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Chapter 1

Introduction

1.1 Subject

Many natural or technical systems for flow of water, such as rivers and tidal channels or
irrigation canals and pipelines, are quite elongated, i.e. they have characteristic lengths that
far exceed the lateral dimensions of width, depth or diameter. Such systems can be referred
to as ‘conduits’. The description and mathematical modeling of the unsteady flow in
conduits is the subject of this course. The emphasis is on free surface flow, mainly in
open channels (free surface flows are also common in sewage systems), but occasionally we
will deal with pressurized flow in closed conduits.

Steady flow in conduits has been dealt with in the introductory course Fluid Mechanics
(CTB2110), both free-surface flows and pressurized flows. Such flows occur when the geom-
etry of the conduit is fixed and when the boundary conditions, such as the discharge from
upstream or the downstream water level, do not vary in time. Steady flows can locally vary
rapidly in space due to local forcing, e.g. flow over a weir. Except for these, steady free-
surface flows are uniform or they vary gradually lengthwise; the corresponding longitudinal
free surface profiles are the so-called backwater curves. These have been dealt with in the
preceding course Fluid Mechanics. The present course extends this to unsteady flows.

Flow in a conduit will be unsteady when the boundary conditions are changing in time. One
can think of flood waves in rivers, which reflect the temporal variations in the run-off due
to rainfall or melting of snow in the catchment area, or the tides in estuaries and lower river
reaches in response to the tidal water level variations at sea. The description and mathemat-
ical modeling of such unsteady flows in conduits is the main subject of this course (Chapters
2 through 9). Away from local disturbances, these flows are gradually varying. Because
they are also unsteady, they belong to the category of the so-called long waves, which
can be considered as the unsteady counterparts of backwater curves. Long waves belong to
the category of gravity waves, so called because these derive their potential energy, and
therefore their restoring force, to the action of gravity.

In order to regulate the water level and/or the discharge in conduits, control structures are
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built such as weirs and gated inlet structures. These cause strong variations in flow depth
and velocity over a short distance, in other words, one deals here with rapidly varying
flow. Control structures divide a conduit in separate compartments, with different values of
water level and/or discharge on the upstream side and the downstream side. These values
in turn serve as boundary conditions for the adjacent reaches. For the design and operation
of control stuctures, one should be able to calculate the flow in/through/over them. This
subject is introduced in Chapter 10. The functional and structural design of control struc-
tures is covered in follow-up hydraulic engineering courses.

Conduits convey not only water but dissolved or suspended matter, and heat, as well. Knowl-
edge of these transport processes is essential for management of water quality, sedimen-
tation or erosion, etc. This subject is introduced in Chapter 11, as the third and last subject
to be dealt with in this course.

1.2 Aim

It is important to be aware of the various flow types and associated problems that can
be expected in the context of design and operation of hydraulic engineeering works (e.g.
construction of control structures, dredging, damming) in tidal areas, rivers, canals etc.
The engineer should have insight in these flows and be able to schematize them, quantify
them through mathematical modeling and computations, and interpret the results. He or
she should be able to foresee consequences of the works being designed, both qualitatively
and quantitatively. The present course deals with the description and analysis of these flow
phenomena, providing oversight and insight, and it gives an introduction to various solution
methods.

Simplified models are well suited to study the overall behavior of water systems. They provide
insight in the main features of the flow, which is invaluable in assessing the dynamics of water
systems and in predicting their response to construction works or management strategies.

Still, most engineering applications require a higher level of detail than can be provided
by these simplified models. In practice, ready-to-use software packages are available for the
numerical computation of various kinds of flows in conduits. These models require fewer
assumptions and also allow the treatment of complex geometries. Follow-up courses on
numerical methods treat the design of the necessary algorithms.

The present course precedes these, by presenting some simple numerical examples in the
context of the flow types treated in this course. The examples are based on Python, a high
level programming language. The type of numerical model we present holds somewhere
between simple analytical models and full fledged computer packages. In this way Python
will provide a simple-to-use tool which nevertheless reaches far beyond the possibilities of
the traditional pocket calculator.

Irrespective of the type of computer model used, the numbers they provide need further
interpretation and analyses. They should therefore be used alongside analytical models in
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order to obtain insight and to estimate effects in order of magnitude. The overall system
behavior should be studied first by analytical modeling and computed in more detail later
using a numerical model. The analytical results may be used to verify whether the numerical
model preserves the principal dynamics of the flow. This will warrant a critical usage of
numerical software packages and a qualitative evaluation and interpretation of the results
obtained with these.

In view of the above, the learning goals of this course can be summarized as follows:

• to gain qualitative knowledge of various kinds of unsteady flow in open channels or
pipelines that are important in civil engineering practice;

• to acquire insight in the dynamics of these flows;

• to develop an attitude of always making a (qualitative) problem analysis including the
estimation of relevant effects;

• to acquire knowledge of various mathematical approximations and solution methods
and their limitations;

• to acquire the ability to make schematizations and to perform approximative calcula-
tions for the flow phenomena considered;

• to acquire basic programming skills for computing and visualizing solutions of problems
dealt with in his course.

1.3 Approach

The main attention is given to unsteady free-surface flows with a characteristic length scale
that is far greater than the depth, the so-called long waves. Tides, storm surges and
flood waves in rivers provide good examples of this category (contrary to ship waves or
wind-generated waves, whose lengths are usually not large or even small compared to the
depth). Moreover, we restrict ourselves to laterally confined flows in so-called conduits, such
as tidal channels and rivers, in which the main flow direction is determined beforehand by
the geometry of the boundary, which may be assumed to be given beforehand. (This does not
apply to long-term computations including morphological changes to simulate phenomena
such as meandering of rivers.) In these cases, the flow direction is known so that only the flow
intensity (the discharge, say) is to be solved for, in addition to the water surface elevation.

An example of such a situation is the Western Scheldt estuary, a tidal region in the
southern part of The Netherlands. The geometry of this estuary, shown in Figure 1.1, is
quiet complex. The main tidal channels (dark blue color tones) are separated by large tidal
flats (reddish tones) and connected by numerous short-cut channels (light blue’s). Yet, the
bulk of the tidal flow is aligned with the orientation of the main channels and therefore leads
to an approximately one-dimensional system behavior.
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Figure 1.1: Geometry and bottom contours of the Western Scheldt estuary

As expressed by their name, long waves are characterized by length dimensions that far
exceed the depths. This implies that the curvature of the streamlines in the vertical plane
is negligible, for which reason we can assume a hydrostatic pressure distribution in the
vertical. Stated another way: all points of a given vertical share a common piezometric level,
which - as defined below - lies in the instantaneous local free surface. This greatly simplifies
the schematization and the calculations.

In bends, streamlines can have significant curvature in the horizontal plane. The piezo-
metric level and therefore the free surface elevation then vary laterally, being higher at the
outer bank and lower at the inner bank. This is essential in detailed computations of the flow
in bends, but it is irrelevant for the large-scale computations with which we are concerned.
So we will ignore lateral variations in surface elevation. In other words, we assume that the
pressure distribution is fully hydrostatic, not only vertically but horizontally as well. This
approximation implies that at each instant all points of a given cross-section have a
common piezometric level coinciding with the local free surface, which is assumed hori-
zontal in the cross-section. The height of this level above the adopted reference plane z = 0
is designated as h. This quantity is a function of the downstream coordinate s (measured
along the axis of the conduit) and the time t, or h = h(s, t).

Because in this approximation the piezometric level (h) is uniform in the entire cross-
section, the same applies to the downstream pressure gradient driving the flow. It is therefore
feasible to work with cross-sectionally integrated flow velocities (i.e. the total discharge
Q), instead of the point values of the velocities within each cross-section.

Summarizing, we have two dependent variables (h and Q) which have to be determined as
functions of the longitudinal coordinate and time:

h = h(s, t) and Q = Q(s, t)

This requires a so-called one-dimensional flow model, typified by the dependence on only
one space coordinate.
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The assumption of gradually varying flows was at the basis of the one-dimensional flow
model. This assumption is not valid for the rapidly varying flow near local structures,
constrictions etc., where the pressu re is far from hydrostatic and the point flow velocities
have unknown and widely varying directions and magnitudes. The calculation of these flows
requires two-dimensional or even three-dimensional models. Because these flows vary
rapidly in space, the time variation is usually minor compared to the spatial variatons. This
allows the approximation that the flow ‘has no memory’, i.e. at each instant it is fully
adapted to the instantaneous boundary conditions (quasi-steady approximation).

Finally, the treatment of transport processes rests on the assumption that these are pas-
sive, i.e. the transported substances or heat do not affect the flow (their possible influence on
the (bulk) mass density and viscosity is ignored). This is allowed only for low concentrations
and mild temperature variations, respectively.

1.4 Layout

The basic equations for fluid flow which are taken as the starting point for the analysis and
calculation of long waves in conduits are presented in Chapter 2. Chapter 3 describes several
characteristic long-wave phenomena qualitatively and it presents a quantitative analysis of
the major characteristics, making visible which processes are dominant and which ones are
relatively weak. This is elaborated in the Chapters 4 through 9 where suitable mathematical
approximations are presented for each major class of long waves separately. Corresponding
solution techniques and solutions are presented as well. This is done for a sequence of flow
types of increasing relative influence of bed friction, varying from the almost frictionless so-
called translatory waves (Chapters 4 - 6) to flood waves in rivers, which are friction dominated
(Chapter 9). Between these, Chapter 7 deals with oscillations in basins and Chapter 8 with
propagation of tides. Tides are of a mixed character in which resistance is important but not
dominant. Subsequently, Chapter 10 gives brief considerations on rapidly varying flow in
and around control structures. Chapter 11 concludes with an introduction to the modelling
of transport processes.

1.5 Prerequisites and course structure

These lecture notes form the basis of the courseOpen Channel Flow (CTB-3350, 4 ECTS).
The sections in these notes dealing with numerical modeling are not a part of the present
course CTB-3350. Also, they are not yet complete.

Shallow water flow has been studied extensively since the inception of the underlying equa-
tions by De Saint Venant in 1871, which is reflected in a vast amount of literature on this
subject. This course presents a selection of topics that are particularly relevant for civil
engineers dealing with flow problems in shallow water environments and pipe systems. For
further reading and self study some useful textbooks are listed in the bibliography below.
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The treatment of the various subjects in this course relies on a basic understanding of the
following topics from calculus and introductory fluid mechanics:

• ordinary - and partial differential equations

• complex algebra

• balance equations for fluids

• free surface flows

In turn, the contents of this course will be useful, if not necessary, for the MSc courses Com-
putational Modeling of Flow and Transport, Wind Waves, Turbulence and Oceanography.

The course comprises the following educational activities:

• lecture series (24× 90 min.)

• demonstrations

• MAPLE TA exercises

• written exam

During lectures the theory will be explained and practical applications will be given. Oc-
casionally, theoretical results will be elucidated and verified using the flume in the lecture
hall. By means of exercises of increasing complexity, the principal content will be rehearsed
systematically during the lectures, in preparation for the exam. Besides this, and with the
same purpose, a series of four individual MAPLE TA tests has to be passed before the exam
may be attended. After enrollment, they can be activated from Blackboard. The final exam
(180 min.) consists of four assignments. Further information (including a time schedule)
and various study materials can be found on Blackboard.
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Problems

1. What is the defining property of long
waves?

2. Mention several wave types having this
property.

3. Also mention several wave types not hav-
ing this property.

4. Which assumptions form the basis of one-
dimensional models for long waves?

5. Which are the dependent and independent
variables in such models?

6. What can one-dimensional long wave mod-
els be used for in practice?

7. Point out some differences between mathe-
matical analyses and numerical modeling.

8. Why is it still important to use simpli-
fied mathematical models, despite numer-
ical models being available?
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Chapter 2

Basic equations for long waves

This chapter presents the derivation of the basic equations that we will use in analyses and
calculations of unsteady flows, first for free surface flows in natural channels, e.g. tidal or
fluvial channels, artificial canals, and the like, and subsequently for pressurized flows in closed
conduits. In both cases we deal with a mass balance and a momentum balance integrated
across the entire flow cross-section, assuming a hydrostatic pressure distribution.

2.1 Free surface flows

Notation and control volume

An important variable in our modelling of the flow is the so-called piezometric level, defined
as h ≡ z + (p − patm)/ρg, in which z is the elevation above the chosen horizontal reference
plane z = 0, p is the fluid pressure at the height z above the reference plane, patm is the
atmospheric pressure at the free surface, assumed to be constant, ρ is the fluid mass density
and g is the gravitational acceleration. The assumption of a hydrostatic pressure distribution
in each cross-section of the flow implies that at each instant all points in a cross-section share
a common piezometric level, which, defined as above, coincides with the local free surface.
In other words, under the assumption of hydrostaticity, h also represents the height of the
free surface above the reference plane. We use a length coordinate s along a streamwise axis
which may be weakly curved and gently sloping. The longitudinal slope of the bed (tan β),
if nonzero, is assumed to be very small, allowing the approximations tan β ≈ sin β ≈ β and
cos β ≈ 1.

We consider a control volume consisting of a cross-slice of a water course with an arbitray
cross-section, with length Δs, containing the entire wet area of the cross-section, from bed
to free surface. See Figures 2.1 and 2.2, which also indicate some other symbols such as B
for the width of the free surface, P for the length of the wetted perimeter and A for the wet
cross-sectional area.

There are situations where only a part of the wetted cross-section contributes significantly
to the conveyance. A typical example is provided by a river with a sequence of groins normal
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Figure 2.1: Longitudinal transect open conduit

Figure 2.2: Cross-section open conduit

to the flow, where the spaces between adjacent groins do contribute to the storage capacity
but - in case of low or moderate water levels - not to the conveyance capacity. In those cases
it is necessary to distinguish between these two functions. We designate the surface area,
surface width and mean depth of the conveyance cross-section as Ac, Bc and d respectively,
where d = Ac/Bc. It will be clearly indicated where we use the distinction between the total
cross-section and that of the conveyance part.

Conservation of mass

Pressure variations in open channels are very limited because of the presence of a free sur-
face. Therefore, we can neglect pressure-induced density variations. The water can then
be considered as incompressible. In that case, the mass balance reduces to a volume
balance, also called the continuity equation. To derive it, we consider the change in the
volume of water in the control volume in a short time interval from t = t1 to t = t2 = t1+Δt.
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The flux or discharge Q is defined as the volume of water passing a given cross-section
in a unit of time:

Q =

∫
Ac

us dA (2.1)

in which us is the streamwise velocity in a point. We also define the mean velocity U = Q/Ac,
i.e. the streamwise velocity averaged over the conveyance cross-section.

The net influx of volume into the control volume in the considered short time interval
with duration Δt is

Q1 Δt−Q2 Δt = (Q1 −Q2) Δt = −ΔQΔt (2.2)

Suppose this is positive, i.e. there is more inflow than outflow. The difference is stored in
the control volume, giving rise to an increase of the stored volume equal to ΔV = ΔAΔs
(see Figure 2.1). Equating this storage to the net inflow yields ΔAΔs = −ΔQΔt. Dividing
by Δt and Δs, and taking the limit for Δt → 0 U = Q/Ac and Δs → 0, yields

∂A

∂t
+

∂Q

∂s
= 0 (2.3)

Using the width B of the free surface (not only that of the conveyance area) gives ΔA = BΔh
(Figure 2.1), with which Equation (2.3) can be written as

B
∂h

∂t
+

∂Q

∂s
= 0 (2.4)

For given geometry of the cross-section, which may vary with the downstream location s,
the free surface width B varies with time in a known manner through the time variation of
h: B = B (s, h (s, t)). Therefore, Equation (2.4), expressing mass conservation for the water
(considered incompressible), is our first equation linking variations of the two unknowns Q
and h. The second one, to be derived in the following, expresses momentum conservation.

Conservation of momentum

The formulation of Newton’s second law for a slice of water in the conduit leads to an equation
for the dynamics of the flow, a so-called equation of motion. This can vary in appearance,
partly because the formulation can be cast in acceleration form or in conservation form (see
the Appendix to this chapter). Below, we start with the acceleration form.

Apart from the differences in appearance referred to above, different physical processes
can play a role. However, in all cases there is a balance between inertia, forcing and
resistance, where each of these in turn can consist of a number of contributions. It is
important to be aware of this, and to check the meaning of the various terms when writing
or reading an equation of motion. It is also important to check whether one or more terms
is negligible compared to another (in an equation consisting of three or more terms). We
return to this extensively in Chapter 3.
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We start from Euler’s equation for the acceleration in the flow direction (Dus/Dt) of a fluid
particle of an ideal (inviscid) fluid of constant density (ρ) under the action of gravity (with
potential gz) and pressure (p):

Dus

Dt
= −∂ (gz + p/ρ)

∂s
(2.5)

in which us is the streamwise particle velocity at an arbitrary point in the cross-section. In
terms of the piezometric level h, Equation (2.5) becomes

Dus

Dt
= −g

∂h

∂s
(2.6)

The right-hand side of Equation (2.6) is the forcing in the s-direction per unit mass as a
result of the slope of the free surface. It expresses the combined effect of gravity and
the fluid pressure gradient. It is important to realize that this gradient, and therefore the
forcing, is uniform in the cross-section, within the hydrostatic pressure approximation. This
is illustrated in Figure 2.3, showing a slice of water. At a given elevation, the slope of the
water surface gives rise to different pressures at both sides of the slice, but in case of hydro-
static pressure, the difference δp is constant over the vertical. Expressed mathematically:
∂ (δp) /∂z = 0. This implies that the right hand side of Eq. (2.6) is vertically uniform.
Neglecting centrifugal effects in bends, it is also laterally uniform. Because the forcing is

Figure 2.3: Hydrostatic pressure and net horizontal forcing

uniform across the cross-section, so is the local particle acceleration, except for the effect
of internal flow resistance, which was ignored in Equation (2.6). To account for this, we
are going to apply Equation (2.6) to the cross-sectionally averaged flow velocity U , with the
addition of a boundary resistance term.

We express the resistance experienced by the water in the slice considered in Figure 2.1
as ΔW = τPΔs, in which Δs is the length of the slice, P is the perimeter of the cross-
section that contributes to the resistance, and τ is the corresponding averaged resistance per
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unit area of wetted boundary (comparable but not equal to a boundary shear stress, as we
will see below). The resistance per unit mass then equals ΔW/ (ρAcΔs) or τ/ρR, in which
R = Ac/P is the so-called hydraulic radius of the conveyance cross-section. Adding this
to the right-hand side of Equation (2.6), written for the cross-sectionally averaged velocity
U , yields the following balance between inertia, forcing and resistance:

DU

Dt
+ g

∂h

∂s
+

τ

ρR
= 0 (2.7)

We will elaborate on this equation. The total acceleration (DU/Dt) is expanded into the local
contribution (∂U/∂t) and the advective contribution (U∂U/∂s), and the averaged resistance
per unit area is written as

τ = cfρ|U |U (2.8)

in which cf is a dimensionless resistance coefficient (representing not only bed shear stress as
such but also net effects of form resistance due to dunes or other abrupt profile variations).
Substituting this in Equation (2.7) yields

∂U

∂t
+ U

∂U

∂s
+ g

∂h

∂s
+ cf

|U |U
R

= 0 (2.9)

This acceleration equation can be expressed in terms of the discharge Q instead of the
flow velocity U , by substituting U = Q/Ac and Eq. (2.3) in Equation (2.9). In case the
entire cross-section contributes to the conveyance (A = Ac and B = Bc), we obtain

∂Q

∂t
+

∂

∂s

(
Q2

Ac

)
+ gAc

∂h

∂s
+ cf

|Q|Q
AcR

= 0 (2.10)

Except for a factor ρ, Equation (2.10) is a momentum balance equation. The first term
is the rate of increase of the momentum per unit length (ρUAc or ρQ), the second is the
net outflow of momentum as a result of longitudinal advection, given by ρU2Ac, or ρQ

2/Ac,
the third is the forcing due to the water surface slope and the fourth is the resistance, all of
them divided by ρ.

In the above, the momentum balance has been derived from an acceleration equation. It
could also have been established directly by considering the balance of momentum for the
entire cross-section (see the Appendix to this chapter).

In the transformation of Equation (2.9) into Equation (2.10), it was assumed that the entire
cross-section contributes to the conveyance, such that A = Ac and B = Bc. If this is not
the case, an additional term arises in Equation (2.10), which (if inserted in the left-hand
side) is given by ρU(B − Bc)(∂h/∂t). It arises as a result of the lateral exchange of mass
and streamwise momentum between the conveyance cross-section and the adjacent shallow
flood plains, which takes place in case of a time-varying water level, as explained in the
accompanying text box.

In practice, this additional term is often ignored, particularly in case of flow from the
flood plains back into the main channel (∂h/∂t < 0), it being assumed that this outflowing
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water carries no streamwise momentum. In some numerical models, the additional term is
taken into account only for rising water, and ignored when the water falls.

A note on lateral momentum exchange
The nature of the additional term ρU(B − Bc)(∂h/∂t) is most easily understood in the context of the
momentum balance. Consider a river with a main channel bordered by shallow flood plains, which
contribute a negligibly small amount to the conveyance. The total width of the flood plain (summed
over both river banks) is written as B − Bc. When the water rises, at the rate ∂h/∂t, water is stored
on the flood plain at the rate (∂h/∂t)(B − Bc)�s, which is the result of a lateral volume flow from the
main channel to the flood plain. This lateral flow carries streamwise momentum. Let us say that this
amounts to ρU per unit volume. This implies a net lateral outflow of streamwise momentum from the
conveyance cross-section at a rate ρU(B−Bc)(∂h/∂t) per unit length. This comes in addition to the net
outflow of streamwise momentum which results from the streamwise motion, given as ∂(ρQ2/Ac)/∂s in
Equation (2.10), and so explains the nature of the additional term noted above. However, because the
streamwise velocity at the transition between the main channel and the shallow flood plain is usually
(much) less than U , the flow velocity averaged over the relatively deep main channel, the expression given
here is an overestimate.

Summary of equations for free surface flows

The continuity equation (Equation (2.4)) and the equation of motion (Equation (2.10))
together form the basis for analyses and computations of one-dimensional long-wave phe-
nomena. They are known as the equations of De Saint-Venant (1871) or as the (one-
dimensional) shallow-water equations (because the depth has been assumed to be very
small compared to typical length dimensions). They consist of the continuity equation

B
∂h

∂t
+

∂Q

∂s
= 0 (2.11)

and the momentum balance equation

∂Q

∂t
+

∂

∂s

(
Q2

Ac

)
+ gAc

∂h

∂s
+ cf

|Q|Q
AcR

= 0 (2.12)

These equations form a coupled set of hyperbolic partial differential equations (PDE’s) for
the two unknowns h (water level) and Q (discharge) as functions of location (s) and time (t).
The geometric parameters Ac, R and B as well as the resistance coefficient cf are supposed to
be known functions of location (s), water level (h) and discharge (Q), so that mathematically
speaking they are known, variable coefficients. The set of PDE’s can be integrated if proper
initial conditions and boundary conditions are provided.
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Reduced equations

It depends on the circumstances whether all contributions to the momentum balance are
important or whether one or two are negligible. In the latter case the equation may be
reduced to a simpler form. In general, one can say that resistance is less and less important
as the motions vary more and more rapidly. On the other hand, inertia becomes negligible
when the variations are very slow. Following chapters present different categories of long
waves (tides, flood waves in rivers, etc.) with corresponding simplifications of the equations
resulting from the neglect of relatively small terms. Here, we present a few cases of even
stronger simplification where we can no longer speak of wave propagation. the surface area

Steady flow: backwater curves

A trivial simplification occurs for steady flow, for which ∂h/∂t = 0 and ∂Q/∂t = 0. It
follows from the continuity equation that in that case Q is also constant in space: ∂Q/∂s = 0,
leaving h(s) as the one unknown. Equation (2.12) then reduces to a first-order ordinary
differential equation (ODE):

Q2
dA−1c

ds
+ gAc

dh

ds
+ cf

|Q|Q
AcR

= 0 (2.13)

As pointed out above, the profile parameters Ac and R and the resistance coefficient cf are
supposed to vary in a known manner with h for given Q, so that (2.13) can be integrated to
find the longitudinal profile of h(s) if the value of h is known at some cross-section.

To put this equation in a more compact form, which brings out the physics of the flow
more concisely, we use some shorthand by introducing a few new parameters. We write the
area of the conveyance cross-section (Ac) as the product of its width (Bc), assumed constant,
and its average depth (d), the latter being our new unknown. Further, we write h = zb + d,
in which zb is the average bed elevation above the reference plane z = 0. With this, the
surface slope can be written as dh/ds = dzb/ds+dd/ds = dd/ds− ib, in which ib = −dzb/ds
is the bed slope, taking the positive s-direction pointing downstream. Furthermore, for
easy recognition, we revert to the cross-sectionally averaged velocity U = Q/Ac. With
these substitutions, and following a few mathematical manipulations, Equation (2.13) can
be rewritten into

dd

ds

(
1− U2

gd

)
= ib − cf

|U |U
gR

(2.14)

Finally, we introduce the Froude number through the definition

Fr2 ≡ Q2

gA2
cd

=
U2

gd
(2.15)

and the friction slope if , defined as

if ≡ cf
|Q|Q
gA2

cR
= cf

|U |U
gR

(2.16)
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Using these definitions, and assuming Fr2 �= 1 (flow not critical), the differential equation
(2.14) can be written in the compact form

dd

ds
=

ib − if
1− Fr2

(2.17)

This is the so-called equation of Bélanger for backwater curves.

If the flow is not only steady but also uniform, the surface slope, the friction slope and the
bed slope are equal, and dd/ds = 0. In this case the left hand side of equation (2.14) equals
zero which reduces this differential equation into the algebraic equation

Q = Ac

√
gRib/cf (2.18)

Using this and the definition (2.15) of the Froude number for an arbitrary flow, uniform or
not, the Froude number in uniform flow (Fru) can be seen to obey Fr2u = ib/cf . Depending
on whether the bed slope is adverse (ib < 0), horizontal (ib = 0), mild (0 < ib < cf , or
Fru < 1), critical (ib = cf , or Fru = 1) or steep (ib > cf , or Fru > 1), and on whether the
actual flow is subcritical (Fr2 < 1) or supercritical (Fr2 > 1), the longitudinal profile of the
depth (the so-called backwater curve) can take on different forms. We will not eleborate on
this here but refer to the preceeding course Fluid Mechanics (CTB2110).

Small-basin approximation

A second simplification occurs when the flow is unsteady but the domain in which it occurs
is small, as in a short basin connected by a restricted opening to an exterior water body
with a time-varying (e.g. tidal) surface elevation, see Figure 2.4. Because the basin is closed
(except for the opening to the exterior) and short, the velocities in its interior are quite small
so that inertia and resistance play no role whatsoever. It follows from Equation (2.12) that

Figure 2.4: Small basin with restricted opening

the surface slope then is negligible inside the domain. The interior water surface goes up and
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down but it is nearly horizontal at all times, and will in fact be approximated as such. In
other words, the surface elevation in the basin, h(x, y, t), is assumed to be a function of time
only, written as hb(t). This type of response is called the Helmholtz mode or pumping
mode.

This simplification implies that the surface elevations in all interior points are considered
to be in phase. A condition for this to be allowable is that the time scale of the variations
of the exterior forcing be far greater than the time it takes for the resulting disturbances to
traverse the basin. Stated another way, the length of the basin should be small compared to
the wavelength of the disturbances.

Because the surface elevation in the basin is assumed to be horizontal at all times, the volume
balance for the water inside the basin is trivial. Writing Ab for the free surface area inside
the basin, the rate of change of the interior water level is linked to the discharge through the
connecting opening or channel (Qin, positive for flow into the basin) through

Qin = Ab
dhb

dt
(2.19)

Despite its simplicity, the small basin approximation is useful for a number of practical
situations, as demonstrated in Example 2.1. We will elaborate more extensively on these
approximations in Chapter 7, where we derive explicit relationships for the forced tides in a
basin.

Schematizations

So far we have tacitly assumed that the geometry of the channel being considered is known
and relatively simple, such that a cross-section can be sufficiently described through only a
few geometric parameters, viz. B, Ac and R. Likewise we have assumed that the resistance
factor cf is known, perhaps as a function of the depth (in relation to some roughness value).
In practice, life is not that simple, particularly when dealing with natural channels which
can have poorly defined and highly variable geometric characteristics. In those cases it is
necessary to schematize this complicated geometry to a simpler one that can be handled in
our mathematical models while maintaining the main features that determine the overall
flow characteristics, both with respect to storage and conveyance. These main functions
should be distinguished and both should be properly represented in the schematization.

The storage capacity (i.e. the free surface area available for storage) plays a dominant role
in damping and slowing down of flood waves in rivers: water that is (temporarily) stored does
not need to flow downstream at once, thereby lessening the height and rate of progression of
the flood wave. Therefore, these storage areas should be accounted for, regardless whether
they convey water or not. We mention three situations that can occur in this respect.

1. In The Netherlands and elsewhere, it is common practice to build a sequence of groins
in lowland rivers, extending laterally from the banks towards the main channel in
order to fix the alignment and the width of the latter and maintain its depth. In those
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Figure 2.5: River cross-section with groins

cases, only the channel between the heads of the groins contributes to the downstream
conveyance of water. The spaces between adjacent groins do not, but they do take
part in the storage of water in case of rising water. The width B in the continuity
equation therefore should be the width between the banks, which can be far larger
than the conveyance width Bc, which is the lateral distance between the heads of the
groins (Figure 2.5).

2. The same holds for basins that are connected laterally to the river reach or tidal
channel, such as dead river branches, harbours etc. (see Figure 2.6). They can store
water, but do not convey it. Their surface area which is available for storage must
be accounted for in the continuity equation, but these basins can be ignored in the
momentum equation.

3. In periods of high water, the flood plains are covered and contribute to storage as well
as conveyance, but the depth of flow over the flood plains is much less than it is in the
main channel, and the resistance is usually much greater (due to vegetation, buildings
etc.). This must be accounted for in the schematisation by dividing the cross-section
into two or more subsections, each of them with its own characteristic width, depth
and roughness.

Figure 2.6: Top view of river reach with discrete storage in a lateral basin

Another problem of schematization is the determination of suitable values for the resistance.
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This consists of bed ‘shear stress’, which in turn consists partly of form resistance due to
grains, ripples and dunes, and form resistance due to abrupt large-scale profile variations,
bends, groins, bridge piers etc. The bulk effect of these is modelled through Equation (2.8),
with the single coefficient cf . It is obvious that this is a gross simplification. It is therefore
very difficult to assign proper values to this coefficient a priori. Calibration in the target
area is necessary. This must be done using the chosen profile schematization because cf ,
Ac and R occur together in the single resistance term cf |Q|Q/(AcR), so that errors in the
geometric profile parameters are compensated by errors in the calibrated value of cf . Typical
values of cf are in the range of 0.003 to 0.006.

Example 2.1. Small basin (Scheveningen harbour)

Situation

The harbor of Scheveningen is a semi-enclosed
basin with a surface area Ab = 0.25 km2. The
tide at sea leads to a time varying water level
hb (t) within the harbor and a corresponding
discharge Q (t) in the entrance of the harbor,
where inflow is defined positive. The small basin
approximation can be applied.

Questions

1. Compute the discharge Q for dhb/dt =
0.1 mm/s.

2. Derive an expression for Q (t) if hb is given

by hb (t) = ĥb sinωt (ĥb and ω denote
the tidal amplitude and frequency, respec-
tively).

3. Determine the discharge amplitude Q̂ if ĥb

= 0.9 m and ω = 1.4 × 10−4 rad/s (cor-
responding to a so-called M2-tide with a
period of 12 hrs 25 min).

Solution

Since the small basin approximation applies to
the tidal water motion in the harbour, the wa-
ter level in the harbor and the discharge in the
entrance are related through Eq. (2.19).

1. Substitution of Ab = 0.25 × 106 m2 and
dhb

dt
= 0.1 × 10−3 m/s in Eq. (2.19) gives

a corresponding discharge Q = 25 m3/s.

2. Differentiation of the given expression for
hb (t) with respect to t and substitution in

Eq. (2.19) gives: Q (t) = Ab ω ĥb cosωt.

3. From the previous answer it follows that
the discharge varies periodically with an
amplitude Q̂ = Abωĥb = 31.5 m3/s.

Comment

Besides giving results in terms of numbers, ana-
lytical modelling provides insight in the behavior
of a system as a whole. In this simple example we
have established a relation between the tidal wa-
ter level in a small basin and the discharge in the
opening proving that these are 90◦ out of phase.

2.2 Pressurized flow in closed conduits

Introduction

Equations for pressurized flow of a liquid (water, oil, ...) in closed conduits, mainly pipelines,
are treated here as a follow-up to the equations for free surface flows because of the great
similarity between them. In both cases we deal with balance equations integrated across the
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entire cross-section, which in both cases yields one-dimensional equations which belong to
the category of hyperbolic PDE’s, with solutions representing propagating waves.

In free surface flows, storage takes place through variations of the free surface elevation.
This is accompanied by pressure variations of a few meters of water column at most, too small
to cause appreciable changes in density. The water can therefore be treated as incompressible.

Pressurized flows do not have a free surface so that a corresponding storage cannot occur.
In these cases, storage can take place only through elasticity of the pipe wall, allowing
profile variations, and compression of the liquid, allowing variations in mass in a given
volume.

The actual magnitudes of the variations in cross-sectional area and density are quite
small, resulting in an almost rigid reponse. In fact, if the flow varies gradually, the pressure
variations are mild, and these storage effects can be neglected, leading to the so-called rigid-
column approxiation, in which the liquid moves axially as a rigid body. In these cases
the conservation of mass is fulfilled a priori so that we have to deal with the conservation
of momentum only.

The abrupt closure or opening of a valve or the abrupt switching on or off of a pump in a
pipeline for irrigation, hydropower, drinking water supply, etc., either purposefully or as the
result of a failure or an accident, results in rapid variations in flow velocity, accompanied by
large pressure variations. This phenomenon is called ‘waterhammer’ because it can sound
as if the pipewall is struck by a hammer. Too large pressures should be avoided, or at least
reduced in view of the limited strength of the materials. Modelling of these effects requires
the use of the constitutive equations for the elasticity of the pipe wall and the compression
of the liquid in addition to the equations of conservation of mass and momentum. This is
elaborated in the following.

Waterhammer induces negative pressure variations as well. When the pressure reduces
to the vapour pressure of the water, vapour bubbles are formed, the so-called process of
cavitation, resulting in a two-phase system of water and bubbles. This mixture is far more
compressible than pure water, so that the speed of propagation of the pressure waves through
the pipe/liquid/bubbles system is drastically reduced. Locally, a zone with a free surface of
the liquid can develop. These processes are not considerd in this chapter.

Constitutive equations

Here, we restrict ourselves to liquids (water, oil, ...) for which the density varies exclusively
as a result of compression, ignoring possible variations of the density due to differences in
salinity or temperature. We need to establish so-called constitutive equations for the liquid
and for the pipe wall, providing the connection between the pressure p and

• the liquid density (ρ) and

• the cross-sectional area (A).

We will use linear, elastic models for this purpose.

20



Figure 2.7: Cross-section closed pipe

Liquid compressibility

The modulus of compression (K) of a liquid is defined through the relation

dρ

dp
=

ρ

K
(2.20)

Under normal operating conditions, the modulus of compressibility of water is K= 2.2 GPa
approximately, virtually independent of pressure or temperature. (In case the liquid contains
gas or vapour bubbles, even in minute amounts, the bulk value of K is reduced drastically
because of the high compressibility of the gas or vapour in the bubbles.)

We will need the partial derivatives of ρ with respect to t and s in the conservation
equations. Using (2.20), these can be expressed as follows in terms of the derivatives with
respect to the pressure p:

∂ρ

∂t
=

dρ

dp

∂p

∂t
=

ρ

K

∂p

∂t
(2.21)

∂ρ

∂s
=

dρ

dp

∂p

∂s
=

ρ

K

∂p

∂s
(2.22)

Pipe elasticity

Consider a pipeline with a circular cross-section with inner diameter D and a uniform,
relatively thin wall thickness δ (so δ << D; see Figure 2.7, in which the relative wall
thickness has been exaggerated). Suppose now that a small increase in pressure (dp) causes
an increase in hoop stress in the pipewall equal to dσ. Neglecting the inertia of the fluid
(radially) and of the wall, equilibrium relations can be used, from which it follows that

2δ × dσ = D × dp (2.23)

(The meaning of if is that it represents the ratio of the flow resistance to the fluid weight.)
Because of the elasticity of the pipe wall, with modulus E, an increase in hoop stress dσ
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causes an increase in the circumference (P = πD) and therefore also of the pipe diameter,
which according to Hooke’s law can be expressed by

dD

D
=

dP

P
=

dσ

E
(2.24)

Since the cross-sectional area A is proportional to D2, and using (2.23), it follows that

dA

A
= 2

dD

D
=

D

δ

dp

E
(2.25)

so that
dA

dp
=

D

δE
A (2.26)

Using this, the partial derivatives of A with respect to t and s can be expressed as

∂A

∂t
=

dA

dp

∂p

∂t
=

D

δE
A
∂p

∂t
(2.27)

∂A

∂s
=

dA

dp

∂p

∂s
=

D

δE
A
∂p

∂s
(2.28)

Conservation of mass

The mass balance for the liquid under pressure in a pipeline reads

∂

∂t
(ρA) +

∂

∂s
(ρAU) = 0 (2.29)

This can be expanded into

A
∂ρ

∂t
+ ρ

∂A

∂t
+ ρU

∂A

∂s
+ ρA

∂U

∂s
+ UA

∂ρ

∂s
= 0 (2.30)

We substitute Eqs. (2.21), (2.22), (2.27) and (2.28), and divide by A, with the result(
ρ

K
+

ρD

Eδ

)
∂p

∂t
+

(
ρ

K
+

ρD

Eδ

)
U
∂p

∂s
+ ρ

∂U

∂s
= 0 (2.31)

Defining a quantity c through
1

c2
=

ρ

K
+

ρD

Eδ
(2.32)

and substituting this into Equation (2.31) brings the latter in the following compact form
that will be used in waterhammer computations:

∂p

∂t
+ U

∂p

∂s
+ ρc2

∂U

∂s
= 0 (2.33)

22



We will see in Chapter 6 that c represents the propagation speed of axial pressure waves
through the pipeline with the pressurized liquid. In an infinitely rigid pipe (E → ∞), we
have c =

√
K/ρ, which is the classical expression for the propagation speed of compression

waves (the speed of sound) in a liquid, which for water (without bubbles!) is about 1400
m/s. The elasticity of the pipe wall causes the actual speed in the coupled system to be less
than this, often in the order of 1000 m/s in case of steel pipes, see also Example 2.2.

In the approximation of an incompressible liquid and a rigid pipe, c → ∞. This implies
that in this approximation a pressure perturbation would be felt instantly over the entire
pipe length. This also follows from the mass balance (2.31), which in this case (K → ∞
and E → ∞) reduces to ∂U/∂s = 0, i.e. the fluid behaves as a rigid column. As we will see
below, this approximation applies when the flow varies slowly compared to the time it takes
for a pressure wave to travel the length of the pipe.

Conservation of momentum

The mass balance must be supplemented with an expression for conservation of momentum.
We use the acceleration form, Equation (2.9), which is repeated here for convenience:

∂U

∂t
+ U

∂U

∂s
+ g

∂h

∂s
+ cf

|U |U
R

= 0 (2.34)

The equations for free surface flows contain the fluid pressure in the equation of motion only,
where it occurs next to gravity. Their combined influence could be expressed through the
piezometric level, represented by a single quantity h. This is unlike the case for pressurized
flow, for which the pressure occurs in both equations, in contrast with gravity. Therefore,
using the piezometric level is not meaningful in this case. (We could, but it would not
eliminate the pressure.) Assuming that the positive s-axis (along the pipe axis) makes an
angle β with the vertical, we have

g
∂h

∂s
=

1

ρ

∂p

∂s
− g cos β (2.35)

Using this, Equation (2.34) is transformed into

∂U

∂t
+ U

∂U

∂s
+

1

ρ

∂p

∂s
− g cos β + cf

|U |U
R

= 0 (2.36)

Summary of equations for pressurized flow in a pipe

The mass balance for the liquid in the pipe is (re)written as

∂p

∂t
+ U

∂p

∂s
+ ρc2

∂U

∂s
= 0 (2.37)
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The momentum balance for the liquid in the pipe, in acceleration form, is written as

∂U

∂t
+ U

∂U

∂s
+

1

ρ

∂p

∂s
− g cos β + cf

|U |U
R

= 0 (2.38)

The parameter c in Equation (2.37) is the speed of propagation of axial waves through
the coupled pipe/liquid system. It is defined by

1

c2
=

ρ

K
+

ρD

Eδ
(2.39)

Equations (2.37) and (2.38) form a coupled set of hyperbolic PDE’s for two unknowns, the
fluid pressure p and the flow velocity U , as functions of location s and time t. They form
the basis of so-called water hammer computations (excluding the occurence of cavitation).
Examples are given in Chapter 6.

Example 2.2. Wave speed in pressurized flow

Situation

Consider the pressurized flow of water (ρ =
1000 kg/m3) in a pipeline. The bulk modulus
(compressibility) of water (K) amounts to
2.2× 109 Pa.

Questions

Compute the speed of pressure waves in the
pipeline in case of:

1. a pipeline with an inifinitely rigid wal;

2. a steel pipeline (tensile modulus E = 220×
109 Pa) with a pipe diameter of 50 times
the wall thickness;

3. a glass reinforced plastic (GRP) pipeline
(E = 17× 109 Pa), also with a pipe diam-
eter of 50 times the wall thickness.

Solution

To calculate the speed of pressure waves in a
pipeline use Equation (2.39).

1. For an inifinitely rigid pipewall E → ∞
reducing Eq. 2.39 to 1/c2 = ρ/K (second
right hand side term is zero) from which
it follows that c =

√
K/ρ = 1483 m/s.

2. Using the full expression for c and setting
D/δ = 50 gives c = 1211 m/s.

3. Carrying out the same steps as in question
2. leads to c = 543 m/s.

Comment

Provided the wall thickness does not change rela-
tive to the pipe diameter,cancels increasing elas-
ticity of the pipewall slows down the speed of
pressure waves. For materials commonly used in
civil engineering this decrease can be consider-
able.
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2.3 Numerical modeling

In this course we will take a first step into the realm of numerical computing by working out
some simple examples using the Python programming language. Our first endavour concerns
a simple model of a small basin. Despite its simplicity, this model will illustrate some basic
concepts of numerical modeling.

A numerical bay

We consider a tidal bay which is connected to the sea by a narrow entrance. The tidal
motion at sea leads to a time varying water level in the bay (hb) which is independent of
the position in the bay area. Apparently, under the action of the tide the bay behaves as a
small basin. The bay has some shallow areas which become exposed at low water. The wet
surface area of the bay (Ab) which is connected to the sea therefore depends on the water
level (hb). The corresponding discharge in the entrance is given by Eq. (2.19) which for a
variable surface area is restated as follows,

Q = Ab (hb)
dhb

dt
(2.40)

The water level (hb) is supposed to be known from measurements, giving the water level in
the bay at regular time intervals. A bathymetric survey of the bottom level in the bay is
available to determine the wet surface area (Ab) as a function of the water level (hb).

Our task is to compute for some time interval I = [t0; tN ] the discharge (Q) in the entrance
of the bay, given the water level (hb) in the bay as a function of time (t). The problem bears
some resemblance with Example 2.1 but has the additional difficulties of a variable surface
area and arbitrary water level variations.

Discretization

In order to simulate the above situation by means of a computer model, the ordinary dif-
ferential equation (2.40) must be transformed into an algebraic equation. To that end,
instead of treating the various parameters as continous functions, we represent them as series
of discrete values on which we perform our computations.

First, the time interval of interest I is represented as a sequence of N+1 discrete time levels:
I = [t0, t1, · · · , tN−1, tN ], where N is the number of time steps. This is called a partitioning
of the time domain I. In this case the range of time levels t0, t1, · · · is chosen to match those
from the water level measurements. We may collect these time levels in an array [ti]

N
i=0 where

i is an index number giving the corresponding order within the array.
Next, to each time level (ti) we assign the corresponding water level (hb,i) as available

from the measurements. Once the discrete water levels (hb,i) are known, we can compute
the corresponding free surface areas (Ab,i) by using the information from the bathymetric
survey.
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If we succeed in constructing the sequence [Q0, · · · , QN ] we have solved our problem in
the sense that we have obtained a discrete representation of the discharge (Q). It follows
from Eq. (2.40) that computation of the discrete discharge (Qi) at time level (ti) involves
the time derivative of the water level (hb) at time level (ti). Since only the water level was
measured and not its time derivative we need to estimate the latter. Using for instance the
forward Euler method we can express the derivative of the water level (hb) in terms of
the discrete water levels (hb,i) as follows

dhb

dt

∣∣∣∣
i

=
hb,i+1 − hb,i

ti+1 − ti
+O (ti+1 − ti) (2.41)

Due to the approximation we have made an error proportional to the time step size (ti+1−ti),
which can be proven by a Taylor series expansion. The discrete dicharge (Qi) can now be
computed as

Qi = Ab,i
dhb

dt

∣∣∣∣
i

≈ Ab,i
hb,i+1 − hb,i

ti+1 − ti

(2.42)

In applying this algorithm we make an error, but Eq. (2.41) shows that the approximation
gets better as the time step size decreases, or equivalently, the number of time steps (N) on
the given time interval of interest (I) increases. Generally, increasing the numerical accuracy
requires more work to be done by the computer.

Implementation

We will code the foregoing into a simple Python program. For this purpose some basic
knowledge of Python will be practical (see for instance Hetland [1] or Langtangen [2]),
which may also be learned as we proceed along the examples in this book.

The program first needs to process the water level measurements and surface data. To this
end the water level data is stored in a file water-level.dat containing two columns where
the first one gives the time levels and the second one the corresponding water levels. The
wet surface area is prescribed for a cancels range of water levels (in increasing order) and
interpolated for intermediate water levels. After computing the discharge using Eq. (2.42)
the water level and discharge will be plotted as functions of time.

A Python script carrying out these tasks is given in Listing 2.1. The script can be executed
by running Python in the directory containing the file bay.py and typing import bay.py.
We will now examine Listing 2.1 in some more detail.

In lines 2 and 3 the modules numpy and pylab are loaded containing array computing
methods and plotting tools, respectively, which are not available in plain Python. Line 6
reads the input file and splits it into separate character strings which, after executing line 7,

26



yields an array of numbers containing the input data. The free surface area of the basin as
a function of the water level is specified in lines 10 and 11 by prescribing it for a number of
water levels. This information is passed to a function A(h) defined in line 14 which calcu-
lates the free surface area for arbitrary water levels by means of interpolation. The function
interp is available from numpy. This line concludes the input section.

1 # import modules

2 from numpy import *

3 from pylab import *

4

5 # read water level data

6 data = open(’water -levels.dat’).read().split ()

7 data = array ([float(p) for p in data])

8

9 # bathymetry basin

10 level = array ([-3.0,-1.0, 0.0, 2.0, 5.0, 7.0]) # water level [m]

11 area = array ([ 1.0, 1.8, 2.3, 2.5, 2.8, 3.0]) # corresponding surface area [km2]

12

13 # function := water level [m] -> basin area [m2]

14 def A(h): return interp(h, level , area)*1.E6

15

16 # time partitioning

17 t = data [0::2] # discrete time levels [s]

18 N = size(t) - 1 # number of time steps [-]

19

20 # water levels

21 hb = data [1::2] # measured water levels [m]

22

23 # compute discharge Q(t)

24 Q = []

25 for i in range(N):

26 Ab = A(hb[i]) # basin area at time i [km2]

27 dh = hb[i+1] - hb[i] # water level increment [m]

28 dt = t[i+1] - t[i] # time increment [s]

29 Q.append(Ab*dh/dt) # discharge [m3/s]

30

31 # plot water level

32 subplot (2, 1, 1)

33 plot(t/3600, hb , ’-oc’)

34 xlabel(’time [hrs]’, fontsize =14)

35 ylabel(’$h_b$ [m wrt datum]’, fontsize =14)

36

37 # plot discharge

38 subplot (2, 1, 2)

39 plot(t[:N]/3600 , Q, ’-ob’)

40 xlabel(’time [hrs]’, fontsize =14)

41 ylabel(’$Q$ [m$^3$/s]’, fontsize =14)

42

43 show()

Listing 2.1: bay.py

The computation proceeds by first initializing some parameters. The time levels, which
are stored at uneven index numbers in the array data, are assigned to a new array t, for
convenience, in line 17. The number of time steps (N) equals the size of array t minus
one (line 18). The water level, stored at even index numbers in data is assigned to a new
variable hb in line 21. The computation of the discharge commences in line 24 by initializing
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the variable Q as an empty list. The list is filled repetitively in a loop defined in line 25.
For subsequent time indices i, where i runs from 0 to N-1, the surface level Ab (line 26) is
computed by using the pre-defined function A(h). Together with the increments of water
level (line 27) and time (line 28) this determines the new value of Q which is appended to
the list in line 29.

What remains is to plot the results. By means of subplot (lines 32 and 38) we first
create a plot window of two figures, stacked vertically. The arguments of the plot function
(lines 33 and 39) are the values on the horizontal and vertical axes, respectively, and a format
specifier; ’-oc’ for the cyan bullet line of the water level and ’-ob’ for the blue bullet line
of the discharge, respectively. The plot function in line 39 must only contain list numbers
up to N since QN could not be computed with the algorithm using Eq. (2.42). The plots are
shown in Figure 2.8.

Figure 2.8: Surface elevation (top) and computed discharge (bottom)

Interpretation

We will briefly examine the results to see whether they make sense. Figure 2.8 shows that the
discharge is about zero when the water level in the bay attains a maximum or minimum, as
expected for a small basin. A maximum of the dicharge occurs around 11 hrs. at which time
the water level rises with approximately 0.5 m/hr. Together with a water level hb of about
0 and a corresponding bay area of 2.3 km2, this gives an estimated discharge Q of (2.3×106

m2) × (0.5 m/hr) × (1 hr/3600 s) ≈ 320 m3/s. Both findings are in good agreement with the
result computed by the model, giving confidence in the Python program. Advanced testing,
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by for instance comparing the model results with analytical solutions, could provide a more
quantitative assessment of the numerical error (see Problem 14).
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Problems

1. What is the discharge through a conduit?
What is its dimension?

2. Where is storage in free surface flows tak-
ing place (mainly)?

3. Same, now for pressurized flow.

4. Point out an important consequence of the
difference in character and magnitude of
the storage in both cases.

5. Derive the volume balance equation for the
flow in a river stretch that is laterally con-
nected to a basin.

6. Derive the volume balance equation for
the flow in a river stretch provided with
a sequence of groins; cast it in differential
form.

7. Derive the volume balance equation (in
differential form) for the flow in a river for
which seepage of water into the subsoil (at
a rate of q volume units per unit area of
bottom and per unit time) has to be taken
into account.

8. Derive an expression for the downstream
force per unit volume in a flow with a slop-
ing free surface.

9. Which contributions to this force can be
distinguished?

10. Describe situations in which either one of
these is zero.

11. Check the dimensions of the individual
terms in Equation (2.7).

12. Derive the mass balance equation for pres-
surized flow in a pipe.

13. Modify the Python program of Listing 2.1
such that it computes the water level as a
function of time from a given initial wa-
ter level and varying discharge in the en-
trance.

14. Verify that the error in Eq. (2.42) is pro-
portional to the time step size by com-
puting the discharge for a sinusoidal wa-
ter level variation with constant basin area
and comparing the result with the exact
solution for different values of the time
step size (see also Example 2.1).

15. Write a Python script to compute and plot
the wave speed in a pipe relative to the
sound speed in water as a function of D/δ,
for some realistic values of E/K.
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Appendix

Origin and meaning of the advective terms in the equa-

tions of motion

The equations of motion can take on different forms, in particular:

• an equation for the acceleration of a particle or an ensemble of particles (Lagrangian
description), in which among others the so-called advective acceleration occurs;

• a balance equation for the momentum contained in a spatially fixed control volume
(Eulerian description), containing among others the advective transfer of momentum
through the surface bounding the control volume.

The difference and the connection between the two can be clarified with the simple example of
a mass m with velocity �v subject to a net force �F . Its momentum is m�v, and the momentum
balance can be written as d(m�v)/dt = �F . Using dm/dt = 0, expressing conservation of mass, the
momentum conservation equation can be rewritten as the acceleration equation d�v/dt = �F/m.

We now apply this approach to free surface flow in a conduit, considering the water in a slice of
length Δs. For simplicity, we assume that the entire cross-section contributes to the conveyance,
thus making no distinction between A and Ac. We start with the Eulerian description.

Eulerian mass balance

Stored mass ΔM = ρAΔs (2.43)

Mass flux S = ρUA (2.44)

Mass balance
∂ρA

∂t
+

∂ρAU

∂s
= 0 (2.45)

Eulerian momentum balance

Stored momentum UΔM = ρUAΔs (2.46)

Momentum flux (by advection) ρU2A = ρQU = ρQ2/A (2.47)

Momentum balance
∂ρUA

∂t
+

∂ρU2A

∂s
= ΣFs = −ρgA

∂h

∂s
− cf

ρ|Q|Q
AR

(2.48)

The second term in this momentum balance equation represents the difference between inflow
and outflow of momentum through two cross-sections a unit length apart. It is the advective
contribution to the change of momentum in the control volume. (The contribution of the
fluid pressure to the total momentum flux through a cross-section is included as part of the external
force in the right-hand side.)
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From Eulerian momentum balance to an acceleration equation

Applying the product rule of differentiation to the left hand member of Equation (2.48), we expand
this equation into

U
∂ρA

∂t
+ ρA

∂U

∂t
+ U

∂ρAU

∂s
+ ρAU

∂U

∂s
=

∑
Fs (2.49)

The sum of the first term and the third term is zero in view of the mass balance, Equation (2.45).
(This is equivalent to the use of dm/dt = 0 in the momentum balance of a discrete particle, written
above.) It follows that

ρA
∂U

∂t
+ ρAU

∂U

∂s
= ΣFs (2.50)

Dividing by ρA, the mass per unit length (equivalent to dividing the momentum balance of a
particle by its mass m) yields the acceleration equation:

∂U

∂t
+ U

∂U

∂s
=

ΣFs

ρA
= −g

∂h

∂s
− cf

|Q|Q
A2R

(2.51)

The second term is the advective contribution to the total acceleration (the result of the
motion of a fluid particle through a region with spatially varying particle velocity).

33



34



Chapter 3

Classification and analysis of long
waves

This chapter deals with the following items:

• types of long waves

• a condition for waves to be classified as ‘long’

• estimation of magnitudes of terms in the equaton of motion

• overview of solution methods

• analyses of results of observations or simulations

3.1 Types of long waves

The category of long waves encompasses different wave types, each with a different origin
and with different dynamics, in the sense that the relative importance of the different phys-
ical processes, as expressed by the different terms in the equation of motion, can vary. In
general, one can say that the faster the flow varies, the more important will be the inertia
relative to the resistance, and the more it will be in balance with the net driving force. We
return to this in following chapters.

Before dealing with the dynamics we give short descriptions of the origin and typical char-
acteristics of different types of long waves:

• translatory waves in open and closed conduits

• tsunamis (waves following earth quakes in deep oceans)

• seiches (standing oscillations in lakes, bays, harbors etc.)
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• tides in oceans, shelf seas, estuaries and lowland rivers

• flood waves in rivers

Translatory waves

As a result of rapid manipulation (or breakdown!) of pumps or valves in the operation of
locks, sluices, hydropower plants, etc., rapid variations in discharge (δQ) can occur. These are
accompanied by rapid variations in water surface elevation (δh) or pressure (δp), respectively,
see Figure 3.1.

Figure 3.1: Translatory waves after opening a gate

The figure on the cover shows an example from the river Rhine, with an abrupt lowering of
the water level near the city of Amerongen on January 24, 1995; this was the result of the
raising of a movable weir at a smalll distance downstream. Such disturbances travel as so-
called translatory waves into the adjacent reaches of a channel or pipeline. The passage of
such wave induces a rise in elevation or pressure in case of an increase in discharge, and vice
versa. The resulting particle velocities are in one direction only (either forward or backward),
which explains the name ’translatory waves’, as opposed to ’oscillatory waves’, in which the
particles move back and forth.

Where translatory waves reach a closed end or another major change in the conveyance
capacity of a conduit, they are wholly or partially reflected. Repeated reflections can give
rise to a sequence of rapid variations of flow properties. Figure 3.2 shows an example of
such intense and rapid variations in pressure in a closed conduit, known as water hammer.
Notice the scales of pressure (1 MPa corresponds to 100 m water column approximately)
and time (1 ms = 1 millisecond = 10−3 second). Because translatory waves cause rapid
variations, the effect of resistance during its passage is usually unimportant, so that the
dynamics are predominantly determined by a (near-)balance between inertia and driving
force. On a longer time scale, the cumulative effect of resistance manifests itself, and the
motion dies down.

Translatory waves in navigation locks and navigation canals can cause hindrance to ship-
ping as well as large forces in the mooring lines of moored ships, in some case causing
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Figure 3.2: Pressure waves in a pipe (from: Tijsseling [2]). The pressure (in MPa) is plotted
against the time (in ms)

breaking. Such effects can be reduced through a more gradual operation of pumps or valves.
We will return to this matter in Chapter 6.

Tsunamis

Tsunamis are impulsively generated waves in oceans, shelf seas or (large) lakes, most com-
monly due to subsea earthquakes. Subsea vulcanic eruptions or landslides are other possible
causes of tsunamis. Due to its impulsive generation, a tsunami is in essence a transient
sequence of oscillations, a so-called wave train. The period of these oscillations is usually of
the order of five to twenty minutes.

Figure 3.3 shows a plot of the depth variation, made by an echo sounder on board a yacht
anchored at some distance off the coast of Thailand in the early morning of December 26,
2004, when the Indian Ocean tsunami struck. The oscillations in this plot have a period of
about 20 minutes.

One can distinguish four stages in the life time of tsunamis: the generation, the propagation
in relatively deep water from the source region to a coastal region, the enhancement and
deformation in shoaling water, possibly up to breaking, and finally the run-up onto land.

Earthquakes causing tsunamis often occur in the subduction zones along the rims of
tectonic plates. The accompanying sea bed motion has a plus-minus signature, generating
a negative wave (a depression) traveling landward, and a positive wave (elevation) traveling
seaward. This is why the leading wave in most coastal areas is one of depression (as in
Figure 3.3). This manifests itself in an initial withdrawal of the sea waters from the coast,
exposing vast stretches of what is normally a subsea bottom. This should be a strong warning
sign to humans who happen to be present on the site to seek high ground as fast as they can,
but unfortunately it also triggers the curiosity of some, who venture seaward, unknowingly
towards their almost certain death.

Depending on the distance involved, the propagation from the source region to a coastal
area may last several hours, giving time to issue warnings to coastal populations. However,
this is not the case when the source region is relatively close to land, as in the Indian Ocean
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Figure 3.3: Record of depth variation measured offshore of the Thailand coast on December
26, 2004. The horizontal scale indicates the time (hrs), the vertical scale the depth (m)

tsunami of December 2004 and the Tohoku (Japan) tsunami of March 11, 2012.
In deep water, the individual waves in a tsunami wave train are typically a hundred km

or more in length. This fact, combined with the relatively moderate wave heights offshore,
often less than a meter, makes the steepness of tsunami waves in the deep ocean very low,
causing them to pass unnoticed by ships in the deep ocean.

As the tsunami enters water of decreasing depth, the wave lengths shorten, the wave
heights increase and the wave fronts steepen, possibly up to the point of breaking. This
gives the tsunamis their often massive destructive power. In the fourth and final stage, the
tsunami waves may overflow low-lying coastal areas, causing victims and material damage,
or they may run up against coastal mountain slopes, locally up to heights in excess of 35 m
in the two recent major tsunamis mentioned above.

Seiches

Oscillations of water or other liquids in a drinking glass, a bath tub or other ’closed basins’
are easily observable for everyone. They are called ‘standing oscillations’, as opposed to
progressive, oscillatory waves. Similar standing oscillations occur in all kinds of natural
water systems and at widely different scales, in closed basins as well as basins that are closed
at one end and open at the other, comparable to an open organ pipe. Such oscillations
have been first systematically observed in Lake Geneva, by Forel (1892), who called them
‘seiches’, a name whose origin is obscure but which has nevertheless been rooted in the
scientific literature ever since, referring to standing oscillations in lakes, harbour basins, and
the like.

Seiches are free or natural oscillations, i.e. their periods are determined by the geome-
try of the system, rather than by external forcing. A weak periodic forcing may be sufficient
to generate a significant response, provided the excitation contains energy at the natural
frequencies of the system. In such cases the system response is resonant. In this manner,
the water in coastal harbour basins can oscillate with significant amplitude in response to
low waves at sea, hardly discernable offshore, which in turn can be the result of oscillations
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in wind speed and atmospheric pressure during the passage of cold fronts. Figure 3.4 gives
an example for the port of IJmuiden in The Netherlands. The record for the offshore surface
elevation in the upper panel shows minor disturbances, no more than about 0.1 m in height,
superimposed on the astronomic tide. The lower panel shows a similar record in the outer
harbour with resonantly enhanced oscillations, with crest-to-trough heights up to 1.2 m and
a period of about 35 minutes, which is the natural period of the semi-closed outer harbour
basin.

Figure 3.4: Simultaneous records of the surface elevation (in m above NAP, or MSL) offshore
(upper panel) and in the outer harbour of IJmuiden (lower panel)

As will be seen, friction is usually unimportant for harbour seiches because of their
relatively short period and the large depths in which they occur. The largest contribution
to the damping of harbour seiches is the seaward radiation of energy through the harbour
mouth.

Seiches can have undesirable or even harmful effects. They can be a nuisance to shipping,
and occasionally cause breaking of mooring lines of moored ships. They also affect the
tidal window of passage of deep-draught ships through their influence on the instantaneous
available depth.

In contrast to human-caused translatory waves, nothing can be changed in the cause of
harbour seiches, i.e. the low, long waves incident from the sea. Some alleviation of harmful
effects can be achieved by reducing the resonance response factor, e.g. by optimising the
geometry of the harbour mouth, but navigational demands put a limit to this. (It can even
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happen that narrowing the entrance results in higher seiches, because such narrowing may
reduce the seaward radiation of seiche energy more than it hampers the excitation; this is the
so-called ‘harbour paradox’.) Another option is adaptation of the geometry of the interior
basins. This can also shift the natural frequencies, but this is an improvement only in case
the shift is away from the energetic frequencies in the excitation, which is usually not known
a priori.

Tides

Tides are caused by the variations in time and space of the gravitational force exerted by the
moon and the sun, in combination with the effects of the rotation of the earth. On a global
scale, tides are oscillations in the ocean basins. On a smaller scale, the same is true for shelf
seas such as the North Sea. From the oceans or shelf seas, tidal waves enter estuaries and
bays where they may be damped or be resonantly enhanced, depending on the length and
depth of the estuary or the bay. The tide in the Bay of Fundy (Nova Scotia, Canada) is an
extreme example of strong enhancement, with a tidal range at the closed end up to 16.3 m,
world’s highest.

In most locations, the semi-diurnal lunar tide (M2) is dominant; its period equals the
duration of half a moon-day, about 12 hours and 25 minutes. In some areas, a.o. south-east
Asia, the diurnal solar tide is dominant, due to resonance characteristics of adjacent ocean
basins favouring these longer-period waves. See Figure 3.5. Bed friction is relatively weak
(compared to inertia) in ocean tides, because of the large depths, and can there be neglected
in a first approximation, but in shelf seas and shallow tidal bays it is of equal significance as
the inertia and cannot be neglected.

Tides are very important for coastal engineers. Therefore, a good understanding of
their origin and their dynamics is necessary. It is important to be able to understand,
anticipate and assess a priori the effects of engineering measures in tidal areas such as
dredging, closures, etc. To this end, tidal calculations are indispensible.

Flood waves in rivers

Enhanced precipitation and/or melting of snow in the catchment area of a river gives an
enhanced discharge downstream, with some delay, and an associated rise in water level, a
so-called flood wave. Figure 3.6 shows examples of the water surface elevation at several
locations along two branches of the river Rhine, during a flood wave of January/February
1995. In each panel, the uppermost plot is for the most upstream location, and so on.
All elevations are shown relative to the same reference elevation (NAP, roughly equal to
Mean Sea Level, MSL). Tidal activity is visible in the most downstream locations. The
record at Amerongen also shows the effect of a sudden raising of a downstream weir, which
was necessary to allow free passage of the flood waters, which caused a sudden lowering
of the upstream water surface elevation. Flood waves in rivers can last for several days or
even weeks (see the example of Figure 3.6). Therefore, the corresponding variations in flow
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Figure 3.5: Semi-diurnal tides (upper panel), mixed tides (middle panel) and diurnal tides
(lower panel) at three locations in south-east Asia (from: Dronkers [1])

velocity are far slower than in translatory waves and even significantly slower than in tides.
In a first approximation, inertia can be neglected relative to resistance.

3.2 A condition for the long-wave approximation

By definition, ’long waves’ have a wave length far greater than the depth in which they
occur. As a consequence, the vertical particle accelerations are negligible, so that the pressure
distribution can be considered to be hydrostatic. We shall derive a quantitative criterion for
the validity of this basic assumption in the mathematical modelling of long waves.

It would not be sufficient to require that the vertical wave-induced acceleration be small
relative to that of gravity (g). An additional requirement is that the wave-induced pressure
variation be almost uniform in the entire vertical.

Consider a situation where the local water level is raised by an amount ζ from an undisturbed
situation. If the pressure were hydrostatic, the piezometric level would be raised by the same
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Figure 3.6: Water level records along the northern (upper panel) and the southern (lower
panel) branch of the Rhine during high water of January/February 1995
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amount in all points of the vertical (see Figure 3.7). Vertical accelerations (az = Dw/Dt,

Figure 3.7: Hydrostatic pressure distribution

in which w is the vertical particle velocity) cause deviations from this hydrostatic pressure
distribution. To quantify this, we use Euler’s equation for the vertical motion:

az = −g
∂h

∂z
(3.1)

It follows that the variation of the piezometric level from the bottom to the free surface (�h)
can be expressed as

�h =

∫ d

0

∂h

∂z
dz = −1

g

∫ d

0

az dz (3.2)

The approximation of hydrostatic pressure is valid if this difference is negligible compared
to the wave-induced variation ζ, or |�h| << |ζ|.

To elaborate this further, we assume a sinusoidal motion of the vertical free surface
displacement with amplitude ζ̂ and (angular) frequency ω, as in ζ = ζ̂ cosωt. Expressed in
terms of amplitudes, the above inequality becomes∫ d

0

âz dz << gζ̂ (3.3)

The vertical motion dies out downward. Therefore, the left-hand side is smaller than âz,o d, in

which âz,o is the amplitude of the vertical acceleration at the surface, equal to ω2ζ̂. Therefore,
a sufficient condition for the validity of (3.3) is

âz,o d << gζ̂ (3.4)

Because âz,o = ω2ζ̂, we finally obtain the following condition for the validity of the
approximation of hydrostatic pressure:

ω2d

g
<< 1 (3.5)
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A note on the length of a ’long’ wave
As we shall see below, long waves in water with a free surface and depth d have a speed of propagation
(c) approximately equal to

√
gd. If we substitute this with c = L/T = Lω/2π into Eq. (3.5) we obtain

the condition for hydrostatic pressure in the following form:

L >> 2πd

In other words: the wavelength should be much larger than the depth. This explains and justifies the
name ‘long waves’. A commonly used criterion is L >̃ 20 d.

Let us now investigate the implications of the condition (3.5) for the most important cate-
gories of long waves.

Tsunami waves have much shorter periods (higher frequencies) than the tides. Neverthe-
less, most of the energy contained in them corresponds to periods long enough to treat them
as long waves. Taking a period of 10 minutes as an example, and a typical ocean depth of
4000 m, the ω2d/g value is about 0.04, small enough to justify the long-wave approxima-
tion, even in the deep ocean. However, tsunamis may also contain some energy in higher
frequencies, for which the long-wave approximation is not valid in ocean depths, requiring
non-hydrostatic modeling.

Seiches have much shorter periods than the tides, but these are only important in much
shallower waters than the oceans. For a seiche with a typical period of about 10 minutes
(ω 	 0.01 rad/s) in water of about 20 m deep, ω2d/g 	 2 × 10−4, so that also for these
oscillations the long-wave approximation is very well justified.

For the tides, we consider the semi-diurnal tide M2 in the deepest ocean trough on earth,
with a depth of approximately 104 m. The period of the M2 tides is 12 hours and 25 minutes,
corresponding to an angular frequency ω = 1.405× 10−4 rad/s. For these conditions, ω2d/g
= 2 × 10−5 , so that even for these extreme depths the pressure in the tidal motion hardly
deviates from being hydrostatic. Needless to say, this is even less the case in waters of more
moderate depth. Therefore, the long-wave model is very well justified in tidal calculations.

Flood waves in rivers can vary on the time scale of days, in any case more slowly than
tides, at least in the lower river reaches, and the depths are relatively small, so that the
approximation of hydrostatic pressure is even better justified in these cases than it is for the
tides.

Translatory waves which result from slow manipulations (in order to avoid damage) with
weirs, valves, pumps etc. behave gradually, so that in those cases too the pressure can be
assumed to be hydrostatic. However, in some cases, e.g. when they are the result of an
accident, a sudden power outage, etc., they vary more rapidly, even as a shock wave. In such
cases the long-wave assumption is locally invalid, but it can still be used in the stretches on
either side. This is sufficient for the calculations if locally the shock conditions are used to
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connect the motions on either side of the shock wave.

Finally, it is obvious from (3.5) that this condition cannot be fulfilled by high-frequency
(short-period) waves in waters of moderate or large depth. Examples are ship-generated
waves and wind-generated waves, with periods of the order of seconds rather than minutes
or hours. Take an example of wind-generated waves with a period of 6 s in water of 10 m
depth. In that case, ω2d/g 	 1, so that the pressure is not even approximately hydrostatic.
Waves for which (3.5) is not (nearly) fulfilled are called short waves. These are the subject
of a different class of theory than that for long waves. They are not considered here.

3.3 Estimation of terms

We are now going to investigate the relative importance of the different terms in the long-
wave equations, in particular the equation of motion because that contains up to four terms
which may bear ratios to each other of different orders of magnitude. This estimation does
not have to be precise. What matters is to gain insight in the parameters determining which
contributions (resistance, inertia, ..) are important in any given situation and which ones
are so unimportant that they can be neglected in a first approximation.

We start from the equation of motion in acceleration form as derived in the previous chapter:

∂U

∂t
+ U

∂U

∂s
+ g

∂h

∂s
+ cf

|U |U
d

= 0 (3.6)

Here, we have replaced the hydraulic radius R by the cross-sectionally averaged flow depth
d, which is justified for relatively flat cross-sections.

Advective acceleration term

We first consider the advective acceleration (U∂U/∂s) in relation to the local accel-
eration (∂U/∂t), initially for a conduit whose cross-section does not vary longitudinally (a
prismatic conduit). Let U be a characteristic flow velocity and L a characteristic length
scale, possibly a wave length if it exists, see also Figure 3.8. In that case, U∂U/∂s is of the
order of magnitude U2/L. Likewise, ∂U/∂t is of the order U/T , where T is a characteristic
time scale of the motion, such as a wave period (if it exists). In that case, the ratio of
the advective acceleration to the local acceleration is of the order (U2/L)/(U/T ), or UT /L.
The ratio UT /L can be interpreted geometrically as the ratio of the longitudinal particle
displacement (of order UT ) to the length scale of the flow (L).

For waves in a prismatic conduit, the length scale L is determined by the flow, and coupled
to T through the relation L = cT , in which c is the wave propagation velocity, see Figure 3.8,
in which case UT /L = U/c. As we will see furtheron, c =

√
gd for long waves, in which

case U/c equals U/
√
gd, the Froude number Fr. (Similarly, in compressible flows for which
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Figure 3.8: Schematic of scaling parameters

c is the speed of sound, U/c is the Mach number.) Therefore, we can say that the lower the
Froude number, the smaller is the relative magnitude of the advective acceleration.

The preceding considerations apply in like manner to the momentum balance, Equa-
tion (2.10), implying that the term arising from the advection of momentum, ∂(Q2/Ac)/∂s,
is negligible if Fr2 
 1.

The ratio UT /L also has an interesting link to the surface level amplitude (ĥ) which follows
from scaling the continuity equation:

B
∂h

∂t
+

∂Q

∂s
= 0 (3.7)

The terms B∂h/∂t and ∂Q/∂s have orders of magnitude of Bĥ/T and UBd/L, respectively,
where B is the width of the channel. Since these terms equate it follows that ĥ/T = Ud/L
and, consequently, ĥ/d = UT /L = Fr.

For a given depth, therefore a given value of
√
gd, the Froude number (Fr) decreases

with decreasing wave height. The ratio of the advective acceleration to the local accelera-
tion decreases in like proportion. Therefore, for relatively low waves (ĥ/d 
 1) in a
prismatic conduit, UT /L 
 1, implying that the advective acceleration is relatively
small and can be neglected in a first approximation.

In harbour oscillations and offshore tidal currents, the flow velocity is seldom more than
0.5 m/s. If the depth there exceeds 10 m, the Froude number is below 0.05, implying that
the advective acceleration can be neglected in a good approximation. In tidal entrances,
estuaries etc., flow velocities typically exceed 1 m/s, so that in these flows the advective
acceleration is of some importance. The same holds for tides in shallow water, such as over
tidal flats, where the flow velocities may be less than in the channels but the depths are
smaller. In such flows, the advective acceleration is still not dominant but at the same time
not negligible.
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Category T (min) ω (rad/s) d (m) Û (m/s) σ
Tsunami 10 1.0× 10−2 2000 0.1 2× 10−5

Tide in the ocean 745 1.4× 10−4 4000 0.3 2× 10−3

Seiche 20 5.0× 10−3 20 0.5 2× 10−2

Tide in shelf sea 745 1.4× 10−4 50 0.5 3× 10−1

Tide in channel 745 1.4× 10−4 15 1.0 2× 100

Tide over flats 745 1.4× 10−4 2 0.7 1× 101

River flood wave 7000 1.5× 10−5 5 2.0 1× 102

Table 3.1: Estimation of terms for different long-wave types

A note on varying geometries
The preceding estimates were restricted to waves in prismatic conduits, in which the length scale is
determined by the time scale and the propagation velocity through L = cT . In non-prismatic conduits,
local variations in the geometry can force small length scales, such that U2/L � U/T , or UT /L � 1.
In such conditions, the balance tips to the other side: the advective acceleration is locally dominant.
Flows through or over control structures are good examples of this. In such cases, the local acceleration
(∂U/∂t) is unimportant. Neglecting it causes the time variation to vanish from the equation of motion:
the flow is being modelled as quasi-steady, which means that at any instant it has fully adapted to the
instantaneous boundary conditions, as if these were not changing in time.

Resistance term

We now turn to the importance of the flow resistance relative to the local acceleration. We
first consider oscillatory motions, as in tides and seiches, in which the flow velocity varies in
time with amplitude Û and frequency ω. The local acceleration (∂U/∂t) is of the order of
ωÛ whereas the resistance per unit mass in (3.6) is of order cf Û

2/d. This yields the following
result for the ratio of the resistance to the local acceleration, here denoted as σ:

σ = cf
Û

ωd
(3.8)

The fraction Û/(ωd) allows for a simple physical interpretation: Û/ω is the amplitude of the
horizontal displacement of the water particles, so that said fraction expresses how far the
particles move back and forth relative to the flow depth.

Some typical, rounded values of σ have been collected in Table 3.1, using arbitrary but
realistic value for the parameters, including cf = 0.004. The entries have been placed in the
order of ascending values of σ (see the exponents of σ in the rightmost column of the table).

In addition to periodic motions, flood waves in rivers have been included in the table.
Although these are not periodic, they do have a characteristic time scale, which for major
lowland rivers is of the order of several days. The time scale chosen in the table for a river
flood wave corresponds to five nights and days, or about 9 times the period of the M2 tide.

It is clear from the σ-values in Table 3.1 that resistance plays no role whatsoever in the
instantaneous dynamics in tsunamis and seiches, while it is dominant for flood waves in
rivers. For tides, the relative importance of resistance depends mainly on the water depth.
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It is negligible in the oceans. Civil engineers mainly deal with tides in coastal waters, for
which in general resistance is not negligible or (over tidal flats) even dominant compared to
the local acceleration.

Translatory waves are not included in the table. These typically have a time scale of the
order of minutes or even less, so that here resistance is unimportant for the instantaneous
dynamics. However, because its effects is always to resist motion, its influence can and will
be important in the long run. Therefore, when dealing with such motions over long dura-
tions, compared to the time scale of the primary variations, resistance should be included in
the modeling.

Example 3.1. Estimating terms

Situation

A tidal wave in an estuary has a length scale
(wave length) L of 500 km, a time scale (wave
period) T of 12 hrs 25 min (≈ 45,000 s) and
a characteristic flow velocity U of 0.5 m/s.
The depth d is about 20 m and the resistance
coefficient cf equals 0.004. See also Figure 3.8.

Questions

Give order of magnitude estimates for:

1. the local acceleration term: ∂U/∂t

2. the advective acceleration term: U∂U/∂s

3. the resistance term: cf |U |U/d

What can you conclude regarding the importance
of the various terms?

Solution

Velocity variations are of order U over a time
interval T and a spatial interval L, respectively,
yielding the following estimates:

1. local acceleration term: U/T =
(0.50 m/s)/(45,000 s) ≈ 1.1 × 10−5 m/s2.

2. advective acceleration term: U2/L =
(0.50 m/s) × (0.50 m/s)/(500,000 m) ≈
5.0 × 10−7 m/s2.

3. resistance term: cfU2/d = 0.004 ×
(0.50 m/s) × (0.50 m/s)/(20 m) ≈ 5.0 ×
10−5 m/s2.

Comment

The resistance term is most important in this
case, but the local accelaration term cannot be
neglected. The advective acceleration however is
two orders of magnitude smaller than the resis-
tance term and can be safely omitted at first.

3.4 Solution methods

Complete equations

The complete long-wave equations, Equations (2.11) and (2.12), are the basis of a large num-
ber of numerical codes for the calculation of unsteady flows in open channels or closed con-
duits, such as DuFlow (used by the Dutch water boards), SOBEK (Delftares) and MIKE11
(Danish Hydraulics). Here, ‘complete’ refers to the fact that the equations have not been
simplified by neglecting a priori terms which are expected to be small in a given applica-

48



tion. Therefore, such codes are suited, in principle, for all kinds of long-wave phenomena,
provided these can be modelled as one-dimensional, which of course in itself is an approx-
imation. Where this is not justified, one must resort to the long-wave equations in two
horizontal dimensions.

In the codes referred to, the long-wave equations are integrated in discretized form. Those
techniques, the problems that may be encountered, and the accuracy that can be achieved are
dealt with in the introductory numerical modeling examples throughout this book. Reference
is made to the master course ‘Computational Modelling of Flow and Transport’ (CIE4340)
for a more extensive treatment of this subject [3].

Simplified equations

Based on the complete set of long-wave equations, various simplified forms have been devel-
oped and solved in order to obtain insight through simple calculations or analytical solutions.
Each of those is tuned to a specific subset of long-wave problems for which certain terms in
the equations of motion are estimated beforehand to be small, as was done in Section 3.3. By
neglecting them, a simplified model results, which may allow analytical, preferably explicit
solutions. The present course focusses on these simplified models and their solutions because
the primary purpose is to obtain insight in the dynamics of various long-wave phenomena
that may be encountered in engineering practice. If and when more accurate quantitative
answers are needed, one must resort to a validated numerical code.

The following subjects of wave propagation are dealt with in the remaining chapters:

• elementary wave equation, applicable to low, rapid phenomena: advective acceleration
and flow resistance are neglected (Chapter 4).

• translatory waves: advective acceleration can be included; resistance neglected (Chap-
ter 5).

• method of characteristics, showing fundamentals of wave propagation: particularly
suited to high translatory waves; advective acceleration not neglected; resistance can
be included but that is cumbersome (Chapter 6).

• harmonic method, suited for low-amplitude oscillatory progressive or standing waves
such as seiches and tides: advective acceleration neglected, resistance included in lin-
earized form (Chapter 8).

• flood waves in rivers: various approximations, inertia neglected (Chapter 9).

In addition, two chapters deal with highly reduced cases: storage in a short basin, in which
inertia is negligible (Chapter 7), and flow through or over control structures in which storage
is negligible (Chapter 10). In both cases the motion is unsteady but not wavelike.
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Problems

1. What are ‘long waves’?

2. Derive a condition for the validity of the
long-wave approximation.

3. Mention a few categories of wave phenom-
ena that belong to the class of long waves.

4. Check for each of these to which extent the
long-wave approximation is justified.

5. For each of these, choose some characteris-
tic, realistic values of the most relevant pa-
rameters such as depth, flow velocity and
time scale, and estimate the corresponding
values of the ratios of various terms in the
equation of motion.

6. What are so-called translatory waves?

7. Do these occur in open channels as well as
in closed conduits?

8. Are they normally the result of natural
processes or human intervention?

9. Argue why resistance is relatively unim-
portant in translatory waves.

10. What are seiches?

11. What is in general the cause of seiches?

12. Do seiches in essence belong to the class of
progressive waves or to the class of stand-
ing waves?

13. Seiches in a given basin cannot have arbi-
trary frequencies. Why not?

14. Which mechanism is the major cause of
energy loss of seiches?

15. Mention a few effects of seiches that may
be a nuisance in practice, possibly causing
damage.

16. Is resistance important in all kinds of tidal
phenomena? In which subclass is it not?
In which is it important, possibly even
dominant?
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17. The major tide in the North Sea is the
semi-diurnal tide M2, with a period of ap-
proximately 12 hours and 25 minutes. Do
the major tides in all seas and oceans on

earth have the same period? If not, why
not?

18. Under which condition(s) is the so-called
advective acceleration negligible?
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Chapter 4

Elementary wave equation

The considerations and analyses in this chapter are based on a strongly reduced set of
equations, viz. those for the modelling of low, long waves without resistance. We
assume a horizontal open channel without longitudinal variations in the channel geometry.
Theoretically, the channel does not have to be straight, but for simplicity we refer to it as
a prismatic channel. We account for storage and (local) inertia while neglecting advective
accelerations (consistent with the restriction to low waves) and resistance (restricting the
validity of the results to rapid variations).

4.1 Elementary wave in open water

Before dealing with the introduction of a general wave equation, we consider a relatively
simple elementary case, viz. the transition between two regions with a uniform flow in
each, different in the two regions. We assume that the transition travels without change
with a constant propagation velocity c. The fact that this is possible (within the assumed
model equations) is proven below. We choose a mathematical formulation in terms of the
disturbance δh of the initially horizontal free surface level (h0) in the undisturbed region:
h(s, t) = h0 + δh(s, t). Similarly, we have Q(s, t) = Q0 + δQ(s, t).

We start with a qualitative description of the disturbances resulting from the partial
opening of a gate between two reaches of a prismatic channel in which initially the water is
at rest, with different free surface levels on either side of the gate, see Figure 4.1. The gate
is raised gradually over a certain height after which the opening is held constant.

As a result of the head difference across the gate, a discharge develops through the gate
as soon as the gate is (partially) opened. Water is withdrawn from the high-water side,
resulting in a lowering of the free surface adjacent to the gate, and added to the low-water
side, where it causes a rise in the water surface on that side of the gate. These disturbances
travel away from the gate into the adjacent channel reaches with velocity c, growing in height
with increasing opening of the gate. Once the opening is constant, the discharge and the
water levels adjacent to the gate remain constant.
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Figure 4.1: Disturbances in a canal resulting from the partial opening of a gate

Propagation of a disturbance

Let us now consider the propagation of the disturbance into a channel reach, starting with
the low-water side, which experiences inflow and a rise in water level. We recognize three
regions: an undisturbed region, a region of established uniform flow adjacent to the gate,
and a traveling transient or wave front between them (Figure 4.2).

Thanks to the slope of the free surface in the wave front, a pressure gradient exists there
which causes an acceleration of the water particles in the direction from the high-water side
to the low-water side, indicated in the figure with a double arrow. At a given location,
the water is initially at rest, while it accelerates during the passage of the wave wave front.
Once the front has passed that location, the local free surface is again horizontal, the pressure
gradient is zero, and the flow velocity is constant (we ignore flow resistance). As a result

Figure 4.2: Accelerations (⇒), flow velocities (→) and propagation velocity (�) in a positive
wave

of the difference in flow velocity across the transient, the passage of the transient causes
a longitudinal compression of the water beneath it. Since water is almost incompressible,
this longitudinal compression is compensated by a rise of the free surface. Because the wave
considered here causes a rise in water level at a fixed point, we call it a positive wave. (In
the analogous case in gas dynamics, we refer to a compression wave.)

On the upstream side of the gate, water is withdrawn, resulting in a lowering of the free
surface: a negative wave. Notice that here the acceleration is again to the right, but now this
is against the direction of wave propagation (Figure 4.3). Passage of this transient causes the
particle velocities to go from zero to positive, opposite to the direction of wave propagation.
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Figure 4.3: Accelerations (⇒), flow velocities (→) and propagation velocity (�) in a negative
wave

Balance equations

Following the qualitative description given above, we will now quantify the arguments. We
could start from the long-wave equations, which form a set of Partial Differential Equations
(PDE’s), but at this stage we prefer an algebraic formulation based on balance equations for
a finite control volume between two fixed cross-sections on either side of the transient. We
restrict ourselves to a low disturbance which causes small variations in the elevation of the
free surface (δh), the discharge (δQ) and the flow velocity (δU).

We consider the balances of mass and momentum during a time interval with duration Δt
(Figure 4.4). We neglect compressibility of the water, so that the mass balance reduces to a
volume balance. We further assume that the transient travels without change in shape (to
be validated afterwards).

Figure 4.4: Control volume containing the transient

Volume balance

This balance equates the net inflow of water, due to the difference in discharge δQ, to the
storage at the free surface (the yellow area in Figure 4.4) over a (storage) width B and a
rise in surface elevation δh, occurring in a finite time interval Δt:

net inflow = δQΔt = storage = BδhΔs = Bδh cΔt
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or
δQ = Bc δh (4.1)

Momentum balance

The rise of the free surface (δh) gives rise to a pressure difference across the control volume
given by ρg δh, resulting in a net horizontal force on the flowing mass in the control volume
equal to ρgAc δh. Here, we have neglected the small contribution at elevations above the
undisturbed free surface (the small triangle in the figure).

Because of the restriction to a low disturbance, the advection of momentum, which is
proportional to the square of the flow velocity, is negligible compared to the contribution by
the wave-induced hydrostatic pressure.

During the time interval with duration �t, the momentum inside the control volume
(initially zero) increases with the amount ρ δUAcΔs = ρ δQ cΔt (see the green area in the
figure, extending from the bottom to the free surface). The momentum balance becomes:

momentum delivered = ρgAc δhΔt = momentum gained = ρ δQ cΔt

or

δQ =
gAc

c
δh (4.2)

Elimination of δQ from these equations yields the following important result for the long
wave propagation speed:

c =

√
gAc

B
(4.3)

Since δQ = Ac δU , Equation (4.2) can be expressed in terms of the flow velocity as

δU =
g

c
δh (4.4)

If the total cross-section contributes fully to the conveyance, Ac/B = Ac/Bc = d, in which
case the expression for the propagation speed reduces to

c =
√

gd (4.5)

The expression for the flow velocity can then be written as

δU =
c

d
δh (4.6)

This also follows directly from Equation (4.1).
The results derived here are valid only for (very) low waves (Fr 
 1). They are used

frequently in the following.
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Example 4.1. Translatory wave following gate openening

Situation

As the result of a gate having been raised, a
positive wave, with a rise in surface elevation
(δh) of 0.15 m, propagates in a canal with an
initial depth (d) of 5 m, a storage width (B)
of 135 m and conveyance width (Bc) of 100 m,
where the water is initially at rest.

Questions

1. compute the wave speed c

2. compute the discharge Q through the gate

3. compute the flow velocity U behind the
wave

4. compute the ratio of the advective mo-
mentum transfer (ρU2Ac) relative to the
pressure force (ρgAc δh)

Solution

Because the water is initially at rest, the total
discharge following the passage of the transient
(Q) equals δQ. For brevity, we will use the nota-
tion Q in the following.

1. wave speed: c =
√

gAc/B =
√

gdBc/B
6.0 m/s

2. discharge: Q = Bc δh = 122 m3/s

3. flow velociy: U = Q/Ac = 0.24 m/s; this
result also follows from U = (g/c) δh =
0.24 m/s.

4. ratio of the advection of momentum rela-
tive to the pressure force: U2/g δh = 0.04.

Comment

In the derivation given above, the advection of
momentum was neglected relative to the pres-
sure force. With the ratio of these respective
terms being equal to 0.04 this assumption is in-
deed justified in this example.

4.2 Elementary wave equation

In this section, we derive and analyse an equation for long, low, frictionless waves in a
prismatic conduit. It will appeare that the simple wave of the preceding section is an
important building block in the solution of this wave equation.

Open channel flow

The continuity equation is given by Equation (2.11), which for easy reference is repeated
here:

B
∂h

∂t
+

∂Q

∂s
= 0 (4.7)

It is important to note that B is the full width of the free surface, available for storage, not
the width of only the conveyance cross-section.

On account of the simplifying assumptions mentioned above, the equation of motion,
Equation (2.12), reduces to

∂Q

∂t
+ gAc

∂h

∂s
= 0 (4.8)

In view of the assumption of low waves, the influence of a varying free surface elevation on
the parameters B and Ac will be neglected. Mathematically speaking, we then deal with a
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set of two first-order linear partial differential equations (PDE’s) with constant
coefficients. These allow relatively simple solutioins, compared with nonlinear equations
with variable coefficients.

We now eliminate Q by differentiating Equation (4.7) with respect to t and (4.8) to s,
with the result

∂2h

∂t2
− gAc

B

∂2h

∂s2
= 0 (4.9)

Note that this equation is of second order as a result of including storage (through Equa-
tion (4.7)) and inertia (through Equation (4.8)). The interplay of these allows wave propa-
gation, as we will see.

Next, we ignore temporarily the findings of the preceding section, in particular the results
for the propagation speed, and for brevity define a quantity c by

c ≡
√

gAc

B
(4.10)

Substitution of this into Equation (4.9) yields

∂2h

∂t2
− c2

∂2h

∂s2
= 0 (4.11)

Elimination of h instead of Q would have given a similar PDE for the variable Q.

Pressurized pipe flow

In this case, we start from the mass balance (2.37) and the momentum balance (2.38) derived
in Chapter 2. We neglect the advective terms and the resistance. A similar operation as
given above for free-surface flows leads again to (4.11), now with p instead of h:

∂2p

∂t2
− c2

∂2p

∂s2
= 0 (4.12)

with c defined by
1

c2
=

ρ

K
+

ρD

Eδ
(4.13)

General wave equation

A PDE with the form of (4.11) or (4.12) is known as ‘the’ wave equation because it is the
most elementary form of all wave equations. Although it applies to pressurized flows as well
as free-surface flows, we deal exclusively with the latter in the following. The methods and
solutions are transferable to pressurized flows. Notice that the wave equation (4.11) is linear,
so that linear superposition applies: a sum of solutions is also a solution.
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4.3 General solution

Without derivation, we now state that the general solution h(s, t) of (4.11) consists of the
sum of an arbitrary function h− of (s+ ct) and an arbitrary function h+ of (s− ct):

h(s, t) = h+ (s− ct) + h− (s+ ct) (4.14)

See for instance [1]. A similar expression applies to Q in terms of Q+ and Q−.

The wave equation (4.11) is linear. Therefore, in order to prove that the sum given by (4.14)
is a solution, it is sufficient to prove this for h+ and h− separately. We begin with h+. This
function depends on s and t exclusively through the combination s− ct, which quantity we
will represent as S+, so S+ = s− ct. Therefore, h+ = h+(S+), and because ∂S+/∂s = 1 and
∂S+/∂t = −c, it follows that

∂h+

∂s
=

dh+

dS+

∂S+

∂s
=

(
h+

)′
and

∂h+

∂t
=

dh+

dS+

∂S+

∂t
= −c

(
h+

)′
(4.15)

in which the prime on h+ indicates an ordinary derivative of h+ with respect to S+. Con-
tinuing likewise, we obtain

∂2h+

∂s2
=

(
h+

)′′
and

∂2h+

∂t2
= c2

(
h+

)′′
(4.16)

Substitution of these two expressions into the wave equation (4.11) shows that the latter is
satisfied by any function h+ = h+ (S+) = h+ (s− ct). The same applies to h− and therefore
also to their sum, which was to be proven.

We will now investigate the meaning of the solution, first for h+ only. The latter depends
on s and t solely through S+, or through s− ct. Therefore, we will observe no change in the
local value of h+ if we keep s − ct constant in time, i.e. ds/dt = c, i.e. if we move in the
positive s-direction with speed c. Stated another way: a point of constant h+ moves with
speed c in the positive s-direction. That is why the subscript + was chosen for this function.
Because c is a constant in the present approximationin, all points of the disturbance h+ move
with the same speed: the disturbance propagates without change of shape with velocity c,
whose value is given by Equation (4.10).

Likewise, it can be shown that the function h− represents a wave moving at speed c in the
negative s-direction without change of shape.

It follows from the above that Equation (4.14) obeys the wave equation (4.11). It can be
shown also that it represents the general solution to this equation, which therefore consists
of two waves, propagating in opposite directions at a constant speed c without
change in shape. Needless to say, where both are present simultaneously, their sum does
vary in shape. Whether such superposition actually occurs depends on the initial conditions
and boundary conditions.
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Total derivative

The property of propagation without change in the local value of a disturbed quantity (for
the + and - waves separately) can be formulated differently, in a manner that we shall use
more in the following. To this end, the concept of the total derivative is important.

Suppose an observer travels with a velocity V in the s-direction, observing the local
values of a quantity h. The change in h which he observes in a time interval with duration
Δt can be expressed as

Δh =
∂h

∂t
Δt+

∂h

∂s
Δs =

∂h

∂t
Δt+

∂h

∂s
VΔt (4.17)

The observed change per unit time, in the limit as Δ t goes to zero, is the so-called total
derivative of h:

dh

dt
=

∂h

∂t
+ V

∂h

∂s
(4.18)

Now consider h+. It follows from Equation (4.15) that it obeys

∂h+

∂t
+ c

∂h+

∂s
= 0 (4.19)

Comparison with Equation (4.18) shows that the left-hand side of Equation (4.19) is the
total derivative of h+ for an observer moving with velocity c, which is zero according to
Equation (4.19). Therefore, this observer sees no change in the local value of h+. Since this
reasoning applies to all points of the disturbance, and the value of c is common to all of them
(in the present approximation for low waves!), we conclude that Equation (4.19) implies that
the disturbance h+ travels in the positive s-direction at speed c without change in shape.

Another representation, equivalent to Equation (4.19), is

dh+

dt
= 0 provided that

ds

dt
= c (4.20)

In this formulation, the partial differential equation (4.19), for a single dependent variable
h+ and two independent variables s and t, is replaced by a set of two ordinary differential
equations for the two dependent variables h+ and s and one independent variable t. Likewise,
the following is valid for h−:

dh−

dt
= 0 provided that

ds

dt
= −c (4.21)

This kind of formulation will be used extensively in Chapter 6, dealing with the so-called
method of characteristics.

60



4.4 Relation between discharge and free surface eleva-

tion in a progressive wave

Variations in discharge and related variations in the free surfae elevation have been considered
in section 4.1, using algebraic balance equations for mass and momentum in a finite control
volume. Here, we return to that matter using the wave equation, applied to an arbitrary
but low wave propagating in the positive s-direction into a region of uniform flow with
depth d and discharge Q0, a so-called simple wave. The corresponding water level h+ obeys
Equation (4.19). Substitution of this equation into the continuity equation (4.7) yields

−Bc
∂h+

∂s
+

∂Q+

∂s
= 0 (4.22)

Integration of this with respect to s for constant Bc gives Q+ − Bch+ = constant = Q0 −
Bch0. Expressed in terms of the changes with respect to the undisturbed situation, namely
δh+ = h+ − h0 and δQ+ = Q+ −Q0, this becomes:

δQ+ = Bc δh+ (4.23)

A similar result applies to h−:

δQ− = −Bc δh− (4.24)

We can express these results in terms of flow velocity rather than discharge. Since Q = Ac U ,
we also have δQ = Ac δU , neglecting variations in Ac, as is justified for sufficiently low waves.
Using this result in (4.23) and (4.24) we obtain

δU± = ±Bc

Ac

δh± or δU± = ±g

c
δh± (4.25)

If B = Bc, this reduces to

δU± = ± c

d
δh± or δU± = ±

√
g

d
δh±, (4.26)

respectively. Note the resemblance between these results and those obtained in Section 4.1.

4.5 Solution for arbitrary initial situation

Because the wave equation is of second order in time, two initial conditions are needed for a
well-posed problem. Here, we use the initial values of the disturbances in surface elevation
(δh) and discharge (δQ) at all points of the channel considered, relative to an undisturbed
state with uniform water level and discharge.
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In section 4.1, a disturbance traveling in the positive s-direction was considered. In the
present section we consider the more general case of given arbitrary (low) values of δh and
δQ as functions of s for some initial instant t = t0:

δh0 (s) = δh (s; t0) and δQ0 (s) = δQ (s; t0) (4.27)

In order to determine the time evolution of this arbitrary disturbance, not necessarily trav-
eling in one direction only, we separate it into two contributions that each do travel in one
direction only:

δh = δh+ + δh− and δQ = δQ+ + δQ− = Bc
(
δh+ − δh−

)
(4.28)

It follows from these equations that

δh+ =
1

2

(
δh+

δQ

Bc

)
and δh− =

1

2

(
δh− δQ

Bc

)
(4.29)

At the initial instant t = t0, the values in the right-hand sides of (4.29) are known as
functions of s. The same then holds for the initial values of δh+ and δh−. By translating
the initial profile of δh+ with speed c in the positive s-direction, and the initial profile of
δh− with speed c in the negative s-direction, and adding the results at each position for a
chosen instant, the free-surface profile at that instant is found. The same method applies to
the discharge.

If the water is at rest at the initial instant, the initial values of δh+ and δh− at each location
are equal to half the local value of δh0(x), as follows from Equation (4.29). Figure 4.5 gives
an example for this case.

The preceding results are restricted to low waves, described by the linear wave equation,
which allows linear superposition of elementary waves travelling in opposite directions to
find the total solution. If the restriction to low waves is relaxed, linear superposition no
longer applies, but we can still construct the total solution by considering component-waves
traveling in opposite directions, using the so-called method of characteristics. This is the
subject of Chapter 6.

In the above, we have tacitly assumed that the disturbances can travel unimpeded in a
prismatic channel, as if this were infinitely long. If and when the disturbance reaches a
location where the channel geometry changes, reflection occurs. This is considerd below.

4.6 Boundary conditions

Because the wave equation is of second order in space (s), two boundary conditions are
needed for a well-posed problem.

Where the canal has a closed end, at s = sc say, the discharge must be zero at all times.
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Figure 4.5: Elementary wave solution for an initial discharge δQ0 = 0 and an initial water
level elevation δh0 over a finite length
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Mathematically, this is expressesd as the boundary condition Q (sc, t) = 0 for all times. In
view of (4.28), this implies that δh− = δh+ at that location. In words: where an incident
wave (δh+), travelling in the positive s-direction, meets a closed end, a backward propagating
wave (δh−) is generated whose height at the closed end equals that of the incident wave at
that location at all times. At the closed end, the free surface elevation is doubled. We say
that at a closed end, total positive reflection occurs. (The qualification ‘positive’
refers to the free surface elevation. The discharge is in fact negatively reflected because
δQ− = −δQ+ at the closed end.)

The opposite situation occurs if the canal at some point, at s = s0, say, has an open end
where it connects to a large, deep sea or reservoir in which the water level is not affected by
inflow into or outflow from the canal. This means that δh (s0, t) = 0 at all times, implying
that δh− (s0, t) = −δh+(s0, t): at an open end, total negative reflection occurs. It
follows from (4.28) that at such open end, δQ− = δQ+, so that there the discharge is
positively reflected. Thus, the discharge at an open end is doubled.

Partial reflection of translatory waves at transitions in channel geometry is considered in
Chapter 5.

A note on non-reflective boundaries
Numerical or physical models of flow in canals or rivers are often cut-off at some distance from the
study area, even when in reality the system extends further. Such cut-off creates an artificial, open
model boundary. The condition to be imposed there is that disturbances approaching that boundary
from within the study area should not be reflected, so as to simulate reality in which the disturbances
continue unimpeded. Thus, if the positive s-direction is from within towards the open boundary, δh−

should be zero at the open boundary at all times, implying the boundary condition δQ−Bc δh = 0, see
Equation (4.29).

4.7 Periodic progressive and standing waves

This section deals with low, sinusoidal waves in a prismatic canal or basin. For brevity, we
denote the elevation of the free surface above its mean value as ζ. Its amplitude is written
as ζ̂, the wave period is T , and the angular frequency (i.e. the phase change per unit time)
is ω = 2π/T . The wave length is L and the wave number (i.e. the phase change per unit
propagation distance) is k = 2π/L.

If the wave is progressive, we have L = cT in which c is the speed of propagation. Since
we deal with free long waves, c =

√
gAc/B (or

√
gd in two-dimensional motion), so that

L =
√
gAc/B T . Written in terms of frequency and wave number, this becomes

ω

k
=

√
gAc

B
(= c) (4.30)

This is the so-called dispersion equation, linking frequency and wave number for the
system considered. Note that it also applies to the superposition of two waves with the same
frequency and wave number, as in the case of standing waves, even though the notion of a
propagation speed does not apply to the latter category.
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Infinitely long canal

In a prismatic canal of infinite length (in practice: in a long canal, away from the influence
of boundaries), waves can propagate indefinitely in either direction without reflection, so-
called progressive waves. We assume a sinusoidal wave to be propagating in the positive
s-direction with speed c. The free surface elevation above the mean water level can then be
written as

ζ = ζ̂ cos

(
2π

s− ct

L

)
(4.31)

Written in terms of frequency and wave number, this becomes

ζ = ζ̂ cos (ks− ωt) (4.32)

The corresponding discharge is given by

Q = Bc ζ̂ cos (ks− ωt) (4.33)

Note that for an observer moving at a speed ds/dt = ω/k, the phase ks − ωt is constant.
That is why this speed ω/k is called the phase speed. An observer moving at this speed
sees no variation in the local value of ζ and that of Q.

In a progressive wave as described above, the surface elevation and the discharge (reck-
oned positive in the propagation direction) are in phase, i.e. at each location they reach
their maximum values at the same time.

For a wave progressing in the negative s-direction, we have

ζ = ζ̂ cos (ks+ ωt) (4.34)

and
Q = −Bc ζ̂ cos (ks+ ωt) (4.35)

In this case, the surface elevation and the discharge are 180 degrees out of phase (in opposite
phase), i.e. at each location the maximum of one occurs at the same time as the minimum
of the other. In other words, under the crests of the wave, where the surface elevation has
its maximum, the discharge is minimal (maximal in an absolute sense, but in the negative
s-direction).

When both waves, with equal frequency and amplitude, but propagating in opposite di-
rections, are present simultaneously in the same canal, the resulting motion is given by
superposition of the preceding expressions, with the result

ζ = 2ζ̂ cos ks cos ωt = ζ̂st cos ks cos ωt (4.36)

This expression represents a standing wave because as time goes on the resulting profile
does not move foreward or backward; it merely breathes up and down (see Figure 4.6 b). The
maximum amplitude of its surface elevation, ζ̂st, is twice the amplitude of the two opposing
component progressive waves of which it consists.
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(a) (b)

Figure 4.6: Progressive (a) and standing (b) periodic waves in infinitely long canal

The corresponding discharge is given by

Q = 2Bc ζ̂ sin ks sin ωt = Bc ζ̂st sin ks sin ωt (4.37)

We see that in a standing wave, the surfac elevation and the discharge are 90 degrees (π/2
radians) out of phase, both in s and in t (they are in quadrature).

At the locations where cos ks = 0, the surface elevation is zero at all times. Those points
are called nodes. The distance between adjacent nodes is one half wave length. At these
locations, the local amplitude of the discharge is maximal.

At the locations where cos ks = ±1, the local amplitude of the surface elevation is
maximal, but the discharge is zero at all times. These points are called antinodes. The
distance between adjacent antinodes is one half wave length.

In an infinitely long canal, progressive waves and standing waves can exist without constraints
on the frequency and wave number or (in case of standing waves) on the locations of the
nodes and antinodes. This changes when the canal (or basin) is semi-infinitely long, or has
a finite length, as considered in the following.

Semi-infinitely long canal with one closed end

In a canal with a closed end, progressive waves cannot exist for an unlimited duration because
sooner or later they either vanish towards infinity or they are reflected at the closed end. In
the latter case, a standing wave develops with zero discharge, thus an antinode, at the closed
end and at all points at a distance of an integer number of half wave lengths away from it. If
we choose s = 0 at the closed end, the motion is described by Eqs. (4.36) and (4.37). There
are no restrictions on the allowable values of the frequency or the wave number.

Closed basin

In a finite-length basin, extending from s = 0 and s = �, say, closed at both ends, the
boundary conditions Q = 0 at s = 0 and Q = 0 at s = � have to be fulfilled at all
times. Thus, we have a standing wave with an antinode at both ends, and possibly
one or more antinodes between them. Therefore, the basin contains a whole number of
half wave lengths. Conversely, this implies that only a discrete set of wave numbers and
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wave lengths is permitted: Ln = 2�/n or kn = nπ/� for n = 1, 2, . . . . Figure 4.7 shows
the surface profile in the standing wave for n = 3. The value of n equals the number of
nodes in the closed basin. Because we deal with free oscillations, ωn/kn =

√
gAc/B for all

Figure 4.7: Standing wave in a closed basin (n = 3)

n. Thus, the discrete set of wave numbers kn corresponds to a discrete set of frequencies
given by ωn =

√
gAc/B kn, n = 1, 2, . . . , referred to as the set of natural frequencies,

corresponding to the natural oscillations of the water mass in the closed basin. Of these, ω1

is the fundamental frequency; the frequencies corresponding to n = 2, 3, . . . are harmonics.

Semi-closed basin connected to a reservoir or tideless sea

Consider now a basin closed at one end, where s = 0, say, and connected to a large reservoir
of constant elevation at the other end (the open end), where s = �, say. This corresponds
to the boundary conditions Q = 0 at s = 0 and ζ = 0 at s = � for all times. These
conditions are fulfilled in a standing wave with an antinode at the closed end and a node
at the open end, requiring cos k� = 0 or kn� = π/2 + nπ for n = 0, 1, 2, . . . . Written an-
other way: � = (2n + 1)L/4: the basin contains an odd number of quarter wave lengths.
The value of n equals the number of nodes inside the basin, not counting the node at the
open end. See Figure 4.8. As above, there is a set of natural frequencies, here given by

Figure 4.8: Standing wave in a semi-closed basin connected to a reservoir (n = 2)

ωn = (π/2+nπ)
√
gAc/B/� for n = 0, 1, 2, . . . . The fundamental frequency ω0 applies to the

case where there is just one quarter wave in the basin.
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Example 4.2. Basin connected to a reservoir

Situation

A prismatic basin, closed at one end, is con-
nected at its open end to a reservoir. The basin
dimensions are B = 600 m, Bc = 300 m (the
width of the conveyance cross-section), d = 6
m (the depth of the conveyance cross-section)
and � = 6 km. There is a natural oscillation in
the basin with one node in the interior. The
amplitude of the water surface elevation at the
closed end (ζ̂st) is 0.5 m.

Questions

Calculate:

1. the period (T ) of the oscillation

2. the amplitude of the discharge at the
mouth (Q̂ (�))

3. the amplitude of the flow velocity at the
mouth (Û (�))

Solution

It follows from the given number of nodes that
the basin length equals 3/4 wave length, or L =
cT = 4/3× 6000 m = 8000 m.

1. the wave speed c =
√

gAc/B =√
gdBc/B =5.42 m/s, from which the

wave period T = L/c = 8000 m / 5.42
m/s = 1475 s

2. Q̂ (�) = Bc ζ̂st | sin k�|. Since � = 3L/4,
we have k� = 3π/2 and sin k� = -1,
it follows that Q̂ (�) = (600 m)×(5.42
m/s)×(0.5 m) = 1627 m3/s

3. Û (�) = Q̂ (�) /Ac = Q̂ (�) /(dBc) =
(1627 m3/s)/(1800 m2) = 0.90 m/s

Comment

For a natural oscillation in a semi-closed basin
connected to a reservoir, the discharge amplitude
is maximum in the entrance and the surface ele-
vation amplitude is maximum at the closed end.

Semi-closed basin connected to a tidal sea

Instead of a semi-closed basin connected to a reservoir or tideless sea, with a constant water
level, we now consider such a basin connected at its open end to a tidal sea. The tide-induced
up-and-down motion at the basin mouth generates oscillations of the water mass inside the
basin at the tidal frequency, not necessarily related to any of the natural frequencies of the
basin. In such cases we speak of a forced oscillation of the water mass inside the basin.

As before, Q must be zero at the closed end. A standing wave with an antinode at the
closed end can fulfill this condition. Its amplitude is such that ζ at the mouth equals the
value being forced by the tide (Figure 4.9). The ratio of the amplitude of ζ at the closed end
to that at the open end equals 1/| cos k�|. This goes to infinity as | cos k�| goes to zero, i.e.
the basin contains a whole number of quarter waves. In such cases we speak of resonance,
occurring if the frequency of the forcing equals one of the natural frequencies of the basin.

As opposed to the case of (near) resonance, with strongly amplified motions in the interior
of the basin, we now consider a short basin, i.e. one whose length is small compared to the
wave length. This implies a very small phase difference from the mouth to the closed end
(if there were a progressive wave in the basin), so that the water level responds almost in
unison to the tidal forcing at the mouth, rising and falling with the tide but being virtually
horizontal at all times. Dynamics play no role inside such a short basin, only storage. The
wave character of the motion in the basin can then be disregarded. We refer to such response
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Figure 4.9: Standing wave in a semi-closed basin connected to a sea

as the pumping mode, already considered in Chapter 2.

We can quantify this argument as follows. The basic assumption is that � 
 L, or
k� 
 2π, so that cos k� 	 1. This means that the amplitude of the surface elevation is
nearly constant throughout the length of the basin. (See Figure 4.9, the portion of the basin
from the closed end to the nearby dashed vertical.) As an example, consider a basin whose
length is 1/20th of the tidal wave length in its interior; we then have cos k� 	 0.95, so that
the amplitude rises with only 5% from the open end to the closed end. In such cases, we
obtain a reasonable first approximation by neglecting these variations, i.e. by assuming the
water level in the basin to be horizontal at all times. We will elaborate on this in Chapter 7.

Example 4.3. Basin connected to a tidal sea

Situation

Consider the same (prismatic) basin as in
Example 4.2, now connected at its open end
to a tidal sea with an M2-tide with a surface
elevation amplitude of 1.5 m The period of the
M2-tide is T = 12 hours and 25 minutes, or
44700 s, so the tidal frequency ω = 1.4 × 10−4

rad/s.

Questions

1. determine the response of the basin in
terms of the surface elevation amplitude

2. calculate the discharge amplitude in the
open end of the basin

3. calculate the discharge amplitude halfway
between the open end and the closed end

Solution

The value of c is the same as in Example 4.2, or
5.42 m/s, and the wavelength L = cT = 242 km,
which is more than twenty times the basin length
(�): the pumping mode approximation applies.

1. in view of the open connection between
the basin and the sea, we can equate ζ̂st to
the amplitude of the offshore tide (1.5 m)

2. the discharge amplitude in the entrance
Q̂ (�) = B�ωζ̂b = (600 m)(6000 m)(1.4 ×
10−4 rad/s)(1.5 m) = 756 m3/s

3. in a short, prismatic basin the discharge
varies linearly with the distance of the
cross-section to the closed end. There-
fore, the discharge halfway the length of
the basin is half of that in the mouth

Comment

The pumping mode approximation neglects the
influence of resistance which usually needs to be
accounted for in tidal calculations (Chapter 7).
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4.8 Exact numerical solutions

In this example we consider a canal with a finite length. In its respective ends either the water
level or the discharge may be imposed as boundary conditions. The canal has a constant
storage width (B) and conveyance area (Ac), so consideration of linear wave problems leads
to Equation (4.9) for the water level. The general representation of solutions to this equation,
given in Equation (4.14), is used here to construct exact numerical solutions of that equation
(which in itself is not exact!).

Discretization

We first describe the water level (h) and discharge (Q) in the canal in terms of finite sets of
discrete numbers. This can be achieved by partitioning the spatial domain of the canal (S)
using a sequence of discrete coordinates S = [s0, s1, · · · , sM−1, sM ], where M is the number
of spatial intervals. In this example the intervals must be equal in size in which case the
partitioning is called uniform.

For time stepping, the time interval of interest I is partitioned into N equal time intervals,
I = [t0, t1, · · · , tN−1, tN ], where t0 and tN are the start time and end time of the numerical
simulation, respectively, see also Section 2.3. The time intervals are constant in this example.

The water level in node number i at time level n is now denoted with hi
n. All discrete

water levels at time level n may be stored in an array [hi
n]

M
i=0

representing the water level in

the canal at time tn. Similarly, the discharge at time tn is represented by an array [Qi
n]

M
i=0

.
See Figure 4.10. The numerical solution of the wave problem in the canal involves the
computation of these arrays for all time levels n.

Figure 4.10: Discretization in space and in time
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Solution algorithm

Initially, at time level n = 0, the water level and discharge in the canal need to be specified.
This also determines the discrete water level components h+ and h− at time t = t0,

(
h+

)i
0
=

1

2

(
hi
0 +

Qi
0

Bc

)
and

(
h−

)i
0
=

1

2

(
hi
0 −

Qi
0

Bc

)
(4.38)

where c =
√

gAc/B is the wave speed and B and Ac are the constant storage width and
conveying cross-section of the canal, respectively.

According to the general solution, given by Equation (4.14), the respective components
travel in opposite directions with constant speed c. If the time step size is chosen such
that the distance traveled during one time step equals the distance between neighbouring
nodes the value for h+ in a particular node is transferred to the right neighbour node when
advancing one step in time and, simultaneously, the value for h− is transferred to the left
neightbour node. This results in the following time stepping procedure for interior nodes(

h+
)i
n+1

=
(
h+

)i−1
n

and
(
h−

)i
n+1

=
(
h−

)i+1

n
(4.39)

which is commonly referred to as point to point transfer. The solutions for the water
level (h) and discharge (Q) in interior nodes, that is for i = 1,M−1, are obtained afterwards
by applying Equation (4.28) node wise

hi
n+1 =

(
h+

)i
n+1

+
(
h−

)i
n+1

and Qi
n+1 = Bc

((
h+

)i
n+1

−
(
h−

)i
n+1

)
(4.40)

In boundary nodes Equation (4.39) will only update the wave component traveling out of
the domain, but it leaves undetermined the ingoing component (the required neighbour
node is missing). Instead, the nodal value of the incoming component is determined such
that application of Equation (4.40) results in the specified boundary condition. In the left
boundary node (i = 0) the ingoing component is h+, the nodal value of which is determined
by imposing the water level (hL) or the discharge (QL) leading to, respectively,(

h+
)0
n+1

= hL −
(
h−

)0
n+1

or
(
h+

)0
n+1

= QL/Bc+
(
h−

)0
n+1

(4.41)

Similarly, in the right boundary node (i = M) the nodal value of the ingoing component h−

is found by imposing the water level (hR) or the discharge (QR) leading to, respectively,(
h−

)M
n+1

= hR −
(
h+

)M
n+1

or
(
h−

)M
n+1

= −QR/Bc+
(
h+

)M
n+1

(4.42)

Note that in each of the boundary nodes either the water level or the discharge may be
imposed as boundary condition. This is related to the fact that the outgoing component
is already determined by Equation (4.39) while completion of Equation (4.40) to find the
ingoing component requires only one piece of additional information per boundary node.

Starting from the initial time level n = 0, Equations (4.39) and (4.40) and the boundary
conditions given in Equations (4.41) and (4.42) are now applied successively until the end
time tN at time level n = N .
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Implementation

A Python script in which the above solution procedure is implemented is given in Listing 4.1.

1 # import modules

2 from numpy import *

3 from pylab import *

4

5 # physical parameters

6 g = 9.81 # gravitation [m/s2]

7

8 # canal dimensions

9 Ac = 75 # conveyance area [m2]

10 B = 25 # storage width [m]

11 L = 500 # length [m]

12

13 # wave speed [m/s]

14 c = sqrt(g*Ac/B)

15

16 # spatial domain

17 M = 800 # number of spatial intervals [-]

18 s = linspace(0,L,M+1) # horizontal coordinates [m]

19

20 # time stepping

21 dt = L/(M*c) # time step size [s]

22 N = 800 # number of time steps [-]

23

24 # initial conditions

25 t = 0 # initial time [s]

26 h = .2*( sign(s -200) -sign(s -300)) # initial water level [m]

27 Q = 0*s # initial discharge [m3/s]

28

29 # initial wave components

30 h1 = .5*(h + Q/B*c) # compute initial h’+’ [m]

31 h2 = .5*(h - Q/B*c) # compute initial h’-’ [m]

32

33 # time loop

34 ion()

35 for i in range(N):

36 t += dt # new time level [s]

37 h1[1:M+1] = h1[0:M] # shift h’+’ one step right

38 h2[0:M] = h2[1:M+1] # shift h’-’ one step left

39 # boundary conditions

40 h1[0] = h2[0] # left boundary condition (QL=0)

41 h2[M] = -h1[M] # right boundary condition (hR=0)

42 # plot

43 hold(None)

44 plot(s,h1+h2 ,’b’,linewidth =2) # plot water level

45 axis([0,L, -.25 ,.5]) #

46 xlabel(’$s [m]$’,size=’20’) # define axis and labels

47 ylabel(’$\delta h [m]$’,size=’20’) #

48 draw()

Listing 4.1: elementary-wave.py

In the first few lines some necessary modules are loaded. Next, gravity (line 6) and some
parameters defining the canal geometry (lines 9-11) are specified from which the wave celerity
is computed in line 14.
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The partitioning of the spatial domain is performed in lines 17 and 18 by defining first the
number of spatial intervals (M) after which an array containing the spatial coordinates (s) is
constructed using the numpy function linspace. (This function takes as input arguments,
in respective order, the lower and upper bounds of the interval and the number of points,
which is the number of intervals plus one.) The time step size dt for point-to-point transfer
is calculated in line 21 and the number of time steps (N) for the simulation is set in line 22.

In lines 25 to 26 the initial time, water level and discharge are specified. In this example
the sign function is used to set the initial water level to 0.4 m over a reach of 100 m in
the center of the canal while being zero elsewhere. The initial discharge is set to zero in
this example. The initial water levels of both wave components, denoted with h1 and h2,
respectively, are computed in lines 30 and 31. Note that numpy allows performing these
operations on entire arrays.

Time stepping commences in line 35 after the plot screen has been set to interactive mode
in the preceding line, using ion(), to enable continuous plotting. After calculating the new
time level t (line 36) the wave components are updated by raising the indices of h1 with
one (line 37) and by lowering the indices of h2 with one (line 38), except in the boundary
node where the respective component is ingoing. To complete the solution in these nodes
the boundary conditions are applied in lines 40 and 41 using the already computed nodal
value of the outgoing component. In this example, a zero discharge is prescribed in the left
boundary node and a zero water level elevation in the right boundary node.

What remains is to plot the results for which we use the pylab module. First, the previous
plot is released using hold(None) in order to give way to the new plot. The solution for the
water level, obtained by adding the respective components, is plotted in line 45. Some axes-
and label properties are set (lines 45-47) after which draw() activates the plot on screen.

Listing 4.1 may be modified to compute and visualize all previous examples in this chapter.

Result

Figure 4.11 shows snapshots of the computed water level in the canal at different time levels.

The initial water level elevation (upper left panel) splits in two equal parts (zero initial
discharge) which propagate in opposite directions. In the upper right panel (time t = 20.5 s)
these parts have travelled just over 100 m implying a wave speed c of roughly 5 m/s. This
is in agreement with the exact wave speed c =

√
(9.81 m/s2)× (75 m2)/(25 m) = 5.42 m/s.

The lower left panel shows the situation just after the waves have reached their nearest
boundary. In the left boundary the incoming wave is reflected positively, doubling the local
wave height, and in the right boundary the incoming wave is reflected negatively, keeping
the local wave height zero.

The lower right panel shows the reflected waves moving away from the boundaries towards
the middel of the canal with a height equal to that of the incoming wave (left wave, positive
reflection) or a height of minus one times the incoming wave height (right wave, negative
reflection).
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t = 0 t = 20.5 s

t = 41.0 s t = 61.5 s

Figure 4.11: Snapshots of the computed solution

The numerical algorithm nicely shows how the information is passed within the domain (by
opposing motions) and into the domain (by the action of the boundary conditions) as it is
in real waves.

74



Bibliography

[1] W. A. Strauss. Partial differential equations. John Wiley & Sons, Inc., 1992.

Problems

1. What does it mean to linearize the equa-
tion of motion? How can this be achieved?
What is a condition for its validity?

2. Verify why a small storage capacity in a
river leads to an enhanced speed of prop-
agation of flood waves.

3. Calculate the speed of propagation of low
waves without resistance in water with a
depth of 4000 m (ocean), 50 m (shelf sea)
and 5 m (estuary). (Answers: 198 m/s,
22.1 m/s, 7.00 m/s)

4. Calculate the corresponding wave length
for an M2-tide and for a tsunami with a
period of 10 minutes. First verify whether
the latter can be regarded as a long wave
in the given depths. (Answers: 8855 km,
988 km and 313 km for the tide and 119
km, 13.3 km and 4.2 km for the tsunami.)

5. Derive a relation between the variations in
water level and discharge for a long wave
propagating without change in shape in
open water.

6. Derive a relation between the variations
in fluid pressure and particle velocity for a
wave propagating without change in shape
in a closed conduit (pressurized flow).

7. A pumping station begins discharging wa-
ter at a rate of 40 m3/s onto an evacuation
canal with a depth of 4 m and a width of
50 m. Calculate the speed of the result-
ing translatory wave propagating into the
canal and the associated rise of the free
surface and particle velocity. (Answers: c
= 6.26 m/s, ζ = 0.13 m and U = 0.20
m/s.)

8. The following values of the flow veloc-
ity and surface elevation are given for an
initial disturbance (at t = 0) in an in-
finitely long, 5 m deep canal: s < 0 :
ζ = 0.50 m, U = 0, s > 0 : ζ = 0, U =
0.50 m/s Calculate and plot the values of
ζ and U as functions of s at t = 10 ss.
(Answers: s < - 70 m: ζ = 0.50 m, U = 0;
- 70 m < s <70 m: ζ = 0.07 m, U = 0.60
m/s; s > 70 m: ζ = 0, U = 0.50 m/s.)

9. Same as in question 8, now with the fol-
lowing initial values: - 100 m< s < 0 : ζ
= 0.50 m, U = 0, 0< s < 100 m: ζ = 0,
U = 0.50 m/s, elsewhere: ζ = 0 and U =
0 Calculate and plot the values of ζ and U
as functions of s for the instants t = 10 s
and t = 20 s.

10. Sketch the two functions cos(ωt− ks) and
cos ωt cos ks for ks between −2π and 2π
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and ωt = 0, π/6, π/2, π and 2π. Verify
that the first of these two functions rep-
resents a progressive wave advancing at a
speed ω/k.

11. Can a periodic, progressive wave exist con-
tinually in a basin closed at one end or at
both ends?

12. Argue why a free periodic oscillation in a
closed basin is possible for a countable set
of frequencies only. Same for a semi-closed
basin.

13. Verify how the natural frequencies of a
prismatic basin are affected by the width
of the free surface, the width and depth
of the conveyance cross-section, and the
length. Which of these has the most influ-
ence?

14. Calculate the three longest natural peri-
ods of a semi-closed prismatic basin with
a length of 30 km, a conveyance cross-
sectional area of 6 x 103 m2 and a width
of the free surface of 600 m. (Answers: T1

= 12116 s, T2 = 4038 s, T3 = 2423 s.)

15. Continuing with the second of the three
modes of the previous question: sketch a
longitudinal profile of the surface elevation
and the discharge at the instant ωt = π/4
(using the phases as in Eqs. (4.36) and
(4.37)). Check the relation between sur-
face elevation and discharge in a qualita-
tive sense, including their signs.

16. Same as in the two preceding questions,
now for a basin closed at both ends. (An-
swers: T1 = 6058 s, T2 = 3029 s, T3 = 2019
s.)

17. A semi-closed basin with the dimensions
as in question 14 is subjected to a forced
oscillation. Sketch the longitudinal pro-
files of the surface elevation and calculate
the ratio (r) of the amplitude of the sur-
face elevation at the closed end to that at
the open end, for the periods T = 3 hrs
and T = 6 hrs, respectively. (Answers:
r = 5.26 and r = 1.57, respectively.) In-
terpret these results considering the peri-
ods of the forced motion in relation to the
natural periods of the basin.

18. Consider the situation of the preceding
question for T = 6 hrs, with the addi-
tional information that the amplitude of
the surface elevation at the closed end is
1 m. Calculate and plot the amplitudes
of the discharge at the following distances
from the closed end: x = 1 km, 2 km, 3
km, 5 km and 10 km. (Answer: Q̂ in-
creasing from 175 m3/s at x = 1 km to
1720 m3/s at x = 10 km.) Interpret the
results in relation to the approximation of
the pumping mode.

19. Modify Listing 4.1 such that it computes
the water level and discharge in a semi-
closed basin of constant width and depth
connected to a tidal sea.
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Chapter 5

Translatory waves

5.1 Introduction

This chapter deals with translatory waves, i.e. more or less pulse-like, progressive distur-
bances of discharge and water level. A simple translatory wave forms the transition between
two different states of (more or less) uniform flow. Throughout this chapter we assume that
the transition takes place sufficiently rapidly so that we can neglect resistance, yet sufficiently
slowly for the long wave approximation to apply.

We first restrict ourselves to the category of weak disturbances (low waves), as in the
preceding chapter. This allows linearization of the equations. The constraint of low waves
is relaxed in the second half of this chapter.

5.2 Low translatory waves in open water

Basic model

Examples of the generation of low translatory waves in free-surface flows are provided by the
operation of gates, locks, pumps etc. in navigation canals. To avoid hindrance to shipping,
the operation is such that only acceptably low variations in water level and weak currents are
produced. The advection of momentum (ρU2Ac) (and the advective acceleration (U∂U/∂s)
can be neglected for such low waves. The linear theory of the preceding chapter can be
applied, with the important results that the propagation speed is given by

c =

√
gAc

B
(5.1)

and that the variations in surface elevation and discharge for a purely progressive wave are
related by

δQ = Bc δh (5.2)
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(a)

(b)

Figure 5.1: Translatory waves resulting from the opening of a gate in tranquil water (a) and
resulting from closure of a gate in flowing water (b)

If B = Bc, these relations reduce to

c =
√

gd (5.3)

and

δU =
c

d
δh =

√
g

d
δh =

g

c
δh (5.4)

Generation of translatory waves

Figure 5.1 shows two cases of the generation of translatory waves.
The upper panel (a) is for the partial opening of a gate between two reaches of a canal in

which initially the water is at rest (Q = 0) but with different water levels on either side. In
this case, the opening allows a flow through the gate with a discharge Q, causing water level
variations on the two sides which propagate away from the gate into the two canal reaches
on either side with speeds c1 and c2, respectively (see Chapter 4). Notice that following
the negative wave (inducing a lowering of the surface elevation) the flow velocity is directed
opposite to the direction of wave propagation.

The second panel (b) concerns the case of a partial closing of a gate in flowing water with
an initial discharge Q0. The partial closing obstructs the flow to a certain extent, causing a
reduction in the discharge by δQ, leaving a net discharge Q = Q0 − δQ where the wave has
passed.
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In both cases, the height of the wave can be controlled by the height of the resulting
opening, and the steepness of the front can be controlled by the rate at which the operation
is performed.

Because of the rapid spatial variations of the flow through the gate opening, local inertia
(∂U/∂t) can be neglected for this flow. The instantaneous discharge then depends on the
instantaneous opening and on the instantaneous head difference, h1 − h2, say, in which h1

and h2 are the water levels on the upstream side and the downstream side, respectively:

Q(t) = μA (t)
√

2g (h1 (t)− h2 (t)) = μA (t)
√
2gΔh (t) (5.5)

Operation of the gate changes the values of the head difference across it, due to the height(s)
of the issuing wave(s), which must be taken into account in the calculations, see Example 5.1.

Example 5.1. Opening of a gate in a barrier

Situation

A movable gate in a barrier between a canal (Ac

= 80 m2, B = 30 m) and a large reservoir is
partially opened to an effective flow cross-section
μA of 4 m2. Initially, the water in the canal is
at rest, and the surface level is 3 m below that
in the reservoir.

Questions

Calculate:

1. an estimate of the discharge through the
gate opening (Q0), neglecting the influ-
ence of the wave height on the discharge

2. the discharge (Q) through the gate open-
ing, taking into account the influence of
the wave height on the discharge

3. the resulting wave height (δh) in the canal

Solution

The discharge Q = μA
√
2gΔh. Initially, Δh =

Δh0 = 3 m, changing to Δh = Δh0 − δh, once
the gate is being opened, where δh = Q/Bc is
the height of the wave propagating into the canal
(the water level in the reservoir is not affected).

1. neglecting the influence of the wave height
on the discharge gives the estimate Q0 =
μA

√
2gΔh0 = 30.7 m3/s

2. substitution of Δh = Δh0−Q/Bc into the
discharge relation gives a second-degree
algebraic equation for the discharge whose
solution (rounded) is Q = 29.7 m3/s

3. the resulting wave height δh = Q/Bc =
0.20 m (using c =

√
gAc/B = 5.11 m/s)

Comment

The wave height δh is about 7% of Δh0. The
estimated discharge Q0 is therefore approx. 3.5%
too high, since the discharge varies in proportion
to the square root of the head difference.

Let us now investigate how the time varying conditions at a control structure, resulting from
its operation, manifest themselves in the adjacent canal reaches. We take the example of
a pumping station which delivers a time-varying discharge, from a time t = 0 until t = T ,
with a peak value Qp, as shown in the left panel of Figure 5.2 (a hypothetical, nonrealistic
variation). As soon as the discharge starts, a disturbance propagates into the canal reach,
in the positive s-direction, say. At a time t = t1, after the pumps have been switched

79



off (t1 > T ), its front and its end have advanced through a distance of ct1 and c(t1 − T ),
respectively. This is shown in the longitudinal profile of the discharge at time t = t1, in the
right panel of Figure 5.2. It can be seen that this spatial profile is in a sense the mirror
image of the time variation in the left hand panel. This corresponds to the fact that for
propagation in the positive s-direction, the variations depend on s − ct, in which s and t
have opposite signs.

(a) (b)

Figure 5.2: Translatory waves in a canal resulting from discharge variations; discharge vari-
ation (a) and wave height (b)

Partial reflection at transitions

Consider a transition in canal geometry between two prismatic reaches 1 and 2, such that
the conveyance cross sectional area and the width of the free surface change from (Ac,1, B1)
into (Ac,2, B2), see Figure 5.3. How does this affect the propagation of a translatory wave?
We expect an effect on the ongoing wave as well as reflection to a certain extent. Therefore,
we suppose that we have to deal with three waves: incident (from reach 1), transmitted (into
reach 2) and reflected wave (back into reach 1), with the following parameters:

• incident wave: δQi, δhi in reach 1 with Ac,1, B1

• reflected wave : δQr, δhr in reach 1 with Ac,1, B1

• transmitted wave : δQt, δht in reach 2 with Ac,2, B2

(See Figure 5.3.) We assume low waves and neglect wave-wave interactions and their effect on
the propagation speed, which in this approximation has the constant values c1 =

√
gAc,1/B1

in reach 1, common to the incident wave and the reflected wave, and c2 =
√

gAc,2/B2 in
reach 2.

Because of continuity of discharge and elevation at the transition (neglecting differences in
velocity head), we have

δhi + δhr = δht (5.6)

and

δQi + δQr = δQt or B1c1(δhi − δhr) = B2c2 δht (5.7)
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(a)

(b)

Figure 5.3: Translatory waves at a transition in canal geometry.

(Note that Q is reckoned positive in the direction of wave incidence.) We now define the
following dimensionless ratios:

γ ≡ B2c2
B1c1

=

√
Ac,2B2

Ac,1B1

rt ≡
δht

δhi

and rr ≡
δhr

δhi

(5.8)

With these definitions, Eqs.(5.6) and (5.7) are transformed into the following dimensionless
versions:

1 + rr = rt and 1− rr = γrt (5.9)

which yields the following expressions for the ratios of the heights of the reflected wave and
the transmitted wave to the height of the incident wave:

rr =
1− γ

1 + γ
and rt =

2

1 + γ
(5.10)

The following points are noted with respect to this result:

1. There is no reflection at transitions for which the product Bc remains constant (γ = 1).

2. Waves experiencing a reduction in the value of Bc are positively reflected.

3. If B2c2 
 B1c1, the reflection is almost 100%, and the transmitted wave height is
almost twice the incident wave height (though the discharge in the transmitted wave
is relatively small because it is proportional to B2c2).
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4. In case of a strong enlargement of the cross-section (B2c2 � B1c1), as in the case of
waves in a canal approaching a lake or reservoir, the reflection is negative and almost
100% in absolute value, whereas the transmitted wave height is quite small, going to
zero in the limit as γ goes to zero. This property was already used in the preceding
chapter.

In cases of a connection of three or more canal reaches, the reflection and the transmission
of a wave approaching the transition through one of these can be calculated by lumping the
others into one equivalent canal, having a Bc-value equal to the sum of the Bc-values of the
constituent canals which are being approached by the incident wave.

This is illustrated with the situation in the Julianakanaal, a canal parallelling the river
Meuse in the Dutch province of Limburg. Figure 5.4 gives a sketch of the situation. Point A
represents the location of the lock. Some distance downstream, at point B, a lateral harbour
connects to the Julianakanaal. The (positive) waves originated at the lock are transmitted
along the canal as well as into the harbour. The Bc-value of the harbour (about 500 m2/s)

Figure 5.4: Wave reflection near shipping lock Born, The Netherlands

is roughly twice that in the canal (250 m2/s). The total Bc-value of these is three times that
of the canal itself, so the waves approaching the harbour mouth from the side of the canal
experience a γ-value of 3. This gives rr = - 0.5, or 50% negative reflection back to the lock,
and rt = 0.5, or 50% transmission down the canal and into the harbour. (Note that γ = 1
for reflected waves approaching the harbour mouth from the closed end of the harbour, so
these waves are not reflected at the mouth but fully transmitted into both canal reaches.)

We see that the presence of the harbour causes the height of the (first) wave transmitted
down the canal to be only 50% of the original height in the upstream canal reach. Of course,
in the long run the total volume of water discharged from the lock must flow down the canal.
The remaining 50% is temporarily stored in the harbour and in the upstream canal reach,
between the harbour and the lock, undergoing multiple reflections and being released onto
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the canal going downstream in smaller portions, spread out over time.

Example 5.2. Partial reflection

Situation

At a transition between two prismatic canal
reaches, the values of Ac and B change from
150 m2 and 50 m to 250 m2 and 80 m, respec-
tively. A translatory wave with a height δhi =
0.35 m approaches the transition from the side
of the narrower canal reach.

Questions

Calculate:

1. the height of the reflected wave (δhr)

2. the height of the transmitted wave (δht)

3. the discharge (Q) at the transition shortly
after reflection of the incoming wave

Solution

The wave speeds (c =
√
gAc/B) in the narrow

and wide reaches are 5.43 m/s and 5.54 m/s, re-
spectively. This gives a Bc ratio γ = 1.63 (from
narrow towards wider reach).

1. reflected wave: rr = (1− γ) / (1 + γ) =
−0.24 giving δhr = −0.24 × 0.35 m = -
0.08 m

2. transmitted wave: rt = 2/ (1 + γ) = 0.76
giving δht = 0.76 × 0.35 m = 0.27 m

3. discharge: Q = Qi (1− rr), where Qi

is the discharge of the incoming wave
(95 m3/s). So Q = 95 m3/s × 1.24 =
118 m3/s

Comment

Since the discharge is continuous at the transition
it equals the discharge of the transmitted wave
Qt = Bc δht (using Bc of the wide canal reach).

5.3 High translatory waves in open water

We will now abandon the assumption of (very) low waves, and do not make the associated
simplifying approximations of neglecting the advective acceleration and the effects of a vari-
able surface elevation on the channel cross-section geometry (the instantaneous values of
A and B). Because the resulting equations are nonlinear, their mathematical treatment is
much more complicated than it is for low waves described by linear equations, as dealt with
in the preceding chapters. In the present chapter, we will mention only a few characteristic
consequences of the inclusion of nonlinear terms. A more complete treatment is presented
in Chapter 6 (method of characteristics).

Wave deformation

Within the framework of the linear theory in the preceding chapters, the effects of the pres-
ence of a (low) disturbance on the velocity of propagation were neglected. As a consequence,
propagation in a prismatic channel without change in shape is possible (in case of absence
of resistance). In case of higher waves, their effect on the instantaneous depth and thereby

83



on the velocity of propagation is no longer negligible. Various theories have been developed
to account for this, all having in common that the waves deform as they propagate.

The occcurrence of wave deformation can be made plausible, without a formal mathemat-
ical derivation, using the relation c =

√
gAc/B =

√
gdB, in which dB is the average depth of

the entire cross-section. This relation was derived for low waves propagating without change
in shape, but it should by approximation also be valid for slowly varying waves, using the
instantaneous local depth. This implies that higher portions of a wave propagate at greater
speed than lower portions.

Furthermore, the given expression for c applies to the wave speed relative to the water
mass ahead of it. The effect of the wave-induced (as opposed to pre-existing) flow velocity of
this mass on the wave propagation speed was neglected in the preceding chapters. By taking
it into account, the wave speed relative to the bottom becomes U ± c with c the wave speed
relative to the water as given above, the + and - signs being applicable to waves propagating
in the positive and the negative x-direction, respectively. For a positive wave propagating in

t1

t2 = t1 +Δt

t3 = t1 + 2Δt

Figure 5.5: Steepening of a positive wave

the positive s−direction, the wave-induced flow velocity U is positive, enhancing the velocity
of propagation relative to the bottom for the higher parts of the wave even further. It follows
that the wave deforms: positive waves steepen (see Figure 5.5), negative waves flatten out.
Because a positive wave steepens, it will eventually develop into a shock wave or bore.

In the preceding considerations, friction was not considered. This implies on the one
hand that (bed) friction is not a causative factor in the formation of a shock wave, but on
the contrary it might prevent a shock wave from developing if the rate of friction-induced
damping outweighs the rate of inherent steepening. Another reason why a steepening wave
does not necessarily develop into a bore is due to the fact that as the waves become steeper,
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(a) (b)

Figure 5.6: Undular bore (a) and turbulent bore (b)

vertical accelerations increase more and more, so that the pressure deviates more and more
from being hydrostatic. This effect, not included in the long-wave approximation, delays the
formation of a shock wave. (In fact, it allows the presence of certain nonlinear waves that
do not deform at all.)

There are two types of bores. For sufficiently low bores (relative bore height δd/d0
less than about 0.28), the bore is undular; its surface is smooth and wavy (left panel in
Figure 5.6). Higher bores are turbulent; in fact, they are traveling hydraulic jumps (right
panel in Figure 5.6).

Tidal bores

Shock waves in free-surface flows can develop as a result of human manipulation of control
structures, pumping stations etc., but also as the result of natural processes. Within the
latter category, the so-called tidal bores are the most common and best known. They
occur at a number of coastal bays or estuaries on earth at rising tide, particularly spring
tide, appearing as an undular or as a turbulent front moving inland, causing a significant
rise in the local surface elevation in a short time. An overview of all tidal bores occurring
around the world is given in Chanson [1]. As an illustration, we will present some details of
the bores occurring in the estuary of the river Severn in Great Britain.

The Severn discharges into Bristol Channel. The tides, approaching from the Atlantic
Ocean, where they already have a significant amplitude, are enhanced in this Channel with
a factor of about 3 as a result of its funnel shape, narrowing in the inland direction. As a
result, the tides in the Severn estuary are quite strong, reaching more than 10 m tidal range
(HW - LW) at spring tides.

The incoming, rising tide front is steepened as it propagates inland. For sufficiently high
(spring) tides, a tidal bore develops somewhere in the estuary. This happens about 250 times
a year. Most of the time, the bore occupies the entire width of the estuary, advancing at a
speed of a few meters per second. Depending on the height of the tide and the local depths,
the bore may be undular or turbulent. Figure 5.7 shows a situation where both occur at the
same time: undular in the deeper parts and turbulent in the shallower water near the banks.
An individual bore in the Severn estuary exists for about two hours and traverses a distance
of about 30 km, after which it vanishes.

The highest tidal bores on earth occur in the Qiangtang River in Hangzhou, in the south-
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Figure 5.7: Bore in the Severn river (UK), from: Rowbotham [2]

east of China, which can reach a height exceeding four meters. They travel at a speed of
some 40 km/hour, spanning the entire width of the estuary of several km’s. Their approach,
accompanied by a strong roar, can be heard from a great distance. A number of spectac-
ular videos and photographs can be seen on YouTube (where there is also some erroneous
information, such as that the bore height can reach 9 m, and that it would be an annual
phenomenon; the latter misinformation is probably due to a mix-up with the fact that it is
common for Chinese people to gather at the site of the bore on the occasion of one of the
annual Chinese festivals.) An exceptionally spectacular bore occurred on August 23, 2013
(see footage on YouTube).

Whether or not a tidal bore develops depends on the strength of the tide and on the longi-
tudinal profile of the width and depth of the estuary. A funnel shape in plan and decreasing
depths are conducive to bore formation. Due to dredging, several tidal bores have disap-
peared from the scene. An example is the bore in the Seine River in France, which was a
regular phenomenon well into the 20th century, prior to major dredging works, even reaching
Paris where its rushing between the river banks, in the heart of this metropole, was a popular
sight for residents and tourists.

Shock wave propagation

In this section, we derive an expression for the velocity of propagation of a shock wave
in open water, with height Δd, which forms a moving transition between two regions of
uniform flow with depths d0 and d1 = d0 + Δd, respectively. Ahead of the wave, the water
is at rest (U0 = 0), behind it the flow velocity is U1. We ignore the fact whether the shock
is undular or turbulent. Contrary to the derivation presented in Chapter 4, using low-wave
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approximations, we will here include the advection of momentum and use a more exact
expression for the total pressure force. The long-wave theory does not apply to the flow in

Figure 5.8: Control volume shock wave

the shock region. Instead, we use balance equations for the mass and momentum inside a
control volume encompassing the shock, see Figure 5.8.

The volume balance per unit width reads

U1d1 = cΔd = c (d1 − d0) (5.11)

and the momentum balance

1

2
ρgd1

2 + ρU1
2d1 −

1

2
ρgd0

2 = ρU1d1c (5.12)

Elimination of U1 from these two equations yields after some algebraic manipulation

c =

√
g
d0 + d1

2

d1
d0

(5.13)

This is the propagation speed of a shock wave entering quiescent water. More generally, we
can say that this is the propagation speed relative to the water ahead of the wave. If the
initial velocity U0 is nonzero, the wave speed relative to the fixed bed is U0 + c.

Because d1 > d0, it follows that c >
√
gd0 (and even c >

√
gd1). We see that the

inclusion of the effects of a finite wave height causes the wave propagation speed to exceed
the linear-theory value of

√
gd0. (The latter is the limiting value in case Δd goes to zero.)
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Problems

1. What are translatory waves?

2. A control structure connects an irrigation
canal (Ac = 100 m2, B = 30 m) with a
reservoir. At an initial head difference of
4 m, a gate is abruptly opened to an ef-
fective flow area μA = 5 m2. Calculate
the discharge and the height of the result-
ing translatory wave in the canal for two
cases: (a) neglecting the effect of the wave
on the head difference, and (b) taking that
effect into account. (Answers: (a) Q =
44.3 m3/s, δh = 0.258 m and (b) Q = 42.9
m3/s, δh = 0.250 m).

3. Verify the percentages in the scheme in
Figure 5.4.

4. Answer the questions in Example 5.2 for
waves approaching the transition from the
other side. (Answers: rr = 0.24 and rt =
1.24, Qi = 155 m3/s and the discharge at
the transition Q = 118 m3/s).

5. Mention a few theoretical consequences
of the distinction between so-called low
translatory waves and high translatory
waves.

6. Why do (high) translatory waves deform?

7. What is a characteristic difference be-
tween the deformation of positive trans-
latory waves and of negative ones?

8. How does resistance affect the deformation
of translatory waves?

9. Mention some factors favouring the forma-
tion of tidal bores.

10. Why are there fewer tidal bores at present
than in older days?

11. Derive an expression for the velocity of
propagation of a bore entering a region
with depth d0 and flow velocity U0.
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Chapter 6

Method of characteristics

A general feature of wave phenomena is the transmission of information and energy through
a physical system at a finite speed. A disturbance brought about somewhere in the system,
e.g. due to operation of a control structure in an irrigation system, reaches other locations
after a finite time. Insight in this phenomenon is important both for the purpose of effective
control of water levels and discharges in the system, and for performing the required compu-
tations. The so-called method of characteristics lends itself particularly well for this purpose
because it makes visible how the disturbances travel through the system, and it enables their
computation.

6.1 Introduction

In this chapter, we use the complete version of the mass balance and the momentum balance,
without the low-wave approximations. Flow resistance is not included except for a minor
reference.

As before, we restrict ourselves to one-dimensional systems (pipes, canals, ...), schemat-
ically represented by the s−axis, and consider the varying position of a disturbance in the
course of time. This can be represented as a curve in the s, t-plane whose slope ds/dt
equals the local propagation speed of the disturbance. Such curves are called characteris-
tics. They portray how information travels through the system.

The balance equations for mass and momentum for one-dimensional wave phenomena form
a set of two partial differential equations (PDE’s) for two dependent variables, such as the
depth and the discharge (d,Q), as functions of two independent variables (s, t). The two
dependent variables are called state variables. The instantaneous values of these can be
represented as a point in the state diagram, a plane with the two state variables as coor-
dinates.

Given a set of sufficient initial and boundary conditions, the solution of the set of PDE’s
is determined. Expressed in terms of (d,Q), this solution is a set of values d (s, t) and Q (s, t)
which can be represented as a surface in the (d, s, t)-space and the (Q, s, t)-space, respec-
tively, the so-called integral surfaces, depicted schematically in Figure 6.1.
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(a) (b)

Figure 6.1: Integral surfaces for d (a) and Q (b)

In finite-difference methods for the integration of the PDE’s, the values of (d,Q) are deter-
mined in a set of points in the (s, t)-plane chosen beforehand, for instance according to a
rectangular grid with finite differences Δs,Δt. In the method to be dealt with in this chap-
ter, the computations proceed along specific paths in the s, t-plane, the characteristics. The
advantage of this is that (as we will see) the set of two PDE’s in s, t (the balances of mass and
momentum) is replaced by a set of ordinary differential equations (ODE’s) in t, simplifying
the solution. Note that a similar operation was carried out on h+ in Section 4.4, where the
PDE given by Equation (4.19) was replaced by the ODE’s given by Equations (4.20).

As stated above, the slope of a characteristic (ds/dt) equals the local propagation speed,
which depends on the depth and the flow velocity, which are not known beforehand. That
is why the position of the characteristics has to be determined as part of the solution.
For low waves, the propagation speed does not depend on the disturbance, in which case
the slope of the characteristics is determined beforehand. Needless to say, this simplifies
the solution greatly. This low-wave approximation has already been used extensively in
preceding chapters.

The introductory remarks made above have given a broad indication of the essence of the
method of charactristics. The formal mathematical formulation and examples of applications
of the method are given in subsequent sections, first for free-surface flows and then for
pressurized flow in pipes.

6.2 Mathematical formulation for free-surface flows

For simplicity, we restrict the formulation to two-dimensional motions (i.e., no lateral vari-
ations) over a horizontal bottom. We describe it in terms of the state variables U and d.

We recapitulate the long-wave equations from Chapter 2. The continuity equation reads

∂d

∂t
+

∂Ud

∂s
= 0 (6.1)
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whereas the equation of motion (without resistance) reads

∂U

∂t
+ U

∂U

∂s
+ g

∂d

∂s
= 0 (6.2)

(Because the bottom has been assumed to be horizontal, we can replace ∂h/∂s by ∂d/∂s.)
Instead of using d as one of the two state variables, we replace it temporarily as such by c,
defined by c ≡

√
gd. This simplifies the algebra without loss of information. Note that it

is not necessary to assign a physical meaning to this quantity at this stage (doing as if we
have no prior knowledge about it from preceding chapters).

By substitution of d = c2/g into Equation (6.1) and division of the result by c/g, and
substitution of d = c2/g into Equation (6.2), we obtain

∂c

∂t
+ c

∂U

∂s
+ 2U

∂c

∂s
= 0 (6.3)

and
∂U

∂t
+ U

∂U

∂s
+ 2c

∂c

∂s
= 0 (6.4)

Adding these two equations yields

∂(U + 2c)

∂t
+ (U + c)

∂(U + 2c)

∂s
= 0 (6.5)

For brevity, we define
R+ = U + 2c (6.6)

Using this shorthand notation, Equation (6.5) becomes

∂R+

∂t
+ (U + c)

∂R+

∂s
= 0 (6.7)

The left-hand side of this equation represents the total derivative of R+ with respect to t for
an observer moving at a speed ds/dt = U + c in the positive s-direction (see Section 4.3).
Therefore, such observer sees no change in the value of R+. Stated another way: a constant
value of the state variable U +2c is propagated at speed U + c along the s−axis. Therefore,
a formulation equivalent to Equation (6.7) is

dR+

dt
= 0 provided that

ds

dt
= U + c (6.8)

Next, we perform the same operations with change of sign. Subtracting Equation (6.4) from
Equation (6.3), the result is

∂(U − 2c)

∂t
+ (U − c)

∂(U − 2c)

∂s
= 0 (6.9)
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(a) (b)

Figure 6.2: s, t-diagram (a) and state diagram (b)

Defining
R+ = U − 2c (6.10)

we obtain the following equivalent of Equation (6.9):

dR−

dt
= 0 provided that

ds

dt
= U − c (6.11)

The velocities U ± c are called the characteristic velocities, and curves in the (s, t)-plane
for which ds/dt = U ±c are called positive characteristics and negative characteristics,
to be labeled as K+ and K−, respectively. (These are labels, not quantities.) The so-called
characteristic relations (6.8) and (6.11) imply that R+ is constant along K+ and that R−

is constant along K−. The quantities R+ and R− (in some places taken together as R± for
brevity) are called Riemann invariants. Notice that the condition that R± = constant, or
U ± 2c = constant, corresponds to straight lines in the (U, c)-plane.

It follows from the preceding results that information is transmitted through the system
at speeds U ±c, or with speeds ±c relative to the fluid. This gives a physical meaning to the
quantity c, which formally was only a short hand way of writing

√
gd (ignoring knowledge

from previous chapters).

6.3 Principle of application

The essence of the manner in which the characteristic method is applied is as follows.

Suppose that the state of motion is known in two closely neighbouring points in the (s, t)-
plane, say the points 1 and 2 in the left panel of Figure 6.2, meaning that the values of U
and c (or U and d) are known in these points, shown as points S1 and S2 in the (U, c)-plane
in the right panel of Figure 6.2. Because the values of the state variables U and c are known
in the points 1 and 2, so are the characteristic velocities ds/dt = U ± c in these two points.
These are velocities along the s-axis, but they are also directions or slopes in the (s, t)-plane.
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Now draw a short straight line segment in the (s, t)-plane, starting in point 1 in the direction
given by ds/dt = U1 + c1 (assumed positive, which will always be the case for subcritical
flow, regardless of the sign of U1). That is by definition a portion of a positive characteristic
K+. Likewise, we draw a line segment starting in point 2 with slope ds/dt = U2 − c2
(assumed negative). This is a segment of a negative characteristic K−. Strictly speaking,
the characteristics are curved in general, but this can be ignored over sufficiently short
intervals, which can be achieved by starting at closely neighbouring points.

Along the characteristics K+ and K−, the Riemann invariants R+ and R− are constant,
respectively. Physically, this means that information about the state of motion in points 1
and 2 is carried to point 3, which determines the state of motion in that point:

R3
+ = R1

+ and R3
− = R2

− (6.12)

or, in terms of the state variables U and c:

U3 + 2c3 = U1 + 2c1 and U3 − 2c3 = U2 − 2c2 (6.13)

The values of U3 and c3 are easily calculated from these two linear algebraic equations:

U3 =
1

2
(U1 + U2) + (c1 − c2) and c3 =

1

4
(U1 − U2) +

1

2
(c1 + c2) (6.14)

The various states of motion and the connections between them can be portrayed graphically
in the (U, c)-plane: the point S3, representing the state in point 3, can be found from the
states S1 and S2 as the point of intersection of the straight line R+ = U + 2c = constant,
starting in point S1, and the straight line R− = U − 2c = constant, starting in point S2.

The computation can proceed in like manner as for point 3, by starting in an additional point
4 with given state of motion, which yields a new point 5 where the state of motion follows
from that in points 2 and 4. This can be continued for many more points, so covering the
(s, t)-plane with a network of positive and negative characteristics, as shown in Figure 6.3.
The state of motion in the nodes of this network are determined from those in the starting
points. This is elaborated in following paragraphs.

Instead of using the (U, c)-state diagram, in which lines of constant R± or constant U ± 2c
are straight, we can use a (U, d)-diagram. In that case, the Riemann invariants are R± =
U ± 2

√
gd, and lines of constant R± are parabolas, as shown in Figure 6.4b.

Changes in the state of motion correspond to displacements along the parabolas of constant
R+ or R−, i.e. a curved path in the (U, d)-plane. For weak disturbances of an undisturbed
state (U0, d0), these displacements are small and follow approximately the local tangent to
the parabola, given by dU/dd = ∓

√
g/d0. Thus, for small steps along these local tangents,

the small variations in U and d are related by

δU = ∓
√

g

d0
δd = ∓ g

c0
δd = ∓ c0

d0
δd (6.15)

in which c0 =
√
gd0.
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Figure 6.3: The s, t plane with several characteristics

6.4 Characteristics

As we have seen above, characteristics are paths in the (s, t)-plane along which
the information travels. This is of great importance for a good understanding of wave
propagation, as is needed for a proper operation of control structures, pumping stations etc.
to obtain a certain discharge or water level. (It makes little sense to open a gate or start a
pump if the effect is not there where and when it it is needed.)

The slope of a characteristic (ds/dt) equals the characteristic velocity (U ± c).

In subcritical flow, for which |U | < c, the sign of ds/dt = U ± c equals that of ± c,
so the slopes of the positive and the negative characteristics have opposite signs. Stated
another way: ds/dt > 0 for K+, and ds/dt < 0 for K−. This means that in subcritical flow,
information is transmitted downstream as well as upstream.

In supercritical flow, |U | > c, and the sign of ds/dt= U±c equals that of U , for the positive
as well as for the negative characteristics. Therefore, in supercritical flow, information is
transmitted in the downstream direction only.

It is important to be aware of the fact that the position of the points in the (s, t)-plane
(where? when?) is determined by the characteristics, whereas the state of motion (what?)
is determined in the (U, c)-plane using the Riemann invariants. Different points in the (s, t)-
plane can very well have the same state of motion (steady, uniform flow), represented by a
single point in the (U, c)-plane.

In case of weak disturbances entering a region with uniform depth d0 and flow velocity U0,
the characteristic velocity can be approximated as ds/dt 	 U0 ± c0 = U0 ±

√
gd0. In this

approximation, the characteristics are straight and independent of the solution. We will use
this approximation in following graphical representations and elaborations
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(a)

(b)

Figure 6.4: State diagrams: (U, c) diagram with straight lines R± = U ± 2c = constant (a)
and (U, d) diagram with parabolas R± = U ± 2

√
gd = constant (b)
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Figure 6.5: Orientation s, t-diagram and U, d diagram

Also, we will draw the (s, t)-diagram ‘upside down’, compared to Figure 6.2, i.e., we plot
the direction of increasing time downwards, as in Figure 6.5. The advantage of this is that
the positive characteristics K+ in the (s, t)-plane are more or less parallel to the lines R+

= constant in the (U, c)-plane, and similar for K− and the lines of constant R− (except for
supercritical flow).

A note on curved characteristics
Since the characteristic velocities depend on the instantaneous, local depth and flow velocity, they are not
known beforehand but must be determined as part of the solution, which therefore proceeds in consecutive
small steps. Moreover, in regions where U and d vary, so does U ± c. In those cases, the characteristics
are curved. Using straight-line segments instead is an approximation valid for weak disturbances and/or
small steps in s and t. This is in contrast with the (U, c) state diagram: the condition of constant
Riemann invariants is graphically represented as straight lines in the (U, c)-plane, no matter how large
the variations. See Figure 6.4 a.

6.5 Initial value problem

The long-wave equations (6.1) and (6.2), or their equivalent characteristic relations (6.8) and
(6.11), require a set of two conditions in t and two conditions in s for a well-posed problem.

In order to be able to march forward in time with the integration of the basic equations, we
impose two initial conditions which specify the state of motion through two independent
state variables at some initial instant t = t0 in the entire s-domain of calculation.

As an example, we consider the evolution of an initial disturbance of finite length in a long
canal, such that the canal boundaries do not (yet) affect the solution. We start with the same
initial conditions as in the example presented in Section 4.5, i.e. a state of rest everywhere
with an undisturbed depth d0 and a small rise of the free surface (to a depth d1) over a
finite interval from s = s1 to s = s2, say (Figure 6.6). The undisturbed state is labelled as
I, the disturbed state as II. These have been plotted in the upper panel of Figure 6.7. The
initial conditions have also been indicated along the s-axis at t = 0 in the uppermost line
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Figure 6.6: Example: initial condition

Figure 6.7: Example: (U, d)-state diagram

in Figure 6.8. Because the disturbance is assumed to be weak, and there is no pre-existing
flow, we use the approximations ds/dt 	

√
gd0, implying that in this approximation the

characteristics are straight. For the same reason, we use the approximations expressed in
Equation (6.15).

We introduce the initial conditions step by step, beginning with the construction of a small
network of characteristics issuing at t = 0 from points a, b and c in the undisturbed region
where s < s1 (upper panel in Figure 6.8). Because these points share the same undisturbed
state of motion (I, actually a state of rest), the corresponding lines of constant R± in the
(U, c)-diagram all pass through the point I, so that same state (I) exists in the points d, e,
f , etc. Therefore, this undisturbed state (I) exists in the entire domain to the left of the
negative characteristic K1

−. The disturbance issuing from s = s1 just has not yet arrived at
those far away points in the restricted time. The same applies to the region to the right of
K2

+.
A similar consideration, applied to the triangular domain between the s-axis and the two
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(a)

(b)

(c)

Figure 6.8: Example: characteristics s, t-plane
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characteristics K1
+ and K2

−, will show that the state II (still) exists in that domain. The
disturbances originating at the locations s = s1 and s = s2 have not yet reached the points
inside this triangular domain.

Next, we draw a positive characteristic issuing from the left region with initial state I
(point p) and a negative characteristic issuing from the region with initial state II (point q)
(middle panel in Figure 6.8). They intersect in point r . The state in this point can be found
in the state diagram of Figure 6.7 as the intersection of the line R+ = constant through
point I and the line R− = constant through point II, yielding the state III valid for point
r and other nearby points between K1

− and K1
+. Likewise, starting in points u and v, we

find the state IV for point w and nearby points between K2
− and K2

+. At some instant,
the characteristics K1

+ and K2
− intersect (point P ). At that time, a new domain comes

into existence in the center, in which the undisturbed state I has returned, as shown in the
middle panel of Figure 6.8.

The lowest panel in Figure 6.8 gives an overview of the results. It is clear that the initial
disturbance is effectively split into two disturbances, one propagating to the left and the
other to the right along the s-axis. At first, these two partial disturbances overlap, but after
some time they are separated, after which the undisturbed state is restored in the center,
extending over an increasingly long interval of the s-axis as the two disturbances vanish to
the left and to the right.

The disturbance propagating to the right causes state IV, with height δd equal to
dIV − dI = (d1 − d0)/2 (the same as the one going left). The associated flow velocity is
δU =

√
g/d0 δd, see the state diagram in Figure 6.7. These results were already obtained

in Chapter 4. The same problem was treated here again to illustrate the application of
the method of characteristics, which is more powerful because it is not restricted to weak
disturbances, as will be seen below.

Using the finalized diagrams, the variation of the flow state in time at a particular location
can be found by plotting a vertical line in the (s, t)-diagram. Intersection of the line s = s3
in Figure 6.8c with the principal characteristics (those separating the different flow states),
gives the time instances at which the state in the point s3 changes. The alternate flow states
(subsequently II, III and I) are obtained from the corresponding state diagram, Figure 6.7.
Similarly, a horizontal line t = t1 in the (s, t)-diagram will give the spatial variation of the
flow state at time t1.

6.6 Boundary conditions

A boundary condition prescribes the values of a state variable, or a relation between two
state variables (such as a dependence of discharge on water level) at one of the boundaries
of the computational domain, as a function of time from the moment at which the initial
conditions have been prescribed. Two boundary conditions are required. It depends on the
flow conditions at which boundary or boundaries these should be imposed, as will be made
clear in the following.
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(a) (b)

Figure 6.9: Characteristic paths for given initial- and boundary conditions; sub-critical flow
(a) and super-critical flow (b)

Flow regimes

Consider a prismatic canal of finite length, from s = 0 to s = �, say, in which the values of
U and d, so U and c, are known at time t = t0 (the initial conditions), allowing the start
of the construction of a network of characteristics and the determination of the associated
values of the state variables. Boundary conditions are specified for t > 0 at s = 0 and/or at
s = �.

Subcritical flow

Assuming subcritical flow, in which at each point the two characteristic velocities (ds/dt =
U±c) have opposite signs (or: the characteristics have opposite slopes), we obtain a network
as shown in the left panel of Figure 6.9, in which we have chosen four points (1, 2, 3, 4) in the
computational domain to start the computation. (This is just an illustration. In practical
applications, it is likely that more points would be required.) In the manner described in
Section 6.5, the solution can be obtained successively in the points 5 through 10, in a more
or less triangular region bordered by the characteristics K+ issuing at t = 0 from the left
boundary s = 0 (point 1), and K− issuing at t = 0 from the other boundary s = � (point 4).

The values of the Riemann invariants in point 10 equal those in the points 1 and 4, but
the characteristics linking these points to point 10 depend also on information in points in
between, in fact the entire interval from s = 0 to s = l. The latter interval is called the
domain of dependence of point 10. Boundary conditions at s = 0 and at s = l for t > 0
have no influence in point 10 (or in the triangular domain 1 - 4 - 10).

Conversely, considering an individual location such as s = s2, the initial condition there
can only influence the state of motion in the domain between the positive characteristic (2
- 6 - 9) and the negative characteristic (2 - 5 - 11) issuing from that point at t = 0, the
so-called domain of influence of point s2.
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In order to extend the solution beyond the domain of dependence (the triangle 1 - 4 - 10), we
continue the negative charateristic issuing from point 2 up to the left boundary, s = 0. This
yields point 11 and the value of R− in that point (R−11 = R2

−). In order to find the solution,
a second relation is required. This cannot be delivered by a positive characteristic, because
such characteristic cannot reach point 11 from the region where information is available.
That is why a boundary condition is needed at the left boundary, and only one. (With two
boundary conditions in s = 0, the problem would be overdetermined, with three relations
for only two variables.)

Proceeding in this manner, we obtain two relations between the two state variables at the
left boundary, viz. the values of R− obtained from the initial condition, and the other one
being provided by the boundary condition. With this information, positive characteristics
issuing from the left boundary can be constructed, entering the domain of computation. See
e.g. point 12, where R− is also known, from the negative characteristic through that point
R−12 = R3

−). Thus, the solution in point 12 is known, etc.
Proceeding in like manner from the other boundary s = �, we see that there too a

boundary condition is required, and only one. We can conclude that in subcritical flow, one
boundary condition is required at each of the two boundaries. In other words, in subcritical
flow, one boundary condition is required at the upstream boundary and one at
the downstream boundary. This is consistent with Section 6.4, where it was noted that in
subcritical flow, information is transmitted downstream as well as upstream. The influence
of the left boundary enters the computational domain along positive characteristics. When
the positive characteristic issuing from point 1 reaches the right boundary, the influence of
the left boundary condition is felt in the entire domain.

Supercritical flow

Next, we consider supercritical flow, in which the two characteristic velocities at each point
(ds/dt = U±c) have the same sign (or: the characteristics are slanting in the same direction),
equal to that of U . Assuming U > 0, implying also ds/dt > 0, we obtain a network of
characteristics slanting to the right, as shown in the right panel of Figure 6.9.

In contrast to the situation for subcritical flow, the left boundary (the upstream bound-
ary) cannot be reached by negative characteristics issuing from the domain s > 0, where
information is available from the initial conditions. If we want to know the solution at the
left boundary for some time t > 0, as in point 8, the required information must be deliv-
ered entirely by the (two) boundary conditions there. Thus, in supercritical flow, two
boundary condition are required at the upstream boundary (e.g. depth and flow
velocity). This is consistent with Section 6.4, where it was noted that in supercritical flow,
information is transmitted downstream only.

Now consider the downstream boundary. The positive characteristic issuing from point 3,
for example, reaches the downstream boundary in point 7. But that point can also be reached
by a negative characteristic issuing closer to the downstream end because such characteristics
also slope to the right (downstream). Thus, the values of both Riemann invariants in point
7 are known, and the state of motion there is fully determined. A downstream boundary
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condition is not necessary. In fact, it would make the problem overdetermined.

Transcritical flow

Suppose now that, in supercritical flow conditions, after some time a gate at the downstream
boundary is closed. Then what? Closing a gate effectively imposes a downstream boundary
condition Q = 0 in s = �. In that case, the local flow becomes subcritical, and negative
characteristics issuing from the closed downstream end enter the computational domain.
At some point these reach the region of supercritical flow, which point is also reached by
a positive charactaristic and by a negative one issuing in the region of supercritical flow.
The solution is overdetermined at that point. It becomes multi-valued, i.e. two values of
the surface elevation exist simultaneously at the same location, implying the existence of a
shock wave or bore.

At the location of the shock, there are five unknowns: the two state variables on either
side, and the velocity of the shock. An equal number of relations is available for their
determination: three Riemann invariants obtained from the three characteristics intersecting
at the location of the shock, and two equations for the balances of mass and of momentum
across the shock (as derived in the preceding chapter). Together, the available information
is just sufficient to obtain a unique solution.

Graphical solution

We will now illustrate in detail how the boundary conditions are introduced, first at one
boundary only, at s = 0. For simplicity, we do as if the characteristic velocities are known
beforehand, as is the case for low disturbances entering a region of rest with constant depth
d0, so that ds/dt = U ± c 	 ± c 	 ±

√
gd0.

General procedure

Consider three points 1, 2 and 3 (left panel of Figure 6.10) with different but arbitrary initial
conditions, indicated in the state diagram (right panel of Figure 6.10) as the states S1, S2

and S3. At t = 0, a gate at s = � is suddenly closed. This gives the boundary condition
U = 0 at s = � for t > 0. A positive characteristic (K+) issuing from point 1 reaches the
closed gate in a point (actually, an instant) A, say. Therefore, the state of motion in A,
as yet unknown, must ly somewhere on the line R+ = constant in the state diagram going
through S1. The intersection of this line with the line U = 0 yields the state of motion in
A, indicated as SA. The same applies to point B, starting in point 2.

Proceeding in this manner, we can determine the state of motion at the closed end in
points like A, B, · · · . This allows us to construct negative characteristics issuing from these
points, with known values of R−, to determine the motion in the interior computational
domain. These negative characteristics intersect positive characteristics, issuing from points
like 2, 3 .... at t = 0, with known values of R+, in points like C, D, ...., so that the state of
motion in these interior points is known as well.
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(a) (b)

Figure 6.10: Boundary conditions: graphical solution procedure boundary; s, t-plane (a) and
state diagram (b)

We can proceed in this manner until a positive characteristic starting at the left boundary
at t = 0 reaches the right boundary. For later times, the positive characteristics reaching
s = � obtain their R+-values from the boundary condition at s = 0.

Boundary types

The above procedure can be used for any type of boundary by plotting in the state diagram
the relation holding for U and/or h at the boundary. In this way, a vertical line U = UB

prescribes the velocity UB while a horizontal line h = hB prescribes the water level hB.

When the boundary represents a control structure (weir, orifice), a discharge relation
has to be specified as boundary condition. Given that the head loss over such structures
is proportional to the local velocity head, the following relation between h and U will hold
locally,

h = hB − ξ
|U |U
2g

(6.16)

where ξ is the head loss coefficient of the structure and hB is the surface level in the water
system outside the structure (a lake or sea to which it is connected). The notation using the
absolute value of the velocity warrants that the difference in head over the structure obtains
the correct sign as the flow direction reverses (as with the resistance term in the momentum
equation). Equation (6.16) represents two half parabolas in the (U, h)-state diagram, yet
the graphical solution procedure remains effectively the same, i.e. intersection of the half
parabolas with the characteristic relations holding along outgoing characteristics.
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Absorbing boundaries

The influence of engineering measures in water systems is often mainly local, diminishing
with increasing distance from the site. This is utilized in physical or numerical model studies
of the local situation by cutting off the model at a sufficiently remote boundary which can
reasonably be assumed to be beyond the influence of the engineering measure concerned.

Because in reality the system extends further, such cut-off creates an artificial, open
model boundary. The condition to be imposed there is that disturbances approaching that
boundary from within the study area should not be reflected, so as to simulate reality in
which they continue unimpeded. In these cases we speak of an absorbing boundary (see
also Section 4.6). The method of characteristics is particularly helpful in determing the
appropriate condition to be imposed at an open boundary in order to make it absorbing.

We start from a situation in which a disturbance, indicated by the bold line segment along
the s-axis in Figure 6.11, has entered an initially undisturbed region over some distance in
the direction of s-positive. The model is cut off at a point s = sr while, in reality, the system
extends further (lower left panel of Figure 6.11). The state of motion in that exterior domain
(i.e. s > sr), possibly varying with location and time, is supposed to be known, e.g. a time-
varying discharge from a river with associated water levels. In absence of the cut-off, interior

(a)

(b)

Figure 6.11: Traveling disturbance: (s, t)-plane and state diagram (a), same with the spatial
domain truncated at s = sr (b)

points like point 3 can be reached by a negative characteristic issuing in a point 1, say, in
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which case R3
− = R1

− = U1 − 2c1. In the presence of the cut-off, the negative characteristic
reaching point 3 should start at the boundary s = sr, in point 4, but this should not affect
the state of motion in the interior (computational) domain (s < sr). This implies for point
3 that it should receive the same R− as in absence of the cut-off, i.e. R4

− = U1 − 2c1 .

In other words, at the open boundary, the value of the incoming Riemann invariant
should be imposed to make it absorbing. In this manner, the influence from the exterior
domain (s > sr) is retained, also in case the state of motion there is varying with location
and time, whereas disturbances created by the engineering measure are not reflected at the
open boundary.

6.7 External forces

So far, external forces such as resistance or wind action have been ignored, so as to present
the method of characteristics in its most elementary form. This restriction is now relaxed.

Let F be the resultant of the external forces per unit mass acting in the positive s-direction.
We add this to the right-hand side of Equation (6.2). Repeating the procedure to go from
the balance equations of mass and momentum to the characteristic form, we obtain instead
of (6.8) and (6.11):

dR±

dt
= F provided that

ds

dt
= U ± c (6.17)

For finite but small time steps Δt, the differential equation for the rate of change of R± can
be approximated in finite-difference form as

ΔR± = F̃Δ t (6.18)

(not ±F̃Δ t !), where F̃ is the average value of F over the time interval considered. This
means that in situations as sketched in Figure 6.12, these variations in R± (which, strictly
speaking, are no longer invariants) must be added to the right-hand sides in Equation (6.12):

R3
+ = R1

+ +ΔR1,3 and R3
− = R2

− +ΔR2,3 (6.19)

or, in terms of the state variables U and c:

U3 + 2c3 = U1 + 2c1 + F̃1,3Δ t1,3 (6.20)

and
U3 − 2c3 = U2 − 2c2 + F̃2,3Δ t2,3 (6.21)

in which F̃1,3 and F̃2,3 denote the average values of F between the points 1 and 3 and the
points 2 and 3 in the (s, t)-plane, respectively, which can be approximated by using the
known values of depth and flow velocity in the respective points.

As before, the algebraic formulation can be carried out graphically in the state diagram,
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Figure 6.12: Graphical procedure forcing terms in the case of a resistance force (Fr) only

say the (U, c)-plane. To illustrate this, we reconsider the situation in Figure 6.2 where the
state of motion in point 3 of the (s, t)-plane (S3) has to be found. Due to the external
force F , S3 does not ly on the line R+ = R1

+ (dashed in Figure 6.12), but on another
(drawn) line parallel to this. This line can be found by shifting the first one such that
ΔR+ = ΔU +2Δ c = FΔ t. If we measure this shift along lines of constant c (‘horizontally’,
so Δc = 0), we have ΔU = FΔ t.

If resistance is the only external force (F = Fr = −cf |U |U/d, say) F opposes U , and
the lines of constant R± must be shifted in the direction of U = 0, as shown in Figure 6.12.
This results in a gradual decrease in absolute value of the flow velocities, or a damping of
the motion, as expected for the effect of resistance.

6.8 Simple wave

General solution

This section deals in detail with the important case of a disturbance entering a region of
rest or of uniform flow, first considered in Section 4.1 (see Figure 4.2). Such disturbance,
traveling in one direction only, is called a simple wave. They occur frequently in practice
as a result of operation of control structures.
Initially, at t = 0, the flow is uniform with depth d0 (propagation speed c0 =

√
gd0 and

flow velocity U0, indicated as state I in the (U, c)-plane of Figure 6.13. Starting at t = 0,
a time-varying disturbance is imposed at s = 0 from where it propagates into the canal, in
the direction of s-positive, say (s > 0).

We assume that the canal is prismatic and that there are no reflections nor autonomous
disturbances propagating in the direction of s-negative.

The disturbance enters the domain s > 0 at t = 0 with velocity U0+c0. Where it has not
yet arrived, i.e. in the domain s > (U0+ c0)t, the initial state of uniform flow is still present.
This can be seen formally (as an exercise) by using positive and negative characteristics like
Ka

+ and Kb
−, issuing at t = 0 from two arbitrary points like a and b, and intersecting in

a point c, as shown in Figure 6.13 a. Since Rc
+ = Ra

+ = Rb
+ and Rc

− = Rb
− = Ra

−, the
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(a) (b)

Figure 6.13: Simple wave traveling in positive s-direction; s, t plane with characteristics (a)
and state diagram (b)

state in point c is the same as it is in points a and b, i.e. the initial, undisturbed state of
uniform flow. This domain is bounded by the characteristic K0

+ issuing from s = 0 at t = 0,
indicating the progression of the front of the disturbance.

In order to determine the motion in the region where the disturbance is present, we need
(among others) negative characteristics issuing at t = 0 from the undisturbed domain. All
of these share the same value of R−, also in the disturbed region. It follows that in the
entire domain, including the disturbed part, all points have the same value of
R−, given by R0

− = U0 − 2c0. In other words, in the entire region, the two state variables U
and c obey the relation

U − U0 = 2c− 2c0 = 2
√

gd− 2
√

gd0 (6.22)

This is a straight line in the (U, c)-plane passing through point I, as shown in the right panel
of Figure 6.13. It shows that the flow velocity in the simple wave increases with the local
depth, i.e. with the local wave height, and how.

A note on low simple waves
In Chapter 4 relations were derived between variations in flow velocity and surface elevation for a low
simple wave, see Equation (4.26). Equation (6.22) is a similar relation, valid for simple waves of arbitrary
height. Let us check whether it reduces to Equation (4.26) for low waves, i.e. δd = d − d0 
 d0. To
this end, we make the approximation

√
gd =

√
gd0 (1 + δd/d0) 	

√
gd0

(
1 + 1

2
δd/d0

)
and substitute this

into Equation (6.22), to obtain δU = U − U0 	
√
g/d0 δd = c0 δd/d0, which is indeed the same as

Equation (4.26) (accounting for the difference in notation).

We now consider a positive characteristic K1
+ issuing from s = 0 at a time t = t1, say (see

Figure 6.13, left panel). Along this characteristic, R+ is constant = R1
+. But, as we have

seen, all points share the same value of R−, viz. R−0 . It follows that both R+ and R− are
constant along K1

+, so that the same is true for the two state variables U and c separately.
Since this applies to an arbitrary positive characteristic, it applies to all of them. This in
turn implies generally that in a simple wave, the state of motion is constant along
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any positive characteristic.
Since both U and c are constant along the positive characteristcs, so is their sum U + c,

i.e. the characteristic direction (ds/dt) in the (s, t)-plane. This means that in a simple
wave, the positive characteristics are straight.

The value of U + c for any positive characteristic depends on the associated value of R+,
which in turn is determined by the boundary condition in s = 0 at the time when the
characteristic was started. Using Equation (6.22), this can be written as

ds

dt
= U + c = U0 + 3c− 2c0 = U0 + 3

√
gd− 2

√
gd0 (6.23)

It follows that points of constant U and c (or constant U and d, therefore also of constant
discharge q = Ud) are moving with a constant speed which is higher for points of the wave
with a larger wave height (larger depth) than it is for the lower parts. Stated another way:
higher parts of the wave travel faster than lower parts: the wave deforms. This can also be
seen from the characteristics, because two positive characteristics with constant but different
wave heights (therefore also different values of U and c) diverge or converge, which means
that the distance between any two points on the wave with different depths varies linearly
in time.

Thus, the wave deforms as it propagates. This was already made plausible in the
context of high translatory waves in Chapter 5. The difference is that we now have proof,
and a method to calculate the rate of deformation.

Expansion wave

In order to investigate the wave deformation further, we choose for simplicity (without losing
anything essential) a uniform state of rest (U0 = 0, d = constant = d0 ) in a long canal as
the initial condition, and a prescribed time variation of the flow velocity in s = 0 as one of
the boundary conditions. A second boundary condition is provided by the assumed absence
of reflected waves from downstream, as in any simple wave.

We first consider a situation with outflow at s = 0 with an initially increasing outflow
velocity, tapering off to a constant value after some time, as sketched in the left panel of
Figure 6.14. The starting outflow causes a negative wave propagating away from the
outflow boundary. Along the characteristic K0

+ through the point s = 0, t = 0, the wave
speed is U0 + c0 (actually, U0 = 0, but we write it for consistency in the expressions). It
separates the disturbed domain from the undisturbed one.

Next consider a characteristic K1
+ starting at the left boundary at some time t = t1,

when U = U1 < 0, so d = d1 < d0, and therefore also U1 + c1 < U0 + c0. This implies that
K1

+ diverges from K0
+: the disturbance travels more slowly than those in the undisturbed

region. The point on the wave where d = d1 lags more and more behind the front of the
wave. The wave, being negative, becomes less and less steep and more and more stretched
as time goes on. This type of wave is called an expansion wave.

110



Figure 6.14: Expansion wave traveling in positive s-direction; velocity variation at outflow
boundary (left panel) and (s, t) plane with characteristics (right panel)

At some instant, the outflow velocity has become constant. From that moment on, the
positive characteristics issuing at s = 0 have the same values of U and c; they are mutually
parallel, signifying a new state of uniform flow, with a smaller depth than initially, and with
a negative flow velocity equal to the velocity finally imposed at s = 0.

Example 6.1. Expansion wave

Situation

Consider a semi-infinite canal with initial depth
d0 = 5 m and initial velocity U0 = 0. A pumping
station at the (left) boundary of the canal
starts withdrawing water as a result of which
an expansion wave starts traveling along the
canal. Consider a point on the expansion wave
in which the velocity U1 = -0.5 m/s.

Questions

1. calculate the water depth (d1) in this point

2. determine the speed (ds/dt|
1
) with which

this point propagates along the canal

Solution

In the undisturbed region c0 =
√
gd0 = 7.0 m/s.

1. using Equation (6.22) (with U0 = 0) we
obtain c1 = c0+U1/2 = 6.75 m/s, so d1 =
c21/g = 4.5 m

2. the propagation speed ds/dt|
1
equals U1+

c1 = c0 + (3/2)U1 = 6.25 m/s

Comment

Notice how the smaller value of d and that of U
(with respect to the initial state) both contribute
to the propagation speed (ds/dt) being smaller
than its undisturbed value.

Compression wave

We now treat a situation of inflow, with a flow velocity initially increasing from zero, and
finally going to a constant value, as in the left panel of Figure 6.15. The starting inflow
causes a positive wave propagating into the adjacent canal reach. When in a certain time

111



Figure 6.15: Compression wave traveling in positive s-direction; velocity variation at inflow
boundary (left panel) and (s, t) plane with characteristics (right panel)

interval the inflow velocity increases, so do the local values of d and c, therefore also that of
U + c: the positive characteristics converge, the wave becomes steeper in time. This type
of wave is called a compression wave. At some moment, positive characteristics intersect,
at which point (in space and in time) the solution becomes multi-valued, with two different
values of the momentary surface elevation at the same cross-section. A discontinuity in
surface elevation develops: a bore or shock wave.

Consider two positive characteristcs K1
+ and K2

+, issuing from s = s0 at times t = t1 and
t = t2 = t1+Δt, respectively, such that ds/dt|2 > ds/dt|1. Elementary geometry shows that
they intersect at a time ti and a location si given by

ti = t1 +
V2

V2 − V1

Δt = t2 +
V1

V2 − V1

Δt (6.24)

and

si = s0 +
V1V2

V2 − V1

Δt (6.25)

in which we have used the shorthand notation V = ds/dt = U + c.

In the above, the prescribed time variation of the flow velocity was chosen as the boundary
condition, for convenience. In practice, it is more likely that the discharge is given, as at a
pumping station, or a relation between surface elevation and discharge, as in a gated control
structure. Such conditions make the algebra a bit more complicated without adding insight
in the process of wave deformation. Stoker [1] treats in detail the case of a horizontally
translating vertical gate, with special attention to the case of withdrawal. When the gate
recedes at a sufficiently high velocity, the water cannot keep up with it and the bed falls
dry. This is the so-called dambreak problem, which can be solved analytically in closed form
using the method of characteristics.
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Example 6.2. Compression wave

Situation

As in Example 6.1, but with a discharge of water
from the pumping station causing a compression
wave traveling along the canal. In a time interval
from t1 to t2 = t1 + Δt = t1 + 60 seconds the
velocity at the pumping station increases from
U1 = 0.5 m/s to U2 = 1 m/s.

Questions

1. determine the instant, with respect to t1,
at which the respective characteristics K+

1

and K+
2 intersect

2. determine the location, with respect to the
pumping station, where these characteris-
tics intersect

Solution

Using V = ds/dt = c0 + (3/2)U gives V1 = 7.75
m/s and V2 = 8.50 m/s.

1. instant of intersection (Equation (6.24)):
ti = t1 + (V2/ (V2 − V1))Δt = t1 + 680 s

2. location of intersection (Equation (6.25)):
si = s0 + (V1 V2/ (V2 − V1))Δt = 5270 m
from the pumping station

Comment

A bore is formed when an intersection of positive
characteristics first occurs. When and where this
happens depends on the time variation of the im-
posed inflow velocity. The numbers used in the
example were chosen arbitrarily; they do not re-
fer to the instant and location of bore formation.

6.9 Pressure waves in pipelines

In this Section, we consider applications of the method of characteristics to presssure waves
in closed conduits, in particular pipelines, for which it is highly suitable, as we will see.

Characteristic equations

In Chapter 2, the mass balance for the liquid under pressure in a pipeline was expressed in
terms of the state variables U and p as follows (Equation (2.37)):

∂p

∂t
+ U

∂p

∂s
+ ρc2

∂U

∂s
= 0 (6.26)

in which c is defined by
1

c2
=

ρ

K
+

ρD

Eδ
(6.27)

Neglecting friction, and using p for the dynamic pressure (the deviation from hydrostatic
pressure), the equation of motion is written as (Equation (2.38))

∂U

∂t
+ U

∂U

∂s
+

1

ρ

∂p

∂s
= 0 (6.28)

The characteristic relations for U and p can be derived from (6.26) and (6.28) through the
same kind of procedure as used for open water, with the result

dR±p
dt

= 0 provided
ds

dt
= U ± c (6.29)
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in which
Rp

± = p± ρcU (6.30)

Using the piezometric level h and U as the two state variables, we define

Rh
± = h± c

g
U (6.31)

and obtain
dR±h
dt

= 0 provided
ds

dt
= U ± c (6.32)

It follows from these characteristic relations that c is the speed of longitudinal propagation
of pressure waves in the coupled fluid-pipe system, relative to the fluid.

Although the pressure-induced variations of the mass density ρ have been accounted for in
the mass balance, and so in the expression for the wave speed, the relative magnitude of
these is always quite small, and can be neglected where ρ appears in the equations as a
multiplying factor. In this approximation, the wave speed c is independent of the actual
state of motion, and lines of constant values of Rp

± in the (U, p) state diagram are straight;
so are lines of constant values of Rh

± in the (U, h)-plane. This means that variations in U
and p or h are proportional, not only for infinitesimal variations but also for finite values.
Written in finite difference form, the characteristic relations can be expressed as

Δp± = ∓ρcΔU and Δh± = ∓ c

g
ΔU provided

ds

dt
= U ± c (6.33)

These relations are valid for disturbances of arbitrary magnitude, not just infinitesimal ones.

For low disturbances in free-surface flows, the relation δd = ∓(c0/g)δU was derived (Equa-
tion (6.15)), valid along the ± characteristics. At the free surface, δp = 0, so that δd = δh
and δh = ∓(c0/g)δU along the ± characteristics, + the same as for pressurized flow in a
pipe. The difference is that for free-surface flows these proportionalities are valid only for
weak disturbances, whereas such restriction does not apply in pressurized flows.

Physical behavior

As a result of the very limited storage available in pressurized flow (in contrast to free-surface
flow where mass can be stored by a rise in the free surface), the speed of pressure waves
in pipe flow is quite high, of the order of 1000 m/s (see Chapter 2). Relative to this, the
flow velocity U can be neglected in the characteristic velocities U± c, which therefore can be
approximated as ds/dt = ± c, in which moreover c can be be considered to be a constant (for
pipes of constant cross-section and elastic properties), independent of the actual pressure.
This means that the characteristic velocities to a very good approximation can be considered
as constant, i.e. the characteristics are straight lines, independent of the state of motion.

It follows from Eq. (6.30) that even moderate variations in flow velocity can cause large
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variations in pressure, because of the high values of c, such as 100 m water column for a
change in flow velocity of only 1 m/s. This phenomenon is called water hammer.

The large pressure variations associated with water hammer can be positive as well as
negative. When and where the fluid pressure tends to become lower than the vapour pres-
sure, cavitation occurs, i.e. vapour bubbles or even complete cavities are formed. When
these collapse, an intense sound is generated (which in some houses can be heard when clos-
ing the kitchen tap too rapidly), not unlike the sound caused by hammering on steel.

Water hammer and the associated cavitation can cause serious damage, even fracture, to
the pipeline system including its appurtenances such as pumps and valves. Therefore, wa-
ter hammer requires careful consideration in the design, and it imposes restrictions on the
allowable operation of pipeline systems.

Examples

Next, some examples are given of application of the method of characteristics to pipe flow
involving the operation of valves in pipeline systems. In each case, the solution is determined
graphically. It is important to study the example problems and their solutions closely and
to rework them.

Abrupt closure

Consider a pipe with length � between two reservoirs. Initially, the flow in the pipe is uniform
with velocity U0. Wall friction and velocity head effects at the upstream end are ignored,
so the piezometric level in the pipe at that end is set equal to the free surface level in the
adjacent reservoir, which we take as our reference level h = 0 (boundary condition in s = 0),
which is also the initial level in the whole pipe. At t = 0, a valve at the downstream end is
suddenly closed completely (boundary condition U = 0 in s = � for t > 0). The solution is
given in Figure 6.16, showing the (s, t) diagram and the (U, h) state diagram.

At the location of the closed valve, the initial flow (state I) is suddenly brought to a halt and
the pressure rises steeply (state II). The front of this transition travels upstream and reaches
the open end at time t = �/c, where it is 100% negatively reflected (state III) because h =
constant as a result of the presence of the reservoir. The reflected negative wave arrives at
time t = 2�/c at the end of the closed valve and is reflected there by 100% (state IV).

At time t = 4�/c, the front has traveled up and down the pipe once more, after which the
original state is restored and the process repeats itself with a period T = 4�/c. This goes
on ‘forever’ because energy losses (due to wall friction and expansion at the exit) have been
neglected.

Ignoring cavitation, the maximum and minimum piezometric level are ±c U0/g high-
er/lower than the undisturbed value of zero, corresponding to pressure variations of ±ρcU0.
The sequence of states I through IV (right panel of Figure 6.16) is indicated in the s, t-
diagram as well as in the graphs in Figure 6.18 where they are visible in a sequence of
longitudinal profiles.
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Figure 6.16: Abrupt closure at downstream end of a pipe; (s, t) diagram (left panel) and
(U, h) state diagram (right panel)

Figure 6.17: Abrupt closure: measured (Simpson, 1986) and computed (Tijsseling, 1993)
pressures (from: Tijsseling [2])
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At a fixed point, the maximum and minimum pressures alternate as time goes on. Near
either end, the durations of maximum and of minimum pressure are unequal (consider some
sections s = constant in the (s, t)-plane), but halfway the length of the pipe they last equally
long.

Figure 6.17 shows a time sequence of absolute pressure heads measured in a fixed point
in the middle of the pipe for the present situation (Figure 3.2 presents a similar plot). The
initial pressure was sufficiently high to prevent the occurrence of cavitation (see the minimum
pressure head of almost - 10 m water column). The pattern of the pressure variations and
the values agree with the theory. The most notable deviation is the gradual decay of the
measured oscillations, which is not predicted by this theory in which all losses were neglected.
(For a quantitative check, the experimental data listed in Problems 16 and 17 at the end of
this chapter can be used.)

Gradual closure

The large pressure variations associated with abrupt closure of a valve (or the sudden start
or shut-off of a pump) are undesirable. They can be avoided to a controlable extent by a
more gradual closure. This can be seen as follows.

The preceding example shows that the high-pressure wave, originated at the location of
the sudden closure, is negatively reflected at the other, open end of the pipe. When this
reflected negative wave arrives at the closed end, it can compensate the pressure build-up
there, provided the closure was not yet complete by the time of arrival of the reflected,
negative wave. This means that the closure should take longer than 2�/c.

In the following elaboration of this idea we assume the same situation and approximations as
in the preceding example, except for the presence of a valve at the downstream end. Initially,
the valve is fully open (h = 0). We assume the following relationship to describe the effect
of partial closure of the valve:

h =

(
1

μ2
− 1

)
|U |U
2g

(6.34)

in which h is the piezometric level and U the flow velocity in the pipe near the valve (U
is positive in case of outflow), and μ is the ratio of the effective cross-sectional area of the
valve opening to that of the pipe. This relation is shown graphically in the state diagram of
Figure 6.19 as two mirrored half-parabolas. For a fully open valve, μ = 1 (h = 0 for finite
U), and for a fully closed valve, μ = 0 (U = 0 for finite h).

Instead of using a truly gradual closure we approximate it as a two-step process, assuming
that at t = 0 the valve is abruptly but partially closed, such that μ = constant = μ1 for
0 < t < 4�/c, with 0 < μ1 < 1, after which it is abruptly fully closed (μ = 0).

The solution is shown in Figure 6.19. It can be seen that the partial closure causes a moderate
pressure rise (state II). In the end, after the valve has been closed completely, a periodic state
is established (states V, VI, VII and VIII), as in the preceding example, but the maximum
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(a) t = 0 (b) 0 < t < �/c

(c) t = �/c (d) �/c < t < 2�/c

(e) t = 2�/c (f) 2�/c < t < 3�/c

(g) t = 3�/c (h) 3�/c < t < 4�/c

Figure 6.18: Abrupt closure: snapshots of pressure variation and flow velocity in a pipeline;
state at t = 4�/c equals that at t = 0 (a)
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Figure 6.19: Gradual closure at downstream end of a pipe; s, t diagram (left panel) and state
diagram (right panel)

and minimum pressures are smaller in absolute magnitude due to the effect of the reflected
negative wave arriving at the valve at t = 2�/c, when the valve was not yet fully closed.

It is obvious from the above that closing the valve in a sequence of small steps, or gradually,
can reduce the maximum and minimum pressures (in absolute magnitude) at will, provided
the duration is sufficiently long compared to the basic travel time of 2�/c.

Influence of exit losses and/or wall friction

We return to the situation first considered, of initially uniform flow in a pipe which at the
downstream end is abruptly closed. The only difference is in the boundary condition at
s = 0, where we now take velocity head effects into account, leading to h = 0 during outflow
and h = −U2/2g during (streamlined) inflow. This results in the following relation to be
imposed in s = 0:

h =

{
0 if U < 0

−U2/2g if U > 0
(6.35)

See the state diagram in Figure 6.20

The solution is presented in Figure 6.20. Again, an oscillation develops with a period equal
to 4�/c, but this time the extreme values decrease in time as a result of the assumed exit
losses. Formally, the effect of wall friction can be accounted for with the method described in
Section 6.7 but this would require a large number of computational points along the length of
the pipe, which makes the solution laborious. The overall effect of resistance, i.e. the gradual
decay of the oscillations, can be obtained more simply by lumping the overall resistance in
one or two endpoints, accounting for it through a modification of the boundary conditions.
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Figure 6.20: Influence of exit losses; s, t diagram (left panel) and state diagram (right panel)

Influence of time scales

The examples presented above clearly show that two time scales are important: the time
scale τe of external influences, e.g. the duration of closure of a valve, or (at the other extreme)
the period of the tide, on the one hand, and the internal system time scale of the travel time
of pressure waves over a pipe length (�/c) on the other. Their ratio determines the dynamics
of the system:

• for τe 
 �/c (relatively fast excitation), dynamic effects are important and compression
waves must be taken into acount;

• for τe � �/c, the influence of (slowly varying) boundary conditions is quasi-instantaneously
present throughout the pipe length via frequent pressure waves travelling back and
forth.

In the latter case, by approximation, the fluid reacts as a rigid column; compression and
expansion waves need not be considered.
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Problems

1. Describe the essence of the method of
characteristics.

2. What is a characteristic?

3. What is the importance of the character-
istics?

4. Which is the physical meaning of the char-
acteristic velocities?

5. Which variables determine these veloci-
ties?

6. Considering the characteristic velocities of
long waves in open water, what can be said
about the relative importance of the flow
velocity compared to the wave speed?

7. Same, now for pressurized flow in pipes.

8. Why do the two characteristic velocities
in free-surface flows have opposite signs in
some cases, and the same signs in others?

9. What is the relevance of the answer to the
previous question for the boundary condi-
tions? And for the initial conditions?

10. Is the speed of propagation of a shock
wave, relative to the water ahead of it

(with depth d0), larger than
√
gd0, or

smaller, or equal to it?

11. A simple wave, started in s = 0 at t = 0,
propagates into a prismatic canal (s > 0)
with water at rest, where the undisturbed
wave speed is c0. Is it possible that un-
der certain circumstances it causes distur-
bances in the domain s > c0t?

12. Verify step by step the graphical solutions
for all examples of this chapter by critical
analyses of the corresponding s, t-diagram
and the state diagram.

13. Elaborate all examples of this chapter by
making sketches of the corresponding s, t-
diagram and the state diagram.

14. Choose some instants in these solutions
and sketch the corresponding longitudinal
profiles of the state variables.

15. Choose some fixed locations in these so-
lutions and sketch the corresponding time
variations of the state variables in those
points.

16. The following data apply to the experi-
ments of Figure 6.17: E = 120 GPa, D
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= 19.05 mm, δ = 1.588 mm, � = 36 m, K
= 1.95 GPa, ρ = 1000 kg/m3. Calculate
c and �/c and compare the latter value to
the experimental data in the Figure.

17. The pressures shown in Figure 6.17 were
measured after the sudden closure of a
valve in a flow with initial velocity U0 =
0.239 m/s. Calculate the difference be-
tween the maximum and the minimum
piezometric level and compare it with the
experimental result in the Figure.

18. The following data apply to the situation
of a simple wave in a prismatic canal: d0
= 5 m, U0 = 0, and

U(0, t) =

{
Um sin2(πt/T ) for 0 < t < T/2

Um for t > T/2

in which Um = -0.7 m/s and T = 60 s. The
following questions should be answered us-
ing the method of characteristics.

a Determine the state of motion in the do-
main s > c0t.

b Same for the domain s < c0t, both for
some instants t < T/2 and for some
instants t > T/2.

c Calculate and plot the variation of U
and d with s for the instants chosen
in question (b).

19. Same as Problem 18, now for Um =
+0.7 m/s.

20. Same as Problem 18, except that now the
discharge per unit canal width (q = Ud) is
given:

q(0, t) =

{
qm sin2(πt/T ) for 0 < t < T/2

qm for t > T/2

where qm = 3.5 m2/s. The same questions
and assignments apply as in question 19.

21. A canal, initially at rest with d0 = 5 m,
U0 = 0, is connected at s = 0 by a mov-
able gate to a reservoir whose surface level
is 2 m above the undisturbed canal level.
Initially, the gate is closed but from time
t = 0 to t = T/2 = 30s, the gate is grad-
ually opened to an effective height μa(t)
and then brought to a standstill. The dis-
charge per unit canal width (q) is related
to the head difference across the gate (Δh)
by

q = Ud = μa
√
2gΔh

in which the time variation of the gate
opening is given as

μa =

{
μam sin2(πt/T ) for 0 < t < T/2

μam for t > T/2

where μam = 0.5 m. The same questions
and assignments apply as in Problem 18.
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Chapter 7

Tidal basins

7.1 Introduction

In the preceding chapters, the discharge and the surface elevation were treated as continuous
functions of s and t. This led to a coupled system of partial differential equations (PDE’s)
in two unknowns, with wave-like solutions.

Certain flow systems can be schematized in terms of separate but connected basins of
finite dimension, in each of which we disregard the spatial variations. In each basin, either
storage or transport occurs, but not both, so that the motion within them is not wave-like.
In these cases, we speak of a discrete model. One such model is presented in the present
chapter.

The disregard of spatial variations in the basins considered is allowed if the dimensions
(�) are small compared to a typical length of the (long) waves in the domain. Stated another
way, flow systems for which the travel time (‘residence time’) of long waves through them
are short compared to the wave period. In such cases, phase differences within the system
are negligible. In other words, the motion loses its wave-like character.

A good example of this category of situations is the tidal motion in a harbour basin.
The water level in the basin can to a good approximation be assumed to be horizontal at
all times, varying in time only. Its variation can be modelled with an ordinary differential
equation (ODE) instead of a PDE, which simplifies the mathematics greatly. This category
of flow systems has already been introduced in Section 2.1 under the heading ‘Small-basin
approximation’. They are treated in detail in the present chapter.

The discrete modelling approach is utilized in the present chapter. It is relevant in itself,
because numerous situations occurring in practice lend themselves to this approximation,
and it is at the same time a preparation for the theory in the following chapter (on harmonic
wave propagation) with respect to the linearized modelling of the flow resistance, and the
use of complex algebra in the solution process. The advantage is that these building blocks
in the theory of Chapter 8 are introduced in the simpler context of the present chapter.

We focus on flow systems consisting of a nearly closed basin or reservoir, connected through
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some narrow, short opening or a channel of some length to an external body of water with a
time-varying water level. The latter distinction (short vs. long) is relevant because in a short
connection, inertia and wall resistance can be neglected, whereas these may be important in
a long connecting channel. An artificial, man-made example of such system is the so-called

(a) (b)

Figure 7.1: Basin with channel (a) and tide well with pipe (b)

tide well, a device used for measuring tides (or river stages), which may consist of a large-
diameter tube, placed vertically and connected to an external water with varying water level.
The connection may be long, such as a piece of pipe needed to bridge the distance from the
external water to the location of the tide well (Figure 7.1b), or it may be quite short, for
instance not more than an orifice in the tube wall (Figure 7.2b).

A more common, natural example is the tidal basin, connected to a tidal sea with a a
tidal channel (Figure 7.1a), or it may be short, such as an inlet, a breach in a dike or a gap
in a barrier (Figure 7.2a). In fact, this is the archetype of the category of systems considered
here. Below, we will for brevity use the terminology for such a tidal system, even though
the theory applies more generally.

(a) (b)

Figure 7.2: Basin with gap (a) and tide well with orifice (b)

In the discrete modelling of the flow systems as described, the only function (‘task’) of the
tidal basin is storage; its connection to the tidal sea has only a function of transport. In
the basin, flow resistance and inertia are neglected, whereas in the connection these may
be relevant, certainly head loss due to boundary resistance or expansion loss, but storage
is not. Thus, in such discrete model these two functions are separated, in contrast to the
continuous-modelling approach in the preceding chapters, in which they were intertwined.
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An example of this kind of schematization is the discrete model of a mass-spring-
dashpot system, well known from classical dynamics, in which kinetic energy is stored
only in the mass, neglecting the mass of the spring, and all potential energy is ascribed to
the spring, treating the mass as a rigid body.

7.2 Mathematical formulation

Motion in the basin

The basin is assumed to be relatively short, and it is closed except for a connection to the
external body of water. There is no throughflow, so that the flow velocities in the basin are
quite low. Flow resistance and inertia are negligible. Therefore, the water level in the basin
can be assumed to be horizontal at all times. It can be described as a function of time only:
hb(t). This is the so-called Hemholtz mode or pumping mode.

If we denote the incoming rate of flow (discharge) as Qin, and the area of the free surface
in the basin, available for storage, as Ab, the balance equation for the volume of water stored
in the reservoir reads

Qin = Ab
dhb

dt
(7.1)

Note that Ab may vary in time through its dependence on the time-varying water level:
Ab(t) = Ab(hb(t)).

Motion in the channel

For generality, we assume initially that the connection between basin and sea consists of a
channel. By letting the channel length go to zero, we cover the case of a short connection,
e.g. a gap in a barrier. The main function of the channel is to convey water between the sea
and the basin. Within the discrete-modelling approach, storage in the channel is neglected.
This is allowable if the free-surface area in the channel is far smaller than that in the basin.

Elaborating on this approximation, we start with the one-dimensional volume balance as
derived in Chapter 2:

B
∂h

∂t
+

∂Q

∂s
= 0 (7.2)

where B is the width of the free surface in the channel. Neglecting storage in the channel
implies neglect of the first term in this equation, from which it follows that also ∂Q/∂s = 0.
Therefore, in the channel, Q can be considered to be a function of time only: Q(t), which
therefore also equals Qin(t).

By definition, Q = UAc. For a prismatic channel, ∂Ac/∂s = 0, in which case the
approximation ∂Q/∂s = 0 implies also ∂U/∂s = 0. This in turn implies that the water mass
in the channel is moving back and forth as a solid block, with constant distance between the
fluid particles. That is why this is called the rigid-column approximation.
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Our next task is to model the dynamics of the flow. We start with the motion in the channel.
The transitions at both ends are considered separately. See Figure 7.3. The equation of
motion for the flow in the channel (Equation (2.10)) reads

∂Q

∂t
+

∂

∂s

(
Q2

Ac

)
+ gAc

∂h

∂s
+ cf

|Q|Q
AcR

= 0 (7.3)

We integrate this over the channel length, say from s = 0 at the sea side to s = � at the
basin side (not counting the transitions). To do this, we must know how the various terms
vary with s.

We set ∂Q/∂s equal to zero, and, assuming a prismatic channel, do the same with ∂Ac/∂s,
so that the second term vanishes. This also makes the resistance term independent of s, and
since the same is true for the first term, it must also apply to the last remaining term,
proportional to the slope of the free surface. So we obtain upon integration with respect to
s:

�
dQ

dt
+ gAc (h (�)− h (0) + ΔHr) = 0 (7.4)

in which ΔHr is the head loss due to boundary resistance, given by

ΔHr = cf
|Q|Q
gAc

2R
� = cf

�

R

|U |U
g

(7.5)

These equations apply to the flow in the channel.

Next, we account for the flow in both transitions. To this end, we distinguish the free surface
elevation in the channel ends, h(0) and h(�), respectively, from those at sea (hs) and in the
basin (hb).(Of course, in practice such transitions are always gradual, and the definition of
a channel end is subjective, but we must make such schematizations in the framework of a
one-dimensional (s, t) model. It would require a two-dimensional (x, y, t) model to account
for the transitions in a more realistic way.)

We treat the flow in the transitions as quasi-steady, i.e. at any moment adapted to the
instantaneous upstream and downstream water levels, and to be modelled with the methods
of classical hydraulics (see also Figure 7.3):

• When and where there is inflow (flood at the sea side, ebb at the basin side), the flow
in the transition zone is accelerating fairly rapidly and we can apply Bernoulli’s law.
(Boundary resistance in the short transitions is neglected.) This implies velocity head
in the channel (U2/2g). (This drop does not represent an energy loss, but merely a
transformation of potential energy to kinetic energy.)

• When and where there is outflow (ebb at the sea side, flood at the basin side), the
flow is decelerating, and we can assume an expansion loss given by ΔHe = U2/2g,
implying a horizontal free surface across the transition.

For ebb as well as flood, the total head difference between sea and basin is now given by

hs − hb = h(0)− h(�) + ΔHe (7.6)
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(a) Maximum flood:

Q = Qmax, dQ/dt = 0, hs − hb = W

(b) Zero head loss:

hs − hb = 0, Q > 0, dQ/dt = −gAcW/�

(c) Slack tide:

Q = 0, W = 0, dQ/dt = gAc(hs − hb)/�

Figure 7.3: Discharge in the channel
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in which ΔHe = |U |U/2g. Substituting this into Equation (7.4) gives

hs − hb =
�

gAc

dQ

dt
+W (7.7)

in which W is the total head loss due to boundary resistance and expansion loss:

W = ΔHe +ΔHr =
|U |U
2g

+ cf
�

R

|U |U
g

(7.8)

The overall head difference, i.e. the left-hand side of Equation (7.7), accelerates the water
in the channel (first term in the right-hand side) and it overcomes the losses (second term
in the right-hand side).

Reference is made to Figure 7.3, which shows longitudinal profiles at a few special instants
during the flood phase of the tidal cycle. (The subsequent ebb phase follows the same pattern
and is not shown separately.)

Figure 7.3a applies to the moment of maximum flood current, so that dQ/dt = 0. The
flow momentarily behaves as a steady flow, in which the available head difference (hs − hb)
is spent on overcoming the losses (W ).

As a result of the inflow, the water level in the basin rises; at some moment it equals
the level at sea: hs − hb = 0 (Figure 7.3b). At that moment there is still flood flow, but it
is being decelerated because of the adverse pressure gradient (induced by the surface slope)
and the flow resistance. (Needless to say, this situation, with flow against the applied forces,
is only possible on account of inertia.)

In the next phase, the water level in the basin has risen above that in the sea, strength-
ening the opposing pressure forces. The continuing action of the opposing forces causes the
flow at some moment to change direction, i.e. slack tide occurs, at which time the flow
velocity is momentarily zero, and so are the losses: W = 0, as shown in Figure 7.3c. (This
applies to the cross-sectionally averaged velocity. The relatively low near-bottom velocities
reverse earlier.) Following that moment, the ebb current starts, being accelerated by the
seaward-directed pressure force.

Coupled system

Equations (7.1) and (7.7) form a coupled set of two first-order ODE’s in hb and Q as functions
of time. These can be integrated with standard numerical routines such as Runge-Kutta,
provided the initial values of hb and Q are known, as well as the tide level at sea (hs). By
eliminating Q, we obtain a second-order ODE in hb, or vice versa.

First, we simplify the notation by introducing the dimensionless loss coefficient

χ =
1

2
+ cf

�

R
(7.9)
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with which the expression for W can be written as

W = χ
|U |U
g

= χ
|Q|Q
gAc

2
(7.10)

Substituting this in Equation (7.7) and rearranging terms we obtain

�

gAc

dQ

dt
= hs − hb −W = hs − hb − χ

|Q|Q
gAc

2
(7.11)

Substituting Equation (7.1) in this equation, with Q = Qin, and neglecting variations of Ac

with hb, yields

�

g

Ab

Ac

d2hb

dt2
+

χ

g

Ab
2

Ac
2
|dhb

dt
|dhb

dt
+ hb = hs (7.12)

This second-order ODE for hb has the same form as the equation for a quadratically damped
mass-spring-dashpot system. Such system has natural oscillations with a natural
frequency which in absence of damping (χ = 0) has the value

ω0 =

√
g

�

Ac

Ab

(7.13)

When such system is excited sinusoidally, it responds at the forcing frequency. Initially,
natural oscillations may also be excited (this is the homogeneous part of the general solution,
solely dependent on the initial conditions), but these are gradually decaying due to the
damping forces. In the end, the response is purely periodic at the forcing frequency (the non-
homogeneous part of the general solution), although not sinusoidal due to the nonlinearity
of the damping in Equation (7.12). In the following, we will linearize the damping, in order
to simplify the mathematics. In that approximation, the response to a sinusoidal forcing is
sinusoidal.

7.3 Linearization of the quadratic resistance

The head loss W is proportional to |Q|Q. Let us write it for short as W = λ1|Q|Q, in which
λ1 = χ/gAc

2 (see Equation (7.10). Suppose that Q varies sinusoidally in time:

Q = Q̂ cosωt (7.14)

Figure 7.4 shows the form of the associated time variation of the resistance, plotted as
|Q|Q/Q̂2 = | cosωt| cosωt. The quadratic form, with a modulus operator, causes a deviation
from a sinusoidal variation. We want to get rid of that. To do so, we approximate the
resistance term as W = λ2Q instead of W = λ1|Q|Q. In doing so, we accept an error in
the time variation, but we will choose λ2 in such a way that the energy loss in a cycle (with
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Figure 7.4: Quadratic resistance and linearization

duration T ) has the same value in both formulations, so that the damping in the course of
time is correctly represented. The rate of energy loss due to the resistance W is proportional
to WQ, so that the condition to be imposed on λ2 can be written as∫ T

0

WQ dt =

∫ T

0

λ1|Q|Q2dt =

∫ T

0

λ2Q
2dt (7.15)

Substitution of Equation (7.14) and carrying out the integrations yields

λ2

λ1

=

∫ T

0
| cosωt| cos2 ωtdt∫ T

0
cos2 ωtdt

Q̂ =

∫ T/4

0
cos3 ωtdt∫ T/4

0
cos2 ωtdt

Q̂ =
8

3π
Q̂ (7.16)

With this result for λ2, and using the definition λ1 = χ/gAc
2, we obtain the following

expression for the linearized resistance:

W =
8

3π
χ

Q̂

gA2
c

Q (=
8

3π
χ
Û

g
U) (7.17)

(The same result is obtained by requiring that the difference between the quadratic resis-
tance and the linear approximation be minimal in a least-square sense, or by expanding the
quadratic resistance in a Fourier series and retaining only the first term.)

In this approximation, W varies linearly with Q (or U), albeit with a proportionality co-
efficient that contains Q̂, which is not known beforehand. The solution can be determined
iteratively by making successive, improved estimates of Q̂ (or of Û) and using these as input
in the next round of calculation. (It will appear that for the problem of a tidal basin the
solution can in fact be determined in closed form. For more complicated situations iteration
is indeed necessary; see Chapter 8.)

Using the linear approximation to W (Equation (7.17)) in Equation (7.11), instead of
the original, quadratic expression (Equation (7.10)), we obtain the following ODE instead
of Equation (7.12):
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�

g

Ab

Ac

d2hb

dt2
+ τ

dhb

dt
+ hb = hs (7.18)

in which for brevity we have introduced a resistance parameter τ defined by

τ ≡ 8

3π
χ

Ab

gAc
2
Q̂ (7.19)

It appears from the structure of Equation (7.18) that τ is the time scale (the relaxation
time) of the system response to a varying excitation. Because of the linearization of the
resistance, this time scale depends partly on the unknown amplitude of the discharge (Q̂) or
of the flow velocity (Û).

As stated before, we neglect variations of Ab and Ac with h. In that approximation,
Equation (7.18) is linear with constant coefficients. This implies that the response to a si-
nusoidal excitation is also sinusoidal, with the same frequency.

For completeness and added insight we mention an aspect which so far has not been men-
tioned at all, i.e. a difference in mean water level between basin and sea.

Treating Ab and Ac as constants, independent of the water level, is an approximation.
Strictly speaking, the ebb flow occurs on average at a smaller depth than the flood flow, so
that it experiences a higher resistance. The result is that the time-averaged water level in
the basin is somewhat above that at sea. This is a nonlinear effect, which we neglect in the
present linear approximation. This allows us to write the instantaneous surface elevations
as, respectively,

hs(t) = h0 + ζs(t) and hb(t) = h0 + ζb(t) (7.20)

in which h0 is the mean water level, the same in the basin as it is at sea (in the linear
approximation), and ζs and ζb are the fluctuations of the water level, being zero on average.
With this substitution, Equation (7.18) is transformed into

�

g

Ab

Ac

d2ζb
dt2

+ τ
dζb
dt

+ ζb = ζs (7.21)

In the following paragraphs, we present solutions (ζb) to this equation for a given sinusoidally
varying water level at sea (ζs).

7.4 System with discrete storage and resistance

Before dealing with the full Equation (7.21), we consider the simplified case of a short
connection in order to build up the complexity gradually.
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Governing equation

Short connections between the basin and the sea (i.e. � → 0), such as a gap in a barrier,
or a gap in a dike, contain little mass, whose inertia we can neglect. (Moreover, if � → 0,
boundary resistance in the connection becomes negligible, so that only expansion losses
remain: χ → 1/2.) This reduces the system to one of storage in the basin and head loss in
the connection. Equation (7.21) reduces to

τ
dζb
dt

+ ζb = ζs (7.22)

From a mathematical point of view, the neglect of inertia reduces the order of the equation
from second order to first order.

Physically, it implies that the discharge through the connection responds instantaneously
to variations in the head difference across it, being zero as soon as the head difference is
zero. Because the discharge is proportional to the rate of change of the water level in the
basin, this in turn implies that the maximum and minimum water levels in the basin occur
at the instants when the water levels in the basin and in the sea are equal. This of course
can also be seen in Equation (7.22) since this shows that dζb/dt = 0 when ζb = ζs.

Nonhomogeneous solution

We will now derive the nonhomogeneous (forced) solution of Equation (7.22) for a sinusoidal
tide at sea with water level given by

ζs = ζ̂s cos ωt (7.23)

Since the response is also sinusoidal, with the same frequency, it can be written as

ζb = ζ̂b cos (ωt− θ) = r ζ̂s cos (ωt− θ) in which r = ζ̂b/ζ̂s (7.24)

We have introduced the symbol r for the ratio between the two amplitudes. The amplitude
ζ̂b (or the ratio r) and the phase angle θ are to be determined. Notice that θ is the phase
lag of the water level in the basin behind that at sea.

Substitution of Equations (7.23) and (7.24) in Equation (7.22) yields one equation in
the two unknowns r and θ, but that is sufficient because it must be fulfilled for all times.
Substituting two conveniently chosen phases to simplify the algebra, such as ωt = π/2 and
ωt = θ, yields the results

tan θ = ωτ and r = cos θ =
1√

1 + (ωτ)2
(7.25)

To help visualize this result, the excitation and the response are shown in Figure 7.5, for
an arbitrary value of r. The two curves satisfy the condition that the water level in the
basin is at its maximum or minimum when the two curves intersect. Consider the first
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Figure 7.5: Example solution linearized discrete system with storage and resistance

intersection shown in the figure, occurring at time t = t1, say. At that moment, ζb reaches
its maximum value of ζ̂b, which implies that ωt1 = θ (see Equation (7.24)), and ζs reaches
the value ζ̂s cosωt1 = ζ̂s cos θ. Since this must equal ζ̂b, it follows that r = cos θ.

It appears that the solution is determined by the dimensionless product ωτ or, stated another
way, by the ratio τ/T , in which τ is the time scale of the system response and T = 2π/ω is
the tidal period. Another interpretation is that ωτ = W/ζ̂b, as follows from the definitions of
W and τ (and using Equation (7.26) given below). In other words, this product represents
the relative magnitude of the resistance.

If τ is small compared to T , or ωτ 
 1, resistance is insignificant, so the basin level can
more or less follow the relatively slowly varying tide level at sea, or r 	 1, cos θ 	 1, and
θ 	 0, in agreement with Equation (7.25).

On the other hand, if the system has a time scale which is long compared to the tidal
period (ωτ � 1), it can hardly follow the tides, which in this case vary relatively rapidly, so
the response is weak (r 
 1) and the lag is large (cos θ 
 1, or θ 	 π/2), again in agreement
with Equation (7.25).

Explicit solution

The solution has been expressed in terms of ωτ , in which τ depends on the amplitude of the
discharge or the flow velocity in the connection (see Equation (7.19)), which is not known
beforehand. To deal with this problem, we substitute Equation (7.24) in Equation (7.1),
with the result

Q̂ = Ab ω ζ̂b (7.26)

Substituting this in the definition of τ (Equation (7.19)), we obtain

ωτ =
8

3π
χ

(
Ab

Ac

)2
ω2 ζ̂b
g

(7.27)

We replace the unknown ζ̂b in the right-hand side by rζ̂s and write the result as

ωτ = Γr (7.28)
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in which Γ is defined by

Γ ≡ 8

3π
χ

(
Ab

Ac

)2
ω2 ζ̂s
g

(7.29)

Γ is a dimensionless parameter, containing all independent variables playing a
role in the present problem. Therefore, except for a scale factor, the solution is deter-
mined exclusively and entirely by this parameter. This also follows from Equation (7.28),
knowing that r is determined by ωτ .

If we now substitute (7.28) in (7.25), we obtain a quadratic algebraic equation in r2, from
which we finally obtain the following explicit, closed-form solution for r (therefore also for
θ, since r = cos θ) as a function of the independent parameter Γ:

r = cos θ =
1√
2 Γ

√
−1 +

√
1 + 4Γ2 (7.30)

Figure 7.6 shows this variation of r and θ as a function of Γ. Qualitatively, the influence of
Γ on the solution is similar to that of ωτ , discussed above. Small values of Γ correspond to
a rapid (θ 	 0) and strong (r 	 1) system response, and large values to a slow (θ 	 π/2)
and weak (r 
 1) response. In these two limiting cases, simple approximations for r can be
derived from (7.30):

r 	 1− 1

2
Γ2 for Γ < appr. 10−1 (7.31)

and

r 	 1√
Γ

for Γ > appr. 101 (7.32)

Example 7.1. Tidal basin with gap

Situation

A tidal basin with length and width of the order
of 10 km (Ab = 100 km2), depths varying from

2 m to 3 m, connected to the sea (M2-tide, ζ̂b =
0.75 m) by a gap in a barrier under construction
with Ac = 3000 m2.

Questions

Demonstrate that the small basin approximation
is valid. Next, calculate:

1. the surface amplitude in the basin (ζb)

2. the phase lag (θ)

3. the maximum discharge in the gap (Q̂)

Solution

Tidal wave length (without friction): L = T
√
gd,

using T = 44700 s (M2-tide) and d = 2 m (lower
bound), L 	 200 km � basin dimensions (≈
10 km), as required for the small basin approxi-
mation. Loss coefficient: χ = 1/2 (gap), yielding
(using given data) Γ = 0.71. We now obtain:

1. r = 0.85 → ζ̂b = rζ̂s = 0.64 m

2. θ = arccos r = arccos 0.85 = 31◦

3. Q̂ = Abωζ̂b = 9.0× 103 m3/s.

Comment

The parameter ωτ = Γr 	 0.6 < 1, indicating
that the influence of resistance is considerable.
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Figure 7.6: Amplitude ratio and phase lag for a discrete system with storage and resistance
as functions of the resistance parameter Γ

In the above, incl. Example 7.1, inertia in the connection (a gap with a length virtually
equal to zero) was neglected. This may not be valid in case of a channel. However, as we
will see, it is possible for a channel of some length to contribute significantly to the overall
resistance, through bed friction, while it is at the same time short enough for the inertia of
the mass in it to be negligible. We will now formulate a condition to check the validity of
the neglect of the inertia in the channel.

In Equation (7.21), inertia is represented by the first term in the left-hand side, with
amplitude (ω2�/g) (Ab/Ac) ζ̂b. The third term in the left hand side of Equation (7.21),
representing the restoring force, has an amplitude ζ̂b. Looking at the ratio of these terms, it
follows that inertia may be neglected whenever (ω2�/g) (Ab/Ac) 
 1. See also Example 7.2.

7.5 System with discrete storage, resistance and iner-

tia

This section deals with the complete Equation (7.21), representing the effects of inertia,
resistance and storage. We repeat it here for convenience:

�

g

Ab

Ac

d2ζb
dt2

+ τ
dζb
dt

+ ζb = ζs (7.33)

Equations of this form describe a forced, damped linear mass-spring system. As stated
above, the natural frequency of this system in absence of damping is

ω0 =

√
g

�

Ac

Ab

(7.34)
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Example 7.2. Tidal basin with (short) entrance channel

Situation

Same as in Example 7.1, except that now the
connection consists of a short channel with
length � = 600 m, conveyance cross section Ac =
3000 m2, hydraulic radius R = 6 m and friction
coefficient cf= 0.004.

Questions

Demonstrate that the inertia term can be
neglected. Next, calculate:

1. the surface amplitude in the basin (ζb)

2. the phase lag (θ)

3. the discharge in the gap (Q̂)

Solution

Importance of inertia (relative to the restoring
force):

(
ω2�/g

)
(Ab/Ac) ≈ 0.04, acceptably small

to neglect it in a first approximation. Including
the boundary resistance in the channel, the re-
sistance coefficient χ = 1/2 + cf �/R = 0.9. We
now obtain:

1. Γ = 1.28 → r = 0.73 → ζ̂b = 0.55 m

2. θ = arccos 0.73 = 43◦

3. Q̂ = Ab ω ζ̂b = 7.7× 103 m3/s

Comment

The channel is sufficiently short to allow the ne-
glect of inertia, yet sufficiently long for the bed
resistance to have a significant effect.

Nonhomogeneous solution

For harmonic forcing with frequency ω, the solution depends on ωτ (the relative damping,
as before) but also on the ratio of the forcing frequency to the natural frequency. It can be
found in texts on dynamics, and reads

ζ̂b

ζ̂s
= r =

1√
(1− ω2/ω0

2)2 + ωτ
(7.35)

with

tan θ =
ωτ

1− ω2/ω0
2

(7.36)

Explicit solution

As before, the solution is implicit because τ depends in part on the unknown amplitude Q̂ or
Û . Using the same approach as in the preceding section, we can make the solution explicit
in terms of the same Γ as before (Γ = ωτ/r), with the result

r =
1√
2

1

Γ

√
−(1− ω2/ω0

2)2 +
√

(1− ω2/ω0
2)4 + 4Γ2 (7.37)
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Figure 7.7: Amplitude ratio of a discrete system with inertia, storage and resistance as
functions of the resistance parameter Γ and the frequency ratio ω/ω0

Once r is determined from this equation, the phase lag θ follows from

tan θ =
ωτ

1− ω2/ω0
2
=

Γr

1− ω2/ω0
2

(7.38)

For ω/ω0 
 1, i.e. slow excitation, this solution reduces to that in the preceding section,
where inertia was neglected a priori.

Figure 7.7 shows the variation of r with ω/ω0 for a chosen set of values of Γ. The most striking
feature is the possibility of resonance, manifesting itself in high r-values for ω/ω0 	 1, for
small or moderate values of Γ. For large values of Γ, i.e. a relatively high damping as a result
of a narrow connection and/or strong resistance, the effects of resonance are suppressed.

7.6 Solution through complex algebra

In preparation for the following chapter, we are once more going to derive the solution given
above for the system with storage and resistance, now using the representation of sinusoidal
functions as complex quantities. The advantage of this is that the amplitude and the phase
angle are represented in terms of a single variable, that the time variation can be factored
out, and that the partial differential equation reduces to an algebraic equation from which
the solution can be more easily found and represented graphically.
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Complex representation

A real quantity like A = Â cos (ωt+ α) can be represented as the real part of a complex
quantity Ã eiωt, in which Ã is the so-called complex amplitude of A, given by Ã = Âeiα.
The modulus of Ã equals Â, i.e. the (real) amplitude of A, and its argument is the time-
independent part of the phase of A, or arg Ã = α.

We will apply the complex representation to find the harmonic (i.e., sinusoidal) solution
of the model with discrete storage and resistance, described by Equation (7.22), which is
repeated here for convenience:

τ
dζb
dt

+ ζb = ζs (7.39)

Each time-varying sine function is represented as the real part of a complex quantity:

ζs(t) = Re
{
ζ̃s e

iωt
}

and ζb(t) = Re
{
ζ̃b e

iωt
}

(7.40)

In view of Equation (7.40), the first term in Equation (7.39) is given by

τ
dζb
dt

= Re
{
iωτ ζ̃b e

iωt
}

(7.41)

We substitute this and Equation (7.39) in (7.40). Each term in that equation is the real part
of a complex, time-varying quantity, but the presence of the time factor eiωt requires that
Equation (7.39) be fulfilled by the corresponding complex, time-independent amplitudes.
Moreover, because the time factor is common to all terms, it can be factored out. The result
is

iωτ ζ̃b + ζ̃b = ζ̃s (7.42)

Here, we see two great advantages of using the complex representation: the time depen-
dence is represented as a common multiplyer which can be factored out, and the differential
equation (7.39) is replaced by the algebraic Equation (7.42).

Solution

For given ζ̃s, we need to find ζ̃b. First, we do this graphically because that gives a good
insight. After that the solution is determined purely algebraically.

For the graphical solution procedure, we plot ζ̃b in the complex plane as a vector with length
|ζ̃b|, i.e. the amplitude ζ̂b, at an angle arg ζ̃b with the real axis (see Figure 7.8). The modulus
and the argument of ζ̃b have been chosen arbitrarily. The quantity iωτ ζ̃b has been plotted in
Figure 7.8 as well. It stands at a right angle to ζ̃b, because of the factor i, and its modulus
is a factor ωτ larger than ζ̂b (or smaller, as the case may be); in the figure, an arbitrarily
chosen value of ωτ of about 0.5 was used. (Note that i = exp (iπ/2), so multiplying with i
means turning over 90o.)

According to Equation (7.42), the sum of iωτ ζ̃b and ζ̃b, i.e. the resultant of the corre-
sponding two vectors in the figure (the hypotenuse), equals ζ̃s. The angle enclosed between
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Figure 7.8: Complex amplitudes

this resultant and ζ̃b represents the phase difference between the two, which we had denoted
as θ, as indicated in the figure. We see at once in the resulting right triangle that tan θ = ωτ
and that cos θ = ζ̂b/ζ̂s = r, the same as was found above.

For the analytical solution method, we define a complex-amplitude ratio r̃ as

r̃ ≡ ζ̃b/ζ̃s (7.43)

For the real amplitudes, we have |r̃| = |ζ̃b/ζ̃s| = |ζ̃b|/|ζ̃s| = ζ̂b/ζ̂s = r, and for the phases we

have arg r̃ = arg
(
ζ̃b/ζ̃s

)
= arg ζ̃b − arg ζ̃s = −θ.

It follows from Equation (7.42) and the definition of r̃ that

r̃ =
1

1 + iωτ
(7.44)

so that

r = |r̃| = | 1

1 + iωτ
| = 1

|1 + iωτ | =
1√

1 + (ωτ)2
(7.45)

and
arg r̃ = −θ = − arctan (ωτ) or tan θ = ωτ (7.46)

The preceding simple example illustrates the advantages and the potential of the complex
representation for solving a linear problem with sinusoidal forcing and response. This is
a good preparation for the application in the following chapter, which deals with one-
dimensional propagation of long waves including damping.
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Problems

1. What is the so-called small-basin approxi-
mation?

2. Under which conditions is this approxima-
tion valid?

3. Can a variation in the (undisturbed) depth
in the basin affect the behaviour of the sys-
tem? If so, how (through which mecha-
nism)?

4. Same question, now with respect to the
bed friction coefficient cf .

5. What is the so-called rigid-column approx-
imation?

6. Under which conditions is this approxima-
tion valid?

7. Explain why the water in a small basin,
connected to a tidal sea by a gap in a bar-
rier, reaches its highest level at the instant
when this level equals that at sea.

8. Which physical criterion is applied in the
linearization of the quadratic resistance?
Why?

9. Which physical process is lost in the lin-
earization of the quadratic resistance?

10. What is the meaning of the dimensionless
parameters ωτ and Γ as used in this chap-
ter?

11. Derive Eq. (7.30), given Eq. (7.25) and
the definition Γ = ωτ/r.

12. Argue why the amplitude ratio r is nearly
1 for small Γ and goes to zero for large
Γ (without using the analytical solution:
doing that would not be ‘arguing’).

13. A cylindrical tide well with an inner diam-
eter of 1 m, placed in a harbour, should
be able to measure harbour oscillations
(seiches) with a period of about 10 minutes

and an amplitude of 0.5 m with a damping
of at most 1% (r at least 0.99). Calculate
the required diameter of the orifice which
connects the tide well with the surround-
ing water (answer: 6.4 cm).

14. For that opening diameter, calculate the
damping of wind waves given that these
have a period of 8 s and an amplitude of
0.3 m at the location of the tide wel (an-
swer: 95%; r = 0.05).

15. Argue for each of the following parameters
how a 20% increase in their value could af-
fect the discharge through the channel be-
tween basin and sea: Ac, Bc, Rc, cf , l, Ab,

ζ̂s, ω. Think of possible feedbacks! Ver-
ify your estimates through numerical cal-
culation of the discharge for a self-chosen
example. (Note that the number of calcu-
lations required is less than the number of
parameters.)

16. A tidal basin of approximately 10 km x 20
km in plan is connected by a channel to a
sea with M2-tide with a tidal range (HW
- LW) of 2 m. The channel is 10 km long
and has a cross-sectionally averaged mean
depth of about 9 m, a free-surface width
of 600 m and a conveyance cross-section of
5 x 103 m2 with cf = 0.004. Ignore inertia
at first.

• Calculate the amplitude of the tidal
elevation in the basin. (Answer: ζ̂b
= 0.27 m.)

• Calculate the phase lag of the basin
tide behind the tide at sea. (Answer:
θ = 76◦.)

• Calculate the maximum discharge
throught the channel. (Answer: Q̂
= 7.6 x 103 m3/s.)

• Sketch in one plot the time variation
of the tides at sea and in the basin
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as well as the discharge through the
channel and interpret the result.

• Now take inertia into account and
calculate the natural frequency (An-
swer: ω0 = 1.58 x 10−4 rad/s.)

• Verify whether the neglect of inertia
was allowed.

• Regardless of the answer to the pre-
ceding question, take inertia into ac-
count and calculate the amplitude of
the tidal elevation in the basin (an-
swer: ζ̂b = 0.27 m, (almost) the same
as before) and the phase lag of the
basin tide behind the tide at sea (an-
swer: θ = 87◦.) Why is this lag
greater with inertia taken into ac-
count than when it is neglected?

17. Using complex algebra, and starting from
Equations (7.33) and (7.34), derive the re-
sults of Equations (7.35) and (7.36).

18. Given: ζs = ζ̂s cos (ωt− α) with ζ̂s = 1
m and α = 212o. Calculate ζ̃s. Plot
this in the complex plane and calculate its
real part and its imaginary part. (Answer:
ζ̃s = (1 m)(exp(2.583 i), Re ζ̃s = -0.85 m,
Im ζ̃s = 0.53 m.)

19. Given: ζ̃s = (0.9 - 0.8i)m. Plot this and
give the corresponding expression for ζs(t).
Calculate ζs for ωt = 0 and ωt = π/2.
(Answer: ζ̃s = (1.20 m)exp(-0.727i), or
ζs(t) = (1.20 m) cos(ωt - 0.727 rad), so
ζs = 0.9 m at ωt = 0 and ζs = 0.8 m at
ωt = π/2. (The latter two answers can be
seen at once from the given expression for
ζ̃s!).

20. Suppose that ωτ = 0.5. Plot r̃, equal to
1/(1 + iωτ), and calculate r and arg r̃.
(Answer: r = |r̃| = 0.894 and arg r̃ = -
0.464 rad = -26.6o (equivalent to arg r̃ =
(- 0.464 + 2π) rad = 5.819 rad = 333.4o).)
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Chapter 8

Harmonic wave propagation

8.1 Introduction

The chapters 4 and 5 have dealt with propagation of disturbances into a domain. In several of
the cases considered, the disturbance consisted of a transition between two states of uniform
motion, in some cases starting from rest. Another typical set of situations occurs when
an initial state of rest is affected by continual periodic disturbances at a boundary which
propagate into the domain considered. Given enough time, a periodic state of motion is
established in the entire domain, without memory of the initial situation. In such cases the
motion is unsteady within each wave cycle, but the cycles themselves do not vary in time.

This chapter deals with low periodic long waves and oscillations (without transients)
such as tides. Seiches are somewhat of the same category, but these are not always quasi-
periodic but more pulse-like. In line with the analysis in Chapter 3, inertia and resistance
are both taken into account. The main aim of this chapter is to provide insight in the
dynamics of wave propagation including effects of resistance, which were ignored in
Chapter 4. Using linear approximations, valid for low waves, simple solutions are obtained
in the form of complex exponential functions, representing damped harmonic (sinusoidal)
waves or oscillations.

The main features of the variation of amplitudes and phases in tides and seiches can
reasonably well be represented with this linear model, but not the deformation of the wave
profile, which is the result of nonlinear influences such as the variation of the conveyance
cross-section and the width of the free surface as a function of the free-surface elevation.
These effects are not considered in the linear approximation. The linear solutions give
insight and can be useful in preliminary analyses requiring the simulation of a large number
of scenarios. They are not to be used when high accuracy is needed; various (commercial)
numerical codes are available for that purpose in one, two or three space dimensions.

The approach in the present chapter is a continuation of the preceding chapter in the use
of the linearization of the quadratic resistance and the complex algebra formulation. The
difference is that we are now dealing with progressive and standing waves. We start with a
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description of damped, harmonic progressive waves in terms of the complex formalism, prior
to a derivation of the characteristic features of these waves, in particular the propagation
speed and the rate of damping.

8.2 Complex representation of damped progressive har-

monic waves

We assume a periodic wave progressing in the positive s-direction in a prismatic channel.
The wave period is T , the angular frequency (i.e. the phase change per unit time) ω = 2π/T ,
the wave length L, the wave number (i.e. the change of phase per unit distance) k = 2π/L,
the propagation speed (or the phase speed, i.e. the speed of points of constant phase)
c = L/T = ω/k. The surface elevation ζ has a location-dependent amplitude ζ̂:

ζ (s, t) = ζ̂ (s) cos (ωt− ks+ α) (8.1)

In complex form, this can be written as

ζ (s, t) = Re
{
ζ̃ (s) exp (iωt)

}
(8.2)

in which
ζ̃ (s) = ζ̂ (s) exp (i (−ks+ α)) (8.3)

Notice that in this complex formulation a separation of variables has taken place, i.e. the
dependences on s and on t occur in separate factors instead of combined as in cos (ωt− ks).
This simplifies the analysis.

As in Chapter 7, the complex amplitude ζ̃ contains both the real amplitude and the phase,
but instead of being constant, these now vary with s at a rate that will be determined in the
next section.

In a fixed point (constant s), the complex amplitude ζ̃ can be represented as a point in
the complex plane (see Figure 8.1 a). Its argument is the phase of ζ (s, t) at that point at
time t = 0. According to Equation (8.2), the time variation of ζ is obtained by multiplying ζ̃
with exp (iωt), i.e. by rotating the corresponding vector in the complex plane over an angle
ωt, followed by taking the real part, i.e. the projection on the real axis (Figure 8.1a). This
time variation can be carried out at any moment if desired, but it is not necessary to show
this in a graph. It is sufficient to know that it can be done, provided ζ̃ is known. Starting at
s = 0, arg ζ̃ = α, i.e. the phase at time t = 0, as shown in panel (b) of Figure 8.1. The phase
at t = 0 in an arbitray other point can be found by multiplication of ζ̃ (0) with exp (−iks),
i.e. by rotation over an angle −ks (Figure 8.1b).

Choosing a continuous succession of points, i.e. a continuous variation of s, we obtain
a continuously varying sequence of values of ζ̃, generating a smooth curve in the complex
plane, a so-called hodograph. For constant amplitude, the hodograph is a circle, shown in
panel (b).
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(a) variation in time in a fixed point

(b) phase shift as function of distance in a progressive wave of constant amplitude

(c) variation of amplitude and phase as functions of distance in a damped progressive wave

Figure 8.1: Complex plane with hodographs
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A special case of amplitude variation is the exponential decay with s, as occurs in systems
with linear(ized) resistance. Denoting the damping modulus with μ, this can be written as
ζ̂ (s) = ζ̂ (0) exp (−μs). In this case, Equation (8.3) becomes

ζ̃ (s) = ζ̂ (0) exp (−μs) exp (i (−kx+ α)) = ζ̃ (0) exp (−ps) (8.4)

in which ζ̃ (0) = ζ̂ (0) exp (iα) and we have introduced the complex constant

p = μ+ ik (8.5)

In the right-hand side of Equation (8.4), ζ̃ (0) is the initial complex amplitude, and exp(−ps)
describes its spatial variation. The rate of change of the real amplitude is given by μ, and
that of the phase is given by k. These two are combined in the single complex parameter p.

In the case of exponential decay, the hodograph of ζ̃ (s) takes the form of a logarithmic
spiral, characterized by a constant angle of convergence (i.e. the angle between the tangent
at a point of the spiral and the normal to the radius connecting that point with the origin,
designated as δ in panel (c) of Figure 8.1.

A note on the convergence angle of the logarithmic spiral
When propagating over a small distance Δs from s1 to s2, a phase change occurs given by kΔs, cor-
responding to a rotation of the associated vector in the complex plane over a small angle kΔs, see
Figure 8.1c. The amplitude, represented by the length of the radius to the origin, thereby reduces by a
factor exp (−μs2) / exp (−μs1) = exp (−μ (s2 − s1)) = exp (−μΔs). The relative amplitude reduction is
therefore given by (1− exp (−μΔs))], which for small Δs can be approximated as μΔs. The angle between
the tangent and the normal to the radius, i.e. the angle of convergence, is therefore given by arctan(μ/k),
which is constant along the spiral.

The values of ω, μ and k are not independent because the wave motion must fulfill the
balances of mass and momentum. Only one of them can be chosen freely, normally the
frequency. Using the balance equations, an expression for p (ω), the so-called complex
dispersion relation, will be derived in the following sections. From this we also know
μ (ω) and k (ω) and from the latter the phase speed c = ω/k.

8.3 Formulation and general solution

This section will present the basic equations and their solutions for harmonic motion. This
method of long wave modelling, called the harmonic method, was developed and first
used by a committee chaired by the Nobel prize winning physicist Lorentz, for the purpose
of predicting the changes that were to be expected in the tides as a result of the construction
of an enclosure dam in The Netherlands.

Formulation

We start from the linearized one-dimensional balance equations for mass and momentum.
The quadratic resistance is linearized as in Chapter 7, and the advection of momentum
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is neglected, as is allowed for low waves. The latter restriction also allows us to neglect
variations in the cross-section which occur as a result of variations in flow depth. With this,
the balance equations for mass and momentum are written as follows (see Equations (2.4)
and (2.10)):

B
∂ζ

∂t
+

∂Q

∂s
= 0 (8.6)

and
∂Q

∂t
+ gAc

∂h

∂s
+ κQ = 0 (8.7)

The parameter κ is a shorthand factor (dimension: 1/time) in the expression for the linearized
resistance, defined by (see also Equation (7.17)):

κ =
8

3π
cf

Q̂

AcR
=

8

3π
cf

Û

R
(8.8)

In the following derivations and applications, κ is assumed to be a known constant. Since it
contains the amplitude Q̂ or Û , which are not known beforehand, iteration is necessary.

Equations (8.6) and (8.7) form a set of two coupled PDF’s in ζ and Q, with constant coeffi-
cients (in the linear approximation). Such equations allow (complex) exponential solutions.

For harmonic motion, the first term in the momentum balance is of the order of ωQ̂, and
the resistance term is of the order κQ̂. It follows that the ratio of resistance to inertia is of
the order κ/ω, written as σ for short:

σ ≡ κ

ω
=

8

3π
cf

Q̂

ωAcR
=

8

3π
cf

Û

ωR
(8.9)

Apart from the factor 8/3π (about 0.85), this is the same σ as in Chapter 3, of which some
typical values have been given in Table 3.1.

Eliminating Q between Eqs (8.6) and (8.7), and using the property of a prismatic channel
that ∂Ac/∂x = 0, we obtain

∂2ζ

∂t2
− c20

∂2ζ

∂s2
+ κ

∂ζ

∂t
= 0 (8.10)

in which c20 is the long-wave speed in absence of resistance (see Equation (4.10)):

c0 =

√
gAc

B
(8.11)

Equation (8.10) is the linearized wave equation (see Chapter 4) with (linearized) resistance.
Because of this, and with reference to Chapter 4, we expect solutions which in general may
consist of two waves, traveling in opposite directions, decaying as they propagate.
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General solution

We seek solutions for ζ(s, t) in the form

ζ(s, t) = Re
{
ζ̃(s) exp(iωt)

}
(8.12)

We substitute this in Equation (8.10), drop the time factor exp(iωt), and obtain

d2ζ̃

ds2
+

ω2 − iωκ

c20
ζ̃ = 0 (8.13)

Substitution of κ = σω and of k0 = ω/c0, the wave number in absence of resistance, yields

d2ζ̃

ds2
+ k0

2 (1− iσ)ζ̃ = 0 (8.14)

This is an ordinary differential equation (ODE) with constant coefficients. Such equations
have exponential solutions. Therefore, we pose

ζ̃(s) = exp(Ps) (8.15)

and substitute this in (8.14), which results in

P 2 + k2

0 (1− iσ) = 0 (8.16)

This is the so-called dispersion relation. For given frequency (contained in k0) and relative
resistance (σ), it determines the propagation constant P , which governs the spatial variation,
as expressed in Equation (8.15).

Notice the reduction in mathematical complexity in the various steps: we started with a
partial differential equation (PDE), Equation (8.10). Due to the restriction to harmonic
solutions and the complex representation, this reduced to an ODE, Equation (8.14). Finally,
assuming a (complex) exponential solution, the integration constant P is determined by an
algebraic equation ((8.16)).

Equation (8.16) is of second degree. It has two opposite, complex roots P1 and P2 = −P1,
which will be designated as p and −p, respectively, in which

p = ik0
√
1− iσ (8.17)

The general solution for ζ̃(s) can then be written as

ζ̃(s) = C+ exp(−px) + C− exp(ps) = ζ̃+(s) + ζ̃−(s) (8.18)

Equation (8.18) is the general solution of Equation (8.14). If we include the time factor
exp(iωt), it represents two waves travelling in opposite directions. The two (complex) inte-
gration constants C− and C+, each containing amplitude and phase information, are to be
determined from the (two) boundary conditions, as we will see furtheron. If either C− or C+

is zero, the propagation is in one direction only. Usually, there is some reflection somewhere,
in which case there is propagation of two wave systems in opposite directions.
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Solution of the dispersion equation

Our next task is to derive a more explicit solution of Equation (8.17). The propagation
constant p is in general complex. (If σ = 0 it is purely imaginary.) We write p = μ + ik, in
which μ and k are real, representing damping and propagation, respectively (see Section 8.2).

In order to determine μ and k, we have to separate the right-hand side of Equation (8.17)
into its real part and its imaginary part, for which we need (among others) the modulus and
the argument of

√
1− iσ. The argument of this square root is −(1/2) arctan σ. To shorten

the notation, we introduce an auxiliary variable, an angle δ, such that

tan 2δ ≡ σ =
8

3π
cf

Û

ωR
(8.19)

where δ is a dimensionless measure of the resistance/inertia ratio, just as σ. It can be seen
as a kind of friction angle. In terms of δ, we have arg

√
1− iσ = −(1/2) arctan σ = −δ.

Furthermore, |1− iσ| =
√
1 + σ2 =

√
1 + tan2 2δ = 1/ cos 2δ, so that altogether we have

p = ik0
exp(−iδ)√

cos 2δ
(8.20)

or

p = i
cos δ − i sin δ√

cos 2δ
k0 =

sin δ + i cos δ√
cos 2δ

k0 (8.21)

so that finally

Im p = k =
cos δ√
cos 2δ

k0 and Re p = μ =
sin δ√
cos 2δ

k0 = k tan δ (8.22)

The preceding algebraic steps have been visualized in Figure 8.2. It is recommended to
analyse this figure closely. Note: it can be seen in the above that δ = arctan(μ/k), which is
just equal to the angle of convergence of the logarithmic spiral representing the hodograph
of ζ̃ (see Section 8.2).

Finally, we write the phase speed c = ω/k in a more explicit form, using the preceding
results:

c =
ω

k
=

ω

k0

√
1− tan2 δ = c0

√
1− tan2 δ (8.23)

or

c =

√
gAc

B

√
1− tan2 δ (8.24)

Apparently, resistance not only dampens the waves but it is also slowing them down.
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Figure 8.2: Solution of the dispersion equation
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Solution for the discharge

Subsituting the general solution for ζ̃(x) (Equation (8.18)) in the continuity Equation (8.6)
yields the following expression for the associated discharge:

Q̃(s) =
iωB

p

(
C+ exp(−ps)− C− exp(ps)

)
(8.25)

or

Q̃(s) =
iωB

p

(
ζ̃+(s)− ζ̃−(s)

)
(8.26)

The complex factor iωB/p can be reworked as follows:

iωB

p
=

iωB

μ+ ik
=

ω

k

B

−iμ/k + 1
=

Bc

1− i tan δ
(8.27)

Since arg(1− i tan δ) = −δ, and |1− i tan δ| =
√
1 + tan2 δ = 1/ cos δ, we finally obtain

iωB

p
= Bc cos δ exp(iδ) (8.28)

Summarizing, the general solution for ζ̃, Equation (8.18), is

ζ̃(s) = C+ exp(−ps) + C− exp(ps) = ζ̃+(s) + ζ̃−(s) (8.29)

and the corresponding discharge is

Q̃(s) =
iωB

p

(
C+ exp(−ps)− C− exp(ps)

)
= Bc cos δ exp(iδ)

(
ζ̃+ − ζ̃−

)
(8.30)

This general solution will be interpreted and eleborated in the following sections, first for
the simple case of a unidirectional wave system, so as to facilitate the understanding of the
meaning of the results, to be followed by various cases of bi-directional waves.

8.4 Unidirectional propagation

The preceding results apply to the spatial variation of the complex amplitudes of the surface
elevation and the discharge, the time variation having been set aside temporarily. We are
re-introducing it:

ζ(s, t) = Re
{
ζ̃(s) exp(iωt)

}
(8.31)

We will now examine closely the particular form of this expression for progressive waves.
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Mathematical interpretation

We restrict the following discussion to ζ+:

ζ+(s, t) = Re
{
ζ̃+(s) exp(iωt)

}
= Re

{
C+ exp(−ps) exp(iωt)

}
(8.32)

Substituting p = μ+ ik and expanding C+ into its modulus and argument, we obtain

ζ+(s, t) = Re
{
|C+| exp(−μs) exp(i(ωt− ks+ argC+))

}
(8.33)

or
ζ+(s, t) = ζ̂+(s) cos (ωt− ks+ argC+) (8.34)

in which ζ̂+(s) = |C+| exp(−μs). The associated discharge is

Q+(s, t) = Bcζ̂+(s) cos δ cos(ωt− ks+ argC+ + δ) (8.35)

Inspecting these equations, we note the following items:

• argC+ is the initial phase (when ωt = 0) of ζ+ in s = 0.

• The phase varies in s and t as (ωt−ks), implying that we deal with a wave progressing
in the positive s-direction (that is the reason for the superscript + in C+, ζ+ and Q+)
with speed c = ω/k, the so-called phase speed, because, observed at this speed, the
phase is constant.

• |C+| is the amplitude of ζ+ in s = 0.

• |C+| exp(−μs) is the amplitude of ζ+ as a function of s: exponential damping in the
direction of propagation.

• In absence of damping (δ = 0), we would have Q(s, t) = Bcζ(s, t), the same as was
found in Chapter 4 for purely progressive waves without resistance.

• The discharge is a factor cos δ smaller with damping than without, and it is an angle
δ ahead in phase relative to the surface elevation. The fact that resistance reduces the
discharge for a given surface elevation, i.e. for a given driving force due to the slope of
the free surface, is fairly obvious. The advance in phase of the discharge, by an angle
δ, is due to the fact that the flow acquires less momentum in the presence of resistance
than it does without resistance, and therefore responds faster to the oscillatory driving
forces.

The preceding items refer to a purely progressive wave propagating in the positive s-direction,
i.e. proportional to C+, with C− = 0. Needless to say, they are equally applicable to a wave
propagating in the negative s-direction, apart from a change of sign in Q−. As anticipated,
the general solution of the wave equation (8.10) consists of two wave systems,
propagating in opposite direction, each exponentially decaying in its propagation
direction.
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Quantity Equation Tide Seiche
T (given) 745 min 60 min

Û (given) 1.2 m/s 0.6 m/s
ω ω = 2π/T 1.405× 10−4 rad/s 1.745× 10−3 rad/s

c0 c0 =
√

gAc/B 7.7 m/s 7.7 m/s
k0 k0 = ω/c0 1.8× 10−5 rad/m 2.3× 10−4 rad/m
L0 L0 = c0T = 2π/k0 343 km 28 km

σ σ = 8

3π
cf

Û
ωR

2.64 0.106
δ δ = (1/2) arctan σ 34.6◦ 3.02◦

tan δ tan δ 0.69 0.053√
1− tan2 δ

√
1− tan2 δ 0.72 1.00 (0.998...)

k k = k0/
√
1− tan2 δ 2.5× 10−5 rad/m 2.3× 10−4 rad/m

μ μ = k tan δ 1.8× 10−5 m−1 1.2× 10−5 m−1

c c = c0
√
1− tan2 δ 5.5 m/s 7.7 m/s

L L = 2π/k = cT 247 km 28 km

Table 8.1: Example: unidirectional propagation of tidal waves and seiches

Example

Consider an M2-tide (T = 12 hours and 25 minutes = 745 minutes = 44700 s) with Û =
1.2 m/s, and a seiche with T = 1 hour and Û = 0.6 m/s, both in a channel in an estuary
with cf = 0.004, hydraulic radius R = 11 m, depth d = 12 m, conveyance width Bc = 350
m2, conveyance area Ac = Bcd = 4.2 × 103 m2, storage width B = 2Bc = 700 m. These
input data and their elaborations have been summarized in Table 8.1, assuming a purely
progressive wave. (This is not realistic, but the restriction to a single wave propagation
direction is preferred to provide insight in the relationships.)

The phase speed of the tide (5.5 m/s) is only about one half of
√
gdc, which is almost 11

m/s. The difference is due to two factors: the width of the free surface (available for storage)
is twice the conveyance width Bc, which slows down the wave speed by a factor

√
2 (since

c =
√
gAc/B =

√
gAc/(2Bc), or about 70%, and resistance reduces it further with a factor√

1− tan2 δ, which is roughly another 70%. The phase speed of the higher-frequency seiches
is hardly affected by resistance, in agreement with the general conclusion in Chapter 3 about
the relative impact of resistance (Table 3.1).

Although σ (and therefore δ) is far smaller for the seiche than it is for the tide, their
μ-values, i.e. the relative damping per unit propagation distance, are comparable. This
is because μ is not only proportional to tan δ, but also to the wave number k, which is
almost a factor ten larger (shorter wave length) for the seiches than it is for the tides, which
compensates to a high degree for the difference in σ-values. For a propagation distance Δs of
10 km, say, the tidal amplitude is reduced with a factor exp(−μΔs) or about 0.84, whereas
the seiche amplitude over that same distance is reduced with a factor of about 0.89.
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8.5 Bi-directional wave propagation

In the linearization of the resistance, the amplitude of the discharge and that of the flow ve-
locity have been assumed constant. Even in a prismatic channel, this is not the case because
of the wave decay due to resistance. In practice, a long channel is subdivided in sections of a
limited length, such that in each of them the amplitude does not vary too much. The above
equations are applied to each of these sections, while the various solutions are coupled by
demanding continuity of discharge and surface elevation at the junctions. In the preceding
example, a length of some 10 km appears acceptable in view of the decay numbers given
above.

Figure 8.3: Bi-directional wave propagation in a section

In this section, we will derive relationships between the amplitudes and phases of the surface
elevation and of the discharge at one end of a prismatic channel section, expressed in terms
of those at the other end (Figure 8.3). These relationships should be valid for arbitrary com-
binations of two wave systems traveling in opposite directions, not necessarily unidirectional
waves.

Relation between the amplitudes of surface elevation and discharge

Our starting point is the general solution for the surface elevation and the discharge, given
in Equation (8.29) and (8.30), which are repeated here for convenience:

ζ̃(s) = C+ exp(−ps) + C− exp(ps) (8.36)

and

Q̃(s) =
iωB

p

(
C+ exp(−ps)− C− exp(ps)

)
(8.37)

For easier algebraic manipulation, we eliminate temporarily the factor iωB/p by introducing
a new complex variable Z̃, with the dimension of a length:

Z̃ ≡ p

iωB
Q̃(s) = C+ exp(−ps)− C− exp(ps) (8.38)

It then follows that
ζ̃0 = C+ + C− and Z̃0 = C+ − C− (8.39)
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where we have written ζ̃0 for ζ̃(0), and likewise for Z̃. These two equations determine the
integration constants C+ and C− in terms of ζ̃0 and Z̃0:

C+ =
1

2

(
ζ̃0 + Z̃0

)
and C− =

1

2

(
ζ̃0 − Z̃0

)
(8.40)

Substituting these integration constants in Equation (8.36) and (8.37), we can express the
values of ζ̃ and Q̃ at s = � in terms of those at s = 0:

ζ̃� =
1

2

(
ζ̃0 + Z̃0

)
exp(−p�) +

1

2

(
ζ̃0 − Z̃0

)
exp(p�) (8.41)

Z̃� =
1

2

(
ζ̃0 + Z̃0

)
exp(−p�) − 1

2

(
ζ̃0 − Z̃0

)
exp(p�) (8.42)

or
ζ̃� = ζ̃0 cosh p� − Z̃0 sinh p� (8.43)

Z̃� = −ζ̃0 sinh p� + Z̃0 cosh p� (8.44)

This is the key result of this section, i.e. two equations relating the four complex amplitudes
of surface elevation and discharge at both ends of the channel section. Given any two of these,
the other two are determined. These relations play an important role in the calculations for a
set of channel sections in series or in a network, where it is necessary to transfer information
on amplitudes and phases from junction to junction.

Note: although we have referred to channel section ‘ends’ in the preceding text, no special
conditions were imposed there. Therefore, the relations in fact apply to any pair of cross-
sections of a prismatic channel. In other words, ‘p�’ in the equations above might just as
well be replaced by ‘ps’, indicating an arbitrary location.

Example

We present a simple application of this result to a system as considered in Chapter 7, viz.
a small basin, closed except for a connection by a channel to a tidal sea. The water in the
channel is excited sinusoidally at the channel mouth (s = 0, say), while at the other end
(s = �) it in turn excites a Helmholtz mode in the basin with complex surface elevation
amplitude ζ̃b.

The volume balance for the basin reads Q(�, t) = Ab dζb/dt, implying that Q̃� = iωAbζ̃b.
Ignoring velocity-head effects in the transition between the channel and the basin, we have
ζ̃b = ζ̃�, so that

Q̃� = iωAbζ̃b = iωAbζ̃� =
iωB

p
Z̃� (8.45)

Subsitution of this result in Equation (8.43) and (8.44) yields the following result for the
ratio (r̃) of the complex amplitude in the basin to that at the channel mouth:

r̃ =
ζ̃b

ζ̃0
=

(
pAb

B
sinh p�+ cosh p�

)−1
(8.46)

155



In Chapter 7, it was assumed that the channel was short so that the storage in it could be
neglected. In that approximation, the motion in the channel was not wave-like. Instead, the
water was seen to oscillate back and forth as a rigid column. Here, we have gone beyond
that approximation by modelling wave propagation in the channel.

A note on hyperbolic functions of complex argument
It can be seen in the preceding equations that the superposition of two exponentially decaying waves,
traveling in opposite direction, gives rise to hyperbolic functions (cosh and sinh) of complex argument.
To facilitate computations, these are expressed in terms of their real part and imaginary part in the
following. By definition, cosh ps = (exp ps+ exp (−ps)) /2. Substituting p = μ + ik and collecting the
real parts and the imaginary parts, we obtain

cosh ps = coshμs cos ks+ i (sinh ps sin ks) (8.47)

Likewise, since sinh ps = (exp ps− exp(−ps)) /2, we find

sinh ps = sinhμs cos ks+ i (coshμs sin ks) (8.48)

Taking the squares of these expressions, we obtain for the moduli, after some reworking:

|cosh ps|2 = sinh2 μs+ cos2 ks = cosh2 μs− sin2 ks (8.49)

|sinh ps|2 = sinh2 μs+ sin2 ks = cosh2 μs− cos2 ks (8.50)

in which we have used cos2 ks+ sin2 ks = 1 and cosh2 μs− sinh2 μs = 1.

8.6 Response function of a semi-closed basin

Consider a semi-closed basin, with its mouth at s = 0, where it is subjected to harmonic
excitation from the sea, and with a closed end at s = �, see Figure 8.4. We will investigate
the variation of the response as a function of the frequency of the harmonic excitation. This
yields the so-called response function.

Figure 8.4: Standing wave in a semi-closed basin

At the open end, ζ(0, t) is prescribed as a sine function with known frequency, amplitude
and phase. At the closed end, the boundary condition is Q(�, t) = 0. Since this is just a
special case of the situation considered in the preceding section, we can immediately obtain
the required response from those results. Setting Z̃� = 0 in Equations (8.43) and (8.44), and
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returning to the complete expression for the complex discharge (Q̃ = (iωB/p) Z̃), we obtain

ζ̃� =
ζ̃0

cosh p�
(8.51)

Q̃0 =
iωB

p
ζ̃0 tanh p� (8.52)

Note that Equation (8.51) also follows from Equation (8.46) by setting Ab = 0.

According to Equation (8.51), the ratio of the amplitude at the closed end to that at the
mouth, the so-called amplification factor, is given by

r ≡ ζ̂(�)

ζ̃(0)
=

1

| cosh p�| =
1√

sinh2 μ�+ cos2 k�
(8.53)

This amplification factor is determined by two constants for the given channel: μ� and k�,
determining the damping and the phase change of a wave progressing over the length of
the basin. These two parameters can for given � be calculated from k0� and σ, which can
therefore be used as independent parameters in the calculations. The graph in Figure 8.5 is
based on this. It consists of a set of curves, each showing the variation of r as a function of
k0� (proportional to the frequency) for constant σ according to Equation (8.53).

The response function shown in Figure 8.5 gives at a glance insight in the dynamics of wave
propagation and reflection in a semi-closed basin.

For basins that are very short compared to the wave length (k0� 
 1), the amplitude at
the closed end is virtually the same as it is at the mouth, signifying that the water level in
the basin rises and falls in unison with the external tide: the so-called Helmholtz mode that
we have encountered in Chapter 7. Notice that in this range the value of σ has no influence,
as expected, since resistance is negligible in a short, semi-closed basin.

For small to moderate values of σ, the response shows a high peak near k0� = π/2, sig-
nifying quarter-wave resonance. The influence of σ is significant, causing a strong reduction
in the response peak with increasing σ and a slight shift in the resonance frequency, which
is the result of the influence of σ (or δ) on the phase speed. This is because quarter-wave
resonance occurs when k� = π/2, or k0� = (π/2)

√
1− tan2 δ, therefore for lower values of

k0� when σ increases.
For values of k0� near 3π/2, there is another set of response peaks for small to moderate

values of σ, signifying three-quarter-wave resonance. These are less pronounced than those
near k0� = π/2 because damping is more important for these longer basins (and/or shorter
waves).

The amplitude of the discharge at the mouth follows from Equation (8.52). Subsitution of
Equations (8.49) and (8.50) in this equation yields

Q̂0

Bc ζ̂0 cos δ
=

∣∣∣∣ sinh k�cosh k�

∣∣∣∣ =
√

sinh2 μ�+ sin2 k�

sinh2 μ�+ cos2 k�
(8.54)

157



Figure 8.5: Response factor for a basin closed in one side

Because of the sine- and cosine functions of k� in this expression, the discharge amplitude
at the mouth is not a monotonic function of the relative basin length. Shortening of a basin
may therefore increase the discharge at the mouth.

A note on the Zuiderzee closure (1932)
A significant example where the shortening of a tidal basin increased discharge in its mouth occurred
when the previous Zuiderzee in the central part of The Netherlands was closed by the construction of
an enclosure dam in 1932. This shortened considerably the tidal basin, extending from the North Sea to
the closed end of the basin, but counter to intuitive expectations the discharge through the tidal inlets
feeding the tides in the basin increased significantly, more than 25% in the most nearby inlet. The reason
was that the tide in the shorter, remaining basin was nearer to quarter-wave resonance. This unexpected
behaviour was correctly predicted by the Lorentz Committee, using the harmonic method described above
(though in a more complicated version, to reflect the netwerk topology of the tidal channels), which was
specifically developed for that purpose (see Figure 8.7)

8.7 Partial reflection

In Chapter 5, we considered the partial reflection of low translatory waves at discrete changes
in the channel geometry. Here we do the same for harmonic waves, using the same approach.
Only the algebra is a bit different.
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Figure 8.6: Transition in channel geometry

Two long, prismatic channel sections with mutually different geometry are connected at a
point s = 0 (Figure 8.6). From section 1 (s < 0), a wave is approaching the transition and is
partially reflected there, as well as partially transmitted into section 2 (s > 0), from where
it does not reflect back to the transition. For given channel geometry and incident wave
parameters at the site of the transition, we have to make a first estimate of the values of
Û or Q̂ in both sections near the transition, so that we can start the calculation with an
estimated σ or δ. If necessary the calculations can be repeated with improved estimates to
obtain better results.

We write the following expressions for the incident waves (sub i) and the reflected waves
(sub r) in channel 1:

ζ̃i = Ci exp(−p1s) and ζ̃r = Cr exp(p1s) (8.55)

and the following for the tranmsitted waves (sub t) in section 2:

ζ̃t = Ct exp(−p2s) (8.56)

The associated discharges are given by

Q̃i = (iωB1/p1)Ci exp(−p1s) and Q̃r = −(iωB1/p1)Cr exp (p1x) (8.57)

and
Q̃t = (iωB2/p2)Ct exp(−p2s) (8.58)

At the transition, where s = 0, we must have continuity in ζ and in Q, which implies

Ci + Cr = Ct (8.59)

and
iωB1

p1
(Ci − Cr) =

iωB2

p2
Ct (8.60)

For brevity, we introduce a complex transition ratio

γ̃ =
iωB2/p2
iωB1/p1

=
B2c2
B1c1

cos δ2
cos δ1

exp (i (δ2 − δ1)) (8.61)
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(see Equation (8.28)) as well as a complex coefficient for reflection and one for transmission:

r̃r =
ζ̃r(0)

ζ̃i(0)
=

Cr

Ci

and r̃t =
ζ̃t(0)

ζ̃i(0)
=

Ct

Ci

(8.62)

It then follows from Equations (8.59) and (8.60) that

r̃r =
1− γ̃

1 + γ̃
and r̃t =

2

1 + γ̃
= 1 + r̃r (8.63)

These results have an identical structure as those obtained in Chapter 5 for low translatory
waves, the difference being that here the transition ratio and the coefficients are complex,
bearing both amplitude and phase information. They also show that at the transition the
reflected wave is not in phase with the incident wave, because r̃r is complex. The only
exception to this is when the resistance angle δ does not change at the transition, in which
case γ̃ is real (equal to B2c2/B1c1, the same as in Chapter 5, Equation (5.10)), and therefore
also r̃r and r̃t. In that case, the results are fully identical to those of Chapter 5.

8.8 Propagation in networks

It has been stated at numerous places in the above that a long channel may have to be
divided in a number of adjacent sections, forming a one-dimensional chain, with sections in
series. In other cases, the tidal channels in the study region form a network structure. In all
such cases, there are internal nodes at the channel junctions, and nodes providing a link to
the external world, usually a tidal sea or a closed end.

The primary unknowns are the complex amplitudes of the surface elevation and the discharge
at the nodes of the system, i.e. four (complex) unknowns for each section, or on average
two per node for each section, or 2N unknowns per node if there are N sections joined at
a node. As we have seen in Section 8.5, there are two algebraic equations for each channel
section describing the propagation therein, or (on average) one per node for each section, or
N equations per node. For each node there is one more equation describing that the sum
of the discharges towards the node is zero (neglecting storage at the node), and (N − 1)
equations describing that the water levels of the N sections at the node are equal (neglecting
velocity-head effects). At external nodes, boundary conditions are imposed. Altogether, the
number of available independent equations is equal to the number of unknowns, as required
or a well-posed problem, so that the solution is uniquely determined.

The tidal computations of the Lorentz Committee, performed for the prediction of the tides
after the construction of the enclosure dam in the previous Zuiderzee, consisted of a network
of 26 channels, see Figure 8.7. Boundary conditions were provided by the M2-tides at the
inlets connecting the basin with the North Sea, and the condition of zero discharge was
imposed at the southern boundary of the Zuiderzee. As mentioned previously, the Committee
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Figure 8.7: Harmonic network model of the Zuiderzee, The Netherlands, as used by Lorentz,
from [1]

succesfully predicted the changes in the tides that were the result of the construction of the
enclosure dam. The harmonic method has been applied since then in many projects. Needless
to say, numerical codes have long since replaced the analytical harmonic method in practical
projects, but the method is still useful for insight in the wave dynamics and for preliminary
computations.

8.9 Nonlinear effects

In this section, we briefly touch on a few nonlinear effects, which were systematically ignored
in the above.

We distinguish two kinds of nonlinearities in the equations describing the flow: terms that
are nonlinear in the dependent variables, e.g. quadratic terms, and geometric nonlinearities,
in particular the variation of the wet cross-section with the water level.

In contrast to a linear system, the response of a nonlinear system to harmonic forcing is
not sinusoidal, altough still periodic. Higher harmonics can be excited, as well as a nonzero
mean response.

Let us take the quadratic advective term in the momentum balance, ∂(Q2/Ac)/∂s, as an
example. If Q varies in time as cosωt, then Q2 varies in time as cos2 ωt = (1 + cos 2ωt)/2.
We see that the square introduces both a higher harmonic, at a frequency 2ω, and a nonzero
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mean value. Likewise, a factor like U |U |, occurring in the resistance term, introduces 3d, 5th
and higher odd harmonics if U itself varies sinusoidally. The presence of higher harmonics
causes deformation of the wave profile.

Nonlinear effects increase with increasing ratio of wave height to water depth. They are
strongest in shallow water. That is why the nonlinearly generated higher harmonics of the
M2-tide, i.e. the components M4, M6 etc., are called ‘shallow-water tides’.

Geometric nonlinearities often play an important role in tidal propagation, because the cross-
section available for flow can vary greatly between high water and low water, even to the
extent of falling dry. Because of damping, the tide in estuaries is usually mainly progressive,
so that the surface elevation and the discharge are in phase for most of the time. This means
that for flood flow the cross-section available for conveyance and storage is larger than it is
for ebb flow. As a consequence, ebb flow velocities are on average higher than flood flow
velocities. This contributes to asymmetries in the tidal curves for surface elevation and flow
velocities.

Because the ebb occurs on average at a smaller depth and with larger velocities than the
flood, the ebb flow encounters a higher resistance (which is proportional to U |U |/d). As a
result, the mean water level (MWL) slopes down towards the sea, even in purely oscillatory
flow in absence of a net discharge.

Figure 8.8 gives a series of tidal curves, showing the variation in time of the surface elevation
at a sequence of stations along theWestern Scheldt estuary and river. Station ‘V’ (Vlissingen)
is the most seaward station, ‘A’ is Antwerp, and ‘G’ is Gentbrugge, far inland. The increased
deformation of the tidal curves for the more inland stations is obvious, as is the gradient of
the mean surface elevation.

Figure 8.8: Tidal wave propagation in the Western Scheldt, The Netherlands
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Problems

1. Mention two effects of resistance on the re-
lation between variations in the discharge
and in the surface elevation.

2. An M2-tide in a channel with a width of
the free surface B of 500 m has a damp-
ing modulus μ = 2× 10−5 /m and a wave
number k = 1.5μ. The integration con-
stants are given as C+ = (1.2 m) exp(iπ/6)
and C− = (0.8 m) exp(−iπ/4). Plot the
values of these constants in the complex
plane and construct the corresponding two
hodographs of the + wave and of the -
wave for a self-chosen sequence of values
of s. Construct the hodograph for the to-
tal surface elevation. Compare the angle
of convergence with the theoretical value.

3. For the data in the preceding question,
construct the hodographs for Q̃+, for Q̃−,
as well as for the total discharge Q̃ =
Q̃+ + Q̃−.

4. Using the data listed above Table 8.1, cal-
culate the values of the dependent vari-
ables in the left column.

5. Calculate the wave number and the damp-
ing modulus for propagation in the chan-
nel of Question 17 in Chapter 7. (An-
swer: k = 2.51× 10−5 rad/m, μ = 1.97×

10−5 /m.)

6. Using this result, verify whether the rigid-
column approximation is justified for this
case. (Answer: cos k� = 0.97, close enough
to 1, so that it is justified.)

7. Suppose that this channel is closed at one
end and that the M2-tide at the mouth
has a surface elevation amplitude of 1 m.
Calculate the surface elevation amplitude
at the closed end, estimate it from Fig-
ure 8.5 and compare the results. Calculate
the value the amplitude of the discharge at
the mouth. (Answer: ζ̂� 	 ζ̂0 = 1 m and
Q̂ = 843 m3/s.)

8. Do the same for a seiche with a period of
45 minutes and a surface elevation ampli-
tude at the mouth of 0.3 m. (Answer: ζ̂� =
0.36 m and Q̂ = 00 m3/s.)

9. The Bay of Fundy, where the world’s high-
est tides occur, has a length of about
270 km. The width does not vary too
much, in contrast to the depth, but we
will ignore the latter variations for this
assignment and put the depth at a con-
stant value of 75 m. We take cf= 0.0025.
If the M2-tide at the mouth has a tidal
range (HW - LW) of 5 m, estimate the
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tidal range at the closed end, using Figure
8.4. (Answer: appr. 18 m).

10. Using Figure 8.4, estimate the amplifi-
cation factor for a seiche with a period
of 20 minutes in a semi-closed harbour
basin with a length of 3 km and a depth
of 15 m; the surface elevation amplitude
at the mouth is 0.25 m. (Answer: 3.7.)
Check the influence of the offshore ampli-

tude on the amplification factor for this
case. Do the same for the preceding ques-
tion and compare both sensitivities.

11. Mention two sources of nonlinearity of the
long-wave equations.

12. Explain why a mean slope of the free sur-
face occurs in a purely oscillatory tide (no
net discharge).
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Chapter 9

Flood waves in rivers

9.1 Introduction

Flood waves are in essence humps of water traveling downriver. Stated in more detail, they
are temporary increases and decreases of discharge and water level (‘stage’) in a river caused
by temporarily enlarged run-off in the catchment area due to heavy rainfall or snow melt,
which travel downriver as a wave.

The temporal evolution and dynamics of flood waves differ greatly between the upper reaches
and the lower reaches of a river.

In the upper reaches, characterized by relatively steep slopes and a small catchment area,
the response to an increased run-off can be quite fast, with rapid variations in flow rate and
water level, even to the extent that inhabitants along the river border are taken by surprise,
sometimes with fatal consequences.

In contrast, flood waves in the lower river reaches are slow processes, in many cases
taking place over several days, due to the larger catchment area, the existence of tributaries,
and the greater propagation distance from upstream. Run-off peaks in different part of the
larger catchment area do not in general occur simultaneously, so that the maxium of their
sum is less than the sum of the individual maxima. Moreover, as we will see, the internal
dynamics of the flood wave cause it to flatten and to elongate as it propagates. As a result,
the variations in flow rate and water level in the lower reaches are gradual, even such that
inertia is insignificant (see Table 3.1).

Let us take the lower reaches of the river Rhine for a comparison of the order of magnitude
of the inertia in the momentum balance (∂U/∂t) to the downslope gravity force per unit
mass (or the acceleration), g ∂h/∂x. A typical rate of rise or fall of the water level is 0.5
m/24 hrs (see Figure 3.6 or 9.1). The increase in flow velocity would be a few dm/s per 24
hrs, corresponding to an acceleration of about 2 ∗ 10−6 m/s2. This is roughly a factor 500
less than g |∂h/∂x|, if we equate the slope of the free surface to the bed slope, which for the
lower Rhine is about 10−4. The inertia being relatively small implies that the driving force
due to the surface slope is approximately in equilibrium with the resistance.
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Figure 9.1: Recorded water levels during flood wave in the Rhine (February 26 - March 3,
1970)

In engineering practice, numerical models are used to simulate flood waves. These are based
on the complete equations of De Saint-Venant (the long-wave equations, see Chapter 2),
including inertia. This is needed in order to cover a wide range of occurrences of flood
waves. Moreover, they should be able to cover the estuarine reaches of rivers, where tides
penetrate, for which inertia and resistance are of comparable magnitude. Lastly, they should
be able to simulate properly the effects of operation of weirs, which can induce rapidly varying
translatory waves superimposed on the slowly varying flood waves.

The resistance-dominated flood wave is a new and final category in the progression of wave
categories considered so far, ranging from the rapidly varying translatory waves, for which
resistance could be neglected, via the intermediate category of tidal waves with their mixed
character, to the present case of flood waves, in which resistance is dominant. In order
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to fully understand the special features of this new category, we will examine it in its most
elementary form, in which inertia is neglected and we assume equilibrium between the driving
force and the resistance. The remainder of this chapter is based on that assumption.

The neglect of inertia leads to the so-called quasi-steady approximation: although the
flow is unsteady on a long time scale, the relations between dependent variables are at any
time assumed to be the same as for steady flow. In other words, the flow is instantaneously
adjusted to (slow) variations in the driving force. It has no memory, as it were.

From a mathematical point of view, the neglect of inertia has important consequences
because it reduces the set of coupled balances of mass and momentum from being of second
order in time to first order (though still second order in space). This implies that dynamic
wave propagation in two directions is no longer possible.

9.2 Governing equations

We use the continuity equation in the form given by Equation (2.11):

B
∂h

∂t
+

∂Q

∂s
= 0 (9.1)

In the momentum balance (Equation (2.12)), we neglect the inertia terms, in which case it
reduces to

gAc
∂h

∂s
+ cf

Q2

AcR
= 0 (9.2)

We have replaced |Q|Q by Q2 because the flow is unidirectional. In a compact notation,
Equation (9.2) can be written as

∂h

∂s
+ if = 0 (9.3)

in which if is the so-called friction slope (see Chapter 2, Equation (2.16)), defined by

if ≡ cf
Q2

gA2
cR

= cf
U2

gR
(9.4)

Equations (9.2) and (9.3) are expressions of equilibrium: the resistance balances the driving
force due to the slope of the free surface.

In previous chapters, dealing with translatory waves, tides etc., there was no preferred flow
direction. The undisturbed reference state was one of rest. A bed slope, if present, played
no particular role. This is quite different for river flow, where the reference state is one of
uniform, downward flow. For that category, it is meaningful to bring the bed slope explicitly
into account: ib ≡ −∂zb/∂s, in which zb is the cross-sectionally averaged bed elevation above
the reference plane z = 0. Writing d for the average depth in the conveyance cross-section,
we have h = zb + d (see Figure 9.2). Substituting this in Equation (9.2) gives

∂d

∂s
− ib + cf

Q2

gAc
2R

= 0 (9.5)
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Figure 9.2: Longitudinal profile flood wave

or
∂d

∂s
= ib − if (9.6)

This is the so-called Bélanger equation for backwater curves (see Chapter 2, Equa-
tion (2.17)), if in the latter equation we neglect the term Fr2, which is consistent with
our present neglect of inertia.

Equation (9.5) forms the basis of the analyses in the remainder of this chapter, using ap-
proximations of increasing complexity.

9.3 Quasi-uniform approximation

We assume an initial state of uniform flow which is gradually being disturbed by a flood
wave.

In uniform flow, the free-surface slope and the friction slope both equal the bed slope, and
the depth gradient ∂d/∂s is zero, in which case the discharge and the flow velocity are given
by

Q = Qu ≡ Ac

√
gRib
cf

and U = Uu ≡ Qu

Ac

=

√
gRib
cf

(9.7)

These equations express two messages: they define Qu and Uu, and they state that in
uniform flow the actual discharge Q and flow velocity U equal Qu and Uu, respectively. The
latter does not hold in nonuniform flow, but in that case Qu and Uu are still given by the
expressions in the respective right-hand sides of Equation (9.7).

The occurrence of a flood wave implies nonuniform flow, in which the depth gradient is
nonzero. The surface slope deviates from its uniform-flow value, which equals the bed slope
ib. However, if the flood wave is sufficiently low and/or elongated, the difference between
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the two slopes is small. We will initially neglect it. This is a so-called quasi-uniform
approximation, so named because the flow, though varying in space on a large scale, is
treated as if it were uniform as far as the relations between local variables are concerned.

Formulation and general solution

In the quasi-uniform approximation, the value of the discharge is taken to be the value in
uniform flow, or Q = Qu as defined in Eq. (9.7). This is an algebraic equation, describing
the dependence of the discharge on the instantaneous values of the local geometric profile
variables Ac and R (not their derivatives!).

These (and other) geometric profile variables are monotonic, unique functions of the flow
depth d. Therefore, we can consider Equation (9.7) as an implicit relation between the
uniform-flow discharge Qu and the depth d, which is written as Qu = Qu (d (s, t)). (The
dependence on g, ib and cf given in Equation (9.7) is not written explicitly.) Substitution
of Q = Qu and of Qu = Qu (d (s, t)) in Equation (9.1), in which we replace ∂h/∂t by ∂d/∂t
(which is allowed since h = zb + d and ∂zb/∂t = 0), yields

∂d

∂t
+

1

B

dQu

dd

∂d

∂s
= 0 (9.8)

The left-hand side of this equation has the structure of a total derivative of d for an observer
moving with a velocity ds/dt = (1/B)dQu/dd, and the equation states that an observer
moving at this speed sees no change in the local value of d (see Section 4.4 for an intro-
duction of the total derivative). Neither would this observer see changes in the other local
geometric variables such as R, Ac or A, nor in the discharge Q (within the quasi-uniform
flow approximation Q = Qu). This can be expressed mathematically as follows:

dd

dt
= 0,

dQ

dt
= 0 provided

ds

dt
=

1

B

dQu

dd
(9.9)

It follows from these relations that the specified value of ds/dt is the speed of propagation
of the flood wave. Denoting this as cHW (HW for High Water), we have:

cHW ≡ 1

B

dQu

dd
(9.10)

It is noted that in finite-difference form, Equation (9.10) can be written as δQ = BcHW δh,
the same as was found for translatory waves (Equation (4.20), except for the difference in
propagation speed.

We see that flood waves can only propagate downstream (at a low speed, as we will see),
as a consequence of the neglect of inertia in the momentum balance. For the latter reason,
flood waves are said to belong to the category of kinematic waves, as distinct from the
dynamic waves considered in preceding chapters, which - thanks to inertia - can travel both
downstream and upstream.
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The high-water wave speed

In order to obtain a more transparent, explicit expression for cHW , we substitute Ac = Bcd
in Equation (9.7), as well as the approximation R = d, with the result

Qu = Bc d

√
gdib
cf

(9.11)

so that
dQu

dd
=

3

2
Bc

√
gdib
cf

=
3

2
BcU (9.12)

With this, we find the following important expression for the propagation speed of the flood
wave:

cHW =
1

B

dQu

dd
=

3

2

Bc

B
U (9.13)

We see that this speed is of the order of magnitude of the flow velocity. In the lower river
reaches, where the Froude number usually is much less than 1, the flow velocity U is much
less than the classical long-wave speed of

√
gd, and so is cHW . For Bc/B < 2/3, cHW is even

less than the flow velocity! When at a high river stage the flood plains are submerged, B can
be much larger than Bc, which causes the propagation speed of the flood wave to become
considerably less than the flow velocity in the main (conveyance) channel.

For inertia-dominated waves in a channel, the wave speed is also affected by the ratio Bc/B,
but to a smaller extent. This can be seen from the expression for that speed, viz. c =√
gAc/B (Equation (4.10)). This can be written as c =

√
Bc/B

√
gd. We see that for a

given depth the wave speed is here proportional to the square root of Bc/B, i.e. a lower
sensitivity than it is for resistance-dominated flood waves.

A note on the relation between the bed friction formulation and cHW

In the above, we have treated cf as a constant, independent of the depth, in which case U varies in
proportion to the square root of the depth (see Equation (9.7)). Had we used a Strickler- or Manning-
type of resistane law, U would vary with the 2/3-power of the depth, and the discharge with the 5/3
power, in which case the coefficient 3/2 in Equation (9.13) would have to be replaced by 5/3.

Kinematic wave behavior

According to the preceding results, it is possible for an observer to follow a point of constant
depth or discharge, provided he/she travels at the appropriate speed. This also applies to
the point with the highest surface elevation, or river stage, which implies that this maximum
remains constant: the flood wave does not diminish in height according to this simple model.
Nor does the flood wave lengthen in this model, since two points with equal depth, one
upstream of the maximum stage, the other downstream, would travel at the same speed.

The fact that the propagation speed increases with depth (through its proportionality to
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U) causes deformation of the wave, since points of larger depth travel faster than points of
smaller depth. It follows that the leading part of the flood wave steepens (and the trailing
part flattens). If this continues for a sufficient time and distance, the assumption that the
change in surface slope is negligible compared to the slope in uniform flow, i.e. the bed slope,
becomes untenable. In the following section we will consider the effect of this variation in
slope, first qualitatively and thereafter quantified in an extended mathematical model.

9.4 Influence of variable free-surface slope

In the preceding section, the variations in the slope of the free surface, which accompany the
passage of a flood wave, were ignored. Actually, the slope varies, being larger than the slope
in uniform flow (ib) in the leading part of a flood wave, i.e. at rising river stage in a fixed
point, whereas it is less than ib in the trailing part, i.e. at falling river stage. Therefore, at a
given stage, the discharge is greater when the surface elevation rises than when it falls. This
is a manifestation of the phenomenon of hysteresis.

The hysteresis is illustrated with a rating curve in Figure 9.3, i.e. a plot of the discharge vs
the simultaneously occurring river stage at the same location as a function of time during
the passage of a flood wave. It can be seen that the maximum discharge occurs ahead of
the maximum stage. This is because the enhanced slope of the free surface ahead of the
cross-section of maximum stage enhances the flow rate, which more than compensates for
the larger depth at maximum stage, which must do with a smaller slope, viz. ib.

Figure 9.3: Example Q− h curve with hysteresis

The occurrence of hysteresis in a flood wave has important consequences for the evolution
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of the wave as it travels downriver. As noted above, the discharge is greater ahead of the
peak than it is following the peak, if we compare two cross-sections with the same stage.
Considering a (moving) control volume between two such sections, we see that mass is flowing
out of it at the downstream section at a higher rate than it is flowing into it at the upstream
section. In other words, the mass contained between those two cross-sections on either side
of the top of the flood wave decreases in time. As a result, the surface elevations between
these moving cross-sections decrease as the wave propagates downriver. This means that
the flood wave decreases in height and (consequently) increases in length as it
propagates downriver.

Diffusion model for flood waves

In order to model this phenomenon mathematically, we start with Equation (9.5), recasting
it into an expression for the discharge:

Q = Ac

√
gR

cf

√
ib −

∂d

∂s
= Qu

√
1− 1

ib

∂d

∂s
(9.14)

We have substituted the expression for Qu, i.e. the discharge for the given depth if the flow
were uniform, given by Equation (9.7).

We take account of a variable surface slope on the assumptioin that it deviates by a
relatively small amount from the uniform-flow value, i.e. the bed slope ib. This implies that
the depth gradient, though nonzero, is small compared to the bed slope (|∂d/∂s| 
 ib).
This allows us to approximate the square root as in

√
1− ε 	 1 − ε/2 if ε 
 1. Using this

approximation, we obtain

Q = Qu

(
1− 1

2ib

∂d

∂s

)
(9.15)

With this approximation, we have obtained a linearized expression for the effect of the vari-
able free-surface slope on the discharge, with a correction to Q = Qu which is proportional
to the depth gradient ∂d/∂s. Considering the depth of flow as a measure of volume ‘concen-
tration’, i.e. volume per unit horizontal area, we can say that the correction to the volume
transport is proportional to the gradient of the volume concentration. This is typical for
diffusive transport.

A note on diffusive transport
The classical example of diffusion is heat transport in a continuous medium, which in good approximation
is proportional to the gradient of the temperature, the latter being a measure of the heat concentration.
Such transport takes place in the direction of decreasing temperature. Differences in temperature are
gradually being smeared out as time goes on. That is typical for diffusion. A similar process applies in
the case of flood waves, although the physical mechanism behind it is drastically different.

Our next task is to express the effect of diffusion on the flow depth mathematically. In view
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of the volume balance, Equation (9.1), we need the derivative of Q with respect to s, to be
determined from Equation (9.15):

∂Q

∂s
=

∂Qu

∂s

(
1− 1

2ib

∂d

∂s

)
− Qu

2ib

∂2d

∂s2
(9.16)

We neglect the small, second term between parentheses, which is consistent with the ap-
proximation already made in the transformation of Equation (9.14) into Equation (9.15).
Furthermore, since Qu can be considered a function of d, we can replace ∂Qu/∂s by a factor
proportional to ∂d/∂s:

∂Qu

∂s
=

dQu

dd

∂d

∂s
− Qu

2ib

∂2d

∂s2
(9.17)

Dividing the result by B, in anticipation of the insertion into the volume balance, we obtain

1

B

∂Q

∂s
=

1

B

dQu

dd

∂d

∂s
− Qu

2ibB

∂2d

∂s2
(9.18)

The factor multiplying the first-order depth derivative in the right-hand side can be recog-
nised as the propagation speed, cHW (see Equation (9.13)). The factor multiplying the
second-order depth derivative is called the diffusivity, to be denoted as K:

K ≡ Qu

2ibB
(9.19)

Finally, substitution of these results in the volume balance, Eq. (9.1), in which we again
replace ∂h/∂t by ∂d/∂t, yields the following PDE for the flow depth d:

∂d

∂t
+ cHW

∂d

∂s
−K

∂2d

∂s2
= 0 (9.20)

This equation has the classical structure of the so-called (one-dimensional) advection-
diffusion equation, a standard equation in mathematical physics. The first two terms
represent the displacement (advection) of the longitudinal surface profile, with velocity cHW ,
as in the quasi-uniform approximation. The third term adds the effect of diffusion. It is
proportional to ∂2d/∂s2, i.e. the curvature of the free surface, which results in a spatial
smoothing of the profile, elongating and flattening the flood wave as time progresses. This
can be seen as follows.

Consider a control volume between two cross-sections in a reach where the free surface is
concave (hollow) upwards. In that case, the discharge at the most upstream cross-section
(inflow) is larger than it is at the downstream cross-section (outflow), causing a net inflow
into this control volume and therefore a rise of the free surface.

Where the free surface is convex upward, i.e. concave downward, the opposite occurs,
with net outflow and a lowering of the free surface as a result. The overall effect is that
bumps are lowered and troughs are filled. In other words, the effect is to smoothen the
longitudinal profile of the free surface.
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Elementary solution

Solutions of the one-dimensional advection-diffusion equation have been derived in the classi-
cal literature for a range of initial and boundary conditions. Without derivation, we present
just one of them here, for the case of the spreading of an initially concentrated mass in an
infinitely long river reach. (The analogous case for heat diffusion would be the spreading of
heat in a long conducting rod following a localized initial heating.)

The advection-diffusion equation is of first order in time and of second order in space. There-
fore, one initial condition and two boundary conditions are required for a well-posed problem.
We choose the following conditions:

Initial condition: Consider an initially uniform flow with depth d = constant = d0 and
flow velocity U = U0, to which at time t = 0 a volume V is added abruptly, concentrated at
the point s = 0. Note: addition of a volume V means addition of a volume per unit width
equal to V/B. This has the meaning of an area in the longitudinal profile of the surface
elevation.

Boundary conditions: For s → ±∞, d = d0 at all times.

For simplicity, we treat cHW and K as given constants, equal to their initial values. That is
acceptable to obtain an impression of the effects of the diffusion term.

The general solution of Equation (9.20) with the above stated initial- and boundary condi-
tions is given by:

d(s, t) = d0 +
V/B√
2π σs(t)

exp

(
− (s− cHW t)2

2σs
2(t)

)
(9.21)

in which

σs(t) =
√

2K0t and K0 =
Q0

2ibB
=

U0d0
2ib

Bc

B
(9.22)

It can be shown through back substitution that these expressions satisfy Equation (9.20) as
well as the initial- and boundary conditions. For a mathematical derivation and discussion
see for instance Strauss [3].

The solution has been plotted for two instances t = t1 and t = t2 = 4t1 in Figure 9.4. We
note the following features of Equation (9.21), also shown in the Figure:

1. The first term in the right-hand side of Equation (9.21) is the undisturbed depth, the
second term represents the flood wave. At any instant t > 0, the longitudinal profile
of the flood wave is the classical bell-shaped Gauss curve, with total area V/B and
’standard deviation’ (here: the distance from the location of the maximum to the
locations of the inflection points) σs as specified in Equation (9.22).

2. σs increases in time proportional to
√
t: the wave elongates. At t = t2 = 4t1, we have

σs(t2) = 2σs(t1), so the ’length’ of the wave is doubled compared to the situation at
t = t1.
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Figure 9.4: Elementary solution of the advection-diffusion equation

3. At an instant t = t0, say, the spatially maximal depth occurs where ∂d(s, t0)/∂s = 0,
i.e. at s = cHW t0, where the exp-function has its maximum value of unity. This shows
that cHW is the speed with which this maximum travels downriver.

4. The value of this spatial maximum decreases in time proportional to 1/σs, or propor-
tional to 1/

√
t: the wave becomes lower. At t = t2 = 4t1, its maximum height is

halved, compared to the situation at t = t1. Note that the product of the height and
the ’length’ of the flood wave is constant.

5. At a fixed point s = s0, say, the depth (or river stage) does not vary in time according
to a Gauss curve. This is because the wave becomes lower and longer as it passes the
point considered, so that the rising branch corresponds to a smaller value of σs than
the falling branch. Therefore, the rise occurs faster than the fall.

6. The spatially maximal depth passes the fixed location s = s0 at time t = s0/cHW , but
since it is continually falling, it is preceded by higher values. This implies that the
temporal maximum depth occurring at s0 occurs earlier than this, and has a larger
value than the spatial maximum at time t = s0/cHW (this can be verified by solving
for t from ∂d(s0, t)/∂t = 0).

Example

Figure 9.5 shows a number of plots of river stage versus time, measured in the river Rhine
and one of its branches in The Netherlands (the Waal), following the bombardment in World
War II (May 1943) by the RAF of some hydropower dams in the river Möhne in Germany
(with the aim to harm German capacity of electricity production, needed in the war industry,
see Brickhill [1]). As a result of this bombardment, dams failed and an amount of water of
about 110 x 106 m3 flowed from the Möhne into the Rhine in a short time, approximating

175



the problem and its solution outlined above for some time after t = 0. (Natural flood waves
usually are spread much more in time, with an irregular time variation, and therefore lend
themselves not well for a direct comparison with the pulse-problem and its solution given
above.)

Figure 9.5: Water level recordings in the Rhine/Waal river following the collapse of the
Möhne dam, source: Wemelsfelder [4]

The downstream progression of the flood wave, the lowering of the peak height and the
asymmetry between the rising branch and the falling branch are clearly present in the mea-
sured data. The propagation speed determined from the observations varied somewhat per
river section, but in all cases it was of the order of 1 m/s, in fact somewhat less than the
flow velocity, due to the presence of groins. As a result, the debris, which resulted from the
damage caused in the Möhne valley by the raging flood waters, and floating downstream
with the main current, arrived in The Netherlands ahead of the high water! In fact, these
observations led to the inception of the diffusive-wave model by Schönfeld [2].

9.5 Discussion

The analytical model described above is meant mainly to provide insight in the special
features of the resistance-dominated flood waves in rivers, not so much as a tool for practical
applications. We mention in particular the following aspects:

• the relatively low propagation speed (of the order of the flow velocity);
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• the important influence of the ratio of storage width to conveyance width on the
propagation speed (more than it is for inertia-dominated waves);

• decrease of the flood wave height and increase of the flood wave length during the
propagation;

• the occurrence of hysteresis in the relation between the local discharge and surface
elevation, i.e. for the same river stage a greater discharge when the water rises than
when it falls;

• at a fixed location, the maximum discharge occurs ahead of the maximum surface
elevation;

• asymmetry in the local variation of the river stage with time, the rising branche being
steeper and (therefore) of shorter duration than the falling branche.

The classical flood wave model described above allows wave propagation in the downstream
direction only, at a low speed, of the order of magnitude of the flow velocity. These are
so-called kinematic waves.

The theory for kinematic flood waves rests on the assumption that the inertia is negligible
compared to the resistance, but its predictions are partly in conflict with this assumption.
Take the case of the pulse-type addition of a volume of water at one particular cross-section.
The theory predicts a response in the form of a family of Gauss curves spreading in time.
This implies an infinitely fast spreading of the wave (the tails of the Gauss curves), which in
turn implies large accelerations, in conflict with the basic assumption that these would be
negligible.

A more complete theory, in which inertia is not neglected, has positive and negative charac-
teristics, corresponding to so-called dynamic waves which can travel both downstream and
upstream (assuming subcritical flow) at the speed U ±

√
gAc/B. In case of a flood wave,

these dynamic waves manifest themselves as a leading edge and a trailing edge. However,
the mass associated with these is very small, in practice insignificant. The bulk of the water
mass flows downstream with the much lower speed derived for the kinematic flood wave. Yet
the dynamic waves cannot be ignored in numerical models because their speed is the speed
at which information travels; numerical models should be able to deal with that.
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Problems

1. What is the difference between the theo-
ries for so-called dynamic waves and kine-
matic waves?

2. What is the principal difference in the be-
haviour of these two categories of waves?

3. What is the so-called quasi-steady approx-
imation?

4. What is the so-called quasi-uniform ap-
proximation?

5. Choose a few characteristic instants in the
river stage records in Figure 3.4 or 9.1 and
estimate the associated values of h and of
∂h/∂t.

6. Estimate for these instances the value of
the acceleration and verify the validity of
the quasi-steady approximation, assuming
uniform flow and a bed slope of 1/104.

7. Verify for these instances the validity of
the quasi-uniform flow approximation.

8. Prove that in the uniform-flow approxima-
tion the height and the length of the flood
wave are constant as it propagates down-
stream.

9. Prove that in the uniform-flow approxima-
tion the flood wave deforms as it propa-
gates downstream.

10. Explain why theoretically the crest of
a flood wave decreases in height during
propagation when the quasi-uniform flow
approximation is not made.

11. What is the so-called hysteresis in flood
waves? Explain why it occurs.

12. The propagation speed of a flood wave can
be less than the flow velocity. What is the
condition for this to happen?

13. Because of the failure of a dam, a volume
of 106 m3 of water is suddenly released in
a river, at t = 0 in s = 0, say. Initially,
the flow is uniform; the bed slope is ib =
1.5 × 10−4, cf = 0.005, d = 3 m, Bc = B
= 50 m. Calculate:
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• The value of the diffusivity K (using
the initial values of the flow parame-
ters). (Answer: K = 8.9× 103 m2/s)

• The maximum height of the result-
ing flood wave at t = 5 hrs, and
the location smax where this occurs.
(Answer: maximum height is 0.45 m,
smax 	 25 km)

• Explain why the maximum height of
question (b) is less than the maxi-
mum height occurring in s = smax

during the passage of the flood wave,
and verify this with calculations for
a few chosen instants near the time t
= 5 hrs.
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