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Dk Replay buffer.

E Expectation operator.

e� Pitch angle error.

e!y
Pitch angular rate error.
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⇡
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⇡
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✓
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K Maximum number of backtracking steps.
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MSR Safety Range Model.

MSR↵ Safety range model for angle of attack safety.

MSRn
Safety range model for load factor safety.

N Number of steps in one episode.

N Replay buffer capacity.

n Load factor.
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q
0
ref Proposed reference pitch rate.
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Q
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Q
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Q
⇡
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R↵ Reward function related to angle of attack’s safety.

Rn Reward function related to load factor’s safety.

Rs Markov Reward Process.

Rt Discounted reward at time t.

Rt Reward function related to tracking.

rt Reward at time t.

s0 Initial state at time t = 0.

st State at time t.

T Horizon of sampled trajectories.

T Simulation time.

t Time step.

u0 Initial trimmed control inputs.

V
⇤(st) Optimal state-value function.

V
⇡(st) State-value function at time t for following policy ⇡.

VTAS True airspeed.

w Risk metric parameter.

x Random value for reference flight path angle initialization.

x0 Initial trimmed states.

yj Targets.





1
Introduction

1.1. Background
Over the last 15 years, the aviation industry has experienced a 64% increase in air traffic (Mazareanu,
2022). Along with this boost, the fatalities per number of flights performed globally has drastically
reduced by almost 68%. The majority of these fatalities are caused by in-flight loss of control (LOC-
I) which results from the deviation of an aircraft from its intended path or from its operational flight
envelope (IATA, 2015). However, the aforementioned downward trend in fatalities could be back-
tracked to improvements in automation. Particularly due to advancements in flight control systems
that allow in-flight operations to proceed more safely without incurring deviations from the flight envelope.

Currently, Automatic Flight Control Systems (AFCS) are generally made up of linear uncoupled gain-
scheduled controllers that use look-up tables to handle coupled-dynamics. Tuning is achieved with
the help of a linearized system dynamics model for given operating points inside the flight envelope
(Cook, 2012). Considering that AFCS are based on known system dynamics, adjusting to unfamiliar
conditions may be a challenging task and would result in an increase in the pilot workload. Nonlinear
dynamic controllers, such as ones implementing adaptive nonlinear control and adaptive backstepping,
have been a rewarding solution. These methods are able to adjust to unexpected conditions without
needing gain-scheduling. However, one drawback of nonlinear dynamic methods is the dependency on
the model (Sonneveldt et al., 2007; Steinberg, 2001). If the on-board model would incorrectly describe
the aircraft due to e.g. poor modeling or changes in the aircraft during flight (in case of damage), the
controllers would not be able to guarantee optimal performance.

Recent advancements in the development of flight controllers have been focused on creating learning
controllers based on machine learning techniques. Steinberg (2001) identified Reinforcement Learning
(RL) as one of the machine learning techniques that could be implemented to improve flight control
performance. Reinforcement learning is a framework inspired by how humans approach learning
where an agent tries to accomplish a task by trial and error. Learning by interaction allows the con-
troller to not be dependent on the dynamics of the environment and be better suited at adjusting to
unknown situations (Dally, 2021). Reinforcement learning not only provides a framework for dealing
with uncertainties but it does so in an efficient manner. Ecoffet et al. (2021) found that RL scores
better than humans in many video games and hint that this framework could be used to potentially
substitute the need of a supervisor for many higher complexity tasks. One example of high complexity
task is represented by flight control, which until recently has been typically performed by non-learning
controllers. Clarke and Hwang (2020) show that a Deep Reinforcement Learning agent is able to
successfully control a fixed-wing aircraft through a series of maneuvers that the agent was not trained
for. Similarly, Milz and Looye (2020) and Wang et al. (2020) both demonstrated the ability of a Deep
Deterministic Policy Gradient agent to control the attitude of a fixed wing aircraft for conditions different
from the trained ones. The robustness of RL agents is shown by Dally (2021), who successfully
demonstrated the ability of a deep RL agent to control an aircraft not only when different types of
failures occur but also in different flight conditions, such as ones including wind or turbulence. The
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examples discussed above are only a sample in the myriad of research devoted to RL in flight control.
The general interest in the topic allows for many different aspects of RL in flight control to be investigated.

To make reinforcement learning more appealing to flight control applications, numerous safety paradigms
can be applied to a given controller in order to guarantee in-flight safety. Garcıa and Fernández (2015)
give a comprehensive overview and classification of the two main approaches in safe RL (SRL) which
allow safe learning: modifying the optimization criterion or modifying the exploration process. In RL, the
agent needs to optimize a policy in order to maximize the reward. However, the actions taken in order
to increase the accumulated reward may not always be safe as no metric of risk is explicitly included
in the basic RL approaches (Heger, 1994). Therefore, additional paradigms that explicitly enhance
the agent’s safety are required. Some SRL algorithms are characterized by the modification of the
optimization criterion. Constrained criterion presented by Di Castro et al. (2012) is the most notable
of this class. In this case, the aim is to maximize the expectation of the return for a policy subjected
by certain constraints. This is particularly advantageous for risky domains as the best policy has to
be found within the domain of safe policies �. Regarding SRL by modifying the exploration process,
most of the approaches increase safety by providing the agent with external knowledge. A baseline
approach is to record some demonstrations from a human teacher and provide it to the agent to be
used for safe exploration (Driessens and Džeroski, 2004). Xiong (2021) introduces the concept of a
Safety Modification Layer (SML), which compares the states reached by a learning agent with known
safe states. This knowledge is given to the SML upon initialization of the algorithm as a safe policy �.
The agent learns from this policy in order to avoid unsafe situations. The contribution by Xiong (2021) is
particularly relevant as the environment is a fixed-wing aircraft alike in this research. Another approach
is proposed by Matiisen et al. (2019) where a student-teacher dual system is developed. A teacher
gives the student advice to increase the reward while performing tasks that have already a high learning
curve. This is aimed at performing one task at the best of the agent’s abilities before moving on to a
less known, potentially unsafe task. Geramifard et al. (2013) implement the teacher-advice method on
UAV’s fuel planning. In this paper, a safe function is defined, which is based on a constrained function
that gives information on which states are allowed or not due to the risk of being unsafe. Once the safe
function is defined, a teacher consults it and gives the agent advice on a strategy aimed at avoiding
constrained states. This method combines constrained criterion with the teacher-student dual system,
an approach similar to shielding developed by Alshiekh et al. (2018).

The flexibility provided by reinforcement learning allows for many different flight control tasks to be
carried out. This adaptability, together with robustness many of the researches in the field prove as
summarized by Chen and Li (2020), make reinforcement learning an excellent candidate for further
decreasing airborne accidents. As mentioned before, incidents due to LOC-I are rather prominent as
they can occur during any airborne phases of the envelope. LOC-I is mostly due to failing to prevent
or recover from stall and is prevalent during initial climb and landing (IATA, 2015). According to EASA
(2021), the stall of an aircraft is highly linked to its angle of attack. Once the stall angle of attack
is reached, the stall recovery procedure dictated by EASA needs to be followed. At this end of this
procedure, the pilot is required to return to the indicated flight path angle. Additionally, although not
strictly linked to stall, the load factor is of great importance when speaking of safety in flight control. An
excessive value can lead not only to passenger’s harm, but also to structural problems to the aircraft.
Therefore, investigating the effects of the angle of attack and the load factor on flight safety is of crucial
importance in the efforts to reduce airborne fatalities.

This research will focus on the development of a state-of-the-art method to further advance the efforts in
improving flight safety. This will be achieved by proposing a controlled based on a reinforcement learning
algorithm equipped with a safe RL paradigm that can maintain safety throughout the flight envelope. In
the context of this work, safety is defined as maintaining the aircraft in flight conditions that are within
certain limits designed to keep the aircraft in a safe state. This will be done by monitoring states such
as the angle of attack and and the load factor while a flight path controller maintains the aircraft on its
designated flight path. The developed approach will be tested on a high-fidelity simulation model of
the Cessna Citation PH-LAB, a research business jet operated by Delft University of Technology in the
Netherlands.
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1.2. Research Aim
In this section, the aim of this research will be delineate by identifying a clear objective.

The objective of this thesis is to improve the safety of a State-of-the-Art learning flight control
system for a fixed wing aircraft by implementing the most promising reinforcement learning
algorithm.

To fulfill the research objective, several research questions will be answered throughout this thesis.

RQ-1 What are the main challenges in flight control?
RQ-1.1 How is safety in flight control defined and assessed?
RQ-1.2 What is the state-of-the-art of flight control?

RQ-2 Why is reinforcement learning being introduced in flight control?
RQ-2.1 How is safety in reinforcement learning defined and assessed?
RQ-2.2 What is the state-of-the-art in reinforcement learning?
RQ-2.3 What is the state-of-the-art of reinforcement learning in flight control?
RQ-2.4 Which flight control task is more relevant to approach with reinforcement

learning and why?

RQ-3 How can safety in flight control be improved using reinforcement learning
techniques?

RQ-3.1 What RL methods can be implemented and what are their characteristics in
order

to improve safety of a flight control system of a fixed wing aircraft?
RQ-3.2 What are the necessary requirements to be set on the RL method and how do

they relate to the requirements of the flight control system?

RQ-4 What reinforcement learning algorithm can be combined with a safety
enhancing technique to improve safety?

1.3. Report Structure
This report will unfold as follows. Part I contains the scientific article where a detailed overview of this
research is given. The fundamental topics discussed throughout the research are given in Section II. In
Section III, the controller design is presented. The results of the simulations are given in Section IV. The
concluding notes and recommendations are discussed in Section V.

Part II will give an overview of the preliminary research conducted prior to defining the objectives
of this work. Chapter 2 will give the reader knowledge about the fundamentals of reinforcement learning
together with a taxonomy of most common methods. Algorithms that focus on improving safety are
discussed in Chapter 3. Once the reinforcement learning algorithms are presented, their State-of-the-
Art application in flight control is discussed in Chapter 4. In Chapter 5, a selection of the discussed
algorithms will be applied to a simple system to study their workings.

Part III will present additional results. A study on turbulence is conducted in Chapter 6. The robustness
of the developed controllers to various reference signals and initial flight conditions is assessed in
Chapter 7 and Chapter 8 respectively. All the models used in this research are verified and validated in
Chapter 9.

The thesis concludes in Part IV. Chapter 10 presents the main conclusions while Chapter 11 gives the
author’s recommendations for further research.
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Shielded Reinforcement Learning for Flight Control

Giulia Gatti �

Delft University of Technology, 2629HS, Delft, The Netherlands

In-flight loss of control has been consistently identified as the main cause of airborne
fatalities over the last 15 years. Recent research has been focusing on improving current
automatic flight controllers by introducing reinforcement learning and developing
techniques to enhance in-flight safety. In this research, an o�ine Deep Deterministic
Policy Gradient (DDPG) controller is equipped with a shield, an additional controller
able to monitor the flight path angle and suggest safe actions if a risky state space
is reached. The safe actions are proposed by the Safe Initial Policy (SIP) model, a
pre-trained agent with knowledge about safe states and imposed by the Safety Range
"(' model, a simple rule based system. The shielded DDPG controller is successful
in a conventional step down approach from top of descent with a normalized Mean
Absolute Error of 24.0%. The controller is robust to many di�erent initial flight
conditions, reference signals, biased sensor noise and severe turbulent flow applied
with a realistic patchy turbulence model.

I. Introduction

O��� the last 15 years, the aviation industry has experienced a 64% increase in air tra�c [1]. Along
with this boost, the fatalities per number of flights performed globally has drastically decreased by

almost 68%. The majority of these fatalities can be linked to in-flight loss of control (LOC-I) which results
from the deviation of an aircraft from its intended path or from its operational flight envelope [2]. The
aforementioned downward trend in fatalities could be backtracked to improvements in automation, particularly
due to advancements in flight control systems that allow in-flight operations to proceed more safely without
incurring deviations from the flight envelope.

Recent advancements in the development of flight controllers have been focused on creating learning
controllers based on machine learning. [3] identified Reinforcement Learning (RL) as one of the machine
learning techniques that could be implemented to improve flight control performance. Reinforcement learning
is a framework inspired by how humans approach learning, where an agent tries to accomplish a task by
trial and error. Learning by interaction allows the controller to not be dependent on the dynamics of the
environment and be better suited at adjusting to unknown situations [4]. Reinforcement learning not only
provides a framework for dealing with uncertainties but it does so in an e�cient manner. [5] found that RL
scores better than humans in many video games and hint that this framework could be used to potentially
substitute the need of a supervisor for many higher complexity tasks. In flight control research, RL has been
widely investigated. [6] proposes a research focused on applying RL methods to robust and adaptive flight
control tasks. In the paper, a non-learning controller is used as a benchmark to compare the e�cacy of a
DDPG learning controller when working on the automatic landing of a large cargo aircraft. Similar work
has been done by [7], who developed an automatic landing DDPG controller for a fixed-wing aircraft. The
flexibility of RL in flight control is showcased by its use with many di�erent aircraft and learning tasks.
Notable examples are [8] where a TD3 controller for a Flying-V aircraft is developed and [9], where a DDPG
controller is trained for the control of an Unmanned Aerial System (UAS).

�M.Sc student, Control and Simulation Division, Faculty of Aerospace Engineering, Kluyverweg 1, 2629HS Delft, the
Netherlands
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The flexibility provided by reinforcement learning allows for many di�erent flight control tasks throughout
the flight envelope to be carried out. This adaptability, together with the robustness many of the researches in
the field prove, make reinforcement learning an excellent candidate for further decreasing airborne accidents.
As mentioned before, incidents due to LOC-I are rather prominent as they can occur during any airborne
phase of the envelope. LOC-I happens mostly due to failing to prevent or recover from stall and is prevalent
during initial climb, descent and landing [2]. Descent can be demanding in terms of performance, as it occurs
at steep pitching angles and fast vertical velocities. Therefore, it is interesting to design a learning controller
for this section of the flight envelope. According to [10], EASA’s stall recovery procedure indicates the return
to the intended flight path once the aircraft has returned to a safe condition. Therefore, this research will fo-
cus on developing a learning flight path controller able to avoid unsafe flight conditions from the top of descent.

The contribution of this paper is the development of a state-of-the-art learning flight path controller
assisted by a shield to further advance the e�orts in improving flight safety. The shield will act as a
separate controller that can propose a safe action when the environment nears risky states. This way, the
learning DDPG flight controller will be able to maintain the aircraft within the safe flight envelope without
being directly equipped with knowledge about safe boundaries. The developed approach will be tested on a
high-fidelity simulation model of the Cessna Citation PH-LAB, a research business jet operated by Delft
University of Technology. This paper is structured as follows. The fundamentals of reinforcement learning
and its safe counterpart are given in Section II. The design of the learning controller and of the shield are
detailed in Section III. Section IV presents the results of the research and discuss the relevant findings. Finally,
Section V contains the conclusions and the recommendations given by the author.

II. Fundamentals
This section will discuss the keystone topics of this research. Section II.A will present the main notions
of reinforcement learning. Section II.B will present the specific RL algorithm used to develop the flight
controller while Section II.C will present the shielding technique.

A. Reinforcement Learning
Reinforcement learning (RL) is a machine learning method that takes inspiration from the way humans learn.
An agent interacts with the environment and receives a reward for an action taken, leading to a learning
approach based on trial and error. The cornerstone of reinforcement learning are Markov Decision Processes
(MDPs) which describe the interactions between the agent and the environment. At a certain time step C, the
agent goes from state BC to state BC+1 after an action 0C is taken and a reward AC+1 is awarded. This transition is,
according to the Markov Property, only dependent on the agent’s current state and can be expressed by Eq. (1)

P {BC+1, ÃC+1 | BC , 0C } (1)

where ÃC+1 is the immediate reward acquired by the agent after 0C is performed [11]. The goal of RL is to
maximise not the immediate reward, but rather the discounted reward accumulate by the agent over the whole
training until the terminal time C + # + 1. This is defined as 'C and given by Eq. (2)

'C = ÃC+1 + WÃC+2 + . . . + W
#
ÃC+#+1 =

1’
#=0

W
#
ÃC+#+1 (2)

where W is the discount factor used to balance the influence of immediate and future rewards [11]. The agent
learns by following a policy c, formally defined as the probability of an agent in a state BC performing an
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action 0C . The e�ectiveness of a given policy is established by the value-function given by Eq. (3) in MDPs’
notation [11].

&
c (BC , 0C ) = ⇢c

( 1’
#=0

W
#
AC+#+1 | BC = B, 0C = 0

)
(3)

Many RL algorithms divide the notion of policy and value-function between two stakeholders: an actor and a
critic. The actor is the policy structure that chooses the actions taken by the agent while the critic gives an
estimation of the value-funciton &

c (BC , 0C ) [12].

B. Deep Deterministic Policy Gradient
Deep Deterministic Policy Gradient (DDPG) is an o�-policy algorithm first developed by [13] as a bridge
between Deep Q-Network (DQN) and Actor-Critic (AC) algorithms. DDPG implements the dual actor-critic
structure of AC algorithms together with the idea of using neural networks as function approximators from
DQN. As it can be seen from Algorithm 1, both the critic & :̄ and the actor c\ are indeed represented by
neural networks.

Algorithm 1 Deep Deterministic Policy Gradient [13]. Adapted from [4].

1: Initialize randomly-chosen weights \ and : for policy c\ and critic & :̄ networks, respectively
2: Initialize weights \  \ and :  : for policy c\ and critic &: target networks, respectively
3: Initialize initial state B0, random process # and smoothing factor g
4: Initialize memory bu�er D
5: Sample initial action 00 ⇠ c\ (00 | B0)
6: for each step C do
7: Execute action 0C = c\ (0C | BC ) + #

8: Sample AC and BC+1 ⇠ P {BC+1 | BC , 0C }
9: Store transition (BC , 0C , AC , BC+1) in D

10: Sample a random mini-batch of = transitions (B8 , 08 , Ã8 , B8+1) from D
11: Compute targets: H8 = A8 + W&:

�
B8 , c\ (B8)

�
12: Update critic with one-step gradient descent by minimizing the loss:

! =
1
=

=’
8=0

(H8 �&: (B8 , 08))2

13: Update the actor policy using the sampled policy gradient:

r\ � ⇡
1
=

=’
8=0

r0&: (B, 0)
�����
B=B8 ,0=08

r\c\ (B)

������
B=B8

14: Update the target networks weights:

\  (1 � g)\ + g\

:  (1 � g): + g:

15: end for

The state and action spaces for DDPG are continuous, and in order to alleviate the computational strain,
the algorithm uses a deterministic policy c\ to map the states to specific actions.
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The Q-function is updated with the loss funciton !, aimed at minimizing the mean-squared Bellman error
similarly to DQN algorithms. The concept of experience replay is also used in DDPG, i.e. granting both actor
and critic to be updated by sampling a mini-batch of transitions (B8 , 08 , Ã8 , B8+1) stored in D otherwise known
as the replay bu�er. This allows the agent to learn from a set of tuples that are uncorrelated with each other.

When updating the critic, [13] found that automatically applying Q-learning resulted in instability of the
learned policy. This is due to the fact that the &: used to calculate the loss function is also used to determine
the target value H8. To avoid this, target functions with copies of both actor and critic are determined with
weights \ and : slightly lagging the original ones. By doing so, the target values H8 are bound to change more
slowly, allowing for better learning stability. [13] pinpoints exploration as a major challenge of algorithms
dealing with continuous action spaces. To guarantee su�cient exploration, the policy c\ is supplemented
with noise sampled from an Ornstein-Uhlenbeck process.

C. Safe Reinforcement Learning via Shielding
Safe reinforcement learning has been the focus of many researches in the last decades. Generally speaking, the
main approaches aim to either modify the agent’s exploration process by e.g. providing external knowledge or
to modify the optimization criteria by e.g. constraining the learning [14]. One interesting method developed
from merging external knowledge and constrained learning is shielding [15]. This technique allows the agent
to learn without constraints in the safe state space but gives advice and can overrule an action suggested by
the learning agent. A shield observes the states that a certain action leads to and intervenes only if the this
action leads to an unsafe state space. [15] adapts the same definition of safety as [14], hence as the concept of
not visiting any troublesome state. For this definition to apply, the shield must have some indication on which
states are dangerous or not. Therefore, shielding uses external knowledge as well as constrained learning.

Figure 1. Control loop including the shield. The blocks in blue show the Safe Initial Policy (SIP) model and the Safety Range
"SR model.

In the context of this work, the shield is adapted from [16] who in turn used the technique first developed by
[15]. Fig. 1 shows the control loop for a so called post-posed shield, where the agent is free to explore the
state space without constraints until a the boundary between safe and unsafe action space is approached. The
shield is composed of two separate entities, a Safe Initial Policy (SIP) subsystem and a Safety Range ("SR)
subsystem. The SIP can di�er based on the complexity of the problem. It can span from a rule-based model
to a learning agent. At time C, the agent proposes an action 0C while the shield observes the e�ect of 0C on the
environment. The SIP receives observations from the environment and proposes a safe action 0safe for the

8



current state BC if the latter is considered risky. This action 0safe is transferred to the "SR which stores it at
time C. Depending on the value of BC , the "SR can decide to overrule 0C with 0safe or with its scaled version,
if the action proposed from the SIP is too conservative. If the action 0C made by the agent does not lead to
unsafe states (as checked by "SR), 0̂C  0C is executed; otherwise, the chosen adjusted safe action 0̂C  0

0
C

is.

"SR plays di�erent roles. First, it determines whether a state BC is safe for a given action 0C . Sec-
ond, it receives the proposed safe action from the SIP and scales it if the action is deemed too conservative.
Finally, it checks whether the action made by the agent should be overruled by 0̂C or not. The advantage of
not always following the SIP becomes apparent when the environment approaches a risky state space. The
agent is able to learn an improved policy in close to risky situations, while being able to fall back on a strictly
safe policy generated by the SIP. Since the aim of the SIP is to provide a safe action whenever a risky state is
being approached, it does not have to perform a tracking task particularly well. As 0C is not overruled by
the "SR in safe states, the performance of the agent is not always deteriorated by 0̂C . This allows the agent
to learn a policy that can maintain an adequate performance during safe operations. The adaptation in this
research modifies the process of learning: the agent is not trained with the shield, but the latter is added in a
post-learning setting. This allows the design of the shield to be more flexible so to better analyze the e�ect of
this safety technique on the control task.

III. Controller Design
Having discussed the fundamental concepts used in this research, this section will discuss their integration
with the flight controller. Section III.A will introduce the simulation model, Section III.B will discuss the
development of the DDPG algorithm and the shield. Finally, Section III.C will give an overview of the
training process.

A. Cessna Citation 500 Model
In this research, the environment that the DDPG agent will control is a high-fidelity non-linear simulation of a
Cessna Citation 500 business jet aircraft [4]. The model was built by researchers at the Delft University of
Technology as the need of a standard flight CAD package for control purposes arose. The Delft University
Aircraft Simulation Model and Analysis Tool (DASMAT) is the virtual copy of the dynamics of the Cessna
Citation 500 PH-Lab, shown in Fig. 2.

Figure 2. Cessna Citation 500 PH-LAB. †

The dynamics model used in this research is non-linear and trimmed upon initializing the simulation. The
aircraft has twelve states as shown in Eq. (4) and three control inputs given in Eq. (5).

G = [?, @, A,+TAS, U, V, \, q,k, ⌘]> (4)

†Image from A. Wilson (with permission).
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D = [X4, X0, XA ]> (5)

The aircraft is trimmed for flight conditions that represent a standard top of descent maneuver. The values of
G0 and D0 can be found in Table 1.

Table 1. Initial states and control inputs.

State Initial value Unit State Initial value Unit
Roll rate ?0 0 [deg/s] Geometric altitude ⌘40 10000 [m]

Pitch rate @0 0 [deg/s] Horizontal position along Earth x-axis G40 0 [m]

Yaw rate A0 0 [deg/s] Horizontal position along Earth y-axis H40 0 [m]

True airspeed +) �(0 150 [m/s]

Angle of attack U0 2.4 [deg] Control Input Initial value Unit
Angle of sideslip V0 0 [deg] Elevator deflection X4 -1.0 [deg]

Roll angle q0 0 [deg] Rudder deflection XA 0 [deg]

Pitch angle \0 2.4 [deg] Airleron deflection X0 0 [deg]

B. Shielded DDPG Controller Design
The shielding framework aims to perform flight path angle tracking in a safe manner without providing the main
learning agent with information about unsafe conditions. As mentioned in Section I, flight path control has been
chosen as the last step of EASA’s stall recovery procedure dictates to return to the indicated flight path angle W.
Therefore, it is interesting to develop a controller able to return to the intended W after reaching risky state spaces.

The shielding framework can be visualized in Fig. 3 where in black is the loop used by the DDPG
agent to train while in blue is the post-training addition of the shield. The DDPG agent will be tasked with
controlling the flight path angle W of the Cessna Citation 500 by outputting a reference pitch rate @ref. The
agent trains with the aim of minimizing the tracking error W4 = Wref � W. The reward function is the negative
of the absolute value of W4, as given by Eq. (6).

A = � |W4 | (6)

From the reward function one can gather that the agent does not have any information regarding safe or safety
critical states. This allows the agent to reach an optimal policy for tracking Wref without the constraints or
knowledge required to maintain safety. The agent is provided six observations to understand the aircraft’s
dynamics and to monitor its performance with respect to the reward acquired. The first observation is the
flight path angle error W4, useful for the agent to distinguish between an adequate or a poor performance.
The second observation is the elevator deflection angle X4 as the action generated by the agent @ref results
in an otherwise unknown actuator angle. The third and fourth observations are the pitch angle \ and the
angle of attack U, as they are directly influence the flight path angle according to the relation W = \ � U. The
fifth observation is the pitch rate @ as it directly a�ects \. Finally, the last observation is the reference pitch
rate @̂ref. During learning, @̂ref = @ref as the shield is not active. However, once the system is simulated, the
action proposed by the agent may not be the one fed to the aircraft dynamics model. Therefore, it is crucial
for the agent to know whether its proposed action is adequate or not and what action should be suggested
at the next time step. The agent has been designed with the hyperparameters given by [13] and [17]. A
summary is presented in Table 2. Most of the hyperparameters are taken directly from [13] as a research on
hyperparameters tuning was not the aim of this study. However, in an attempt to improve the training time,
the batch size was increased to 1024 as suggested by [17].
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Figure 3. Shielding framework for safe flight path angle tracking.

The DDPG agent’s topology also follows the design given by [13]. Both the actor and the critic are composed of
two hidden layers using rectified non-linearity (ReLu) activation function with 400 and 300 units respectively.
Similarly to [13], actions were not included in the network until the second hidden layer of the Q-network.
One major di�erence from the default design is the addition of a normalization layer in the penultimate feature
of the actor network. According to [18], by normalizing the penultimate layer of the actor network, variance
in the training results can be drastically reduced and training time can be decreased. The actor network uses
an output tanh layer to bound the actions of the agent. The parameters defining the Ornstein-Uhlenbeck
exploration process follow the default values as defined in [13] and are given in Table 2.

Table 2. Hyperparameters for DDPG agent as given by [13] and [17]. The same hyperparameters are
used for the training of the SIP agent described in Section III.B.1.

Parameter Value Actor Critic
Discount factor W 0.99 Parameter Value Parameter Value

Mini batch size |B| 128 Learn rate _ 1 · 10�4 Learn rate _ 1 · 10�3

Experience bu�er length 106 Gradient Threshold 1 Gradient Threshold 1

Target smooth factor g 0.001 L2 Regulatization factor 1 · 10�5 L2 Regulatization factor 2 · 10�4

Optimizer Adam Hidden layers 2 Hidden layers 2

Ornstein-Uhlenback mean attraction constant \ 0.15 Layers activation ReLu Layers activation ReLu

Ornstein-Uhlenbeck variance f 0.10 Neurons L1/L2 400/300 Neurons L1/L2 400/300

The controller described above and represented by the Agent block on Fig. 3 does not, by itself, provide
any notion of safety nor learns a policy that keeps the agent in a safe state space. The shield shown in blue in
Fig. 3, is implemented in the loop after training is complete. This additional system consists of two elements:
the Safe Initial Policy Model (SIP) and the Safety Range Model "SR.

1. Safe Initial Policy Model
The Safe Initial Policy (SIP) model is actively in charge of proposing a safe action to the DDPG agent tracking
the flight path angle Wref. Depending on the complexity of the safety problem, the SIP can vary from a simple
rule based model to a more intelligent one. The control problem to be handled in this research is considered
of high complexity, due to the non-linear nature of the model, the amount of variables involved and their
coupled nature. The proposed SIP is a previously trained agent able to propose an action 0safe. The agent is
defined with the same hyperparameters and network as the main DDPG agent described above in Section III.B
to avoid issues related to compatibility. When referring to Fig. 3, the SIP agent is trained with the same black
loop as the DDPG agent but with the addition of = in the observation matrix, shown in blue. This is deemed
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necessary as = is an integral part of the reward function and gives the agent knowledge about its performance.

The agent is trained according to the constrained criterion proposed by [14]. During learning, the agent aim is to
track the flight path angle Wref while avoiding violating certain safety constraints. In the context of this work, the
agent learns to track Wref without violating constraints in the angle of attack U and the load factor =. The angle of
attack is the main parameter that influence the stall pattern of an aircraft which, according to [19], is still a main
contributor to overall aviation accidents. Additionally, the load factor is considered relevant as going over cer-
tain limits can be dangerous to both passengers [20] and to the aircraft’s structural integrity as discussed in [21].

The SIP agent is trained with notions of Ustall and =crit as part of the reward function. Similarly to
[7], the reward function is composed of di�erent parts each characterizing di�erent notion to learn and is
described as follows:

A = 'C + 'U + '= (7)

The first part is 'C related to learning to track Wref with su�cient accuracy. This is the same reward function
as for the DDPG agent described in Eq. (6). The second part is 'U, given in Eq. (8). According to [22], a
CS-25 aircraft should include an enhanced stall protection mechanism in their flight controllers. A controller
on board a CS-25 type aircraft, a class to which the Cessna Citation 500 belongs to, should not allow the
angle of attack to exceed the Ustall. The choice of Ustall follows from [20]. 'U ensures that the agent learns to
track the signal without exceeding the critical angle of attack Ustall of 20 degrees and without turning U into a
negative angle which is set arbitrarily as the lower bound.

'U =

(
0 if 0� < U < 20�

�|U | otherwise
(8)

The last part of the reward function is '=. It awards a reward if the agent is able to track the reference Wref

without exceeding arbitrarily set limits in the load factor as shown in Eq. (9). According to [23],

"the positive load factor command limit with electronic flight control system (EFCS) functioning
in its normal mode and the airplane in its normal trim state for the flight condition must not be
more than 2.5 g with the high-lift devices retracted, and 2.0 g with the high-lift devices extended."

To allow the agent’s policy to be robust to both configurations, it is chosen to have a tighter upper bound so
that the constraint can be true in both cases. In this research, the lower bound of the load factor is set 0.35
while the upper one is set to 2.

'= =

(
0 if 0.35 < = < 2

�|=| otherwise
(9)

It should be noted that both |W4 | and |U | in Eq. (6) and Eq. (8) are in radians. This is done in order to better
correlate the observations and the reward scheme.

2. Safety Range Model
Once the SIP proposes a safe action, it may not be necessary to overrule the action of the DDPG agent
as an action 0C is only overruled if it leads to an unsafe state. Therefore, there is the need of a sub-
system that decides which action should be fed to the pitch rate controller and in turn to the elevator
actuator. The safety range model "SR is a subsystem of the shield in charge of deciding what action is sent to
the environment. This model is a simple rule based system, however it is crucial for the shield to work smoothly.

The "SR decides which action 0̂C will be passed to the environment by observing two di�erent states:
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the angle of attack U and the load factor =. The "SR receives the values of U and = at a time C and compares
them to set values that are considered safe. Fig. 4 shows a simplified representation of how the states are
categorized by the "SR. The "SR makes decisions based on in which state space S the state BC+1 will be.
First, if the agent at state BC+1 would stay in the green area, the action @̂ref sent to the pitch rate controller is

Figure 4. Graphic representation of safe (green), low risk (yellow), high risk (orange) and unsafe (red) state spaces S.

the same action @ref as the one proposed by the DDPG agent. Second, if the agent at state BC+1 would go from
Ssafe to a low risk state space Srisk! ,it means that the action proposed by the agent could be on the trajectory
towards and unsafe state space. However, the action proposed by the SIP might be too drastic and could lead
to a premature deterioration in tracking accuracy. For this reason, if BC+1 2 Srisk! then @̂ref  @

0
ref is a scaled

version of @refsafe . The scaling factor : is decided arbitrarily so to avoid jumps in pitching rate and is smaller
than 1. Finally, if the agent’s state BC+1 2 Srisk� , the action from the SIP is fed to the pitch rate controller,
hence @̂ref  @

0
ref  @refsafe . This way, if the agent is in a high risk state space Srisk� , the safe action can help

redirect the agent towards a lower risk state space. By doing so, the shield avoids the agent reaching an unsafe
state space Sunsafe.

The "SR checks for the conditions described above for both U and = with two equal and parallel sys-
tems. Each system independently analyses the states and compares them to the safety constraints. For clarity,
the variables @̂refU and @̂refn given in Eq. (10) and Eq. (11) can be defined. Each represent the end product of
the two subsystems in the "SR.

@̂refU =

8>>><
>>>:

@ref if 2�  U  8�

: · @refsafe if 1�  U < 2 or 8 < U  12

@refsafe otherwise

(10)

@̂refn =

8>>><
>>>:

@ref if 0.8  =  1.2

: · @refsafe if 0.5  = < 0.8 or 1.2 < =  1.5

@refsafe otherwise

(11)

If both @̂refU and @̂ref= are equal, the "SR will not have to make a choice between two di�erent options. If
the two values are not the same, the "SR will always chose the safest option between @̂refU and @̂ref= . In this
research, the unscaled value proposed by the SIP @refsafe is always considered the safest action. The majority
of the intermediate values at which the di�erent conditions for Eq. (10) and Eq. (11) are defined, have been
chosen arbitrarily during the design of the controller. Although the upper limits for both the angle of attack
and load factor are defined by previous research as given in [20], or by governing bodies as explained in
Section III.B.1, these limits have been set to a lower value to provide some leeway for stall prevention and to
be more relevant for the flight envelope presented during the agent’s training.

C. Training
In this research, the shield will be deployed post-learning, meaning that the DDPG agent will be trained
before the shield is inserted in the loop. Hence, the DDPG agent will train with the model shown in Fig. 3
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with the blue selection, representing the shield, excluded from the system. This e�ectively removes any
notion of safety in the loop and sets @ref = @̂ref. Training is performed with short episodes of 20 seconds
each whilst the sampling rate is set to 100 Hz. The sampling rate matches the DASMAT model sampling
rate to avoid implementation issues. The reference flight path angle Wref to train with has been chosen as to
model a conventional step down approach designed according to [24]. The reference flight path angle has
been modeled as follows:

Wref =

8>>><
>>>:

0� + G for 0 < C  5

�3� + G for 5 < C  15

0 + G for 15 < C  20

(12)

where G is a random value drawn from a uniform distribution of interval [-0.5; 0.5] degrees upon initialization.
This allows the trained agent to generate a more robust policy. The rest of the states were initialized as the
trimmed conditions given in Table 1.

Figure 5. Average reward during training of a DDPG agent (in blue) and SIP agent (in lime green) for flight path angle
tracking. The policies used for reproducing the results shown in this paper are at episode 1744 (marked in orange) and
episode 1510 (marked in purple).

The results of the training for the DDPG agent is shown in blue in Fig. 5 where a successful policy is
found at episode 1744. It can be seen that the learning follows a standard training curve typical of DRL agents
solving complex control tasks [8]. A high rewarding plateau is reached around episode 1650, suggesting that
the agent is su�ciently trained. The SIP, whose characteristics, such as the observations, reward function and
networks hyperparameters are given in Section III.B.1, is trained in an analogous manner as the DDPG agent.
The results of the training can be seen in lime green on Fig. 5. It is necessary to remember that the reward
function consists of three di�erent parts, hence an episode with similar average rewards can highly di�er
in terms of performance. In this case, a policy was deemed successful if it was able to remain within the
safety limits imposed in the reward function while following, albeit with higher tracking error, the reference
flight path angle. It can be seen that the average reward greatly oscillates up until the 1100th episode, before
converging to a plateau.

IV. Results
The response of the Cessna Citation 500 model to a conventional step down approach with an unshielded and
shielded DDPG controller are discussed in this section. First, the results of the simulation without the shield
are evaluated in Section IV.A. Second, the results of the SIP agent training are presented in Section IV.B
to show the ability of the agent to perform its intended task. Third, the response for the complete model
including the shield are presented in Section IV.C. Fourth, the performance of the unshielded and shielded
controllers are compared in Section IV.D. Finally, the robustness of the controllers is assessed in Section IV.E.

nMAE% =
mean( |W4 |)
mean( |Wref |)

(13)
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In this research, the tracking accuracy is determined by the normalized Mean Absolute Error percentage
(nMAE%) calculated as shown in Eq. (13).

A. Flight Path Tracking with Unshielded DDPG Controller
The aim of this research is to develop a controller able to safely track the reference flight path angle of a
Cessna Citation 500 at top of descent. As mentioned in Section III.B, the safe RL controller is deployed
post-learning, while the tracking task is delegated to a DDPG controller with no notion of safety. In the
upcoming sections, the results of the learning controller tasked solely track Wref will be discussed.

1. Nominal Flight Conditions
The responses shown in Fig. 6 are the results of the DDPG controller trained according to Section III.C. The
results shown are for a profile for which the DDPG agent was not trained. The reference flight path angle
varies between 0 degrees and steps of -3, -4 and -2 degrees respectively. This allows the altitude ⌘ to mimic
a step down approach where the altitude is gradually decreased after top of descent. The Wref tracking is
performed with a small steady state error throughout the 100 seconds of runtime. Although for C  5B the
error is less than 0.02 degrees, the maximum error reached for the remaining of the simulation is 0.4 degrees
at C = 60B during the horizontal portions of the signal. This consistent steady state error might be caused by
either the policy learned by the agent or by a non-optimal PID tuning of the pitch rate controller. However, as
already mentioned, the error is small for C  5B where Wref = 0. These are the same conditions the agent is
originally trained for, as given in Eq. (12). Therefore, the steady state error is most likely caused by a partially
faulty policy. A solution to reduce the steady state error, proposed by [25], is to include the integral error of

Figure 6. Flight path tracking with unshielded DDPG controller in nominal flight conditions. The response of the agent is
given in blue, the reference signals are shown by the dashed orange lines. The control inputs are shown in purple.

the flight path angle as an observation. The DDPG controller generally shows tracking with less oscillatory
behavior and less overshoot after the reference angle drastically changes than research with similar control
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tasks such as [6] and [25]. This might be due to the longer training times: the DDPG agent in this research
has been trained 18 times longer than the agent proposed by [25]. The controller performs well in terms of
tracking. The nMAE% is equal to 17.1%, showing that the DDPG controller can successfully track Wref. The
maneuver implies harsh changes in flight path angle which in turn result in large changes in \ and U. The
variation of angle of attack is particularly interesting: as this agent holds no notion of safety, U clearly crosses
the boundaries of safety defined in Section III.B.2. In this maneuver, the angle of attack does not reach the
value of Ustall but does indeed cross the lower bound of safety discussed previously. This breach in safety can
be also seen in the response of the load factor =. Not only does the load factor reach a value of 2 at C = 60B but
it also crosses 0 reaching values of -0.35. This is clearly not ideal for passenger safety nor structural integrity
of the aircraft. Overall, the percentage of simulation time during which either U or = are in a high risk state
space Srisk� is 2.5% while the agent is 5.9% of times in an unsafe state space. Prolonged time in a unsafe
state space is not ideal, therefore this issue will be addressed by implementing the shield.

2. Turbulent Flight Conditions with Biased Sensor Noise
The working of the DDPG agent is also tested in a more realistic environment. To increase the fidelity of the
model with respect to a real-world application, turbulence is introduced in the environment and biased sensor
noise is added. The turbulence model used in this research is developed by [26] and referred to as a patchy
turbulence model. The term patchy refers to the non-Gaussian nature of the turbulent flow. The turbulent
field enforced is symmetric and has non-zero gust velocities D6 and F6. The variance of the gust velocities
f is set to 1.3, mimicking severe turbulent conditions as given by [27]. The turbulence model proposed by
[26] comes from e�orts in making flight simulators more realistic [28]. The biased sensor noise is added
according to [29] to pitch rate and angle sensors, to the elevator deflection sensor as well as the angle of attack
sensor. An overview of the values used can be seen in Table 3.

Table 3. Cessna Citation PH-LAB aircraft sensor characteristics. Values retrieved from [29].

Observed state X4 [rad] \ [rad] U [rad] @ [rad/s]
Noise f

2 5.5 · 10�7 3.2 · 10�5 4.0 · 10�10 6.3 · 10�4

Bias 2.4 · 10�3 4.0 · 10�3 [-] 3.0 · 10�5

The performance of the trained DDPG agent in turbulent flight conditions is shown in Fig. 7. It can be
seen that the flight path angle tracking shows a similar behaviour as in the nominal conditions shown in Fig. 6.
The response still shows a steady state error, especially pronounced for 60B  C  75B. The angle of attack
shows a slight amplified behaviour with respect to its nominal condition counterpart. This can be traced
back mostly to the e�ects of turbulence as U is defined with respect to the oncoming flow. The load factor
however, shows a greater noisy trend. The amplitude of oscillations is small but of high-frequency. These
high-frequency noisy oscillations can be attributed to the action proposed by the agent @ref, which in turn
introduces disturbances in the elevator deflection and in the load factor. This is clearly due to the poor training
of the agent in trading o� control e�orts and tracking accuracy. An idea to improve this behaviour would be to
add a control e�ort penalty in the reward function of the agent described in Section III.B. When looking at the
safety limits, the upper bound of = increases by 0.1 while the lower bound further decreases by -0.3 compared
to the nominal conditions. The amplification of the peaks is mostly due to the turbulent flow. The agent spends
2.1% of the simulation in Sunsafe, less than in the nominal flight conditions. In terms of tracking performance,
the controller’s nMAE% of 16.1% is slightly lower than the nMAE% in nominal conditions which has a
nMAE% equal to 17.1%, showing that the controller is robust to atmospheric disturbances and sensor noise.
Although not trained for turbulent environment, sensor noise or for this particular flight profile, the trained
agent is still able to track Wref and is therefore considered a good candidate for the shield implementation.
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Figure 7. Flight path tracking with unshielded DDPG controller in turbulent flight conditions and added biased sensor noise.
The response of the agent is given in blue, the reference signals are shown by the dashed orange lines. The control inputs are
shown in purple.

B. Safe Initial Policy as Controller
In Section III.B.1, the model in charge of proposing a safe action for each time step C was described. In
this research, the SIP takes the shape of a trained agent, designed analogously to the controller described in
Section III.B but with a modified reward function and an additional observation variable to account for safety.
The results of the training can be seen in Fig. 8. It should be noted that the flight profile shown below is not
the profile with which the agent was trained. As can be seen, the agent successfully tracks the reference flight
path angle although its accuracy greatly decreased with respect to the results on the DDPG agent shown in
Fig. 6. The reason can be attributed to the necessary trade-o� the agent has to make between the performance
section of the reward function 'C and the safety ones '= and 'U. When analyzing the responses, it can be
seen that the learned policy successfully avoids the unsafe state space for both the angle of attack and the load
factor. The agent avoids Srisk� as well as Sunsafe and remains in Srisk! and Ssafe during the whole simulation
time. The response of the angle of attack in Fig. 6 reaches a maximum of 4.8 degrees and a minimum of 2.2
degrees. In contrast, the SIP agent not only lowers the maximum peak to 3.7 degrees but most notably has
minimum peak of 1 degree. A similar trend can be seen for the load factor. The maximum load factor has a
value of 1.8 and minimum of 0.7. The results of the SIP show great improvements as the maximum load
factor is decreased by 0.2 while the minimum is increased by 1.1. This demonstrates that the agent learned a
policy that complies with the safety specifications while still following the reference flight path angle. The
improved safety comes at the price of tracking performance. Comparing the performance of the SIP and the
nominal DDPG case, it can be seen that the DDPG controller’s nMAE% is around 17.5%, which is lower
than its safe counterpart with a nMAE% of 34.6%. In fact, the SIP agent in nominal conditions performs the
worst out of all options given in Table 4. Therefore, although the safety specifications are met, the tracking
performance of this agent can not produce results that could be confidently used as a main controller for real
life applications.
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Figure 8. Flight path tracking with SIP controller in nominal flight conditions. The response of the agent is given in blue,
the reference signals are shown by the dashed orange lines. The control inputs are shown in purple.

C. Complete Shield
The focus of this research is to develop a flight path controller assisted by a shield, introduced to improve safety
without sacrificing tracking performance. The shield has been implemented according to the description in
Section III.B.1 and Section III.B.2.

1. Nominal Flight Conditions
The shield is tested on the same flight conditions as the DDPG agent is subjected to on Section IV.A.1.
During the simulation, the shield is on for 68% of the time. This allows the controller to maintain the
aircraft within safety limits without compromising Wref tracking. For C  5B, the flight path angle is being
tracked analogously to the response of Fig. 6. However, once the reference W rapidly decreases from
0 degrees to -3 degrees, the agent quickly pitches down to follow the reference. The "SR= is the first
to be shortly triggered while the "SRU remains on for more than 5 seconds. From the lower plots of
Fig. 9, it can be seen that "SRU selects first @refsafe and second : · @refsafe . The activation of the shield
maintains the angle of attack at a safe lower bound of 1 degree and the load factor of 0.5; this however
worsens the tracking of Wref. At C = 8B, the shield oscillates between the scaled @refsafe and the action
proposed by the DDPG agent. This occurs due to U moving between di�erent regions of Eq. (10) in a short
span of time. The quick switch between the two actions can clearly be seen in the pitch rate signal. This
results in oscillations in the elevator deflection and consequently in many of the state responses shown in Fig. 1.

The introduction of this disturbance in the responses however, does not particularly a�ect the tracking
nor the safety performance of the agent. Overall, the shape and magnitude of the responses with a SIP
controller shown in Fig. 8 are not much di�erent from the responses in Fig. 6. This way, when going from one
action to another, the fluctuation in @ref is kept small. Additionally, it has been explained in Section III.B.1
that the choice of introducing a scaled version of @refsafe allows for actions that are less drastic in terms of
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tracking performance to be selected when the shield is on. Therefore, the controller designer has the choice
of modifying the scaling factor : either to minimize the introduced noise or to provide an action as close
as possible to @refsafe when the shield is triggered. Between 10 seconds and 20 seconds, the shield is not on,
hence the flight path angle is well tracked. Afterwards, the aircraft pitches up to return to Wref = 0�. To avoid
an unsafe value of =, the shield is activated. The responses show the same noisy behaviour as just discussed.
After the Wref has returned to zero, the shield is inactive. At C = 35B, a more aggressive maneuver is started,
where Wref = �4� is started. Here, the shield is immediately activated due to U reaching a risky state. For the
remainder of the simulation, the shield is mostly on as the angle of attack is consistently below 2 degrees.

Figure 9. Flight path tracking with shielded DDPG controller in nominal flight conditions. The response of the agent is
given in blue, the reference signals are shown by the dashed orange lines. The control inputs are shown in purple. The "SRU

is shown in lime green while the "SR=
in purple. The final "SRU

is also shown in blue. The grey areas represent the times
at which the shield is actively on.

At C = 62B, the shield is briefly o�. The flight path angle reaches Wref before dropping to a lower value due to
the shield being on to avoid unsafe values of U to be reached. This is a clear example of the advantage of
using shielding: the trade-o� between safety and performance is dynamic, allowing the controller to switch
between di�erent modes smoothly. By introducing the shield post-learning, the designer can adjust many
aspects of the shield, such as the scaling factor and the safety limits imposed by "SR or choice of response
performance. The nMAE% of the shielded controller at nominal flight condition is 24.0%. This value is
lower than the results of the SIP at the same IFC, making it clear that implementing a shield is a better
solution in terms of tracking. The shield allows both U and = to always avoid Sunsafe and remain withing the
safety specifications. The agent spends 1.5% of simulation time in Srisk� . This percentage can be decreased
and potentially eliminated by increasing the bounds for which Srisk! is defined as the designer can choose
post-learning how much the agent is allowed to visit states that are close to the unsafe boundary. Therefore,
since the shield allows the agent to perform the tracking task without exceeding the limits set in Eq. (10) and
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Eq. (11), the shielded controller is considered successfully implemented.

2. Turbulent Flight Condition with Biased Sensor Noise
The same turbulent flight conditions and biased sensor noise discussed in Section IV.A.2 are applied to the
Cessna Citation 500 model equipped with a shielded DDPG agent. This will allow the shield to be tested in a
more realistic set-up. The results of the simulation can be seen in Fig. 10. As expected, the shield is triggered
more often in a realistic environment due to higher disturbances. In this simulation, the shield is on 70% of
the time, a slight increase from the nominal case. The performance of the controller is similar to the case
discussed above in Fig. 9 proving robustness to real-life disturbances. More notably, the biased sensor noise
a�ects the response strikingly more when the shield is o� as can be seen by the amplitude of X4. This can

Figure 10. Flight path tracking with shielded DDPG controller in turbulent flight conditions and added biased sensor noise.
The response of the agent is given in blue, the reference signals are shown by the dashed orange lines. The control inputs
are shown in purple. The "SRU

is shown in lime green while the "SR=
in purple. The final "SRU

is also shown in blue. The
grey areas represent the times at which the shield is actively on.

be attributed to the performance of the SIP agent. As the agent has learned to fly within certain limits both
in load factor and angle of attack, it is more diligent with the control of the @ref and in turn of the elevator
deflection. The addition of atmospheric disturbances and sensor noise do not diminish the e�ectiveness of
the shield. Both = and U are kept well below the safety limits in contrast with the unshielded counterpart
discussed in Section IV.A.2. The agent remains in Srisk� only 0.9% of the time and always avoids Sunsafe.
The tracking performance does decrease as the nMAE% is 26.2%, but it is a direct consequence of the shield
being on for a longer section of the simulation. This result gives additional confidence to the e�cacy of the
shield in close to real-life conditions.
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D. Comparison between Shielded and Unshielded Controllers at Nominal Flight Conditions
In Section IV.C.1, an analysis on the Wref tracking with the shield implemented was carried out. The conditions
were analogous to the ones described in Section IV.A.1. A comparison between the responses for the shielded
and unshielded controllers for the nominal flight conditions can be seen in Fig. 11.

Figure 11. Comparison between flight path tracking of shielded and unshielded DDPG agent. The aircraft responses with
no shield implemented are shown in blue. The shielded counterpart are shown in lime green. The control inputs for the
unshielded case are shown in purple, while the shielded counterpart in dark green.

As already mentioned, the Wref tracking is su�ciently well performed by both models. From Table 4, it can be
seen that the nMAE% for the unshielded case in the nominal flight conditions is of 17.1% while the nMAE%
of its shielded counterpart is of 24.0%. These values support the W4 plot shown in Fig. 11. The shielded
controller is less accurate due to the SIP action being chosen for most of the simulation as shown in Fig. 9.
In fact, when the system is controlled solely by the SIP agent as shown in Fig. 8, the nMAE% increases by
almost two times with respect to the unshielded case in Fig. 6. This goes to show that when looking solely
from a tracking performance standpoint, the SIP does not present a viable solution. By implementing the
shield, the tracking performance with respect the nominal DDPG case in Fig. 6 worsens, but by a low enough
quantity that it can still be considered successful. Therefore, in terms of safety, the addition of the shield
provides a clear improvement in both the angle of attack and the load factor. From Table 4, it can be seen
that shielded controller in nominal flight conditions and in turbulent ones outperform the unshielded DDPG
controller in terms of safety. In both cases, the shield never allows either U or = to enter Sunsafe, unlike the
unshielded counterpart, as Srisk� is only visited 1.5% and 0.9% of times. This represents a clear decrease
from the unshielded cases showing that the agents remains consistently at a safe or low risk state space. The
angle of attack is consistently lower when the shield is implemented. The maximum U in Fig. 6 reaches
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4.7 degrees while the minimum is -2.1 degrees. With the addition of the shield, the aforementioned peaks
in U are decreased to 4 degrees and 0.8 degrees. While the upper bound did initially not lead to an unsafe
state to be reached, the improvement of the lower bound of U makes sure that the shielded response does
not violate the safety requirements. The load factor’s response also improves in terms of safety with the
addition of the shield. From Fig. 11, it can be seen that the maximum load factor is decreased from 2.1 to 1.8
while the minimum is increased from -0.4 to 0.6. Clearly, the shield allows the controller to perform its task
while maintaining safety throughout the maneuver. Therefore, although the tracking performance has slightly
decreased, the goals regarding safety have been successfully met.

E. Robustness Analysis
The DDPG, SIP and shielded DDPG controllers are tested on di�erent initial flight conditions (IFC) and
di�erent reference flight path angles so to assess their robustness. An overview is given in Table 4.

Table 4. Overview of robustness analysis results to di�erent initial flight conditions and reference
signals. All controllers were trained on the nominal flight conditions.

Simulation Initial altitude [m] Initial +TAS [m/s] nMAE% SriskH% Sunsafe%

DDPG controller

Nominal FC 10000 150 17.1% 2.5% 5.9%

Turbulent conditions and biased sensor noise 10000 150 16.1% 1.4% 2.1%

Sinusoidal reference flight path angle 10000 150 33.6% 15.7% 1.3%

Sawtooth reference flight path angle 10000 150 31.0% 1.6% 5.0%

IFC 1 7000 150 29.3% 56.6% 3.9%

IFC 2 7000 90 40.0% 0.5% 1.2%

IFC 3 2000 150 41.4% 34.4% 64.2%

IFC 4 2000 90 15.7% 1.4% 1.5%

SIP controller

Nominal FC 10000 150 34.6% 0% 0%

Turbulent conditions and biased sensor noise 10000 150 35.0% 1.5% 0%

IFC 1 7000 150 34.3% 63.6% 0%

IFC 2 7000 90 45.1% 0% 0%

IFC 3 2000 150 35.9% 16.6% 83.2%

IFC 4 2000 90 33.3% 0% 0%

DDPG with shield

Nominal FC 10000 150 24.0% 1.5% 0%

Turbulent conditions and biased sensor noise 10000 150 26.2% 0.9% 0%

Sinusoidal reference flight path angle 10000 150 37.0% 10.5% 0%

Sawtooth reference flight path angle 10000 150 48.0% 6.0% 0%

IFC 1 7000 150 34.4% 65.9% 0%

IFC 2 7000 90 40.7% 0.1% 0%

IFC 3 2000 150 35.9% 14.2% 85.8%

IFC 4 2000 90 21.9% 0.1% 0%

When looking at the nMAE% among the di�erent IFC, it can be noticed that low altitude and low velocity
have the best tracking performance. The lower altitude and therefore high atmospheric density seem beneficial
to the controller’s performance. IFC 1 also performs well across the board in terms of tracking performance.
With a higher velocity comes a quadratic increase in dynamic pressure and consequentially an increase in
control e�ectiveness. From the results presented in Table 4, it is not possible to define a clear relationship
between altitude, velocity and tracking e�ectiveness. The cause can be found in the high non-linearity of the
DASMAT model as well as the non-linear nature of a RL controller. Although no specific conclusion can be
drawn regarding the relationship between tracking performance and IFC, all controllers achieve a nMAE%
below 50% and can therefore be considered robust. The shielded and unshielded DDPG controllers were
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additionally tested with di�erent Wref. Both controllers are able to successfully track the di�erent references
with relatively low nMAE%. It should be noted that during the tracking of the sawtooth reference W, the
shield was triggered during the entire simulation. Therefore, the maneuver was e�ectively carried out by the
SIP. From a tracking performance point of view, it is clear that the randomization of Wref during training has
beneficial e�ect on robustness. In terms of safety, the shield consistently keeps the agent outside of Sunsafe as
much as possible while performing the tracking task. Across the eight scenarios simulated, the shield is able
to keep the time spent in Sunsafe equal to 0% for seven scenarios. The only case where the shield is not able to
keep the agent out of the unsafe state space is IFC 3. In this scenario, the low altitude and high speed result
in U consistently below the safety limits. As the shield is on 100% of the times and the controller used is
e�ectively the SIP, this fault can be linked to the way the reward function of the SIP is designed. Therefore,
the shield can be considered robust to changes in flight conditions and reference signals as seven out of eight
of the scenarios are e�ectively kept away from Sunsafe at all times.

V. Conclusion
This research presents the development of an o�ine, model-free Deep Deterministic Policy Gradient (DDPG)
flight path angle controller equipped with a shield, a safety enhancing technique, used for the safe control
of a Cessna Citation 500. The shield is composed of a Safe Initial Policy (SIP) agent and a Safety Range
("SR) model. The former is a trained DDPG agent with knowledge about state space safety, able to suggest
safe actions to the main DDPG agent, while the latter is a rule based model in charge of overruling actions
that would lead to unsafe state spaces. The shielded controller is able to successfully achieve a conventional
step down approach with low tracking error and overall stable responses while maintaining the agent in
a safe state space at all times. The e�ectiveness of the controller in real-life conditions is also proved by
introducing biased sensor noise and atmospheric turbulence. Additionally, it is shown that the controller is
robust by testing its performance in various initial flight conditions and reference signals. Therefore, this
research shows the potential of shielded DDPG controllers for the development of safe, robust flight controllers.

Several steps can be done in order to improve the completeness of this research. The performance of
the SIP is based on the trade-o� between safety and tracking performance as defined by its reward function.
Although it is necessary for the agent to propose an action relevant to the simulated flight envelope, this
can cost in terms of safety. It is recommended to investigate the use of a hierarchical reward function. The
"SR overrules actions taken by the main DDPG agent and substitutes them with ones that will not lead to
an unsafe state. However, since the "SR evaluates two states, it is possible that an action taken to keep one
state within safe limits at time C, it leads the second state to an unsafe state space at time C + 1. It is therefore
suggested to implement a feedback loop in the "SR to avoid such behaviour. This research contributes to the
ongoing e�orts in developing learning flight controllers able to guarantee airborne safety. The use of a shield
is shown to be an e�ective safe reinforcement learning approach when paired with a model-free, o�ine deep
reinforcement learning algorithm. By promoting the e�orts in this field, safe learning controllers may soon be
applied to real-life flight control applications so to reduce airborne LOC-I fatalities.
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2
Reinforcement Learning

In this chapter, the key elements necessary for understanding the approaches utilized in this research
will be presented. Section 2.1 discusses the building blocks of reinforcement learning. Following, a
taxonomy of reinforcement learning algorithms and their suitability for this research will be given in
Section 2.2. Finally in Section 2.3, an in-depth analysis of methods combining Deep Q-Learning with
Actor-Critic methods will be given. The contents of this chapter will answer RQ-2.2.

2.1. Fundamentals
Reinforcement Learning (RL) is a machine learning method based on the interactions between a
decision-making agent and the environment. This framework draws inspiration from the way humans
approach learning by trial and error and received feedback.

The main cornerstones of RL are the agent and the environment. The learning occurs by letting
the agent interact with the environment while trying to obtain the maximum reward for taken actions.
Throughout this research, the words environment and agent will be widely used. Fig. 2.1 shows the
links that connect these two concepts which will later be explained.

Figure 2.1: Classical reinforcement learning framework. Adapted from Dally (2021).

Since the aim of this research is to implement reinforcement learning methods to flight control, the
environment can be considered to the fixed-wing aircraft to be controlled, while the agent is the flight
controller to be designed. In the upcoming sections, a brief summary of the main RL concepts will be
given. These follow from the theory provided by Sutton and Barto (1998).

2.1.1. Markov Decision Processes
Markov Decision Processes (MDPs) are a fundamental notation that defines most reinforcement learning
systems. MDPs describe the sequential interaction in discrete time steps between the learning-agent
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and the environment. Fig. 2.1 clearly shows the primary reinforcement learning framework. The
environment is the world in which the agent operates; at a time step of t, the current condition of the
agent is called a state st, which results from an action at taken by the agent in the environment. The
agent also receives feedback from the taken action in the form of a reward rt.
Given a state st and an action at, the probability of reaching a new state at time t+ 1 is given by

P {st+1, r̃t+1 | st, at, . . . , s0, a0} (2.1)

where r̃t+1 is the immediate reward achieved by the agent. However, Eq. (2.1) can be further simplified
while accounting for the Markov Property, which states that ”the future is independent of the past given
the present" (Sutton and Barto, 1998). Keeping this in mind, Eq. (2.1) can be modified to arrive at
Eq. (2.2).

P {st+1, r̃t+1 | st, at} (2.2)

Therefore, the transition from st to st+1 is unaffected by past states: all information regarding the past is
embodied by the current state.

2.1.2. Markov Reward Processes
Reinforcement learning is an iterative trial and error process with one of the main components being the
reward acquired by the agent. After making an action at time t, the agent earns an immediate reward
r̃t+1 at time t+ 1. This concept can be shown via Eq. (2.3)

Rs = E
⇥
rt+1 st

⇤
(2.3)

where Rs is the Markov Reward Process (MRP). However, the goal of RL is to maximize the accumulated
reward over time for complex tasks such as the objective of this research. For this reason, one can
define a new parameter named the discounted reward Rt. The latter can be defined by the sum
of discounted rewards accumulated throughout learning until the terminal time step t + N + 1. The
mathematical formulation of the discounted reward Rt can be seen in Eq. (2.4)

Rt = r̃t+1 + �r̃t+2 + . . .+ �
N
r̃t+N+1 =

1X

N=0

�
N
r̃t+N+1 (2.4)

where � is the discount factor and N is the number of steps in one episode. The value of � varies
between zero and one, depending on how much the agent strives for immediate or future rewards
respectively.

2.1.3. Policy and Value-functions
A policy ⇡ is the strategy followed by the learning-agent to acquire a reward. Formally, it is the probability
of an agent choosing an action at in a state st and it is defined as given in Eq. (2.5).

⇡ (at | st) = P {at | st} (2.5)

Once ⇡ is chosen, state-value functions V
⇡(s) are used to evaluate the policy’s effectiveness: they give

an indication of whether a taken action performed in a state is advantageous for maximizing the reward.
It is clear that value-functions are tightly connected to the concept of ⇡, given that V ⇡(s) is the expected
return acquired by the agent for following a policy ⇡ when starting at state st. V ⇡(s) can be formally
expressed in MDPs as shown in Eq. (2.6)

V
⇡(st) = E⇡ {Rt | st = s} = E⇡

( 1X

N=0

�
N
rt+N+1 | st = s

)
(2.6)

where E⇡ is the expected value when following a policy ⇡ at time t. Similarly, the expected return when
a given action at, which follows a policy ⇡ is taken in state st, the value-function is denoted as Q

⇡(s) and
named action-value-function. Alike Eq. (2.6), Q⇡(s) can be described using MDPs notation as follows.

Q
⇡(st, at) = E⇡ {Rt | st = s, at = a} = E⇡

( 1X

N=0

�
N
rt+N+1 | st = s, at = a

)
(2.7)
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Naturally, the aim of reinforcement learning is to maximize the expected return: this can be obtained by
following an optimal policy ⇡⇤. Once adopted, an optimal policy can reshape Eq. (2.6) and Eq. (2.7) into
the following relations:

V
⇤ (st) = max

⇡
V
⇡ (st) (2.8)

Q
⇤ (st, at) = max

⇡
Q
⇡ (st, at) (2.9)

where V
⇤ and Q

⇤ are respectively the optimal state and action-value-functions .

2.2. Reinforcement Learning Taxonomy
Reinforcement learning may be performed in a variety of ways, using different algorithms each with
varying properties. Zhang et al. (2019) describe in detail the various algorithms that belong to the
Reinforcement Learning family while highlighting their differences and similarities. In a similar manner,
this paper includes a classification of different RL methods in order to decide upon an algorithm to apply
to this flight control problem.

Fig. 2.2 gives an overview of a few RL algorithms and how they are classified according to Zhang et al.
(2019). In the figure, characterizing features of these RL methods are indicated by the blocks while the
specific algorithms are given by the rounded rectangles. In the next sections, each of the branches of
this tree will be analyzed to arrive at the algorithm that will be further investigated in the remainder of
the research. It should be noted that the choice of a final algorithm will be strongly influenced by its
ability to perform in a continuous state-action space. This is due to the control task to be performed, as
modern flight control is usually implemented in continuous spaces (Pollack, 2019).

Figure 2.2: Taxonomy of Reinforcement Learning algorithms. Adapted from Zhang et al. (2019).

2.2.1. Online and Offline Learning
Before diving in into the taxonomy shown in Fig. 2.2, a distinction between offline and online learning
has to be made. This is due to the fact that the way learning is carried is a main factor in the choice of
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an algorithm class e.g. due to some method’s sample efficiency.

The learning process can be carried either online or offline. If the learning is performed online,
the data is acquired at the same time as the agent is performing its actions (Hofer and Gimbert, 2016).
In the context of this research, online learning occurs during flight, as the controller is being learned.
Online learning can be quite computationally expensive, as high volume of data might need to be
processed and adjusted during trials.

Offline learning is performed on the ground. The agent has no time constraints to obey and has
the liberty to explore as close as possible to the safe boundary layer of the action space (Levine et al.,
2020). While a control learning strategy performed online is named adaptive, offline learning is labeled
robust. Online learning is undoubtedly more relevant within the concept of safety as safety should be
achieved in real time in case of encountering risks while exploring the environment. The agent must
be able to remain within the safe state space while being able to maximize the accumulated reward.
Offline learning on the other hand, does not imply risky actions which may be counterproductive in
this research. It is therefore decided to develop a two-stage strategy in which the learning can first be
conducted offline to gather knowledge about the environment in a safe way after which the agent can
be better equipped to conduct safe learning in the online stage.

2.2.2. Model Dependency
In Reinforcement Learning, a model is the collection of knowledge gathered about the environment, i.e.
a function which gives a prediction about the state transition and rewards of the agent. As explained in
Section 2.1, the agent undergoes a process of trial and error by taking actions in the environment and
awaiting feedback. This learning process can be conducted in two different ways which correspond to
the main branches of the tree shown in Fig. 2.2.

Model-Based Algorithms
One way to carry out learning is by following the methodology of model-based RL algorithms. Knowledge
of the probability of transition from st to st+1 due to action at, the reward function, the action space A

and state spaces S are assumed to be known in model-based RL algorithms (Huys et al., 2014). In this
analysis, Dynamic Programming and Approximate Dynamic Programming are highlighted; However,
many more algorithms can be placed under the model-based umbrella as reported in Zhang et al. (2019).

Dynamic Programming (DP) is at the roots of many RL algorithms as it provides a basic framework for a
plethora of applications such as planning problems, game theory, economics and more. Although it
represents a stepping stone of RL, it is not often implemented as the state and action spaces are often
discrete and a full model of the environment is required. Since this is not always possible, especially in
stochastic control tasks, DP algorithms have been further expanded to be more easily used in complex
systems.

One modification that can be done to make DP more adaptable is to use function approximators
to combat the curse of dimensionality caused by discrete spaces. This solving strategy is called Approx-
imate Dynamic Programming (ADP) and is suitable for large and complex problems which are often
stochastic (Powell, 2009). It is worth noting that ADP can be considered a model-dependent strategy
rather than a model-based method. By using current state measurements rather than predictions for
updating the policy, ADP detaches itself from other methods that strongly rely on a model (Heyer et al.,
2020). This characteristic is particularly intriguing when an inexact model might be implemented: the
agent will not be fully subjected to potentially incorrect information during the process of learning.

Many versions of Approximate Dynamic Programming have been developed in the years. Dally (2021)
provide a classification in which three main structures of ADP are defined, namely Heuristic Dynamic
Programming (HDP) (Tang and Lai, 2020), Dual Heuristic Programming (DHP) (Ni et al., 2015) and
Global Dual Heuristic Programming (GDHP) (Sun and van Kampen, 2020).

Model-Free Algorithms
The second way learning can be carried out is shown in the right branch of Fig. 2.2. In model-free
learning, the dynamics of the environment are not modeled and the agent tries to optimize learning by
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looking directly for an optimal policy. One advantage of this strategy is that the agent will not inherit
any bias introduced by a low-fidelity model. This is particularly attractive in flight control as high-fidelity
models are computationally expensive to test.

On the opposite side of the model-dependency spectrum from DP, Temporal Difference (TD) learning is
a class of model-free methods that uses values from past iterations to estimate current values. This
approach is known as bootstrapping and it is well suited for continuous control tasks. The main idea of
TD is to compute the error between the current value-function estimate Vt, the discounted value-function
Vt+1 and the reward for transitioning form st to st+1. The TD error approach has been extensively used
in both on-policy and off-policy algorithms and is a crucial component in the operation of two central
algorithms in RL: SARSA and Q-Learning. Both of these will be discussed further on in this report.

With the agent not relying on learning the environment, it is crucial to define how decisions regarding
what actions to make are taken. This is a central theme in RL, for both model-free and model-based
algorithms, which is often referred to as the Exploration vs. Exploitation trade-off (Louis and Yu, 2019).
Exploiting the knowledge gained in past actions is one of the options in this trade-off. Performing
repeatedly the same actions that follow the optimal policy ⇡⇤ result in a high immediate reward. This is
obviously attractive, however it does not lead to convenient results in the long term. Another option is to
let the agent explore the environment in a less or more greedy manner. The greediness of the agent is
defined as the desire of the agent of taking actions that will result in the highest result with the given
knowledge. Greediness is expressed by the parameter ✏ which has values between zero and one and
defines how much the agent wants to maximize the long or short term reward. This exploration can
result into performing sub-optimal tasks which may lead to a negative immediate reward. This is to be
expected, as the agent takes random decisions different from past actions. However, by allowing the
agent to explore vast sections of the environment, learning is more prolific and a higher overall reward
could be achieved.

Both these strategies have their strong and weak points, therefore the outcome of the trade-off could lead
to allowing the agent to balance both exploitative and explorative actions. A popular strategy is to let the
agent explore with frequency ✏ while exploiting gained knowledge for the remainder (1�✏) of the learning.

The main focus of this research is to improve the safety of a flight control system that will later
be defined. Working with a model-free algorithm was deemed to be the best fit as model-base strategy
would give the agent an inherently safe environment to learn. Therefore, for the remainder of this paper,
model-based algorithms will not be discussed.

2.2.3. Value-Based and Policy-Based
Model-free algorithms can optimize their policy in two different ways, namely with a Value-based or a
Policy-based approach. As it can be seen in Fig. 2.2, there exists an abundance of methods for both
branches of model-free algorithms.

Policy-Based Algorithms
If the policy ⇡ is straightforwardly optimized, the method is said to be policy-based. In these cases, the
policy is iteratively updated so that the expected return J(✓) can be maximized as follows in Eq. (2.10)

J(✓) = E

"
TX

t=0

�
t
rt

#
(2.10)

where ✓ is the policy parameterized with a vector ✓ and T is the horizon of sampled trajectories.
Policy-based algorithms can be further classified into Gradient-Based and Gradient-Free. Although
gradient-free methods are shown to be computationally efficient in arriving at an optimal solution, they
use discrete Monte-Carlo notations rather than continuous MDPs (Wiering and Van Otterlo, 2012). For
this reason, they will not be further investigated in this research.

Gradient-based optimization improves ✓ by using an estimate for the gradients on the expected return
acquired from sample trajectories. ✓ is updated via gradient descent/ascent in the direction of J(✓) in
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order to produce the highest return. The update follows the rule described below

�✓ = ↵r✓J (✓) = E✓

"
TX

t=0

↵r✓ (log ✓ (at | st))Q
⇡✓ (st, at)

#
(2.11)

where ↵ is the learning rate. Eq. (2.11) is the Policy Gradient Theorem proposed by Sutton and Barto
(1998) for stochastic policies and later adapted by Silver et al. (2014) to include deterministic policies.
Eq. (2.11) lays the foundation for many policy-based algorithms such as REINFORCE (Williams, 1992)
which can be considered the baseline for these algorithms. REINFORCE is a policy-gradient method that
updates ✓ based on an estimated return using Monte-Carlo algorithms utilizing episode samples. This
algorithm depends on the full trajectory therefore it is quite impractical for many stochastic applications.
However, REINFORCE gives insight on an issue affecting many policy-based algorithms: their high
variance does not allow for a smooth convergence to a deterministic policy. In order to combat this,
a variation of REINFORCE has been proposed where the state-value V

⇡(st) is subtracted by the
action-value-function Q

⇡(st, at) in the update rule. This allows the variance to be reduced while keeping
the process unbiased (Weng, 2018).

Value-Based Algorithms
As the name may suggest, value-based methods focus on optimizing the action-value-function Q

⇡(st, at).
Section 2.1.3 touched upon the definition of action-value-function as shown in Eq. (2.7) and its optimized
version as given by Eq. (2.9). This approach gives a straightforward definition of the optimal policy ⇡⇤

as ⇡⇤
⇡ argmax⇡ Q⇡.

Algorithms which adopt this type of method have been readily used in simple optimization tasks
as they usually have high sample efficiency, small variance (in contrast with policy-based methods)
and are not prone to getting stuck into local optima. Discrete methods such as SARSA (Rummery and
Niranjan, 1994) and Q-Learning (Watkins and Dayan, 1992) have been proven to be extremely popular
throughout the years (Sutton and Barto, 1998). However, their simplicity makes them less appropriate
for use in continuous state and action spaces. To remedy this flaw, different function approximators
can be implemented which allow these discrete value-based methods to be applied in a variety of
optimization problems.

The simplest of function approximators are linear methods. These are well understood due to the
extensive years of research and their striking simplicity as they are indeed, made of linear functions
(Zhang et al., 2019). A mix of weights and state-dependent real-valued vectors are combined to develop
these approximators. The vectors can in turn have different configurations; the most common are
polynomials, Fourier basis, Radial Basis Function (RBF), tile and coarse coding (Babuška and Kober,
2010). Although their simplicity allows for fast convergence, most methods rely on information on the
environment provided by the user. As mentioned previously in Section 2.2.2, the less information about
the environment to be provided the better. Therefore, linear methods will not be considered for the
remainder of this research.

On the other hand, non-linear methods have been mainly generated in the form of Artificial Neu-
ral Networks (ANNs), computing systems developed to imitate biological neural networks. ANNs have
been implemented in optimization techniques for decades and have been a central theme in Rein-
forcement Learning approaches due to their well-guaranteed convergence and accuracy (Wiering and
Van Otterlo, 2012). ANNs are constituted of different items. Fig. 2.3 gives an example of a standard NN
architecture. Neurons, the gray circles in the figure, are the building blocks of ANNs. They translate an
input to an output, which is then sent to a number of other neurons. Neural networks are organized in
layers. In Fig. 2.3, the network is made of an input layer with four neurons, two hidden layers with eight
and six neurons respectively and finally an output layer composed of two neurons. Connections allow
the information to flow in and out clusters of neurons. Each link representing a connection is given a
weight, which provides information on the influence of the data to be transmitted. In Fig. 2.3, the weight
of the links is represented by the different colors of the arrows. Once the weighted information arrives
at the hidden layer, an adder adds up all the inputs together with a bias introduced by the presence
of hidden layers. This action is known as linear combination. Finally, an activation function regulates
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Figure 2.3: Example of a neural networks architecture with four input neurons, two hidden layers with eight and six neutrons
respectively and a two neuron output layer. The different colors of the arrows between layers show the weight of the links.

the magnitude of the neuron’s output so to keep its value typically between -1 and 1. Many types of
activation functions can be implemented, with the most common being Rectified Linear Unit (ReLU) and
the Hyperbolic Tangent (Dongare et al., 2012). ANNs are widely used in modern RL techniques, most
commonly in Deep Reinforcement Learning (DRL).

Actor-Critic Algorithms
A class of algorithms that are found at the middle between value-based and policy-based is Actor-Critic
(AC). This algorithm has a dual structure: the actor represents the policy structure that selects the
actions to be taken, the critic gives the estimate of the value-function. A schematization of this process
is shown in Fig. 2.4.

Figure 2.4: Actor-Critic framework. Adapted from Dally (2021).

As can be seen in the figure, given the new state and reward after an action is performed on the
environment, the critic provides the actor with the TD error, as introduced in Section 2.2.2. However, the
error needs to be monitored by the critic as it is trying to let the actor optimize the same policy that is
being learned. The pseudocode for an Actor-Critic approach is shown in Algorithm 1.
For each iteration, the TD error is computed after the state, actions and reward for one episode has
been collected. The TD error is used to update the policy ⇡ so that the actor can choose action at

that maximizes the future reward. Once the error has been approximated, the critic JV
⇡
✓

 

( ) and the
actor J(✓) are updated. Following, the policy and function parameters ✓ and  are updated. It should
be noted that ✓ and  are used interchangeably to denote ⇡✓ and JV

⇡
✓

 

( ) due to introducing neural
networks as function approximators (Zhang et al., 2019).

Actor-critic algorithms have been extensively used in the field of Reinforcement Learning due to
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Algorithm 1 Actor-Critic (Konda and Tsitsiklis, 2000).
1: Hyperparameters: step size ⌘✓ and ⌘ , reward discount factor �
2: Input: initial policy parameters ✓0, initial value-function parameters  0

3: Initialize ✓ = ✓0 and  =  0

4: for each step t do
5: Run policy ⇡✓ for one step, collection {st, at, rt, st+1}

6: Compute the TD error correction Ât = Rt + �V
⇡✓
 (st+1)� V

⇡✓
 (st)

7: Update the critic by JV
⇡
✓

 

( ) =
P

t Â
2
t

8: Update actor by J(✓) =
P

t log ⇡✓ (at | st) Ât

9: Update policy and value-function parameters ✓ = ✓ + ⌘✓rJ(✓) and  =  + ⌘ rJV
⇡
✓

 

( )

10: end for
11: Return ✓,  

their ability to combine the best between value and policy-based algorithms. By exploiting the TD
error that can be retrieved after every step, AC is a far more sample efficient method compared to the
non-combined classes of algorithms. With respect to pure policy-based methods, AC also decreases
the variance of the estimate gradient due to the implementation of TD errors in the critic structure.
Finally, AC methods can be used on continuous action spaces which makes them particularly attractive
for this field of research. (Wiering and Van Otterlo, 2012)

2.2.4. Off-Policy and On-Policy
The last aspect of this classification is off-policy and on-policy algorithms. By now, the concept of a
policy should be well understood as it is an intrinsic part of Reinforcement Learning and MDPs. As
it can be seen from Fig. 2.2, both branches of model-free algorithms can be classified into on- and
off-policy.

On-policy algorithms
On-policy approaches seek to assess or improve the policy that the agent follows while performing
actions. This means that the agent is trying to improve a strategy whilst executing actions according to
the latter.

The most well known on-policy method is SARSA, or State-Action-Reward-State-Action (Rummery and
Niranjan, 1994). Although SARSA works in discrete state and action space and is therefore not relevant
for this research, its understanding is crucial as it is the stepping stone for most on-policy algorithms.
The working principle of SARSA is easily understandable due to its name: for each state st, an action is
taken and a reward is awarded to the agent. The state is then transitioned to st+1 in order to take a new
action at+1 while continually estimating Q

⇡ and changing ⇡ to increase the value of Q⇡. This process is
shown by the update rule implemented in SARSA, given below in line 9 of Algorithm 2.

Algorithm 2 SARSA (Rummery and Niranjan, 1994).
1: Initialise Q(st, at), 8s 2 S, a 2 A(s), arbitrarily
2: for each episode do
3: Initialize s0

4: Select a0 using policy that is based on Q

5: for each step in the current episode do
6: Select at from st using policy that is based on Q

7: rt+1, st+1  env(st, at)
8: Select at+1 from st+1 using policy that is based on Q

9: Q (st, at) Q (st, at) + ↵ [rt + �Q (st+1, at+1)�Q (st, at)]
10: end for
11: end for

Depending on the used policy, e.g. ✏-greedy, the convergence of SARSA is more or less dependent
on the action-value Q

⇡. The greedier the actions, the more SARSA is equivalent to Q-learning, an
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off-policy algorithm shown in Algorithm 4 (Rummery and Niranjan, 1994).

In contrast with SARSA, Trust Region Policy Optimization (TRPO) is an algorithm that can be
used in continuous action space. TRPO is an on-policy, gradient-based algorithm proposed by Schul-
man et al. (2015). As mentioned in Section 2.2.3, gradient-based methods use gradient descent/ascent
in the direction of the expected rewards J(✓) to optimize the parameterized policy ✓. However, the
convergence of these algorithms is highly dictated by the step size at which the progression along the
trajectory is conducted. If the step size is too large, the curvature might be ignored and the solution
could sustain a performance collapse and hence diverge rather than converge. In an opposite scenario,
where the step size would be too small, the learning could be too conservative and would not allow for
any considerable progress.

TRPO was indeed developed in order to counteract these issues brought up by the descent/ascent step
size. As usual, the goal of this algorithm is to find an updated policy ✓0 that improves the current policy
✓. This can be done mathematically by Eq. (2.12)

J (✓0) = J(✓) + E⌧⇠⇡0
✓

" 1X

t=0

�
t
A
✓ (st, at)

#
(2.12)

where J(✓) is given in Eq. (2.10) and ⌧ is the trajectory produced by ✓
0. However, working with

expectations can be quite tricky. Schulman et al. (2015) proposes to optimize the approximation of the
expectation, defined as L✓(✓0). In order for this approximation to be valid, its error needs to be bounded.

max
✓0

L✓ (✓
0)

s.t. Es⇠⇢✓ [DKL (✓k✓0)]  �.
(2.13)

This can be done via a Kullback–Leibler (KL) divergence constraint bounded by constant �. If this
constraint is satisfied, it is reasonable to approximate the expectation and apply TRPO to optimize
L✓(✓0). What still remains to be done is to actually calculate the gradient L✓(✓0). This can be done by
the relation proposed by Schulman et al. (2015) shown in Eq. (2.14).

g = r✓L✓ (✓
0)|✓ = E⌧⇠✓

" 1X

t=0

�
tr✓✓

0 (at | st)

✓ (at | st)
A
✓ (st, at)

#�����
✓

(2.14)

where A
✓ = Q

✓(st, at) � V
✓(st) is the advantage function, already implemented in the REINFORCE

algorithm described in Section 2.2.3.

Clearly, this algorithm is quite complex in its implementation: other than being computationally expensive
due to the many steps required to estimate the conjugate gradient, its complexity in formulation makes
it a less attractive algorithm compared with other approaches (Ha et al., 2018). For this reason, a
simplified version was later developed by Schulman et al. (2017). Proximal Policy Optimization (PPO)
aims to simplify TRPO by exploiting the similarity between ✓ and ✓0. The main difference is in changing
the TRPO hard constraint shown in Eq. (2.13) into a regularized constraint as shown below:

max
✓0

L✓ (✓
0)� �Es⇠⇢✓ [DKL (✓k✓0)] (2.15)

where � is the constraint’s regularization parameter. For each constant � set in Eq. (2.13), there exists a
� that gives in the same optimized result as following a TRPO approach. Here, � is directly related to ✓;
the regularization parameter can be adjusted during training to satisfy the KL-divergence constraint.
This version of PPO is named PPO-Penalty, as it penalizes KL-divergence via the coefficient �. Another
version proposed as well by Schulman et al. (2017) is called PPO-Clip. Its main difference from
PPO-Penalty is that it does not include a DKL(✓k✓0) term in its objective function as well as not including
any constraints. Rather, customized clipping in the objective function is used to reduce reasons for the
new policy to deviate from the old policy. For more information as well as the pseudocodes for these
two approaches, please refer to the original paper by Schulman et al. (2017).
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Algorithm 3 TRPO. Adapted from (Schulman et al., 2015).
1: Hyperparameters: KL-divergence limit �, backtracking coefficient ↵, maximum number of back-

tracking steps K

2: Input: empty replay buffer Dk, initial policy parameters ✓0, initial value-function parameters �0
3: for each episode do
4: Collect set of trajectories Dk = ⌧ by running policy ⇡k = ⇡(✓k) in the environment
5: Compute rewards-to-go r̂t

6: Compute advantage estimates, A✓ (using any method of advantage estimation) based on the
current value-function V�k

7: Estimate policy gradient g as given by Eq. (2.14)
8: Use the conjugate gradient algorithm to compute

x̂k ⇡ Ĥ
�1
k gk

9: where Ĥk is the Hessian of the sample average KL-divergence
10: Update the policy by backtracking line search while satisfying the sample KL-divergence con-

straint
11: Fit value-function by regression on mean-squared Bellman error (MSBE) by

�k+1 = argmin
�

1

|Dk|T

X

⌧2Dk

TX

t=0

(V� (st)� r̂t)
2

12: typically via some gradient descent algorithm
13: end for

PPO is a straightforward policy-based, gradient-based method which has been implemented in both
discrete and continuous action spaces. However, its online use still needs to be explored. For this
reason, it is not deemed feasible to be used in this research as it may not be applicable in the two-stage
learning.

Off-policy algorithms
Differently from the algorithms that were just discussed, off-policy methods seek to improve a different
policy from the one used to make decisions. A classical off-policy algorithm is Q-Learning. It can be
seen that the only real difference between Algorithm 2 and Algorithm 4 is line 9, specifically in the
second to last term. This is because Q-Learning uses the estimate of the optimal future value rather
than simply the possible reward received at time t+ 1.

Algorithm 4 Q-Learning (Watkins and Dayan, 1992).
1: Initialise Q(st, at), 8s 2 S, a 2 A(s)
2: for each episode do
3: Initialize s0

4: Select a0 using policy that is based on Q

5: for each step in the current episode do
6: Select at from st using policy that is based on Q

7: rt+1, st+1  env(st, at)
8: Select at+1 from st+1 using policy that is based on Q

9: Q(s, a) Q(s, a) + ↵ dr(s, a) + �maxa Q (st+1, a)�Q(s, a)e
10: end for
11: end for

Similarly to SARSA, Q-Learning is applicable only to discrete state and action spaces. It is therefore
not viable for this research. However, recent studies implemented neural networks instead of the
tabular method used in Q-Learning’s as function approximators. The algorithms can then be used in
continuous state spaces. This approach lead to a novel type of algorithms named Deep Q-Network
(DQN) developed by Mnih et al. (2015). The general idea is shown by Fig. 2.5: in DQN, the tabular
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method used to approximate the Q-function is replaced by an ANN allowing the system to work with
continuous state spaces. Therefore, instead of having one Q-value per iteration, N Q-functions are
continuously approximated at each state st. DQN is based on modifying Q-Learning by applying two
separate ideas, replay buffer and target network.

Figure 2.5: DQN framework.

Replay buffer takes inspiration from the natural mechanism of experience replay. At each time step,
after a ✏-greedy action is taken, a sample of the agent’s experiences, namely (st, at, rt, st+1) is stored
into the replay buffer. The Q-learning update is then applied to find the Q-value-functions. By storing
mini-batches of the agent’s experience, the Q-function can be learned more easily, which alleviates the
computational effort and allows for better data efficiency.

The second concept implemented in DQN is target networks. A separate Q-network is introduced to
allow the original Q-network to look up from this secondary target network in order to learn a policy
efficiently. This can be seen in line 9 of Algorithm 5. After every C steps, the experience from the
original network are copied into the target network. Since the Q-learning target delay is generated with
old parameters, the divergence of the algorithm is reduced and the learning occurs in a more stable
manner. Line 10 shows the loss function, here given by the mean squared error of the target Q-value
minus the predicted Q-value. The success of DQN leads to the generation of different algorithms which
lay their foundation in a similar matter. As it can be seen from Fig. 2.2, Double-DQN (Van Hasselt et al.,
2016) is an offspring of the original DQN developed by Mnih et al. (2015)

When developing Double-DQN the main focus was put into dealing with the problem of overestimation.
The Q-learning function shown in line 9 of Algorithm 5 includes a max operator: Q is usually noisy and
since the expectation of maximum noisy parameters is never less than the maximum expectation of
noises, the maximization operator makes it so that the upcoming Q values are often overestimated
(Zhang et al., 2019). The solution found by Van Hasselt et al. (2016) is to untie the noises in selection
and assessment procedures by employing two distinct networks in these two phases. The results
of Double-DQN with respect to DQN are analysed by Wang et al. (2016). When comparing the two
algorithms, Double-DQN outperforms DQN in 70.2% (40 out of 57) of Atari games. Although this is a
different application than flight control, comparing performance in Atari games gives a baseline about
the effectiveness of these two algorithms.

A second mutation of DQN was developed by Wang et al. (2016) and called Dueling-DQN. It ex-
ploits the notion according to which some actions are not relevant towards learning and therefore should
be discarded to improve the learning efficiency. Wang et al. (2016) propose to split the Q-function to
differentiate between the state value-function Q

⇡(st) and action advantages A
⇡(st, at). Without having

to understand the effect of each action for each state, this separation allows the agent to learn which
states are valuable in an efficient way. Wang et al. (2016) compares Dueling-DQN with the classical
Deep Q-Network and their performance in Atari games. It was found that Dueling-DQN outperforms
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DQN in 25 out of 30 games.

Previously in this paper, it was decided to focus on a dual online/offline approach which could re-
sult in a two-stage learning process. If this strategy is pursued, off-policy algorithms would be the best
suited methods. This way the agent would be allowed to explore the environment closer to the safe
boundary region during the offline phase while finding a safe optimal policy in the online phase. For this
reason, on-policy algorithms will not be further analyzed in this research.

Algorithm 5 DQN (Mnih et al., 2015).
1: Hyperparameters: replay buffer capacity N , reward discount factor �, delayed steps C for target

action-value-function update, ✏-greedy factor
2: for each episode do
3: Initialize environment and get observation s0

4: for each time step t do
5: Perform ✏-greedy action selection:

at =

8
<

:

random
a

action, with probability ✏
argmax

�
Q� (st, a) , otherwise

6: Execute action at and observe st+1 and reward rt

7: Store transition (st, at, rt, st+1) in replay buffer
8: Sample minibatch from replay buffer {(sk, ak, rk, sk+1)}

N
k=1

9: Calculate targets yj :

yj =

⇢
rj , if episode terminates at step j + 1
rj + �maxa0 Q�0 (sj+1, a

0) , otherwises

10: Calculate the loss:

L =
1

N

NX

k=1

⇣
rk + �max

a
Q�0 (sk+1, a)�Q� (sk, ak)

⌘2
.

11: Synchronize the target Q̂ every C steps
12: Until s is terminal
13: end for
14: end for

2.3. Deep Q-Networks and Actor Critic
One flaw of DQN is its inability to work with continuous action spaces which in modern control tasks is
crucial. In the past years, combining AC methods with DQN has resulted in many popular algorithms
that allow operation in both continuous state and action spaces without compromising sample efficiency
and accuracy. In the upcoming sections, some of these algorithms combining DQN with AC will be
discussed.

2.3.1. Deep Deterministic Policy Gradient
Deep Deterministic Policy Gradient (DDPG) was developed by Lillicrap et al. (2015) as a bridge joining
actor-critic algorithms with DQN. By combining AC with DQN, the algorithm can be considered off-policy
which gives it a better sample efficiency of its on-policy counterpart. The high sample efficiency, the
possibility of working in continuous spaces and their model-free approach make DDPG algorithms
particularly interesting for this research. Similarly to AC, DDPG establishes a critic (by means of
Q-function) updated in a similar manner as in DQN with TD updates and an actor (through a policy
function) updated with a policy gradient approach.
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Algorithm 6 DDPG (Lillicrap et al., 2015). Adapted from Dally (2021).
1: Initialize randomly-chosen weights ✓ and k for policy ⇡✓ and critic Qk̄ networks, respectively
2: Initialize weights ✓  ✓ and k  k for policy ⇡✓ and critic Qk target networks, respectively
3: Initialize initial state s0, random process N and smoothing factor ⌧
4: Initialize memory buffer D
5: Sample initial action a0 ⇠ ⇡✓ (a0 | s0)
6: for each step t do
7: Execute action at = ⇡✓ (at | st) +N

8: Sample rt and st+1 ⇠ P {st+1 | st, at}

9: Store transition (st, at, rt, st+1) in D

10: Sample a random mini-batch of n transitions (si, si, r̃i, si+1) from D

11: Compute targets: yi = ri + �Qk (si,⇡✓ (si))
12: Update critic with one-step gradient descent by minimizing the loss:

L =
1

n

nX

i=0

(yi �Qk (si, ai))
2

13: Update the actor policy using the sampled policy gradient:

r✓J ⇡
1

n

nX

i=0

raQk(s, a)

�����
s=si,a=ai

r✓⇡✓(s)

������
s=si

14: Update the target networks weights:

✓  (1� ⌧)✓ + ⌧✓

k  (1� ⌧)k + ⌧k

15: end for

As it can be seen from line 1 of Algorithm 6, the policy is denominated as ⇡✓ while the critic is denomi-
nated as Qk̄. In DDPG, the policy is deterministic. This is due to the fact that the policy is integrated
over only the action space rather than both state and action spaces as commonly done within stochastic
policies. This is done in order to alleviate computational strain which is a frequent problem in continuous
RL methods. Finding an optimal policy is assured by allowing the agent to learn the deterministic policy
in an off-policy fashion. If the agent were to learn on-policy, the learning would be way too conservative
at the beginning to make a real progress in finding optimal actions. Instead, the exploration of the agent
is improved by adding mean-zero Gaussian noise N to its actions while learning (Sanghi, 2021).

From Algorithm 6, many similarities can be seen when comparing it to Algorithm 5. Generally, DDPG
carries the same idea of DQN of minimizing a mean-squared Bellman error via the loss function L.
Minimizing the error is aided by the concept of reply buffer, which is also introduced in DDPG. Reply
buffer, i.e. allowing the agent to learn in batches of experiences gathered by the agent after learning
as shown in line 9-10, grants the algorithm improved stability while learning and lowered error due to
knowledge from past experiences.

Another notion carried from DQN is that of target networks. Although DQN’s target networks were
implemented solely for Q�0 , DDPG sports target networks for both the actor and the critic as seen in
line 2. The target is found as from line 11, where the algorithm is trying to make the main Q-network as
close as possible to the target. Finally, learning occurs by MSBE loss with stochastic gradient descent
as shown in line 12 while the policy is updated via gradient ascent (with respect to policy parameters
only) as given by line 13 of Algorithm 6. In the end, the target networks parameters ✓ and k are updated
by exponential smoothing as shown in line 14.
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2.3.2. Twin Delayed DDPG
Although DDPG improves the learning performance with respect to DQN, it also shares some of its
flaws. A modified version of DDPG, Twin Delayed DDPG (TD3) was developed by Fujimoto et al. (2018)
to account for some of the disadvantages of DDPG. As mentioned in Section 2.2.4, DQN suffers the
curse of overestimation resulting from the max operator in the value-function. This problem is present in
DDPG as Q(s, a) is updated in a similar fashion. To improve upon this problem, an approach similar to
Double-DQN is implemented where two Q-value-functions are learnt and the minimum between the two
is used for the policy update. Overestimation is then avoided. It could be argued that this approach
would introduce an underestimation; however, this case is preferred to an overestimation (Zhang et al.,
2019). This is due to the fact that underestimated Q-values do not propagate from update to update,
resulting is a less severe bias than overestimated values (Fujimoto et al., 2018).

Another method that finds its roots at DDPG is using target networks. It was already discussed
in the previous section how target networks are a solid means to achieve a more stable learning process
by reducing the error throughout the policy’s updates. To exploit this statement, TD3 updates the policy
Q-network with reduced frequency with respect to the main Q-network. Therefore, the variance of the
update is reduced due to the fewer policy updates. This results in an overall better policy (Fujimoto
et al., 2018).

As mentioned, TD3 is an extension of DDPG to improve the overall quality of the algorithm. One
issue that the developer of this method addressed regarded the overfitting typical of deterministic
policies. If the value-function shows some narrow peaks, the overall function could be quite overfit.
This results in an overestimation which is to be avoided as mentioned before. To avoid this, the author
suggests implementing noise after every action in order to smooth the Q-values over the learning period.

2.3.3. Soft Actor-Critic
When looking at Fig. 2.2, DDPG has two branches: the first is TD3 discussed above; the second is
Soft-Actor-Critic (SAC) (Haarnoja et al., 2018). The main difference between DDPG and SAC is that the
latter optimizes a stochastic policy rather than the deterministic policy typical of DDPG methods. Due
to the stochasticity of this process, a smoothing approach similar to TD3 is also introduced. Another
similarity with TD3 is brought by the double-DQN inspired structure. However, although some under-
lying themes can be seen, SAC brings a new concept with respect to its competitor, namely entropy
regularization.

The concept of entropy strictly relates to how random a given variable is. In a mathematical sense, it
follows Eq. (2.16):

H(P) = E
x⇠P

[� logP(x)] (2.16)

where P is the entropy term. In the context of RL with stochastic policies, exploration of high-entropy
regions is promoted. Therefore, if the agent develops a policy with high entropy, i.e. high randomness,
it gets a reward proportional to the entropy of the policy at a given time step t. This concept can be
incorporated into a modified Q-function as shown by line 12 of Algorithm 7. Here, ⌘ is the temperature
hyperparameter which determines the target entropy during exploration. A set of twin critics generates
the targets with the minimum between the two used to update the policy. The main difference from
TD3 is that two function approximators are used rather than one. The policy is then updated via a
mean-squared Bellman error as for DDPG. The actor policy however is updated by implementing a
reparametrization trick. This is due to the expectation dependent on ⇡✓. To avoid this, ⇡✓ can be
reparametrized as an action networks which has st and a random noise vector as shown below:

a
0 = f✓ (⇠; s

0) (2.17)

where ⇠ is the input noise, usually Gaussian (Zhang et al., 2019).
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Algorithm 7 SAC (Haarnoja et al., 2018). Adapted from Dally (2021).
1: Initialize randomly-chosen weights ✓ and k1 and k2 for policy ⇡✓ and twin critic Qk̄j

networks,
respectively

2: Initialize weights kj  kj for twin critic Qkj
target networks with j = 1, 2

3: Initialize initial state s0 and smoothing factor ⌧
4: Initialize memory buffer D
5: Sample initial action a0 ⇠ ⇡✓ (a0 | s0)
6: for each step t do
7: Execute action at ⇠ ⇡✓ (at | st)
8: Sample rt and st+1 ⇠ P {st+1 | st, at}

9: Store transition (st, at, rt, st+1) in D

10: if it’s time to update then
11: Sample a random minibatch of n transitions (si, si, r̃i, si+1) from D

12: Compute targets for the twin critics:

yi = r̃i + �

✓
min
j=1,2

Qkj
(si, a

0)� ⌘ log ⇡✓ (a
0
| si)

◆

with a
0
⇠ ⇡✓ (a0 | si)

13: Update twin critics with one-step gradient descent by minimizing the loss with respect to kj :

L =
1

n

nX

i=0

�
yi �Qkj

(si, ai)
�2 for j = 1, 2;

14: Update the actor policy with:

J⇡(✓) = E
s0⇠P


E
⇠⇠N

[log ⇡✓ (f✓ (⇠; s
0) | s0)�Qk (s

0
, f✓ (⇠; s

0))]

�

15: Update the temperature hyperparameter ⌘ with one-step gradient ascent
16: Update the target networks weights: kj  (1� ⌧)kj + ⌧kj for j = 1, 2
17: end if
18: end for

SAC seems a promising algorithm thanks to its robustness induced by the maximum entropy approach
and its sample efficient approach. However, the algorithm appears brittle to the hyperparameter ⌘.
Nonetheless, automatic temperature tuning could be a solution to this problem (Chen and Li, 2018).

2.4. Conclusion
In this chapter, the fundamentals of reinforcements learning as well as a taxonomy including the main
algorithms used was given. The taxonomy presented gives an answer on RQ-2.2 as a comprehensive
overview of state-of-the-art reinforcement learning methods is presented. Firstly, it was determined
whether the learning was going to be performed online or offline. In an online setting, the learning
occurs during flight allowing the controller to learn a policy in a setting comparable to real life flight. On
the other hand, offline learning is done on the ground where the agent has no time constraints to follow.
The latter can be less computational expensive, however it may be less relevant within the scope of
this research as learning offline may result in a inherently less safe policy. Therefore, it was decided to
develop a two-stage method where the agent can gather information about the environment offline and
use the gain knowledge to avoid risky situations while online.

By using the decision tree shown in Fig. 2.2, different approaches to RL were explored. At the
top of the tree, a decision can be made between model-based and model-free approaches. The first
implies that the dynamics of the environment such as probability of transitioning from one state to the
other, rewards etc... are known to the agent. The second assumes that the agent has no information
about the environment and it acquires knowledge by interacting with the latter. Model-based algorithms
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have the drawback that the provided information may give the agent an inherently safe environment
to learn. Therefore, it was decided to focus on model-free algorithms. Fig. 2.2 shows that model-free
algorithms can optimize their policy in two ways, either by following a policy-based or a value-based
approach. The first directly optimizes the policy ⇡ while the second focuses on Q

⇡. Additionally to
these two, Actor-Critic (AC) algorithms are found to be a middle point. The use of actor-critic algorithms
mitigate some of the drawbacks of policy and value-based algorithms, such as low sample efficiency
and high variance. Therefore, since AC combine the best aspects of these two classes and can be used
on continuous action spaces (an attractive feature for flight control tasks), it was chosen as the class of
algorithm that will be implemented in this research.

A further classification was made between on and off-policy algorithms. On-policy algorithms im-
prove the policy that the agent follows while performing exploratory actions. On the other hand, off-policy
algorithms wish to improve a policy that is different than the one they use to perform actions. AC
can be considered to be at a crossing between off-policy and on-policy methods as it is shown in
Fig. 2.2 meaning that either approaches could be used. However, earlier on it was decided to focus
on a two-stage offline-online technique. It was found that off-policy algorithms are better suited for this
technique as the agent would be able to explore unsafe areas of the action space while offline and find
a different safe optimal policy while online.

Finally, algorithms that meet all the criteria discussed above were further characterized. These were
found to be algorithms that combine Deep Q-Networks with Actor-Critic method. The main algorithm is
Deep Deterministic Policy Gradient (DDPG), a off-policy, model-free algorithm that works with continu-
ous action spaces developed by Lillicrap et al. (2015). Two updates of DDPG take advantage of the
success of this method while including some characteristics to further extend DDPG. The first is Twin
Delayed DDPG (TD3) that deals with the flaw of DDPG of overestimating its value-function. The second
method, Soft Actor-Critic, expands DDPG by allowing stochastic policies to be optimized rather than the
strictly deterministic ones of DDPG.



3
Safety in Reinforcement Learning

Safety is deemed as the top level focus of this research. In Section 3.1, a classification of different
reinforcement learning methods which ensure safety are discussed. Next, in Section 3.2, a novel
method which implements the structure of a shield in the learning process is reviewed. The contents of
this chapter will allow RQ-2.1 and of RQ-3.1 to be answered.

3.1. Taxonomy of Safe Reinforcement Learning
Safe Reinforcement Learning (SRL) aims at developing learning policies that maximize the return in
circumstances where it is critical to respect safety constraints or achieve specific system performance
during learning. Garcıa and Fernández (2015) give a comprehensive overview and classification of the
two main approaches in SRL which allow safe learning. A simplified version of the taxonomy provided
by Garcıa and Fernández (2015) can be seen in Fig. 3.1. From the given option tree shown, two
main branches can be seen, corresponding to the two main ways SRL can be implemented. Since
the term safety can be considered ambiguous, it is perhaps easier to relate to the concept of risk,
which is interpreted as the inherent uncertainty of the environment. This is directly related to the
oftentimes stochasticity of the environment explored by the agent (Coraluppi and Marcus, 1999; Garcıa
and Fernández, 2015). This particular definition of risk is central to safety in RL, as safety can be
expressed as the condition of protecting the agent from pursuing a dangerous action or reaching unsafe
state spaces. Therefore, a RL method is deemed to be safe if it instructs the agent on whether an action
leads to a state that could risky or not.

Figure 3.1: Taxonomy of Safe Reinforcement Learning algorithms analyzed in this research. Adapted from Garcıa and
Fernández (2015).

In the following sections, the taxonomy showed in Fig. 3.1 will be unfolded and the main characteris-
tics of each methods will be given.
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3.1.1. Modifying the Optimization Criterion
The first approach is to modify the optimization criterion during learning. As previously discussed in
Section 2.1, the agent needs to optimize a policy in order to maximize the reward. However, the actions
taken in order to increase the accumulated reward may not always be safe as no metric of risk is
explicitly included in the basic RL approaches. Risk is implemented in the optimization criteria in three
ways that follow from the left branch of Fig. 3.1.

The first approach is Worst Case control where the objective is find the policy that maximizes the return
with respect to the worst case scenario. This approach is particularly suited when there is inherent
uncertainty about the environment or the model itself induced for example, by noisy estimations. The
main contribution to worst case control method is by Heger (1994) which introduced the criterion into a
Q-learning approach. The Q-function is modified into:

Q̂ (st, at) = min

✓
Q̂ (st, at) , rt+1 + � max

at+12A
Q̂ (st+1, at+1)

◆
(3.1)

where Q̂ is a lower bound value of Q as it can be intuited by the minimization operator. This first
approach however was found to be too pessimistic as it takes into account severe events which they
may never be encountered by the agent. A modification of this approach was developed by Gaskett
(2003) named �-pessimistic Q-learning. The Bellman equation of this algorithm is shown below

Q� (st, at) = Q� (st, at) + ↵

✓
rt+1 + �

✓
(1� �) max

at+12A
Q� (st+1, at+1) + � min

at+12A
Q� (st+1, at+1)

◆◆

(3.2)
where � is a parameter between zero and one that allows Eq. (3.2) to balance the influence between Q̂ or
Q� . This method however was found to be more effective than the one introduced by Heger (1994) only
for few values of �, which result in a still overly pessimistic algorithm (Garcıa and Fernández, 2015). Both
Heger (1994) and Gaskett (2003) implement their algorithms within the model-free realm; however, only
discrete state-action spaces are considered. Therefore, worst case criterion will not be further discussed.

The second approach is Risk-Sensitive RL where a parameter is introduced in the objective function
that controls the degree of risk to be handled. The risk sensitivity parameter � can have either positive
or negative values. If negative, risk is pursued; if positive, risk is averted. The main contributors to
this class of SRL are Borkar (2002) and Mihatsch and Neuneier (2002). Although these methods are
used in continuous space, model-free RL, their implementation require explicit values of the transition
probabilities and rewards. This is not always possible in RL within flight control, hence this method is
not suitable for this research.

The third and final approach considered under this branch of optimization criterion modification is
Constrained Criterion. In this case, the aim is to maximize the expectation of the return for a policy
subjected by certain constraints. Mathematically this is defined by Eq. (3.3)

max
⇡2⇧

E⇡(Rt) subject to ci 2 C, ci = {hi  ↵i} (3.3)

where hi is a function related to R� t, ↵i is a parameter which constraints function hi and ci is one of
N constraints to be fulfilled by the policy. By applying certain constraints, the set of allowable policies
is reduced. This is particularly advantageous for risky domains as the best policy has to be found
within the domain of safe policies �. Although this approach is more widely used in the field of planning
and finance (Di Castro et al., 2012), it gives an intuitive metric for the concept of safety and risk as
many applications know to which extent the performance of the system needs to be bounded. However,
many of these approaches are not computationally tractable, making then not suitable for RL algorithms
(Garcıa and Fernández, 2015).

3.1.2. Modifying the Exploration Process
The right-sided branch of Fig. 3.1 covers approaches which modify the agent’s exploration process
to ensure safety. In classical RL, the agent visits potentially the whole exploration space in order to
develop an optimal policy. However, this method does not delineate any concept of risk, hence the
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agent may be choosing dangerous actions. The exploration process can be modified in two different
ways, namely risk directed exploration or by incorporating external knowledge in the learning.

Providing External Knowledge
When exploring unsafe environments, the agent will not be able to avert risky situations without being
granted a some external knowledge as a risky state needs to be visited before it can be characterized
as such. For this reason, providing external knowledge is a advantageous approach to aid the agent
take safe actions. External knowledge can be incorporated in three different ways namely by providing
initial knowledge, by allowing a teacher to give advice or by deriving a policy from demonstrations.

Initial knowledge can be considered the most elementary way of providing information to the agent.
A baseline approach is to record some demonstrations from a human teacher and provide it to the
agent. These demonstration allow the agent to bootstrap and develop a partial Q-function that can
be used for safe exploration (Driessens and Džeroski, 2004). However, although straightforward, it
provides a solid method for avoiding visiting risky states. This approach has been widely used in
reinforcement learning as well as in flight control tasks. Xiong (2021) introduces the concept of a
Safety Modification Layer (SML) which compares the states reached by a learning agent with known
safe states. This knowledge is given to the SML upon initialization of the algorithm as a safe policy
� as mentioned in Section 3.1.1. Therefore, Xiong (2021) effectively combines both SRL methods
shown in Fig. 3.1. Pollack (2019) introduced prior knowledge in a research aimed at improving learning
safety and efficiency during navigation for a Unmanned Aerial Vehicle (UAV). Together with methods for
improving the learning’s efficiency, Pollack (2019) introduces a SRL paradigm which has its base in
giving external knowledge to the agent. The agent is given information about the state of the model
in a safe state. If for any transition between one state to another, the control policy used to arrive
at st can be reused to move to st+1, the process is considered safe. Safety is enhanced by intro-
ducing a safety filter developed by Mannucci et al. (2015). SHERPA, or Safety Handling Exploration
with Risk Perception Algorithm, reinforces safe learning by overriding inputs that do not satisfy the
ergodicity constraint i.e. verifies that the system is bounded to its set safety requirements (Pollack, 2019).

When operating in risky environments, especially when learning is done online, it is important to
reduce the complexity of the learning process in order to be able to adjust to unforeseen dangers in a
timely matter. One way to tackle this, a teacher figure can be implemented who supports safe learning.
Teacher Advice allows safe exploration by guiding the agent to safe states while following its own safe
strategy and it can also give suggestions on actions to take to prevent reaching risky status. Fig. 3.2
schematized the interactions between the different elements in teacher advice control.

Figure 3.2: Teacher- Learning Agent framework. Adapted from Garcıa and Fernández (2015).

At each time step t, the agent observes its state st, decides upon an action and receives a reward after
action at is completed. The teacher observes the state st in the same manner as the agent. Depending
on the algorithm, either by initiative of the agent or of the teacher, advice is given to the agent in order
to modify its strategy to ensure safe operations.

Teacher-Advice is implemented by Matiisen et al. (2019) as a method that enhances sample efficiency
while being inherently safe. As mentioned before, this is an interesting focus due to the complexity and
urgency of learning safe policies online. In this paper, Matiisen et al. (2019) proposes a teacher-student
set up in which the student attempts to master a complex task. The teacher gives the student advice to
increase the reward while performing tasks that have already a high learning curve. This is aimed at
performing one task at the best of the agent’s abilities before moving on to a less known task. However,
this paper addresses the issue of forgetting optimal policies by redirecting the agent focus on tasks
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where the learning curve has decreased during learning. One issue with the method proposed by
Matiisen et al. (2019) is that the state space is only considered in its discrete form making it quite limiting
for complex control tasks.

Geramifard et al. (2013) implements the teacher-advice method on UAV’s fuel planning. In this paper, a
safe function is defined, which is based on a constrained function. The constrained function S gives
information on which states are allowed or not due to the risk of being unsafe. The definition of risk
then follows as the probability of stepping in any of states constrained by S (Garcıa and Fernández,
2015). Therefore, the teacher consults the safe function S ⇥ A and gives the agent advice on a
strategy to avoid constrained states. One drawback shared with constrained criterion method is that the
unsafe states need to be known before a policy can be defined. However, this issue can be mitigated
e.g. by implementing prior knowledge. The approach reported by Geramifard et al. (2013) combines
teacher-advice with constrained criterion. A similar set up is presented as shielding, a concept which
will discussed in Section 3.2.

Safety can also be achieved by deriving a safe policy from demonstrations which is the last method
under the external knowledge umbrella shown in Fig. 3.1. This approach is also known as Learning
from Demonstration (LfD) (Argall et al., 2009). The basic concept of LfD is divided in two steps. Firstly,
a teacher demonstrates how to approach the task and its state-action transitions are documented.
Secondly, the student uses the recorded transitions to learn the policy. Ravichandar et al. (2020)
propose a survey for LfD paradigms in the context of robotics and automation. It is clear that LfD
is widely uses as this comprehensive review discusses many application of LfD algorithms such as
ground and underwater vehicles, manufacturing as well as health-care robotics. Aerial vehicles are
also discussed with Ross et al. (2013) being the only paper relating to complex flight control tasks.
In this research, LfD is applied to a quadrotor navigating a forest. The aim is to implement LfD to
train a controller so that the UAV can successfully avoid obstacles such as trees. The agent learns
from demonstrations extrapolated from a human pilot and these information are iteratively learned and
corrected to boost the learning performance of the agent.

Within learning from demonstration, Inverse Reinforcement Learning (IRL) is an attractive method
for many applications where a specific reward function is not known (Garcıa and Fernández, 2015).
In IRL, the policy function is known and the agent strives to deduce the reward function associated
with that policy. Ng et al. (2000) associates the main motivation of focus on this approaches to its
potential for reinforcement learning in behavioral studies. Therefore, it could be productive in studying
the behavior of a demonstrator to feed the knowledge to a learning agent. This is precisely done by
Yuan (2019) which uses LfD to rebuild the reward function derived by demonstrations to facilitate the
agent’s learning process in the field of UAV flight control. In the research, Yuan (2019) uses existing
assessments to improve on an initial demonstration after which the agent manages to produce a policy
which outperforms the initial demonstration. IRL, and LfD as a matter of fact suffer from a major
drawback namely that full knowledge of the trajectories from state to action (and vice-versa for IRL)
need to be known (Akhtar et al., 2021). This unfortunately is not always possible. Another disadvantage
is tied to the quality of the demonstrations provided. If the learner is granted poor demonstrations, an
equally poor policy could be learned since the two are highly correlated.

3.1.3. Risk-Directed Exploration
The last method in the right branch of Fig. 3.1 is Risk-Directed Exploration. This approach is based
on a risk metric depending on the variable w i.e. the controllability of a state-action pair. Garcıa and
Fernández (2015) defines this metric as a function of the TD error: if a state results in large variability in
the TD error, this state is poorly controllable. When exploring the environment, the agent is instructed to
seek spaces where there is high controllability.

These methods however are extremely similar to the Constrained Criterion approaches discussed
in Section 3.1.1 as controllability can be implemented as a constrain. Therefore, these methods will not
be further discussed in this research.
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3.2. Shielded Reinforcement Learning
The approached discussed in Section 3.1.1 and Section 3.1.2 can be combined to derive new forms
of safe Reinforcement Learning. One interesting method developed from merging teacher-advice
and constrained criterion is Shielding (Alshiekh et al., 2018). This algorithm, similarly to constrained
criterion, enforces specifications that need to be followed by the learning agent. The conditions are
enforced by a shield that observes the actions taken by the agent and intervenes only if they are
deemed unsafe. Shielding can also be closely related to teacher-advice since by providing information
when needed, the shield acts as a teacher. Alshiekh et al. (2018) adapts the same definition of safety
as Garcıa and Fernández (2015), hence as the concept of not visiting any troublesome state. For
this definition to apply, the shield must have some indication on which states are dangerous or not.
Therefore, shielding also uses prior knowledge to some extent.

The approach proposed by Alshiekh et al. (2018) adds the shield as an addendum to a classical
RL framework to ensure minimum interference with the environment dynamics. Fig. 3.3 and Fig. 3.4
show two classical shielding frameworks. Fig. 3.3 shows Preemptive shielding, where the learning loop
is modified by removing the unsafe actions from the beginning as the shield is placed before the agent.
This approach can be considered more intrusive, as learning is effectively constrained to the policies in
the safe space �.

Figure 3.3: Preemptive Shielding framework. Adapted from
Zoon (2021).

Figure 3.4: Post-Posed Shielding framework. Adapted from
Zoon (2021).

The second approach shown in Fig. 3.4 is named Post-Posed shielding. In this case, the shield is
placed after the learning agent, meaning that the shield only intervenes if unsafe actions are chosen
violating the safety specification �s. As it can be seen, the shield receives both the state st and the
action chosen by the agent a1t . If the actions are deemed safe with respect �s, the shield will not activate
but remain in observation mode. Otherwise, safe actions at 6= a

1
t will be suggested to the agent so

future risks can be avoided. In order for a1t to be discarded in future learning, a punishment r0t+1 can be
assigned so that the agent learns that the action violated �s. Jansen et al. (2018) introduce the concept
of a rankt. The agent provides a ranking of actions from most desirable to least. The shield selects the
action that is safe according to the safety specification. If none of the given actions are deemed safe,
the shield proposes an action at /2 rankt. This approach is found to be more efficient considered that if
the shield chose a new action at which does not belong to the ranking, all the actions proposed by the
agent can be discarded by assigning a punishment. This effectively speeds up the learning process.

Alshiekh et al. (2018) and Jansen et al. (2018) both apply shielding to game theory and some Atari
games. Although not comparable to the flight control tasks which will be studied during this research,
results on games give a good indication of the overall performance of a specific method. Jansen et al.
(2018) consider the arcade game PAC-MAN where the task is for the agent to eat food in a maze while
avoiding ghosts. In this example, the reward is defined as the food eaten. The longer it takes the agent
to complete the task (i.e. eat all the food) a penalty is introduced. The agent is also penalized if it
is eaten by a ghost. The shield is created via the probabilistic model checker Storm (Dehnert et al.,
2017). This game is solved via Q-learning first and then by implementing the aforementioned shield
to this RL technique. It should be noted that a episode is defined as the time until all the food is eater
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or until PAC-MAN is eaten by the ghosts. Fig. 3.5 shows the environment for both the shielded and
unshielded case for the same arbitrary instance. On the right two out of three of the potential decision
that PAC-MAN could take are indicated as safe (the green squares) while on the same instance on
the left, the episode is about to end. This shows that for this instance, the shielded version is more
successful than the classical RL framework. This is supported by monitoring the average score in the
long term as shown in Fig. 3.6. It can be seen that the average reward is consistently higher for the
shielded case even on the very first training episode. It can also be noted how the learning curve is
steeper for the shielded case, meaning that an optimal policy is reached faster than the unshielded
case.

Figure 3.5: Classic PAC-MAN environment. Retrieved from
Jansen et al. (2018). Figure 3.6: Resulting scores for shielded and classical learning.

Retrieved by Jansen et al. (2018).

As of 2021, shielding has not been explicitly used in any flight control tasks. However Zoon (2021)
proposes shielding for autonomous vehicle control implemented in a Double-DQN. The choice of the
base RL algorithm was made by realizing that shielding has been only introduced for discrete action
spaces whilst traffic control replies on continuous state spaces. This made Double-DQN a appropriate
candidate for this research. Zoon (2021) introduces two shielding approaches both based on post-posed
shielding namely Safety Checking Shield (SCS) and the Safe Initial Policy Shield (SIPS). SCS is the
baseline of SPS: operations follow exactly as shown previously in Fig. 3.4. SIPS however, implements a
different method to overrule an unsafe action. A parameter ⇢ is introduced which gives an estimate on
how much a proposed action deviates from a safe action determined by �s. Once the agent proposes
rankt, the shield approximates the deviation ⇢ from a safe action given by prior external knowledge. If
the deviation is small, the action is taken; otherwise it is overruled. Both approaches were implemented
within the Double-DQN and applied to autonomous driving scenarios such as steering, accelerating and
breaking.

Figure 3.7: Sum of rewards over episodes when training an RL
agent using the regular DDQN, the SCS and the SIPS Retrieved

from Zoon (2021).

Figure 3.8: Percentage of overruled actions over episodes
when train- ing an RL agent using the regular DDQN, the SCS

and the SIPS. Retrieved from Zoon (2021).



3.3. Conclusion 48

The results shown in Fig. 3.7 and Fig. 3.8 are for a scenario with one lane, hence no steering is required.
Fig. 3.7 shows the return for both shielding methods and for Double-DQN. SIPS and SCS perform quite
similarly: this relates to the fact that both shields are overruling the same unsafe actions. A striking
improvement can be seen with respect to Double-DQN. Since Double-DQN takes random actions at
the beginning, there is more chance of receiving a penalty. This is avoided by the shielded method
as a penalized action will not be proposed again. Fig. 3.8 shows the percentage of overruled actions
throughout the learning. Of course, Double-DQN will always have a value of zero since there is no
architecture that allows decisions to be overruled. Again, both SIPS and SCS perform similarly. It can
be seen that both methods converge to a point when no actions are overruled. This follows from the
concept just highlighted: since unsafe actions are not re-proposed once overruled, at the end of the
learning the shield will only be proposed actions that do not violate �s.

Zoon (2021) successfully implemented shielding within the field of autonomous vehicles. The re-
sults showed improved learning performance and overall safer actions taken since by the end of the
learning no more unsafe actions are proposed. One interesting suggestion would be to see how the
system would react to a representation of the environment which is not fully correct or incomplete.
Indeed one of the shortcoming of shielding is that prior knowledge is necessary for the shield to be
constructed. However, Alshiekh et al. (2018) argue that this is unavoidable in SRL since safe actions
are related to the environment.

3.3. Conclusion
In this chapter, the main Safe Reinforcement Learning (SRL) approaches delineated by Garcıa and
Fernández (2015) have been reviewed to answer the research questions presented in Chapter 1. First
of all, RQ-2.1 was answered as safety in RL was defines as the condition of protecting the agent from
pursuing a dangerous action or reaching an unsafe state space. Following, the different SRL methods
shown in Fig. 3.1 were illustrated. The first class of approaches was based on modifying the optimization
criterion. These methods actively introduce the metric of risk so that the policy is modified only to
include safe actions. Some methods that implement this are worst case, risk-sensitive and constrained
criteria. Although most of these methods do successfully enable the agent to remain within a safe
domain, their implementation require explicit values of the transition probabilities and rewards. This
however, is not always possible in RL within flight control.

The second class of approaches is based on modifying the exploration process so that safety can be
ensured. This can be done in two manners, either by providing the agent with external knowledge or
by conducing risk directed exploration. External knowledge might be crucial in SRL as the agent can
avoid unsafe actions and states by knowing whether they are effectively such. External knowledge can
be given as ad advice presented by e.g. a teacher, by a policy which is derived by a demonstration
or by simply providing initial knowledge. These methods are effectively used in SRL and may be an
interesting option for this application in flight control.

Another approach not discussed by Garcıa and Fernández (2015) is to combine the two branches of
Fig. 3.1 to develop a method that draws all the advantages of the different algorithms. This however is
proposed by Alshiekh et al. (2018) as Shielding. This research proposed to combine teacher-advice
methods and constrained criterion to implement a shield, assigned to block any unsafe action to be
performed by the agent. Although this technique has yet to be used in flight control, research on
autonomous driving cars has found this method to be particularly fictitious.

This chapter presented an overview of state-of-the-art RL methods according to which safety can
be improved. In this way, RQ-3.1 has been answered.
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State-of-the-Art of RL in Flight Control

This chapter will answer RQ-2.3 by giving insight in state-of-the-art approaches to control fixed wing
aerial vehicles using DDPG methods. Section 4.1 will give an overview of the research carried out by
Milz and Looye (2020) on a flight controller based on DDPG as well as PID. Right after, in Section 4.2,
a summary of a research carried out by Tang and Lai (2020) on the design of a automatic landing
controller using DDPG is given. Finally, Section 4.3 presents a research on the use of DDPG to control
a fixed wing aircraft created as means of verification for real-life cases.

4.1. Design and evaluation of advanced intelligent flight controllers
Milz and Looye (2020) propose a research focused on applying RL methods to robust and adaptive flight
control tasks. This paper is particularly interesting in regard to this research as adaptive flight control
allows safety to be ensured when encountering unexpected situations. As mentioned in Chapter 1,
non-learning controllers have been a key element in flight control for decades. Past adaptive controllers
were based on the concept of indirect adaptive control. The working principle is based on a dynamic
model that is regularly updated using system identification algorithms. Recently, the dependency on this
dynamic model has been reduced by implementing Incremental Nonlinear Dynamic Inversion (INDI).
This method is made of an online system identification that incrementally updates an inverse model
of the system, allowing changes in the dynamics of the environment to be handled in a continuous matter.

In the work of Milz and Looye (2020), an INDI controller is used as a benchmark to compare the
efficacy of learning controllers when working on the automatic landing of a large cargo aircraft. The
two intelligent controllers are equipped with a DDPG and a PIDNN algorithms. The latter approach
is a controller consisting of a NN with three layers each made of proportional, integral and derivative
neurons. The addition of a NN to the standard PID controller allows the system to be a multiple-input-
multiple-output (MIMO) system. This is necessary as both the tracking error and the output need to be
monitored. The DDPG agent implemented follows the description given in Section 2.3.1 and developed
by Lillicrap et al. (2015) allows to include the dynamical behavior of the aircraft in the network.

The benchmark case discussed in Milz and Looye (2020) has four scenarios:

1. No disturbances and no noise;
2. Gaussian distributed noise with µ = 1 and �2 = 0.05 applied to the output;
3. Changing lift and pitch moment coefficient with respect to the angle of attack;
4. A combination of case 2 and 3.

In this work, the roll angle � and the pitch angle ✓ will be tracked. After these parameters are set, the
performance of the DDPG and PIDNN controllers can be analyzed and compared to the INDI controller
for all scenarios. An overview of the DDPG controller behavior for the different scenarios is given in
Fig. 4.1a and 4.1b. It can be seen that the responses are barely different suggesting that noise and
disturbances do not influence the DDPG controller. This is an attractive result as real-life conditions are
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(a) Lateral (b) Longitudinal

Figure 4.1: Combined simulation results of the DDPG controller on the four different scenarios. Retrieved from Milz and Looye
(2020).

far from the idea case used in many simulations. It can be seen that all the results display an oscillatory
transient behavior. The authors note that considering the consistency among the different cases, this
behavior may be caused by the training of the agent if the optimization does not improve after falling
into a local minima. To analyze and compare the different controllers, the authors decided to show only

(a) Lateral. (b) Longitudinal.

Figure 4.2: Comparison of all applied controllers. Retrieved from Milz and Looye (2020).

the ideal condition since it was shown, for both DDPG and PIDNN, that the trends are the same for
all conditions. In general, both the non-learning INDI controller and the learning PIDNN one show an
overall better performance than DDPG. The oscillatory transient behavior described before worsen the
performance of the DDPG. Nonetheless, Milz and Looye (2020) suggest that working on the training
stage and adjust the networks hyperparameters could be an effective solution to improve performance.
Additionally, the ability of DDPG to execute the desired action for different uncertain conditions are
considered of great interest for further research in the field of adaptive control. Therefore, although the
results are not in favor of DDPG, the authors appear confident in the possible improvements that could
be achieved in future research.

4.2. Automatic landing control using DDPG
Approach and landing phases are challenging sections of the flight envelope even when performed by
a controller due to many disturbances as well as limitations caused by structural, aerodynamic and
aviation regulations. In order to offer an alternative to the conventional PID controllers, Tang and Lai
(2020) focus on developing a learning controller for a commercial fixed wing aircraft equipped with a
DDPG algorithm.
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When landing, the aircraft follows the glide and then the flare path until touchdown. In this research,
the altitude and the vertical velocity will be tracked and constrained to follow the limitations set by the
aircraft manufacturers and the governing bodies. Wind disturbances modeled with a Dryden model
have been introduced to the model to subject the controller to more realistic conditions. The goal of this
simulation is of course to land successfully while following the requirements mentioned above. However,
this sparse reward strategy is not deemed successful by the authors as the agent may be lured to
explore risky policies or not reach convergence. Therefore, a new dense reward function was created to
lead the agent along the correct path by increasing the reward by small steps.

Figure 4.3: Altitude boundaries for Reward Rh. The aircraft can deviate 15 ft above the glideslope and 3 ft below. Retrieved from
Tang and Lai (2020).

In this new reward function, the total reward RT depends on deviations from the glideslope, deviations
from the vertical velocity limits and deviations from the intended touchdown point. For example, the
reward given to the agent for maintaining a correct altitude can be visualized in Fig. 4.3. The agent
acquires a positive reward Rh if it follows the glideslope with a maximum deviation of 15 ft above it
or 3 ft below it. Tang and Lai (2020) validated the results by simulating the DDPG in more than 1500

(a) Average reward RT . Retrieved from Tang and Lai (2020). (b) Glideslope path. Retrieved from Tang and Lai (2020).

(c) Altitude error. Retrieved from Tang and Lai (2020). (d) Vertical velocity. Retrieved from Tang and Lai (2020).

Figure 4.4: Results from simulation. Retrieved from Tang and Lai (2020).

different flight conditions each with a different wind profile. Since the authors identified a trend among
all DDPG agent trained, they decided that only one case will be considered for the sake of conciseness.
The results presented here are for flight conditions with a vertical wind of 20ft/s. Fig. 4.4a shows the
average reward for 1200 episodes. It can be seen that initially, the values remain low until the 800th
episode. After this plateau, the learning curve increases and convergence is reached. Interesting to
see from Fig. 4.4d that the glideslope is almost perfectly followed from the beginning of the maneuver
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until touchdown. Regarding the altitude error, it can be seen from Fig. 4.4c that the error is consistently
less than 3ft, following the set constraints.

The work presented by Tang and Lai (2020) is an interesting source as it indicates that a DDPG
agent can successfully control an aircraft to land with disturbances such as wind introduced. It is also
particularly relevant for this thesis since some states have been chosen as risky and the agent suc-
cessfully recognized them as such during the simulations. However, similarly to the previous research
mentioned, the choice of DDPG hyperparameters significantly affected the results of the simulations.
Therefore, the authors advise to direct any future work’s attention to fine tuning these values.

4.3. DDPG attitude control for low-cost aircraft
In recent years, intelligent flight control has been a main focus for many researchers. However, before
its full scale implementation can be reached, consistent results from real-life trials need to be achieved.
One main issue is that traditional aircraft are costly and not readily available for research. Therefore,
the lack of validation means delays in the use of learning controllers for commercial use. Wang et al.
(2020) individuate this gap and propose to model a reusable fixed wing aircraft which can be handled by
learning controllers and provides verification data without incurring high costs.

The aircraft is modeled as a scaled-down medium-size jet that can be built by 3D printing. Since
the aircraft is being built ad-hoc, not all performance characteristics can be known. For instance,
aerodynamic data can be acquired via wind-tunnel measurements. To avoid these cost, approximations
are gathered via aerodynamic software. The uncertainty of the model is a main factor that encourages
the authors in working with model-free algorithms. DDPG is chosen as it is model and policy free, and
can be implemented in continuous control which is a focal point in the process of implementing learning
flight controllers. The DDPG algorithm is made of four NNs: two critic networks and two actor networks.

Figure 4.5: Controller architecture. Retrieved from Wang et al. (2020).

From Fig. 4.5, the state and action spaces can be deduced. The states are the pitch angle error e�, the
pitch angular rate error e!y

and the pitch angle error integral defined as follows:

I'(k) =
kX

i=0

e'(i) · T (4.1)

where T is the simulation time. The action is the rudder deflection ��. With these information, Wang et al.
(2020) define the actor and critic networks which can be seen in Fig. 4.6. This method applies a noise
to the output in the form of a normal distribution with �2 = 3 and the µ equal to the output of the online
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Figure 4.6: Network architecture. Retrieved from Wang et al. (2020).

actor policy network. While the variance starts at 3 when learning begins, it decays with a discount rate
of 0.9995 while training so that the output becomes a fully deterministic action. The initial conditions for
the simulation are set to zero for both pitch angle and rate while the goal is to reach a pitch angle of
17 degrees and keep the pitch angular rate equal to zero. Additionally, a generalized goal for which
the agent was not trained is simulated. This is shown in Fig. 4.7b where the pitch angle increases in
three steps, the pitch angular rate is still kept at zero and the rudder deflection switches of 180 degrees.
As it can be seen from the top graphs of Fig. 4.7a and 4.7b, the pitch angle smoothly converges to
the desired value after a small overshoot. For the pitch angular rate and the rudder deflection, the
desired conditions are reached after an overshoot accompanied by a small oscillatory section. Similarly
to what seen before in Section 4.1, this could be due to a behavior acquired during training as well
as the choice of hyperparameters. When monitoring the errors of the research specific case, Fig. 4.8

(a) Research specific case. (b) Generalized case.

Figure 4.7: Control results from simulation. Retrieved from Wang et al. (2020).

shows that both e� and e!y
are correctly tracked by the agent. Both errors converge to zero in the

first third of the simulation, which demonstrate that the algorithm can successfully track errors. Wang
et al. (2020) research indeed demonstrates that implementing a learning controller within a low-cost
fixed wing aircraft (for which a complete accurate model is not available) gives effective results. The
approach can be considered straightforward while still providing exhaustive proof that this beginning to
end design can be used to verify further research on RL based controllers. The authors suggest that the
reward function should be further studied to provide an improved performance as well as introducing a
stochastic noise to the output rather than the current normally distributed one.

4.4. Conclusion
In the previous section, an overview of recent advancements of RL in flight control were presented.
Section 4.1 described an interesting paper that compares DDPG controllers to a PIDNN. Both learning
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Figure 4.8: Control errors from simulation. Retrieved from Wang et al. (2020).

controllers were also compared with a non-learning one based on the concept of INDI. In the end, both
learning controllers successfully completed the required tasks with PIDNN doing a better job since
DDPG shows an oscillatory transient behavior. However, Milz and Looye (2020) suggest that this may
be due to the chosen DDPG hyperparameter and recommend to perform further work on them.

Section 4.2 proposed a DDPG based controller for landing of a fixed wing aircraft. This paper was
especially relevant as some of the actions that could be taken by the agent were constrained to allow
landing to happen safely according to structural or regulatory constraints. Although the controller was
successful in landing the aircraft, the authors individuate a similar trend to the research before regarding
the hyperparameters.

Finally, Section 4.3 proposed a research for a DDPG attitude controller implemented on a fixed wing
aircraft of which not all necessary modeling parameters are known. This was done to improve the
existing means of verification so that the implementation of learning controllers in real-life could be
accelerated. The research successfully designed a DDPG controller that is able to learn a policy for
which it was not trained before. However, since the noise introduced is simply normally distributed, the
authors suggest that future work should be spent on implementing a stochastic noise to the output. By
presenting these papers on state-of-the-art of reinforcement learning in flight control, RQ-2.3 can be
considered as answered.



5
Preliminary Analysis

In this chapter, a Q-learning agent will learn how to navigate the Grid World environment when a shield
is implemented in the loop. The aim is to assess whether a RL algorithm with similar characteristics to
DDPG is able to successfully complete a task while a simplified version of a shield is applied. Not only
this exercise is aimed at giving confidence about the validity of the methods described before, but it
is aimed at gathering some practical knowledge about the approaches that will later be applied to the
control of the Cessna Citation. The chapter begins with a description of the environment in Section 5.1.
The Q-learning agent is discussed in Section 5.2 followed by an overview in Section 5.3 of the shielding
techniques used in this analysis. Results will be presented in Section 5.4 while concluding statements
will be given in Section 5.5

5.1. Environment Description
In this analysis, the Matlab Grid World environment is used to test the workings of some of the algorithms
discussed in previous chapters. The environment is composed of a 10-by-10 grid as shown in Fig. 5.1,
where an agent can move in four different directions namely North, South, East and West. The agent
begins from the top right cell [1,10] shown in yellow. The goal is to arrive to the blue at [8,4] while
avoiding the obstacles represented by the black cells.

Figure 5.1: 10-by-10 Grid World environment. The black cells represent the obstacles, the yellow cell is the initial position of the
agent while the blue cell is the target.

As the aim is to reach the target state in the least amount of steps possible, the agent receives a reward
of -1 for each action taken. Once it reaches the target, a reward of +50 is received. It should be noted
that all transition probabilities from one state to another are set to one, while the transition to any of the
obstacles states are always zero.
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5.2. Q-Learning Implementation
In this simulation, a Q-learning agent that follows the algorithm described by Algorithm 4 is implemented.
Although it was decided to work with a DDPG agent in previous chapters, the choice of Grid World
does not allow such an algorithm to be used. The action space of DDPG is required to be continuous,
while Grid World’s actions are four discrete steps. Additionally, the implementation of neural network
is not deemed necessary due to the simple environment, making DQN algorithms superfluous. Since
Q-learning shares the main characteristics of DDPG i.e. being model-free and off-policy, it is chosen to
carry out this analysis.

This experiment is similar to one carried out by Alshiekh et al. (2018) where a Q-learning agent
navigates a 9-by-9 environment with obstacles and sub-goals. The hyperparameters were kept as the
ones given in the aforementioned paper and are reported in Table 5.1.

Table 5.1: Q-learning agent hyperparameters. Values from Alshiekh et al. (2018).

Hyperparameter Value
Learning rate � 1
Discount factor � 0.99
Exploration probability ✏ 0.04

The learning occurs over 400 episodes each lasting a maximum of 50 steps. While the 400 episodes
is an arbitrary choice, the 50 steps are a default option of the Matlab environment that has been kept
unchanged.

5.3. Shielding Implementation
In Chapter 3, it was decided to implement shielding as the safe Reinforcement Learning method. In the
analysis presented here, a simplified version of the shielding technique applied by Alshiekh et al. (2018)
is proposed. Some of the steps taken here do not follow the method described in Section 3.2 but rather
propose a solution of the same essence. The approach begins with synthetizing a reactive system such
that a safety specification �s is followed. This reactive system can be placed at different points in the
control loop, as shown in Fig. 3.3 and 3.4. In the case of a preemtive shield, the unsafe actions are
directly removed so that the agent does not have the ability to choose such actions. This case can be
considered as the case with obstacles states in the grid. Since the transition probability of going from
state s to an unsafe state (represented by the obstacle) is zero, the agent will never be able to select an
action that leads to danger.

The second method is a post-posed shield, where the actions are monitored and corrected only
if an action that leads to an unsafe state is selected. One of the simplifications mentioned before is
applied in this case. In contrary with the method of Alshiekh et al. (2018), the shield is not a reactive
system that itself intervenes during learning. An agent is free of taking any action, but it will receive
a punishment if an unsafe state is reached. Hence, actions that go against �s are not substituted but
instead they are learned by the agent to be disadvantageous. Although this approach does not avoid
unsafe actions to be excluded from the policy, this also cannot be avoided in the original algorithm as
mentioned by Alshiekh et al. (2018).

Fig. 5.1 shows the adjusted grid environment with unsafe states used to simulate a post-posed shield.
These can be seen in orange and they are always located adjacent to the obstacle states in black. If
an agent chooses an action that leads to an unsafe state, a penalty of -10 is allocated. This penalty
makes unsafe states highly unattractive and allow an optimal and safe policy to be learned. Another
approach discussed in Section 3.2 is to let the agent follow actions which are ranked from most to least
desirable. In this analysis, not all steps taken by the agent follow a ranking. Two states are selected,
namely [3,3] and [5,7] as they are located at the two possible corridors that the agent may follow
to arrive at the target destination. Jansen et al. (2018) states that not all possible actions need to be
ranked, therefore selecting only two states was deemed a viable solution. The ranking is translated into
a reward scheme, with the best action earning a reward of +2 and the worst a penalty of -5. An action
that results in being adjacent to an unsafe state results in a penalty, otherwise no penalty is given. If the
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Figure 5.2: Modification of 10-by-10 Grid World environment. Unsafe states indicated in orange and states with ranked actions
are in green.

action results in arriving at a state that is not adjacent to an unsafe one and positively contributes to
reaching the goal, a reward is given. For example, if the agent is at state [3,3], going East or South
will result in a reward while going West is penalized. The action of going North is not ranked as it does
not positively contribute i.e. the path to the target becomes longer hence not optimal.

5.4. Results
In the following section, results for different scenarios are presented. The results should give an
indication of the performance and the safety of the generated policy as well as the balance between
these two factors. Scenario 1 is the simplest one that can be done with Grid World where no obstacles,
no unsafe states and no ranked action states are present. This was done simply to make sure that

(a) Policy visualization. (b) Optimal path found by agent.

Figure 5.3: Policy and path visualization for Scenario 1: no obstacles, no unsafe states and no ranked action states.

the Q-learning agent and the hyperparameters chosen are working correctly. It can be seen from
Fig. 5.3b that the agent successfully reaches the target state with the shortest path possible. Fig. 5.3a
give information about the exploratory pattern of the agent. It can be deduced that most of the states
explored lay on the upper right side of the grid: since the agent has no notion of obstacles and unsafe
states, the exploration occurs in a unorganized manner. Scenario 2 is represented by a grid with only
obstacles states. The agent knows that obstacles states may not be reached, hence it tries to find
the shortest path while avoiding the obstacles. It can be seen from Fig. 5.4b that the shortest path is
indeed found with a reduced amount of exploration of the environment. It can be seen from Fig. 5.4a
that although some exploration is done, at the end of the episodes the agent chooses a policy which is
not the shortest possible. This could be due to the choice of a low exploration probability factor as the
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agent tends to exploit the current reward rather than keep exploring possible better options. This case
represents the preemptive shield presented by Alshiekh et al. (2018) since all states that are considered
unsafe are unavailable to the agent.

(a) Policy visualization. (b) Optimal path found by agent.

Figure 5.4: Policy and path visualization for Scenario 2: obstacles but no unsafe states and no ranked action states.

Fig. 5.5 show the policy and path visualization for Scenario 3 where the states adjacent to obstacles
are considered unsafe. The agent is able to visit these states, but a penalty is awarded for doing so.
From Fig. 5.5b it can be seen that at the end of the episodes, the agent does find the optimal path
while avoiding the unsafe states. However, from Fig. 5.5a is can be observed that the optimal policy

(a) Policy visualization. (b) Optimal path found by agent.

Figure 5.5: Policy and path visualization for Scenario 3: obstacles and unsafe states present but no ranked action states.

is reached by exploring unsafe states which is to be expected. As mentioned in Section 5.3, unsafe
actions may be part of the learned policy since the agent learns to avoid them by effectively exploring
these unsafe states. Finally, Fig. 5.6 shows the results for Scenario 4 where the obstacles and the
unsafe states kept the same as Scenario 3, but some states with ranked actions are added. These
follow the description given in Section 5.3. From the path visualization in Fig. 5.6b, it can be seen that
the agent successfully avoids the unsafe states and uses the ranking of actions provided correctly. In
fact, it moves South at both [3,3] and [6,7] gaining the reward for performing the highest ranked
action. However, it can be seen that the generated path is not the shortest one that can be achieved
in this environment. The reason could lay behind the hyperparameters as mentioned in the results of
Scenario 2. From Fig. 5.6b it can be seen that the unsafe states are successfully avoided and barely
explored. This shows that applying this method does in fact help prevent visiting unsafe states in the
environment. It should be noted that since there is no guarantee that unsafe actions are not part of
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the policy, the shield should be implemented in the stages beyond the learning phase (Alshiekh et al.,
2018).

(a) Policy visualization. (b) Optimal path found by agent.

Figure 5.6: Policy and path visualization for Scenario 4: obstacles, unsafe states and ranked action states present.

It is necessary to also look into the performance of the algorithm for the different scenarios. A summary
of the conditions for each scenario is given in Table 5.2 while Fig. 5.7 shows the average reward gained
by the agent through the simulation episodes. Unsurprisingly, Scenario 1 converges the fastest of all
since the agent does not need to learn to avoid certain states. It can be seen from the figure that agent
accumulates the maximum average reward in Scenario 1; this is due to the fact that the reward scheme
does not include additional penalties other than the ones related to moving from a state to the next and

Table 5.2: Summary of different scenarios for the Grid World preliminary study.

Scenario # Obstacles Unsafe states Ranked actions
1 7 7 7
2 3 7 7
3 3 3 7
4 3 3 3

that the path taken by the agent is the shortest between all cases. In terms of average reward, Scenario
2 and 3 converge to a similar value. Since Scenario 3 optimal policy successfully avoided unsafe states,
the agent was not penalized other than for taking steps to reach the target states. Therefore, it is not
surprising that the two algorithms received a similar average reward upon convergence. However, it
can be clearly seen that at the beginning of the training the agent from Scenario 3 does receive much
more negative rewards. This is a byproduct of exploration and it can not be avoided. In order reduce the
amount of negative reward, the unsafe actions have to be removed. This is indeed the case for Scenario
2 where a preemptive shield is implemented and the average reward stays more or less constant until
convergence is reached. Regarding the convergence, all algorithms show a similar learning curve.
However, Scenario 1 and Scenario 4 show faster convergence than Scenario 2 and 3, even if by little.
In fact, although Scenario 4 shows a similar behavior to Scenario 3 before convergence, this agent
reaches a optimal policy before. This can be attributed to the fact that for certain states the agent is not
required to explore different options but can simply follow the best ranked action. In this way, exploration
time is reduced and convergence can be promptly reached. Although the difference from the cases with
shielding but no ranked actions is minimal, this study only provided ranking for actions of two states.
Therefore, the learning curve could be further improved by providing a ranking for more actions.

5.5. Conclusion
This section concludes the preliminary analysis done on the implementation of a Q-learning agent and a
shield focused on solving the Grid World environment. In Section 5.1, the 10-by-10 grid was described
where an agent has to reach a terminal state at [8,4] when starting from [1,10]. In the simple most
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Figure 5.7: Average reward for the four scenarios in the Grid World.

case, Scenario 1, the agent has to reach the terminal state without worrying of obstacles or else. In
Section 5.2, the Q-learning agent and its characteristics were described. These mainly follow from the
analysis carried out from Section 2.2.4. The shielding approach was described in Section 5.3. This is a
simplified version of the shielding method described by Alshiekh et al. (2018). Obstacles are introduced
to remove the possibility to visit unsafe states. This is the case of a simplified preemptive shield and
is labeled as Scenario 2. Adjacent to the obstacle states, some unsafe states that the agent is able
to visit have been implemented. If the agent does take an action that leads to such state, a penalty is
given. This allows the agent to learn not to visit these states rather than completely removing them from
the environment. This is defined as Scenario 3. Finally, the last and fourth scenario is created where
certain states are equipped with a ranking of actions that may be taken. If the agent reaches one of
these states, the actions that can be performed to reach a successive state are ranked from most to
least desirable. This allows the agent to learn a safe policy in a faster manner.

It was found that all scenarios reach the target state within the 400 episodes. Scenario 1 converges
the faster and with the highest average reward. This follows the environment, since no penalty are
awarded and the agent does not need to learn a safe policy. Scenarios 2 and 3 show a similar behavior,
however the latter has a much more negative average reward up until it starts converging. This is due
to the penalties given for exploring unsafe states. Although unsafe states may not be part of the final
optimal policy (which is the case for the third scenario in this analysis), they may still be visited and
be part of the policy. This is a result of the exploratory behavior of the agent which is an integral part
of reinforcement learning. Finally, although Scenario 4 shows a very similar trend as Scenario 3, it
reaches convergence slightly before. This is mostly due to the rank of actions which allow the agent to
skip the exploration of certain areas of the grid.

In the end, shielding does provide a final policy which generally avoids unsafe states although the
agent may have to deal with the presence of the latter in the policy. This preliminary analysis provided
interesting knowledge on how even a simplified version of shielding can be used to enhance safety in a
straightforward environment such as grid world. Although shielding requires some external knowledge, it
can be argued that any safe RL technique needs to define what is deemed risky and what not. Therefore,
in the following stage of this thesis, a complete version of shielding will be applied to the control system
of the Cessna Citation to investigate its performance and whether safety of a learning controller can be
enhanced.
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6
Turbulence Study

The Cessna Citation model used in this research is only equipped with longitudinal motion controllers
namely a learning flight path controller and a pitch rate controller designed as a PID. Although the
lateral states are quasi-null in the nominal conditions, their response may vary when subjected to severe
turbulence. Additionally, although the patchy turbulence model implemented in this research describes
a symmetric field, the non-zero gust velocities ug and wg will still affect the roll and yaw moments
(De Prins, 2010). For this reason, it should be investigated whether lateral controllers are needed

Figure 6.1: Flight path tracking of DDPG agent with shield iterated 15 times. The blue and orange lines represent the mean of
the iterated responses and references. The gray areas represent the variation of the responses over the iterated simulation.

when a non-ideal scenario is simulated. The DDPG controller with implemented shield in nominal flight
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profile is simulated 15 times in turbulent conditions. The results of the iterative simulation can be seen
in Fig. 6.1. The results show no significant discrepancy with respect to the nominal shielded DDPG
results in the longitudinal direction. In the lateral and vertical direction, small oscillations can be seen.
Both �, � and  stay consistently smaller than ±0.1 degrees while the yawning and rolling moment
coefficients remain below ±0.3 degrees per second. Therefore, the yawning and rolling motions remain
small enough for the Cessna Citation 500 simulation used in this research not to need any additional
controllers.



7
Robustness Analysis to Different

Reference Signals

In this section, a robustness analysis to different reference signals will be carried. Table 7.1 summarizes
the tests performed in the sections below and the performance of the controllers for each reference
signal. Section 7.1 will analyze the responses of the DDPG and SIP controllers while Section 7.2 will
discuss the performance of the shield.

Table 7.1: Robustness analysis to varying reference flight path angle. All simulations were run on the nominal flight conditions.

Reference Signal Amplitude [deg] Frequency [Hz] nMAE% Srisk% Sunsafe%
DDPG Controller

Sinusoidal 5 0.05 33.6% 15.7% 1.3%
Sawtooth 3 0.05 30.9% 1.6% 5.9%

SIP Controller
Sinusoidal 5 0.05 55.1% 6.0% 0.6%
Sawtooth 3 0.05 71.3% 6.0% 0.6%

DDPG Controller with Shield
Sinusoidal 5 0.05 37.2% 10.5% 0%
Sawtooth 3 0.05 47.9% 7.3% 0%

7.1. Robustness Analysis of DDPG and SIP Controllers
The performance of the DDPG and SIP controllers to a sinusoidal and sawtooth reference � will be
presented in Section 7.1.1 and Section 7.1.2 respectively.

7.1.1. Sinusoidal Reference Flight Path Angle
To assess the DDPG and SIP models’ robustness to different �ref, the response of the agents to a
sinusoidal reference is tested. The wave has a frequency of 0.05 Hz and amplitude of ±5 degrees.
Fig. 7.1 shows the responses for the DDPG and SIP controller in blue and lime green respectively. As it
can be seen, both controllers are able to track the sinusoidal reference although the SIP controller is not
able to reach the same amplitude as the �ref. The conservative policy of the SIP does not support steep
changes in pitch as many of the responses of with this controller are characterized by softer tracking.
It can be seen that the SIP agent struggles with most of the pitch up maneuvers as the reference
pitching rate is extremely noisy during those times. Consequently, the elevator deflection suffers long,
high-frequency disturbances that translate to the load factor. In terms of safety, the SIP controller
only remains 0.6% of simulation time in Sunsafe which is less than half than the DDPG controller. From
Fig. 7.1 it is clear that the amplitude of the ↵ and n responses is lower for the SIP than the DDPG.
Although this is favorable in terms of safety, it is not for the controller performance. It is clear that
in terms of performance the DDPG controller is superior, as it is able to track the sinusoidal signal
without introducing significant disturbances in the responses. The nMAE% for the two agent reflects the
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responses, with the DDPG and SIP controller nMAE% accounting to 33.6% and 55.1% respectively.
The DDPG controller can be considered successfully robust to this reference signal. The SIP shows a
high error and many undesirable disturbances; however, since tracking accuracy represents one third of
the reward function and the agent successfully respects the safety limits imposed, the controller can be
considered robust to this �ref.

Figure 7.1: Flight path tracking with DDPG controller (in blue) and SIP controller (in lime green) for a reference flight path angle
as a sine wave with frequency of 0.05 Hz and amplitude of ±5 degrees. The orange dashed lines represent the reference signals.
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7.1.2. Sawtooth Reference Flight Path Angle
Another �ref tested is shown in Fig. 7.2. The sawtooth reference signal has an amplitude of ±3 degrees
and a frequency of 0.05 Hertz. In terms of performance, both controllers perform similarly to what
discussed in Section 7.1.1. The DDPG follows the �ref more aggressively and is able to maintain the
tracking error low throughout the maneuver. The SIP controller is not fully able to follow the sharp flight
path angle and hence resorts to a smoother, softer tracking. The reference pitching rate, the elevator
deflection and the load factor are noisy during pitch up sections of the simulation, possibly due to the
lower altitude reducing the elevator effectiveness. However, the SIP performs well in terms of safety as
both ↵ and n are maintained within the same limits. The behaviour of the SIP to this reference signal is
analogous to the one discussed above. The controller remains only 0.6% of times in Sunsafe, which is
5.3% less than the DDPG controller. The SIP controller remains more time in SriskH compared to the
DDPG. This can be seen from Fig. 7.2 in the load factor response as it is close to 0.5 once the aircraft
pitches down. In terms of performance, Table 7.1 shows that the DDPG’s nMAE% is 30.9% and the
SIP’s is 71.31%. The conclusion about robustness is the same drawn in Section 7.1.1. The DDPG
is clearly robust to the sawtooth �ref; the SIP would normally not be considered robust due to its high
tracking error. However, due to the nature of the controller, it can be considered robust as it achieves
the goals set by the designer in terms of safety.

Figure 7.2: Flight path tracking of DDPG agent with shield with reference flight path angle as a sawtooth wave with frequency of
0.01 Hertz and amplitude of ±5 degrees. The blue and orange lines represent the mean of the iterated responses and references.

The gray areas represent the variation of the responses over the iterated simulation.
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7.2. Robustness Analysis of Shielded DDPG Controller
After assessing the performance of the DDPG and SIP controllers, the behaviour of the shielded DDPG
controller will be analyses. The response to a sinusoidal reference will be discussed in Section 7.2.1
while the response to a sawtooth signal will be presented in Section 7.2.2.

7.2.1. Sinusoidal Reference Flight Path Angle
The shielded controller is tested on a sinusoidal reference � with frequency of 0.05 Hertz and amplitude
of 5 degrees. The responses can be seen in Fig. 7.3. The shield is on periodically during pitch down
sections of the maneuver as it is triggered first by MSRn

and following by MSR↵ . This allows both angle
of attack and load factors to remain within the safe limits prescribed by the safety range model. It can
be seen on Table 4 in Part I that the shield allows the agent to remain outside of Sunsafe for the duration
of the simulation. In order to track the signal efficiently without violating safety constraints, the agent
stays for 10.5% of times in SriskH . This however, reduces the tracking accuracy of the controller as the
SIP actions are used, scoring 37.2% in nMAE%, a value slightly higher than its unshielded counterpart.
The oscillation between qref and k · qref in theMSR↵ introduce some disturbances in the reference pitch
rate and consequentially in the elevator deflection and load factor. However, these are small enough
and do not particularly effect the tracking of �ref. Therefore, thanks to the shield, the agent is maintained
safe and the controller is able to track the new reference successfully.

Figure 7.3: Flight path tracking of DDPG agent with shield with reference flight path angle as a sine wave with frequency of 0.05
Hertz and amplitude of ±5 degrees. The response of the agent is given in blue, the reference signals are shown by the dashed

orange lines. The control inputs are shown in purple. The MSR↵ is shown in lime green while the MSRn
in purple. The final

MSR↵ is also shown in blue. The grey areas represent the times at which the shield is actively on.

7.2.2. Sawtooth Reference Flight Path Angle
This reference is chosen as the vertical drop in �ref is a good candidate for triggering both MSR↵ and
MSRn

and assessing the shield’s robustness. Unsurprisingly, the shield is triggered immediately once
the �ref changes sign. Thanks to the activation of the shield, both the angle of attack and the load
factors are kept within the safe limits as Sunsafe remains zero. From Fig. 7.2 it can be seen that the
shield allows ↵ to remain above 0 degrees, differently than the unshielded controller where ↵ reaches
-4.1 degrees. The load factor is also maintained above 0.35, while the DDPG controller with no shield
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pushes n as low as -0.7. With a value of 47.9%, the normalized mean absolute error is higher than the
unshielded counterpart, but from Fig. 7.4 it can be seen that error is only substantially high once the
shield, and hence the SIP controller, is in use. Therefore, as the shield maintains the agent in a safe
state space and is able to track the new reference �, it is considered robust to this new reference.

Figure 7.4: Flight path tracking of DDPG agent with shield with reference flight path angle as a sawtooth wave with frequency of
0.05 Hertz and amplitude of ±5 degrees. The response of the agent is given in blue, the reference signals are shown by the

dashed orange lines. The control inputs are shown in purple. The MSR↵ is shown in lime green while the MSRn
in purple. The

final MSR↵ is also shown in blue. The grey areas represent the times at which the shield is actively on.



8
Robustness Analysis to Different Initial

Flight Conditions

In this chapter, a robustness analysis for the DDPG, SIP and shielded DDPG controllers to different
initial flight conditions will be carried out. Four different flight conditions were investigated and compared
to assess the behaviour of the controllers in un-trained situations. An overview of the results can be
seen on Table 4 in Part I. Section 8.1 will evaluate the performance of the DDPG and SIP agents while
Section 8.2 will discuss the responses of the shielded DDPG controller.

8.1. Robustness Analysis of DDPG and SIP Controllers
In the upcoming sections, the response of the DDPG and SIP controller to four different initial flight
conditions will be discussed.

8.1.1. IFC 1
The first flight condition to be investigated is one with the same VTAS is the same as the nominal case but
with slightly lower altitude of 7000 meters. Fig. 8.1 shows the responses for the DDPG controller (in blue)
and the control inputs(in purple) together with the responses of the SIP controller (in lime green) and its
respective control inputs (in dark green). Both controllers exhibit satisfactory tracking performance. The
DDPG controller’s � response shows a more pronounced steady state error, especially within the first 5
seconds. However, in an attempt to maintain both the angle of attack and the load factor within safety
limits, the SIP controller follows �ref avoiding a quick pitch down movement. It can be seen from the �e
that the SIP controller has a more pronounced error for this reason.

In terms of safety, it is clear that the DDPG agent has no notion of safety as it greatly exceeds
the limits set my the MSR and remains in Sunsafe for 3.9% of the simulation. The SIP on the contrary,
is able to maintain safe operation throughout the same maneuver, shown by Sunsafe being 0%. With a
nMAE% of 29.3% and 34.3% for the DDPG and SIP controllers respectively, both agents are considered
to be robust to the IFC 1.
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Figure 8.1: Flight path tracking with DDPG controller (in blue) and SIP controller (in lime green) in IFC 1. The control inputs of
the DDPG controller are shown in purple while the control inputs of the SIP in dark green.

8.1.2. IFC 2
The second flight condition to be examined is with the same altitude as IFC 1 but with lower velocity
VTAS. The responses for this case can be seen in Fig. 8.2. The tracking of the flight path angle begins
for both controller with a large steady state error the first 20 seconds, before stabilizing to a smaller
error, especially for the DDPG controller. The lower velocity will decrease the dynamic pressure which
will in turn decrease the effectiveness of the control surfaces. This occurs as a larger deflection will
be needed to generate the same pitching moment at lower speed. From Fig. 8.2 it can be seen that
the elevator requires larger deflections than in the IFC 1 case discussed in Section 8.1.1. Although
the altitude is the same as IFC 1, the decreased velocity requires a larger angle of attack for the same
maneuver. This allows the SIP agent to maintain the angle of attack well above the limits as well as the
load factor. The SIP agent never visits Sunsafe.

The same could be said for the DDPG controller, however n reaches 0 at t = 35s. This aligns
with the -4 degrees � dive where the DDPG controller generates a strong reference pitch signal. The
elevator deflection has a similar behaviour as for the elevator in Fig. 8.1 although the deflection has
to be applied to a longer period of time to allow for good enough tracking. The agent remains in
Sunsafe throughout 1.2% of the simulation. Overall, although both controllers performance is subpar
with nMAE% of 40.0% and 45.1% for the DDPG and SIP models respectively, both normalized mean
absolute errors are below 50% hence the agents can be considered robust to the IFC 2.
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Figure 8.2: Flight path tracking with DDPG controller (in blue) and SIP controller (in lime green) in IFC 2. The control inputs of
the DDPG controller are shown in purple while the control inputs of the SIP in dark green.

8.1.3. IFC 3
The third IFC is lower in altitude than IFC 1 and IFC 2 but has the same velocity as the nominal case.
In this research, a conventional step down approach at top of descent is simulated. An altitude 8000
meters lower than the norm was chosen to ensure that the agent could effectively track the reference
flight path angle during different stages of approach. The results for the simulation are shown in Fig. 8.3.
The � response for both DDPG and SIP controller exhibits a steady state error of almost 1 degree
up until t = 35s. After that, the error begins to decrease, but still remains noticeable throughout the
maneuver.

In terms of safety, the SIP shows some flaws in design. Similarly to the flight case covered in
Section 8.1.2, higher velocity requires a substantially smaller angle of attack for an identical pitch-
ing maneuver. Due to this, the angle ot attack in this flight condition reaches values lower than the
safe limit set at 0 degrees. Although the SIP agent is taught to keep away from particular values of
↵, the reward function also acknowledges accurate �ref tracking. Therefore, the SIP is not able to
successfully solve the trade-off between safety and performance with respect to ↵. However, since the
SIP agent knows to retain an ↵ between 0 degrees and 12 degrees, the agent will try to fly the aircraft
with an angle of attack as close as possible to the aforementioned range. When looking at the load
factor however, it can be seen that the SIP agent outperforms the DDPG by keeping n within safety limits.

In terms of tracking performance, both controller perform worst than in the nominal condition. With
a nMAE% of 41.4% for the DDPG controller and 35.9% for the SIP, the performance in these flight
conditions is not exemplary. Both controllers show the worst behaviour when looking at the simulation
time spent in Sunsafe. Both agents visit Sunsafe for more than 60% of the simulation time. However, these
controllers are still considered robust to IFC 3 as both nMAE% are below 50% and the overall deviation
from the safe limits is considered small.



8.1. Robustness Analysis of DDPG and SIP Controllers 72

Figure 8.3: Flight path tracking with DDPG controller (in blue) and SIP controller (in lime green) in IFC 3. The control inputs of
the DDPG controller are shown in purple while the control inputs of the SIP in dark green.

8.1.4. IFC 4
The fourth initial flight conditions has the lowest altitude and velocity. The responses of the controller to
the IFC 4 can be seen in Fig. 8.4. The tracking of the �ref is performed by the DDPG agent quite well as
the error is maintained low and the controller is able to follow the reference throughout the step. The
shield controller is also able to track �ref although a larger error can be seen.

This softer maneuver allows the safety of ↵ and n to remain within limits as the agent never vis-
its Sunsafe. To follow �ref, the elevator is required to deflect more and for longer: this is to be expected as
with a decrease of both velocity and altitude comes a decrease in dynamic pressure. A reduction in
the latter results in lower control effectiveness. As already mentioned, both ↵ and n remain in a safe
state space with the SIP controller. The same can not be said for the responses of the DDPG, where ↵
reaches a minimum of -1.2 degrees and n of -0.3. The agent is in an unsafe state space for 1.5% of the
simulation time. Overall, both controllers perform better than in the nominal conditions with a nMAE% of
15.7% and 33.3% for the DDPG and SIP controllers respectively. Therefore, the controllers in IFC 4 can
be considered robust.
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Figure 8.4: Flight path tracking with DDPG controller (in blue) and SIP controller (in lime green) in IFC 4. The control inputs of
the DDPG controller are shown in purple while the control inputs of the SIP in dark green.

8.2. Robustness Analysis of Shielded DDPG Controller
The performance of the shielded DDPG controller to four different initial flight conditions will be evaluated
in the sections below.

8.2.1. IFC 1
The first IFC case corresponds to the same VTAS as the nominal flight conditions but with decreased
altitude. From Fig. 8.5, it can be seen that the shield is on for 98% of the maneuver. This is mostly due
to the angle of attack: as the altitude decrease, the air density increases meaning that a smaller angle
of attack is needed for the same maneuver. However, a too low ↵ will trigger the shield according to the
MSR. This flight condition will therefore be mostly dictated by the action proposed by the SIP agent as it
can be checked with the lower figures in Fig. 8.5. With the lower altitude, the higher density improves
the aileron effectiveness making the responses overall stable.

Both the angle of attack and the load factor are maintained with safety limits and the agent never
visits Sunsafe. Although ↵ is close to the lower bound defined by MSR↵ , the controller is able to maintain
↵ above zero degrees. The load factor is kept below 2 and above 0.6, and therefore never reaching an
unsafe state space. Therefore, the shield performs successfully in terms of safety with altered initial
flight conditions.

From Table 4 in Part I, it can be seen that the nMAE% for this flight condition stands at 34.4%.
The result is higher than the nMAE% for the analogous unshielded case and 0.1% higher than the SIP
controlled case. This is mostly due to the disturbance at t = 20s where the MSR oscillates between
different actions. However, the system’s response shows an overall low error and is considered stable
when the shield is implemented. Therefore, the shield is robust to IFC 1.
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Figure 8.5: Flight path tracking with shielded DDPG controller in IFC 1. The response of the agent is given in blue, the reference
signals are shown by the dashed orange lines. The control inputs are shown in purple. The MSR↵ is shown in lime green while
the MSRn

in purple. The final MSR↵ is also shown in blue. The grey areas represent the times at which the shield is actively on.

8.2.2. IFC 2
The second IFC case is with slightly decreased altitude and decreased VTAS with respect to the nominal
case. The responses for this case can be seen in Fig. 8.6. Although the altitude is the same as IFC 1,
the decreased velocity requires a larger angle of attack for the same maneuver. Therefore, the shield
is only briefly on when the aircraft steps down for the required �ref meaning most of the simulation is
controlled by the DDPG agent. The lower velocity will decrease the dynamic pressure which will in turn
decrease the effectiveness of the control surfaces. This occurs as a larger deflection will be needed
to generate the same pitching moment at lower speed. From Fig. 8.6 it can be seen that the elevator
requires larger deflections than in the IFC 1 case discussed in Section 8.2.1. The elevator introduces
some disturbances, most clearly seen in qref; however, the response is overall stable.

In terms of safety, the MSR is mostly activated due to the load factor. By activating the shield, the load
factor remains at safe values with maximum at 1.8 and minimum and 0.4. For the short amounts the
MSR↵ is on, the angle of attack is kept within the safe lower limits defined in the safety range model
while the upper limits do not reach an unsafe state space. Therefore, the agent never visits Sunsafe.

The nMAE% for IFC 2 is the third highest in this research among the shielded controller results,
reaching 40.7%. It is clear that the error is mostly concentrated in the first 20 seconds of the simulation
and slowly decreases as the simulation goes on. This result is coherent with the nMAE% for the same
IFC when the DDPG and SIP agents are tested. Although the controller’s performance is lacking, the
flight path angle is still appropriately tracked and the shield correctly avoids unsafe state spaces.
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Figure 8.6: Flight path tracking with shielded DDPG controller in IFC 2. The response of the agent is given in blue, the reference
signals are shown by the dashed orange lines. The control inputs are shown in purple. The MSR↵ is shown in lime green while
the MSRn

in purple. The final MSR↵ is also shown in blue. The grey areas represent the times at which the shield is actively on.

8.2.3. IFC 3
The third IFC case has the same velocity as the nominal case but an altitude lower than IFC 1 and
2. The results are shown in Fig. 8.7. This flight condition has been chosen due to the maneuver
investigated in this research. The nominal case demonstrates a conventional step down approach at
top of descent. To make sure the agent would be able to successfully track the reference flight path
angle throughout the descent, an altitude 8000 meters lower than the nominal was chosen.

In this case, the shield is on 100% of the time. Similarly to IFC 1 discussed in Section 8.2.1, the
angle of attack is significantly lower for higher speed when the same pitching maneuver is required.
Here however, the ↵ is mostly lower than the safe limit of 0 degrees. In this case, although the shield
is always on, the controller is not able to maintain the angle of attack in a safe state space. This has
mostly to do with the design of the SIP controller. Although the SIP agent is instructed to avoid certain
values of ↵ and n, the reward function also awards correct tracking of the �ref. In this case, the flight
conditions lead the ↵ to drop, and unable to avoid this, the SIP keeps controlling the aircraft so that
�ref can be tracked and n can be kept within the safe limits. It should be noted that even if ↵ reaches
unsafe limits, the agent maintains a small negative angle, as during training it receives a penalty for
negative angles of attack. This drawback is directly linked the trade-off between safety and tracking
performance embedded the reward function of the agent. If this case highlights one inherent issue with
the design of the SIP, it also showcases the flexibility of the MSR. By adjusting the safety range model
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limits post-learning, the shield can be modified for different flight conditions so that the DDPG agent
can control the aircraft until the SIP is needed, triggered by a new MSR. Since the SIP agent knows to
retain an ↵ between 0 degrees and 12 degrees, the SIP agent will try to fly the aircraft with an angle of
attack as close as possible to the aforementioned range. Overall, the agent is in an unsafe state space
85.8% of times,the highest across all controllers. The controller is still able to track �ref, however the

Figure 8.7: Flight path tracking with shielded DDPG controller in IFC 3. The response of the agent is given in blue, the reference
signals are shown by the dashed orange lines. The control inputs are shown in purple. The MSR↵ is shown in lime green while
the MSRn

in purple. The final MSR↵ is also shown in blue. The grey areas represent the times at which the shield is actively on.

nMAE% is 35.9%. The nMAE% unsurprisingly matches the nMAE% of the SIP for the same IFC as the
shielded case utilizes only qrefsafe . As shown on Table 4 in Part I, the nMAE% for the unshielded case is
equal to 41.4%, the second overall highest. Although the performance of the shielded case is worsened
by the sole use of the SIP, it is clear that the low altitude, high speed combination deteriorates the
performance in all controllers presented on Table 4 in Part I. All and all, in terms of tracking performance,
the controller can be considered robust in these flight conditions.

8.2.4. IFC 4
The fourth IFC has an altitude of 2000 meters and VTAS of 90 meters per second. In this case, the shield
is on 51% of the time as shown in Fig. 8.8. Similarly to Section 8.2.2, the lower velocity allows for a
higher angle of attack with respect to the ↵ shown in Fig. 8.7 for the same maneuver.

Although the ↵ is higher than IFC 3 for the same altitude, at t = 50s it begins to lower, triggering
the MSR↵ . The switch between qref and qrefsafe can be clearly seen at t = 53s. The shield allows the
angle of attack to remain within safe limits with a minimum value of 0.8 degrees and a maximum of
4.5 degrees. The MSRn

is also turned on at almost every step up or down of �ref. The load factor is
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also kept within the safe limits of defined in the safety range model. The maximum value is found at
1.9 while the minimum is 0.4. Therefore, the shield never lets the agent visit Sunsafe. Although safety is
maintained, the load factor shows some disturbed behaviour. By looking at the shaded areas, it can
be seen that this behaviour is mostly caused by the oscillation of the MSRn

between two safe states,
hence the action fed to the pitch rate varies at each time step. A similar behaviour has been discussed
before. This disturbance can also be easily recognized in the elevator deflection and consequentially in
the pitch rate. It should also be noted that, although control effectiveness increases with a decrease of
altitude, the lower velocity has a much greater influence on the control surfaces efficiency. Therefore,
the responses may suffer from disturbances due to the MSR, but the flight conditions do amplify the
noisy behaviour.

In terms of performance, the nMAE% for this simulation is 21.9%. This is higher than the unshielded
controller with the same flight conditions and can be related to the shield being deployed half the
simulation time. Therefore, as the safety of the agent is well within limits and the tracking performance
is satisfactory, the shield can be considered robust within IFC 4.

Figure 8.8: Flight path tracking with shielded DDPG controller in IFC 4. The response of the agent is given in blue, the reference
signals are shown by the dashed orange lines. The control inputs are shown in purple. The MSR↵ is shown in lime green while
the MSRn

in purple. The final MSR↵ is also shown in blue. The grey areas represent the times at which the shield is actively on.
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Verification and Validation

9.1. Verification
In the sections below, the tools used in this research will be verified to endure their correct implementa-
tion.

9.1.1. Cessna Citation Model Verification
Delft University of Technology Aircraft Simulation Model and Analysis Tool (DASMAT) is a simulation
model and tool developed by Delft University of Technology Van Der Linden (1998). The aim was to
delevop a high fidelity model of the PH-LAB, a Cessna Citation 500 used as research aircraft. The
model is build on Simulink. The workings of the DASMAT can be verified by performing a sanity check
based on general flight dynamics. In Fig. 9.1, the states and control inputs of the model for trimmed
nominal flight conditions are given. The aircraft is subjected to a negative elevator deflection and a
positive aileron deflection. The applied �e should result in a positive pitch rate q and in turn increase
the pitch angle ✓. This phenomenon can be clearly seen in Fig. 9.1 as both q and ✓ increase once the
elevator deflection is decreased from 0� to �5� at t = 2s. At t = 5s, a positive deflection is applied to
the ailerons. This results in a negative roll rate p and a negative bank angle �. Both these effects can
be seen in Fig. 9.1. Finally, the zero deflection of the rudder �r results in a small, quasi-null yaw rate r

as well as a small sideslip �. It should be noted that neither of these values are zero as the roll and
pitch movements result in small changes in yaw due to coupling effects.

9.1.2. DDPG Model Verification
The DDPG algorithm was reproduced from Lillicrap et al. (2015). The correct workings of the algorithm
was checked by analyzing the learning curve of the agent during training. Since the training curve
shows a positive learning trend, it can be concluded that the agent correctly learns by interacting with
the environment hence the algorithm is accurately implemented.

9.1.3. Shielding Method Verification
The shield can be verified by running a simulation with the intent of triggering the safety range model
MSR. In Fig. 9.2, the aircraft is aiming at following a step down of -3 degrees. It can be seen that at
around t = 2s both the MSRn

and MSR↵ correctly detect the load factor and the angle of attack reaching
a risky state space. Right after t = 2s, ↵ becomes less than 1 degree before remaining between 1 and
2 degrees up until t = 6.5s. After that, it settles at around 2.2 degrees. From the lower-left plot, it is clear
that the MSR↵ is triggered at t = 2.1s where q

0
ref = qrefsafe before switching to q

0
ref = k · qrefsafe at t = 2.3s.

At t = 5.2s, the MSR↵ oscillates as the angle of attack varies between 2 degrees and 1.95 degrees. After
some oscillation, the MSR↵ finally returns to q

0
ref = qref. As for the MSRn

, the model correctly detects the
load factor increasing at t = 2.1s and switches to q

0
ref = qrefsafe . After that, the load factor is within the

safety limits, hence MSRn
returns to q

0
ref = qref. Finally, from the lower-right, it can be deduced that the

MSR correctly chooses the action which represents the safest option. Therefore, the shielding method
implemented in this research can be considered verified.
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Figure 9.1: DASMAT simulink model response to a elevator and aileron step control. The responses are shown in blue, while the
control inputs in purple.

9.2. Validation
The validation of the tools used in this research will be carried below.

9.2.1. Cessna Citation Model Validation
The correct functioning of the DASMAT simulation model can be validated by comparing data acquired
by the Cessna Citation 550 PH-LAB research aircraft and data generated by the simulation. Research
conducted by Van den Hoek et al. (2018) compares data of the Citation in pre-stall envelope. It was found
that the RMSE was respectively 8.38% and 12.65% for the longitudinal force and moment coefficients
while the RMSE for the lateral counterparts to be 7.34% and 8.58%. With these values largely lower
than 20%, the DASMAT model can be considered a adequate representation of the PH-LAB aircraft.

9.2.2. DDPG Model Validation
The DDPG controller can be validated by determining that its performance, without the implementation
of the shield, meets the predicted requirements in tracking accuracy. Table 7.1 gives the nMAE% for
different scenarios. The nMAE% was found for both nominal flight conditions, turbulent conditions
with added biased sensor noise, different reference signals and initial flight conditions different from
the training sample. For all these cases, the nMAE% remained well below 45%. Therefore, the
DDPG controller can be considered robust in both different flight conditions as well as when applied to
real-world designed systems.
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Figure 9.2: Verification of shield model. The aircraft responses are shown in blue, the reference signals in dashed orange lines.
The actuators are shown in purple. The MSR↵ is shown in lime green while the MSRn

in purple. The final MSR is also shown in
blue. The grey areas represent the times at which the shield is actively on.

9.2.3. Shielding Method Validation
The validation of the shielding model has been carried by Zoon (2021). In his research, a shield was
implemented in an autonomous vehicle (AV) control system and validated it by using the model in
CARLA, a state-of-the-art driving simulator. CARLA is heavily used in AV research, especially RL
driven one. Zoon (2021) shows that the shield allows the vehicle in the CARLA simulator to drive in
two different scenarios: one where the car needs to drive along a road without going off-course and
one where the car needs to drive safely among other vehicles. The first scenario aims to show the
performance of the shield model when no safety issues are of concerns, while the second aims to give
context to the works of the shield when safety is of concern. In both scenarios, the shield performs
as expected, allowing the car not only to drive consistently on the road, but also providing the agent
a policy that keeps the agent in a safe state space. Considering that the CARLA simulator has been
successfully validated by Dosovitskiy et al. (2017), the shielding method is validated as it performs in its
intended matter on a validated driving simulator.
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Conclusion

Airborne fatalities are highly connected to in-flight loss of control. The latter usually occurs when it is not
possible to return to a safe flight condition once entered stall. To avoid this, it is necessary to develop
flight controllers able not only to recover from loss of control, but to prevent it. By developing intelligent
flight controllers, aviation safety can be greatly improved. This research presents the development of
an offline, model-free Deep Deterministic Policy Gradient (DDPG) controller equipped with a shield, a
safety enhancing model, used for the safe control of a Cessna Citation 500.

The first research question is showed below.

RQ-1 What are the main challenges in flight control?
RQ-1.1 How is safety in flight control defined and assessed?
RQ-1.2 What is the state-of-the-art of flight control?

In the context of this research, safety has been defined as the ability to maintain an aircraft in flight
conditions that do not lead to unsafe state space, as for example stall. Safety can be assessed by
defining specific safety limits for the flight envelope that the aircraft shall not exceed. This definitions,
specified in Chapter 3, allow research question RQ-1.1 to be answered. In order design an safe
version of a flight controller, it is important to investigate the current solutions. It is determined that
linear uncoupled gain-scheduled controllers are considered the state-of-the-art approach to flight
control. These are based look-up tables with parameters of the system’s dynamics hence do not
provide flexibility for handling unexpected conditions. Therefore, developing controllers that can adapt
to different environments is deemed the central point of this thesis project. This provides an answer to
RQ-1.2. With both sub-questions addressed, RQ-1 is fully answered.

RQ-2 Why is reinforcement learning being introduced in flight control?
RQ-2.1 How is safety in reinforcement learning defined and assessed?
RQ-2.2 What is the state-of-the-art in reinforcement learning?
RQ-2.3 What is the state-of-the-art of reinforcement learning in flight control?
RQ-2.4 Which flight control task is more relevant to approach with reinforcement

learning and why?

Chapter 3 gives an overview of the main safe reinforcement learning methods discussed in literature.
In the context of this work, safe RL methods are defined as approaches that protect the agent from
pursuing dangerous actions and do not lead to unsafe state spaces. This research quantifies safety
by finding the amount of time the agent visits an unsafe state space Sunsafe. If the agent never visits
Sunsafe, the simulation is considered safe. This definition satisfies RQ-2.1. As mentioned before, the
aim of the research is to improve safety in flight control. It is known that the majority of fatalities are
due to in-flight loss of control during climb and approach procedures. It was decided that, following the
definition of safety given in Chapter 1, the control task central to this work will be flight path control. Not
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only this task is essential during climb, descent and landing, but it allows parameters that quantify stall
to be tracked. Additionally, according to EASA (2021), a crucial step in stall prevention is to be able to
maintain a defined flight path. This choice allows for RQ-2.4 to be answered. Once it was established
that the learning controller would be developed with a reinforcement learning method, a taxonomy of the
main classes was given in Chapter 2 to answer RQ-2.2. The most recent researches in RL identify Deep
Reinforcement Learning (DRL) algorithms as the most promising techniques. By using deep network as
Q-function approximators, these algorithms are able to provide stable and robust learning with improved
generated policies. By identifying DRL as the state-of-the-art of RL, RQ-2.2 can be answered.
Since reinforcement learning in flight control is not entirely recent, Chapter 4 gives an overview of three
state-of-the-art controllers based on reinforcement learning algorithms. The papers discussed are
specifically chosen as they implement a DDPG algorithm for airborne flight control. By presenting these
papers, RQ-2.3 is answered. By discussing these sub-questions, an overview on why reinforcement
learning is introduced in flight control is given. This allows RQ-2 to be answered.

RQ-3 How can safety in flight control be improved using reinforcement learning
techniques?

RQ-3.1 What RL methods can be implemented and what are their characteristics in
order to improve safety of a flight control system of a fixed wing aircraft?

RQ-3.2 What are the necessary requirements to be set on the RL method and how do
they relate to the requirements of the flight control system?

In order to answer RQ-3.1, a detailed taxonomy of Safe RL methods is given in Chapter 3. Garcıa
and Fernández (2015) define SRL in two classes namely algorithms that modify the optimization
criterion and algorithms that modify the exploration process. The first class aims at introducing a metric
for risk so that only safe actions are allowed. One downside of these methods is that explicit values
for transition probabilities and rewards are needed, hence they are not applicable in all domains. The
second class modifies the way the agent explores, mainly by providing external knowledge. Although
information about the model are required, these methods have been effectively used in flight control
research. One novel method is developed by combining the two classes of algorithms. Shielding is
an safe RL algorithm that combines constrained criterion, an algorithm from the first class, together
with teacher-advice, an algorithm from the second class. Although not yet implemented in flight control,
it is currently popular in Atari games and autonomous driving. In order for a safe RL algorithm to be
used in flight control, different characteristics have to be defined. To maintain the aircraft in a safe flight
envelope, unsafe states should not be reached. For example, stall is obviously discouraged, hence the
flight controller should be able to keep the angle of attack away from ↵stall. To do so, the RL algorithm
should have some knowledge about unsafe states. This can be done by setting the reward function in a
matter that penalizes the agent when unsafe states are visited during training. Additionally, flight control
tasks have continuous states and actions, hence the RL algorithm should be able to support continuous
state-action spaces. To avoid providing the agent with an inherently safe environment, the RL algorithm
should be model-free. Therefore, an algorithm that matches the requirements of a flight controller is
found in DDPG as it is a model-free, off-policy algorithm that supports continuous state-action spaces.
With this analysis, RQ-3.2 is answered. With both sub-questions addressed, RQ-3 is fully answered.

RQ-4 What reinforcement learning algorithm can be combined with a safety
enhancing technique to improve safety?

Although many different RL algorithms can be combined with safe RL approaches, this research
presents the development of an offline, model-free Deep Deterministic Policy Gradient (DDPG) controller
equipped with a shield, a safety enhancing technique, used for the safe control of a Cessna Citation
500. The shield is composed of a Safe Initial Policy (SIP) agent and a Safety Range MSR model. The
former is a trained DDPG agent with knowledge about state space safety able to suggest safe actions to
the main DDPG agent, while the latter is a rule based model in charge of overruling actions that would
lead to unsafe state spaces. The SIP model is a clear example of modifying the optimization process
as the agent is penalized when unsafe states are visited. The overall controller can be considered an
example of teacher-advice, as the shield provides the DDPG agent counsel on which actions should be
avoided. Therefore, this research combines DDPG algorithms with both classes of safe RL discussed in



84

Chapter 3. This description allows RQ-4 to be answered.

The research objective of this thesis works is the following.

To improve the safety of a State-of-the-Art learning flight control system for a fixed wing
aircraft by implementing the most promising reinforcement learning algorithm.

In this research, a shielded DDPG controller for controlling the flight path angle of a Cessna Citation
500 at top of descent is developed. In the context of this research, to states are monitored to assess
safety namely the angle of attack and the load factor. These two states are considered safe if they
remain within certain limits defined by governing authorities and defined by the controller designer. The
shield is able to maintain the agent within safe limits during nominal operations, meaning that Sunsafe
is never visited, and is able to track the reference flight path angle with a normalized Mean Absolute
Error Percentage (nMAE%) of 24.0%. The controller was tested in different initial flight conditions to
show that it is robust to many stages of the descending envelope. To test the controller in more realistic
condition, atmospheric disturbances and biased sensor noise were introduced in the environment.
After these tests, it was shown that the shielded controller was able to maintain the agent in the safe
flight envelope while successfully tracking the flight path angle. Therefore, with the development of a
successful State-of-the-Art safe RL model equipped with a shield for the control of the Cessna Citation
500 aircraft, the research objective for this thesis can be considered met. Although initially developed
for Atari games by Alshiekh et al. (2018) and subsequently applied by Zoon (2021) on autonomous
vehicles, this research shows shielded RL to be effective in the field of flight control. The flexibility of this
technique makes it appealing for many applications, not only within aviation, but any high complexity
control task that can benefit from improved safety.
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Recommendations

Several recommendations can be made after the research has concluded. Following, an overview of
the most relevant.

• The hyperparameters, the network structures and the Ornstein-Uhlenbeck noise parameters
chosen for the DDPG and SIP agents have been taken from Lillicrap et al. (2015) and Ba et al.
(2016). During this research, none of these variables were investigated and no sensitivity analysis
was conducted to optimize the learning. Considering the long training times, it is suggested to
research the effect of each parameter to shorten training and reaching a better learning stability.

• DDPG has been selected among other model-free, off-policy algorithms for continuous state-
actions spaces as it has been consistently used in flight control researches. However, DDPG
shows flaws such as the overestimation of the Q-function. To reduce this issue, it is recommended
to investigate two updates of DDPG algorithms, namely Soft Actor-Critic (SAC) and Twin Delayed
DDPG (TD3).

• The flight envelope analyzed in this research goes from top of descent until an altitude where the
ILS could be intercepted. Although robust to these conditions, it is suggested to analyze higher
altitudes and different configurations.

• The SIP agent’s reward function is composed of three distinct contribution. Rt gives a reward
when when the flight path angle is successfully tracked while R↵ and Rn provide a reward if the
angle of attack and the load factor are kept within safe limits. Although the trained SIP agent
successfully provides the agent with safe actions that keep ↵ and n within safe spaces, it is not
always able to avoid unsafe spaces when the flight conditions greatly change. The reason behind
this can be linked to the reward function. Since the latter is made of three distinct parts, at each
time t, the SIP agent needs to perform a trade-off on whether to avoid unsafe spaces or reduce
the �ref tracking accuracy. It is recommended to create an hierarchy within the reward function to
allow the SIP controller always to chose an action that keeps the agent within safety limits, even
at the expense of tracking performance.

• The MSR is triggered individually in case ↵ or n exceed the safety limits and the safest action
between what MSR↵ and MSRn

recommend is chosen. However, it can occur that the chosen
q̂ref leads one of the two states that at a time t is safe, to a risky state at t + 1. It is therefore
recommended to create a feedback loop from one MSR to the other and vice-versa to avoid such
an issue to arise.

• This research investigates the working of the shield post-learning, meaning that the DDPG
controller learns without the shield in the loop. It would be interesting to investigate whether the
addition of the shield would allow the agent to learn a safe policy.
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As the DDPG agent would get q̂ref as observation, it would be able to learn which of the actions
proposed are actually fed to the environment or not. Adding the load factor as observation and
introducing a penalty in the reward function once the shield is activated, it would be possible for
the agent to learn why certain actions are overruled and eventually learn to avoid such unsafe
actions. Experiments with this set up were carried during this research but unfortunately with no
success.
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