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Improved Stewart Platform State Estimation using Inertial and Actuator
Position Measurements

I. Miletovića,∗, D.M. Poola, O. Stroosmaa, M.M. van Paassena, Q.P. Chua

aDelft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands

Abstract

Accurate and reliable estimation of the kinematic state of a six degrees-of-freedom Stewart platform is

a problem of interest in various engineering disciplines. Particularly so in the area of flight simulation,

where the Stewart platform is in widespread use for the generation of motion similar to that experienced in

actual flight. Accurate measurements of Stewart platform kinematic states are crucial for the application of

advanced motion control algorithms and are highly valued in quantitative assessments of simulator motion

fidelity. In the current work, a novel method for the reconstruction of the kinematic state of a Stewart

platform is proposed. This method relies on an Unscented Kalman Filter (UKF) for a tight coupling of

on-platform inertial sensors with measurements of the six actuator positions. The proposed algorithm is

shown to be superior to conventional iterative methods in two main areas. First, more accurate estimates

of motion platform velocity are obtained and, second, the algorithm is robust to inherent measurement

uncertainties like noise and bias. The results were validated on the SIMONA Research Simulator (SRS)

at TU Delft. To this end, an efficient implementation of the algorithm was driven, in real time, by actual

sensor measurements from two representative motion profiles.

Keywords: Sensor integration, State estimation, Unscented Kalman Filter, Parallel robotics, Stewart

platform

1. Introduction

The Stewart platform [1] (see Figure 1) is a six degrees-of-freedom (DOF) parallel manipulator that is in

widespread use throughout various robotic discliplines. The main reasons for this are its relatively low mass,

high accuracy, rigidity and support for heavier loads as compared to conventional serial manipulators. Some

common applications include manufacturing [2, 3], surgery [4, 5] and medical rehabilitation [6, 7]. Perhaps5

the most popular application is that of vehicular motion simulation, e.g., aeronautical flight simulation [8, 9].
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Given this wide range of applications, obtaining an accurate estimate of a Stewart platform’s kinematic

state is often of interest. A typical example is the application of advanced control techniques to Stewart

platforms, e.g., [10, 11, 12, 13]. An increasingly relevant application is also that of flight simulator motion

fidelity assessment. It is well known that humans perceive inertial self-motion predominantly by means of10

the vestibular system, which is sensitive to both specific force and angular acceleration [14]. Current efforts

to quantify motion fidelity therefore focus on the development and standardization of frequency-domain

system identification methods to capture and specify the motion transfer characteristics of contemporary

motion cueing systems [15, 16, 17, 18]. Estimation of the kinematic state of a Stewart platform, however,

is inhibited by two particular difficulties. The first is the inference of a Stewart platform’s position and15

attitude from measurements of its six actuator positions (the so-called forward kinematics problem). The

second is the subsequent inference of platform (angular) velocity and acceleration, as required by many of

the typical applications listed here.

The forward kinematics of the Stewart platform have been a subject of study for many decades [19].

Over the years, several authors have shown, for numerous possible platform geometries, that the forward20

kinematics of a Stewart platform has up to 40 possible solutions [20, 21, 22, 23, 24]. As already acknowledged

by Merlet in [25, 26], however, a closed-form algebraic method to obtain a single unique solution for the

platform position and attitude based on only six actuator length measurements does not exist. As a result,

a variety of numerical methods to solve the forward kinematics have been developed [27, 28, 29, 26]. A

common limitation of these efforts to solve the forward kinematics of a Stewart platform, however, is that25

they are limited to inference of platform position and attitude only. Neither addresses the second problem,

namely that of inference of platform (angular) velocity and acceleration. While numerical differentiation of

position and attitude is applied to obtain the latter, the presence of measurement noise in physical sensors

clearly renders such an approach suboptimal. Nonlinear state observers have therefore also been relied upon

to directly evaluate the platform pose and velocity [30, 31, 32]. These typically require an explicit model30

of both platform dynamics and, especially for hydraulically driven platforms, actuator dynamics. While

these methods offer some robustness to model uncertainties, they lack an inherent mechanism to account

for sensor uncertainties, e.g., noise and bias. In light of the growing availability of both affordable and

accurate inertial sensors [33], this paper presents a novel approach to estimate the kinematic state of a

Stewart platform.35

The proposed approach relies on the fusion of on-platform inertial sensors, encapsulated in an Inertial

Measurement Unit (IMU), with the six available actuator position sensors. This is accomplished by using an

extension of the Kalman Filter (KF) [34] to nonlinear systems. Through this approach, the need for explicit

knowledge of motion platform and actuator dynamics is eliminated, while at the same time incorporating

robustness to measurement inaccuracies. The idea of using a Kalman filter-based method for such an40

application is not new and has been widely demonstrated in, e.g., robotics [35, 36, 37], aerospace [38, 39, 40,
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41], biomedical engineering [42] and power plant control [43]. Applications to Stewart platforms, however,

remain limited to only a small number of DOFs [44, 45]. A recent extension of a sensor fusion scheme to all

six DOFs, in which the application of the Iterated Extended Kalman Filter (IEKF) [46] was investigated,

did not yield satisfactory results [47]. The main difficulty in the application of contemporary filters like the45

Extended Kalman Filter (EKF) or IEKF lies in the highly nonlinear kinematics of the Stewart platform,

which causes the inherent assumption of local linearity to break down. The current work is therefore focused

on the simulation and real-time experimental validation of a method particularly suited for highly nonlinear

systems, namely the Unscented Kalman Filter (UKF) [48, 49].

The paper is structured as follows. First, a brief introduction to the Stewart platform and its kinematics50

is provided. Then, the proposed state reconstruction algorithm is introduced, followed by a verification of

the algorithm on the basis of computer simulations. Subsequently, the validation of the proposed algorithm

on the SIMONA Research Simulator (SRS), using a real-time implementation driven by actual sensor mea-

surements, is presented. This validation also includes a comparison to an iterative scheme commonly applied

to estimate the kinematic state of Stewart platforms. Finally, a brief discussion is provided and the paper55

is concluded.

Figure 1: The SIMONA Research Simulator, using a Stewart platform as the motion providing mechanism.

2. Stewart platform kinematics

The kinematics of a Stewart platform are defined by its geometry, shown in Figure 2. The coordinates of

the joints on the lower (Figure 2b) and upper (Figure 2c) platform, in turn, determine the geometry of the

platform. The locations of these joints are conveniently specified with respect to the centroids of the joints60

on the lower and upper platform. These centroids are typically referred to as the Lower Gimbal Point (LGP)

and Upper Gimbal Point (UGP), respectively. The origins of two right-handed reference frames Ea and Eb

are attached to the UGP and LGP, respectively. All joints on the lower and upper platforms lie equidistantly

spaced with a certain distance (i.e., da or db ) in pairs on a circle with a given radius (i.e., ra or rb), such
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that the coordinates of each joint (i.e., ai and bi) can be derived from basic trigonometry. Note that even65

though this specific configuration of the Stewart is used in the current work, the authors foresee no issues

in applying the proposed methodology to any non-singular platform geometry.
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Figure 2: The geometry of a Stewart platform.

The length of each of the connecting elements between the joints then follows from the geometry as:

li(c,Φ) = ∥c+ Tba(Φ)aa
i − bbi∥ ∀ i ∈ [1, . . . , 6] (1)

The vector c defines the position of the origin of reference frame Ea with respect to Eb and is expressed in

Cartesian coordinates as:

c =
[

x y z

]ᵀ

(2)

Tba is the transformation matrix that describes the transformation aai → abi and therefore Equation (1)

depends on the attitude of frame Ea with respect to Eb. Here, attitude is represented using the Euler-

Rodrigues quaternion formulation [50, 51] for numerical efficiency. As such, the attitude vector is:

Φ =
[

e0 ex ey ez

]ᵀ

(3)

and the transformation matrices Tab and Tba can subsequently be defined as [50]:

Tab = T ᵀ

ba =

⎡

⎢

⎣

e2x + e2
0
− e2y − e2z 2 (exey + eze0) 2 (exez − eye0)

2 (exey − eze0) e2y + e2
0
− e2x − e2z 2 (eyez + exe0)

2 (exez + eye0) 2 (eyez − exe0) e2z + e2
0
− e2x − e2y

⎤

⎥

⎦

(4)
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Equation (1) specifies the so-called inverse kinematics of the Stewart platform. Inference of the platform

pose from knowledge of the length of each actuator is known as the forward kinematics of the motion

platform. While the inverse kinematics are trivial to compute, the forward kinematics cannot be expressed

in a closed algebraic form [25, 26]. To compute the forward kinematics of the platform iterative schemes

such as the Newton-Raphson (NR) or Gauss-Newton (GN) method [27, 10] are therefore commonly applied.

Such methods iteratively compute the position and attitude of the motion platform, denoted collectively as

the platform pose vector p, from the measured actuator position vector lm:

pj+1 = pj + J−1
lp (pj) (lm − lj) (5)

until satisfactory convergence is reached (i.e., ∥pj+1 − pj∥ ≤ egn) or until a fixed number of iterations (i.e.,

j ≤ Ngn) have been performed. Jlp is the Jacobian of the actuator position vector l with respect to the

platform pose vector p.70

These iterative numerical methods are limited in that they lack inherent robustness to measurement

inaccuracies in the actuator position sensors and, moreover, provide information on platform pose only. As

knowledge of velocity and acceleration is also of interest, a novel approach based on a tightly-coupled fusion

of on-platform inertial sensors with actuator position sensors is discussed and evaluated in the remainder of

this paper.75

3. Stewart platform state reconstruction using sensor fusion

In [45], a novel sensor fusion scheme was proposed and evaluated for the reconstruction of the partial

(three DOF) kinematic state of a Stewart platform. This method relies on a tightly-coupled fusion of on-

platform inertial sensors and actuator position sensors. Extensions of the well-known KF [34] to nonlinear

systems, namely the EKF and IEKF [46], were evaluated. The EKF uses direct linearization of the nonlinear80

system in order to propagate the stochastic properties of the estimated system state. The IEKF, in turn,

iteratively corrects the estimated system state based on a consecutively re-linearized observation model until

satisfactory convergence of the estimated system state is attained. Systems which are characterized by a

highly nonlinear observation model typically benefit from the application of the IEKF. In case of the Stewart

platform, it was demonstrated that, even for the reconstruction of the partial kinematic state, the IEKF85

was required to attain convergence of the filter to the true system state.

In [47], the IEKF-based sensor fusion scheme from [45] was extended to all six DOF of the Stewart

platform. Due to the significant increase in nonlinearity of the stochastic system model, however, the IEKF

generally proved unable to attain satisfactory convergence. Consequently, the UKF [48, 49], which promises

improved filter performance for highly nonlinear systems, is applied in the current work. This section will90

first introduce the stochastic system model of the Stewart platform, after which the working principle of the

KF and, specifically, the UKF is briefly recapitulated.
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3.1. Stochastic system model of the Stewart platform

The basis of a typical sensor fusion scheme is formed by a stochastic system model that relates the

various available physical sensor measurements to the parameters that determine the state of the dynamic

system under consideration. Such a model has the following general structure in the nonlinear case [46]:

ẋ(t) = f(x(t),u(t), t) +G(x(t), t)w(t)

y(t) = h(x(t),u(t), t) + v(t)
(6)

Here, x is the stochastic system state vector, u is the input vector and y is the output or observation vector.

The quantities w and v are the process and observation noise vectors, respectively. These are commonly

assumed to be white and Gaussian noise processes:

v(t) ∼ N (0, R(t)) and E{v(t)vᵀ(t+ τ)} = R(t)δ(t)

w(t) ∼ N (0, Q(t)) and E{w(t)wᵀ(t+ τ)} = Q(t)δ(t)
(7)

The vector function f(·) and matrix G(·) describe the evolution of the stochastic process state in time as

a function of the current value of the state, input and process noise vector, respectively. The equation in95

which these terms appear is therefore referred to as the prediction model. Similarly, the vector function

h(·) relates the value of the stochastic process state to the available observation vector and the equation it

appears in is therefore known as the observation model.

In case of the sensor fusion scheme proposed in [45, 47] for the reconstruction of the kinematic state of a

Stewart platform, the input vector that drives the prediction of the system state consists of measurements

from an IMU. IMUs typically contain three accelerometers and three rate gyros:

u =
[

fᵀ ωᵀ

]ᵀ

(8)

where f and ω are the specific force and angular rate vector, respectively, defined in the right-handed

reference frame Ea shown in Figure 2:

f =
[

fx fy fz

]ᵀ

and ω =
[

p q r
]ᵀ

(9)

Based on this definition of the input vector, the stochastic system state is defined as:

x =
[

cᵀ V ᵀ Φᵀ λᵀ

]ᵀ

(10)

where V is the inertial velocity of the reference point attached to the upper platform expressed in reference

frame Ea:

V =
[

u v w
]ᵀ

(11)

and λ is a vector that contains the six constant biases typically assumed inherent in measurements of the

inertial sensors (see, e.g., [38, 39]):

λ =
[

λᵀ

f λᵀ
ω

]ᵀ

=
[

λx λy λz λp λq λr

]ᵀ

(12)
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Note that the inclusion of the inertial sensor biases as part of the state vector allows for their estimation

in conjunction with the kinematic state of the platform. The observation vector is defined to contain the

measured lengths of each of the six actuators:

y =
[

l1 l2 l3 l4 l5 l6

]ᵀ

(13)

Given these definitions in combination with knowledge on the geometry of the Stewart platform as shown

in Figure 2, it is possible to formulate expressions for the vector functions f(·) and h(·) as well as the matrix

G(·) appearing in Equation (6). From basic kinematics, it follows:

f(x,u) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ċ

V̇

Φ̇

λ̇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Tba(Φ)V

(f − λf ) + Tab(Φ) g − (Ω× − Λ)V

Ωq(ω − λω)

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(14)

where:

Ω× =

⎡

⎢

⎢

⎢

⎣

0 −r q

r 0 −p

−q p 0

⎤

⎥

⎥

⎥

⎦

, Λ =

⎡

⎢

⎢

⎢

⎣

0 −λr λq

λr 0 −λp
−λq λp 0

⎤

⎥

⎥

⎥

⎦

(15)

and where Tab and Tba are transformation matrices. Furthermore, g is the gravitational acceleration and

Ωq is defined as [50]:

Ωq =
1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−ex −ey −ez

e0 −ez ey

ez e0 −ex

−ey ex e0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)

Similarly, G(·) can be derived as:

G(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

03×6

−I3 Ωv

04×3 −Ωq

06×6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, with Ωv =

⎡

⎢

⎢

⎢

⎣

0 w −v

−w 0 u

v −u 0

⎤

⎥

⎥

⎥

⎦

(17)

where I3 is the three-dimensional identity matrix and Ωq is given by Equation (16). Finally, the observation

model contains the inverse kinematics of the motion platform:

h(x) =
[

l1(x) l2(x) l3(x) l4(x) l5(x) l6(x)
]ᵀ

(18)

where li(x) follows from the geometry depicted in Figure 2 as given by Equation (1). Notice that, in contrast

to methods that rely on nonlinear state observers [30, 31, 32], the kinematic system model presented here100

requires no knowledge of motion platform or actuator dynamics.
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3.2. The Unscented Kalman Filter

The stochastic system model defined by Equation (6) can be used in combination with a nonlinear

recursive filtering algorithm to reconstruct the stochastic system state in real-time. Extensions of the well-

known Kalman Filter (KF) [34, 46] to nonlinear systems are the most widely applied class of filtering

algorithms used for this purpose. The KF is a minimum-variance estimator that minimizes the posterior

variance of the stochastic process state at any discrete time tk:

min
x̂

(+)
k

[

trace
(

P (+)
k

)]

(19)

where the superscript (+) denotes posterior quantities and where Pk is the covariance of the stochastic

process state at time tk. This optimization constitutes two distinct phases, as illustrated in Figure 3.

In the first phase, the prediction, the stochastic system state and its covariance are propagated in time105

using the system input uk and the prediction model included within the stochastic system model given by

Equation (6). The second phase, the correction, uses the most recent observation vector yk in combination

with the observation model to correct the predicted quantities. This is done by means of the so-called

Kalman gain matrix Kk. For the computation of this matrix, the statistical properties of the process and

observation noises are explicitly taken into account through the noise covariance matrices Qk and Rk.110

Prediction

Correction0

1 2

34

Kk

Qk

Rk

x̂
(+)
k

x̂
(−)
k

x̂
(−)
k+1

P (−)
k

P (−)
k+1

P (+)
k

x̂0
P0

yk

uk

z−1

Figure 3: Schematic of the Kalman filter [34], illustrating the distinctive prediction and correction phases.

In implementations of the KF for nonlinear systems, the propagation of these statistical properties

becomes problematic and typically results in a suboptimal filter [48]. The fundamental reason for this is

that a Gaussian process which undergoes a nonlinear transformation is, in general, no longer Gaussian

[52]. Consequently, knowledge of the mean and covariance as propagated by the KF is insufficient to

fully capture the probability distribution of the stochastic process. Nonetheless, the KF can be applied to115

nonlinear systems by approximating the posterior mean and covariance of the stochastic system state. Such

approximations are typically still classified as optimal filters from a practical point of view. A common
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approach is to use local linearization on the stochastic system model given by Equation (6), which results

in the well-known Extended Kalman Filter (EKF) and Iterated Extended Kalman Filter (IEKF) [46]. As

mentioned previously, however, the application of these filters to the reconstruction of the complete kinematic120

state of the Stewart platform did not yield satisfactory results [47].

A better alternative to direct linearization of the stochastic system model is provided by the Unscented

Kalman Filter (UKF) [48, 49]. The UKF approximates the nonlinear transformations of the stochastic

system state and its covariance using a technique known as the Scaled Unscented Transformation (SUT)

[53]. Given a general nonlinear function g(·), this technique entails the transformation of a deterministically125

calculated and symmetric set of samples X around the mean of a general random variable x, as shown

in Figure 4, to obtain the transformed set of samples Y . The posterior mean and covariance, ȳ and Pyy,

can subsequently be approximated as illustrated in the figure. In contrast to the EKF or IEKF, the UKF

therefore does not directly approximate the nonlinear transformation g(·), but approximates the probability

distribution of y by means of the computed values for ȳ and Pyy. This method is also referred to as statistical130

linearization and its merits for nonlinear state reconstruction problems have been demonstrated in various

applications over the years, e.g., [43, 36, 42, 41].

S = {w(m), w(c),X}

g(X )

Pxx

x̄

S′ = {w(m), w(c),Y}

Pyy

ȳ

Figure 4: Illustration of the SUT inspired by [49, 54].

As outlined in [49, 53, 54], the accuracy and numerical stability of the UKF are mainly influenced by a

total of three scalar parameters: κ, α and β. These parameters affect the scalar set of weights w(m) and

w(c). Together with these set of weights, the collections X and Y form the so-called sigma-points S and135

S′ (see Figure 4), respectively, used to approximate the probability distributions of the state and output.

The parameters κ, α and β determine the distribution of sigma-points and can also be used to incorporate

skewness or kurtosis of the probability distribution. In [55, 56], several guidelines can be found for selecting

appropriate values for κ, α and β.

Using computer simulations, the next section will outline the verification of the proposed UKF-based140

sensor fusion scheme to the reconstruction of the kinematic state of a Stewart platform.

4. Verification using computer simulations

Before applying the proposed sensor fusion scheme to an actual Stewart platform, the method is evaluated

using computer simulations in combination with a representative kinematic model of the Stewart platform

9



of the SRS at TU Delft (see Figure 1). The parameters of the SRS’s platform geometry are summarized in145

Table 1. The gravitational acceleration is assumed to be 9.80665 m/s2.

Table 1: Constants related to the geometry of the SRS (see Figure 2).

Constant Value Unit

ra 1.60 m

rb 1.65 m

da 0.20 m

db 0.60 m

lmin 2.08 m

lmax 3.33 m

These parameters, in combination with artificially generated and realistic motion profiles, are used to

create simulated IMU and actuator position measurements that will be polluted using artificially generated

measurement noises. The noise-polluted signals are subsequently passed to the UKF for evaluation. All

computer simulations are performed using Python, with the open-source scientific libraries Numpy, Scipy150

and Matplotlib [57, 58]. The simulation data is sampled at a rate of 100 Hz and, where necessary, use is

made of the forward Euler method for numerical integration.

4.1. Motion profiles

The simulated sensor measurements are generated from two distinct motion profiles, both illustrated in

Figures 5 and 6. The first, denoted as Motion Profile 1 (MP1), is selected because it activates most of the155

six DOFs of the Stewart platform with relatively large amplitudes and therefore excites the highly nonlinear

kinematics of the platform. After a lead-in period of 10 s, the UGP of the platform traces a circular path

with a radius of 0.5 m in the horizontal plane with a period of five seconds. Superimposed on this circular

motion is a periodic roll and pitch motion with an amplitude of 10 deg/s and a period of 2.5 s. This results

in a maximum actuator travel of approximately 30 cm with respect to the neutral length of 2.705 m.160

The second motion profile, denoted as Motion Profile 2 (MP2), is more representative for typical ex-

periments performed on the SRS. This motion profile has been recorded as part of a human-in-the-loop

(manual tracking) experiment [59] and features a relatively high-frequency combined roll and pitch motion

of small amplitude (max. of approximately 7 deg/s). In this case, the maximum actuator travel from the

neutral position is in the order of 10 cm. It is therefore difficult to distinguish the motion of the platform for165

MP2 on the basis of Figure 6. Several representative time traces of specific force, angular rate and actuator

position corresponding to both motion profiles are therefore also shown in Figure 7.
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(a) t = 20.00 s (b) t = 21.25 s (c) t = 22.50 s (d) t = 23.75 s

Figure 5: Impression of motion platform pose at various time instants during MP1.

(a) t = 11.50 s (b) t = 16.80 s (c) t = 55.30 s (d) t = 69.20 s

Figure 6: Impression of motion platform pose at various time instants during MP2.
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Figure 7: Representative time traces corresponding to MP1 (left) and MP2 (right).
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4.2. Simulated sensor data

The selected motion profiles are superimposed with simulated zero-mean Gaussian noise signals to obtain

the artificial sensor measurements used for verification of the proposed algorithm. These noise signals170

are fully defined by the standard deviation of the Gaussian distribution used to sample the simulated

measurements. The inertial sensors are assumed to be polluted by a constant bias as well. Estimates of

appropriate standard deviations and bias levels for the available inertial and actuator position sensors are

obtained from static measurements of the available measurement equipment for the SRS. The measurement

equipment on the SRS comprises an ISIS R⃝ IMU Rev. C manufactured by the Inertial Science Inc. R⃝ and175

six Temposonics R⃝ R-series linear position sensors manufactured by the MTS R⃝ Systems [60].

Figure 8 shows stationary measurements from a representative selection of sensors. Even though the

actual sensor noise is evidently non-Gaussian, for the simulated sensor measurements Gaussian sequences

are assumed. This allows for an evaluation of the theoretical accuracy attainable by the algorithm. The

static IMU and actuator position measurements are used to obtain estimates of noise standard deviations180

and bias values, a summary of which can be found in Tables 2 and 3, respectively. The values shown in

these tables, together with the available motion profile data, are finally used to generate the simulated IMU

and actuator position measurements. A selection of these simulated signals is shown right in Figure 8.
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Figure 8: Selection of actual (left) and simulated (right) IMU and actuator position measurements for stationary motion base.

4.3. Method

The performance of the UKF-based algorithm is assessed on the basis of the accuracy and robustness185

of the algorithm. Accuracy reflects the error in the estimated quantities, while robustness pertains to the

resilience of the algorithm to nonlinearities and model errors. Because the true values of estimated quantities
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Table 2: Estimates of standard deviations of measurement noises in IMU and actuator position measurements.

Parameter Value Unit Parameter Value Unit

σx 6.680 · 10−4 m/s2 σl1 1.093 · 10−5 m

σy 8.578 · 10−4 m/s2 σl2 1.132 · 10−5 m

σz 6.915 · 10−4 m/s2 σl3 5.741 · 10−6 m

σp 1.545 · 10−4 rad/s σl4 1.482 · 10−5 m

σp 1.770 · 10−4 rad/s σl5 1.054 · 10−5 m

σq 1.791 · 10−4 rad/s σl6 9.770 · 10−6 m

Table 3: Estimates of IMU measurement biases.

Parameter Value Unit

λx 4.898 · 10−1 m/s2

λy -9.023 · 10−3 m/s2

λz -1.894 · 10−1 m/s2

λp -1.822 · 10−2 rad/s

λp -5.067 · 10−3 rad/s

λq -2.159 · 10−2 rad/s

are often unknown in practice, accuracy and robustness are commonly evaluated on the basis of the so-called

innovation sequence. The innovation appears in the correction step of the UKF as ϵk =
(

yk − ŷ(−)
k

)

. It can

therefore be interpreted as the difference between the measured actuator positions, yk, and the reconstructed190

measurements obtained from the estimated kinematic state of the Stewart platform. Similarly, the innovation

covariance appears in the computation of the Kalman gain as Pϵ,k = Pyy,k, i.e., the estimated covariance of

the reconstructed measurements.

In case the process and observation noises w and v are both zero-mean Gaussian white noise, the

innovation sequences should also be zero-mean, Gaussian and white for optimal filter performance [61]. In195

practice, this condition is most commonly verified by the observation that approximately 95 percent of the

innovation sequence is within ±2σϵ, where σϵ is the standard deviation of the innovation obtained from the

diagonal elements of Pϵ [61]. The rate of convergence and similarity of the innovation to such an “optimal”

sequence is a measure of robustness. Since the current section deals with verification of the algorithm using

simulated sensor measurements, however, additional information can be derived from the estimation errors200

in the estimated states.

Finally, for practical reasons, the quaternions in the estimated stochastic process state vector are kept

normalized in both the prediction and correction steps of the UKF according to Φ̂n = Φ̂/∥Φ̂∥ [50].
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4.4. Tuning of the UKF

Before the proposed algorithm can be applied to simulated sensor measurements, several parameters need

to be configured. The UKF needs an initial estimate of the stochastic process state and its corresponding

covariance as well as information about the process and observation noise covariances. In order to evaluate

the algorithm in the most general sense, the initial process state estimate and auto-covariance are chosen

arbitrarily far away from the true initial process state as:

x̂0 = [0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0]ᵀ

P0 = diag
(

12, 12, 12, 12, 12, 12, 0.12, 0.12

0.12, 0.12, 12, 12, 12, 0.12, 0.12, 0.12
)

(20)

The process and observation noise covariances selected are based on the values in Tables 2 and 3 as:

Qk = 1.1 · diag(σ2
x,σ

2
y,σ

2
z ,σ

2
p,σ

2
q ,σ

2
r)

Rk = 1.1 · diag(σ2
l1
,σ2

l2
,σ2

l3
,σ2

l4
,σ2

l5
,σ2

l6
)

(21)

The ten percent increase in the magnitude of these covariances ensures some robustness against numerical205

round-off errors. In the current work, the system and observation noise covariance are assumed constant.

Other parameters that influence the UKF are κ, α and β, which are assigned values of 0, 0.1 and

2, respectively. These settings are in line with recommendations given in [55, 56]. Except for α, which

if chosen too small degrades numerical stability, these parameters were not found to critically affect the

obtained results.210

4.5. Results

The proposed algorithm is subsequently applied to both MP1 and MP2. A representative selection of

the obtained results is shown in Figures 9, 10 and 11. It is evident that the UKF shows quick convergence

and optimal filter performance for both motion profiles, as witnessed by the seemingly white and Gaussian

innovation sequences. In addition, both the platform states as well as the IMU biases are estimated with a215

high accuracy. For most of the estimated quantities, the obtained accuracy is equivalent regardless of the

motion profile evaluated. However, a periodic trend in the estimation errors of λz, w and z for the case of

MP1 can observed. Such fluctuations are typically associated with sub-optimal filter performance, although

in this particular case the fluctuations do not visibly propagate through to the innovation sequences.

The results presented here confirm that the SUT is an excellent alternative to local linearization of the220

nonlinear system. Many of the shortcomings of the EKF/IEKF uncovered in earlier work [45, 47], such as

slow convergence and a high sensitivity to chosen inititial conditions, are overcome by the application of the

UKF. The pronounced fluctuations in λz, w and z for MP1 can nonetheless be explained by the physical

limitations of the SUT inherent in the UKF. The SUT still uses only the mean and covariance to describe
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the posterior probability distribution of the estimated quantities. Higher order moments of the posterior225

probability distributions are not taken into account, even though they may be important for fully capturing

the effect of the highly nonlinear platform kinematics for large motions.

As such, it can be expected that the more violent the platform motion, i.e., the more pronounced the

nonlinear platform kinematics, the more the performance of the UKF will degrade. Nonetheless, even for

the case of MP1, which is considered extreme for all practical intents and purposes, position is estimated to230

an accuracy of O(10−5) m, velocity to O(10−4) m/s, attitude to O(10−6) rad and the IMU biases to O(10−5)

m/s2 and rad/s. In flight simulation, accuracy requirements are closely related to human motion perception

thresholds. These are in the order of O(10−2) m/s2 for translations and O(10−3) rad/s2 for rotations [62].

Therefore, the accuracy attainable by the proposed algorithm is considered sufficient by a large margin for

the purpose of flight simulator motion fidelity assessment. However, requirements for other applications235

may be far more stringent. An example is precision surgery, where a positional accuracy of the platform in

the order of micrometers is required [4].
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Figure 9: Selection of innovation sequences for MP1 (left) and MP2 (right).

5. Validation on the SRS

The proposed state reconstruction algorithm is subsequently implemented and validated on the SIMONA

Research Simulator (SRS) at TU Delft. First, a real-time implementation of the algorithm proposed in240

Section 3 is discussed, after which the method of validation will be presented. Then, the tuning of the

algorithm for application on the SRS will be discussed, followed by a presentation of the obtained results.

Finally, the validation is conclused with a comparison to a conventional iterative method (e.g., [10]) used to

reconstruct the kinematic state of a Stewart platform.
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Figure 10: Selection of errors in estimated platform states for MP1 (left) and the MP2 (right).
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Figure 11: Selection of errors in estimated IMU biases for MP1 (left) and the MP2 (right).
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5.1. Real-time implementation245

In order to be able to execute the proposed state reconstruction algorithm on the SRS in real-time

and using physical sensor measurements, the algorithm was implemented in the software architecture of

the SRS, namely the Delft University Environment for Communication and Activation (DUECA) [63].

DUECA is a middleware software layer that takes care of many of the complex issues that arise from

developing software that is suitable for execution on an operational full-flight simulator in real-time. Typical250

functionality includes the synchronization of processes with wall clock time, inter-process communication

within a distributed computing environment and communication with simulator hardware (e.g., sensors,

controls, displays, etc.).

The majority of the code base of DUECA is written in the C and C++ computer languages, to allow

for high performance and favourable real-time characteristics. Software developed for the SRS is typically255

encapsulated in so-called DUECA modules, which use the services provided by DUECA to ensure adherence

to the various computational requirements and constraints. The proposed algorithm was developed as a

separate module in DUECA and thus in the C++ computer language. To support the complex matrix

algebra inherent in the UKF-based algorithm, use was made of the open-source Eigen library [64]. This

implementation was found to require an average computational time in the order of a few tenths of a260

millisecond per measurement sample on modern desktop and server hardware. It is therefore considered

more than adequate for execution on the SRS in real time at a nominal rate of 100 Hz.

5.2. Method

The method employed to validate the proposed algorithm is identical to the one used for the verification

outlined in Section 4. That is, the same motion profiles (MP1 and MP2) will be used and the same criteria265

to assess the performance of the algorithm will be applied. There are, however, a number of additional

limitations and practical issues to consider in a real world application. One important limitation is the

lack of knowledge of the true kinematic state of the platform. In case of simulated sensor measurements,

the true state of the platform is known, such that the estimation error in each of the estimated states can

be evaluated (e.g., see Figures 10 and 11). In practice, the true states are of course not available and the270

innovation sequences must be largely relied upon to assess the performance of the algorithm. However, in

Section 5.5, a comparison to a traditional method which relies only on the actuator positions is presented.

Also, as shown in Figure 8, the actual sensor noise may be non-Gaussian, such that a degraded performance

can be expected.

An important issue to also take into consideration is the mounting location of the IMU. Until this point,

it was assumed that the the IMU was located in the UGP of the platform, i.e., the origin of reference frame

Ea in Figure 2. In reality, this may not be the case for various practical reasons. As such, the algorithm

needs to be adapted to account for a generic IMU location. To illustrate the issue, the difference between
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the specific forces in the UGP (or any arbitrary point on the platform) and at the IMU location can be

written as:

fimu − fugp = cᵀimu

(

Ω̇× + Ω2
×

)

(22)

where cimu is the location of the IMU with respect to the UGP and where Ω× is given by Equation (15).

This equation shows that there is a mismatch between the specific forces in any two points on the moving

platform, which arises from the rotation of the platform. An elegant way to correct for this mismatch in the

proposed algorithm is to adapt the definition of the joint coordinates ai appearing in Equation (1) as:

aimu
i = ai − cimu ∀ i ∈ [1, . . . , 6] (23)

This effectively moves the origin of frame Ea in Figure 2 to the IMU location. The consequence of this275

approach is that the complete estimate of the stochastic process state inferred by the algorithm corresponds

to the IMU location. The state vector can, however, be re-calculated with respect to the UGP or any

arbitrary location on the platform using Equation (22) and its equivalent for platform velocity and position.

Other issues that affect the performance of the proposed algorithm include: actuator position bias, time-

varying IMU biases, measurement time synchronization errors and IMU misalignment. Care was taken to280

calibrate the actuator position sensors using laser-based distance measuring equipment so as to ensure the

biases are no more than a few tenths of a millimetre in magnitude. For the brief motion profiles considered in

the current work, time-dependent variations in the IMU biases are negligible. It should be noted, however,

that for more prolonged measurements variations in the IMU biases can be accounted for by introducing

so-called random walks (e.g., [56]). This entails modeling the evolution of the biases in the stochastic285

system model as artificial noises. Time delays between the inertial sensors and generic auxilliary position

measurements are known to degrade accuracy, e.g., [65], and methods to account for such delays have been

proposed in the literature, e.g., [56, 66, 67]. Their application, however, would entail a considerable increase

in the complexity of the proposed algorithm and are therefore beyond the scope of the current work. IMU

misalignment causes couplings between measurements from the rate gyros in the IMU. This effect can be290

minimized by careful alignment of the IMU with the orthogonal platform axes, but one could also attempt

to incorporate rate gyro misalignment in the stochastic system model. This too is beyond the scope of the

current work, however.

5.3. Tuning of the UKF

Before the proposed algorithm was executed on the SRS in real-time, actual IMU and actuator position

measurements corresponding to MP1 and MP2 were collected for off-line analysis and tuning. In this analysis,

the sensitivity of the algorithm to changes in the governing parameters of the UKF-based algorithm was

investigated. It was found that all but one of the UKF tuning parameters could remain unchanged with

respect to the settings presented in Section 4. This parameter turned out to be Qk, i.e., the system noise
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covariance matrix. The magnitude of Qk had to be increased by a factor of a thousand in order to obtain

favourable characteristics of the innovation sequences (see Section 4):

Qk = 1000 · diag(σ2
x,σ

2
y,σ

2
z ,σ

2
p,σ

2
q ,σ

2
r) (24)

where all the standard deviations used are as given in Table 2. Changes in the magnitude of this matrix were295

found to have by far the largest impact on the results, whereas the state reconstruction algorithm seemed

less sensitive to moderate changes in the magnitude of Rk. It is also not desirable to increase the magnitude

of Rk in this case, since the actuator position measurements are the sole basis for estimation of the biases

inherent in the IMU measurements. Moreover, as mentioned in Section 5.2, some deficiencies in the IMU

measurements are currently unaccounted for, e.g., IMU misalignment and time delays between IMU and300

actuator position measurements. A more detailed analysis into the magnitude and effect of time delays

between the two sets of measurements was performed. This analysis revealed that the IMU measurements

are delayed by 10 to 50 ms with respect to the actuator position measurements. The delays were furthermore

found to be axis dependent and fluctuating in time. An explanation for the delays on the software level (i.e.,

DUECA) could not be found and the issue is therefore likely caused by the IMU itself. Regardless of the305

exact cause, it seems evident that from the perspective of the UKF, the IMU measurements are less reliable

than the actuator position measurements. This is reflected in the significantly higher magnitude of Qk with

respect to Rk required to obtain favourable filter performance.

As discussed in Section 5.2, the last parameter required by the algorithm for application on the SRS is

the mounting location of the IMU. In the SRS, the IMU is located 0.305 behind and 0.0105 meters above

the UGP, such that:

cimu =
[

−0.305 0 −0.0105
]ᵀ

(25)

5.4. Results

The obtained results from real-time execution on the SRS are included in Figures 12, 13 and 14, which310

show a selection of innovation sequences, state estimates and IMU bias estimates corresponding to both

MP1 and MP2. Several conclusions can be drawn from these results.

First, from the innovation sequences, it can be seen that rapid convergence of the algorithm to zero-mean

values occurs for both motion profiles. Also, the innovation sequences are largely within the band that is

bounded by 2σϵ. The amplitude of this band is in the range of only several tenths of a millimeter, indicating315

high accuracy of the estimated states. However, the innovation sequences are evidently not characterized as

white and are therefore indicative of sub-optimal filter performance [61]. This could be expected, given the

remaining (unmodelled) measurement uncertainties and the fact that the actual measurement noise is non-

Gaussian. It can be seen that the innovation sequences corresponding to MP1 clearly exhibit a component

that resembles the periodicity of the motion profile. This effect is less pronounced in case of MP2, which is320
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explained by the smaller amplitude of the motion in this profile relative to the motion in MP1. In addition,

a number of short periods with an elevated value of the innovation sequences appear during both MP1 and

MP2. The cause of these “periodic beats” was traced to the actuator position measurements, which were

found to exhibit an identical periodic elevation in noise level. This increase in noise level was found to occur

synchronously over all six actuator position measurements and therefore could not be isolated to a single325

(faulty) sensor. Consequently, the problem is likely situated in a databus that is affected by some external

disturbance. As it does not impact the validity of the presented results, however, a further consideration of

the issue is beyond the scope of the current work.

Regardless of all practical issues encountered, the state estimates shown in Figure 13 are highly accurate

nonetheless, as also illustrated by the generally small standard deviations calculated from the diagonal330

elements of the covariance matrix Pk. The estimates of the inertial sensor biases, shown in Figure 14, show

a trend of somewhat slower convergence similar as observed in the results from the computer simulations

presented in Section 4. A comparison to the static sensor measurements shown in Figure 8, however,

reveals that their values are also estimated accurately after a brief period of convergence. Note that a

minor mismatch may exist between the estimated IMU biases and the static measurements. This is because335

the static measurements were recorded at a different date and time than the validation experiments were

performed. As such, temperature variations may slightly influence the true values of the inertial sensor

biases and small variations in their estimated values may therefore be observed when the experiments are

repeated at different times or for an extended amount of time.

The promising results obtained from the validation experiments motivate a comparison of the proposed340

state reconstruction algorithm to a traditional method to estimate the kinematic state of a Stewart platform.

This comparison is the subject of the next section.

0 20 40 60 80 100

t (s)

−1.0
−0.5
0.0
0.5
1.0

l 1
(m

)

×10−3

Innovation (ϵ) Bounds (±2σϵ)

0 20 40 60 80

t (s)

−6
−3
0
3
6

l 1
(m

)

×10−4

0 20 40 60 80 100

t (s)

−1.0
−0.5
0.0
0.5
1.0

l 3
(m

)

×10−3

0 20 40 60 80

t (s)

−4
−2
0
2
4

l 3
(m

)

×10−4

0 20 40 60 80 100

t (s)

−6
−3
0
3
6

l 5
(m

)

×10−4

0 20 40 60 80

t (s)

−5.0
−2.5
0.0
2.5
5.0

l 5
(m

)

×10−4

Figure 12: Selection of innovation sequences from real-time sensor data for MP1 (left) and MP2 (right).
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Figure 13: Selection of estimated platform states from real-time sensor data for MP1 (left) and MP2 (right).
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Figure 14: Selection of estimated IMU biases from real-time sensor data for MP1 (left) and MP2 (right).
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5.5. Comparison with an iterative method

In Section 5, it was shown that the proposed UKF-based state reconstruction algorithm seems to con-

verge to accurate estimates of the kinematic state of the SRS and is also able to infer inherent IMU biases.345

This brings about two distinct advantages over contemporary iterative schemes commonly applied to solve

the forward kinematics of a Stewart platform (e.g., [27, 10]), which only provide direct estimates of position

and attitude. In such traditional methods, to obtain (angular) velocity and acceleration, numerical differ-

entiation is required. As demonstrated, the proposed UKF-based algorithm does not rely on any numerical

differentiation to infer velocity and translational acceleration. Translational velocity is an element of the350

stochastic state vector (see Equation (10)) and is therefore inferred directly. Estimates of translational

acceleration and angular velocity can be obtained from raw IMU measurements, corrected for bias using

real-time estimates from the proposed UKF-based algorithm.

In order to fully validate the proposed UKF-based state reconstruction algorithm, it is compared to a

traditional iterative scheme commonly applied to solve for the forward kinematics of Stewart platforms. The355

algorithm selected is one that is currently used within the motion control system of the SRS [10], namely the

Gauss-Newton (GN) method given by Equation (5). In order to compare the two algorithms, the error with

respect to set-points is computed for both MP1 and MP2. Note that this includes all errors, i.e., control

system errors, transport delays and estimation errors. Some representative results are included in Figure 15.

This figure shows excerpts of timetraces of the errors in position, attitude and velocity estimated using both360

algorithms for both motion profiles.

The GN-based algorithm does not provide a direct estimate of platform velocity. For a fair comparison,

use is therefore made of a differentiator combined with a second-order Butterworth filter to compute velocity

from estimated position [68]:

B2(s) =
Y (s)

U(s)
=

s

τ2d s
2 +

√
2τds+ 1

(26)

The cut-off frequency of the filter is set to 25 Hz (i.e., τd of 0.04 s). Also note that, as the UKF-based state

estimates are inferred with respect to the location of the IMU, they must be translated to the platform’s

UGP for comparison to the GN-based estimates. This is done using the following kinematic entities:

ĉugp = ĉ− Tbacimu

V̂ugp = V̂ − (Ω× − Λ̂)ᵀcimu

(27)

where Ω× and Λ are as defined in Equation (15) and cimu is given by Equation (25). The notation !̂

signifies estimates that are derived from the UKF-based algorithm. Also note that Ω× contains raw angular

rate measurements from the IMU.

From inspection of Figure 15, it seems that the UKF-based algorithm generally attains better accuracy365

than the GN-based algorithm. The difference is most apparent for MP1, where the error due to the phase
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lag incurred by the differentiating filter is clearly visible in the GN-based velocity estimate. This frequency-

dependent phase lag can be reduced by increasing the cut-off frequency of the filter, but this results in more

noise in the GN-based velocity estimates.

To conclude the comparison between the two algorithms, the corresponding standard deviations of the370

errors in the estimates are illustrated in Figures 16 and 17 for MP1 and MP2, respectively. It can be seen

that the UKF-based algorithm provides slightly improved estimates of position and attitude for both MP1

and MP2. However, by far the largest difference in favor of the UKF-based algorithm is observed in the

estimates of platform velocity for MP1. Here, the u and v estimates are found to be approximately twice as

accurate for the UKF-based algorithm. For MP2, the difference between the two methods is less pronounced.375

This can be explained by the different frequency spectrum of MP2 as compared to MP1. In this case, this

means that the phase lag induced by the differentiating filter in the GN-based method has a smaller impact

on the observed error for MP2 than for MP1. As a final note, it can be seen that the accuracy of both

algorithms is equivalent for those kinematic states that are barely excited, i.e., z, ψ and w for MP1 and y,

ψ and v for MP2.380
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Figure 15: Selection of estimation errors for UKF- and GN-based method to compute platform states in case of MP1 (left) and

MP2 (right).

6. Discussion

In this paper, a novel algorithm to reconstruct the kinematic state of a Stewart platform in an operational

environment, namely that of the SIMONA Research Simulator (SRS) at TU Delft, was investigated. The

proposed algorithm relies on the fusion of inertial and actuator position sensors, realised using the Unscented

Kalman Filter (UKF) in conjunction with a purely kinematic model of a Stewart platform. This method385

enables direct estimation of platform position, attitude and translational velocity. By means of this so-called

tightly-coupled sensor fusion, it also becomes possible to account for inherent measurement uncertainties,
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Figure 16: Standard deviations of errors in UKF- and GN-based estimates for MP1.
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Figure 17: Standard deviations of errors in UKF- and GN-based estimates for MP2.

such as noise and inertial sensor bias. Furthermore, because of the recursive nature of the algorithm, it is

possible to execute the algorithm in real-time.

The main contribution of this work is twofold. First, a rigorous verification of the proposed algorithm,390

using off-line simulations with simulated sensor measurements, was presented. This verification has demon-

strated, using two representative motion profiles, the theoretically attainable performance of the algorithm

in terms of accuracy and robustness. Some minor signs of sub-optimal filter performance could be observed

due to the strongly nonlinear kinematics of the Stewart platform. However, the overall performance of

the algorithm is remarkable, yielding highly accurate estimates and exhibiting a rapid rate of convergence395

without a need for careful tuning of configuration parameters and initial conditions. These results served

as the basis for the second contribution of this work, namely a real-time implementation and validation

of the novel algorithm on the SRS. To this end, an efficient implementation within DUECA, the software

framework of the SRS, was conceived. This implementation was found to easily meet the requirements for

real-time execution on the SRS.400

During the tuning of the algorithm, a number of practical issues arising from the application in an

operational environment were encountered. While some of these issues could be resolved in a relatively

straightforward manner, others were deemed beyond the scope of the current work. These issues relate to
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measurement time synchronization, IMU misalignment and non-stationary noise levels in measurements.

Nonetheless, the overall results obtained from the validation were satisfying. That is, a direct comparison405

of the results to those obtained from a traditional iterative scheme, commonly applied to solve the forward

kinematics of Stewart platforms, were in favor of the proposed UKF-based algorithm.

There are a number of areas in which the proposed approach can be extended and improved. First,

potential issues pertaining to the sensory equipment and data acquisition system should be investigated

and resolved. These include minimizing measurement time synchronization errors, IMU misalignment, and410

removing any external disturbances in the data acquisition system that may affect measurement noise

levels. Therefore, even though the present results already highlight the potential of the proposed algorithm

as an improved estimator for the kinematic state of a Stewart platform, the UKF-based algorithm can be

improved even further by, e.g., the use of a more modern and accurate IMU. Second, the robustness of the

state reconstruction algorithm itself could be improved as well. In the current work, the UKF system and415

observation noise covariances were held constant, however, it could be investigated if adaptive modification

of these matrices yields improved results (see, e.g., [69, 70]). Finally, a distinct advantage of the proposed

algorithm is its extendability with additional sensor measurements. For example, given angular acceleration

measurements [71], the kinematic model of the Stewart platform at the heart of the state reconstruction

algorithm could easily be modified to enable direct inference of angular velocity and unbiased angular420

acceleration.

7. Conclusion

In this paper, a novel method to reconstruct the kinematic state of a Stewart platform was presented

and validated using real-time sensor measurements on the SIMONA Research Simulator (SRS) at TU Delft.

The proposed method relies on an implementation of the Unscented Kalman Filter (UKF) to enable a425

tighly-coupled fusion of on-platform inertial sensor data with measurements of actuator position. In a direct

comparison, the approach is shown to have two main advantages over conventional iterative methods for

estimating the state of Stewart platforms in real time, enabling direct and accurate estimation of translational

platform velocity, as well as an inherent robustness to measurement uncertainties like sensor noise and bias.

The current work therefore demonstrates the effectiveness of the proposed method for Stewart platform430

state estimation and its potential for supporting improved motion control and simulator motion fidelity

verification.
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