Tudelft GEODELTA Dynamic Seamless Oblique Image Mosaics for Aerial Visualization

Final Assessment (P5)

Master of Geomatics | Xiaoluo Gong

Supervisor Team:

Dr.ir. Martijn Meijers (First mentor)
Ir. Edward Verbree (Second mentor)
Annemieke Verbraeck (External mentor)
Dr. Azarakhsh Rafiee (Co-reader)

01

Problem Overview

The Current Oblique Image Visualization in Omnibase

(adopted from Omnibase)

Definition of Dynamic Image Stitching

Continuous transition from one image to another (adopted from: Xmap)

Existing Image Stitching Software

PTGui

Hugin

- · Slow
- Not Reductive
- Not keep the straight lines

Seamless 5

(adopted from Wang et al,(2020))

Smooth >>

(adopted from Google Map)

Measurable

(adopted from Omnibase)

02

Methodology & Definitions

Types of Image Stitching Techniques

TABLE I

COMPARISON OF MOSAIC AND PANORAMA STITCHING METHODS

Stitching method	imaging dimension	depth information	Relative movement between cameras	viewpoint
Mosaic stitching	2D	Ture	Exist	Fixed
Panorama stitching	2.5D	Fake	No-exist	Movement

All 57 images aligned

Final result

Image Morphing: smooth transition between images.

What kind of warp to do?

Feature points - Tie points

02 Methodology & Definitions

Image Width

$$H = egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

Initial Result by Simply Overlay the Warped Image

Can oblique aerial image really be modelled by a single homography matrix?

- Duplicated objects
- Broken rooftop...

Can oblique aerial image really be modelled by a single homography matrix?

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$
$$[x,y,1]^T$$

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \qquad M_{10} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$[x,y,1]^{T} \qquad [x,y,z,1]^{T}$$

Optimal Seam: Avoid Going to the "Rooftops"

- Protect the objects we want to measure or view
- Reduce the error caused by elevation changes
- Hide the seam

7	7	15	20	27
3	10	inf	18	22
8	10	13	19	18
2	inf	16	13	21
1	7	16	17	16

Input Image (Energy Map)

Dynamic Programming Matrix $O(H \times W)$

Backtrack Matrix

How to make it dynamic: The Switch Frame

$$H_{final} = T \cdot S \cdot H \cdot S^{-1}$$

HIUUG

03 Results- Stitching in Different Scenarios

Spatial Relation	
Intersection rate	62.3%
RMSE	15.82

03 Results- Stitching in Different Scenarios

Spatial Relation	
Intersection rate	19.1%
RMSE	63.32

03 Results- Stitching in Different Scenarios

Spatial Relation	
Intersection rate	50.9%
RMSE	26.28

Spatial Relation	
Intersection rate	33.3%
RMSE	86.91

03 Results-Seam Optimization

Without Optimal Seam

With Optimal Seam

03 Results-Seam Optimization

Stage	Original	Optimized
Create Canva	16.00	15.00
DB Read Center Image Information	0.00	0.00
Image Load and Resize	6673.75	74.25
DB Find Neighbors	0.00	0.00
DB Read Image Pairs	115.50	106.75
Homography Calculation	554.75	0.00
Homography Scale and Offset	1.25	0.00
Image Warping	12.00	12.00
Optimal Seam Finding	802.25	382.00
Image Display	471.00	8.50
Total Time	8630.5	585.50

Table 6.6.: Comparison of Average Running Times (Units: ms)

03 Results- Demo Show

03 Results- Demo Show

Seamless 🛱

Smooth >>

Measurable

l_x Reversed_y	Reversed_x	Type	Original_y	Original_x	Transformed_y	$Transformed_x$
902.11	1036.92	RoofCorner	902	1037	6930	1003
1998.87	7656.89	Solar Panel	1999	7657	7004	7661
1885.74	12449.01	RoofCorner	1886	12449	6142	12487
10166.84	634.76	RoofCorner	10167	635	16422	571
7303.28	6077.68	RoofCorner	7303	6078	12636	6088
7950.74	6025.31	RoofCorner	7951	6025	13306	6037
8743.43	5933.14	Window	8743	5933	14132	5946
1951.21	7470.39	Solar Panel	1952	7470	6985	7473
2028.85	7421.36	Solar Panel	2029	7420	7071	7424
2078.48	7607.84	Solar Panel	2079	7608	7092	7612
7336.63	6500.23	RoofCorner	7337	6501	12604	6516
8554.47	5948.50	Window	8554	5948	13936	5961
8730.11	5852.33	Window	8729	5852	14131	5864
7559.35	12102.77	RoofCorner	7560	12102	11955	12195
7977.63	6450.55	RoofCorner	7977	6450	13267	6468
8544.75	5865.69	Window	8546	5867	13939	5877
8849.65	8398.95	Flowerbed	8849	8398	13855	8448
8876.48	9123.98	Flowerbed	8877	9123	13769	9184
9141.76	9104.50	Flowerbed	9141	9104	14044	9166
9118.19	8381.64	Flowerbed	9119	8380	14133	8432

Limitation & Suggestions

(adopted from Omnibase)

Limited Image Stitching

• I • • O & O

(adopted from Omnibase)

Multi-Image Stitching

Soft Transition

(adopted from Omnibase)

Integrate with Omnibase for Measurement

Thanks for your attention!

Seamless Oblique Image Mosaics for Aerial Visualization

Master of Geomatics | Xiaoluo Gong