<]
TUDelft

Delft University of Technology

Quantum Dots Coupled to Andreev Bound States

van Driel, D.

DOI
10.4233/uuid:b906fd7b-4909-48cd-9fc4-2ceb2b7ca3da

Publication date
2024

Document Version
Final published version

Citation (APA)
van Driel, D. (2024). Quantum Dots Coupled to Andreev Bound States. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:b906fd7b-4909-48cd-9fc4-2ceb2b7ca3da

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.4233/uuid:b906fd7b-4909-48cd-9fc4-2ceb2b7ca3da
https://doi.org/10.4233/uuid:b906fd7b-4909-48cd-9fc4-2ceb2b7ca3da

QUANTUM DOTS
COUPLED TO
ANDREEV BOUND STATES

David van Driel




QuaNTUM DOTS COUPLED TO ANDREEV BOUND
STATES






QuaNTUM DOTS COUPLED TO ANDREEV BOUND
STATES

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,
by the authority of the Rector Magnificus, prof. dr. ir. TH.J.J. van der Hagen,
chair of the Board for Doctorates,
to be defended publicly on
Friday 4 October 2024 at 12:30 o’clock

by
David VAN DRIEL

Master of Science in Applied Physics,
Delft University of Technology, The Netherlands,
born in Eindhoven, The Netherlands.



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. ir. L.P. Kouwenhoven,  Delft University of Technology, promotor
Prof. dr. A'F. Otte, Delft University of Technology, promotor

Independent members:

Prof. dr. L. DiCarlo, Delft University of Technology

Prof. dr. J.M. Thijssen, Delft University of Technology

Dr. J. Paaske, Niels Bohr Institute, Denmark

Dr. A. Chatterjee, Delft University of Technology

Dr. AR. Akhmerov, Delft University of Technology, reserve member

Delft
e t University of
Technology

l/ )‘
(OB afe KAV INSTTUTE @ C asimir
|ALL‘A O

research school

i QuTech g= Microsoft

of Nanoscience Delft

Cover: Phys. Pop. Art: Silk screen of a Kitaev chain device.
By David van Driel.
Printed by: Gildeprint
Style: TU Delft House Style, with modifications by Moritz Beller

https://github.com/Inventitech/
phd-thesis-template

Keywords: Semiconductor-superconductor hybrids, Majorana zero modes, charge
sensing, spin, Kitaev chains

Copyright © 2024 by David van Driel
ISBN 978-94-6384-618-9

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.


https://github.com/Inventitech/phd-thesis-template
https://github.com/Inventitech/phd-thesis-template
http://repository.tudelft.nl/

Does it now seem worth all the color of skies?
To see the earth through painted eyes.

- Nick Drake
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SUMMARY

Andreev bound states arise in low-dimensional confined systems, coupled to supercon-
ductors. They show great similarity to the highly sought-after Majorana bound states, yet
they lack the desirable non-Abelian statistics or topological protection. Except for these,
Andreev bound states possess a multitude of unique and interesting properties. This thesis
explores several of these properties, using semiconductor quantum dots as a measurement
tool. In addition, quantum dots are hybridized with Andreev bound states to form novel
systems, including Andreev molecules, and Kitaev chains.

In the theory section, we introduce several basic concepts, followed by a discussion
of the properties of Andreev bound states and similar Yu-Shiba-Rusinov states. We then
extend the concept of Andreev bound states to Kitaev chains in various implementations.

In the first chapter, we use a quantum dot as both a spin and energy filter to probe an
Andreev bound state. We observe pure spin states despite the strong spin-orbit interaction
in the host semiconductor. Utilizing a three-terminal measurement setup, we can change the
spin-relaxation process of the Andreev bound state by changing tunnel barrier strengths.

Next, we configure a quantum dot as a charge sensor to study Andreev bound states. We
observe smooth changes in ground state charge due to hybridization of the even-occupation
states. We additionally detect abrupt loading of electrons during the singlet-doublet
transition, which agrees with a change of ground state parity. Having used quantum dots as
a measurement tool, we then hybridize them with Andreev bound states to form an Andreev
molecule. We demonstrate readout of the ground state parity of the combined system
using the charge sensor. We argue that parity-to-charge conversion in semiconductor-
superconductor systems is a viable scheme for reading out Kitaev chains and associated
qubits.

We proceed by strongly coupling two quantum dots to a single Andreev bound state.
This coupling mediates tunneling and Cooper pair splitting processes between the quantum
dots, effectively constituting a Kitaev chain. For each Andreev bound state, we can find two
gate voltages at which the rates of these processes are equal and non-zero. Spectroscopic
measurements reveal localized Majorana zero modes on the quantum dots that are robust
against local electrostatic changes.

Engineering Kitaev chain-based qubits requires consistently finding Majorana zero
modes. In the final experimental chapter of this thesis, we present an algorithm that
tunes gate voltages until Majorana zero modes emerge in Kitaev chains. We employ a
neural network to estimate the relative Cooper pair splitting and tunneling rates from
spectroscopic measurements. These estimates are then input into a gradient descent
algorithm until the rates are balanced, and Majorana zero modes emerge. We present
statistics on the algorithm’s performance and conclude that it is a vital tool in elevating
Kitaev chains from the realm of fundamental study to quantum information.



2 SUMMARY

We then propose a series of future experiments, based on our current findings. Notably,
we explore the possibility of storing quantum information in the spin degree of freedom of
a superconductor using Yu-Shiba-Rusinov states.



SAMENVATTING

Andreev-gebonden toestanden ontstaan in laag-dimensionale begrensde systemen die
zijn gekoppeld aan supergeleiders. Ze vertonen grote gelijkenis met de veelgezochte
Majorana-gebonden toestanden, maar missen de gewenste niet-Abeliaanse statistieken
of topologische bescherming. Behalve deze karakteristieken bezitten Andreev-gebonden
toestanden een veelvoud aan unieke en interessante eigenschappen. Dit proefschrift onder-
zoekt verschillende van deze eigenschappen met behulp van halfgeleider kwantumstippen
als meetinstrument. Bovendien worden kwantumstippen gehybridiseerd met Andreev-
gebonden toestanden om nieuwe systemen te vormen, waaronder Andreev-moleculen en
Kitaev-ketens.

In de theoretische sectie introduceren we verschillende basisconcepten, gevolgd door
een bespreking van de eigenschappen van Andreev-gebonden toestanden en vergelijkbare
Yu-Shiba-Rusinov-toestanden. Vervolgens breiden we het concept van Andreev-gebonden
toestanden uit naar Kitaev-ketens in verschillende implementaties.

In het eerste hoofdstuk gebruiken we een kwantumstip als zowel een spin- als energie-
filter om een Andreev-gebonden toestand te onderzoeken. We observeren pure spintoestan-
den ondanks de sterke spin-baan koppeling in de gast-halfgeleider. Door gebruik te maken
van een driepuntsmeting kunnen we het spin-relaxatieproces van de Andreev-gebonden
toestand veranderen door de sterkte van de tunnelbarriéres aan te passen.

Vervolgens configureren we een kwantumstip als een ladingensor om Andreev-gebonden
toestanden te bestuderen. We observeren geleidelijke veranderingen in de grondtoestand-
lading als gevolg van de hybridisatie van de even-bezettings toestanden. We detecteren ook
abrupte belading van elektronen tijdens de singlet-doublet-overgang, wat overeenkomt
met een verandering van de grondtoestand-pariteit. Na het gebruik van kwantumstip-
pen als meetinstrument, hybridiseren we ze met Andreev-gebonden toestanden om een
Andreev-molecuul te vormen. We demonstreren de uitlezing van de grondtoestand-pariteit
van het gecombineerde systeem met behulp van de ladingensor. We stellen dat pariteit-
naar-ladingconversie in halfgeleider-supergeleider-systemen een haalbaar schema is voor
het uitlezen van Kitaev-ketens en de bijbehorende qubits.

We gaan verder door twee kwantumstippen sterk te koppelen aan een enkele Andreev-
gebonden toestand. Deze koppeling bemiddelt tunneling- en Cooper-paar-splitsingsprocessen
tussen de kwantumstippen, waardoor het geheel effectief een Kitaev-keten vormt. Voor
elke Andreev-gebonden toestand kunnen we twee gate-spanningen vinden waarbij de
tempo’s van deze processen gelijk en niet-nul zijn. Spectroscopische metingen onthul-
len gelokaliseerde Majorana-nulmodi op de kwantumstip die robuust zijn tegen lokale
elektrostatistische veranderingen.

Het ontwerpen van qubits op basis van Kitaev-ketens vereist dat Majorana-nulmodi
consistent gevonden kunnen worden. In het laatste experimentele hoofdstuk van dit proef-
schrift presenteren we een algoritme dat gate-spanningen afstemt totdat Majorana-nulmodi
verschijnen in Kitaev-ketens. We maken gebruik van een neuraal netwerk om de relatieve
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Cooper-paar-splitsing en tunneling-snelheden te schatten op basis van spectroscopische
metingen. Deze schattingen worden vervolgens ingevoerd in een gradient-afdaal-algoritme
totdat de tempo’s in balans zijn en de Majorana-nulmodi verschijnen. We presenteren sta-
tistieken over de prestaties van het algoritme en concluderen dat het een vitaal hulpmiddel
is voor het verheffen van Kitaev-ketens als subject van fundamenteel onderzoek naar een
toepassing van kwantumtechnologie.

We stellen vervolgens een reeks toekomstige experimenten voor, gebaseerd op onze hui-
dige bevindingen. In het bijzonder verkennen we de mogelijkheid om kwantuminformatie
op te slaan in de spintoestand van een supergeleider met behulp van Yu-Shiba-Rusinov-
toestanden.



INTRODUCTION

Be like the rocky headland on which the waves constantly break.
It stands firm, and round it the seething waters are laid to rest.

- Marcus Aurelius
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1.1 INTRUDING THE SUPERCONDUCTING GAP

Sub-gap states are a contradictio in terminis; they are single-electronic states within an
energy gap that excludes single-electronic states. Yet, their existence is ubiquitous, with
physicists routinely observing sub-gap states, unwillingly at times. Sub-gap states emerge
from the interplay between superconductivity and quantum confinement. Their study is
deeply rooted in history and continues to have a lasting impact. When Heike Kamerlingh
Onnes cooled down a wire fashioned from mercury to 4.2K, he was stumped to find its
electrical resistance dropped to zero. The year was 1911, and superconductivity had been
discovered. It did not take the Nobel Committee long to recognize Kamerlingh Onnes’
findings, as they awarded him the prize in 1913 “for his investigations on the properties of
matter at low temperatures which led, inter alia, to the production of liquid helium”. Many
scientists will remember Kamerlingh Onnes as the founding father of superconductivity, as
it remain a highly active field of research. Then in 1933, Meissner observed that supercon-
ductors can act as perfect diamagnets [1]. Two years later, the London brothers proposed
equations that govern the electromagnetic behavior of superconductors, for which they
had to introduce the penetration depth [2]. 24 years had passed since the discovery of
superconductivity and there were only a handful of observations and phenomenological
explanations.

It would take until 1950 for Ginzburg and Landau to propose their theory of super-
conductivity [3]. There was finally a systematic theory that could explain numerous
phenomena in superconductors, though a microscopic interpretation was still lacking.
Then in 1953, Pippard identified the need for a second length scale of superconductivity,
which is now known as the coherence length [4]. A year later, Corak and co-workers
performed specific heat measurements on superconductors. [5]. They realized that the
specific heat was dominated by a term e~2/%87 at low temperatures, which suggests a gap
in the single-electron density of states of size A. This energy gap was confirmed by the
landmark, microscopic explanation of superconductivity by BCS in 1957 [6]. An attractive
electron-electron interaction makes the Fermi surface of free electrons unstable. Electrons
will then pair up within an energy window of size A around the Fermi level. The formation
of Cooper pairs makes single-electronic sub-gap states energetically unfavorable. It is
therefore unexpected to be able to inject electrons into a superconductor at energies below
the superconducting gap.

In the same year that the BCS theory was published, Abrikosov detailed how magnetic
fields can pierce superconductors when the penetration depth is larger than the coherence
length [7]. He predicted the formation of a lattice of supercurrent vortices around field lines.
A year later, Bogoliubov introduced his namesake transformation [8]. He showed that the
excitations of a BCS ground state are superpositions of electrons and holes. Notably, there
were no single-electron excitations below the gap. Later, the Bogoliubov transformation
would be used to show that sub-gap states are in fact electron-hole superpositions. In 1960,
Abrikosov and Gor’kov detailed how a finite concentration of paramagnetic impurities in
a superconductor can close the energy gap [9]. Much of the research during this decade
established the absence of electronic states in the superconducting gap. During the next
decades, multiple physicists would predict the exact opposite.

In 1963, De Gennes and Saint-James predicted that transport resonances below A can
occur in slabs of normal metal deposited on a superconductor [10]. A year later, Caroli, De
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Gennes and Matricon predicted the existence of bound states in the vortices discovered by
Abrikosov [11]. These sub-gap states are referred to as Caroli-deGennes-Matricon (CdGM)
states. Then in 1964, Andreev proposed his titular “Andreev reflection” process, where an
electron incident on a superconductor can reflect as a hole [12]. Not only did it explain
the heat flow across a normal-superconductor (NS) interface, it also provided a convincing
mechanism for sub-gap conductance.

Inspired by Abrikosov and Gor’kov’s work from 1960, Yu, Shiba and Rusinov indepen-
dently considered how adding a single classical spin to a superconductor would influence
the superconducting spectrum. Yu published his work in Acta Physica Sinica in 1965 [13].
Shiba published in Progress of theoretical Physics in 1968 [14]. Rusinov published in JETP
letters in 1969 [15]. All three found that single ferromagnetic impurities could induce sub-
gap states in the superconductor. The mechanism relies on an exchange coupling between
the impurity and quasiparticles in the superconductor, similar to the Kondo effect [16].
These sub-gap states are now referred to as Yu-Shiba-Rusinov (YSR) states.

In the same year as Rusinov’s publication, Kulik showed that Andreev reflections in a
superconductor-normal-superconductor (SNS) geometry can result in sub-gap states [17].
These are what we now refer to as Andreev bound states (ABSs). While originally identified
in phase-biased systems, ABSs have become almost synonymous with sub-gap states.
In 1972, Machida and Shibata also predicted sub-gap states for non-magnetic impurities
without Coulomb interaction (U = 0) [18]. They write that “This new mechanism is caused
by the resonance scattering due to localized impurities, though Shiba insists that there
should not exist any bound state in this case”. They found that neither ferromagnetism,
charging energy, nor phase differences are required for the formation of sub-gap states.

A year later, Rowell reported the experimental observation of sub-gap states in normal-
superconductor-insulator-normal (NSIN) heterostructures [19]. They related their findings
to the predictions made by De Gennes and Saint-James. In 1989, Hess et al. used the
newly-found technique of scanning tunneling microscopy (STM) to perform tunneling
spectroscopy in the center of vortices in a type-II superconductor [20]. As the experiment
was performed using a metallic tip at 1.85K, the temperature broadening of tunnel spec-
troscopy did not allow them to resolve discrete states. Soon after, the experimental data
was reproduced theoretically by Shore et al., who found that the results could be explained
by the sub-gap states predicted by Caroli, De Gennes and Matricon [21]. In 1993, Riedel
and Bagwell calculated the current-voltage relation of NIS junctions [22]. Interestingly,
they also considered an NIS system with an impurity in the metal, which also led to sub-gap
states. In 1997, Yazdani et al. used STM to probe magnetic impurities on superconducting
surfaces [23]. They found sub-gap states that were consistent with the predictions of Yu,
Shiba and Rusinov. Then in 2001, Giazotto et al. reported resonant sub-gap transport in
a GaAs-Nb heterostructure that was consistent with the predictions of De Gennes and
Saint-James [24]. There was an additional transport resonance at the Fermi level, which
they attributed to finite size effects.

Distinguishing a single, discrete sub-gap state from a sub-gap transport resonance can
be non-trivial. For example, an induced gap in a normal metal also enters as a sub-gap
resonance, but consists of a continuum of states. Obtaining a finite level spacing in a metal
is challenging, as its dimensions would have to be smaller than the Fermi wavelength,
which is on the order of Angstroms. STM was important in observing the first discrete
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sub-gap states, as it allowed the study of individual atoms or vortices. Discrete states
can also be found in semiconductors, as their low effective mass allows for finite level
spacing. The experimental introduction of quantum dots made it more straightforward
to create discrete states. In 2009, Grove-Rasmussen et al. observed sub-gap transport
in superconductor-quantum dot-superconductor (S-QD-S) systems fabricated on carbon
nanotubes [25]. They state that “the unusual sub-gap features observed in odd occupied
dots are caused by an interplay between MAR [multiple Andreev reflections, red.] and
quantum Shiba states”. This careful phrasing highlights the difficulty in telling transport
resonances apart from sub-gap states. A year later, Pillet et al. found sub-gap states in
carbon nanotubes as well, which they identified as Andreev bound states [26]. Since
then, there have been many publications on sub-gap states which go far beyond their first
observation. These include chains of ferromagnetic atoms on superconductors [27], CAGM
states coupled to YSR states [28] and Andreev molecules in double quantum dots [29].
Interestingly, a hitherto undiscovered state was reported recently. In 2023, Schneider et
al. observed sub-gap surface states on non-magnetic Ag islands on a bulk superconductor
using STM [30]. They identified these as Machida-Shibata states, as there was no Coulomb
interaction. It is debatable whether these states differ significantly from Andreev bound
states. However, unlike the YSR states commonly observed in STM, they are non-magnetic.
While sub-gap states are frequently observed in both impurities on superconductors and
semiconductor-superconductor hybrids, the two communities remain relatively separated,
and retain their own naming conventions.

b Theory Experiment e MS
1500 e@caroli e YSR
] ®Shib ® ABS
] iba
®» 1000 - @ Hess ® dGSJ
_5 E ® CdGM
© ]
(&) 5001 ovu ) @ Yazdani
1 eDe cBRdghov ® Pillet
0_‘ @®Andreey Machida ® Giazottd® Grove-Rasmusg,t?gchneider
—TT T T T T T T T T T T —TT T T T
1960 1970 1980 1990 2000 2010 2020 2030
Year

Figure 1.1: Timeline of selected publications on sub-gap states. We categorize the states as: Machida-Shibata
(MS), Yu-Shiba-Rusinov (YSR), Andreev bound state (ABS), de Gennes Saint-James (dGS]J) and Caroli-deGennes-
Matricon (CAGM).

Many sub-gap states have been predicted, named, and observed. They have been found
in many device geometries, using different spectroscopic techniques. In figure 1.1, we show
a timeline of selected publications on sub-gap states. While the distinction between these
states can be arbitrary, there is historic value in understanding how they were proposed
and observed for the first time. After all these years the paradox remains the same: why
does a superconductor admit the addition of single electrons when its Fermi surface has
become unstable due to an attractive electron-electron interaction? Fundamentally for
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a state to become sub-gap, the total energy needs to be lowered upon coupling to the
superconductor. This can happen due to a phase difference between superconductors,
exchange-coupling, Coulomb interactions, resonant tunneling or vortex formation. Has
every possible mechanism been explored, or are there still undiscovered sub-gap states in
the wild?

1.2 IN PrAISE oF HYBRIDS

To confine a system is to impose rules on it. First and foremost, one limits the extent of
the system to manually defined boundaries. If the system extent is small enough, i.e. on
the order of the Fermi wavelength, additional rules are imposed on the system. These are
given by quantum mechanics, where states can only exist at quantized energies. This can
be seen in atoms, where one cannot add electrons outside the orbits. Fundamentally, these
rules follow from many observations of our universe, which appears to behave according
to principles. We focus on two important ones. The first being the Pauli exclusion principle,
which states that every electronic quantum state can only be occupied by one electron.
The second one is Heisenberg’s uncertainty principle, which states that some pairs of
observables cannot be known with high certainty simultaneously. The most famous
example is the conjugate pair of position and momentum. In Bohr’s model of atomic
orbits, electrons orbit the nucleus at a fixed momentum and a fixed path. As this would
require both to be known with high accuracy, it breaks in view of Heisenberg’s uncertainty
principle. Instead, we are left with a probability distribution of the electron location for
any given momentum.

Confinement is not only restricted to atoms, but is also relevant in solid state physics.
A semiconductor can also be confined, as its Fermi wavelength is typically around ~ 10 nm,
which is readily accessible by modern electron lithography. The aforementioned rules
apply here too, including electron level quantization, particle conservation and the Pauli
exclusion principle. A confined semiconductor, a quantum dot, is therefore an excellent
platform for quantum information processing. The large level spacing of electronic states
makes it possible to decode quantum information into the spin degree of freedom. The
Pauli exclusion principle prevents electrons in a single orbital from having the same spin
state. As confinement can be changed using electrostatic gates, the information can move
and interact with other qubits, allowing for two-qubit gates. Ultimately, it is the rules
resulting from confinement that allows for quantum information to be well-defined in
quantum dots.

Superconductivity, on the other hand, is nature’s way of breaking rules. To start, one
can have a current without any dissipation, which is impossible in normal conductors.
For superconducting reservoirs, the total number of particles is conserved in a way that
allows for fluctuations by pairs of electrons. Superconductors also break the concept of
a Fermi surface, as it becomes unstable due to a positive attraction between electrons of
arbitrary magnitude. As discussed in the section above, this result in a gap in the single-
electronic states around the Fermi level. Heisenberg’s uncertainty principle also applies to
superconductors, only this time for the conjugate variables of phase and charge. This is
ultimately the cause of the particle number fluctuations, as a grounded superconductor
has a fixed phase.

Introducing superconductivity in a confined system presents physicists with an odd
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dilemma: which rules are maintained and which are broken? Is charge well-defined, which
is generally the case for a confined semiconductor. Is confinement maintained? The discrete,
semiconducting states are ultimately only separated from a continuum of metallic states
by the superconducting gap. Nature always finds a way of resolving conflict, which is
illustrated by Andreev reflection. Here, an electron in a conductor is incident on an interface
with a superconductor. There are no single-electronic states in the superconducting gap, so
it cannot be transmitted across the interface. On the other hand, provided that momentum
is conserved in the conductor, it cannot simply reverse its momentum. Andreev solved this
apparent paradox by proposing that the electron retroreflects as a hole, creating a Cooper
pair in the superconductor. This is allowed due to the particle number fluctuations in the
superconductor.

When a confined semiconductor is tunnel-coupled to a superconducting reservoir, its
discrete levels hybridize with the superconductor to form sub-gap states. This captures
the information of the superconducting condensate, as well as the quasiparticles, in a
single state in a semiconductor. Metaphorically, this is like having the whole world in a
grain of sand. We emphasize that the sub-gap state remains coherent when coupled to a
superconductor, in contrast to coupling a semiconductor to a normal lead, where the discrete
state is drowned out by the continuum of metallic states. Sub-gap states acquire particle-
hole symmetry from the parent superconductor. Their even states are now a superposition
of an empty and fully-occupied orbital, due to Andreev reflection with the superconductor.
As a result, the average charge of the even state can be anywhere between 0 and 2e, where
e is the electron charge. Depending on the charging energy of the semiconductor, sub-gap
states can also have an odd ground state in the absence of a magnetic field. Crucially, sub-
gap states can be manipulated via electrostatic gates, allowing for the fine-tuning of their
electrochemical potential and coupling to the superconductor. This outlines the benefits of
semiconductor-superconductor hybrids: controllable superconducting properties in a single
state. It is this property that enables applications unique to hybrids, such as Andreev spin
qubits, Kitaev chains, superconducting diodes, coupling spin qubits over large distances,
triplet superconductivity and more.

1.3 OuTLINE OF THIS THESIS

In this thesis, we have studied quantum dots coupled to Andreev bound states in various
forms. We first introduce the theoretical concepts relating to the experimental work in
chapter 2. Here, we place the emphasis on quantum dots, sub-gap states, their charge and
Kitaev chains.

In chapter 3, we detail how spin-polarized quantum dots can be used to probe the spin
of sub-gap states. Based on spin-dependent transport we study individual Andreev bound
states in a semiconductor-superconductor hybrid. We also study the relaxation mechanism
of the excited states, as we can control the sub-gaps states’ coupling to electron reservoirs.

In chapter 4, we study the charge of Andreev bound states using a quantum dot charge
sensor. While sub-gap states usually refer to single-electronic states, we can directly probe
the many-body ground state. While these states do not typically have a charging energy,




12 1 INTRODUCTION

they can have well-defined charge. We find that the average charge can change by twice
the electron charge without a change of ground state parity. Finally, we create an Andreev
molecule by coupling a quantum dot to the hybrid. We see that the charge is coherently
distributed over the two systems.

In chapter 5, we have coupled two quantum dots through an Andreev bound state.
The strong coupling between each quantum dot and the Andreev bound state results in
Andreev reflection on the quantum dots. We show that we can engineer a two-site Kitaev
chain using this system, with stronger interaction strengths than for normal quantum dots.

Poor Man’s Majorana zero mo