1. This system is invariant under
an analogous translation τε as the one in 4.4. The only difference is that instead of translating three angles
we translate all n angles by the same amount ε > 0. This property is related to an invariance into the n = 1n

direction in phase space, where 1n denotes a n ×1 vector with on each entry a 1. In this way, we are capable
to rotate system 4.1 by means of a rotation matrix. This rotation matrix is given in Appendix B. The resulting
system only shows change in dynamics along the first n−1-dimensions, so we may neglect the n-th differen-
tial equation describing the change in the n-th dimension. The following equation provides the general form
of the first n −2 equations of the rotated system.

dθi

d t
=− Kp

i (i +1)
sin

(
n−2∑
i=1

θip
i (i +1)

+
√

n

n −1
θn−1

)
−

√
i +1

i
K sin

(
−

√
i −1

i
θi−1 +

√
i +1

i
θi

)

+
√

i

i +1
K sin

(
−

√
i

i +1
θi +

√
i +2

i +1
θi+1

) (4.21)

where i ∈ {1, . . . ,n −2} and θ0 := 0. The last n −1-th equation takes on the form

dθn−1

d t
=−

√
n

n −1
K sin

(
n−2∑
i=1

θip
i (i +1)

+
√
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n −1
θn−1

)
−

√
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(
−

√
n −2

n −1
θn−2 +

√
n

n −1
θn−1

)
. (4.22)

If we take n = 3 we obtain system 4.12 for the complete network of three oscillators. In this special case each
sine function in 4.21 and 4.22 contains at most two angles as argument. However, for lager n we see that
the number of angles in the argument of the first sine term in both 4.21 and 4.22 grows with the number of
oscillators. This makes it very difficult to determine the equilibria of this system in a straightforward manner.
In particular, it becomes difficult to determine the size of the basin of attraction. Luckily, we are still able to
provide expressions for the angles as well as an approximation for the size of the basin for ring network with
an odd number of nodes.

Notice that the system given by the combination 4.21 and 4.22 has no translation invariance over an infinites-
imal amount along the angles. This tells us that the equilibria do not lie on lines as is the case in the original
system. In this way we prevent the usage of a free parameter to describe these lines. Moreover, the equilibria
will be points instead of lines. As in the case of the complete network we note that the combination 4.21 and
4.22 gives a gradient system, i.e. θ̇ =∇V̂ (θ) where

V̂ (θ) = K cos

(
n−2∑
i=1

θip
i (i +1)

+
√

n

n −1
θn−1

)
+K cos
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)
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i=1
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(
−

√
i

i +1
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√
i +2

i +1
θi+1

)
. (4.23)

For clarification we emphasize that θ is a n −1×1 vector containing angles θi with 1 ≤ i ≤ n −1. In similar
fashion as before we have a natural candidate for the L (θ) function of Theorem 8, L (θ) :=−V̂ (θ). In order to
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verify whether the condition L̇ (θ) ≤ 0 of Theorem 8 is satisfied we observe that 4.14 still holds. We may also
calculate the total derivative or orbital derivative L̇ (θ), but this computation is rather long and can be found
in Appendix B. From the calculation provided in appendix B it follows that the total derivative can be written
as,

L̇ (θ) =−K 2

[
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(p
2θ1

)
+ sin
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(4.24)

Due to the sum of squares we have indeed L̇ (θ) ≤ 0. However, the question remains when we have equality
L̇ (θ) = 0. This boils down to the calculation of all equilibria of the system given by 4.21-4.22. We won’t calcu-
late all equilibria, but we try to determine the equilibria lying closest to the origin. To this end, we observe that
for the complete network we have two types of equilibria excluding their translations. We have the equilibria
provided by 4.19 which are the blue colored points in figure 4.7 and the equilibria provided by 4.20 which
are the magenta colored points in figure 4.7. The blue points make each sine term in 4.15 vanish while this
does not happen for the magenta colored points. Although we are not able to prove it, we do expect that this
observation generalized to ring networks of arbitrary size. From here on, we assume that n > 3 and n odd. It
is easily seen from the recurrence in the second line of 4.24 that a root of 4.24 or equivalently an equilibrium
point of 4.21-4.22 satisfies the following equalities.
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) (4.25)

Notice, that for every n ∈ N≥3 there are roots that make the sine term with argument
p

2θ1 vanish. These
type of roots were also present for n = 3. The other roots occur when not all sine terms vanish and these will
depend on the dimension of the problem at hand. Unfortunately we are not able to compute all the zeros
explicitly. This would be a daunting task. This can simply be observed by looking at all the equalities. Notice
that each expression in 4.25 that comes after the sine term with only θ1 as argument contains a new angle
which introduces a new degree of freedom. Therefore we need at least these n −2 equalities in the determi-
nation of the equilibria. Moreover, we need a restriction on all of the angles which can only be provided by
the first sine term. This first sine term contains n −1 angles as argument, so in order to simplify one could
use trigonometric identities that will necessarily introduce cosine terms. But it turns out that for these cosine
terms we do not have enough information that could enable us to reduce this problem. Luckily, we are still
able to provide expressions for the equilibria which gives us information on their location. To this end, we
first make the following observation,
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(4.26)

This shows that the argument of the first sine function in 4.25 is equal to the sum of the arguments of all other
sine functions of 4.25. For small n it is possible to use this fact to find all equilibria. However, this remains
problematic for large networks.
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At this point, we introduce coupling terms ki ∈ Z. These coupling terms act as a coupling between the ar-
gument of the sine function with only θ1 as argument and all other sine functions that have a two angle
argument, i.e.

(−1)ki
p

2θ1 +kiπ=−
√

i −1

i
θi−1 +

√
i +1

i
θi . (4.27)

We define k1 := 0 such that this expression holds for all 1 ≤ i ≤ n − 1. Note, that we only translated the ar-
guments of each sine function to the interval stretching from −π/2 up to π/2 where the sine function has a
well-defined inverse. This translation is captured by the coupling terms ki ∈ Z. Hence, the equality in 4.27
defines planes in phase space for each ki ∈Z. By using these planes we are able to define each angle in terms
of the first angle,

θi =
√

1

i (i +1)

i∑
j=1

−
√

j ( j −1)θ j−1 +
√

j ( j +1)θ j

=
√

1

i (i +1)

i∑
j=1

j

[
−

√
j −1

j
θ j−1 +

√
j +1

j
θ j

]

=
√

1

i (i +1)

i∑
j=1

j
[

(−1)k j
p

2θ1 +k jπ
]

.

(4.28)

In this derivation we used that the first equality holds due to the fact that the finite sum has the telescoping
property and that the third equality holds by means of 4.27. It is likely that the triangular sum appearing in
the former expression cannot be simplified due to its dependence on the coupling terms k j . On the other
hand, we are still able to find an expression for the first angle. For this, we use the first equality in 4.25 and
introduce an additional coupling term kn ∈Z to couple the arguments in the same way as we did in 4.27.

− (−1)kn
p

2θ1 −knπ=
n−2∑
i=1

θip
i (i +1)

+
√

n

n −1
θn−1. (4.29)

In combination with 4.27 and 4.26 this will result in,

n−1∑
i=1

[
(−1)ki

p
2θ1 +kiπ

]
=

n−1∑
i=1

−
√

i −1

i
θi−1 +

√
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i
θi

=
n−2∑
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θip
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+
√
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n −1
θn−1

=−(−1)kn
p

2θ1 −knπ.

(4.30)

Consequently,

θ1 =
−∑n

i=1 kiπp
2
∑n

i=1(−1)ki
. (4.31)

when the denominator is unequal to zero. Notice that the denominator can only be equal to zero whenever
the number of odd coupling terms is equal to the number of even coupling terms. Thus, for odd n it follows
that 4.31 gives always the right formula for the first angle. On the other hand, if n is even then the number of
even coupling terms may be equal to the number of odd coupling terms. Hence the denominator could end
up being equal to zero. For this reason we assumed n to be an odd number.

Now that we have an expression for all angles, see 4.28 and 4.31. We will study the equilibria by calculating
Euclidean distances between the origin and points defined by the formulas given above. In order to perform
such a calculation efficiently we observe that some equilibria can be found easily from the equalities in 4.25.
For instance, if we take the first n −2 angles equal to zero and the last angle equal to

p
(n −1)/nπ then this

defines an equilibrium point. There are more equilibria lying
p

(n −1)/nπ away from the origin. Another
example is given by taking θi = π/

p
i (i +1) for all 1 ≤ i ≤ n − 1. Since we were not able to find any point,

except for the origin, lying within a radius of
p

(n −1)/nπ we claim that a ball with this radius provides an
approximation of the basin of attraction for the origin. To test this claim, we use the expressions derived for
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the angles along with a restriction on the coupling terms. This restriction follows from the planes defined by
4.27. For each coupling term we are able to calculate the shortest distance between the plane and the origin.
To this end, we recall that the point-to-plane distance d for a point p and a plane c ′x − e = 0 is given by the
formula [17] [6],

d :=
∣∣c ′p −e

∣∣
‖c‖2

(4.32)

This means that the distance between the origin and a plane defined by 4.27 is given by,

d = |ki |π
2

(4.33)

Therefore we may take ki ∈ {−1,0,1} for 1 ≤ i ≤ n−1 as any other choice would mean that the shortest origin-
plane distance would exceed the radius of the ball in our claim. Similarly, it follows that for the higher dimen-
sional plane of 4.29 holds kn ∈ {−2,−1,0,1,2}. These results will be used in the next section to validate our
claim about the size of the basin for many ring networks.

At this point we have a reasonable restriction on the coupling terms. However, it seems that these bounds
on the coupling terms are not strict enough to find the equilibrium closest to the origin. The expressions for
the angles and restriction on the coupling terms even suggest that there are many possible different equi-
libria. To test if this is indeed the case we exploit the fact that the equilibria must satisfy formula 4.25. For
convenience we abbreviate the arguments of the sine functions that appear in this formula. We let,

xi :=−
√

i −1

i
θi−1 +

√
i +1

i
θi , where 1 ≤ i ≤ n −1. (4.34)

By the result presented in formula 4.26 we may write 4.25 as follows,

− sin

(
n−1∑
i=1

xi

)
= sin(x1) = . . . = sin(xi ) = . . . = sin(xn) . (4.35)

As done earlier, we are able to couple the arguments of each of these sine functions by introducing coupling
terms and express xi for 1 ≤ i ≤ n − 1 in terms of x1, see e.g. 4.27. By this process we can replace each xi

in the argument of the first sine term in 4.35 by an expression in terms of x1. The number of possibilities in
which this can be achieved depends on the size of the network and the parity of the coupling terms. These
possibilities are easily determined by making a tree as the one depicted below.

x1

`π 2x1 +kπ

−x1 +kπ x1 +`π 3x1 +kπ

−2x1 +`π kπ 2x1 +`π 4x1 +kπ

Fig. 4.9: Tree for the sine argument replacement.

where k ∈ 2Z and ` ∈ 1+2Z. The j -th row corresponds to the case n = j +1, e.g. the second row corresponds
to n = 3. The tree is constructed by taking the argument of the first sine in 4.35, i.e.

∑n−1
i=1 xi , and replacing

each xi with 2 ≤ i ≤ n−1 by an expression of the form (−1)γx1+γπwhere γ ∈ {k,`}. Each even row in this tree
corresponds to an odd number for n. Hence, we may replace the first equality in 4.35 by,

− sin([n − (4m +1)] x1) = sin(x1) or sin([n − (4m +3)] x1) = sin(x1) (4.36)

where m ∈ {0,1,2, . . . , ((n − 1)/2)− 1} and n odd. Since x1 := p
2θ1 we are able to find all posibilities for the

first angle by using the former formulas. Since there are many possibilities to choose m it is already clear
that there are many possibilities for the first angle as well. This observation will be made explicit in the next
chapter.
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Results

In this chapter we discuss our findings with respect to the phenomena of cluster synchronization in an eight
node network as well as global stability in ring networks with an odd number of oscillators. These results
follow directly by employing the techniques as discussed in previous chapters. Since these topics address
different properties of a dynamical system, we make a distinction between the results obtained for cluster
synchronization and those obtained for global stability.

We will start our discussion with the topic of cluster synchronization. Since the method we used to anal-
yse this phenomenon doesn’t allow us to study arbitrary networks we were forced to pick a certain topolog-
ical structure. We chose to consider a network with the shape of a regular octagon with dynamics of the
second-order Kuramoto model. This choice was made due to fact that it is a network with a decent number
of oscillators for which we could still perform a large part of our analysis by hand. Moreover, the method we
use requires the knowledge of configurations of angles and parameters that cause a state of cluster synchrony.
Since we could not find these configurations in the literature we decided to write a program that enables us
to find those configurations for an eight-node network. Unfortunately, this process depends on inspection
and remains difficult to measure for large networks. Hence, we emphasize that the results presented in the
coming section are only valid for this particular eight-node ring network with certain configurations.

After the cluster synchronization section we discuss results of global stability in a ring network with an odd
number of oscillators that follow the Kuramoto dynamics. In particular, we present results that revolve
around the size of the basin of attraction of an attractor in phase space. The attractor we chose for our analy-
sis is the origin. This choice is made purely for convenience purposes. Due to the translation invariance of the
sine function within the dynamical system, we may translate other attractors to the origin as well. Therefore,
our analysis is not restricted to only one attractor.

5.1. Cluster synchronization in a ring network.

We studied methods based on network symmetries that allow us to determine the stability of synchronous
network clusters. In Chapter 3 we devoted much of our attention to a network with dynamics provided by the
Kuramoto model on the topological structure of a regular octagon. These dynamics were linearized around
a state of cluster synchrony for each of the top row cluster configurations provided by table 3.1 with the ex-
ception of the blue-highlighted configurations. After this linearization we applied a unitary transformation
in order to decouple the dynamical system at least partially. A similar computation was done for the cluster
configurations presented in second down to the fourth row of table 3.1. However for these three rows of clus-
ter configurations we were able to merge clusters in the unitary transformation corresponding to the top row
cluster configurations. In this way we could shorten the computation for obtaining unitary transformations
corresponding to particular cluster configurations that are able to decouple the linearized system. The re-
sulting decoupled blocks, except for the upper left block, determine whether the system remains in a state of
cluster synchrony or not. We will devote more of our attention to these transverse blocks in this section and
analyze the stability of each cluster configuration presented in table 3.1 except for those highlighted in blue.

39
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The linearization of the second order system as provided by 3.11 contains unknown parameters D , K and
α. The parameters D and K are adjustable, so it makes sense to derive a stability condition that depends
on these parameters. In order to achieve such a stability condition one needs the α matrix that depends on
the cluster configuration. Besides we also need a yet unknown synchronous state s1 around which the origi-
nal system was linearized. This state is characterized by means of a set of initial angles and angle velocities.
Notice that not all synchronous states are valid, since some states are not compatible with the cluster con-
figuration at hand. Hence, each synchronous state depends on the cluster configuration we intend to use
in our analysis. Since a certain cluster configuration does not correspond to a unique synchronous state we
are forced to choose a particular allowed state. This state must be a point on a trajectorie that is part of the
synchronization manifold corresponding to a certain cluster configuration. However there is, at least to our
knowledge, no method available that is capable of detecting cluster synchrony. Therefore we choose to find
at least some of the cluster synchronous states by inspection. To this end, we have written a Java code. In
this program we solved the second order system by means of the RK4 method for a particular set of parame-
ters. The solution is a vector of angles where each angle θi is graphically represented by a line that makes an
angle θi with respect to the positive horizontal axis. Since the RK4 method solves the system of differential
equations over time, we were able to let the program automatically update these angles and therefore also
the lines. If there are lines moving in the same pace for at least a relative short period of time we treat the cor-
responding oscillators as being synchronized. In this way, we are able to detect trajectories corresponding to
certain cluster configurations of table 3.1. For the cluster synchronous state s1 we just choose a certain point
on such a trajectory. The easiest way to choose such a point is by taking the initial conditions at which the
program starts to solve the system and this is exactly what we have done. The table below contains the chosen
points and parameters that lead to a trajectory corresponding to the cluster configuration as indicated in the
first column. The format is such that the i -th entry in the cartesian product corresponds to the i -th angle or
frequency in the state of synchrony. The synchronous state vector s1 has sixteen entries and we use powers
to denote repeated terms, so for instance 08 denotes eight zeros in the cartesian product.

Group State s1 Frequencyω Coupling K Damping D
Z4

2 (08,0.18) (1,1.5,0.5,0,1,1.5,0.5,0) (0.18) −1
Z4 ×Z2

2 (08,0.18) (1,0,0.5,0,1,0,0.5,0) (0.18) −1
Z2

4 (08,0.18) (1,0,1,0,1,0,1,0) (0.18) −1
Z8 (08,0.18) (18) (0.18) −1

Z3
2 ×〈E〉2 (08,0.18) (0,1,1.45,1,0,0.9,1.55,0.9) (0.18) −1

Table 5.1: Characterization of trajectories on a synchronization manifold.

This table shows that we are able to take the initial state such that the eight angles are equal to zero and their
velocities equal to 0.1 for each cluster configuration. In order to obtain a particular cluster configuration we
only have to change the intrinsic frequencies of the oscillators. These frequencies must be compatible with
the group structure on the underlying network. This is mostly achieved by equally distributing oscillators
that have the same intrinsic frequency. Moreover, each trajectory starts from a cluster configuration that has
a weak coupling of 0.1 and a significant damping given by minus one.

The synchronous states in the second column and the chosen parameter as in the third up to the last col-
umn of table 5.1 lead to network configurations as those depicted in figures 3.8 up to 3.11 and 3.6. In order
to perform a stability analysis with respect to the different cluster configurations, we block diagonalize the
system by means of an appropriate unitary transformation to get system 3.10. The figures below show an
approximate solution of system 3.10 for all eight angle deviations and its derivatives. We stress that not all
of these angle deviations cause the system to leave a state of cluster synchrony. The angle deviations that do
cause the system to leave a synchronous state will be discussed later on. For the moment, we take a closer
look at the matrix −α′D f (s)α in the lower-left block of the system. It has the following eight eigenvalues,

λ1 = 0, λ2 =−4, λ3 =−2(×2), λ4 =−0.5858(×2), λ5 =−3.4142(×2).

The numbers in the curly brackets denote the corresponding algebraic multiplicities of the eigenvalues. We
observe that there is a zero eigenvalue present. This is always the case due to the zero row-sum property of
the lower-left block in the system. Due to the diagonal structure of the system it follows that repeated eigen-
values lead to the same solution. Hence we will distinguish between the approximate solutions of the angle



5.1. Cluster synchronization in a ring network. 41

deviations by means of the corresponding eigenvalues. The angle deviations and their velocities are indicated
by corresponding eigenvalues with different colors as shown in the legends of figures 5.1 and 5.2.

Fig. 5.1: Angle deviations approximated by RK4. Fig. 5.2: Velocity of deviations approximated by RK4.

These figures show that the angle deviations and velocities converge to zero except for the solution that cor-
responds to eigenvalue λ1 which converges to one. Since these two figures correspond to solutions of the lin-
earized system 3.10, we emphasize that the intrinsic frequencies do not contribute to these solutions. Hence,
these figures show that the clusters are completely determined by the chosen intrinsic frequencies.

Let us consider system 3.10. Recall that the upper-left block of −α′D f (s)α corresponds to deviations in the
synchronization manifold, so we are only interested in the the lower-right blocks that correspond to devia-
tions in the transverse directions. These tranverse blocks have eigenvalues that form a subset of those men-
tioned before and they correspond to angle devations that may cause the system to leave a state of synchrony.
Hence, these are the eigenvalues that are of importance here. We summarize the eigenvalues of the transverse
blocks for each cluster configuration in the table below.

Groups Eigenvalues
Z4

2 λ4 (×2), λ5 (×2)
Z4 ×Z2

2 λ3, λ4 (×2), λ5 (×2)
Z2

4 λ3 (×2), λ4 (×2), λ5 (×2)
Z8 λ1, λ2, λ3 (×2), λ4 (×2), λ5 (×2)

Z3
2 ×〈E〉2 λ3,λ4,λ5

Table 5.2: Eigenvalues of transverse blocks

Observe that the number of eigenvalues increases when the direct product contains less direct factors. The
network configurations with respect to the groups Z4 ×Z4

2 down to Z8 were obtained by merging clusters.
Hence, this table shows that the number of transverse blocks in the block diagonalization of −α′D f (s)α in-
creases by the process of merging clusters. This means, that the synchronization manifold decreases in di-
mension while the transverse manifold increases in dimension. For Z8 the block diagonalization is the same
as an eigendecomposition and we obtain all eigenvalues in this case. Moreover, the eigenvalue λ1 that corre-
sponds to the red-colored graph in figures 5.1 and 5.2 is only observed for the group Z8.

After diagonalization of the transverse blocks in −α′D f (s)α of system 3.10 we end up with a partially de-
coupled system. We are only interested in the differential equations that correspond to the diagonalized
transverse blocks. These differential equations take on the following form,[

δ̇1,i

δ̇2,i

]
=

[
0 1

λi K D

][
δ1,i

δ2,i

]
(5.1)

where λi denotes an eigenvalue of a transverse block, δ1,i denotes the i -th component of δ1 and similarly δ2,i

denotes the i -th component of δ2. Notice that the range of the index i depends on the transverse blocks of
system 3.10, i.e. it depends on the cluster configuration. It is easily seen that the eigenvalues of the matrix in
the former system are given by,

γi = 1

2

(
D ±

√
D2 +4Kλi

)
. (5.2)
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The eigenvalues of the transverse blocks λi depend on the cluster configuration. Hence, the previous table
shows exactly all possiblities λi for each cluster configuration. In order to perform a linear stability analysis
we need to determine when the real part of γi is negative. This depends on the parameters D and K , but also
on the eigenvalues of the transverse blocks λi . The case of λ1 is easy as it simplifies the expression such that
γ1 has a negative real part if and only if D < 0. For γi where 1 < i < 5 it is harder to determine the outcome.
Due to the many dependencies in the expression for γi we divide this problem in subproblems where we
restrict the range of the parameters D and K . From here on we may assume λi < 0 since eigenvalues of the
transverse blocks in −αD f (s)α are either negative or equal to zero.

1. Assume D > 0 and K ≤ 0. In this case we have D2 +4Kλi > 0 and therefore D +
√

D2 +4Kλi > 0. Hence
γi does not have a negative real part in this region.

2. Assume D > 0 and K > 0. If D2+4λi K > 0 then D +
√

D2 +4Kλi > 0, so this does not lead to γi having a
negative real part. On the other hand, if D2 +4λi K < 0 then γi has a real part given by 1

2 D . Since D > 0,
it follows that its real part is positive. We conclude that γi has no negative real part in the region where
D > 0 and K > 0.

3. Assume D < 0 and K ≤ 0. In this case we have D2+4λi K > 0. Suppose K < 0 holds, then it is clearly true
that D −

√
D2 +4λi K < 0, so at least on of the eigenvalues for γi is negative. For the other possibility

we observe that D +
√

D2 +4Kλi < 0 if and only if D < −
√

D2 +4λi K . This last inequality holds by
monotonicity of the square root and the fact thatλi K > 0. Finally, if K = 0 thenγi simplifies to 1

2 (D ±D),
so one of these two eigenvalues is positive. We conclude that the region specified by D < 0 and K < 0
yields stability.

4. Assume D < 0 and K > 0. If D2 +4Kλi > 0, then D −
√

D2 +4Kλi < 0, so we have at least one negative
eigenvalue. Now, D +

√
D2 +4Kλi < 0 if and only if D <−

√
D2 +4Kλi < 0. This last inequality cannot

hold since 4Kλi < 0. On the other hand if we have D2 + 4Kλi < 0 it follows that the real part of γi is
given by 1

2 D which is negative. We conclude that we have stability for the region specified by D < 0,
K > 0 and D2 +4Kλi < 0.

5. Assume D = 0. If K = 0, then γi = 0. If K > 0 then γi is purely imaginairy, so it has a zero real part. If
K < 0 then we have at least one positive eigenvalue. We conclude that the linearized system is stable
for D = 0 and K ≥ 0.

The eigenvalues γi depend on the eigenvalues of the tranverse blocks λi . In item four we derived that a
part of the stability region depends on λi . Since the presence of a λi differ for each cluster configuration, it
could be the case that the stability region either shrinks or grows. It turns out that the largest stability region
is achieved for λ4. This value appears in each cluster configuration as an eigenvalue of a tranverse block.
Therefore the size of the stability region remains unchanged over the different cluster configurations. The
size of this stability region is depicted in the figure below.

Fig. 5.3: The largest stability region for each cluster configuration.
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5.2. Size of the Basin of Attraction.

In Chapter 4 we discussed the size of the basin of attraction for ring networks with an arbitrary odd number
of oscillators. We claimed that the largest ball we could fit in the basin of attraction with respect to the origin
would be a ball of radius r := ((n − 1)/n)π. Although we were not able to provide a decisive conclusion on
whether this is true or not, we were in fact able to provide expressions for the angles that may lie within this
ball of radius r centered around the origin. For the sake of completeness we recall these expressions,

θi = 1p
i (i +1)

i∑
j=1

j
[

(−1)k j
p

2θ1 +k jπ
]

with θ1 =−
∑n

i=1 kiπp
2
∑n

i=1(−1)ki
and ki ∈ {−1,0,1}, (5.3)

except for k1 := 0 and kn ∈ {−2,−1,0,1,2}. We could neglect the restriction on the coupling terms, but then
we have to deal with all equilibria. Since we want to know if there are equilibria within the ball of radius r
we only have to take coupling terms either equal to ±1 or equal to zero with the exception of k1 := 0 and
kn ∈ {−2,−1,0,1,2}. To test if our claim is true, we consider several ring networks of different sizes. We have
written a code that determines the Euclidean distances for the points defined by 5.3 with the size of the ring
network as parameter. Due to the many possibilities for the coupling terms, we were only able to consider a
few networks.

Fig. 5.4: Distance between origin and closest equilibrium.

In order to obtain the figure presented above we have written a program in Java that determines for each pos-
sible arrangement of the ki ’s an Euclidean distance between the point determined by such an arrangement
and the origin. Moreover, this program determines from all these distances the minimum Euclidean distance.
This minimum distance is depicted in the figure above by means of red circles. At the same time, the program
also determines the arrangement of ki ’s corresponding to such a minimum distance. Although this arrange-
ment is not unique, it does enable us to provide an explicit expression for the minimum Euclidean distance
between the nearest equilibrium with respect to the origin. It turns out that for networks that have an odd
number of oscillators, the minimum Euclidean distance is what we expected, namely

p
(n −1)/nπ. For a net-

work with four oscillators, i.e. n = 4, it is 1
2

p
5π. Since the case n = 4 defines a network with an even number

of oscillators it could be the case that there are angles that do not satisfy the relation for the first angle as given
by 5.3. This is due to the division by zero possibility in the expression for the first angle. However, from the
relations in 4.26 we observe that we could assign zeros to the first two angles and to the third angle a contri-
bution of

p
3/4π. This assignment leads to an equilibrium that satisfies our claim. Hence, we still expect the

claim to be true for networks with an even number of oscillators.

The implementation of the angles by means of the formulas above plays an important role in the range of
n on the horizontal axis of the figure. We have written a Java program that explores two different approaches.
In one approach we determined all possible arrangements for the ki ’s recursively and in another approach
we did this iteratively. Although recursive methods are often less efficient, it did pay out in this case. Our
iterative approach takes much more computation time in comparison to the recursive approach. Hence, the
results depicted in the figure are obtained by means of a recursive approach.
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Since the problem of determining the minimal distance between an attractor and a neighbouring node in-
volves many possibilities for the coupling numbers ki , we decided to look at how the number of different
equilibria increases when the number of oscillators in the network increases. This is difficult to verify, but we
can find the number of different possibilities for the first angle within an equilibrium point. To this end, we
recall the formulas in 4.36,

− sin
(
[n − (4m +1)]

p
2θ1

)
= sin

(p
2θ1

)
and sin

(
[n − (4m +3)]

p
2θ1

)
= sin

(p
2θ1

)
. (5.4)

By means of simple trigonometry one finds,

sin

(
1

2
[n − (4m +1)+1]

p
2θ1

)
cos

(
1

2
[n − (4m +1)−1]

p
2θ1

)
= 0 (5.5)

and

sin

(
1

2
[n − (4m +3)−1]

p
2θ1

)
cos

(
1

2
[n − (4m +3)+1]

p
2θ1

)
= 0. (5.6)

Thus,

θ1 = 2γπp
2(n −4m)

and θ1 = (2γ+1)πp
2(n − (4m +2))

(5.7)

where m ∈ {0,1,2, . . . , n−1
2 +1}. In order to get a bound on γ ∈Z, we observe that the period of the functions in

5.4 is
p

2π. Thus each fraction in 5.7 should be between −p2π and
p

2π. Also, one has to be cautious since
it could be the case that for certain γ and m one could simplify these fractions. Therefore, we filtered these
possibilities out. The resulting number of different possibilities for the first angle is displayed below.

Fig. 5.5: Number of different first angles.

The result as depicted in figure 5.5 is only valid for networks with an odd number of oscillators. It provides
an indication for the number of equilibria. Note that for each first angle there is at least one corresponding
equilibrium point. Hence, the result in the figure above provides a lower bound for the number of different
equilibrium points. Moreover, it gives us an indication of how difficult it is to find all different equilibria due
to the rapid growth of the number of equilibria. It can be seen from this figure that for a network of say 2001
oscillators one has already more than a milion different equilibria. Hence, it would be a daunting maybe
even impossible task to find formulas for all equilibria that could help us in the determination of the shortest
distance between the origin and the other equilibria. However, we think that the shortest distance is attained
when each of the sine functions in 4.25 vanish for those equilibria that lie on the boundary of the basin of
attraction. If it were possible to show that this statement is true then it would be easier to find the size of the
basin of attraction.



6
Conclusion

In this thesis we discussed the phenomena of cluster synchronization and global stability in Kuramoto net-
works. A relatively large part of this report is inspired by recent studies in which the phenomenon of cluster
synchronization is addressed by means of techniques from representation theory. In the second chapter we
discussed the algorithm that lies at the heart of these studies. This algorithm allowed us to study cluster syn-
chronization on the basis of both the topology of the network and its dynamics. In the third chapter we dis-
cussed the concept of cluster synchronization and introduced a ring network. Although the ideas presented
in this chapter are applicable to a wide range of networks we decided to consider only a network with eight
oscillators which follow the Kuramoto dynamics. For this eight-node ring network we addressed the prob-
lem of finding all network configurations. The main approach is taken from [22] and [20]. In order to tackle
this problem we focussed upon the subgroups that follow from the largest group that presents itself in the
network topology. By combining these subgroups as direct factors in direct products we were able to find all
possible cluster configurations. Some of these cluster configurations were not compatible with the dynamics
and therefore not allowed as network configuration. The remaining allowed cluster configurations could lead
to many different network configurations, so we were forced to make a choice. We decided to consider only
those networks in which oscillators with similar dynamics were distributed evenly among the network. The
drawback in this approach is that we were not able to analyse all possible network configurations.

In order to analyse the different network configurations, we linearized the system around a state of cluster
synchrony. This state depends on the chosen network configuration. Moreover, we could distinguish be-
tween these different states by means of each oscillators’ intrinsic frequency. Due to this linearization we
were able to apply the algorithm of the second chapter and block diagonalize the entire system accordingly.
Afterwards, we made a distinction between deviations that occur within a synchronization manifold and de-
viations in transverse directions. Since only the deviations in transverse directions could take the system out
of synchrony we focussed ourselves on the corresponding transverse blocks in the system. By the process of
merging clusters we could easily find all transverse blocks for each network configuration. A linear stability
analysis based on these transverse blocks allowed us to determine the stability of each synchronous state
on the basis of their eigenvalues. It turns out that the largest negative eigenvalue determines the range in
which one could deviate the coupling strength and damping parameter. Since this largest negative eigen-
value is present for each of the five network configurations, we conclude that the stability for each state of
cluster synchrony depends in the same way on the coupling strength and damping parameter. However, we
only considered one point on a specific trajectory in our linearization process. If we chose another point it
could be the case that the stability region as depicted in figure 5.3 changes in size. The main point here is
that the usage of representation theory simplifies the dimension of the problem. The block diagonalization
of the linearized system by means of the algorithm tells us exactly which blocks are responsible for taking the
system out of synchrony. Hence, we end up with less equations that we need to analyze in a linear stability
analysis. For the eight-node network it turns out that this strategy is more relevant if there are many direct
factors present in the network configuration. To justify this statement we recall table 5.2. This table shows
that there are less eigenvalues of transverse blocks when there are many direct factors in the direct product
group. Hence, we only need to consider a few equations for these groups and this simplifies the stability
problem significantly.
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In order to obtain an approximation for the size of the basin of attraction of an attractor we tried to fit a
ball in this basin. Since this basin is bounded by the Euclidean distance between the attractor and its near-
est equilibrium, we tried to estimate this distance. The ball with a radius defined by this minimum distance
would therefore provide an approximation of the size of the basin. In our approach we rotated the entire sys-
tem of differential equations. This rotation preserves distances, so the size of the basin remains unaffected by
this operation. This process leads to a system that has equilibria that are easier to obtain for a relatively small
number of oscillators. This is mostly due to the fact that the rotated system has no line invariance so each
equilibrium is a point instead of a line. Moreover, the rotated system provides a condition on the equilibria,
see 4.26. However, for large systems it remains a difficult task to obtain the distance between the attractor and
its nearest equilibrium point. Luckily, we were able to determine the size of the basin of attraction for many
ring networks. Since all minimum distances we found satisfy

p
(n −1)/nπ, we think that this is the minimum

distance for ring networks of arbitrary size. Hence, we conjecture that the largest ball that could be fitted
inside the basin of attraction of the origin has radius

p
(n −1)/nπ.

6.1. Recommendation

The algorithm for block diagonalizing the coupling matrix in a system of differential equations uses informa-
tion about the topology of the network and its dynamics. This is exactly why this approach is attractive in
solving stability issues that revolve around synchronous clusters. The main drawback of this approach is that
the unitary transformation that should bring the coupling matrix in block diagonal form could be difficult
to obtain for large networks. In particular the explicit form of the irreducible representations are generally
difficult to find. With this in mind I recommend to use the easiest group that still captures the topology of
the entire network. This is exactly what we did with all of the groups in table 3.1. Moreover, the usage of
the algorithm pays off for large networks as it may reduce the number of differential equations. Moreover,
the analysis we did for the eight-node network shows that whenever we have to deal with a network config-
uration that has an underlying direct group with many direct factors, it might be beneficial to use the block
diagonalization process by means of the algorithm since it reduces the number of equations significantly. To
this end, I recommend to use this algorithm for large dynamical networks with network configurations where
the underlying group has many direct factors. On the other hand, if one studies a network configuration in
which there is full synchronization than one might as well use an eigenvalue decomposition. This last rec-
ommendation follows from our experience that using the entire group of the topological network structure
tends to diagonalize the system entirely. Since an eigendecomposition generally requires less computations
than the block diagonalizing algorithm it is recommended to use the first method in this case.

For the determination of the size of the basin of attraction for cyclic networks we used a rotation to reduce
the dimension of the system. Moreover, it deals also with the translation invariance along a line. Therefore
the equilibria become points instead of lines. For networks with an odd number of nodes we were able to
find expressions for the equilibria that enabled us to find the minimal distance between an attractor and
its nearest equilibrium. We conjectured that the minimal distance is given by

p
(n −1)/nπ. Since we were

not able to find a computer with high processing speed, we recommend to run our Java program for higher
odd numbered networks. This would be the easiest way to verify if our conjecture is true or not for specific
networks.

6.2. Future Research

We think that the long computations that are required in the application of the block diagonalizing algorithm
could be shortened by theoretical improvements. Moreover, the approach of finding all possible network
configurations is still complicated since it needs a verification for the compatibility of the network dynamics
with its network structure. This verification is done by inspection, but may be improved by a more math-
ematical approach. We feel that these type of improvements could benefit future research on the topic of
cluster synchronization. In order to verify our conjecture for the size of the basin of attraction we think that a
logical step would be to verify that the nearest equilibria with respect to an attractor makes each sine term in
4.26 vanish. This improvement would be a big step towards solving the problem.
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Below we provide an expression for the total derivative of L (θ) :=−v̂ (θ) where V̂ (θ) is given by formula 5.13.
Notice,
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This expression can easily be simplified by collecting equal terms.
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It is easily verified that we are able to complete the square three times to obtain the following expression.
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Due to the squares it follows that L̇ (θ) ≤ 0 over R2. One may also verify that its roots coincide with those of
system 5.12.
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Consider an n-node ring network with dynamics given by,

θ̇i =−K si n(θi −θi−1)−K si n(θi −θi+1) for i = 1, . . . ,n (B.1)

where we define θn+1 := θ1 and θ0 := θn . We first rotate the vector field such that one of the axis collapses with
the n := (1,1, . . . ,1) direction, i.e. we compute RV (RT θ) for a suitable rotation matrix R. We start by defining
the following n ×n rotation matrix.

R :=
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This matrix R defines a rotation matrix since it is a product of rotation matrices around each of the n−1 axis.
All of these rotation matrices take on the same form as in 4.5. Thus, we have a rotation matrix R and it satisfies
det (R) = 1 and RT = R−1. The former property is used to rotate the position vector θ clockwise, i.e. RT θ. This
operation yields a new position vector.

θ′ :=
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At this point, we are ready to compute V (θ′) by substituting the θ′i in the right-hand side of (B1).
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In order to finish the rotation of this vector field we determine RV (θ′) and write the obtained system using
the appropriate angle vector θ′. For readability, we define
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Note that this system is a gradient system since it can be readily verified that it can be written as θ̇′ = ∇V̂ ,
where
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Note that ∇V̂ is continuously differentiable, so it is in particular locally Lipschitz over a domain D ⊂ Rn−1

containing the origin. Moreover, ∇V̂
∣∣
θ′=0 = 0. We let L(θ′) = n − V̂ (θ′). It is clearly a positive semidefinite

function, that is L(θ′) ≥ 0 for θ′ 6= 0. Also, L(θ′) = 0 for θ′ = 0. We take a closer look at the total derivative of L.
We want L̇(θ′) ≤ 0 in a domain D . Hence it suffices to show that ˙̂V ≥ 0. We have,
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We substitute the differential equations,
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Notice that in a summation we used θ0 as auxilliary variable for i = 1. This term won’t be of any concern here
and in the derivation presented below since it has zero contribution due to the square root which appears
before θ0. If we write out every term we obtain,
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Further, the terms in the blue box may be simplified to the expression,
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Similarly, the terms in the red boxes may be replaced by the expression
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The terms in the green boxes may be replaced by,
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We compare terms in the expanded form of (3) with terms in equation (2) and simplify (2),
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Finally we observe that we can rewrite this last expression as a sum of squares.
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This is a sum of squares. For this expression to be equal to zero we need that each squared term is equal to
zero. This results in the expression of 4.25.
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1
2 import java . u t i l . * ;
3 import java . lang . * ;
4 import java . io . * ;
5
6 public class E q u i l i b r i a
7 {
8
9 s t a t i c double Norm=100.0;

10 s t a t i c int counter =0;
11 s t a t i c int intermediateLevel =2;
12
13 public s t a t i c void main( Str ing [ ] args )
14 {
15 int n=7;
16 int [ ] r i j = new int [ 1 ] ;
17 System . out . print ln ( ) ;
18 combinations ( r i j , 0 , n−1) ;
19
20 }
21 / *
22 public s t a t i c int [ ] replace ( int [ ] posValues , int [ ] r i j I n )
23 {
24 int [ ] r e s = new int [ r i j I n . length ] ;
25 f o r ( int i =0; i < r i j I n . length ; i ++)
26 {
27 i f ( r i j I n [ i ]==0)
28 {
29 r e s [ i ]= posValues [ 0 ] ;
30 }
31 e l s e i f ( r i j I n [ i ]==1)
32 {
33 r e s [ i ]= posValues [ 1 ] ;
34 }
35 e l s e i f ( r i j I n [ i ]==2)
36 {
37 r e s [ i ]= posValues [ 2 ] ;
38 }
39 e l s e i f ( r i j I n [ i ]==3)
40 {
41 r e s [ i ]= posValues [ 3 ] ;
42 }
43 e l s e i f ( r i j I n [ i ]==4)
44 {
45 r e s [ i ]= posValues [ 4 ] ;
46 }
47 }
48 return r e s ;
49 }
50
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51 public s t a t i c void combinationsTwo ( int sz , int [ ] posValues )
52 {
53 int track ; int i t e r a t o r =0; double norm=100;
54 int [ ] r e s = new int [ sz ] ;
55 do
56 {
57 int [ ] r e s u l t = replace ( posValues , r e s ) ;
58 i f (norm>=EuclideanNorm ( r e s u l t , sz−1) && EuclideanNorm ( r e s u l t , sz−1) >0)
59 {
60 norm = EuclideanNorm ( r e s u l t , sz−1) ;
61 System . out . println (norm) ;
62 }
63 i f ( i t e r a t o r ==Math .pow( 3 , sz−2)*5−1)
64 {
65 System . out . println (norm) ;
66 break ;
67 }
68 i t e r a t o r +=1;
69 / / System . out . println ( " " ) ;
70 track =1;
71 f o r ( int j =sz −1; j >=0; j−−)
72 {
73 i f ( track ==0)
74 {
75 break ;
76 }
77 r e s [ j ]+= track ;
78 track =0;
79 i f ( j ==sz−1)
80 {
81 i f ( r e s [ j ]==5)
82 {
83 track =1;
84 r e s [ j ] = 0 ;
85 }
86 }
87 i f ( j <sz−1)
88 {
89 i f ( r e s [ j ]==3)
90 {
91 track =1;
92 r e s [ j ] = 0 ;
93 }
94 }
95 }
96
97 } while ( track ! = 1 ) ;
98 }
99

100 * /
101 public s t a t i c int [ ] addToRij ( int [ ] r i j , int a )
102 {
103 int [ ] res = Arrays . copyOf ( r i j , r i j . length +1) ;
104 res [ r i j . length ]=a ;
105 return res ;
106 }
107
108 public s t a t i c void combinations ( int [ ] r i j , int i , int n)
109 {
110 int [ ] res ;
111 i f ( i ==n)
112 {
113 / / System . out . println ( Arrays . toStr ing ( r i j ) ) ;
114 i f (Norm>=EuclideanNorm ( r i j , n) && EuclideanNorm ( r i j , n) != 0 . 0 )
115 {
116 Norm=EuclideanNorm ( r i j , n) ;
117 }
118 counter=counter +1;
119 i f ( counter==Math .pow( 3 , n−1) *5)
120 {
121 System . out . print ln ( "Minimal distance : "+Norm) ;
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122 }
123
124 }
125 else i f ( i ==n−1)
126 {
127 for ( int j =−2; j <=2; j ++)
128 {
129 res = addToRij ( r i j , j ) ;
130 combinations ( res , i +1 ,n) ;
131 }
132 }
133 else
134 {
135 for ( int j =−1; j <=1; j ++)
136 {
137 res = addToRij ( r i j , j ) ;
138 combinations ( res , i +1 ,n) ;
139 }
140 }
141 }
142
143
144
145 public s t a t i c double getThetaOne ( int [ ] r i j I n )
146 {
147 double tempOne =0;
148 double tempTwo =0;
149 for ( int i =0; i < r i j I n . length ; i ++)
150 {
151 tempOne = tempOne+Math .pow(−1 , r i j I n [ i ] ) ;
152 tempTwo = tempTwo+ r i j I n [ i ] ;
153 }
154 double ThetaOne = (−1*tempTwo*Math . PI ) / (Math . sqrt ( 2 ) *tempOne) ;
155 return ThetaOne ;
156 }
157
158 public s t a t i c double getThetaI ( int [ ] r i j I n , int index )
159 {
160 double ThetaI =0;
161 for ( int j =0; j <index ; j ++)
162 {
163 double temp =(Math .pow(−1 , r i j I n [ j ] ) *Math . sqrt ( 2 ) * getThetaOne ( r i j I n ) + r i j I n [ j ] *Math . PI ) ;
164 ThetaI=ThetaI + ( 1 . / (Math . sqrt ( index * ( index +1) ) ) ) * ( j +1) *temp ;
165 }
166 return ThetaI ;
167 }
168
169 public s t a t i c double EuclideanNorm ( int [ ] r i j I n , int n)
170 {
171 double res =0;
172 for ( int i =0; i <n ; i ++)
173 {
174 res = res+Math .pow( getThetaI ( r i j I n , i +1) , 2) ;
175 }
176 res = Math . sqrt ( res ) ;
177 return res ;
178 }
179
180
181 }
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