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Lay summary

Phylogenetic analysis has been used for decades to reconstruct the evolution of genes, individuals and species.
Phylogenetic trees are used to display these evolutionary relationships. Comparison of trees can help iden-
tify evolutionary differences and prioritize conservations based on evolutionary value, which is interesting
for many areas of biological research. However, since trees can become very large and complicated, it is hard
to compare them. In spectral analysis, we store evolutionary distances between two current species in math-
ematical objects called matrices. Then, we can compare different trees by looking at their spectra - a set of
numbers called eigenvalues, which are derived from these evolutionary distances. It already has been dis-
covered that spectra cannot distinguish all trees, however, we show that some eigenvalues can reveal certain
(sub)structures in phylogenetic trees. Take for example the eigenvalue −2, which tells us there are two current
species sharing a parent. Besides, we will prove that other types of tree structures, such as perfectly symmet-
rical ones, have their own spectrum as well. Moreover, we show the condition under which eigenvalues of
subtrees appear in the spectra of the entire tree. Although the spectra do not reveal the full structure of a
phylogenetic tree, this approach could help researchers compare evolutionary trees much more efficiently.
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Summary

Phylogenetic trees have been used for decades to visualize evolutionary relationships graphically. Comparing
topologies of trees is essential to many research areas of biology, but is complicated due to their combinatorial
nature and the number of possible topologies that increases with the number of species. We will focus on
binary rooted phylogenetic trees with unit edge length. Comparison can be facilitated by investigating the
spectra - the set of eigenvalues - of the pairwise distance matrices of these trees. A pair of distinct trees on 17
leaves with equal spectrum already showed that spectra are not unique for the topology of the tree, however,
they reveal some (sub-)structures.

In this thesis, we show that eigenvalue −2 with corresponding eigenvector v⃗ = (−ei +e j ) reveals the pres-
ence of a cherry (two current species sharing a parent). Moreover, we prove that perfectly balanced trees have
negative spectrum of the closed-form −2(2k −1), where k is a number between 1 and the height of the tree.
In addition, we show that an eigenvalue λ of a submatrix appears in the spectrum of the full matrix, as long
as the part of the matrix linking the subtree to the rest of the tree is orthogonal to the submatrix’s eigenvector
corresponding to λ. The remaining eigenvalues of the full matrix can be computed using Schur’s formula.
Finally, we combine all these results and explain the spectral equivalence in the pair of distinct trees on 17
leaves. We observe that other eigenvalues that appear in this spectrum might reveal another type of subtree.
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1
Introduction

In recent decades, phylogenetic analysis has become a crucial tool for reconstructing the evolutionary history
of genes, individuals and species [6]. Phylogenetic trees provide a standard graphical representation of these
evolutionary relationships. The branch lengths between species in such trees represent the divergence time of
the evolutionary change. The branching pattern of the tree is known as its topology. In Figure 1.1, a simplified
phylogenetic tree with humans as one of the species is displayed [1]. Here, you can see that humans share a
closer ancestor with chimpanzees than with gorillas.

Figure 1.1: Simplified human evolution depicted in a phylogenetic tree [1].

The applications of phylogenetic trees are wide-ranging: from studying the origin and epidemiology of
human diseases such as COVID-19 [9], to creating strategies to conserve biological diversity. Vézquez et al.
state that, to conserve biodiversity, “it is necessary not only to maximize the number of taxa that are saved
today, but also to guarantee the maintenance of high levels of biological diversity in the future. A recent
analysis argues that, to achieve this, consideration of phylogeny is essential." [15]

For these applications, comparing the topologies of trees and summarizing their properties is of vital
importance. However, analyzing and comparing phylogenetic trees is not straightforward. Comparison is
complicated by the combinatorial nature of the trees and the number of possible topologies that increases
rapidly with the number of species [8]. To address these challenges, mathematicians have combined linear
algebra and graph theory to capture key aspects of a tree in a more manageable form. Expressing phyloge-
netic trees in mathematical objects, such as matrices, transforms them from intuitive biological diagrams to
precise, analyzable mathematical structures.
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2 1. Introduction

There exist several ways to encode a tree as a matrix. Throughout this thesis, we focus on binary rooted
phylogenetic trees with unit edge lengths, and we only consider their pairwise distance matrices. Pairwise
distance matrices describe the evolutionary distance between two current species (taxa), which are the leaves
in the tree. Therefore, only labeling of the leaves is required. Since we are interested in the structure of phy-
logenetic trees, rather than the identities of the taxa, we want to look at features of the matrix that will not
change after relabeling. Such a feature is the spectrum of the matrix, in other words, the set of eigenvalues. If
tree topologies can be revealed through the spectrum of its pairwise distance matrix, comparison and pattern
detecting will be significantly more efficient. This is because instead of working with large matrices that grow
with the number of species, we only need to work with a much smaller set of numbers.

A previous investigation by Graham and Lovász used distance matrices, which describe the distances
between all vertices instead of only the leaves. They showed that we can read off structural details of a tree,
including subtree counts, directly from the coefficients of the characteristic polynomial of its distance matrix
[4]. Since this polynomial determines the eigenvalues, their result highlights how tree topology is reflected
algebraically. However, less is known about how tree patterns manifest in the spectra of pairwise distance
matrices, which are principal submatrices of distance matrices. Below, we state what has been discovered
thus far and how we will expand these results.

Unfortunately, Matsen and Evans already discovered that the spectra of pairwise distance matrices of
binary rooted phylogenetic trees do not uniquely determine the structure of the phylogenetic tree; Figure 1.2
shows two distinct trees on seventeen taxa that share the same spectrum. More specifically, they discovered
that the number of trees that is uniquely determined by its spectrum goes to zero as the number of leaves in
the tree goes to infinity [10].

Figure 1.2: Two different phylogenetic trees with the same pairwise distance spectrum.

Despite this non-uniqueness, structural features of trees are still visible in their spectra. Singh et al.
showed that the spectra of balanced trees (binary ultrametric trees) only contain negative eigenvalues of a
specific form [14]. However, in their paper, no proof was given. In this thesis, we will give a proof on this
closed-form spectrum, using linear algebra.

Moreover, De Ponte and De Campos investigated under what conditions eigenvalues of submatrices -
such as those corresponding to subtrees - can be inherited by the full matrix [12]. Therefore, by examining
spectra of subtrees, we deduce partial spectral information about the entire tree. In this paper, we will discuss
the kind of subtree that always meets these conditions.

Lastly, we will combine these results and give an explanation on why the phylogenetic trees in Figure 1.2
share the same spectrum, which is an extension of the result of Matsen and Evans.

The outline of this report is as follows. In the next chapter, we will start with some background information
on phylogenetic trees and spectra. In Chapter 3, we investigate the spectra of the trees in Figure 1.2 and
discuss the questions they raise. In Sections 3.1, 3.2 and 3.3 we address one of these questions, such as the
inheritance of eigenvalues from submatrices, eigenvalues of cherries and spectra of perfectly balanced trees.
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In Section 3.4, we will combine the results and explain the spectral equivalence of the trees in Figure 1.2. In
Section 3.5, we find other eigenvalues that might reveal a specific type of subtree. Finally, in Chapter 4, we
give an overall conclusion and discuss some conjectures and directions for future work.





2
Preliminaries

In this chapter, we state some preliminaries and definitions which are needed for the rest of this thesis.
Mainly, results from graph theory and linear algebra are included, which can be found in [2, 3, 7, 13, 16].

2.1. Graphs
Before introducing the trees we consider in this thesis, it is useful to define graphs in general. A graph is a
representation of a set of points and the way they are connected. Formally, a graph G is a pair of sets (V ,E)
where V = V (G) is known as the set of vertices, the objects, and the set E = E(G) is known as the set of edges,
the connections between the objects. In Figure 2.1, the circles are the vertices, and the lines between these
vertices are the edges. A directed graph is a graph in which the edges have a specific direction. The underlying
graph of a directed graph is the graph obtained from ‘removing the arrows’. Graphs that are not directed are
either undirected or semi-directed. We will only consider directed graphs, hereafter ‘graphs’.

ρ

l1 x1

l2 l3

Figure 2.1: A graph with five vertices ρ, x1, l1, l2 and l3 and four edges.

If a graph G contains an edge e = ab from a to b, then e is incident with a and b. Moreover, a is said to
be adjacent to b, and b is said to be adjacent from a. The vertex a is called the initial vertex of e, and b is
called the terminal vertex of e. The in-degree of a is the number of edges with a as terminal vertex, while the
out-degree of a is the number of edges with a as initial vertex. The degree of a vertex a, denoted by deg(a), is
the sum of its in-degree and out-degree. For example, in Figure 2.1, deg(ρ) = 2.

A path between two vertices a and b is a sequence of edges that connects a and b, such that no edge and
vertex appear more than once. In this thesis, we only consider edges of length 1. Then, the length of a path
from a to b is the number of edges in this path. A graph is connected if any set of two vertices in its underlying
graph is connected by a path. If any set of two vertices in the graph itself is connected by a path, the graph is
strongly connected. A graph contains a cycle if there is a path from a vertex a to itself, as displayed in Figure
2.2.

5



6 2. Preliminaries

a b

c

Figure 2.2: A cycle graph on three vertices a,b and c.

2.2. (Phylogenetic) trees
In this thesis, we will look at a specific type of directed graphs, called directed trees. A directed tree, often re-
ferred to as T , is a weakly connected graph that does not contain any cycles. Directed trees have the property
that any two vertices in the underlying graph are connected by a unique path. A leaf in a tree T is a vertex
of degree 1. Let the leaves of a directed tree on n leaves be arbitrarily ordered by integers from 1 to n. Then,
we denote the i th leaf by li . A vertex of T that is not a leaf is called an interior vertex or in-between vertex.
Similarly, if we order the interior vertices arbitrarily, we denote the i th interior vertex by xi .

A directed rooted tree is a directed tree that has exactly one distinguished vertex called the root, which we
denote by the letter ρ. For modeling evolutionary histories, as we do in this thesis, a rooted phylogenetic tree
is used. A rooted phylogenetic tree T is a directed rooted tree with no degree-two vertices, except (possibly)
the root ρ which has degree at least two. In such a tree, all edges are directed away from the root. Each
edge represents an evolutionary transition, and the leaves represent the current species (taxa). We will only
consider binary rooted phylogenetic trees, which means that there is either only a leaf or the root has degree
2 (in-degree 0 and out-degree 2) and every interior vertex has degree 3 (in-degree 1 and out-degree 2). Note
that the graph in Figure 2.1 is a binary rooted phylogenetic tree with root ρ, interior vertex x1 and leaf-set
{l1, l2, l3}.

Two distinct leaves of a binary rooted phylogenetic tree are said to form a cherry if they are adjacent from
a common vertex. In Figure 2.1, l2 and l3 form a cherry. We say that x1 is a parent of l2 and l3 and, conversely,
l2 and l3 are children of x1. Thus, children and parents are separated by 1 edge. The root ρ is an ancestor to
all leaves and in-between vertices. Similarly, all interior vertices and leaves are descendants of ρ.

We will take a deeper look at two types of binary rooted phylogenetic trees, the caterpillars and the per-
fectly balanced trees. The depth of a vertex is the number of edges in the path from the root to the vertex, and
the height of a tree is the number of edges from the root to the deepest leaf.
A rooted caterpillar is a binary rooted phylogenetic tree where all vertices are either part of a central path or
are adjacent from a vertex in the central path. In Figure 2.3 a caterpillar on 4 leaves is displayed.

ρ

l1 x1

l2 x2

l3 l4

Figure 2.3: A rooted caterpillar on 4 leaves.

A perfectly balanced tree of height h ≥ 0 is a binary rooted phylogenetic tree with n = 2h leaves, each of
which is separated from the root by exactly h edges. We will denote a perfectly balanced tree of height h by
Th . A perfectly balanced tree of height 2 is displayed in Figure 2.4.
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ρ

x1

l1 l2

x2

l3 l4

Figure 2.4: The perfectly balanced tree T2 on 4 leaves.

In this thesis, we will frequently look at specific types of subtrees. A subtree T ′ = (V ′,E ′) of a tree T = (V ,E)
is a tree, such that V ′ is a subset of V and E ′ is a subset of E . That is, each vertex in V ′ is a vertex of V and
similarly, each edge of E ′ is an edge of E . The subtree is called induced if, for all a,b ∈ V ′ for which the edge
e = ab is in E , we have e ∈ E ′ as well. Now we can introduce a commonly used term in this thesis, the pendant
subtree. Let T = (V ,E) be a binary rooted phylogenetic tree. Pick any vertex a and let T ′ = (V ′,E ′) be the
subtree induced by a and all its descendants. Then T ′ is a pendant subtree.

2.3. Matrices and their spectra
In this section, we will define spectra and give some properties of matrices that will be used in this thesis.

Let M be an n ×n matrix. A scalar λ is an eigenvalue of a matrix M if there is a non-zero vector v⃗ =
[v1 · · ·vn]T ∈ Rn such that M v⃗ = λv⃗ . The vector v⃗ is an eigenvector of M corresponding to λ. The standard
unit vector, denoted by e j , is a vector with v j = 1 and vi = 0 for all i ̸= j . The span of a set of vectors V , denoted
by Span(V ), is the set of all their linear combinations.

Eigenvalues are solutions of the equation p(λ) = det(M −λI ) = 0, also known as the characteristic poly-
nomial of D(T ), when solving for λ. It can be factored as p(λ) = (λ−λ1)(λ−λ2) · · · (λ−λn), where each λi is
an eigenvalue of M . Note that det(M) = p(0) = (−1)n ∏n

i=1λi . The algebraic multiplicity of an eigenvalue λi

is its multiplicity as a solution to the characteristic polynomial. The spectrum of a matrix M is defined as the
collection of its k distinct eigenvalues λi , i ∈ {1, . . . ,k}, with their corresponding algebraic multiplicities mi ,
denoted by Spec(M) = {(λ1)m1 , ..., (λk )mk }.

For small matrices, we can easily compute the eigenvalues by hand. The eigenvalues of a 2× 2 matrix
M = [

a b
c d

]
can be computed by

det(M −λI ) =
∣∣∣∣a −λ b

c d −λ
∣∣∣∣= (a −λ)(d −λ)−bc = 0.

In Section 2.4, we will give a more detailed explanation on determinants of the matrices we consider in this
thesis.

Specific types of matrices can have useful properties. Symmetric matrices, for example, always have
real eigenvalues. That is, λi ∈ R for all i . In addition, eigenvectors of symmetric matrices are pairwise or-
thogonal, which means that for any pair of eigenvectors v⃗ and u⃗, we must have v⃗T u⃗ = 0. The eigenvec-
tors are pairwise orthonormal if they are orthogonal and have norm 1. The norm of a vector v⃗ is defined as

||v⃗ || =
√

v2
1 +·· ·+ v2

n . Note that pairwise orthogonal vectors can be made orthonormal by multiplying each

vector v⃗ by 1
||v⃗ || . An orthogonal matrix is a square matrix whose columns and rows are orthonormal vectors.

We know that, for an orthogonal matrix M , det(M) =±1 and M−1 = M T . Here, M−1 is the inverse of M , which
means that M M−1 = M−1M = I .

Moreover, a matrix M is diagonalizable if it can be rewritten as UΛMU T . Here, U = [v⃗1 · · · v⃗n] is an orthog-
onal matrix with each v⃗i an eigenvector corresponding to eigenvalue λi , andΛM = diag(λ1, . . . ,λn). Symmet-
ric matrices are always diagonalizable.

Performing a similarity transformation on a matrix M means we reorder rows and the corresponding
columns. For this, a permutation matrix P is needed, which is an orthogonal and invertible matrix such that
B = PAP T , where B is the new matrix with reordered rows and columns. Since
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det(B −λI ) = det(PAP T −λI ) = det(PAP T −λPP T ) = det(P (A−λI )P T ) = det(A−λI ),

the eigenvalues of A and B are equal.

Before we move on to the type of matrices we consider in this thesis, we state a few more (in)equalities
that we use later on.

Lemma 1. The trace of an n ×n matrix M, the sum of its diagonal entries, equals the sum of its eigenvalues:
tr(M) =∑n

i=1 Mi i =∑n
i=1λi [7].

Lemma 2. Schur’s formula states that the determinant of a matrix M = [
A B
C D

]
can be computed by det(M) =

det(A)det(D −C A−1B) if the submatrix A is invertible [7].

Theorem 1. Cauchy’s interlacing theorem states that, if M = [
A B
C D

]
is an n×n real symmetric matrix with eigen-

values λ1 ≤ ·· · ≤ λn , and A is an m ×m submatrix with eigenvalues by µ1 ≤ ·· ·µm , then for all k = 1, . . . ,m, it
holds that λk ≤µk ≤λk+n−m [7].

2.4. Spectra of phylogenetic trees
Now that we introduced some basic definitions of binary rooted phylogenetic trees (henceforth referred to
simply as ‘trees’) and gave some properties of matrices, we turn to their pairwise distance matrices and asso-
ciated spectra.

Every tree T on n leaves can be represented by a matrix as follows. Let the leaves be arbitrarily ordered by
integers from 1 to n. Then the pairwise distance matrix or inter-taxa distance matrix of T , denoted by D(T ),
is an n ×n matrix where the entry Di j represents the length of the up-down path between leaf li and leaf l j ,
known as the distance d(li , l j ) [10]. The up-down path is the path from li to l j via their most recent common
ancestor, without taking into account the edges’ directions. The most recent common ancestor of two leaves
li and l j , or the lowest common ancestor, is an ancestor to both leaves such that it is lowest. For example, in
Figure 2.3, x1 is the lowest common ancestor to l2 and l4. Note that D(T ) is a real symmetric matrix with zeros
on the diagonal. In other words, d(li , l j ) = d(l j , li ) and d(li , li ) = 0. Hence, for a tree T on n leaves,

D(T ) =


0 d(l1, l2) . . . d(l1, ln)

d(l2, l1) 0 . . . d(l2, ln)
...

...
. . .

...
d(ln , l1) d(ln , l2) . . . 0

 .

Because of the symmetry, we can use the properties for symmetric matrices stated in Section 2.3.

We are interested in the eigenvalues of these matrices. For a 2×2 pairwise distance matrix D(T ) =
[

0 d(l1,l2)
d(l2,l1) 0

]
,

the eigenvalues can be computed by

det(D(T )−λI ) =
∣∣∣∣ −λ d(l1, l2)
d(l2, l1) −λ

∣∣∣∣=λ2 −d(l1, l2)d(l2, l1) =λ2 −d(l1, l2)2,

which results in eigenvalues λ1,2 = ±d(l1, l2). For larger matrices, computing determinants is very time-
consuming. Therefore, in Appendix A, a Python code for computing eigenvalues can be found. If interested,
the characteristic polynomial for 3×3 and n ×n pairwise distance matrices in general can be found in Ap-
pendix C.

Note that relabeling the leaves in the tree T is equivalent to performing a similarity transformation on the
matrix D(T ). Since performing such a transformation will not change the spectrum, we can order the leaves
arbitrarily. That is, the spectrum of D(T ) is invariant under relabeling.

Since a pairwise distance matrix has zeros on the diagonal, we can apply Lemma 1 to obtain the following
corollary:

Corollary 1. For a pairwise distance matrix D(T ), tr(D(T )) =∑n
i=1 Di i (T ) =∑n

i=1λi = 0.
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Now we will take a look at a small example of a tree T on 4 leaves.

Example 1. Here, we consider the perfectly balanced tree T2 displayed in Figure 2.4. We will display this
figure below again for convenience.

ρ

x1

l1 l2

x2

l3 l4

The pairwise distance matrix corresponding to this tree is given by:

D(T2) =


0 d(l1, l2) d(l1, l3) d(l1, l4)

d(l2, l1) 0 d(l2, l3) d(l2, l4)
d(l3, l1) d(l3, l2) 0 d(l3, l4)
d(l4, l1) d(l4, l2) d(l4, l3) 0

=


0 2 4 4
2 0 4 4
4 4 0 2
4 4 2 0

 .

We can compute the eigenvalues of D(T2) as follows:

det(D(T2)−λI ) =

∣∣∣∣∣∣∣∣
−λ 2 4 4
2 −λ 4 4
4 4 −λ 2
4 4 2 −λ

∣∣∣∣∣∣∣∣=λ4 −72λ2 −256λ−240 = 0,

which has solutions λ1 = −2,λ2 = −2,λ3 = −6 and λ4 = 10. Corresponding eigenvectors are v⃗1 =
[−1

1
0
0

]
, v⃗2 =[ 0

0−1
1

]
, v⃗3 =

[−1−1
1
1

]
and v⃗4 =

[1
1
1
1

]
. The spectrum of D(T ) is given by {(−2)2, (−6)1, (10)1}.





3
Uncovering tree structures through their

spectra

In this chapter, we will explore how specific tree patterns manifest in the spectrum of pairwise distance ma-
trices of binary rooted phylogenetic trees, referred to as ‘trees’. As we already mentioned in Chapter 1, Matsen
and Evans found two different trees on 17 leaves, which we will denote by T17,1 and T17,2, with the same set of
eigenvalues [10]. These trees are displayed in Figure 3.1 and 3.2.

ρ

l1 l2 l3 l4

l11

l5 l6

l12

l13 l14

l17

l7 l8

l15

l9 l10

l16

Figure 3.1: The phylogenetic tree T17,1 that is not uniquely determined by its spectrum. The spectrum is:
{(−40.450)1, (−22.912)1, (−11.123)1, (−6.949)1, (−6)1, (−3.938)1, (−3.579)1, (−3.174)1, (−2.877)1, (−2.742)1, (−2.658)1, (−2)5, (116.403)1},

where each non-integer eigenvalue is rounded to three decimals.
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ρ

l1 l2 l3 l4

l11

l17

l5 l6

l12

l13

l14

l7 l8

l15

l9 l10

l16

Figure 3.2: The phylogenetic tree T17,2 that is not uniquely determined by its spectrum. The spectrum is:
{(−40.450)1, (−22.912)1, (−11.123)1, (−6.949)1, (−6)1, (−3.938)1, (−3.579)1, (−3.174)1, (−2.877)1, (−2.742)1, (−2.658)1, (−2)5, (116.403)1},

where each non-integer eigenvalue is rounded to three decimals.

The pairwise distance matrices corresponding to these trees with the given labeling are given below.

D(T17,1) =



0 2 4 4 9 9 11 11 11 11 4 8 7 7 10 10 8
2 0 4 4 9 9 11 11 11 11 4 8 7 7 10 10 8
4 4 0 2 9 9 11 11 11 11 4 8 7 7 10 10 8
4 4 2 0 9 9 11 11 11 11 4 8 7 7 10 10 8
9 9 9 9 0 2 10 10 10 10 7 3 4 6 9 9 7
9 9 9 9 2 0 10 10 10 10 7 3 4 6 9 9 7

11 11 11 11 10 10 0 2 6 6 9 9 8 6 3 5 5
11 11 11 11 10 10 2 0 6 6 9 9 8 6 3 5 5
11 11 11 11 10 10 6 6 0 2 9 9 8 6 5 3 5
11 11 11 11 10 10 6 6 2 0 9 9 8 6 5 3 5

4 4 4 4 7 7 9 9 9 9 0 6 5 5 8 8 6
8 8 8 8 3 3 9 9 9 9 6 0 3 5 8 8 6
7 7 7 7 4 4 8 8 8 8 5 3 0 4 7 7 5
7 7 7 7 6 6 6 6 6 6 5 5 4 0 5 5 3

10 10 10 10 9 9 3 3 5 5 8 8 7 5 0 4 4
10 10 10 10 9 9 5 5 3 3 8 8 7 5 4 0 4

8 8 8 8 7 7 5 5 5 5 6 6 5 3 4 4 0



D(T17,2) =



0 2 4 4 9 9 11 11 11 11 4 8 7 7 10 10 5
2 0 4 4 9 9 11 11 11 11 4 8 7 7 10 10 5
4 4 0 2 9 9 11 11 11 11 4 8 7 7 10 10 5
4 4 2 0 9 9 11 11 11 11 4 8 7 7 10 10 5
9 9 9 9 0 2 10 10 10 10 7 3 4 6 9 9 6
9 9 9 9 2 0 10 10 10 10 7 3 4 6 9 9 6

11 11 11 11 10 10 0 2 6 6 9 9 8 6 3 5 8
11 11 11 11 10 10 2 0 6 6 9 9 8 6 3 5 8
11 11 11 11 10 10 6 6 0 2 9 9 8 6 5 3 8
11 11 11 11 10 10 6 6 2 0 9 9 8 6 5 3 8

4 4 4 4 7 7 9 9 9 9 0 6 5 5 8 8 3
8 8 8 8 3 3 9 9 9 9 6 0 3 5 8 8 5
7 7 7 7 4 4 8 8 8 8 5 3 0 4 7 7 4
7 7 7 7 6 6 6 6 6 6 5 5 4 0 5 5 4

10 10 10 10 9 9 3 3 5 5 8 8 7 5 0 4 7
10 10 10 10 9 9 5 5 3 3 8 8 7 5 4 0 7

5 5 5 5 6 6 8 8 8 8 3 5 4 4 7 7 0


Now that we know that trees are not uniquely determined by their spectra, we want to discover to what extent
the spectrum does reveal the topology of the tree. In these trees on 17 leaves, we observe a few remarkable
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things:

• With this leaf-labeling, we see that the top-left 16×16 submatrix of both matrices is exactly the same.
Therefore, in Section 3.1, we will discover what spectra of submatrices (subtrees) can tell us about the
spectra of the full matrix.

• We see that −2 appears five times in the spectrum of D(T17,1) and D(T17,2). Besides, we see that both
trees have exactly five cherries. Therefore, in Section 3.2, we want to discover if the eigenvalue −2
always corresponds to a cherry. Note that a cherry is a perfectly balanced tree of height 1. Therefore, in
Section 3.3, we will take a further look at spectra of perfectly balanced (sub)trees of general height.

• In Lemma 4 of the paper of Matsen and Evans, a condition is mentioned for two trees to have the same
spectrum. However, the trees T17,1 and T17,2 do not seem to meet this condition. Therefore, in Section
3.4, we will combine our results and give a sufficient explanation to the spectral equivalence of T17,1

and T17,2.

Lastly, in Section 3.5, we will look at negative integer eigenvalues of trees in general and find an example
of eigenvalues that might reveal another type of subtree.

3.1. Extracting spectral information via submatrices
De Ponte and De Campos already discovered that the order of characteristic polynomials can be reduced,
given the eigenvalues and eigenvectors of a submatrix [12]. In Lemma 3, we will state when eigenvalues of a
submatrix of a pairwise distance matrix specifically can be inherited by the full matrix. In Lemma 4, we will
give the reduced characteristic polynomial, which is a direct result of De Ponte and De Campos. For both
lemmas, we will give our own, but similar proof.

Lemma 3. Let T be a tree on n leaves with pendant subtree T ′ on m leaves. Label the leaves such that D(T ) =[
A B C

B T D(T ′) E
C T E T F

]
, where D(T ′) ∈Rm×m is the pairwise distance matrix of T ′.

Then λ is an eigenvalue of D(T ) with eigenvector

[
0⃗
u⃗
0⃗

]
if and only if λ is an eigenvalue of D(T ′) with eigenvector

u⃗ ∈Rm and Bu⃗ = 0⃗ and E T u⃗ = 0⃗.

Proof. For the first direction, suppose D(T ) has an eigenvalue λ with eigenvector

[
0⃗
u⃗
0⃗

]
. Then we know that

D(T )

[
0⃗
u⃗
0⃗

]
=λ

[
0⃗
u⃗
0⃗

]
. Rewriting this gives us A B C

B T D(T ′) E
C T E T F

0⃗
u⃗
0⃗

=λ

0⃗
u⃗
0⃗


which leads to

A⃗0+Bu⃗ +C 0⃗ = λ⃗0 (3.1)

B T 0⃗+D(T ′)u⃗ +E 0⃗ =λu⃗ (3.2)

C T 0⃗+E T u⃗ +F 0⃗ = λ⃗0 (3.3)

Equation 3.1 shows us that Bu⃗ = 0⃗. Equation 3.2 shows that D(T ′)u⃗ = λu⃗, which means λ is an eigenvalue of
D(T ′) with eigenvector u⃗. Equation 3.3 implies E T u⃗ = 0⃗.

For the opposite direction, suppose λ is an eigenvalue of D(T ′) with eigenvector u⃗ and Bu⃗ = 0⃗ and E T u⃗ =
0⃗. Then we know that D(T ′)u⃗ = λu⃗. We wish to show that λ is an eigenvalue of D(T ) with corresponding

eigenvector

[
0⃗
u⃗
0⃗

]
. This follows from:

D(T )

0⃗
u⃗
0⃗

=
 A B C

B T D(T ′) E
C T E T F

0⃗
u⃗
0⃗

 =
 A⃗0+Bu⃗ +C 0⃗

B T 0⃗+D(T ′)u⃗ +E 0⃗
C T 0⃗+E T u⃗ +F 0⃗

=
 0⃗

D(T ′)u⃗
0⃗

 =
 0⃗
λu⃗
0⃗

=λ

0⃗
u⃗
0⃗

 .

Hence, λ is an eigenvalue of D(T ) with eigenvector

[
0⃗
u⃗
0⃗

]
.
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The remaining eigenvalues, the ones that are not in the spectrum of a submatrix, can be computed as
follows.

Lemma 4. Let T be a tree on n +m leaves. Let D(T ) =
[

A B
B T C

]
be the pairwise distance matrix of T , where

A ∈Rn×n is diagonalizable as A =UΛAU T . Then the eigenvalues of D(T ) that are not in the spectrum of A can
be computed using

det(D(T )−λIn+m) =
(

n∏
j=1

(λ j −λ)

)
·det

(
C −λIm −

n∑
j=1

(u⃗ j
T B)2

λ j −λ

)
.

Proof. The following matrix is needed for computing the eigenvalues of D(T ):

D(T )−λIn+m =
[

A−λIn B
B T C −λIm

]
.

If λ is not an eigenvalue of A, then (A−λIn) is invertible and according to Lemma 2,

det(D(T )−λI ) = det(A−λIn)det(C −λIm −B T (A−λIn)−1B). (3.4)

Since A =UΛAU T , we have

A−λIn =U (

λ1−λ 0 ... 0
0 λ2−λ ... 0
...

...
. . .

...
0 0 ... λn−λ

)U T =U (ΛA −λIn)U T

and, since U is orthogonal,

det(A−λIn) = det(U (ΛA −λIn)U T ) = det(ΛA −λIn) =
n∏

j=1
(λ j −λ). (3.5)

Then, as (UΛAU T )−1 =U (ΛA)−1U T ,

(A−λIn)−1 =U (


1

λ1−λ 0 ... 0

0 1
λ2−λ ... 0

...
...

. . .
...

0 0 ... 1
λn−λ

)U T .

Plugging this into Schur’s formula, we get

B T (A−λIn)−1B = B T U (


1

λ1−λ 0 ... 0

0 1
λ2−λ ... 0

...
...

. . .
...

0 0 ... 1
λn−λ

)U T B =
n∑

j=1

1

λ j −λ
(u⃗ j

T B)(u⃗ j
T B)T =

n∑
j=1

(u⃗ j
T B)2

λ j −λ
. (3.6)

Combining 3.5 and 3.6 in Equation 3.4 gives us

det(D(T )−λIn+m) =
(

n∏
j=1

(λ j −λ)

)
·det

(
C −λIm −

n∑
j=1

(u⃗ j
T B)2

λ j −λ

)
.

as desired.

In this section, we have shown the conditions under which eigenvalues of submatrices re-appear in the
spectrum of the full matrix, and how we can compute the remaining eigenvalues. In next section, we will
discuss the eigenvalue of cherries.
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3.2. Characterizing cherries via eigenvalues
As we have seen in Figures 3.1 and 3.2, T17,1 and T17,2 both have five cherries and eigenvalue −2 with multi-
plicity 5 in their spectra. Using Lemma 3, we will show that a cherry indeed always results in an eigenvalue
−2.

Lemma 5. Let T be a tree on n leaves and let D(T ) be its pairwise distance matrix. The tree contains k cherries
on the leaves (li1 , l j1 ), . . . , (lik , l jk ) if and only if eigenvalue −2 has multiplicity k with eigenvectors v⃗r =−eir +e jr

for r = 1, . . . ,k.

Proof. We start with the reversed direction. Suppose that the eigenvalue −2 of D(T ) has multiplicity k with
corresponding eigenvectors −eir + e jr for r = 1, ...,k. Pick one r arbitrarily and denote its eigenvector by
v⃗r = v⃗ . Note that vi = −1, v j = 1 and vq = 0 for q ̸= i , j . By definition, we must have D(T )v⃗ = −2v⃗ . We will
discuss the different rows separately. First, at row i , we have

n∑
p=1

Di p vp = Di i vi +Di j v j =−2vi ,

so we have
Di j = 2.

Therefore, we must have Di j = 2, which immediately implies D j i = 2. For any q ̸= i , j , we have

n∑
p=1

Dqp vp = Dqi vi +Dq j v j = 0,

which implies
Dqi = Dq j .

Therefore, since the distance between li = lir and l j = l jr is 2 and every third leaf is equidistant to li and l j ,
we have a cherry on leaves (lir , l jr ). Since eigenvalue −2 appears k times in the spectrum and r is an arbitrary
integer between 1 and k, we can apply the above k times. That results in k cherries.

For the other direction, suppose T contains k ≥ 1 cherries on leaves (li1 , l j1 ), . . . , (lik , l jk ). Note that there
is at least one cherry, since the lowest interior vertex of any path within the tree must have two children. We
first take a look at k = 1. Let i = i1 be an arbitrary number between 1 and n −1 and let j = j1 = i +1. Then

D(T ) =


A B C

B T
[

0 2
2 0

]
1

E

C T E T F


where

[
0 2
2 0

]
1 stands for the matrix corresponding to the cherry on leaves (li , l j ) = (li1 , l j1 ). This matrix has

eigenvalues −2 and 2 with eigenvectors
[−1

1

]
and

[
1
1

]
, respectively. We want to show that −2 is an eigenvalue

of D(T ).
Observe that for any leaf lq , where q ̸= i , j , d(lq , li ) = d(lq , l j ). This means that

B =

 d(l1, li ) d(l1, l j )
...

...
d(li−1, li ) d(li−1, l j )

=

 d(l1, li ) d(l1, li )
...

...
d(li−1, li ) d(li−1, li )


and

E T =

d(li+2, li ) d(li+2, l j )
...

...
d(ln , li ) d(ln , l j )

=

d(li+2, li ) d(li+2, li )
...

...
d(ln , li ) d(ln , li )

 .

In addition, observe that, for the eigenvector
[−1

1

]
of eigenvalue −2,

B

[−1
1

]
=

 d(l1, li ) d(l1, li )
...

...
d(li−1, li ) d(li−1, li )

[−1
1

]
=

 −d(l1, li )+d(l1, li )
...

−d(li−1, li )+d(li−1, li )

=

0
...
0


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and

E T
[−1

1

]
=

d(li+2, li ) d(li+2, li )
...

...
d(ln , li ) d(ln , li )

[−1
1

]
=

−d(li+2, li )+d(li+2, li )
...

−d(ln , li )+d(ln , li )

=

0
...
0

 .

Now, by Lemma 3, since −2 is an eigenvalue of D(T ′) = [
0 2
2 0

]
1 and B

[−1
1

] = 0⃗ and E T
[−1

1

] = 0⃗, we know

that −2 is an eigenvalue of D(T ) with eigenvector

[
0⃗−1
1
0⃗

]
=−ei +e j =−ei1 +e j1 , as desired. Now, for k cherries,

we can label the leaves of each cherry by i and j = i +1, where i = 1,3, . . . ,2k −1. Therefore, for k cherries, we
must have

D(T ) =



[
0 2
2 0

]
1

· · · · · · · · ·
...

[
0 2
2 0

]
2

· · · · · ·
...

...
. . .

...
...

[
0 2
2 0

]
k

C


Now we can apply Lemma 3 k times, in the same way as above. Therefore, every cherry (lir , l jr ), where

r = 1, . . . ,k, leads to eigenvalue −2 with corresponding eigenvector −eir +e jr .

In next section, we will show that not only cherries lead to specific eigenvalues: perfectly balanced trees
of an arbitrary height h have a closed-form spectrum as well.

3.3. Spectra of perfectly balanced trees
In this section, we want to apply Lemma 3 to trees T with a perfectly balanced pendant subtree T ′. It turns
out that all negative eigenvalues of D(T ′) are eigenvalues of D(T ) as well, which we will show in Lemma 8.
In addition, these perfectly balanced (sub)trees always lead so specific eigenvalues, which we will show in
Theorem 2. Before we are able to prove these results, we need a few lemmas and corollaries, which we will
state and prove here.

Lemma 6. Every pairwise distance matrix D(T ) on m leaves has exactly one positive eigenvalue.

Proof. We know that the pairwise distance matrix D(T ) on m leaves is a principal submatrix of the distance
matrix on the full set of vertices, say A(T ) on n > m vertices. In other words, we obtain D(T ) by removing
the rows and columns from A(T ) that correspond to vertices other than leaves. Denote the eigenvalues of
A(T ) by λ and those of D(T ) by µ. Since

∑m
i=1µi = 0 by Corollary 1, and by Lemma 5 there is a negative

eigenvalue, there must be at least one positive eigenvalue. Graham, Pollak and Merris already discovered
that A(T ) has exactly one positive eigenvalue, say λn [5, 11]. By Theorem 1, we have that λm ≤ µm ≤ λn .
Since λm ≤ λn−1 < 0, we must have µ j < 0 for all j < m. Thus D(T ) has at most one positive eigenvalue. In
conclusion, D(T ) has exactly one positive eigenvalue.

In next lemmas and corollaries, we will frequently use the following observations:

Observation 1. The perfectly balanced tree of height 1 is displayed in Figure 3.3. This tree has pairwise
distance matrix D(T ) = [

0 2
2 0

]
with eigenvalues −2 and 2 and corresponding eigenvectors

[
1
1

]
and

[−1
1

]
.

ρ

l1 l2

Figure 3.3: Perfectly balanced tree of height 1.
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Observation 2. One can create the perfectly balanced tree Th by attaching two copies of Th−1 to one root ρ,
as displayed in Figure 3.4.

ρ

Th−1 Th−1

Figure 3.4: Perfectly balanced tree of height h, where two copies of Th−1 are attached to one root ρ.

Lemma 7. Let Th be a perfectly balanced tree of height h with corresponding pairwise distance matrix D(Th).

Then, for any i ,
∑2h

j=1 Di j (Th) =∑h
k=1 2k k, where Di j = d(li , l j ).

Proof. Let Th be a perfectly balanced tree of height h, with n = 2h leaves. Note that in a perfectly balanced
tree, every leaf li has the same set of distances to all other leaves. So, without loss of generality, we look at
the sum of the entries in row i . We will prove the sum by induction on the height h. For the base case, pick
a perfectly balanced tree of height 1, which is displayed in Figure 3.3. By Observation 1, the corresponding

distance matrix is given by D(T1) = [
0 2
2 0

]
. Here,

∑21

j=1 Di j (T1) = 0+2 = 21 ·1. Now, for the induction hypothesis,

assume that the perfectly balanced tree Th−1 of height h − 1 satisfies
∑2h−1

j=1 Di j (Th−1) = ∑h−1
k=1 2k k. Now we

want to show that
∑2h

j=1 Di j (Th) = ∑h
k=1 2k k holds as well. By Observation 2, we can create the tree Th by

taking two copies of Th−1 and gluing their roots onto a new root. Let the leaves in the left subtree be labeled
from 1 to 2h−1 and the leaves in the right subtree from 2h−1 +1 to 2h . Since every leaf in the subtree Th−1 has
distance h to the root, we must have that for any leaf li in the left subtree and any leaf l j in the right subtree,
Di j = d(li , l j ) = 2h. Therefore, the pairwise distance matrix corresponding to Th is given by:

D(Th) =
[

D(Th−1) 2h J
2h J D(Th−1)

]
where J is the 2h−1 ×2h−1 all-ones matrix. Note that

2h∑
j=1

Di j (Th) =
2h−1∑
j=1

Di j (Th−1)+
2h−1∑
j=1

2h =
h−1∑
k=1

2k k +2h−12h =
h−1∑
k=1

2k k +2hh =
h∑

k=1
2k k

by the induction hypothesis. Hence,
∑2h

j=1 Di j (Th) = ∑h
k=1 2k k for any perfectly balanced tree of height

h.

Using Lemmas 6 and 7, we can prove the following:

Corollary 2. For a perfectly balanced tree Th of height h, the largest eigenvalue has the all-ones vector 1⃗ as
eigenvector. For all other eigenvalues with corresponding eigenvector u⃗ = [u1 · · ·un]T , we have that

∑n
i=1 ui = 0.

Proof. Let Th be a perfectly balanced tree of height h with n = 2h leaves. In Lemma 7, we already saw that ev-
ery row i in D(Th) must have the same sum,

∑n
j=1 Di j (Th) =∑h

k=1 2k k. This means that D(Th )⃗1 = (∑h
k=1 2k k

)
1⃗.

Hence, 1⃗ is the eigenvector corresponding to eigenvalue λ=∑h
k=1 2k k. By Lemma 6, there is only one positive

eigenvalue, and since
∑h

k=1 2k k > 0, we must have that this is the largest eigenvalue. For the second part of

the lemma, we use the fact that a symmetric matrix has orthogonal eigenvectors. That means that u⃗T v⃗ = 0
for two distinct eigenvectors u⃗ and v⃗ . Thus, for v⃗ = 1⃗, u⃗T 1⃗ =∑n

i=1 ui = 0, as desired.

Now that we have seen these lemmas, we are able to prove the following result, which can be seen as a
generalization of Lemma 5.

Lemma 8. Let T be a tree on n leaves with a perfectly balanced pendant subtree Th on m = 2h leaves. Then all
negative eigenvalues λ of D(Th) with multiplicity p and corresponding eigenvectors u⃗ are eigenvalues of D(T )

with multiplicity q ≥ p and corresponding eigenvectors
[

u⃗
0⃗

]
.
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Proof. Let T be a tree on n leaves with a perfectly balanced pendant subtree Th on m = 2h leaves, as displayed
in Figure 3.5. T ′ is just the remaining part of the tree.

ρ

Th T ′

Figure 3.5: A tree T with a perfectly balanced pendant subtree Th .

The corresponding distance matrix is given by:

D(T ) =
[

D(Th) C
C T D(T ′)

]
Note that all leaves in the subtree Th are equidistant to all other leaves in the tree, which means that the rows
in C (or equivalently, the columns in C T ) are equal. For any negative eigenvalue λ of D(Th) with correspond-

ing eigenvector u⃗ =
[ u1

...
um

]
:

C T

 u1
...

um

=

 c1 . . . c1
...

...
cn−m . . . cn−m


 u1

...
um

=

 c1
∑m

i=1 ui
...

cn−m
∑m

i=1 ui

=

0
...
0


where we used Corollary 2 for the last equality. Then, by Lemma 3, we have that λ is an eigenvalue of D(T )

with corresponding eigenvector
[

u⃗
0⃗

]
. Since this holds for all negative eigenvalues λ of D(Th), we must have

that λ is an eigenvalue of D(T ) with multiplicity q ≥ p. Note that if D(T ′) itself contains a perfectly balanced
pendant subtree with the same eigenvalue λ, q > p.

Using the above lemmas, we can show that perfectly balanced trees only have negative eigenvalues of the
form −2(2k −1), where k is a number between 1 and the height h of the tree. As already mentioned in Chapter
1, Singh et al. stated that these are the only negative eigenvalues [14]. In the following theorem, we will also
prove this result.

Theorem 2. For a perfectly balanced tree of height h, the negative eigenvalues are of the form −2(2k −1) with

multiplicity 2h−k for k = 1, ...,h. The most negative eigenvalue −2(2h −1) has eigenvector
[
−⃗1
1⃗

]
.

Proof. We will prove this theorem by induction on the height h. For the base case of height 1, we have the
perfectly balanced tree T1, which is displayed in Figure 3.3. By Observation 1, the corresponding distance
matrix D(T1) has eigenvalues 2 and −2 with corresponding eigenvectors

[
1
1

]
and

[−1
1

]
. Thus, indeed, the

negative eigenvalue equals −2(21−1) =−2 with multiplicity 21−1 = 1 and corresponding eigenvector
[−1

1

]
. For

the induction hypothesis, we assume that Th−1 has negative eigenvalues −2(2k −1) with multiplicity 2h−1−k

for k = 1, ...,h − 1. Moreover, we assume that
[
−⃗1
1⃗

]
is the eigenvector corresponding to λ = −2(2h−1 − 1). It

suffices to show that Th has negative eigenvalues −2(2k −1) with multiplicity 2h−k for k = 1, ..,h and
[
−⃗1
1⃗

]
is

the eigenvector corresponding to λ=−2(2h −1). We again use Observation 2. Note that the distance matrix
corresponding to Th is given by:

D(Th) =
[

D(Th−1) 2h J
2h J D(Th−1)

]
where J is the 2h−1 × 2h−1 all-ones matrix. Note that by Lemmas 3 and 8, we must have that all negative
eigenvalues λ1, ...,λh−2 of D(Th−1) are eigenvalues of D(Th) as well with twice the multiplicity and corre-

sponding eigenvectors
[

u⃗i

0⃗

]
and

[
0⃗

u⃗i

]
for λi . That means that −2(2k − 1) are eigenvalues with multiplicity

2 ·2h−1−k = 2h−k for k = 1, ...,h −1. Now it remains to show that −2(2h −1) is an eigenvalue with multiplicity
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2h−h = 1 as well. Suppose that
[
−⃗1
1⃗

]
is the eigenvector corresponding to the remaining eigenvalue. Denote

the remaining eigenvalue by Λ. Now, we must solve D(Th)
[
−⃗1
1⃗

]
= Λ

[
−⃗1
1⃗

]
. Thus, using Lemma 7, and using

the fact that
∑n−1

i=0 i ai = a−nan+(n−1)an+1

(1−a)2 , we see that:

D(Th)

[−⃗1
1⃗

]
=

[
D(Th−1) 2h J

2h J D(Th−1)

][−⃗1
1⃗

]
=

[−∑h−1
k=1 2k k +2h−12h

−2h−12h +∑h−1
k=1 2k k

]
=[−(2−h2h + (h −1)2h+1)+2h−12h

−2h−12h + (2−h2h + (h −1)2h+1)

]
=

[
2(2h −1)
−2(2h −1)

]
=−2(2h −1)

[−⃗1
1⃗

]

which indeed states that −2(2h −1) is an eigenvalue of D(Th) with eigenvector
[
−⃗1
1⃗

]
.

3.4. Explanation of spectral equivalence in distinct trees
Now we want to apply the results of the previous sections to the phylogenetic trees T17,1 and T17,2, to see if we
can explain why they share a spectrum. Note that the pairwise distance matrix of a cherry,

[
0 2
2 0

]
, appears five

times as a submatrix in both D(T17,1) and D(T17,2). In addition, D(T2) =
[0 2 4 4

2 0 4 4
4 4 0 2
4 4 2 0

]
appears once. By Lemma 8

and Theorem 2, we see that D(T17,1) indeed must have (−6)1 and (−2)5 in its spectrum.

For the remaining eigenvalues, we will use Lemma 3 and Lemma 4. Let A be the 16× 16 top-left ma-
trix that appears in both D(T17,1) and D(T17,2). Moreover, let b⃗1 = [8,8,8,8,7,7,5,5,5,5,6,6,5,3,4,4]T and

b⃗2 = [5,5,5,5,6,6,8,8,8,8,3,5,4,4,7,7]T . Then D(T17,1) =
[

A b⃗1

b⃗1
T

0

]
and D(T17,2) =

[
A b⃗2

b⃗2
T

0

]
. In addition to

eigenvalues −2 and −6, −11.123 and −2.877 appear in the spectra of A, D(T17,1) and D(T17,2). The Python
code in Appendix A verifies that the eigenvectors corresponding to these eigenvalues are indeed orthogonal
to b⃗1 and b⃗2. Then, Lemma 3 explains why the eigenvalues are inherited.

For the remaining eigenvalues of D(T17,1) and D(T17,2), we will use Lemma 4. The same Python code
verifies that for all unit eigenvectors u⃗ that are not orthogonal to b⃗1 and b⃗2, (u⃗T b⃗1)2 = (u⃗T b⃗2)2. That means
that

det(D(T17,1)−λI ) =
(

16∏
j=1

(λ j −λ)

)
·det

(
−λ−

16∑
j=1

(u⃗ j
T b⃗1)2

λ j −λ

)
=(

16∏
j=1

(λ j −λ)

)
·det

(
−λ−

16∑
j=1

(u⃗ j
T b⃗2)2

λ j −λ

)
= det(D(T17,2)−λI ).

The above explains why D(T17,1) and D(T17,2) have the exact same spectrum.

3.5. Other interesting eigenvalues
In Section 3.3, we showed that negative integer eigenvalues of perfectly balanced trees are restricted to the
form −2(2k − 1). In this section, we want to discover whether these are the only possible negative integer
eigenvalues in all trees. Moreover, we will investigate other eigenvalues that might reveal the structure of a
(sub)tree.

For small examples, the closed-form on the negative eigenvalues discussed in th Section 3.3 seemed to
be the only negative integer eigenvalues possible. However, using Python we found that the negative integer
eigenvalues of general pairwise distance matrices are not restricted to this form. In Appendix B, we added
a Python code that generates pairwise distance matrices of trees up to n leaves. Using this code, we found
that there exist pairwise distance matrices with other negative integer eigenvalues. One example is the tree in
Figure 3.6, which has eigenvalue −4 as well. This means that negative integer eigenvalues of pairwise distance
matrices are not restricted to the form −2(2k −1), where k is a number between 1 and the height of the tree.
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ρ

l1 l2 l3 l4 l5 l6 l7
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l11 l12

l13

Figure 3.6: A phylogenetic tree T ′ on 13 leaves with −4 in its spectrum.

The following matrix is the pairwise distance matrix corresponding to the tree in Figure 3.6:

D(T ′) =



0 2 4 4 6 6 6 9 9 8 9 9 8
2 0 4 4 6 6 6 9 9 8 9 9 8
4 4 0 2 6 6 6 9 9 8 9 9 8
4 4 2 0 6 6 6 9 9 8 9 9 8
6 6 6 6 0 2 4 7 7 6 7 7 6
6 6 6 6 2 0 4 7 7 6 7 7 6
6 6 6 6 4 4 0 5 5 4 5 5 4
9 9 9 9 7 7 5 0 2 3 6 6 5
9 9 9 9 7 7 5 2 0 3 6 6 5
8 8 8 8 6 6 4 3 3 0 5 5 4
9 9 9 9 7 7 5 6 6 5 0 2 3
9 9 9 9 7 7 5 6 6 5 2 0 3
8 8 8 8 6 6 4 5 5 4 3 3 0



,

which has spectrum {(−27.616)1, (−11.123)1, (−9.975)1, (−6)1, (−4)1, (−3.006)1, (−2.877)1, (−2)5, (74.598)1},
where each non-integer eigenvalue is rounded to three decimals.

In this spectrum, we see something interesting. Note that the eigenvalues −11.123 and −2.877 also appear
in the spectra of D(T17,1) and D(T17,2). For the matrix D(T ′), the eigenvectors corresponding to eigenvalues
−11.123 and −2.877 are

[0,0,0,0,0,0,0,−0.465,−0.465,−0.261,0.465,0.465,0.261]T

[0,0,0,0,0,0,0,0.185,0.185,−0.657,−0.185,−0.185,0.657]T ,

respectively. Note that the non-zero entries appear at indices 8,9,10,11,12,13. If we look at the leaves in
Figure 3.6 with these indices as labels, we see a pendant subtree on leaves {l8, l9, l10, l11, l12, l13}.

For the matrices D(T17,1) and D(T17,2), the eigenvectors corresponding to eigenvalues −11.123 and −2.877
are

[0,0,0,0,0,0,−0.465,−0.465,0.465,0.465,0,0,0,0,−0.261,0.261,0]T ,

[0,0,0,0,0,0,0.185,0.185,−0.185,−0.185,0,0,0,0,−0.657,0.657,0]T ,

respectively. The non-zero entries appear at indices 7,8,9,10,15 and 16. If we look at the leaves in T17,1 and
T17,2 with these indices as labels, we see the same pendant subtree on leaves {l7, l8, l9, l10, l15, l16}. Therefore,
these eigenvalues might indicate the presence of subtrees of that form. This is something that remains to be
(dis)proven.



4
Conclusion and discussion

In this thesis, we investigated how spectra of pairwise distance matrices reveal structural information about
rooted binary phylogenetic trees. Although the spectrum does not uniquely determine the full topology of
the tree, as we saw for the two distinct trees T17,1 and T17,2, we showed that some eigenvalues can be highly
informative.

In particular, in Section 3.2, we discovered that eigenvalue −2 with multiplicity k in the spectrum, with
associated eigenvector of the form −ei +e j , reveals the presence of k cherries in the tree. In all rooted binary
phylogenetic trees we have taken a look at, −2 always corresponds to a cherry. Therefore, we conjecture
that the presence of an eigenvalue −2 is sufficient to guarantee the presence of a cherry, regardless of its
eigenvector.

Conjecture 1. Let T be a tree on n leaves. Then the multiplicity of eigenvalue −2 in the spectrum of its
pairwise distance matrix equals the number of cherries in the tree.

To prove this Conjecture, we must verify that for a general pairwise distance matrix D(T ), D(T )v⃗ = −2v⃗ ,
or similarly,

∑n
j=1 d(li , l j )v j =−2vi , must imply that d(li , l j ) = 2 for some i , j . Note that −2 with multiplicity

k means there are k different pairs of leaves with up-down distance 2. Another possibility is to prove that
eigenvectors corresponding to eigenvalue −2 can only be of the form −ei + e j ; then we can leave out the as-
sumption that v⃗r =−eir +e jr for cherry r in Lemma 5.

In Section 3.1, we showed that an eigenvalue λ of a submatrix (pendant subtree) can also appear as an
eigenvalue of the full matrix, but only under a specific condition. According to Lemma 3, this occurs when
the matrix connecting the subtree to the rest of the tree is orthogonal to an eigenvector of the submatrix cor-
responding to λ. In Lemma 8, we saw that the negative eigenvalues of a perfectly balanced pendant subtree

with eigenvector u⃗ always re-appear in the spectrum of the entire tree with eigenvector
[

u⃗
0⃗

]
. In Theorem 2,

we proved that the negative eigenvalues of perfectly balanced trees are of the closed-form −2(2k −1). We con-
jecture that all eigenvalues of the closed-form −2(2k −1) reveal the presence of a perfectly balanced subtree
of height k, regardless of their eigenvectors.

Conjecture 2. Let T be a tree on n leaves. Then the multiplicity of eigenvalue −2(2k −1) in the spectrum of
its pairwise distance matrix equals the number of perfectly balanced subtrees of height k in the tree.

To prove this, a similar method to the proof of Conjecture 1 might be used.

Furthermore, in Section 3.5, we saw that that eigenvalues −11.123 and 2.877 appeared in different trees
with the same pendant subtree, which is displayed in Figure 4.1. We found that, for these trees, the labels of
the leaves matched with the non-zero entries in the eigenvectors corresponding to −11.123 and 2.877. These
eigenvalues might indicate the presence of a pendant subtree of the form in Figure 4.1. Since we only looked
at three trees with such a pendant subtree, it might be interesting to investigate whether this holds in general.
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ρ

l1 l2

l3

l4 l5

l6

Figure 4.1: A pendant subtree that might corresponds to eigenvalues −11.123 and 2.877.

Besides this example, there might be other eigenvalues that reveal common subtree types, such as cater-
pillar trees. Another area for future research is non-binary or unrooted trees. In addition, we only considered
unit edge length, while in reality, weighted edges are possible as well. This could be taken into account in fu-
ture work. Lastly, spectra of phylogenetic networks could be investigated. Phylogenetic networks allow retic-
ulations: vertices with two parents and one child. Therefore, multiple up-down paths are possible between
pairs of leaves, resulting in a multiset matrix D(T ). It might be interesting to look at the shortest distance
in such multiset-matrices. Defining spectra for such multiset-matrices and investigating what those spectra
reveal about the topology could be very valuable in phylogenetics, as phylogenetic networks provide a more
accurate representation of evolution than phylogenetic trees [2].
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A
Python code for computing spectra

import numpy as np

''' Pairwise distance matrix corresponding to T_{17,1}, which does not have a unique spectrum '''
D_17_1 = [[ 0, 2, 4, 4, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10, 8],

[ 2, 0, 4, 4, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10, 8],
[ 4, 4, 0, 2, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10, 8],
[ 4, 4, 2, 0, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10, 8],
[ 9, 9, 9, 9, 0, 2,10,10,10,10, 7, 3, 4, 6, 9, 9, 7],
[ 9, 9, 9, 9, 2, 0,10,10,10,10, 7, 3, 4, 6, 9, 9, 7],
[11,11,11,11,10,10, 0, 2, 6, 6, 9, 9, 8, 6, 3, 5, 5],
[11,11,11,11,10,10, 2, 0, 6, 6, 9, 9, 8, 6, 3, 5, 5],
[11,11,11,11,10,10, 6, 6, 0, 2, 9, 9, 8, 6, 5, 3, 5],
[11,11,11,11,10,10, 6, 6, 2, 0, 9, 9, 8, 6, 5, 3, 5],
[ 4, 4, 4, 4, 7, 7, 9, 9, 9, 9, 0, 6, 5, 5, 8, 8, 6],
[ 8, 8, 8, 8, 3, 3, 9, 9, 9, 9, 6, 0, 3, 5, 8, 8, 6],
[ 7, 7, 7, 7, 4, 4, 8, 8, 8, 8, 5, 3, 0, 4, 7, 7, 5],
[ 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 4, 0, 5, 5, 3],
[10,10,10,10, 9, 9, 3, 3, 5, 5, 8, 8, 7, 5, 0, 4, 4],
[10,10,10,10, 9, 9, 5, 5, 3, 3, 8, 8, 7, 5, 4, 0, 4],
[ 8, 8, 8, 8, 7, 7, 5, 5, 5, 5, 6, 6, 5, 3, 4, 4, 0]]

''' Pairwise distance matrix corresponding to T_{17,2}, which does not have a unique spectrum '''
D_17_2 = [[ 0, 2, 4, 4, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10, 5],

[ 2, 0, 4, 4, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10, 5],
[ 4, 4, 0, 2, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10, 5],
[ 4, 4, 2, 0, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10, 5],
[ 9, 9, 9, 9, 0, 2,10,10,10,10, 7, 3, 4, 6, 9, 9, 6],
[ 9, 9, 9, 9, 2, 0,10,10,10,10, 7, 3, 4, 6, 9, 9, 6],
[11,11,11,11,10,10, 0, 2, 6, 6, 9, 9, 8, 6, 3, 5, 8],
[11,11,11,11,10,10, 2, 0, 6, 6, 9, 9, 8, 6, 3, 5, 8],
[11,11,11,11,10,10, 6, 6, 0, 2, 9, 9, 8, 6, 5, 3, 8],
[11,11,11,11,10,10, 6, 6, 2, 0, 9, 9, 8, 6, 5, 3, 8],
[ 4, 4, 4, 4, 7, 7, 9, 9, 9, 9, 0, 6, 5, 5, 8, 8, 3],
[ 8, 8, 8, 8, 3, 3, 9, 9, 9, 9, 6, 0, 3, 5, 8, 8, 5],
[ 7, 7, 7, 7, 4, 4, 8, 8, 8, 8, 5, 3, 0, 4, 7, 7, 4],
[ 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 4, 0, 5, 5, 4],
[10,10,10,10, 9, 9, 3, 3, 5, 5, 8, 8, 7, 5, 0, 4, 7],
[10,10,10,10, 9, 9, 5, 5, 3, 3, 8, 8, 7, 5, 4, 0, 7],
[ 5, 5, 5, 5, 6, 6, 8, 8, 8, 8, 3, 5, 4, 4, 7, 7, 0]]
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''' Top-left 16x16 matrix that is a submatrix of both D_17_1 and D_17_2 '''
D_16 = [[ 0, 2, 4, 4, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10],

[ 2, 0, 4, 4, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10],
[ 4, 4, 0, 2, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10],
[ 4, 4, 2, 0, 9, 9,11,11,11,11, 4, 8, 7, 7,10,10],
[ 9, 9, 9, 9, 0, 2,10,10,10,10, 7, 3, 4, 6, 9, 9],
[ 9, 9, 9, 9, 2, 0,10,10,10,10, 7, 3, 4, 6, 9, 9],
[11,11,11,11,10,10, 0, 2, 6, 6, 9, 9, 8, 6, 3, 5],
[11,11,11,11,10,10, 2, 0, 6, 6, 9, 9, 8, 6, 3, 5],
[11,11,11,11,10,10, 6, 6, 0, 2, 9, 9, 8, 6, 5, 3],
[11,11,11,11,10,10, 6, 6, 2, 0, 9, 9, 8, 6, 5, 3],
[ 4, 4, 4, 4, 7, 7, 9, 9, 9, 9, 0, 6, 5, 5, 8, 8],
[ 8, 8, 8, 8, 3, 3, 9, 9, 9, 9, 6, 0, 3, 5, 8, 8],
[ 7, 7, 7, 7, 4, 4, 8, 8, 8, 8, 5, 3, 0, 4, 7, 7],
[ 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 4, 0, 5, 5],
[10,10,10,10, 9, 9, 3, 3, 5, 5, 8, 8, 7, 5, 0, 4],
[10,10,10,10, 9, 9, 5, 5, 3, 3, 8, 8, 7, 5, 4, 0]]

''' Vector b1 such that D_17_1 = [[A16, b1], [b1^T, 0]] '''
b1 = [8, 8, 8, 8, 7, 7, 5, 5, 5, 5, 6, 6, 5, 3, 4, 4]

''' Vector b2 such that D_17_2 = [[A16, b2], [b2^T, 0]] '''
b2 = [5, 5, 5, 5, 6, 6, 8, 8, 8, 8, 3, 5, 4, 4, 7, 7]

''' Function that returns the eigenvalues and eigenvectors of a matrix D '''
def eigenval_eigenvec(D):

return np.linalg.eig(D)[0], np.linalg.eig(D)[1]

''' Eigenvalues and eigenvectors of D_17_1, D_17_2 and D_16 '''
eigenvalues_1, eigenvectors_1 = eigenval_eigenvec(D_17_1)
eigenvalues_2, eigenvectors_2 = eigenval_eigenvec(D_17_2)
eig = eigenval_eigenvec(D_16)

''' Here, we loop over all eigenvectors of A16 and check whether those are orthogonal
to b1 and b2 '''
for i in range(16):

print('Eigenvalue is ', eig[0][i])
print('Eigenvector is ', eig[1][:,i])
print(round(np.inner(eig[1][:,i], b1),5))
print(round(np.inner(eig[1][:,i], b2),5))



B
Python code for pairwise distance matrix

generation

import numpy as np

def pbt(n):
''' Here, we use recursion to create the pairwise distance matrix of a perfectly
balanced tree on n leaves. We split each group of leaves into halves. Every pair
of leaves has distance 2 * (depth - level + 1), which corresponds to the distance
to their lowest common ancestor. The pairwise distance matrix is returned, together
with a list of the depths of all leaves. '''
depth = np.log2(n)
D = np.zeros((n, n))
def fill(D, half, level):

if len(half) <= 1:
return

mid = len(half) // 2
left, right = half[:mid], half[mid:]

for i in left:
for j in right:

D[i][j] = D[j][i] = 2 * (depth - level + 1)

fill(D, left, level + 1)
fill(D, right, level + 1)

fill(D, list(range(n)), 1)
depth_list = [depth for i in range(n)]
return D, depth_list

def cat(n):
''' Here, we create the pairwise distance matrix corresponding to a caterpillar
matrix. All leaves in a caterpillar are connected to a central path. This function
generates the pairwise distance matrix if the labels are ordered according to the path.
That means, each next leaf is one more edge away. The pairwise distance matrix is returned,
together with a list of the depths of all leaves. '''
D = np.zeros((n,n))
for i in range(n):

for j in range(i+1, n):
if (i == 0 and j == 1) or (i == 1 and j == 0):

D[i][j] = D[j][i] = 2
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elif abs(i-j) == 1:
D[i][j] = D[j][i] = 3

elif abs(i-j) != 0:
D[i][j] = D[j][i] = D[i][j-1] + 1

depth_list = [i for i in range(n - 1, 0, -1)]
depth_list.insert(0, n - 1)
return D, depth_list

def pairwise_matrix_generator(D1, d1, D2, d2):
''' This function merges two phylogenetic trees, with corresponding pairwise
distance matrices D1 and D2, and d1 and d2 are lists with the depths of each leaf.
We embed D1 in the top-left block and D2 in the bottom-right block. Then the
distance between a leaf in the left tree and a leaf in the right tree is the sum
of their depths, plus 2 (the edges that join the roots of the subtrees).
The pairwise distance matrix is returned, together with a list of the depths of all
leaves.'''
n1, n2 = D1.shape[0], D2.shape[0]
D = np.zeros((n1+n2, n1+n2))
D[:n1,:n1], D[n1:,n1:] = D1, D2
for i in range(n1):

for j in range(n2):
D[i][n1 + j] = D[n1 + j][i] = d1[i] + d2[j] + 2

depth_list = d1 + d2
depth_list = [x+1 for x in depth_list]
return D, depth_list

def generate_matrices(n):
''' In this function, we start with a single leaf (cat(1)) and use recursion to
generate all possible pairwise distance matrices on n leaves.
We first used the other initializations (n=2,3,4) as well, but they were not necessary.
All possible matrices are returned, together with their depth lists.

Note that the output might contain duplicates, as trees with the same sub-tree on both
sides are counted twice. '''

if n == 1:
D, d = cat(1)
return [D], [d]

# if n == 2:
# D, d = cat(2)
# return [D], [d]
# if n == 3:
# D, d = cat(3)
# return [D], [d]
# if n == 4:
# D1, d1 = cat(4)
# D2, d2 = pbt(4)
# return list(zip(*[(D1, d1), (D2, d2)]))

all_matrices = []

for i in range(1,n//2+1):
left_matrices, left_depths = generate_matrices(i)
right_matrices, right_depths = generate_matrices(n-i)
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for left_matrix, left_depth in zip(left_matrices, left_depths):
for right_matrix, right_depth in zip(right_matrices, right_depths):

new_matrix, new_depth = pairwise_matrix_generator(left_matrix, left_depth,
right_matrix, right_depth)

all_matrices.append((new_matrix, new_depth))

matrices, depths = zip(*all_matrices)
return matrices, depths

n = int(input("Enter the number of leaves: ")) # Enter the desired number of leaves
for i in generate_matrices(n)[0]: # Loops over all pairwise distance matrices

print('Pairwise distance matrix is \n', i) # Prints the pairwise distance matrix
print('Corresponding spectrum: ', np.linalg.eigh(i)[0]) # Prints the corresponding spectrum
print('')

''' Before creating the generate_matrices function, we looked at trees on n <= 6 leaves
and figured out how they could be created using smaller trees (either perfectly balanced trees
or caterpillars. '''

# All possibilities for 4 leaves
cat4, dcat4 = cat(4)
pbt4, dpbt4 = pbt(4)

# All possibilities for 5 leaves
cat5, dcat5 = cat(5)
D5_1, d5_1 = pairwise_matrix_generator(pbt(2)[0], pbt(2)[1], cat(3)[0], cat(3)[1])
D5_2, d5_2 = pairwise_matrix_generator(pbt4, dpbt4, cat(1)[0], cat(1)[1])

# All possibilities for 6 leaves
cat6, dcat6 = cat(6)
D6_1, d6_1 = pairwise_matrix_generator(D5_1, d5_1, cat(1)[0], cat(1)[1])
D6_2, d6_2 = pairwise_matrix_generator(D5_2, d5_2, cat(1)[0], cat(1)[1])
D6_3, d6_3 = pairwise_matrix_generator(cat(3)[0], cat(3)[1], cat(3)[0], cat(3)[1])
D6_4, d6_4 = pairwise_matrix_generator(pbt(2)[0], pbt(2)[1], cat(4)[0], cat(4)[1])
D6_5, d6_5 = pairwise_matrix_generator(pbt(2)[0], pbt(2)[1], pbt(4)[0], pbt(4)[1])





C
Characteristic polynomials of n ×n

matrices

Here, the characteristic polynomial for a 3×3 matrix is given.

Let D(T ) =
[

0 d(l1,l2) d(l1,l3)
d(l2,l1) 0 d(l2,l3)
d(l3,l1) d(l3,l2) 0

]
. Then

det(D(T )−λI ) =
∣∣∣∣∣∣

−λ d(l1, l2) d(l1, l3)
d(l2, l1) −λ d(l2, l3)
d(l3, l1) d(l3, l2) −λ

∣∣∣∣∣∣=−λ
∣∣∣∣ −λ d(l2, l3)
d(l3, l2) −λ

∣∣∣∣−d(l1, l2)

∣∣∣∣d(l2, l1) d(l2, l3)
d(l3, l1) −λ

∣∣∣∣
+d(l1, l3)

∣∣∣∣d(l2, l1) −λ
d(l3, l1) d(l3, l2)

∣∣∣∣ .

Each 2×2 determinant can be computed using the formula given in Section 2.4.

Similarly, for a general n ×n matrix, let D(T ) be given by

D(T ) =


0 d(l1, l2) . . . d(l1, ln)

d(l2, l1) 0 . . . d(l2, ln)
...

...
. . .

...
d(ln , l1) d(ln , l2) . . . 0

 .

Then

det(D(T )−λI ) =

∣∣∣∣∣∣∣∣∣∣
−λ d(l1, l2) . . . d(l1, ln)

d(l2, l1) −λ . . . d(l2, ln)
...

...
. . .

...
d(ln , l1) d(ln , l2) . . . −λ

∣∣∣∣∣∣∣∣∣∣
=−λ

∣∣∣∣∣∣∣∣∣∣
−λ d(l2, l3) . . . d(l2, ln)

d(l3, l2) −λ . . . d(l3, ln)
...

...
. . .

...
d(ln , l2) d(ln , l3) . . . −λ

∣∣∣∣∣∣∣∣∣∣
−d(l1, l2)

∣∣∣∣∣∣∣∣∣∣
d(l2, l1) d(l2, l3) . . . d(l2, ln)
d(l3, l1) −λ . . . d(l3, ln)

...
...

. . .
...

d(ln , l1) d(ln , l3) . . . −λ

∣∣∣∣∣∣∣∣∣∣
+ . . .+ (−1)n+1d(l1, ln)

∣∣∣∣∣∣∣∣∣∣
d(l2, l1) −λ . . . d(l2, ln−1)
d(l3, l1) d(l3, l2) . . . d(l3, ln−1)

...
...

. . .
...

d(ln , l1) d(ln , l2) . . . d(ln , ln−1)

∣∣∣∣∣∣∣∣∣∣
,

Note that each determinant in the formula can again be computed using the same formula.
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