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ABSTRACT

A novel formulation of the nexus between instantaneous volumetric reconstruction and velocity retrieval with respect to Tomographic
PIV context is presented. In the first part of this paper we relate to the state-of-the-art paradigm and introduce a sequential estimation
approach which computes velocity fields out of consecutive 3D intensity volumetric distributions. The latter are solutions of `1-minimization
problems which are solved by basis pursuit algorithms. We then express the velocity estimation in a computer vision framework,
as a scene flow computation problem. In the second part of the paper we formulate an innovative penalty criterion as an intensity
conservation function with respect to both the fluid trajectory and the static volumetric intensity distributions, which allows us to
coherently optimize the 3D intensity consecutive topologies and their related flow field with regard to their shared structure. The
performance is assessed comparing the results from both sequential and joint models with respect to a synthetic tomographic imaging
system.

1. Introduction

Our research is motivated by [8], where the authors introduce the Tomographic Particle Image Velocimetry (TomoPIV) measurement
technique. Their work set the grounds for the estimation of tridimensional (3D) motion fields of lightly seeded particles in a turbulent
fluid from the images captured by a finite number of cameras disposed around the illuminated volume. The challenge is to accurately
reconstruct the 3D intensity distribution of a sufficiently large number of seeded particles and their respective velocity fields.

Within the computer vision community, the dense 3D vector field representation of the real scene motion is called the scene flow, as the
term was first coined in [17] by an analogy with optical flow. The authors proposed a sequential procedure for its estimation based on
the optical flow previously measured in a multiple camera system. However, merging optical flows observed from different viewpoints
increases the ambiguities on the sought displacement vector and does not take into account the spatial and temporal dependencies in the
images sequence. Recently, procedures oriented towards a joint reconstruction of the structure and of the motion have emerged. The
common approach is based on minimizing a global functional which has typically two main terms: (i) the data term, which englobes
a photometric constraint with respect to the scene motion; (ii) the spatial term, which stands for regularizations enforcing known
information on the structure of the scene.

The are numerous constraint formulations depending on each application. Valgaerts et al. simultaneously compute scene flow and
stereo structure provided that only the camera intrinsics are known [16]. Devernay et al. compute a sparse scene flow by tracking
3D points or surface elements [7]. In [3] the scene flow is regularized using total variation, and in [13] depth sensor is introduces to
provide constraints on the motion field. In a nutshell, 3D velocity fields are either computed sequentially from an estimation of the
scene structure, or based on a model that connects the static and the dynamic information.

The same two reconstruction patterns are identified between the methods used for the retrieval of the scene flow for the TomoPIV
application. Elsinga et al. [8] sequentially estimate the 3D density functions of the scene at two consecutive frames in the video
sequence, then compute the the displacement vector between them by means of cross-correlation [14]. Other sequential approaches
exploit the information contained by the previously estimated optical flow [5, 15]. Recently, Novara et al. presented an enhancement to
the classical procedure. The latter models the joint structure of the scene flow and of density function and integrates it to the classical
scheme as a first guess for reconstruction algorithm.

Motivated by the advancement in the computer vision field and the TomoPIV community, we propose alternative procedures to both
sequential and joint approaches. To this end, we focus on formulating the optimization problems by taking in regard the physical
anatomy of the scene.

The paper is organized as follows. In Section 2 we introduce the mathematical abstraction of the tomographic application. In Section 3
present our alternative to current sequential estimation approach, whereas in Section 4 we introduce a formulation which accounts for
the nexus between structure and motion. We conclude with a discussion of qualitative results in Section 5.



2. Adopted Model

Let us formulate a mathematical abstraction of the scenario outlined in section 1. For doing so, we first describe the physical continuos
signal and relate it to available observations. Then, we present a model for discretizing the 3D space and its simultaneous projection on
the 2D planes.

2.1 Continuous frame
We denote by wt(k) the density function at time t and position k = [kx,ky,kz]T ∈ R3 of a passive tracer suspended in the flow. We
assume that the density of the passive tracer can be represented as a sum of blurred spheres in the space. Consequently, the 3D intensity
function can be approximated by a sum of weighted gaussians which account for their evanescent energetic behavior:

wt(k) =
M

∑
j=1

v jg j(k),∀k ∈ R3,v j ∈ R+, (1)

with:

g j(k) = exp
{
−
‖k−m j‖2

2σ2

}
1{‖k−m j‖< ε},∀m j ∈ R3,ε,σ2 ∈ R+

where σ2 is a variance scalar indicating the dispersion from the central tendency parameter located at m j with j = 1, ...,M, where M is
the total number of seeded particles, v j are ponderation weights and 1{·} the indicator function which takes 1 if the condition between
brackets is respected and 0 otherwise.

The tracer will follow the movements of the fluid and will, consequently, be governed by a displacement function. In fact, we denote
by u(k) the displacement at time t +1 of a tracer located at position k ∈ R3 at time t. We assume that the density function is invariant
along the particle’s trajectory. The density constancy over the volume of interest writes:

wt+1(k+u(k)) = wt(k),∀k ∈ R3. (2)

The 3D signal simultaneously projects onto the 2D planes of the cameras. Each pixel entry i from images at time t represents the
integration of the 3D light intensity distribution along the cone of view Ωi originating in the optical center of the camera and passing
through the surface of the pixel, as follows:

yi,t ≈
∫

Ωi

w(k)dk,∀i, t. (3)

2.2 Digitized frame
We discretize the 3D space visualized by the cameras as a regular polyhedron V ⊂ R3. The latter is defined as a cartesian grid made
out of m cubic volumetric elements (voxels) ζ j ⊂ R3 centered on k j, j ∈ Γ = {1, ...,m}. We assumed that the density function over V
at time t can be approximated by a piece-wise polynomial function, that is:

xt(k) = ∑
j∈Γ

p j(k)1{‖k−k j‖∞ < δ/2} (4)

where p j(k) is an interpolation polynomial which depends on the neighbors of k j on the considered 3D grid. In the sequel, we will
consider interpolation based on triquadratic Lagrange polynomials.

We will exploit (4) to build a finite model approximating (2) and (3). We use the following definitions: xt
.
=
[
xt(k1) ... xt(km)

]T .
=[

x1 ... xm
]T

t for t ∈ {0,1}, u .
=
[
u(k1) ... u(km)

]T and x1(u)
.
=
[
x1(ki +u(ki))

]T
i∈Γ

. Then, using simple algebra, it can be seen
that

x1(u) = I (u)x1, (5)

where I (u) is a matrix which explicitly depends on the considered interpolation.

Assuming that wt(k)' xt(k), t ∈ {0,1}, and using (5), (2) can be expressed as a density conservation assumption over the discretized
grid between two time frames: x0 = I (u)x1. In the sequel, in to account for small changes in the illumination of the scene and
interpolation errors, we will slightly relax the latter model as

x0 = I (u)x1 +ne, (6)

where ne ∼N (0,σ2
e) is a zero-mean Gaussian noise with variance σ2

e .

Finally, plugging (4) into (3) allows us to formalize the projection model relating the 2D observations to the 3D discrete intensity
distribution at each time frame. Let yt =

[
y1,t ... yn,t

]T denote the vector collecting the intensities of the n pixels at each time
frame t ∈ {0,1} . The projection equation then writes yt = Dxt where matrix D ∈ Rn×m is such that di j stands for the weight of the
contribution of the density in voxel ζ j to the energy measured within the cone of view passing through the ith pixel. In order to take
into account the errors in signal acquisiton, we finally relax to latter model to:

yt = Dxt +nt ,∀t ∈ {0,1}, (7)



where nt ∼N (0,σ2
t ) is a zero-mean Gaussian noise with variance σ2

t .

3. Sequential Approach

A classical estimation scheme in TomoPIV consists in reconstructing two successive 3D intensity distributions of seeded particles and
then applying a post-processing procedure for the retrieval of the 3D velocity field. We adopt, in this section, the same reconstruction
progression. For each of the two steps, we quickly overview the common methods. Finally, we submit our approach and explain its
suitability with respect to the physical structure of the real 3D scene.

3.1 Sparse Volume Reconstruction
In the current literature, the first step of the sequential estimation paradigm implies the use of methods exploiting positivity and
sparsity constraints on the 3D signal. The most commonly employed algorithm adopted by the PIV community is the Multiplicative
Algebraic Reconstruction Technique (MART [9]) which looks for a non-negative dense solution under an entropy-based optimization
criterion ([8]). Recently, the volumetric estimation problem has been expressed in a sparse context in order to enforce the prior that
in the visualized volume there is more empty space than seeded particles. The solution is accessed by means of algorithms for sparse
reconstruction. In a general form, the criterion writes:

x∗t = argmin
x
‖x‖0 subject to

{
c1 : Dx = yt

c2 : xi ≥ 0,∀i.
(8)

where ‖x‖0 is the `0-norm of x counting the number of non zeros in the latter. The constraint c1 ensures that the solution verifies
the model, while the c2 constraint ensures the non-negativity on the coefficients xi of the signal (and is optional). Unfortunately,
the `0-problem is NP-hard. In practice, we need to consider sub-optimal algorithms to access to its solutions. A first family of
such algorithms approximates the `0-norm by the `1-norm in order to transform the initial problem, non-convex, such that classical
optimization schemes (Basis Pursuit [6]) can be applied to solve it. This case has been considered in a tomographic scenario by
Petra et al. in [12]. Another approach consists in resorting to greedy algorithms which aim at solving (8) by making a succession of
locally-optimal decisions on the support vector of the sparse decomposition. The performance of several greedy algorithms with respect
to the algebraic state-of-the-art procedure and basis pursuit algorithms have been analyzed in [2]. Numerical simulations have showed
that the sparsity maximization approach outperforms MART with respect to accuracy [11], [2] in certain operating regimes of interest.
These considerations have encouraged us to search for for the non-negative solution which minimizes the `1-norm on the sought signal.

3.2 Velocity retrieval
In the TomoPIV community, the motion retrieval between the pair of two reconstructed intensity distributions is usually performed
by means of 3D cross-correlation, enhanced by an iterative affine transformation between the interrogation areas [14]. Other motion
estimation techniques have been investigated with respect to the tomographic application. We mention [5] where only the planar
components of the displacement are estimated and [15], where the retrieval of the 3 components of the velocity vector is performed by
means of a scene flow computation procedure within a stereo disposal of the cameras around the volume.

Our motion retrieval procedure relates to the Lucas-Kanade paradigm (LK) [1]. The latter algorithm is based on the density conservation
constraint such as the one defined in (6). This conservation only introduces one constraint for the estimation of the tree dimensional
displacement vector. This limitation is widely known in the computer vision community as the aperture problem. In order to cope with
this problem, additional constraints on the sought displacement must be introduced. The LK approach supposes that the displacement
u(k) satisfied the density conservation constraint in a small neighborhood around k. More specifically, let x∗t (k) be the vector collecting
the elements of x?t in a neighborhood of k. The LK algorithm estimates u(k) as the solution of the following problem:

min
u(k)
‖x∗0(k)− I (u(k))x∗1(k)‖2

2, (9)

where I is an interpolation matrix. We appeal to an iterative gradient-based descent procedure in order to access to the solution of (9).
The elements of the gradient of Js(u(k))

.
= ‖x∗0(k)− I (u(k))x∗1(k)‖2

2 writes:

∂Js(u(k))
∂uc(k)

=−(x∗0(k)− I(u(k))x∗1(k))
T ∂I(u(k))x∗1(k)

∂uc(k)
, with c ∈ {x,y,z} .

We stress that we access to the values of ∂I(u(k))x∗1(k)
∂uc(k) by deriving the analytical function defined in (4) with respect to each component

of the displacement vector.

4. Joint Approach

Although conceptually interesting, the sequential procedure suffers from some possible drawbacks:

• the reconstruction of the 3D density function is performed independently of the temporal sequence. In reality, the instantaneous
volumetric distributions can be modeled like a 3D entity deformed by a displacement (i.e., the fluid flow). Therefore, any
information on the displacement field could be taken into account in the reconstruction of the density function.



• The estimation of the displacement field is computed between pairs 3D intensity distributions at consecutive time frames. In
practice, the quality of these reconstructed volumetric distributions can be affected by the low number of observations and
measurement imprecisions. The noise affecting these estimations is not taken into account in the current literature. The velocity
estimation algorithms can therefore be improved by accounting for the imprecisions governing the reconstruction of 3D density
distributions and of the displacement field between them.

The idea is thus to go towards a joint estimation framework. In the TomoPIV context, Scarano et al. have recently proposed an
enhancement to the classical MART scheme through an iterative procedure whose aim is to initialize the algebraic procedure by a
first guess accounting for both successive views of the scene [10]. The so-called motion tracking enhancement (MTE) yields better
performance with respect to geometric topology of the sought particles.

In the same spirit as this refined estimation paradigm, we aim in this work at proposing a novel global formulation of the nexus between
instantaneous volumetric reconstruction and velocity retrieval. More specifically, we consider the following optimization problem:

min
x0(k),x1(k),u(k)

J(x0(k),x1(k),u(k)), (10)

where

J(x0(k),x1(k),u(k)) =
‖x0(k)−x∗0(k)‖2

2
σ2

0
+
‖x1(k)−x∗1(k)‖2

2
σ2

1
+
‖x0(k)− I (u(k))x1‖2

2
σ2

e
,∀k ∈ V . (11)

The first two terms penalize the discrepancies between xt(k) and the volume estimated during the volume reconstruction step x?t (k).
The last one enforces the density conservation constraints.

Our strategy to access to the minimum of (10) is based on a sequence of alternative minimization with respect to the vector of pairs
xt(k) and to u(k):

u(k)(l+1) = argmin
uk

J(x(l)0 (k),x(l)1 (k),u(k)), (12)

(x0
(l+1)(k),x(l+1)

1 (k)) = arg min
x0(k),x1(k)

J(x0(k),x1(k),u(l+1)(k)). (13)

where l denotes the iteration number. We note that the first optimization problem (12) is equivalent to (9) since only the last term in (11)
depends on u(k). We will therefore resort to the gradient descent technique described in the previous section to look for its minimum.
We also consider a gradient procedure to look for the solution of (13). The partial derivatives of J(x0(k),x1(k),u(k)) with respect to
the elements of x0(k) and x1(k) can be efficiently evaluated via the following formulas:

Ox0(k)J(x0(k),x1(k),u(k)) =
1

σ2
0
(x0(k)−x∗0(k))+

1
σ2

e
(x0(k)− I (u(k))x1(k)) (14)

Ox1(k)J(x0(k),x1(k),u(k)) =
1

σ2
1
(x1(k)−x∗1(k))+

1
σ2

e
(−I T (u(k))x0(k)+ I T (u(k))I (u(k))x1(k)) (15)

Let us note that our formulation allows for the initial estimation of volume intensity distributions x∗0, x∗1 by means of any state-of-the-art
procedure, including the ubiquitous MART.

5. Performance Assessment

We consider a cuboid partitioned into a cartesian grid of 61× 61× 31 voxels, with voxel unit set at 1mm. The origin of the scene
frame is chosen in the center of the cuboid. We place 4 cameras around the cuboid of interests such that the volume’s shape is visible
on each sensor; each camera has a CCD sensor of size 10× 10mm, for a 151× 151 resolution and a 7.5101mm focal distance. The
seeding density of the volume is set at 0.02 particles per pixel (ppp). We apply a shear flow in the y dimension with wavelength
L = 120 to the seeded particles and estimate an initial distribution of the density function by launching the basis pursuit algorithm with
non-negative constraints (BP+) and the MART procedure for two consecutive frames. Figure 1 presents the solutions computed on a
sub-grid included in the initial cuboid, for a fixed value of the Z dimension. While they both reconstruct positive energies, the solution
given by the BP+ procedure is more close to the actual structure of the volume, which contains more empty space than seeded particles.

We proceed to the reconstruction of the displacement fields in a sequential and in a joint scenario. A window of size 5× 5× 5 is
considered around each grid position. We launch (9) and (10) for each of the initially estimated 3D distributions. The performance is
assessed by qualitatively observing the mean squared displacement error (Figure 2) and the angular error (Figure 3) which are computed
with respect to the known shear flow displacement applied at grid points.

The joint approach slightly impacts on the precision of the estimated displacement between two sparse volume reconstructions (Figure
2 (a,d)). Moreover, we observe clear improvements between velocity estimations when the joint procedure is applied to the density
function reconstructed by MART. The same observations are available for Figure 3. Angular precision is improved by the joint
procedure with respect to both density reconstruction algorithms, with slightly more significant changes between the MART-initialized
distributions. These results point out that the joint approach accounts for errors on the volumetric reconstruction; the iterative updates
on the estimations of the density function allows us to correct a poor reconstruction of the volume and, therefore, to perform a more
accurate estimation of the displacement fields.
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Figure 1: Estimation of the density functions at time frame t = 0, computed at Z = 0
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(d) Problem (10) initialized by BP+

Figure 2: Mean squared displacement error observed for Z = 0.

Future investigations will show comparative results with the commonly employed MTE-MART procedure both in a simulated scenario
and on time-resolved experiments.

6. Conclusion

The trend in motion flow estimation is set by the formulation of procedures oriented towards a joint reconstruction of the structure and
of the displacement fields. A novel formulation of this joint problem has been presented. The theoretically frame has been presented
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Figure 3: Angular displacement error observed for Z = 0.

with connections to the computer vision field, as well as to the TomoPIV community. The performance has been assessed by means
of 3D simulations. A short comparative study with a more classical sequential reconstruction paradigm acknowledged, for a random
average case scenario of the tomographic application, its contributions to a more accurate estimation of the velocity by accounting for
noise on poor volume reconstructions. However, its robustness with respect to different characterizations of a real scene (i.e., change
in illumination, large displacement fields) is to be verified by intensive experiments on real data. Furthermore, such variables can be
accounted for in future work and open the way for the design of a problem formulation closer to the physical anatomy of the scene.
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