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We propose a scheme for generating and controlling entangled coherent states (ECSs) of magnons, i.e., the
quanta of the collective spin excitations in magnetic systems, or phonons in mechanical resonators. The proposed
hybrid circuit architecture comprises a superconducting transmon qubit coupled to a pair of magnonic yttrium
iron garnet spherical resonators or mechanical beam resonators via flux-mediated interactions. Specifically, the
coupling results from the magnetic/mechanical quantum fluctuations modulating the qubit inductor, formed by
a superconducting quantum interference device. We show that the resulting radiation-pressure interaction of
the qubit with each mode can be employed to generate maximally entangled states of magnons or phonons. In
addition, we numerically demonstrate a protocol for the preparation of magnonic and mechanical Bell states with
high fidelity including realistic dissipation mechanisms. Furthermore, we have devised a scheme for reading out
the prepared states using standard qubit control and resonator field displacements. In this paper, we demonstrate
an alternative platform for quantum information using ECSs in hybrid magnonic and mechanical quantum
networks.

DOI: 10.1103/PhysRevB.108.224416

I. INTRODUCTION

The development of quantum technologies aims toward
disruptive practical applications in several fields such as com-
puting, communication, and sensing by exploiting the effects
of quantum mechanics [1,2]. The success of this venture
largely relies on the evolution of hybrid quantum systems
that incorporate the advantages of different physical platforms
in a constructive way [3,4]. For example, circuit quantum
electrodynamics (QED), where light-matter interactions in
superconducting circuits are used to manipulate quantum
information, is one of the leading platforms in quantum
computing, combining strong nonlinearities with advanced
quantum control and readout as well as high coherence times
relative to qubit operations [5,6]. However, superconducting
circuits do not directly couple to optical photons, hindering
their integration with optical networks [3]. In this direction,
the development of hybrid circuit QED platforms based on
mechanical and magnetic systems is an essential requirement
toward networked quantum computation [4]. In addition, the
evolution of high-quality mechanical systems operating in
the quantum regime provides unique opportunities not only
in transduction but also in building quantum memories and
sensors [3,4,7]. Moreover, hybrid quantum systems based on
magnons, i.e., the quanta of the collective spin excitations
in magnetic materials, offer distinctive advantages, such as
unidirectional propagation and chiral coupling to phonons and
photons [8,9], making them prime candidates for technologi-
cal applications in quantum information sciences [10,11].

*marios.kounalakis@gmail.com

The ability to generate entanglement is at the heart of most
protocols in quantum information. For macroscopic mechan-
ical and magnonic resonators, which carry bosonic degrees
of freedom and typically operate in the linear regime, the
special class of entangled coherent states (ECSs) [12,13] is
of particular interest. Such states exhibit continuous-variable
entanglement between different bosonic modes and provide a
valuable resource for quantum teleportation [14,15], quantum
computation [16–18], and communication [19,20]. In addi-
tion, ECSs are useful for fundamental studies of quantum
mechanics with applications in quantum metrology [21,22]
and tests of collapse models [23,24].

Macroscopic entanglement between mechanical modes
has recently been achieved on aluminum drum resonators
[25,26] and micromechanical photonic/phononic crystal cav-
ities [27,28]; however, an experimental demonstration of
entanglement between metallic nanobeams such as the ones
studied in Refs. [29–31] is currently lacking. Furthermore,
while entanglement between atomic ensembles has been ex-
perimentally realized in an optical setup [32], entangling
magnons in two distant magnets remains a challenge. Au-
thors of recent theoretical proposals have investigated the
possibility of entangling magnons in two yttrium iron gar-
net (YIG) spheres interacting via photons in a microwave
cavity. More specifically, in Ref. [33], the emerging Kerr
nonlinearity in strongly driven magnons is used, relying on
driving the magnon modes far from equilibrium to create
entanglement. In Ref. [34], the nonlinearity stemming from
the parametric magnetorestrictive interaction is employed to
create magnon-magnon entanglement, although requiring a
much larger magnetorestrictive coupling strength than ex-
perimentally attainable [35]. Alternatively, two YIG spheres
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FIG. 1. Proposed hybrid circuit architecture. A flux-tunable
transmon qubit, formed by a C-shunted SQUID loop, is coupled to
(a) two nearby YIG spheres or (b) two SQUID-embedded mechani-
cal beams. The magnetization of both spheres in (a) is oriented by an
in-plane field Bz. The magnetic quantum fluctuations δ̂m modulate the
SQUID flux as well as the transmon inductive energy, thereby giving
rise to a qubit-magnon coupling. In (b), the coupling stems from the
mechanical quantum fluctuations δ̂x inducing a modulating flux in
the SQUID in the presence of the in-plane field Bz. An additional
flux bias �b can be externally applied to tune the qubit frequency
and modulate the coupling.

embedded in different cavities can be entangled by driving the
magnon-cavity system with strong squeezing fields [36,37] or
by using an additional qubit-cavity system to mediate the cou-
pling [38]. However, while the above schemes show promise
for creating magnon-magnon entanglement in distant YIG
spheres, the absence of a highly controllable nonlinear ele-
ment directly coupled to the magnons hinders the generation
and control of more complex states and ECSs, in particular.

Here, we propose a scheme for generating ECSs of
magnons/phonons in a hybrid circuit QED architecture
comprising a superconducting transmon qubit and two
magnonic/mechanical modes. Concerning magnonic sys-
tems, without loss of generality, we consider two YIG sphere
modes in a hybrid qubit-magnon setup like Ref. [39], where
the qubit-magnon coupling is mediated via a superconducting
quantum interference device (SQUID). We showcase a proto-
col for generating maximally entangled states such as Bell and
NOON states with high fidelity, by exploiting the parametric
nature of the qubit-magnon radiation-pressure interaction and
the transmon quantum control toolbox. Furthermore, we an-
alyze a readout scheme for verifying the entanglement in the
system based on qubit measurements and displacements of the
magnon field. Contrary to previous proposals for generating
magnon-magnon entanglement, there is no need to place the
YIG spheres inside a cavity, therefore, increasing scalability
and modularity. Furthermore, we numerically demonstrate the
validity of our proposal for entangling SQUID-embedded me-
chanical beam resonators [29–31,40,41], thereby extending
the possibilities for quantum control using mechanical ECSs.

II. HYBRID SYSTEM DESCRIPTION

The fundamental element in the proposed circuit architec-
ture is a dc SQUID, i.e., a superconducting loop interrupted by
two Josephson junctions, as schematically depicted in Fig. 1.
When shunted by a capacitance C, with charging energy
EC = 2e2/C, this nonlinear inductor can realize a flux-tunable

transmon qubit described by the Hamiltonian:

ĤT = 4ECN̂2 − EJ cos δ̂, (1)

where N̂ and δ̂ are conjugate operators describing the num-
ber of tunneling Cooper pairs and the superconducting phase
across the SQUID, respectively [42,43]. In the case where the
two junctions are the same (symmetric SQUID), an external
flux bias �b tunes the Josephson energy EJ = Emax

J | cos φb|,
where φb =̇ π�b/�0, and �0 is the flux quantum.

For magnetic systems, without loss of generality, we focus
our description on microsized YIG spheres like Refs. [39,44].
Upon application of an in-plane magnetic field Bz, a YIG
sphere acquires a magnetization Ms, and its excitations can
be approximated as a set of independent quantum harmonic
oscillators with Hamiltonian ĤM = h̄

∑
m ωmâ†

mâm, where a(†)
m

are bosonic operators describing the annihilation (creation) of
single magnons [45,46]. Note that this description is valid in
the limit 〈m̂†m̂〉 � NS , where NS is the total number of spins
in the sphere [45,46]. The fundamental excitation, or Kittel
mode, is a uniformly polarized state of all the spins acting as
a single macrospin precessing around z, with ferromagnetic
resonance (FMR) frequency ω0 = γ0(Bz + Bani ), where Bani is
the anisotropy field [47]. Higher-mode frequencies are given
by ωm = ω0 + γ0Ms

l−1
3(2l+1) depending on the magnon angular

momentum quantum number l [48].
The mechanical systems of interest in this paper consist of

SQUID-embedded aluminum beams [29,30,40,49]. Such me-
chanical beams are realized by suspending part of the SQUID
loop such that it can freely oscillate out of plane [29,30]. Like
the YIG sphere, its excitations can also be described by a set
of independent quantum harmonic oscillators, with Hamilto-
nian ĤX = h̄

∑
x ωxâ†

x âx, where a(†)
x are bosonic operators that

annihilate (create) a phonon. The fundamental mode, which
is the one considered in this paper, oscillates with frequency
ω0 = h̄/(2mx2

zpf ), where m is the beam mass and xzpf the
magnitude of its zero-point motion [29].

Upon application of an in-plane magnetic field Bz, the
quantum fluctuations in the out-of-plane displacement of
the beam δ̂x = xzpf (âx + â†

x ) induce a flux �(δ̂x ) = β0Bzl δ̂x

through the loop, where l is the beam length and β0 is a geo-
metric factor that depends on the mode shape [29]. Similarly,
quantum fluctuations of the magnetic moment in the magne-
tized YIG sphere, δ̂m = μzpf (âm + â†

m), result in an additional
flux �(δ̂m) through the SQUID loop. Let us assume that the
sphere is placed at an in-plane and out-of-plane distance d
from the closest point in the loop. Then in the far-field limit,
�(δ̂m) = μ0δ̂m/(4

√
2πd ) [39].

The additional flux from each source of quantum fluctu-
ation �(δ̂ j ) modulates the SQUID flux and consequently its
Josephson energy:

E ′
J (φb, δ̂ j ) � EJ

⎡⎣1 −
∑

j

φ(δ̂ j ) tan φb

⎤⎦, (2)

where we assume φ(δ̂ j ) =̇ π�(δ̂ j )/�0 � 1 and a symmetric
SQUID; for a full treatment including finite junction
asymmetry, see Refs. [39,40]. Replacing EJ with E ′

J in Eq. (1)
and expressing the transmon operators in terms of annihilation
(creation) operators ĉ(†), i.e., N̂ = i[EJ/(32EC )]1/4(ĉ† − ĉ),
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δ̂ = [2EC/EJ ]1/4(ĉ + ĉ†) [43], yields the total system
Hamiltonian:

Ĥ = Ĥq + h̄
∑

j

[ω j â
†
j â j − g j ĉ

†ĉ(â j + â†
j )], (3)

where Ĥq = h̄ωqĉ†ĉ − EC
2 ĉ†ĉ†ĉĉ, is the bare transmon Hamil-

tonian (valid for EJ � EC), with qubit frequency ωq =
(
√

8EJEC − EC )/h̄ [42].
The last term in Eq. (3) describes the radiation-pressure

interaction between the qubit and each bosonic mode, with
coupling strength:

g j = ∂ωq

∂φ j
φ

zpf
j , (4)

where φ
zpf
j is the magnitude of the flux fluctuations in-

duced by either the beam or the magnet, given by φ
zpf
x =

πβ0Bzlxzpf/�0 and φ
zpf
m = μ0μzpf/(4

√
2d�0), respectively.

In the case of a symmetric SQUID, the transmon frequency
sensitivity to flux changes is

∂ωq

∂φ j
= ωp

2

sin φb√
cos φb

, (5)

where ωp = √
8Emax

J EC/h̄ is the Josephson plasma frequency
at φb = 2πk (k ∈ Z). The behavior of the coupling strength
as a function of the SQUID asymmetry and φb is studied in
detail in Ref. [39].

III. ECS GENERATION

The system Hamiltonian in Eq. (3) describes a qubit
interacting with a set of bosonic modes via bipartite radiation-
pressure interactions. However, in the absence of additional
driving, these radiation-pressure couplings lead to interesting
dynamics only in the ultrastrong coupling regime gj � ω j

[40,50,51]. Typically, mechanical beam resonators have fre-
quencies of a few megahertz [29,30], and operating magnon
frequencies are >100 MHz [45,46], whereas g j � 10 MHz
[39,40]. Therefore, while the ultrastrong coupling condition
seems promising for optomechanical setups [40], it is far
from realistic for magnonic devices. On the other hand, when
external driving is introduced to the system, the radiation-
pressure interaction can be activated even for gj < ω j , e.g.,
by a stroboscopic application of short π qubit pulses [52] or
by modulating the coupling [39,53].

Here, without loss of generality, we consider the case
g j � ω j and assume that the radiation-pressure interaction
is activated by applying a weak flux modulation through the
SQUID loop as in Ref. [39]. In this scheme, the qubit operates
around the transmon sweetspot, i.e., φb � 0, and an applied
ac flux with amplitude φac at frequency ωac modulates the
flux φb = φac cos (ωact − θ ) � 1, resulting in a modulated
coupling strength g j (t ) = ωp

2 φ
zpf
j φac cos (ωact − θ ), where θ

is a constant phase. Note that the coupling gets stronger with
increasing the amplitude φac; however, one needs to ensure
that φac � 1 such that the first-order expansion in Eq. (5)
is valid. We, therefore, choose φac = π/10 to satisfy this
requirement, like Ref. [39]. In the frame rotating at ωac, the

transformed Hamiltonian reads

ˆ̃H = Ĥq + h̄
∑

j

[
� j â

†
j â j − g̃ j ĉ

†ĉ
(
â je

iθ + â†
j e

−iθ
)]

, (6)

where g̃ j = ωp

4 φ
zpf
j φac, � j = ω j − ωac, and we have omitted

fast-rotating terms ĉ†ĉâ(†)
j exp[±i(ω j + ωac)t], which do not

contribute to the dynamics since g̃i � (ω j + ωac).
We now describe a simple protocol for generating ECSs

that are maximally entangled using the Hamiltonian in Eq. (6).
Let us assume there are N bosonic modes interacting with
the qubit via bipartite radiation-pressure couplings. First, a
microwave pulse prepares the qubit in a superposition state
|χ〉q =̇ (|0q〉 + eiχ |1q〉)/

√
2. The next step is to activate the

bipartite interaction of the qubit with each mode. In the
simple case where all the modes we want to entangle have
the same frequency ω j , then by turning on the flux modu-
lation, i.e., setting ωac = ω j , for a variable duration τ j , the
system evolves into a hybrid generalized Greenberger-Horne-
Zeilinger (GHZ) state:

|ψ〉GHZ = 1

N
(|0q01 · · · 0N 〉 + eiχ |1qα1 · · · αN 〉), (7)

where |α j〉 denotes a coherent state with complex phase space
amplitude α j = −ĩg jτ j . For |α j | � 4, the normalization factor
is N � √

2 [54]. Note that, if there are M modes with different
frequencies, then the flux modulation should be activated M
times to prepare the state in Eq. (7).

Applying a qubit pulse Rŷ, π
2

followed by a strong projec-
tive measurement collapses the qubit in its ground or excited
state and projects the bosonic system into 1

N±
(|0102 · · · 0N 〉 ±

eiχ |α1α2 · · ·αN 〉), where the + or − state results from measur-
ing the qubit in |0q〉 or |1q〉, respectively. For the case of two
bosonic modes with g̃1,2, τ1,2 chosen such that α1 = α2 = α

and χ = 0, the prepared state corresponds to the maximally
entangled Bell state:

| ± �Bell〉 = 1

N±
(|00〉 ± |αα〉), (8)

where N± = √
2[1 ± exp(−|α|2)] � √

2 for |α| � 4 [55]. Al-
ternatively, in the case of different frequency modes ω1 
= ω2,
a maximally entangled NOON state of the form

| ± �NOON〉 = 1

N±
(|0α〉 ± |α0〉) (9)

can be obtained by performing a π pulse to flip the qubit state
right after turning on the first interaction and before the second
one. The protocol would then require the following steps: (a)
start modulating at ωac = ω1, (b) turn off the interaction after
time τ1, (c) apply π qubit pulse, and (d) switch on the second
flux modulation with ωac = ω2 for time τ2 = τ1̃g1/̃g2.

Additionally, more general ECSs of the form

|�〉ij = c00|0i0 j〉 + c1α|0iα j〉 + cα0|αi0 j〉 + cαα|αiα j〉,
(10)

with cα0, c0α 
= 0, may also be generated using appropriately
adjusted protocols. For example, starting from |ψ〉qij = |(0q +
1q)0i0 j〉, then turning on the interaction with mode i for
time τi such that |α| ≡ |̃giτi| � 4, and applying a Rŷ π

2
qubit
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pulse results in the state |ψ〉qij = 1
2 [|0q0i0 j〉 + |0qαi0 j〉 +

|1q0i0 j〉 − |1qαi0 j〉]. If we subsequently turn on the interac-
tion with mode j (for time τ j = α/̃g j) and apply another
Rŷ π

2
qubit pulse, the resulting state is |ψ〉qij = 1√

2
(|0〉q|�〉+ij +

|1〉q|�〉−ij ), where

|�〉±ij = 1

2
(|0i0 j〉 + |0iα j〉 ± |αi0 j〉 ∓ |αiα j〉). (11)

Finally, a strong measurement collapses the qubit in |0〉q or
|1〉q, projecting the system in the maximally entangled two-
mode state |�〉+ij or |�〉−ij , respectively.

IV. NUMERICAL MODELING AND BENCHMARKING

We benchmark the protocol described above for gener-
ating the Bell state | + �Bell〉 against realistic experimental
conditions including dissipation using the quantum statistical
Lindblad master equation [56]:

ρ̇ = i

h̄
[ρ, ˆ̃H ] +

∑
j

ω j

Q j
(nth

j L[â†
j ]ρ + (nth + 1)L[â j]ρ)

+ 1

T1
L[ĉ]ρ + 1

T2
L[ĉ†ĉ]ρ, (12)

where Qj is the quality factor of each resonator, L[ô]ρ =
(2ôρô† − ô†ôρ − ρô†ô)/2 are superoperators describing each
bare dissipation channel and nth

j = 1/{exp[h̄ω j/(kBT )] − 1}
is the number of thermally excited magnons/phonons at tem-
perature T . Here, T1 and T2 are the qubit relaxation and
dephasing times, respectively, for which we pick a realistic
value of 50 µs throughout our simulations [6]. Of note, the
in-plane magnetic field that is required to enable the qubit
coupling to the magnonic or the mechanical resonator Bz ∼
10–50 mT [39,40] is not expected to limit the qubit perfor-
mance [57]. In addition, while the transmon is effectively a
qubit, it is more accurately described as a three-level system
with negative anharmonicity given by ∼ − EC . We therefore
model it as such choosing a typical value of EC/h = 300 MHz
[6,42].

We first study the case, schematically depicted in Fig. 1(a),
of two YIG spheres placed diametrically opposite with re-
spect to the center of the SQUID. For simplicity, we assume
two identical spheres and Kittel modes with the same fre-
quency ω1,2/(2π ) = 1 GHz as well as coupling to the qubit
g̃1,2/(2π ) = 2 MHz and study the performance of the pro-
tocol proposed above as a function of the resonator quality
factor Qm at T = 10 mK (nth

1,2 � 0.01). For typical values of
the Gilbert damping constant αG, we expect Qm = 1/αG ∼
103–105 [46,58,59].

In Fig. 2(a), we plot the evolution of the magnon num-
ber in either mode j and compare it with the ideal case,
i.e., without dissipation, where 〈â†

j â j〉(t ) = |̃gmt |2/2. In ad-
dition, in Fig. 2(b), we plot the Wigner quasiprobability
distribution at t = 0.24 µs for Qm = 105, which is defined as
W (α j ) = 2/πTr{D†(α j )ρ jD(α j ) exp(iπ â†

j â j )}, where ρ j ≡
Tri[ρi j] is the reduced density matrix of mode j and
D(α j ) = exp(αâ†

j − α∗â j ) is the displacement operator acting
on this mode. The two-mode density matrix ρi j is ob-
tained after projecting on |+q〉 and tracing out the qubit,

(a) (b)

(c) (d)

FIG. 2. Bell state benchmarking for the case of two Kittel modes
in two identical YIG spheres, as schematically shown in Fig. 1(a).
(a) Magnon number in each magnonic mode, as a function of time
during the protocol, shown for different resonator quality factors.
(b) Wigner function of the individual magnonic state in one mode,
after tracing out the other mode, at the end of the protocol for
Qm = 105. The fidelity of the prepared state to the ideal Bell state
| + �Bell〉 is shown as a function of time in (c) and as a function of
the magnon number in (d). System parameters: ω1,2/(2π ) = 1 GHz,
g̃1,2/(2π ) = 2 MHz, T1 = T2 = 50 µs, T = 10 mK.

i.e., ρi j ≡ Trq[ρ|+q〉〈+q|]. We note that, since we have two
identical modes, the magnon number evolution as well as
the reduced-state Wigner functions are the same for both.
Furthermore, Figs. 2(c) and 2(d) show the fidelity F =√〈+�Bell|ρ12| + �Bell〉 [56,60] of the prepared two-mode
state to the ideal Bell state, as a function of time and magnon
number, respectively. Evidently, for realistic values of the
magnonic quality factors Qm � 104 [41,58,59], the desired
Bell state can be prepared with high-fidelity F � 90%.

To showcase the evolution of the bipartite entanglement
during the protocol, in Fig. 3(a), we plot the logarithmic neg-
ativity EN = log2[2N (ρ12) + 1], where N (ρ12) is the sum of
negative eigenvalues of the partial transpose of the two-mode
density matrix ρ12 [61]. The dashed-dotted curve shows the
logarithmic negativity evolution in the ideal case EN (t ) =
log2{2/[exp(−|̃g jt |2) + 1]} [62]. For |α| ≡ |̃g jt | � 2, it ap-
proaches the ideal value of Emax

N = 1, where the two modes
are maximally entangled, before magnon dissipation eventu-
ally takes over and the entanglement gets lost.

Furthermore, in Fig. 3(b), we plot the conditional quantum
entropy S(m1|m2) = S(ρ12) − S(ρ2) [63,64], where S(ρi j )
and S(ρ j ) are the Von Neumann entropies of the joint and re-
duced state, respectively, with S(ρ) = −Tr[ρ ln ρ]. Negative
conditional quantum entropy serves as a sufficient criterion
for the quantum state to be entangled and provides a measure
of the degree of coherent quantum communication between
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(a) (b)

FIG. 3. (a) Logarithmic negativity and (b) conditional quantum
entropy as a function of the magnon number for the magnon-magnon
system described in Fig. 2. In the absence of dissipation (dashed-
dotted curves), an ideal Bell state is created for magnon numbers
〈â†

j â j〉 > 2 with EN → 1 and S(m1|m2) → − ln 2.

the two entangled modes [63,64]. For maximally entangled
Bell states, we have S(ρi j ) = 0 and S(ρ j ) = ln 2. Therefore,
in the limit of large magnon numbers, we expect S(m1|m2) →
− ln 2, as illustrated by the dashed-dotted curve plotting the
ideal (dissipationless) case. However, as the entanglement
starts decreasing due to magnon dissipation, the joint entropy
of the system becomes positive and both S(ρi j ) and S(ρi ) start
increasing. Therefore, as expected, the positive value thresh-
old for S(m1|m2) is surpassed faster and at lower magnon
numbers as the quality factors get smaller. Note that, initially,
S(m1|m2) > 0 because the modes start in a thermal state with
nth � 0.01.

The protocol described above can also be applied to en-
tangle mechanical beam resonators embedded in the SQUID
loop, as depicted in Fig. 1(b). These can be realized using
carbon nanotubes [41] or aluminum-based mechanical beams
[29–31,40] interacting via radiation-pressure couplings with
the transmon. The former have operating frequencies and
quality factors like the magnonic case studied above; there-
fore, the results in Figs. 2 and 3 are applicable as well. On the
other hand, mechanical beam resonators made of aluminum
typically operate in the range 1–10 MHz, with quality factors
Qx � 105 [29–31].

Therefore, in conjunction with the magnonic case, we
numerically test the same protocol for creating mechanical
Bell states between two SQUID-embedded aluminum beam
resonator modes [30], with the same frequency ω1,2/(2π ) =
10 MHz and coupling to the qubit g̃1,2/(2π ) = 100 kHz. Typ-
ical temperatures of T ∼ 10 mK correspond to high thermal
population at these frequencies; however, cooling schemes
can reduce the number of thermal phonons to �0.1 [40,41].
We therefore assume an attainable initial thermal population
nth

1,2 = 0.1 and an operating temperature of T = 10 mK.
In Figs. 4(a) and 4(b), we plot the Bell-state fidelity and

the logarithmic negativity, respectively, as a function of the
phonon number during the protocol for quality factors in the
range Qx = 105–107. Note that, initially, the fidelity is <1 due
to the finite thermal population in both resonators; however,
as the protocol evolves, it starts increasing before phonon
dissipation takes over. We find that, for realistic quality
factors Qx � 106, high phonon number Bell states can be pre-
pared with high fidelity and sufficiently high entanglement as

(a) (b) (c)

FIG. 4. (a) Bell state fidelity, (b) logarithmic negativity, and
(c) conditional quantum entropy as a function of the phonon number
for the case of two SQUID-embedded mechanical nanobeams inter-
acting via the transmon. System parameters: ω1,2/(2π ) = 10 MHz,
g̃1,2/(2π ) = 100 kHz, T1 = T2 = 50 µs, T = 10 mK, initial nth

1,2 =
0.1.

quantified by EN . However, as shown in Fig. 4(c), the effects
of the initial thermal population seem to be detrimental to the
conditional quantum entropy S(x1|x2) which remains far from
the ideal limit during the whole protocol and only reaches
negative values for Qj ∼ 106. On the other hand, the imple-
mentation of passive cooling techniques, leading to operating
temperatures <1 mK [65], could dramatically improve the
entanglement in the system.

Experimental verification of the prepared states can be
obtained by performing state tomography. For example, in
the case of mechanical resonators, by sideband driving on
the qubit, one may engineer beam-splitter and two-mode
squeezing interactions that can be used to detect correla-
tions of the entangled state like Ref. [26]. This method may
also be applied to the magnonic resonators, for which in-
dependent state tomography techniques exist as well [66].
However, strong driving may severely impact the qubit state
[67], limiting the success of such protocols. For this reason,
we have also analyzed an alternative scheme for reading out
the entangled states, presented in the Appendix, which relies
solely on switching on/off the interaction and performing
magnon/phonon displacements and qubit measurements.

V. CONCLUSIONS

In summary, we have proposed a scheme for generating
ECSs of magnons/phonons in a hybrid circuit QED archi-
tecture comprising a superconducting transmon qubit coupled
to different magnonic/mechanical modes via bipartite flux-
mediated interactions. We have highlighted several schemes
for creating maximally entangled states, and as a proof-of-
principle demonstration, we have numerically tested a simple
protocol for generating magnonic and mechanical Bell states
under realistic experimental conditions. We show that high-
fidelity Bell states can be prepared in the presence of typical
dissipation mechanisms in the system. Furthermore, in the
Appendix, we have analyzed a readout scheme, using standard
circuit operations, that can be used as an alternative to existing
tomography methods for verifying the prepared states. Our
results pave the way toward creating controllable quantum
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networks of entangled magnons in a flexible and scalable
platform without relying on microwave three-dimensional
cavities or strong driving. Although for simplicity we have
considered identical YIG spheres, our results are also appli-
cable to nonidentical modes and other geometries such as
microdisk resonators [68]. Finally, as we demonstrate numer-
ically, the proposed scheme for creating and controlling ECSs
is also applicable to SQUID-embedded mechanical beam res-
onators, opening up opportunities for quantum information
tasks in this platform and potentially giving rise to magnonic-
mechanical hybrid devices.
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APPENDIX: READOUT SCHEME

We now describe a method for reading out the two-
mode ECSs discussed in the main text, using only qubit

measurements and displacement operations on the bosonic
modes. We start with the assumption that the most general
state one can prepare with the system Hamiltonian in Eq. (6)
is of the following form:

|�〉ij = c0 exp(iθ0)|0i0 j〉 + c1 exp(iθ1)|0iα j〉
+ c2 exp(iθ2)|αi0 j〉 + c3 exp(iθ3)|αiα j〉, (A1)

where c j are real positive numbers and
∑3

j=0 c2
j = 1.

Our assumption is based on the fact that the engineered
radiation-pressure interaction in Eq. (6) can only lead to
magnon/phonon displacements when the qubit is in the ex-
cited state; therefore, for the protocols described in the main
text, where the interaction is activated at least once for each
bosonic mode, Eq. (A1) describes the mode general state
one can prepare. In addition, single-photon losses acting on
coherent states result in a coherent state of smaller amplitude;
therefore, this decay channel does not alter the form of the
state described in Eq. (A1).

Assuming the state in Eq. (A1) has been prepared, we start
the readout protocol by preparing the qubit in a general super-
position state |φ〉q = (|0〉q + eiφ |1〉q)/

√
2. After switching on

both interactions, the system wave function evolves as

U (i)
int U

( j)
int |φ〉q|�〉ij = 1√

2
{|0〉q[c0 exp(iθ0)|0i0 j〉 + c1 exp(iθ1)|0iα j〉 + c2 exp(iθ2)|αi0 j〉 + c3 exp(iθ3)|αiα j〉]

+|1〉q exp[i(φ + φ̄)][c0 exp(iθ0)|βiβ j〉 + c1 exp(iθ1 + γ j )|βi(α + β ) j〉
+c2 exp(iθ2 + γi )|(α + β )iβ j〉 + c3 exp(iθ3 + γi + γ j )|(α + β )i(α + β ) j〉]}, (A2)

where U ( j)
int = exp ĩg j ĉ†ĉ(â jeiθ + â†

j e
−iθ )t .

The displacement amplitudes and corresponding geometric phases, which arise from the radiation-pressure interactions, are
given by βi,j =̇ β(ti,j ) = (gi,j/ωi,j ) [exp(iωi,jti,j ) − 1] and φ̄ =̇ φ̄(ti,j ) = (gi,j/ωi,j )2 [ωi,jti,j − sin (ωi,jti,j )] [39,69]. For simplifica-
tion purposes, we have assumed that the latter are equal, and since φ is arbitrarily determined at the qubit preparation stage,
they can be absorbed into a redefinition of φ → φ̄ + φ. The phases γi,j = Im(α∗βi,j ) arise from the fact that, in general, two
consecutive displacements do not commute.

The above state can also be written as

|ψ〉qij = 1

2
(|+〉q|�+〉ij + |−〉q|�−〉ij ), (A3)

where |±〉 = (|0〉 ± |1〉)/
√

2 are the eigenstates of the Pauli σ̂x operator, and

|�±〉ij = c0 exp(iθ0)|0i0 j〉 + c1 exp(iθ1)|0iα j〉 + c2 exp(iθ2)|αi0 j〉 + c3 exp(iθ3)|αiα j〉 ± [c0 exp(iθ0 + φ)|βiβ j〉
+c1 exp(iθ1 + φ + γ )|βi(α + β ) j〉 + c2 exp(iθ2 + φ + γ )|(α + β )iβ j〉 + c3 exp(iθ3 + φ + 2γ )|(α + β )i(α + β ) j〉].

(A4)

The expectation value of the qubit in the |±〉 basis is then given by

〈σ̂x〉β,β = 1

4
(|〈�+

ij|�+
ij〉|2 − |〈�−

ij|�−
ij〉|2). (A5)

We now consider several cases for each displacement:
(I) First, assuming the coupling strength and interaction times for both resonators are chosen such that βi,j = αi,j, we have

(γi,j = 0)

|�±〉ij = c0 exp(iθ0)|0i0 j〉 + c1 exp(iθ1)|0iα j〉 + c2 exp(iθ2)|αi0 j〉 + [c3 exp(iθ3) ± c0 exp(iθ0 + φ)]|αiα j〉
±c1 exp(iθ1 + φ)|αi(2α) j〉 ± c2 exp(iθ2 + φ)|(2α)iα j〉 ± c3 exp(iθ3 + φ)|(2α)i(2α) j〉. (A6)
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From Eq. (A5), we obtain

〈σ̂x〉α,α = |c3 exp(iθ3) + c0 exp(iθ0 + φ)|2 − |c3 exp(iθ3) − c0 exp(iθ0 + φ)|2 = c0c3 cos (φ + θ0 − θ3). (A7)

Additionally, for βi,j = −αi,j, it can be shown that

〈σ̂x〉−α,−α = c0c3 cos (φ + θ3 − θ0). (A8)

(II) For the case βi = αi, β j = −α j , using Eqs. (A4) and
(A5), it follows that

〈σ̂x〉α,−α = c1c2 cos (φ + θ1 − θ2). (A9)

Similarly, for βi = −αi, β j = α j , we obtain

〈σ̂x〉−α,α = c1c2 cos (φ + θ2 − θ1). (A10)

(III) For the cases βi = αi, β j = 0 and βi = −αi, β j = 0,
we have

〈σ̂x〉α,0 = c0c2 cos (φ + θ0 − θ2) + c1c3 cos (φ + θ1 − θ3),

(A11)

and

〈σ̂x〉−α,0 = c0c2 cos (φ + θ2 − θ0) + c1c3 cos (φ + θ3 − θ1),

(A12)

respectively.
(IV) For βi = 0, β j = αi and βi = 0, β j = −αi, we find

two more equations:

〈σ̂x〉0,α = c0c1 cos (φ + θ0 − θ1) + c2c3 cos (φ + θ2 − θ3),

(A13)

and

〈σ̂x〉0,−α = c0c1 cos (φ + θ1 − θ0) + c2c3 cos (φ + θ3 − θ2).

(A14)

Finally, for βi,j = 0, we obtain the following relation:

〈σ̂x〉0,0 = (
c2

0 + c2
1 + c2

2 + c2
3

)
cos φ, (A15)

which is equivalent to the normalization condition for |�〉ij

with the additional degree of freedom φ.
The above equations are not yet in a form where they can

be used to obtain all pairs of ci, θi straightforwardly. How-
ever, they can be combined and further simplified using basic
trigonometric relations as shown below:

(i) First, adding and subtracting Eqs. (A7) and (A8), we
obtain

〈σ̂x〉α,α + 〈σ̂x〉−α,−α = 2c0c3 cos φ cos (θ3 − θ0), (A16)

and

〈σ̂x〉α,α − 〈σ̂x〉−α,−α = 2c0c3 sin φ sin (θ3 − θ0). (A17)

If the qubit is prepared such that φ = π/4, then by combining
the above two equations, we obtain a relation for c0, c3 that
does not depend on θ0, θ3:

c0c3 =
√

|〈σ̂x〉α,α|2 + |〈σ̂x〉−α,−α|2. (A18)

If c0c3 
= 0, we can also determine the phases. First, exp(iθ0)
in Eq. (A1) can be absorbed into a global phase factor mul-
tiplying |�〉ij followed by a redefinition of θ1,2,3 → θ1,2,3/θ0

(equivalent to defining θ0 = 0 or 2π ). Then for φ = π/4, we
have

θ3 = arctan

( 〈σ̂x〉α,α − 〈σ̂x〉−α,−α

〈σ̂x〉α,α + 〈σ̂x〉−α,−α

)
. (A19)

(ii) Following the same recipe, we can obtain similar
relations for c1, c2 and θ1, θ2. In this case, by combining
Eqs. (A9) and (A10) for φ = π/4, we obtain the following
equations:

c1c2 =
√

|〈σ̂x〉α,−α|2 + |〈σ̂x〉−α,α|2, (A20)

and (assuming c1c2 
= 0):

θ2 − θ1 = arctan

( 〈σ̂x〉α,−α − 〈σ̂x〉−α,α

〈σ̂x〉α,−α + 〈σ̂x〉−α,α

)
. (A21)

(iii) Furthermore, from Eqs. (A11) and (A12), we obtain
(for φ = π/4)

(〈σ̂x〉α,0 + 〈σ̂x〉−α,0)2 ± (〈σ̂x〉α,0 − 〈σ̂x〉−α,0)2

= 2[(c0c2)2 + (c1c3)2 + 2c0c1c2c3 cos (θ2 ± θ1 ∓ θ3)].
(A22)

Using Eqs. (A18)–(A21), we can obtain a relation for
c0, c1, c2, c3 with no dependence on the phases:

(c0c2)2 + (c1c3)2 = f (〈σ̂x〉α,0, 〈σ̂x〉−α,0, 〈σ̂x〉α,α, 〈σ̂x〉−α,−α, 〈σ̂x〉α,−α, 〈σ̂x〉−α,α )

= 2〈σ̂x〉α,0〈σ̂x〉−α,0

− 2

{√
(|〈σ̂x〉α,α|2 + |〈σ̂x〉−α,−α|2)(|〈σ̂x〉α,−α|2 + |〈σ̂x〉−α,α|2)

× cos

[
arctan

( 〈σ̂x〉α,α − 〈σ̂x〉−α,−α

〈σ̂x〉α,α + 〈σ̂x〉−α,−α

)
+ arctan

( 〈σ̂x〉α,−α − 〈σ̂x〉−α,α

〈σ̂x〉α,−α + 〈σ̂x〉−α,α

)]}
. (A23)
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(iv) Similarly, from Eqs. (A13) and (A14), we obtain (for φ = π/4)

(〈σ̂x〉0,α + 〈σ̂x〉0,−α )2 ± (〈σ̂x〉0,α − 〈σ̂x〉0,−α )2 = 2
[
(c0c1)2 + (c2c3)2 + 2c0c1c2c3 cos (θ1 ± θ2 ∓ θ3)

]
. (A24)

Again, using Eqs. (A18)–(A21), we can obtain another relation for c0, c1, c2, c3 with no dependence on the phases:

(c0c1)2 + (c2c3)2 = g(〈σ̂x〉0,α, 〈σ̂x〉0,−α, 〈σ̂x〉α,α, 〈σ̂x〉−α,−α, 〈σ̂x〉α,−α, 〈σ̂x〉−α,α )

= 2〈σ̂x〉0,α〈σ̂x〉0,−α

−2

{√
(|〈σ̂x〉α,α|2 + |〈σ̂x〉−α,−α|2)(|〈σ̂x〉α,−α|2 + |〈σ̂x〉−α,α|2)

× cos

[
arctan

( 〈σ̂x〉α,α − 〈σ̂x〉−α,−α

〈σ̂x〉α,α + 〈σ̂x〉−α,−α

)
− arctan

( 〈σ̂x〉α,−α − 〈σ̂x〉−α,α

〈σ̂x〉α,−α + 〈σ̂x〉−α,α

)]}
. (A25)

In our case, we are interested in reading out the Bell state:

|�〉ij = 1√
N

(|0i0 j〉 + eiθ |αiα j〉
)
, (A26)

i.e., the state in Eq. (A1) with θ3 = θ , c0 = c3 = 1√
N

, and
c1 = c2 = 0. Let us assume that we have prepared the gen-
eral state in Eq. (A1). First, we can measure 〈σ̂x〉α,α and
〈σ̂x〉−α,−α and, from Eq. (A18), determine c0c3. If we have
indeed prepared the target state shown in Eq. (A26), then this
product should be nonzero. Then we proceed by measuring
〈σ̂x〉α,−α and 〈σ̂x〉−α,α , which should both be zero, indicating

that either c1 = 0 or c2 = 0 according to Eq. (A20). Addition-
ally, Eqs. (A23) and (A25) should equate to zero, indicating
c1 = c2 = 0. Finally, combining Eqs. (A15) and (A18), we
have

(c0 − c3)2 =
√

2〈σ̂x〉0,0 − 2
√

|〈σ̂x〉α,α|2 + |〈σ̂x〉−α,−α|2.
(A27)

If indeed the state in Eq. (A26) is prepared, then we should
find that 〈σ̂x〉0,0 = √

2(|〈σ̂x〉α,α|2 + |〈σ̂x〉−α,−α|2), and there-
fore, c0 = c3 = (|〈σ̂x〉α,α|2 + |〈σ̂x〉−α,−α|2)1/4 = 2−1/4〈σ̂x〉0,0.
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