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Abstract

Electronics systems in deep-submicron era face many new challenges.
Increased intricacy of the manufacturing process will likely to increase
the manufacturing defect while testing of those effect will be very chal-
lenging. Smaller feature size will also face new reliability issues due
to phenomenas such as Joule heating and electromigration. Further-
more, chances of temporal defects, namely soft-errors, or Single Event
Fault (SEU) will increase because the critical charge, the charge re-
quired to flip a logical value in flip-flops decreases with technology
scaling.

Power consumption is another issue that is ever greater in elec-
tronics design. Technical, financial, and ecological concern all require
devices that consumes as small amount of energy as possible.

The Ubichip, a bio-inspired reconfigurable VLSI developed in
PERPLEXUS European project has attributes such as dynamic self
replication and dynamic routing capability, both of which may help
develop a system to increase reliability while addressing the power
consumption issues.

The author has designed a power aware fault tolerant system
based on the Triple Modular Redundancy (TMR) fault tolerant strat-
egy to be implemented on Ubichip. The system also controls the
number of functional unit to regulate the overall system power con-
sumption. This report describes the design, implementation, and sim-
ulation of the fault-tolerant system.
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Abstract

Electronics systems in deep-submicron era face many new challenges. Increased intri-
cacy of the manufacturing process will likely to increase the manufacturing defect while
testing of those effect will be very challenging. Smaller feature size will also face new
reliability issues due to phenomenas such as Joule heating and electromigration. Fur-
thermore, chances of temporal defects, namely soft-errors, or Single Event Fault (SEU)
will increase because the critical charge, the charge required to flip a logical value in
flip-flops decreases with technology scaling.

Power consumption is another issue that is ever greater in electronics design. Techni-
cal, financial, and ecological concern all require devices that consumes as small amount
of energy as possible.

The Ubichip, a bio-inspired reconfigurable VLSI developed in PERPLEXUS Eu-
ropean project has attributes such as dynamic self replication and dynamic routing
capability, both of which may help develop a system to increase reliability while ad-
dressing the power consumption issues.

The author has designed a power aware fault tolerant system based on the Triple
Modular Redundancy (TMR) fault tolerant strategy to be implemented on Ubichip.
The system also controls the number of functional unit to regulate the overall system
power consumption. This report describes the design, implementation, and simulation
of the fault-tolerant system.
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Introduction 1
1.1 Motivation

The IC technology scaling, which follows the famous Moore’s law has evoked a great
deal of advancement in modern electronics for the last few decades. Designers have
been able to integrate greater number of transistors on a limited area of silicon die;
modern VLSI systems with multiple function blocks on a single die allow designers to
reduce the physical size of the systems and manufacturing costs. The ITRS predicts
in [8] that the gate length of VLSI systems will go below 20 nm in the later half of
this decade, a length enough to fit only few hundreds of silicon atoms in one line. This
deep-submicron paradigm poses new challenges to the VLSI design; intricacy of the
fabrication will be greater, so that manufacturing defects will likely to increase while
testing for those defects will be very challenging due to the ever increasing complexity
of the system. The reliability will also suffer due to phenomena such as gate insulator
tunneling, Joule heating, and electromigration. Furthermore, the small feature size
will certainly increase the unpredictable errors due to alpha particles, namely soft
error, or Single Event Upset (SEU) [4], [8].

There have been many advancements in techniques such as Design for Test (DFT)
and Built-in Self-test (BIST) [4]. While these tests can effectively detect faults
due to defects, they cannot detect unforeseeable faults caused by aging-defects or
temporal faults such as SEU. In order to assure the reliability while incorporating
deep-submicron technologies, the system should have dynamic fault-tolerance capabili-
ties to detect and correct errors on the run. If a VLSI system can autonomously detect
and correct an error situation dynamically, it will not only increase the reliability but
also the yield and life-time of the ICs, resulting in a significant cost reduction [17].

The Ubichip is a bio-inspired custom reconfigurable VLSI system developed in
the PERPLEXUS project [22], [31]. Ubichip offers bio-inspired capabilities such as
dynamic routing, self-replication, and neural networking. The operational flexibility
provided by these mechanisms gives Ubichip a great potential for implementing
dynamic fault tolerant systems with Built-in Self Repair (BISR) capabilities.

1.2 Thesis Goals

The goal of this project is to design and implement a proof-of-concept design of a
power aware fault tolerant system on the Ubichip bio-inspired hardware platform.
Successful result can confirm that a bio-inspired hardware platform is not only capable
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of implementing fault tolerant system efficiently but also capable of reacting to the
system power consumption by regulating the area of active logic circuit so as not to
exceed the defined power consumption limit.

1.3 Results

• A power aware fault tolerant system, which has Triple Modular Redundancy
(TMR) for the fault masking and Built-in Self-Repair (BISR) for the fault re-
pair was designed

• The design was successfully implemented and simulation confirmed the correct
operation as the actual fabricated chip was not available

• A report of the design and implementation was written and accepted for 2010
International Conference of Evolvable Systems (ICES) [10]

• Issues of Ubichip platform for this application was identified

• Based on the experience, recommendations for the future research were listed

• The design was implemented and functions were verified in standard VHDL en-
vironment, which realized some functions that were not possible on Ubichip envi-
ronment

1.4 Outline

This report is organized as follows:
Chapter 2 explains the background study conducted prior to the implementation,

underlining information for the motivation as well as the relevant information on
Ubichip reconfigurable platform is explained.

Chapter 3 explains the detailed architectural design of the implementation including
the overall design and the system requirements.

Chapter 4 explains implementation and functional test of the design on Ubichip
platform.

Chapter 5 explains the implementation of the design on standard VHDL envi-
ronment. This implementation complements the Ubichip experiment by realizing
functions that was not possible on Ubichip.

Finally, Chapter 6 contains the Analysis of the implementation, list of the identified
issues, recommendations for the future research, and the concluding remarks.
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Background Study 2
2.1 Motivation: Issues in Modern Reconfigurable Circuits

This project, an implementation of power aware fault tolerant system addresses two
of the major issues facing electronics design today: reliability and power consump-
tion, which are particularly serious in reconfigurable hardware. Ubichip, a custom
bio-inspired reconfigurable platform has attributes that can be useful in mitigating
those issues.

2.1.1 Reconfigurable Devices

More and more electronics systems have been incorporating Field Programmable Gate
Array (FPGA) in their designs in last decades. Programmable gate arrays, which used
to be used mainly for prototyping and debugging in digital system design phase, are
now small, reliable, and inexpensive enough to be used for final hardware as well. Use
of such devices brings a lot of benefits to the designers: single hardware platform can
be used for different applications, design phase can be significantly shortened because
of simpler debugging capability and elimination of silicon design phase, design mistakes
can be corrected after product is in use, design can continuously be upgraded, and
modification of the design can be done remotely.

Many attributes of the reconfigurable devices make them very attractive for fields
such as space application, where remote update is the only option available. Despite
those clear benefits, there is a fundamental issue in reconfigurable devices that makes
their use in space application challenging; SRAM based reconfigurable devices have
lower tolerance to radiation environments and reconfigurable devices consume more
power than custom non-reconfigurable IC of equivalent circuit. Radiation in the
environment can cause serious problems to LSI such as Single Event Upset (SEU),
Latch-up, and devise deterioration.

2.1.2 Reliability Issues

Problems the radiation can cause on electronics systems have been known for decades.
Back in 1980s the problems were mostly limited to applications for high radiation
environment such as space, high altitude, nuclear, and military applications. Today,
radiation induced problems still remain persistent in those applications but the issue
has also become serious concern for electronics systems for application field other
than those in radiation intensive environments due mainly to technology scaling in
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Integrated Circuit.

Types of degradation and failures caused by radiation varies. Those radiation in-
clude photons (X-rays and gamma rays), Charged particles and cosmic rays (Electrons,
protons, alpha particles, heavy ions), and uncharged particles (neutrons). Problems
range from permanent degradations such as collapse of depletion region and character-
istic change of the transistors to temporary failures such as latchup and data upset [24].

The major radiation caused problem is the soft error. Also called Single Event
Upset (SEU) or transient fault, values of the electronic signals are altered to cause
erroneous operation of the system even though there is no design or manufacturing
defects. Permanent faults can only be mitigated by incorporating prevention measures
at design and manufacturing stage. There are varieties of radiation hardened IC
packages available for military and aerospace applications. Temporary failures on the
other hand can be mitigated dynamically, which in turn is the target problem of this
project.

Soft errors occur when radiation hitting on the circuit causes enough accumulation
of charges at circuit nodes that they exceed the critical charge (QCRIT ); making the
value of the signals to alter. It is reported in [2] that if soft errors are not corrected, it
induces the error rate higher than all the other failures combined. Furthermore, data
storage blocks, especially SRAM circuits are far more susceptible to radiation induced
SEUs because SRAM circuits do not have masking effects that may mask the fault
even if a SEU occurs at one node [25].

The equation below shows the variables affecting the Soft Error Rate (SER). One
can see from this equation that the critical charge (QCRIT ) and charge sensitivity (QS)
are the key parameters. Device scaling, by making the feature size smaller decreases
critical charge mainly due to decreased supply voltage though the efficiency increases
because smaller transistors are more sensitive to particle strikes.

SER ∝ F × A× exp

(
−QCRIT

QS

)
(2.1)

F: Radiation flux with energy > 1 MeV in particles/(cm2 · s)
A: Area of the circuit sensitive to particle strikes in cm2

QCRIT : Critical charge in fC
QS: Collection efficiency of the device in fC
There are three masking effect that may conceal the effect of SEU in digital circuit:

Logical Masking, Electrical Masking, and Latching-window Masking. Logical maskings
occur when a node with SEU at the time of occurrence is isolated from the output
hence the SEU not affecting the overall functionality. Electrical masking occurs when
multiple stage of logic gates attenuate the voltage change of the node due to SEU;
resulting in SEU not affecting the circuit operation. Latching-window masking occurs
when a SEU happens outside the latch window (setup & hold); the altered value of
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the signal does not pass the latch in this case. SEU in SRAM changes the value stored
in flip-flops so that none of the three masking effect can reduce the effect of SEU on
SRAM circuits. As a result, SRAM based reconfigurable devices are highly susceptible
to Radiation induced errors.

2.1.3 Power Issues

Technology scaling also increases the power consumption of digital circuits as discussed
in [23]. Power consumption is the major concern for any electronic devices today;
power consumption of systems such as large servers for data centers need to be
decreased for financial and ecological reasons while power consumption directly affects
the operational performance of battery driven devices.

This project involves implementation of Triple Modular Redundancy (TMR)
system, which naturally increases the power consumption as the system require three
copies of the identical circuit. In order to keep the system operating correctly, the
power consumption must be monitored and controlled not to exceed the maximum
available supply.

2.2 Fault Tolerant Systems

Fault tolerant systems are heavily used in aerospace and automotive applications,
wherein safety is critical or the harsh environment to electronics systems exists.
General overview of fault tolerant electronics systems is explained in[21]. Designing of
System on Chip (SoC) for automotive application is explained in [1]. Bowman and his
team at Intel have developed an Error Detection Sequential (EDS) circuit to address
errors in microprocesors caused by manufacturing process variability [3]; an emerging
major cause of faults in deep sub-micron era. For applications that are more similar
to this project, designs of fault tolerant systems for space applications implemented
on Xilinx FPGA platform are explained in [5] [6].

A fault in electronic system is a part that has unintended shape; fault can be a
physical defect, an imperfection, or a flaw that exists in the hardware or software
component. Faults cause errors, which lead to the failure of the electronics systems
as represented in the figure 2.1. It is important for the designers of fault-tolerant
systems to identify the types of faults they are trying to mitigate. There are various
types of faults with different cause and effect; a stuck at fault would behave differ-
ently from open-circuit faults, and faults in digital circuit has different effect from
faults in analog circuits. An appropriate measure needs to be taken to address a
specific type of fault. Table 2.1 shows different properties of faults in electronic systems.
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Fault Characteristics

Cause Nature Duration Extent Value

- Specification Mistakes - Hardware (Analog) - Permanent - Local - Determinate
- Implementation Mistake - Hardware (Digital) - Intermittent - Global - Indeterminate
- External Disturbances - Software - Transient
- Component Defects

Table 2.1: Fault Properties

Figure 2.1: Three Universe Model: cause-and-effect relations among faults, errors, and failures

2.2.1 Fault Tolerance Strategies

In depth study of fault tolerance strategies are discussed in literatures [9] [16] [4] [13].
In this section the basics of fault tolerant strategies relevant to the project are discussed.

The Figure 2.2 shows the relations among factors that lead to electronics system
failure. A system failure is a result of error, which can either be caused by hardware
faults or software faults. Software and hardware faults are result of various mistakes
such as specification mistake, implementation mistake, external disturbances, and
component defects. As discussed in the earlier sections, modern electronics systems
that are taking advantage of scaling silicon manufacturing technologies are especially
vulnerable to external disturbances and component defects. For space applications,
external disturbances mainly from radiation is a serious concern.

There are seven basic fault tolerance strategies to be discussed in this section:

1. Fault Avoidance

2. Fault Masking

3. Fault Detection

4. Fault Containment

5. Fault Diagnosis

6. Repair/Reconfiguration

7. Recovery
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Figure 2.2: Relations among various types of Faults, Error, and failure, and Different Levels
of Mitigation Techniques

Fault Avoidance:

Strictly speaking, fault avoidance is not part of fault tolerance strategy as the idea
of fault avoidance is to make sure that neither software or hardware faults ever occur
during the operation. Fault avoidance can be things such as design review, design
rule checking, test and validation, choice of physical materials, mechanical design such
as shielding, and manufacturing quality control. This includes choosing radiation
hardened IC package such as Xilinx QV ceramic packages [32], which reduces chances
of Single Event Upset faults (SEU) caused by radiations.

In most practical application field, engineers can follow the engineering standards
established by various organizations such as IEEE, SAE, and ISO. [18][19] Those
standards usually define all aspects of electronics design from design process, design
rules, and test procedures. For instance the IEEE SEM-E standard [7] lays out the
rules in designing hardware for space based applications, which need to withstand
harsh environment in terms of temperature, mechanical stress, and radiation. Not only
is it usually a mandatory requirement to comply with appropriate standard, it also
helps designers to greatly enhance their fault avoidance measure as those standards
are built on previous experiences of developing specific applications.

Although Fault avoidance is a very important part of design processes, the history
and common sense tell that there can never be an electronics product that has
absolutely zero probability of errors during its operation. Furthermore, excessive focus
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on fault avoidance comes expensive; choice of expensive material, lengthy design and
validation time, excessive test, and zero tolerance quality control at manufacturing
plant all come at extremely high cost. Therefore, it is important that only realistic
level of fault avoidance measure to be taken, and the coverage of fault avoidance is
clarified so that possible errors are appropriately dealt with by run-time measures
discussed in the rest of this section.

As the focus of this project is to design and develop the masking and tolerance
mechanisms, and it does not involve neither PCB or application design, avoidance
measure is out of the scope and will not be explored further.

Fault Masking:

As it can be seen on Figure 2.2, the purpose of fault masking is to prevent the faults
from causing errors by making the faults invisible from outside the design region. This
would mean dynamically correcting the generated errors.

The most common form of error masking is error correcting code such as parity
check and cyclic redundancy check (CRC), which are used in communicating data
inside most computer systems such as memory, register, and various kinds of data
buses and data links.

When data is generated or transformed, simple error correcting cannot be applied
as there is no previously calculated code to check for. In these cases redundancy is
used to dynamically correct the errors. There are several forms of redundancy that
can be utilized for fault tolerant systems: Hardware, Software, Information, and Time.
Detailed explanation of each redundancy form is explained in [9]. This project is
to take advantage of reconfigurability of Ubichip platform; making the choice the
hardware.

Hardware redundancy is the oldest, and most common form of redundancy used in
digital systems. Although it requires extra physical space, which inevitably increases
cost, simple yet robust nature of hardware redundancy is attractive to designers.
There are two basic techniques in hardware redundancy: Passive and Active. Passive
technique simply masks the errors without making any modification to the system.
Active techniques includes detection, location, and modification but not masking.
Many fault tolerant systems can be categorized as hybrid as they use passive technique
to mask, and active techniques to mitigate the situation.

Several novel techniques in hardware redundancy are explained in [1]. In this
project however, simple N-Modular Redundancy (NMR) technique is implemented by
utilizing Self Replication (SR) function of Ubichip.

The NMR fault masking technique is based on majority voting. Figure 2.3 shows
the basic configuration of Triple Modular Redundancy (TMR). In this system three
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identical modules are performing identical operations, and the voter unit chooses
majority as the final output. If fault occurs in one of the modules, voter unit is able
to mask the error as long as remaining two modules have correct output. TMR is the
most common form of NMR configuration as more than three copies may not increase
the reliability as larger hardware size means more probability of hardware faults, and
the added cost in terms of space is significant. Figure 2.4 shows the circuit level
implementation of a majority voter.

Figure 2.3: Triple Modular Redundancy (TMR) Concept

Figure 2.4: Majority Voter Circuit

Fault Detection:

Detecting fault is essential for active fault tolerance techniques. Figure 2.5 shows
a simple hardware redundancy configuration that detects error. Outputs from two
identical modules with identical operation are compared to detect if they agree. When
the outputs from the two modules disagree, the comparator detects this and indicates
the occurrence of an error. However, being a purely active configuration, there is no
modification to the output.
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Figure 2.5: Simple Fault Detection

Fault Containment:

Containment is an action that prevents the errors from propagating outside the
boundary. Masking takes care of containment dynamically. When there is no masking
mechanism in use, the fault tolerance mechanism must notify relevant modules that
the output is not valid. This approach may be troublesome in time critical applications
such as real-time control systems.

Fault Diagnosis, repair/reconfigure, recovery:

Hybrid configuration, which mixes both passive and active fault tolerance techniques
are required to not only mask but detect and mitigate the faulty condition in the
system. In order for the system to be fault tolerant, it must locate the fault and
recognize the extent of the fault (diagnose), replace the fault with fault-free component
(repair/reconfigure), and finally bring the system to a state where continued operation
is possible (recover).

Sometimes a system capable of these actions are called Build In Self Repair (BISR).
Common example of BISR is a large DRAM circuit with spare memory block, which
replaces a faulty block when error is detected. Figures 2.6 and 2.7 show some of the
hybrid configurations.

‘NMR with Spare’ circuit shown in the Figure 2.6 has N number of identical modules
conducting the same operation. Voter/switch unit selects more than three units for the
majority voting. Output from the voter is fed back to the error detecting unit, which
upon detecting an error de-selects faulty module and the ‘spare’ module is used instead.

In the ‘Self purging’ system shown in Figure 2.7, each module has its own output
switch, which is comparing the module output and the system output. When the
module output disagrees with the system output, switch shuts off the module output;
purging the faulty module from the majority voting system.
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Figure 2.6: NMR with Spare

Figure 2.7: Self Purging

2.3 Power Aware Systems

In order to reduce the power consumption as much as possible, modern LSIs commonly
incorporate techniques such as clock gating and power gating. Clock gating stops the
supply of clock signal for unused logic circuit block so as to eliminate the dynamic
power consumption caused mainly by switching current of transistors. Power gating
stops the supply of power all together to completely shut down the circuit. [23]
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In this project, number of functional unit copies created for Triple Modular Redun-
dancy (TMR) is controlled dynamically to control the overall power consumption. In
order to achieve such system the power consumption needs to be monitored constantly
and accurately. The author looked into Built-In Current Test (BIC) techniques, where
built-in analog circuit measures the current consumption of the device to find device
hardware fault. Literatures [20] and [26] describes how such circuit can effectively be
designed and implemented. An example of such circuit is shown in the chapter 3.

2.4 Perplexus Project: Ubichip Platform

The design of this project is implemented within a framework developed in the PER-
PLEXUS European project. The Ubichip is the kernel of this project; a reconfigurable
VLSI system endowed with bio-inspired capabilities. As reported in [11], attributes
of bio-inspired architecture is promising for implementation of fault tolerant hardware
especially in the application of Build-in-Self-Repair (BISR), wherein self-healing capa-
bility of the hardware detects and mends faults in the hardware. This section explains
the important functionalities of Ubichip that is used in this project. Details of the
PERPLEXUS project can be found in [31], [22].

2.4.1 Ubichip

The Ubichips are mounted on a prototype system called Ubidule, which is presented
[31]. As shown on Figure 2.8, Ubichip consists of three major blocks: An array of
reconfigurable processing elements called Macrocell (MC), the System Manager and
a controller for Content Addressable Memory (CAM). The system manager block is
responsible for configuring the reconfigurable array and external communication.

Each MC is made up with four reconfigurable cells called Ubicell, which is explained
later in this section. The configuration bit stream for each MC can be recovered and
configured dynamically using the Self-Replication (SR) function of the Ubichip. The
SR function is used extensively in this project, thus its details are briefly explained
later in this section. Each MC also contains a Dynamic Routing (DR) control unit,
which allows a pair of MCs to establish communication paths dynamically. The DR
functionality of Ubichip is further explained in [27]. Furthermore, a Ubichip can also
be configured in multiprocessor mode where a SIMD-like parallel machine can be
implemented.

Initially the fabricated Ubichip was scheduled to arrive at the author’s laboratory
however there has been a delay and the author did not get access to the finished Ubichip.

2.4.2 The Ubicell

Figure 2.9 shows the overall organization of an Ubicell. An Ubicell consists of an
input switch box, an output switch box, memory/LUT block, ALU block, and a flags
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der to increase their lifetime and to improve their adaptabil-
ity to the environment and to the user. If one considers life,
as we know it, the following three levels of organization
can be distinguished [13]: (1) Phylogeny, concerning the
temporal evolution of a certain genetic material in individu-
als and species, (2) Ontogeny, concerning the developmen-
tal process of multicellular organisms, and (3) Epigenesis,
concerning the learning process during an individual’s life-
time. Analogous to nature, the space of bio-inspired hard-
ware systems can be partitioned along these three axes, to
which we refer as the POE model.

When we refer to the phylogenetic axis of bio-inspired
hardware systems, we are talking about ”Evolvable Hard-
ware” (EHW). EHW makes use of evolutionary algorithms
in order to define a description of a hardware system. From
a desired behavior specification of a circuit, an evolutionary
algorithm will search for a circuit configuration describing
a satisfactory solution to the specification. If one examines
the work carried out to date under the heading EHW, one
can identify four taxonomic subdivisions according to the
level of bio-inspiration: extrinsic, intrinsic, complete, and
open-ended evolution [13]. The ubichip must provide thus
the capabilities for performing each of the aforementioned
levels of evolution. The capability of evolving at these four
levels will allow our ubidules to evolve, in a completely au-
tonomous way, under a real-time interaction with the envi-
ronment and under the presence of uncertainty.

The ontogenetic axis comprises several mechanisms of
high interest for inclusion in human-designed systems.
Self-replication and self-repair are two key characteristics
of living beings that are still far from being exploited by
engineered systems with an efficiency comparable to na-
ture. However, some key factors from multicellular beings
have been identified for use in the design of ontogenetic ma-
chines: the dependence of cell’s functionality upon its rela-
tive position, the relevance of the physical neighborhood for
chemical interactions between cells, the importance of time
scales during cellular reproduction, and the fundamental
role played by protein’s regulation and cell’s differentiation,
which is driven by regulatory and differentiation genes. Re-
search projects as Embryonics [6] (embryonic electronics)
and POEtic [1, 10, 11] have studied the issues related to
hardware implementations of such mechanisms.

The epigenetic axis of bio-inspired hardware systems
mainly refers to hardware implementations of artificial neu-
ral networks, also known as ”neural hardware”. Most neu-
ral models are conceived for being implemented in software
platforms, making them unsuitable for hardware implemen-
tations. These models don’t take care about data resolution,
floating point operations overhead, or multiplications, since
their overall overhead in software is negligible or nonexis-
tent. These aspects turn out to be very expensive when one
considers their implementation as a hardware architecture.

Some previous works have focused on optimizing the im-
plementation of such types of models, and other works have
focused on proposing original models that exploit better the
hardware specificity of the implementation [9, 18].

The implementation of such bio-inspired features on a
hardware substrate requires some special hardware mecha-
nisms to be provided by the underlying reconfigurable ar-
chitecture. These mechanisms must allow an efficient use
of hardware resources when designing POE circuits.

3. Ubichip mechanisms

The system architecture envisioned for the ubichip is
represented in figure 1, and it is composed of four main
parts. (1) The encoder/decoder is in charge of managing the
shared address bus that implements the inter-chip communi-
cation with an address event representation (AER) scheme
(to be further explained in subsection 3.4). (2) The memory
controller takes care of handling the data RAM needed to
store system parameters as well as the CAM (Content Ad-
dressable Memory) that will be used to implement the AER
communication scheme between neurons. (3) The system
manager handles the overall configuration of the ubichip

and its interface with the main controller of the ubidule. For
the neurobiological modeling application, it is envisioned
to implement a SIMD-like solution with a centralized se-
quencer and a set of reconfigurable neural units. The se-
quencer included in this subsystem interprets the code cor-
responding to the execution of the neurons to be imple-
mented in the configurable section of the ubichip. A small
instruction set has been specifically designed for this se-
quencer. This instruction set is general enough to permit
the implementation of any parallel system. Furthermore, it
includes conditional store instructions so as to permit a lin-
ear execution of the code, thus improving the concurrence
of the system. Finally, (4) the configurable array consists in
a bi-dimensional regular array of elementary reconfigurable
cells.

Figure 1. System Architecture of the ubichip.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00  © 2007

Figure 2.8: Overall Block Diagram of a Ubichip [31]

switch box. The ALU block consists of a 4-bit ALU to be used for multi-processor
mode, which is unfortunately not available for LUT mode operation, which is what
this project implementation is in [15]. In this project, relevant blocks are input switch
box, output switch box, and the LUT/memory section.

The LUT section has four 4-bit Look-up-Tables (LUT), each of which has input
and output multiplexers to realize nine different configurations listed in table 2.2.
Schematics of each configuration can be found in the appendix section.

1 Four Independent 4-input functions

2 Wide Decoder/high-fanin function

3 Two-lelvel Logic

4 Counter Mode

5 Configurable Registers

6 2 x 2-bit state machine

7 3-bit state machine

8 Shift Register

9 LFSR Mode

Table 2.2: Ubicell LUT configurations

Input box selects the input for each of 4-bit input ports located at each side of
Ubicell, North, East, South, and West. As shown in the Figure 2.11, input from
each side can be selected from 4 of the neighbouring cells. The input switch box
allocates the input for each of the four internal LUTs. The output switch box
selects output from each side of the cell; there are four separate multiplexers for
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Figure 2.9: Organization of Ubicell

each side of the cell. The outputs can be selected from 16 different sources including
raw signal from the input of other sides as shown on Table 2.3. By selecting input
signal to other sides, signals can be routed to cells farther than the immediate neighbors.

2.4.3 Ubicell Array Organization

A Macrocell is mede up with four ubicells as shown in Figure 2.13. Figure 2.12
shows the block diagram of a macrocell. Macrocell is the smallest unit of cells when
bio-inspired capabilities of the Ubicells are utilized, namely Dynamic Routing (DR)
and Self Replication (SR). DR and SR are discussed in the next sections.

In a sense of bio-inspired architecture, an Ubicell is called a moleule, a Functional
Unit (FU) made up of macrocells is called an organelle, organelle with additional
circuit for self replicating (SR) capability is called a cell, and a set of cells in one
system is called an organism. The size of organism on Ubicell can be up to 10x10
macrocells (20x20 Ubicells).
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Figure 2.10: Ubichip Look-up-Table (LUT) I/O Organization

2.4.4 Self Replicating (SR) Capability

Self Replication (SR) is an important attribute for Ubichip; it allows Ubichip to im-
plement bio-inspired circuits featuring growth, learning, and evolution. In POE model
(Phylogeny, Ontogeny, Epigenesis), which is the main target of Perplexus project, SR
capability allows Ontogeny, which concerns the developmental process of multicellular
organisms [31]. In SR process, a cell is capable of creating exact and complete copy of
itself at arbitrary location within the reconfigurable array. The SR process on Ubichip
occurs by means of self-inspection; the cell inspects its own configuration bit-stream in
order to make a replica of itself. While this approach eliminates the necessity of extra
memory element to store the configuration data, it adds up complexity of the control
circuit. As it is seen in figure 2.15, two separate SR controllers are necessary for the
entire process. Furthermore, sequence of events listed below needs to be implemented
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Output Options:

1 Output from the LUT Block

2 input south[3:0]

3 input south[7:4]

4 input south[11:8]

5 input south[15:12]

6 input west[3:0]

7 input west[7:4]

8 input west[11:8]

9 input west[15:12]

10 input north[3:0]

11 input north[7:4]

12 input north[11:8]

13 input north[15:12]

14 LUT0 register

15 LUT1 register

16 LUT2 register

Table 2.3: Ubicell Output Switchbox sources (In the case of East-Out)

Figure 2.11: Inter-Ubicell Connectivity

using a set of finite state machine (FSM) controlling each of the SR controllers.

1. a: SR Controller (SRC) 2 recovers configuration bit-stream (conf-b) of SRC1

2. b: SRC2 remotely configures open array with conf-b of SRC 1

3. c: SRC1 recovers conf-b of SRC2

4. d: SRC1 remotely configures open array with conf-b of SRC2

5. e: SRC2 recovers conf-b of Functional Unit (FU)
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Internal Report Self-Reconfigurable Ubicell Array

chain formed by the configuration bit-strings of the 4 ubicells + the dynamic routing
unit. In this way, the SRConfigUnit introduces initially the string to the DR-unit (from
confreg_s_out to s_data_in), then the serial output of the DR-unit is reinserted to
the left-lower ubicell (from s_data_out to s_data_in), then to the left-upper ubicell
, then the string is shifted in the same way through the two remaining ubicells before
coming back to the SRConfigUnit (to the confreg_s_in signal).

2

confreg_s_in

ubicell_in

confreg_s_out

confreg_shift_en

confreg_reset

ubicell_out

enable

SRConfigUnit

s_data_in

rep_data

enable_rep

rep_success

s_data_out

rep_access_en

output_west

Ubicell

2

s_data_in

rep_data

enable_rep

rep_success

s_data_out

rep_access_en

output_west

Ubicell

s_data_in

rep_data

enable_rep

rep_success

s_data_out

rep_access_en

output_west

Ubicell

s_data_in

rep_data

enable_rep

rep_success

s_data_out

rep_access_en

output_west

Ubicell

6

4

s_data_in s_data_out

enable_rep

DR-Unit

Figure 3: Self-Reconfiguration in a Macrocell

The shifting of the whole shift register is performed when the SRConfigUnit acti-
vates the confreg_shift_en signal. The shift is enabled after loading the configu-
ration H-flag (introduced in the internal report [3]).

It must be noted that during the serial configuration of the ubicell some configu-
ration bit actions are disabled in order to avoid some critical invalid configurations.
For instance ubicell’s outputs are disabled in order to avoid invalid inputs to neighbor
ubicells. Because of this, the shifting of the configuration string must be done in a non-
interrupted way (i.e. the confreg_shift_en signal cannot be disabled during a clk
cycle for a momentaneous interruption of the configuration).

4.2 The kill process

The kill process is performed by reseting the configuration registers of the ubicell. Dur-
ing the kill process, the config_reset signal (not present in figure 3) is set to ’1’. The

PERPLEXUS, Contract No. 034632

4

August 22, 2007

Figure 2.12: Blcok Diagram of a Macrocell

Internal Report Self-Reconfigurable Ubicell Array

1 Introduction

This report integrates three architectures already described in previous internal re-
ports: Specification of the Ubicell [1], Specification of the Dynamic Routing mechanism [2],
and Specification of the self-replication mechanism [3]. The first document describes in a
detailed way the basic logic cell’s architecture and configurability to be included in
the Ubichip. The second one describes the dynamic routing mechanisms defined as
an array of dynamic routing units. And the third one, describes the Self-replication
hardware mechanisms to be included in the Ubichip, that will allow the further imple-
mentation of the replicators

This document describes the merge of them, and explains how to use these mecha-
nisms by a user-defined system.

2 Macrocell

Each pair of self-replication (SR) and dynamic routing (DR) units will be associated to
four Ubicells and the ensemble of these units will be called a Macrocell. A macrocell
will thus constitute the minimal unit to be addressed (for reading or configuration)
by a self-replication unit. Figure 1 depicts a top level view of a macrocell, which is
composed of three layers: a ubicell array layer, a dynamic routing layer, and a self-
reconfiguration layer.

Ubicell Ubicell

Ubicell Ubicell

SR

DR

Macrocell

Ubichip 
Reconfigurable

Array

Figure 1: Composition of a Macrocell
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Figure 2.13: Ubicell and Macrocell

6. f: SRC2 sends the conf-b of FU to newly created crone SRC2a

7. g: SRC2a configures neighboring array with conf-b of FU

2.4.4.1 SR Mechanism

Self Replication (SR) process on Ubichip is controlled by accessing SR control units
(SRCU) that sit on each macrocell (MC) (Ubicellx4). In order to do this, a MC needs
to be dedicated as a SR controller by enabling SR bit on configuration. Once enabled,
I/O of the LUTs in the macrocell are connected to SR control unit and SR process can
be controlled through this MC. Figure 2.16 shows how a MC is dedicated for controlling
SRCU, which is controlled by a FSM.
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Figure 2.14: Concept of Organism

Figure 2.15: Ontogenic Self Replication Process on Ubichip

A SR control unit (SRCU) is capable of undertaking four major actions necessary
for the SR process: configuration, Recovery, Reconfigure, and kill.
Configuration process involves a macrocell (MC) dedicated for the SR controller

18



Figure 2.16: SR Control Unit and Macrocell (MC)

circuit recovering configuration bit stream (config-b) from neighboring organelle from
one side (N, E, S, or W) and reconfigureing the empty cells on one of the other sides.
Recovering and Reconfiguring take place when replication needs to be done on
cells not at the immediate neighbor; one SR controlling MC recovers config-b from
neighboring organelle and send it to the second MC, which is also dedicated for SR
control. The second SR then configure its neighbor cells using the config-b received
from the first MC. SRCU is also capable of killing an entire organelle, in which all
the configuration of an organelle is reset.

Figure 2.17 shows the configuration bits organization of a MC. One such block
consists of 525 bits. Figure 2.18 shows an organelle of 4 MCs. Configuration bits of
each MC are connected serially as a chain of shift registers.

Internal report. Specification of the self-replication hardware units

four clock cycles), then the input data goes through the configuration bits register. As

the configuration bits only contains zeros after a reset, its output changes only after a

number of clock cycles corresponding to the size of the register. At this time, the HFlag

of the second SRConfigUnit reaches the end of the shift register and is forwarded to

the neighbor pointed by regDir. This 2-bit register, configured during the Flag con-

struction, contains the direction to which the configuration has to be continued.

When a SRConfigUnit is accessed by the configuration process, the origin of this

configuration is stored after the first clock cycle. By this way, it is possible to avoid a

potential configuration coming from another neighbor to partially destroy the current

process, something that could let the system in an unstable state.

When the configuration is finished, the signal configUbicell_in is released by

the ubicell, and this state is propagated to all SRConfigUnit on the newly constructed

path. If the cell configuration was successful, the register reg_full_configured is

set to ’1’, indicating that the SRConfigUnit can not accept another configuration pro-

cess. An unsuccessful process can occur when the path arrives to an edge of the circuit,

or to an already constructed path. A signal (successX_in/_out), at zero if unsuc-

cessful, is propagated to the SRConfigUnit on the constructing path, until the first unit.

When the configuration process ends, this signal is checked by the SRConfigUnit. If

asserted high, then the reg_full_configured register is set to ’1’, and if not, the

unit is reset, letting it blank as if nothing happened.

4.1.1 Example

We show here the configuration process of a 4-unit system. The number of configura-

tion bits is not relevant here, but we consider a bit stream sent to the most bottom-left

unit, with a number of bits equal to CSize. Figure 1 illustrates the registers of the SR-

ConfigUnit, except the one storing the last value of signal success. In order not to

complicate the schematics, the configuration bits are here represented inside the SR-

ConfigUnit, but in the real system they are present outside.

!"#$%&'()*%"#+,%*-

./0"1/(%#&+234)&
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Figure 1: Registers of a SRConfigUnit.
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Figure 2.17: Configuration Bits Organization for a Macrocell (MC)

H-Flag:

Figure 2.19 shows H-Flags for the organelle shown in Figure 2.18. SRCU has no means
of detecting shape or size of the organelle. H-flags represent the shape of organelle by
simple directional arrows and a stop flag. H-Flags are used by controlling SRCU to
connect all the Configuration bits of involving MCs in correct order. In Figure 2.20,
one can see how H-flags are connecting all the MCs in the organelle, and consequently
the configuration can occure into two directions (South and East). Finally, Figure
2.21 shows how SRCU uses H-Flag to shape the new copy of the organelle. Further
descriptions on Ubichip’s SR functionality can be found in the literature [29].
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direction from which the recoverX_in is active. The input of the recovering HFlag is

the dataY_in. The input of the configuration register is dataX_in. The output of the

configuration register is sent to dataY_out, that is to the next unit on the constructed

path. The only exception is the last unit of the path, having the HFlag . This unit uses

the output of the configuration register as the input of the recovering HFlag, closing

the full shift register.

During the recovering process, the output serial data extracted are directly, and

automatically reinjected in the shift register. Therefore, at the end of the process, the

SRConfigUnit on the scanned path remain identical as before the recovering.

4.2.1 Example

We consider the example used to describe the configuration process. We start with the

state described in the next figure:

We show here the four first steps, exhibiting the shifting of the HFlags and of the

configuration bits.

step 1 step 2 step 3 step 4

After 4 steps, the recovering HFlags of the units 0, 1, and 2 contain the initial content

of units 1, 2, and 3. We can observe that the fixed HFlag is not affected by the recovering

process, ensuring that the path is always valid during this process. The recovering

process, like the configuration, requires, or a system of n units, n CSize 4 steps.

At the end of the process, the inspected units recover their exact same state as before

the recovering.

PERPLEXUS, Contract No. 034632
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Figure 2.18: Configuration Register Chain

Figure 2.19: H-flag example of the Figure 2.18

2.4.5 Dynamic Routing (DR)

Ubichip has a Dynamic Routing (DR) capability, in which a pair of MCs that is not
immediate neighbor to each other can be connected dynamically with 4-bit bus. As
this functionality is possibly useful for this project, the mechanism was studied and

Figure 2.20: Configuration and H-Flag
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Figure 2.21: Remote Configuration and H-Flags

tested. In the end DR was not incorporated in this project but can well be used for
future improvement of this system.

Similar to SR process, a DR process requires dedicated MC to control the Routing
Unit (RU) as shown in Figure 2.22. Control signals, as well as the data to be sent from
the source to target are connected to LUT outputs of the controlling MC. A RU has
access to eight of its neighbors: North, Northeast, East, Southeast, South, Southwest,
West, and Northwest.

Figure 2.22: MC Controlling a RU

The RU and its controlling circuit are entirely responsible for the routing process;
no external control is necessary. Furthermore, creation of path occur dynamically
when a routing is initiated by controller circuit, this allows newly replicated cell to
participate in the routing as well.

Only one path can exist at a time in an Ubicell array. The path is created between
predefined source and target using the HIDRA algorithm, which is based on Dijkstra
shortest path algorithm. The controlling circuit is responsible for destroying path once
the communication is no longer needed. The path creation is done in 5 steps as shown in
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Figure 2.23: Routing Unit (RU) Connectivity

Table 2.4. The algorithm of the path creation is explained extensively in [27] and [30].
Graphic representation DR process from a simulation is shown in the Appendix section.

1 Master Allocation Master is found based on proority rule (South West has priority)

2 Send Identifier Broadcast the address to find the possible pair

3 Competitor Elimination The nearest RU with the same identifying address is chosen

4 Expansion Breadth-first search algorithm to find the path

5 Path Creation A path is created when search is over

Table 2.4: Dynamic Routing (DR) Path Creation

2.4.6 Ubimanager

A software tool called Ubimanager was used to implement the design on Ubichip.
Ubimanager was designed in the PERPLEXUS project in order to manage the
Ubichips. The Ubimanager allows developers to design Ubichip implementations by
means of a GUI environment; developers can configure all the three layers of Ubichip:
Ubicells, Dynamic Routing Units (DR), and Self-Replication Units (SR). It is also
capable of simulating the implementation using Modelsim. A detailed description of
Ubimanager tool is provided in [28].

In a Ubimanager environment, the array of Ubicells is represented in a GUI window;
a developer can configure each cell by double-clicking the cell to open the configuration
window. Screen shot of various UbiManager GUI can be found in the Appendix Section.
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System Architecture 3
After being familiarized with the architecture of the Ubichip as well as leaning about
the concept of fault tolerant system design, which were explained in the previous
chapter, the author has first designed a top-level system architecture; utilizing the
Ubichip functions to realize a power-aware fault tolerant system. This chapter will
explain the basic architectural overview of the system.

Implementation took two stages: firstly on the Ubichip framework explained in the
chapter 4, and secondly using standard VHDL design environment explained in the
chapter 5. The Ubichip implementation was to present a proof of concept; verifying
the capability of Ubichip as well as identifying the merit and issues. A complete system
was then implemented on standard VHDL environment to address the issues identified
during the Ubichip implementation stage; realizing all the necessary functional blocks,
some of which were not possible on the Ubichip environment.

3.1 Overall Design

Figure 3.1 shows the top level architecture of the power aware fault tolerant system.
The system contains four basic components: a FMS to control the overall functionality,
Functional Unit (FU) to realize the main combinational and sequential circuits, spaces
where copies of FU can be made, and voter/locater block to detect and locate errors.

3.1.1 Basic Operation

The system contains a functional unit (FU), where the main functionality of the system
is implemented. There are number of spaces, in which the circuit of the original FU
can be copied to realize error detecting function by means of Triple Modular Redun-
dancy with spare(TMR with spare). An external circuit measures the dynamic power
consumption of the system and feed the value through the Power-mode input, the sys-
tem takes the power consumption into account when creating copies of FU; when the
power consumption is below the predefined threshold required number of FU copies are
made to achieve the highest reliability while higher than threshold current consumption
makes the system to limit the number of FU copies to make sure that the overall power
consumption of the system does not exceed the predefined limit. The system has Built-
in-Self-Repair capability; any FU block with erroneous output can be reconfigured, or
a new FU copy is created to replace the dysfunctional block. In a case where system
detects an error that cannot be corrected, the system notifies the external controller
through ’fatal-error flag’.
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Figure 3.1: Top Level Architectural Block Diagram

3.2 System Requirements and Algorithm Design

The major functional requirements and algorithms of the system were to be considered
at this stage of the design:

• Fault Tolerance

• Self Repairing

• Power Awareness

3.2.1 Fault Tolerance

TMR with spares configuration was selected as the main architecture because the
Ubichip platform has a dynamic self replication capability, which makes TMR imple-
mentation simple while unused logic space can be used as spare.
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Figure3.2 is a block diagram of the fault tolerance part of the system. Fault is
masked by TMR majority voter circuit. Output from each Functional Unit (FU) is
compared with the voter output by simple XOR circuit for fault locating. There are
also three voters for redundancy and disagreement among the output of voters results
in the fatal system error.

Figure 3.2: Fault Tolerant Circuit Block Diagram

3.2.2 Self Replicating, Dynamic Configuration, and Self Repairing

Figure 3.3 shows a block diagram of the Self Replication (SR), which is primarily used
to make copies of the Functional Unit (FU) in order to achieve TMR fault tolerance.
SR controllers are built in circuit of Ubichip, which can read (recover) and write
(configure) the configuration bits of reconfigurable fabric (Ubicell).

Each of replicating block require one SR controller; this system require one for
the original FU for recovering, one each for the rest of TMR copies. When system
replicates the FU, SR controller for for the original FU recovers the configuration bits,
which are sent directly to the other SR controllers for them to configure the empty
space to make FU copies. The Self Replication mechanism of the Ubichip is serial;
making a temporary termination of system operation while SR process is in progress.
SR controllers themselves do not have control logic circuit and extra logic circuit is
necessary to control the SR process. A Finite State Machine (FSM) is designed to
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control all the SR controllers in this system.

On Ubichip, a SR controller is capable of handling variable number of reconfigurable
blocks (Macrocell); size of a FU can be anything from single cell to dozens of cells.
However, there is no mechanism on Ubichip for SR to dynamically tell the size of the
block it must recover and replicate. Therefore a SR Timer must be implemented for
the control FSM to stop the SR process after appropriate number of clock cycles. The
flexibility in size of replicating block however allows the system to utilize the same
space to be used for different circuit blocks.

Figure 3.3: Self Replication (SR) Block Diagram

State Saving:

When copying a logic circuit dynamically, state saving is a very important feature.
The circuit as well as the state of the circuit need to be copied so that the newly
configured block can continue the process that was in progress before the replication.

For the system of this project to function, state saving is an essential feature
because the number of TMR copies are changed dynamically to meet the power
consumption specification. On Ubichip, state saving is taken care of in a normal SR
process. All the circuit configuration as well as the outputs of all the LUTs are part of
the configuration bit-stream. Therefore when SR process is complete the state of the
circuit is also replicated.

3.2.3 Power Awareness

One of the main goal of this project is for the system to be power aware; the system
must constantly be monitoring its power consumption and assure that it does not
exceed the predefined threshold.

Table 3.1 and Figure 3.4 show the modes of power aware operation. Three basic
modes are introduced to make this Triple Modular Redundancy (TMR) system power
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aware.

When power consumption is below Threshold A (Mode 1), the system operates in
normal TMR configuration, which consists of a original Functional Unit (FU) and its
two copies. In Mode 2, where a power consumption is higher than the threshold A but
lower than B, one copy of the TMR system is eliminated; a fault tolerance function is
sacrificed but error detection is still possible. When the power consumption is above
the threshold B (Mode 3), system eliminates both of the FU copies so that power
consumption is kept below the limit by sacrificing fault-tolerant and error-detection
capability.

Mode Power Consumption: Operation:

1 < Threshold A Normal Fault Tolerant Operation (TMR)

2 Threshold A <
∪

< Threshold B Reduced Fault Tolerance (1 FU copy instead of 2)

3 Threshold B < No Fault Tolerance (Original FU only)

Table 3.1: Power Aware Operation Modes

Figure 3.4: Mode of Operation and Power Consumption

3.2.3.1 Measuring the Power Consumption

Unfortunately the current version of Ubichip does not have a built-in capability of
measuring the power consumption directly. In order to measure the power consumption
on Ubichip framework the author used the ’transition counter’, a circuit that counts
the output transition of the Functional Unit to estimate the current consumption.
For the proof of concept design as this project is, using the count of transitions at
the output is sufficient so the system can be tested. However, for more accurate
measurement of the power consumption, the author recommends implementing the
analog current measurement circuit used for Built-In Current Testing (BIC Testing).
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Current Measurement Circuit:

As mentioned earlier, Ucichip does not have capability of accurately measuring the
power consumption. In order to make a system to be power aware, the author recom-
mends implementing a on-chip circuit to measure the power consumption. A simple
current measurement circuit designed for Built-In Current Testing (BIC Testing)
can be used to measure the current consumption in relatively simple CMOS based
design with small overhead. The details of BIC Testing circuit can be found in [20] [26].

Figure3.5 shows a block diagram of proposed current measurement design based on
BIC circuit. An I-V converter connected serially to the system converts the current
into voltage as shown in Figure 3.6. The voltage then can be digitized by simple
A-D Converter (ADC) as shown in the Figure 3.7. The digitized value of current
consumption should be compared to the thresholds with hysteresis implemented by
the last block, where the power mode is calculated depending on the average current
consumption within defined time period T.

Circuits shown in Figures 3.6 and 3.7 should work as they are shown. However,
analog design techniques such as capacitive reference voltage, and clocked comparator
should be used to reduce the power overhead of this circuit.

Figure 3.5: Current Sensor Implementation

3.2.4 System Controller FSM

Figure 3.8 shows design of the controller finite state machine (FSM). The system start
with a single Functional Unit (FU). Depending on the power mode provided by the
external power measurement unit, the FSM controls number of TMR copies to keep
the power consumption within the predefined threshold. When the number of FUs are
two or three, fault tolerant functionalities are valid and disagreement of the output
among FUs will trigger the error mitigation actions by moving to ’error detect’ state.
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Figure 3.6: I-V Converter Circuit

Figure 3.7: 2-Bit ADC Circuit

State: Function:

reset state System Reset

one FU Initial operation state. Remain here when power mode is ‘3’.

two FU Two FU operation mode, Fault detection available.

three FU TMR mode, full fault tolerance available.

replicate Reacting to the change of power mode; add or eliminate FU copy(s).

error detect Fault detected in mode ‘1’ or ‘2’.

Table 3.2: FSM States and functions
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Figure 3.8: State Diagram
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Implementation on Ubichip 4
The implementation on Ubichip tool place on Ubimanager development environment.
As explained in the previous chapter, Ubimanager allows designers to configure the
Ubichip cells in GUI environment. However, the Ubimanager does not provide compil-
ing from high-level language or RTL design-like debug environment. Limitation on the
development environment affected the design process as well as the design itself. This
chapter explains how the design was implemented on Ubichip.

4.1 Overall Design

Figure 4.1 shows a block diagram of the dynamic fault tolerant system implemented
on a Ubichip. There are three SR controllers; one is responsible for reading the
configuration bit-stream from the original FU, being the other two responsible for
replicating the copies. The control signals for the SR controllers are created in the
’Control FSM’ block. The level of system power consumption is sent to the control
FSM from the ’Transition Counter’ block as ’counter value’. According to the power
consumption level the FSM changes the operation mode and forces the SR controller
to have an appropriate number of FU copies. Every time new copies of the FU are
made, the Control FSM block relies on the signal from the ’SR Timer’ block to stop
the SR process upon completion. The outputs from FUs are compared at the ’Output
Comparator’ block. Figure 4.2 shows the overall system implemented on Ubichip.

4.2 Design on Ubichip

Designing a system on Ubichip consists of defining five major items in each of the
Ubicells:

• Contents of LUTs

• Input select for LUT input MUXs

• Selection of the Output signals

• Selection of the Input signals

• Selection and setup of LUT configuration

As explained in Chapter 2, inputs and outputs of the four LUTs inside each Ubicell
can be selected from different sources depending on the LUT configuration modes.
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Figure 4.1: Power Aware Fault Tolerant System: Overall Block Diagram

Figure 4.2: Overall System View of Ubicell Array
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There are eight such configuration modes, all of which are shown in the appendix
section on page 55. Definition of those Ubicell configurations are conducted using a
cell configuration window of the Ubimanager as shown in figure 4.3, and the design
information for all the Ubicells in a design is saved as Ubicell File (.ubc). Detailed
explanation of LUT configuration modes can be found in [14].

Routing and Floorplaning:

All the routing and floor planning are conducted manually. Routing is done by defining
the input and output of each cell. The routing has a significant limitation as only
one 4-bit wide signal can be mapped for I/O on each edge of a cell. Without any
automatic tools, planning of the location of each functional cells, connections among
cells, and overall floor-planning are very crucial and time consuming parts of the
design implementation on Ubichips.

Figure 4.3: Ubicell Configuration Window on Ubimanager
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4.2.1 FSM Design

LUT based architecture of Ubicell allows simple implementation of logic cicruits;
having 16-bit (4x4) input and 4-bit (1x4) output, logic circuit can simply be mapped
to the LUT as it is seen on the truth Table. Selecting a right LUT configuration mode,
it is also possible to implement multi-stage logic and simple state machines. However,
when the complexity of the logic circuit to be implemented becomes larger than a few
signals, it becomes highly difficult to implement a system using only what is available
on Ubimanager tool. The system the author has designed in the previous chapter is
neither large nor complicated if conventional high-level environment such as VHDL
was to be used. However, having 6 states, more than 20 FSM signals, and multiple
control signals makes this implementation rather complicated.

The author initially intended to implement the FSM manually using classic
truth-table and Karnaugh Map approach however quickly realized it is extremely
time consuming and error prone task. Next the author conducted some research on
techniques regarding LUT implementation of FSM systems. There are numerous
papers such as [12] describing algorithm for converting FSM into LUT map. However,
information the author found were all for algorithms for Electronic Design Automation
(EDA) systems such as compiler and not for manual implementation.

In the end, some functions of conventional EDA tools were used to aid this imple-
mentation. Two software packages were used:

• Mentor Graphics HDL Designer Series, HDL Designer

• Mentor Graphics Precision RTL Synthesis 2008

From the HDL Designer software, a function to generate a synthesizable code
directly from a FSM State Diagram was used. Precision RTL tool imports the
generated code from HDL Designer and map the code to selections of FPGAs. In the
process of circuit mapping the Precision RTL generates a schematics with LUTs. The
author used this schematics to implement the FSM system on the Ubichip. Limitation
such as Ubicell array size and signal routing constraints meant that the author needed
to simplify the design. Figure 4.4 shows the state diagram implemented on Ubichip.
Full-size output from the EDA tools can be found on the Appendix section at page 59.

A schematic of the FSM generated was analyzed and divided into 6 stages as shown
in the figure 4.5.

4.2.2 SR Controller

While it is possible for one SR controller to remove and make a copy of an organism (set
of MCs), ‘remote configuration’ explained in [29] is necessary to control two different
copies separately. In this case, a total of 3 SR units are required: one for recovering

34



Figure 4.4: FSM State Diagram of the System Implemented on Ubichip

Figure 4.5: FSM Schematics based on LUT with 6 Logic Stages

the configuration bit stream of the original organism, one each for configuration of the
two copies.

A SR controller takes one whole macrocell (4 Ubicells). Enabling the ‘Replication
enable’ signal, the macrocell becomes an interface to the SR unit of neighboring
macrocells. Control signals for the SR processes as well as the bit-stream data for
replication are read-out and fed through the SR controller.
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Figure 4.6: Cells with FSM Implementation

4.2.3 SR Timer

A 4-bit flag called ‘H-flag’ contained in each MC defines the shape of an organism.
The SR unit does not have the number of MCs included in a single organism; it is not
possible for the SR unit alone to determine the number of cycles required to complete
a SR process. A counter is necessary to stop the SR process at an appropriate time.

A combination of 4-bit counters, comparator, and control circuit was implemented
in five ubicells as shown in Figure 4.7. An Ubicell can be configured as a 4-bit counter
when configuration mode shown in Figure 4.8 is selected. The comparator circuit
compare the counter output from each cell, when the output reaches the predefined
value, a flag is sent to the FSM to stop the SR process. The reset circuit monitors the
FSM state and keep the timer from running while SR process is not in operation.

4.2.4 Transition Counter:

Because Ubichip does not have a current measuring capability, a transition counter
was implemented in the system to estimate the power consumption by monitoring the
logical transition of the output.

Figure 4.9 shows the diagram of 4-bit transition counter used in this project. As
one can see in this Figure, a parallel counter is required in this circuit. The design
of parallel counter can be complicated and require large space. In this project, the
author limited the output width to 4 bits, and implemented a 4-bit parallel counter
using four 4-bit LUTs as shown on Table 4.1.
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Figure 4.7: SR Timer Circuit
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Figure 4.8: Ubicell in Counter configuration
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Figure 4.9: 4-bit Transition Counter

LUT Input: Out(bin) Out(dec)

0000 0000 0

0001 0001 1

0010 0001 1

0011 0010 2

0100 0001 1

0101 0010 2

0110 0010 2

0111 0011 3

1000 0001 1

1001 0010 2

1010 0010 2

1011 0011 3

1100 0010 2

1101 0011 3

1110 0011 3

1111 0100 4

Table 4.1: Implementation of 4-bit Parallel Counter Using 4 x 4bit-LUT

4.2.5 Functional Unit

As the goal of this experiment is to show a proof of concept working system, the
implementation of the Functional Unit (FU) was kept simple; a combination of
memory, a counter, and a Linear Feedback Shift Register (LSFR) pseudo-random
number generator were configured in a MC as shown in Figure 4.10. A built-in
configuration, which configures the LUT and the internal memory element as a 64-bit
LFSR was used to implement the LFSR cell.

4.2.6 Comparator

In this implementation, output comparator simply indicates the bit-wise XOR of the
outputs from each FU as a fault detecting measure. Ubichip blocks outputs from cells
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Figure 4.10: Functional Unit (FU)

during SR process so that no error is detected during normal SR process.

4.2.7 State Saving, Enable Signal

Output from each LUT on Ubicells are part of the configuration bit-stream on Ubichip.
Therefore it is not necessary to implement extra circuit for copying state before the
replication. However, as state saving depends on the data copied in the SR process,
even the organism that is not part of the SR process must stop their operation while
replication is in progress. This situation occurs in this project when the number of FU
copy is increased from 1 to 2; the already existing copy of FU must stop its operation
while the configuration is recovered from the original FU to generate the second copy.

In order to keep the state of all the FUs in sync, an global enable signal was
introduced. The signal is generated from the FSM. Specification in the Ubichip only
allows the enable signal to be connected to specific bit at West or the North input
ports, this makes the implementation of enable signal complicated, and may pause
problems when the size of FU is larger.

4.2.8 Debugging on Ubichip

Debugging stage was the most time consuming and difficult part of the implementation
solely due to the lack of EDA tools. Errors exist in any part of the implementation
though there was no tools to detect any of the errors. Design would simulate with no
problem but simply would not operate correctly. Tracing the signal is not an easy task
either; signals are passed through numerous cells’ input and outputs but there was
no means of organizing different signals as netlists. Essentially, in order to debug a
system on Ubichip the designer must go go over the every configuration in each cells.

This design on prototyping environment makes a design process different from ones
using conventional tools. First stages of the design flow before the actual implemen-
tation should be conducted very carefully as design change after the implementation
takes almost the same time as a implementation from the scratch.
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4.3 Functional Test

The implementation was tested using the Modelsim tool integrated in the Ubimanager
environment. Figure 4.11 and 4.12 show screen-shots of the system under simulation.
One can see how a different counter value results in a different number of copies. Each
system block was confirmed to be working according to the design intention. After
the system was verified by simulation it was physically implemented in the Ubichip
available in the Ubidule board.

Figure 4.11: Simulation View. 2FU mode
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Figure 4.12: Simulation View. 1FU mode
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VHDL Implementation 5
Several limitations on Ubichip framework, mainly due to the issues discussed in the
previous chapter kept the author from implementing the full system initially designed
as discussed in chapter 3. One of the recommendation the author has for future of
Ubichip framework is to implement dedicated hardware for the fault tolerant system
outside the Ubicell array, which would not only make the fault tolerant system more
reliable but also make the framework ready to be used for more practical application
where reliability is important.

This chapter will explain how the author has developed a fault tolerant system
using a synthesizable VHDL code. The working of the system has been tested and
verified on simulation.

5.1 Overall Design

The VHDL implementation realized a state shown in the Figure 3.8 in the earlier
chapter. Figure 5.1 shows the block diagram of the system. The goal of this VHDL
design was to have all the framework in Power Aware Fault Tolerant System to be
implemented as dedicated hardware so that they do not have to take up the Ubicell
space. To achieve this purpose, blocks consisting the SR controllers as well as the FU
spaces are made to operate exactly as they do in the Ubichip. Voters for the Triple
Modular Redundancy (TMR), Fault Locater, and the control FSMs are designed with
synthesizable VHDL code.

Control FSM:

In normal operation, the FSM controls the number of FU copies by consulting the
power mode, which is calculated externally depending on the power consumption of
the system.

The FSM detects system fault when the signal from the fault locater indicates
that one of the Functional Units (FU) is faulty. When an error is detected, the
configuration of the FU is cleared and the system resets to re-configure the FU
spaces. The FSM has internal counter to keep track on how many times er-
rors are detected on each FU, when the error count exceed the predefined number (1
in this experiment), the FU is marked as invalid, and the system discards the FU space.
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Ubichip Emulation:

The Functional units, and SR controllers in this implementation emulates exactly
the hardware of Ubichip. The control bus for the SR controller and the Ubicell, as well
as Ubicell with four 4-bit LUTs are realized to test operation of the system.

Fault Tolerance Circuit:

Since the system is power aware and the number of FU copies differ at different
power mode, the FSM notifies the power mode to the fault tolerant circuit for them
to behave according to available resources. When 2 FU copies are available, making a
full TMR possible, the voters vote on the output from three FUs, and the fault locater
detect the occurrence of error and its location. When only 1 or 2 FUs are available,
the voter simply passes the output from the original FU. During SR processes and
when error is detected, voter outputs is kept to logic ’0’. When there are 2 copies of
FU (fault detection mode), the locater detects errors by comparing the output from
the 2 FUs.

Operation Mode: Voter Output

1 FU Original FU

2 FU Original FU

3 FU Vote result

Others logic ’0’

Table 5.1: Voter Outputs and Operation mode

5.1.1 Functional Test

All the possible combination of state transitions in normal operation shown in the
Table 5.2 were verified as well as the fault tolerant operations shown in the talbe 5.3.

Previous State: New State:

1 FU → 2 FU

1 FU → 3 FU

2 FU → 1 FU

2 FU → 3 FU

3 FU → 1 FU

3 FU → 2 FU

Table 5.2: State Transitions Verified
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Figure 5.1: Block Diagram of the VHDL Implementation

State: Error: Action:

2 FU: Normal Error Detect Reconfigure

2 FU: FU1 invalid Error Detect Reconfigure

3 FU FU0 error Reconfigure

3 FU FU0 error 2nd FU0 Invalidate

3 FU FU1 error Reconfigure

3 FU FU1 error 2nd FU1 Invalidate

3 FU FU2 error Reconfigure

3 FU FU2 error 2nd FU2 Invalidate

Table 5.3: Verified Fault Tolerance Functions
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Conclusion 6
6.1 Analysis

6.1.1 Ubichip Implementation

6.1.1.1 Cell Count, Area Overhead

Table 6.1 shows the number of cells used for each system block. The fault tolerant
system takes a total of 64 Ubicells. The area overhead in this application is significant
because a very primitive 4-cell single MC was used as the FU. When a larger FU is
implemented, the area of the rest of the system remains unchanged. As the size of
Ubicell array in Ubichip is 10 by 10 MCs (20x20=400 Ubicells), the area overhead of
this fault tolerant system is 16% of the total array area.

Block: # of cells:

Control FSM 22

SR Controller (x3) 12

Output Comparator 11

SR Timer 5

Transition Counter 14

Functional Unit 4

Table 6.1: Cell Count of the Design

6.1.1.2 Timing observation

Configuring cells using a serial register means that the time required for configuration
increases as the number of MCs to be replicated increases. Table 6.2 shows the cycles
required for the SR unit to complete for different number of MCs. The worst-case
estimation for the operating frequency of Ubichip is 50MHz. Since the operation of the
FU must pause during the replication process, the replication time especially for larger
FUs may become a serious issue for timing-critical applications.

Number of MCs: Clock Cycles: Time in seconds:

1 547 10.9µs

2 1,072 21.4µs

10 5,272 105µs

300 157,522 3.15ms

Table 6.2: Clock Cycle and time in seconds required for Self-Replication (at 50MHz)
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6.1.2 Issues and Advantages

Based on the experience of the design and implementation process, the author has
identified the advantages as well as issues in using Ubichip.

Advantages:

The biggest advantage in using Ubichip for this application is the built-in Self
Replication (SR) capability. It allows configuring logic circuit of any size or shape to
be configured on any part of Ubichip dynamically. Furthermore, because Ubichip as a
bio-inspired architecture is based on an array of Ubicells, the configuration of a new
logic circuit can be done locally instead of discarding the entire column as in the case of
FPGAs. As the name suggests, the Self Replication process is completely autonomous;
multiple SR processes can occur simultaneously on single array space. This allows
replication of several different circuits, or making multiple copies of a single circuit.
Furthermore, by incorporating output values in the configuration stream, state is pre-
served when copies of a circuit is made. Furthremore, the Ubichip is designed in a way
that signals can reach any part of the array in single clock without buffer so that de-
signers can implement any logic circuit without worrying about the critical path length.

Issues:

• The major problem of implementing a design on Ubichip is the lack of any EDA
tools. This is inevitable as Ubichip is an academic prototype platform. However,
lack of EDA tools makes implementation of complicated system nearly impossible

• SR is a versatile and useful function of Ubichip. However the configuration bit
stream is sent through serial chain of registers, making the time it takes for the
replication process to be significant

• Implementing the FSM and control circuit on Ubichip platform have been proven
to be error prone and time consuming. Dedicated hardware that includes SR
controller and timer can address this issue. In addition, a standard FPGA or
Microcontroller (MCU) circuit to implement general controller of the system could
also allow more conventional use of Ubichip. Furthermore, Standard CMOS logic
circuits, compared to SRAM based FPAG implementation are more tolerant to
radiation; reducing the possibility of system malfunction due to fault in the fault
tolerant circuit itself

6.2 Recommendation / Future Work

Implementation on Ubichip:

The author was not able to have access to fabricated Ubichip in time. Once the chip
is available the design should be loaded and tested on Ubichip for further verification.
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Power Measurement:

In this project for the Ubichip implementation, number of logical transition of the
output signal was counted to estimate the system power consumption. Needless to say
this method cannot measure the accurate value. The author has proposed a simple
analog circuit based on Built-in Current Test (BIC) to measure the system current
consumption. The design should be considered for integration for better perform as a
power aware system.

Dedicated Controller Block:

Although having flexible capability, Self Replication Unit of Ubicell require control cir-
cuit, which must be implemented in Ubicell array. A System controller, which includes
FSM and SR controller could be implemented externally so that the Ubicell array can
be used solely for the functional unit.

SR Stop Flag:

H-Flag, which indicates the shape and size of organelles during SR process contain a
stop flag. This flag should be interpreted by the SRCU to stop the process so that SR
timer is no longer necessary.

Advanced Fault Tolerance:

The system developed in this project can be modified to implement more advanced
fault tolerant functionality. On Ubichip platform, the author recommends next step to
be the ability to discard the original cell when fault is found there. Furthermore, area
of reconfigurable fabric should be isolated as permanently faulty after certain number
of faults are found at the same cell.

Development of the IDE Environment:

Problems the author experienced due to the lack of EDA tool was mentioned earlier
as one of the issues. Here the author lists types of functions and tools that can
significantly increase the ease of design implemntation on Ubichip:

• Routing tool: During the implementation, the routing of the signals was the
most time-consuming stage as few each signal needed to be routed by configuring
the I/O selection of all the Ubicells that signals pass through. As output of each
Ubicell is only 4-bits, routing also required well-thought floor planning of the
Ubicells. A routing tool, which can convert a list of signals to a map of Ubicells
with routing configuration should be implementable, and this can greatly improve
the implementation process
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• Netlist Generation: The ability for the designer to name the signals and view
them visually in an organized way can dramatically enhance the effort and time
required for debugging

• Netlist Highlighting: If GUI can represent each signal on the routing view,
design process as well as debugging process would be easier for the designers

• Wave Viewer: Ubimanager incorporates the Modelsim EDA tool for Ubichip
simulation. It would make the debugging effort simpler if the wave viewer func-
tion of the Modelsim is accessible from Ubimanager to trace the signals during
simulation

• High-level Language Support: Lack of high-level language support makes
Ubichip a unpractical option for many designs. While it is not simple task to
develop a compiler that can convert VHDL or System C into Ubicell circuit,
standard FPGA fabric maybe added in addition to implement some of the control
circuit.

Use of ALU mode:

Although a Ubicell contains a 4-bit ALU, Currently ALU mode of the Ubicells is not
available for logic circuit design as they are designed only for SIMD mode of Ubichip.
Availability of ALU can expand the possibility of more complicated systems to be
implemented on Ubicell array

Expanded Signal Connectivity:

The output data width of Ubicell should be expanded to allow more flexibility in signal
routing. Furthermore, an additional general purpose data bus used for essential signals
such as reset and FSM state can simplify the logic circuit implementation

6.3 Concluding Remark

The motivation of this project was to address the serious issues facing VLSI design
namely the power consumption and reliability. Power consumption is a bigger issue
when feature size of IC becomes smaller. Radiation induced soft errors, also called
Single Event Upset (SEU) is a serious reliability concern for modern VLSIs especially
for reconfigurable circuit as SEU occur at higher rate on SRAM blocks, which are the
bases of most reconfigurable circuits.

Ubichip, a bio-inspired reconfigurable hardware developed in Perplexus project
is constructed with an array of Ubicells, which are the reconfigurable blocks ca-
pable of Self Replication (SR). The SR capability seemed especially promising for
implementing Triple Modular Redundancy (TMR) based fault tolerant system. SR
units’ capability of creating and destroying the copies of circuits dynamically can also
be used to control the size of system in order to regulate the overall power consumption.
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With the capability of Ubichip in mind, a power aware fault tolerant system was
designed, which is then implemented on Ubichip platform. During the implementa-
tion, several limitations and issues of Ubichip platform were identified; some of the
limitations kept the author from implementing complete system. Nevertheless a proof
of concept design was successfully implemented and functions were verified. Identified
issues were listed in this report, which leads to some of the recommendations for the
future research area.

The design implementation on Ubichip was also reported in a paper Implementation
of a Power-Aware Dynamic Fault Tolerant Mechanism on the Ubichip Platform, which
was accepted for 2010 International Conference on Evolvable Systems (ICES).
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Appendix A
A.1 Ubichip LUT Configurations
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Figure A.1: Ubicell Mode: 4 Independent 4-input LUT

53



!"#$%"&'(%$)*%#+(,)$-./.-&#.*"(*/(#0$(12.-$''(
(

3453(
(

678697:1,;(<*"#%&-#("=>2$%(5?@A?B( ( ?CBDCB55E(

!"#$%&'($)*+#,#*+#*-$./)*,'-$%'*0-)&*1$2&+#$&%$-"#$34!52#2&(6$1#0-)&*$)1$+#,)0-#+$
)*$%)7'(#$89$:#,#*+)*7$&*$-"#$2&+#$1#;#0-#+$%&($-"#$34!52#2&(6$1#0-)&*$)-$,(&<)+#1$
#)-"#($-"#$0&2=)*>-)&*>;$&($-"#$(#7)1-#(#+$&'-,'-$&%$-"#$34!19$

91F? G H

-'I

."J91F?KBL

."J91F?K4L

."J91F?K5L

*=#J?

91FB G H

-'I

."J91FBKBL

."J91FBK4L

."J91FBK5L

*=#JB

91F4 G H

-'I

."J91F4KBL

."J91F4K4L

."J91F4K5L

*=#J4

91F5 G H

-'I

."J91F5K?L

."J91F5KBL

."J91F5K4L

."J91F5K5L

*=#J5

."J91F4K?L

."J91FBK?L

."J91F?K?L

$
$

!"#$%&'()'?&'($)*+#,#*+#*-$./)*,'-$%'*0-)&*1$2&+#$&%$-"#$34!52#2&(6$1#0-)&*9$
$

!"#$@)+#$+#0&+#(5")7"/%>*)*$%'*0-)&*$2&+#$&%$-"#$34!52#2&(6$1#0-)&*$)1$+#,)0-#+$
)*$%)7'(#$.9$

91F? G H

-'I

."J91F?KBL

."J91F?K4L

."J91F?K5L

*=#J?

91FB G H

-'I

."J91FBKBL

."J91FBK4L

."J91FBK5L

*=#JB

91F4 G H

-'I

."J91F4KBL

."J91F4K4L

."J91F4K5L

*=#J4

91F5 G H

-'I

-&%%MJ."

."J91F5KBL

."J91F5K4L

."J91F5K5L

*=#J5

-&%%MJ*=#J91F $
$

!"#$%&'*)'A)+#$+#0&+#(5")7"/%>*)*$%'*0-)&*$2&+#$&%$-"#$34!52#2&(6$1#0-)&*9$
$

!"#$B/;#<#;$;&7)0$2&+#$&%$-"#$34!52#2&(6$1#0-)&*$)1$+#,)0-#+$)*$%)7'(#$C9$D1$)-$0>*$
=#$#>1);6$+#+'0#+E$34!8$)1$>=;#$-&$,#(%&(2$>$%'*0-)&*$&*$-"#$&'-,'-$(#1';-1$,(&<)+#+$

Figure A.2: Ubicell Mode: Wide Decoder/high-fanin
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Figure A.3: Ubicell Mode: 2-Level Logic
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Figure A.4: Ubicell Mode: Counter Mode
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Figure A.5: Ubicell Mode: 1bit State Machine
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Figure A.6: Ubicell Mode: 2-bit State Machine
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Figure A.7: Ubicell Mode: 3-bit State Machine
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Figure A.8: Ubicell Mode: Shift Register
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Figure A.9: FSM State Diagram designed in HDL Designer software Package
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Figure A.10: LUT Schematics Generated by Precision RTL Synthesis
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A.3 Dynamic Routing simulation

Figure A.11: DR Simulation: Before the Process

Figure A.12: DR Simulation: Master Search

Figure A.13: DR Simulation: Expansion

61



Figure A.14: DR Simulation: Path Created

A.4 Ubimanager GUI Screen Shots

Figure A.15: Ubimanager: Standard Screen with Ubicell Array
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Figure A.16: Ubimanager: Self Replication (SR) H-Flag Configuration

Figure A.17: Ubimanager: Dynamic Routing (DR) Routing Unit (RU) Configuration Window

63



Figure A.18: Ubimanager: Ubicell Configuration Window
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Figure A.19: Ubimanager: Simulation Window
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Abstract. Dynamic fault-tolerant techniques such as Built-in Self Re-
pair (BISR) are becoming increasingly important as new challenges emerge
in deep-submicron era. A dynamic fault-tolerant system was implemented
on the Ubichip platform developed in the PERPLEXUS European project,
which is a bio-inspired custom reconfigurable VLSI. The system is power-
aware; power consumption is monitored dynamically to regulate the num-
ber of copies made by a self-replication mechanism. This paper reports
the design, implementation, and simulation of the fault-tolerant system.

Keywords: Dynamic Fault Tolerance, Self-replication, Reconfiguration,
BISR, Bio-inspiration, Ubichip, PERPLEXUS, Power-awareness

1 Introduction

The IC technology scaling, which follows the famous Moore’s law has evoked a
great deal of advancement in modern electronics for the last few decades. Design-
ers have been able to integrate greater number of transistors on a limited area
of silicon die; modern VLSI systems with multiple function blocks on a single
die allow designers to reduce the physical size of the systems and manufacturing
costs. The ITRS predicts in [2] that the gate length of VLSI systems will go
below 20 nm in the later half of this decade, a length enough to fit only few
hundreds of silicon atoms in one line. This deep-submicron paradigm poses new
challenges to the VLSI design; intricacy of the fabrication will be greater, so that
manufacturing defects will likely increase while testing for those defects will be
very challenging due to the ever increasing complexity of the system. The relia-
bility will also suffer due to phenomena such as gate insulator tunneling, Joule
heating, and electromigration. Furthermore, the small feature size will certainly
increase the unpredictable errors due to alpha particles, namely soft error, or
Single Event Upset (SEU) [1], [2] .
There have been many advancements in techniques such as Design for Test
(DFT) and Built-in Self-test (BIST) [1]. While these tests can effectively de-
tect faults due to defects, they cannot detect unforeseeable faults caused by



aging-defects or temporal faults such as SEU. In order to assure the reliability
while incorporating deep-submicron technologies, the system should have dy-
namic fault-tolerance capabilities to detect and correct errors on the run. If a
VLSI system can autonomously detect and correct an error situation dynami-
cally, it will not only increase the reliability but also the yield and life-time of
the ICs, resulting in a significant cost reduction [5].
The Ubichip is a bio-inspired custom reconfigurable VLSI system developed in
the PERPLEXUS project [6], [10]. Ubichip offers bio-inspired capabilities such
as dynamic routing and self-replication. The operational flexibility provided by
these mechanisms makes Ubichip an ideal platform to implement dynamic fault
tolerant systems with Built-in Self Repair (BISR) capabilities.
This paper presents the design, development, and simulation of a power-aware
fault-tolerant system implemented on the Ubichip. Section 2 discusses the back-
ground and overall system architecture. Section 3 briefly introduces the Ubichip
platform used in this experiment. Section 4 describes the implementation of the
design in detail. Section 5 discusses the implementation and simulation results.
Finally, the future research areas as well as concluding remarks are included in
section 6.

2 A Power-Aware Fault Tolerant System

2.1 Background

In order to protect a system from logic errors during run-time,it can use Built
in Self Repair (BISR). Several different methods of implementing BISR are dis-
cussed in [5]. Triple Modular Redundancy (TMR) is a widely known method
of BISR. Although it is also known to be area consuming, it is very simple to
design and unlike error correcting codes [3], no static specialized design tools are
required; it is more versatile in accommodating different logic circuits.
In dynamic reconfigurable systems, Funcion Units (FU) are configured at run-
time as required. Unused FUs can simply be deleted to give more space for
necessary functions. In such systems, the same TMR circuit can work for dif-
ferent FUs configured in the same area because of the simplicity of the algorithm.

2.2 Power Awareness

The power consumption must be considered when implementing TMR. Having
three identical circuits would result in at least three times more power consump-
tion in terms of switching current. Furthermore, power consumption is a major
issue to be solved in VLSI today; larger circuits, higher operation frequency, and
smaller feature size all contribute to higher power consumption.
TMR is intrinsically not a power efficient design technique. In order to reduce
the effect on power consumption, authors have implemented the power-aware
TMR system based on a previous work presented in [11]; the system monitors



its power consumption and eliminates one or both of the TMR copies when the
power consumption is above a predefined threshold.
While clock gating or power gating also can be used to control the power con-
sumption of TMR designs in the same way, our framework on Ubichip is capable
of dynamic reconfiguration, thus same FU space can be used for different blocks
according to power consumption and operation phases.

2.3 System Description

Figure 1 shows the FSM states of the power aware design presented in this
paper. Initially the system starts with a single functional unit (FU). As our
system platform (Ubichip) does not have current sensing capabilities, the power
consumption of the running application is measured by a ’transition counter’.
This subsystem estimates the power consumption by means of a ’counter value’
and controls the number of FU copies using the self-replication (SR) function
of the Ubichip. Counter value is computed by accumulating output values from
multiple clock cycles and counting the number of transitions. When the number
of transitions from the original FU is the highest, meaning in this case more than
3 bits transition in 2 consecutive clocks, the counter value is ’00’ and no copies
of FU are made. When the number of transitions is low, meaning the transition
from the original FU is between 0 and 1 bit for 2 consecutive clocks, the counter
value becomes ’10’, which leads the system to create 2 copies of FU. Counter
value ’01’ is an intermediate transition count; when the output from the original
FU has 2-bit transition for more than 2 clock periods, only one copy of the FU
is created.
The system starts with single FU mode. After few clock cycles the transition
counter estimates the current consumption and indicates it as ’counter value’.
The system constantly monitors its power consumption and changes the number
of FU copies accordingly.

3 A Reconfigurable Framework: PERPLEXUS

The system was designed within a framework developed in the PERPLEXUS
European project. The Ubichip is the kernel of this project; a reconfigurable
VLSI system endowed with bio-inspired capabilities. Details of the PERPLEXUS
project can be found in [10], [6].

3.1 Ubichip

Ubichips are mounted on a prototype system called Ubidule, explained in [10].
A Ubichip consists of three major blocks: An array of reconfigurable process-
ing elements called Macrocell (MC), the System Manager and a controller for
Content Addressable Memory (CAM). The system manager block is responsi-
ble for configuring the reconfigurable array and external communication. Each
MC is made up with four reconfigurable cells called Ubicell, which is explained



Fig. 1. FSM State Diagram of the implemented system

later in this section. The configuration bit stream for each MC can be recov-
ered and configured dynamically using the Self-Replication (SR) function of the
Ubichip. The SR function is used extensively in this project, thus its details are
briefly explained later in this section. Each MC also contains a Dynamic Rout-
ing (DR) control unit, which allows a pair of MCs to establish communication
paths dynamically. The DR functionality of Ubichip is further explained in [7].
Furthermore, a Ubichip can also be configured in multiprocessor mode where a
SIMD-like parallel machine can be implemented.

Fig. 2. Organizatio of a Ubicell (Left), Ubicell array and Macrocell (Right)



3.2 The Ubicell

Figure 2 shows the overall organization of a Ubicell. As explained extensively
in [4], a Ubicell can be configured to implement various logic functions in LUT
mode or work as a part of multi-processor machine in ALU mode. In this project
all the cells are configured to various configurations within LUT mode.

3.3 Inter-cell Connection

Neighboring Ubicells can be connected by selecting appropriate input/output
multiplexers. Figure 3 shows the neighborhood connectivity among Ubicells. The
output multiplexers are able to choose not only the output but raw input from
other neighbor cells as well. Furthermore, it is possible for any pair of macrocells
(4 Ubicells) to communicate using the Dynamic Routing (DR) capability.

Fig. 3. Inter-Ubicell Connectivity

3.4 Self Reconfigulation

A group of more than one macrocells (organism) can be copied to other parts
of the Ubicell array using the Self-Replication (SR) mechanism. An organism
has the configuration bits of its MCs connected by a chain of shift registers.
The configuration bits of MCs can be recovered through this chain by a SR con-
troller. The SR controller can use this recovered bit-stream to configure an empty
area during self-replication process. Details of the SR controller on Ubichip are
explained in [9].



3.5 Ubimanager

The authors used a software tool called Ubimanager, which was designed in the
PERPLEXUS project in order to manage the Ubichips. The Ubimanager allows
developers to design Ubichip implementations by means of a GUI environment;
developers can configure all the three layers of Ubichip: Ubicells, Dynamic Rout-
ing Units (DR), and Self-Replication Units (SR). It is also capable of simulating
the implementation using Modelsim. A detailed description of Ubimanager tool
is provided in [8].
In a Ubimanager environment, the array of Ubicells is represented in a GUI
window; a developer can configure each cell by double-clicking the cell to open
the configuration window.

4 Implementation

Figure 4 shows shows a block diagram of the dynamic fault tolerant system
implemented on a Ubichip. There are three SR controllers; one is responsible for
reading the configuration bit-stream from the original FU, being the other two
responsible for replicating the copies. The control signals for the SR controllers
are created in the ’Control FSM’ block. The level of system power consumption
is sent to the control FSM from the ’Transition Counter’ block as ’counter value’.
According to the power consumption level the FSM changes the operation mode
and forces the SR controller to have an appropriate number of FU copies. Every
time new copies of the FU are made, the Control FSM block relies on the signal
from the ’SR Timer’ block to stop the SR process upon completion. The outputs
from FUs are compared at the ’Output Comparator’ block.

Fig. 4. Power Aware Fault Tolerant System: Overall Block Diagram



The functionality of its main building blocks is the following.

Functional Unit (FU): As the goal of this experiment is to show a proof
of concept working system, the implementation of the Functional Unit (FU)
was kept simple; a combination of memory, counter and pseudo-random number
generator (LFSR) was configured in a MC as shown in figure 5.

Fig. 5. Functional Unit (FU)

Output Comparator: In this implementation, output comparator simply indi-
cates the bit-wise XOR of the outputs from each FU. In a future implementation,
the comparator result should be fed back to the controller to implement error
correction.

SR Controller: While it is possible for one SR controller to remove and make
a copy of an organism (set of MCs), ’remote configuration’ explained in [9] is
necessary to control two different copies separately. In this case, a total of 3 SR
units are required: one for recovering the configuration bit stream of the original
organism, one each for configuration of the two copies.
The SR mechanism of Ubichip blocks the output from the MCs during the SR
process, eliminating the need to filter erroneous output during the SR process.
Furthermore, values of each register in the MCs are incorporated in the configu-
ration bit stream; states of the circuits are preserved to the newly created copy
of an organism.

SR Timer: A 4-bit flag called ’H-flag’ contained in each MC defines the shape
of an organism. The SR unit does not have the number of MCs included in a
single organism; it is not possible for the SR unit alone to determine the number
of cycles required to complete a SR process. A counter is necessary to stop the
SR process at an appropriate time.

FSM: While a Ubimanager provides a GUI environment for design implemen-
tation, it cannot compile from high-level languages such as C or VHDL; the



entire circuit must be implemented by a combination of circuits available in the
LUT mode of the Ubicells. The authors resorted to utilize commercially avail-
able RTL synthesizer tools to implement the FSM. First, the state chart was
converted to HDL using Mentor Graphics HDL Designer. Next, Precision RTL,
also by Mentor Graphics was used to syntesize the HDL and produce the RTL
schematics with look-up tables (LUTs). The contents of the LUTs as well as
the connections among the LUTs were then configured manually to each Ubicell
using Ubimanager.

Routing, Floor planning: Figure 6 shows the implemented system. One can
see the wiring for routing, and configured Ubicells in this figure. All the routing
and floor planning are conducted manually; there is no automatic tool available
thus planning of the location of each functional cells, connections among cells,
and overall floor-planning is a very crucial part of design implementation on
Ubichips, and should be conducted carefully.

Fig. 6. System Implementation on Ubichip

5 Implementation Results

The implementation was tested using the Modelsim tool integrated in the Ubi-
manager environment. Figure 7 and 8 show screen-shots of the system under
simulation. One can see how a different counter value results in a different num-
ber of copies. Each system block was confirmed to be working according to the



design intention. After the system was verified by simulation it was physically
implemented in the Ubichip available in the Ubidule board.

Fig. 7. Simulation View. 2FU mode

5.1 Cell Count, Area Overhead

Table 1 shows the number of cells used for each system block. The fault tolerant
system takes a total of 64 Ubicells. The area overhead in this application is
significant because a very primitive 4-cell single MC was used as the FU. When
a larger FU is implemented, the area of the rest of the system remains unchanged.
As the size of Ubicell array in Ubichip is 10 by 10 MCs (20x20=400 Ubicells),
the area overhead of this fault tolerant system is 16% of the total array area.

Block: # of cells:

Control FSM 22

SR Controller (x3) 12

Output Comparator 11

SR Timer 5

Transition Counter 14

Functional Unit 4
Table 1. Cell Count of the Design



Fig. 8. Simulation View. 1FU mode

5.2 Timing observation

Configuring cells using a serial register means that the time required for configu-
ration increases as the number of MCs to be replicated increases. Table 2 shows
the cycles required for the SR unit to complete for different number of MCs. The
worst-case estimation for the operating frequency of Ubichip is 50MHz. Since the
operation of the FU must pause during the replication process, the replication
time especially for larger FUs may become a serious issue for timing-critical
applications.

Number of MCs: Clock Cycles: Time in seconds:

1 547 10.9µs

2 1,072 21.4µs

10 5,272 105µs

300 157,522 3.15ms

Table 2. Clock Cycle and time in seconds required for Self-Replication (at 50MHz)

6 Conclusion

6.1 Concluding Remarks

Built-in Self-Repair (BISR) is a technique becoming more and more important
as the feature size of VLSIs shrink and the chance of faults such as aging defect



and temporal errors increases. In this paper, a conceptual design of a power-
aware BISR system using triple-modular redundancy (TMR) was implemented
on a custom dynamically reconfigurable platform. Motivation of such system as
well as the design and implementation was explained followed by the simula-
tion and implementation results and observation. The authors have successfully
demonstrated how the Ubichip, a bio-inspired reconfigurable custom VLSI can
be used to implement flexible power-aware fault tolerant systems.

6.2 Future Work

In order to have the fault-tolerant system presented here to be available for more
practical uses, the authors have found several directions for future research:

Power estimation: Accurate measurement of power consumption is necessary
to have a power-aware system working correctly. As the Ubichip platform does
not offer current measurement capabilities, this experiment took transition of
output values to estimate the dynamic power consumption of the functional
unit. A research should be conducted to incorporate a system to measure the
power consumption more accurately.

Error Correction: In this experiment, a simple bit-wise XOR circuit compared
the outputs in the TMR system. Further research and development is necessary
to implement an error correction capabilities. Such correction system should
detect and locate the circuit with error, eliminate the faulty circuit out from the
TMR trio, and create a new copy of the circuit in a new location.

SR Controller: The control mechanism of the system was implemented on
reconfigurable cells on the Ubichip, resulting in an area overhead on the re-
configurable fabric. A research should be conducted to study the possibility of
implementing the self-replication controller circuit as part of the platform so
that developers can easily implement this BISR capability in their new designs.

Developing Environment: Ubimanager provides many useful features for de-
signing and implementing functions on Ubichip platform. However, the lack of
a high-level language compiler means that the developers must implement LUT
contents and routing manually, increasing the development time significantly.
Furthermore, the lack of debug tools makes it very time consuming to detect
and correct errors in the design. Design tools such as floor planner, interconnect
router, high-level language compiler, and debugger would make Ubichip more
accesible in practical applications.
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