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An Automated System for the Detection and
Classification of Retinal Changes Due to Red
Lesions in Longitudinal Fundus Images

Kedir M. Adal*, Peter G. van Etten, Jose P. Martinez, Kenneth W. Rouwen, Koenraad A. Vermeer, Member, IEEE
and Lucas J. van Vliet, Member, IEEE

Abstract—People with diabetes mellitus need annual screening
to check for the development of diabetic retinopathy (DR).
Tracking small retinal changes due to early diabetic retinopathy
lesions in longitudinal fundus image sets is challenging due
to intra- and inter-visit variability in illumination and image
quality, the required high registration accuracy, and the subtle
appearance of retinal lesions compared to other retinal features.
This paper presents a robust and flexible approach for automated
detection of longitudinal retinal changes due to small red lesions
by exploiting normalized fundus images that significantly reduce
illumination variations and improve the contrast of small retinal
features. To detect spatio-temporal retinal changes, the absolute
difference between the extremes of the multiscale blobness
responses of fundus images from two time-points is proposed
as a simple and effective blobness measure. DR related changes
are then identified based on several intensity and shape features
by a support vector machine classifier. The proposed approach
was evaluated in the context of a regular diabetic retinopathy
screening program involving subjects ranging from healthy (no
retinal lesion) to moderate (with clinically relevant retinal lesions)
DR levels. Evaluation shows that the system is able to detect
retinal changes due to small red lesions with a sensitivity of 80%
at an average false positive rate of 1 and 2.5 lesions per eye on
small and large fields-of-view of the retina, respectively.

Index Terms—Computer-aided detection, fundus images, di-
abetic retinopathy screening, red lesions, longitudinal analysis.

I. INTRODUCTION

TABETIC retinopathy is a complication of diabetes mel-

litus, which progressively damages retinal blood vessels
and may result in vision loss and even blindness if not
diagnosed and treated adequately. Regular eye examination
is necessary for timely detection and treatment of DR at an
early stage [1]. The current eye care practice for screening
DR involves examination of multiple field fundus images
for pathognomonic abnormalities by a trained expert. De-
pending on the observed retinal abnormalities at the time of
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(a) Baseline image (b) Follow-up image

Fig. 1: A pair of spatially aligned fundus image patches
showing longitudinal retinal change locations (yellow arrows)
due to early stage DR lesions between the baseline and follow-
up retinal examinations.

the examination, diabetic patients are either scheduled for
a follow-up examination or referred to an ophthalmologist
for further diagnostic evaluation and possibly treatment. This
screening procedure is subjective [2], time consuming and puts
a considerable demand on diabetic eye care resources.

Moreover, in addition to examining how far the disease has
progressed at the time of examination, the goal of regular
DR screening is also to identify patients with a high risk of
progression. DR is a progressive disease that results in retinal
changes such as the appearance (and the disappearance) of
associated lesions such as microaneurysms and hemorrhages
(see Fig. 1). Recent studies suggest that in addition to the
number of lesions at the time of examination, the dynamics
of these lesions is useful to monitor progression of DR
[3]-[5]. Automated detection and quantification of retinal
changes can thus be an important addition to regular DR
screening to objectively assess the disease activity over time
for proactively taking appropriate measures. An automated
system is also instrumental in patient education, especially
in asymptomatic patients. By highlighting and showing DR
related retinal changes on a computer display, the patients may
have better understanding of their progressing eye condition
and the importance of regular checkup and adjustment of their
blood sugar level to reduce their risk of developing visual
complications.

Automated detection of longitudinal retinal changes from
a series of fundus images is challenging for several reasons.
Firstly, accurate detection and classification of longitudinal



Fig. 2: Examples of fundus image pairs of the same retina (top
and bottom rows) captured one year apart during regular DR
screening. Significant variation in illumination and acquisition
artefacts can be seen in both image pairs.

retinal changes requires a robust algorithm to discriminate
clinically relevant changes from changes caused by illumi-
nation variation and noise. Fundus imaging is a process that
involves careful manual tuning of fundus camera settings,
thus color fundus images often suffer from intra- and inter-
image variation in luminosity and contrast (see Fig. 2) [6].
Ilumination variation coupled with the subtle appearance of
early DR lesions renders identifying clinically relevant retinal
changes in color fundus images as a very difficult task, even
for expert graders.

Secondly, tracking small retinal features, such as microa-
neurysms and dot hemorrhages, over time requires very high
registration accuracy. In order to correctly register fundus
images, the nonlinear spatial deformation caused by the pro-
jection of the curved surface of the retina onto a flat imaging
plane needs to be accounted for [7], [8]. This is challenging
due to the sparseness of retinal features that can be used for
matching and the limited overlapping region between different
fundus fields.

Most of the previous studies on computer-aided detection
and diagnosis (CAD) systems for DR screening exclusively
aimed at analyzing digital fundus images from a single reti-
nal examination [2], [9]-[22]. A common approach in these
studies is to detect early stage retinal abnormalities that are
associated with referable DR. Although these CAD systems
enable to identify retinal abnormalities for screening DR at
the time of examination, they give only limited insight into
the activity of the disease since the previous check-up, and
thus are not suitable for explicitly monitoring DR.

So far, only a few automated systems have been developed

for the detection of longitudinal retinal changes for monitoring
DR over time. Examples include systems proposed by Cree et
al. [23] and Goatman et al. [24] to detect MAs in longitudinal
fluorescein angiogram images. Both systems consist of a
method to detect MAs from a region-of-interest centered on
the fovea and a registration algorithm to align longitudinal
images of the same retina for determining the microaneurysm
turnover. Narasimha-Iyer et. al. [25] presented an integrated
system for directly detecting and classifying retinal changes
from a single-field (macula-centered) color fundus images
using a combination of methods for illumination correction,
dust removal and segmenting retinal features such as the
fovea, optic disc, and blood vessels. The system was later
extended to detect changes in vasculature width and appear-
ance/disappearance of lesions [26]. A commercial system also
exists for automatically detecting temporal retinal changes due
to red-dot-like lesions from a pair of fundus images of the
same retina [27], [28].

The main limitation of existing methods for retinal change
detection is that they do not address the problems of illu-
mination variation and the space-variant image quality over
the entire field-of-view of the retina. Hence, they are not
applicable to a large field of the retina, which is required
for a comprehensive retinal examination. This is especially
a crucial factor when analyzing fundus images in which
illumination variation and low image quality affect more than
50% of the FOV as shown in Fig. 2. This paper addresses
these problems and presents a robust and flexible multi-stage
approach that is applicable to a wide range of fundus fields
for automated detection of longitudinal retinal changes due to
microaneurysms and dot hemorrhages (small red lesions).

II. MATERIALS AND METHODS

An overview of the proposed multi-stage approach for
automated detection and classification of changes due to small
red retinal lesions in longitudinal fundus images is shown in
Fig. 3. In the first stage, illumination variation is addressed
by normalizing the green channel of each color fundus image
for luminosity and contrast variation, thereby improving the
visibility of retinal features. Then all the baseline and follow-
up sets of normalized four-field fundus images are registered
into a common coordinate system using a multi-resolution
matching strategy coupled to a hierarchical registration model.
In the second stage, spatio-temporal retinal change locations
are detected by a novel criterion, blobness measure, based on
a multi-scale Laplacian of Gaussian. At the last stage, several
local intensity and shape descriptors were extracted from each
of the detected change locations and subsequently classified
as a change due to a red retinal lesion or no change. Each
stage of the proposed approach is described in detail in the
following subsections.

A. Dataset

Data for this study was obtained from a regular DR
screening program at the Rotterdam Eye Hospital. Four field
(macula-centered, optic nerve-centered, superior, and temporal
regions) fundus image sets from 81 diabetic eyes that were
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Fig. 3: An overview of the proposed automated system for the detection and classification of longitudinal retinal changes due

to red lesions.

acquired for DR screening in 2012 and again in 2013 were
used for training (40 eyes) and testing (41 eyes) the proposed
approach. All fundus images of 2000 x 1312 pixels in size
were acquired after pupil dilation using a non-mydriatic digital
fundus camera (Topcon TRC-NW6S, Tokyo, Japan) with a 45°
field of view.

B. Illumination Normalization and Registration

The green channel of digital fundus images is commonly
used in automated fundus image analysis because of its higher
contrast between retinal features and the background than the
red and blue channels. However, the green channel images
show considerable variation in luminosity (brightness) and
contrast between retinal structures, both within and between
images [6]. In a recent work [29], we have addressed this
illumination variation by applying an improved version of the
luminosity and contrast normalization technique of Foracchia’s
et al [6]. The normalization was done by using estimates of the
local luminosity and contrast from the intensity distribution of
the so-called background retina (i.e., the retina excluding fea-
tures such as vessels, optic disc, and lesions) and subsequently
correcting for their variation over the entire retinal image. In
order to take into account missing retinal features, especially
around the borders of fundus images, the local luminosity
and contrast were estimated based on normalized convolution
[29]. This results in a normalized retinal image with a uniform
illumination pattern within the entire retinal field and improved
visibility of fine retinal details (see Fig. 4).

In order to track small retinal features, such as small red
lesions, over time, a very high registration accuracy is required.
The curved nature of the retinal surface introduces a nonlinear
spatial deformation in the process of acquiring fundus images.
Therefore, a higher order (quadratic) deformation model is
needed for registering fundus images accurately. Over the past
decade, several algorithms have been proposed for registration

of fundus images [7], [8], [30]-[34]. In this paper, we used a
recently introduced robust fundus image registration method
that exploits the normalized intensity as well as the structural
information of the retinal vasculature [21]. The method aligns
retinal vessels based on a multi-resolution matching strategy
coupled to a hierarchical registration model with a deformation
model of increasing complexity for robust optimization of a
global second-order transformation model. The method was
successfully applied to register four-field (macula-centered,
optic nerve-centered, superior, and temporal) intra- and inter-
visit fundus images that capture different parts of the same
retinal surface [35].

C. Retinal Change Detection

At early stages, DR is associated with microaneurysms,
swellings in small blood vessels that may leak blood into the
retina. These lesions commonly appear in color fundus images
as small, round dark-red spots (see Fig. 4 and 5).

Due to the resemblance of these lesions to roundish blobs,
the Laplacian of Gaussian (LoG) operator is proposed for
detecting them in normalized fundus images. The LoG is sen-
sitive to a certain scale and will therefore provide a maximum
response at the scale that matches the size of the object to
be detected. In order to take into account the reduction of the
LoG response with an increase in o, the scale-normalized LoG
operator is defined as [36]

Viorm(0) = 0?V?G(z,y;0), (1)
2 . 2 .
where V3G (z,y;0) = 9 Ga(i’zy’g) + 2 ng;’"’) is the LoG
— @2 4y?)
operator and G(x,y;0) = 5-—e¢ 27 is a 2D Gaussian

function of scale o.

In longitudinal DR screening, the focus is mainly on iden-
tifying regions that have changed due to an appearance or
disappearance of retinal lesions between DR checkups. Thus,



Fig. 4: Examples of baseline (left) and follow-up (right) normalized fundus mosaics produced by registering four-field fundus
images captured from a left eye during regular DR screening. The overlaid color and normalized (enlarged) image patches

highlight retinal changes due to DR lesions.

given the two time-point fundus images I, and I,, spatio-
temporal changes are detected by first applying the scale-
normalized LoG operator at several scales to each of the two
time-point images and then comparing the results. To this end,
we propose a blobness measure (BM), which is defined as
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Fig. 5: A pair of spatially-aligned normalized retinal image
patches and their surface topographies before (left) and after
(right) a small red DR lesion appears.

the absolute difference between the extremes of the multiscale
blobness responses of fundus images from two time-points.

BM(Itl ) It2) = | max v?wrm (J> * Itl —max vgwrm(o-) * It2 |

(2)

In regions that changed due to an appearance or disappear-

ance of retinal lesions between the two time-points, the BM is

expected to be significant (see Fig. 6a-6¢). A candidate change

mask (M) is then obtained by thresholding the BM response
at gy as

M = {(‘T’ y)|BM(It1($7y)ﬂIt2(xvy)) > eBM} (3)

In addition, candidate regions that are smaller than the
smallest microaneurysm size (3 pixels or 21ym in diameter
in our dataset) were excluded. Figure 6d shows an example
change mask extracted from a pair of fundus image patches.

D. Red Lesion Classification

After detecting candidate regions several intensity features,
image quality measures, and appearance and shape descriptors
were extracted from each candidate region. The complete list
of features is
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Fig. 6: An example of a pair of spatially-aligned normal-
ized image patches (a), the maximum multi-scale blobness
responses (b), and the resulting BM values of each pixel (c).
Retinal changes due to appearance or disappearance of lesions
appear in the BM image as bright white spots. The white
spots in (d) indicate the final candidate change mask locations
derived from the BM.

1) Intensity features (Fin):

e The red and green channel values of the baseline and
follow-up images.

o The normalized intensities of the baseline and follow-up
images, Iy, and I,.

o The difference in luminosity (L) and contrast (C) be-
tween the baseline and follow-up images computed as
AL = |Ly, — Ly,| and AC = /CZ +CZ. L and C
are respectively estimated from the instensity distribuition
of the retinal background image(excluding vessels, optic
disc, and lesions) using the sample mean and standard
deviation [29].

o Local power per frequency band of normalized images,
which is defined as the extent to which the intensities
of retinal regions change rapidly and locally. This is
obtained by computing the signal power after band-pass
filetring.

A total of 20 intensity features were extracted from each

candidate region.

2) Appearance and shape descriptors (F,qq):

o The blobness measure (BM) (see eq. 2).

o Histogram of oriented gradients (HOG) [37] computed
with a cell size of 5 x 5 pixels and block size of 4 x 4.
This produced 144 features.

e Scale-adapted speeded up robust features (SURF) [38].
64 SURF features were extracted.

e The local intensity curvatures (eigenvalues) computed
from the second-order Gaussian derivatives computed at
o=242i¢c{0,1,2,3,4,5}.

A total of 221 appearance and shape descriptors features
were extracted.

Three classifiers, K-nearest neighbor (KNN), random forests
(RF), and a support vector machine (SVM) with a radial basis
function (RBF) kernel, were independently used to predict the
probability that each candidate region is a change due to a red
retinal lesion.

E. Reference Annotation Formation

The reference annotations used for both training and testing
the proposed system was gathered from three experts on DR
screening (two ophthalmologists and an optometrist). Each
of the graders independently annotated the center locations
of retinal changes between the baseline and follow-up exam
due to small red DR lesions in the fundus mosaics for each
eye. The experts were shown both the color and normalized
mosaics side-by-side using custom-made software that we
developed for lesion annotation. In order to handle inter-
grader annotation variability, the reference annotation was
defined based on the simultaneous truth and performance level
estimation (STAPLE) algorithm [39].

III. EXPERIMENTS AND RESULTS

A. Evaluation metrics

The performance evaluation metrics were the sensitivity (the
proportion of correctly detected and classified lesion locations)
and average number of false positives per eye. These metrics
were computed as

TP
Sensitivity = TP+ FN “4)
FP
Average FPs per Eye = N (5)

where TP is the number of true positives, F'N is the
number of false negatives, F'P is the number of false positives
and N is the number of eyes in the test set. A detected location
is counted as T'P if the distance between its centroid and
the closest reference annotation is less than 7 pixels. The
evaluation metrics were measured for several threshold levels
applied to the (prediction) probability assigned to each of the
candidate locations by the classifier and the results are sum-
marized using free-response receiver operating characteristics
(FROC) curves.



B. Parameter Settings

The settings of the two parameters (o, 6,) for the retinal
change detection algorithm (eq. 1-3) were optimized based
on the training set. The o values were determined from the
relationship between the size (diameter d) of a retinal lesion
and the scale at which the lesion response to the scale-
normalized LoG operator achieves its maximum. The o value
can be computed as

d
o ok 6)

The estimated diameter of the retinal lesions in our dataset
ranges from 3 to 16 pixels (21pym to 112pm) and thus
scales of o = 2¥/2i € {0,1,2,...,5} pixels were applied
to eq. 2. The change detection sensitivity and number of
false candidates were optimized by varying a range of values
O € {1.0,1.1,1.2,1.3,1.4,1.5}. A threshold value of
0pnr = 1.2 provided the best compromise between sensitivity
(which was set to be at least 96%) and average number of
false candidates per eye.

The optimal values for the RBF kernel parameters (C' =
205 4 = 279) of the SVM classifier and for the number
of nearest neighbors (K = 25) of the KNN classifier were
chosen through 10-fold cross-validation on the training set. A
grid-search [40] in combination with cross-validation was used
to test various (C, 7y) pairs. The RF classifier parameters (the
number of trees, the number of randomly selected features
for splitting) were set based on the out-of-bag (OOB) data
error estimate [41]. During each bootstrap the RF classifier
sets aside about one-third of the training samples as OOB data
and this data is not used for constructing a tree; therefore, it is
used internally as a validation set to estimate the classification
error.

C. Evaluations

We evaluated the proposed approach for the detection and
classification of retinal changes due to red lesions from lon-
gitudinal retinal mosaics on both a large and a small field
of view of the retina on the test set. The evaluation on
a large retinal field was done using the four field fundus
mosaics, which consists of the macula, optic-disc, superior,
and temporal retinal regions. The number of retinal changes
(appearances and disappearances) for each eye in the training
and testing set is shown in figure 7. The total number of
retinal changes in the training and testing set were 174 and
164, respectively. The evaluation on a small retinal field was
done based on the macula-centered fundus images due to their
clinical significance. In addition, the performance of each of
the two feature types (intensity vs. appearance and shape)
paired with each of the three classifiers (KNN, RF, SVM)
was evaluated on the large field fundus mosaics.

D. Results

Figure 8 shows the FROC curves for the systems with var-
ious classifier and feature combinations. The blue horizontal
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Fig. 7: Distribution of the number of retinal changes in the
training and testing sets.
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Fig. 8: FROC curves of the proposed systems for the detection
and classification of longitudinal retinal changes due to small
red lesion applied to large field-of-view retinal mosaics.

line indicates the retinal change detection sensitivity (98%)
of the proposed approach on the testing set, which acts as
an upper bound on the sensitivity of the whole system. The
results show that for all tested classifiers the appearance and
shape descriptors produced a much better classification result
than the intensity features. Moreover, the performance of the
classifiers increased when the combined set of features was
used. The SVM classifier performed best among the three
classifiers and achieved a sensitivity of 80% at an average
false positive rate of 2.5 per eye.

The system that performed best on the large field retinal
mosaics (SVM with Fj,;+ F,sq) was retrained and used to
detect retinal changes from a small field of the retina centered
on the macula. The performance of the proposed approach
is shown in the FROC curve in figure 9. The sensitivity of
the retinal change detection algorithm was 97% on macula-
centered fundus images. The overall system achieves a sensi-
tivity of 80% at an average false positive rate of 1 per eye.

For each eye in the test set, we visually inspected and
analyzed those locations that were detected by our approach
but not defined as a DR related change in the reference
annotations and thus were counted as false alarms. These
locations were found to be in either of the following categories:

o Dark spots that resemble tiny red retinal lesions on either
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the baseline or follow-up mosaics.

« Retinal vessels that were affected by illumination arte-
facts on either the baseline or follow-up mosaics.

o Noisy regions that have a low signal-to-noise (SNR)
ratio.

Figure 10 shows the number of false alarms in each of the
three categories for the 41 test eyes at 0.80 sensitivity. Overall,
the results show that dark spots that resemble small red lesions
caused 63% of the false alarms. The remaining false alarms
were detected either on retinal vessels (18%) or in regions
with a low SNR (19%). An example from each of the three
categories of false alarms are shown in figure 11.

IV. DISCUSSION AND CONCLUSION

In this paper, we have presented a robust and flexible multi-
stage approach for tracking retinal changes due to small red
DR lesions such as microaneurysms and dot hemorrhages in
longitudinal fundus images. The system was applied to both
small and large retinal fields of 81 diabetic eyes. Robustness
to intra and inter-image illumination variation was achieved by
exploiting fundus images that are normalized for luminosity
and contrast over the entire field of view. The improvement in
the visibility and contrast of especially small retinal features in

the normalized fundus images enabled our approach to track
subtle retinal changes, including those that are visually difficult
to detect on the color fundus images. A simple and effective
criterion for blobness (BM) was defined for detecting spatio-
temporal retinal change locations from longitudinal normal-
ized fundus images. The BM can also be easily adapted to
other related problems for the detection and tracking of small
round objects in a series of registered longitudinal images.

The proposed approach was evaluated in the context of
a regular diabetic retinopathy screening program involving
subjects ranging from healthy (no retinal lesion) to moderate
(with clinically relevant retinal lesions) DR levels. Evaluation
was done on both a large field-of-view fundus mosaics, which
consisted of the macula, optic nerve, temporal, and superior
fields, and a small field-of-view of the retina consisting only
of the macula-centered fields. The results show that the system
was able to detect retinal changes due to small DR lesions with
a sensitivity of 80% from large field fundus mosaics and small
field fundus images at an average false positive rate of 2.5 and
1, respectively. In contrast to the small fields, the higher false
alarm rate in the large field fundus mosaics is mainly caused
by the lower image quality and the presence of significant
illumination artefacts, such as white spots (see Fig. 4), on the
temporal and superior fundus fields.

Visual inspection of the false alarms suggests that most of
them were very similar in appearance and shape to small red
DR lesions and thus may well be true positives that were
erroneously not included in the reference annotation. Indeed,
49% of the detected dark spot locations were small red lesions
that were also annotated by one of the graders. It should
also be noted that color fundus images are routinely used by
eye care experts in DR screening. Therefore, introducing the
normalized images during annotation can help the experts see
subtle DR related retinal changes, although their annotations
might have been biased towards the color images.

The proposed approach could also be applied to determine
the red DR lesion count of individual fundus images provided
that reference images with known retinal conditions are avail-
able. Automated detection of red DR lesions from single time
point images can be very difficult due to the subtle nature of
most of the lesions and limited number of lesion pixels. On a
publicly available Retinopathy Online Challenge fundus image
dataset [42], the top ranking method for automated detection
of red lesions from individual images achieved a sensitivity
of 53% at an average of 2 false alarms per image [16]. By
incorporating reference images and analyzing spatio-temporal
change locations, our approach could be applied to detect and
determine red lesion count with a higher sensitivity.

Automated detection and quantification of longitudinal reti-
nal changes can be an important addition to regular DR
screening. The detected retinal changes can be used for making
objective and quantitative analysis of DR progression as well
as for more efficient human grading and patient education by
highlighting DR related changes since the previous visit.
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