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Introduction

1.1. Project Background

According to statistics, there were 56.4 million sales of passenger cars around the world in 2021 alone.
The automotive industry is experiencing increased levels of competition as a direct result of the in-
creased demand for passenger vehicles. Because of this, customers have higher expectations regard-
ing the performance of vehicles and the level of comfort they provide during rides.

The suspension system is an essential component of any vehicle and has a substantial impact on
the vehicle’s overall performance, handling, and safety. Here are a few of the most important reasons
why the suspension system is so crucial:

* Ride comfort: The suspension system is responsible for absorbing road bumps and vibrations,
providing passengers with a smoother and more comfortable ride. Not only is this important for
passenger comfort, but also for reducing driver fatigue and enhancing vehicle handling.

+ Stability: The suspension system aids in keeping the tyres in contact with the road, thereby im-
proving traction, stability, and control. Maintaining vehicle stability during cornering, braking, and
acceleration is crucial for preventing accidents and ensuring driver safety.

» Handling: The suspension system plays a crucial role in improving the vehicle’s cornering abil-

ity, reducing body roll, and minimising weight transfer during acceleration and braking. This is

essential for enhancing driver confidence and control, particularly in difficult driving conditions.

Tire wear: The suspension system helps to evenly distribute the vehicle’s weight across all four

tires, thereby reducing tyre wear and extending tyre life. This is essential for reducing mainte-

nance costs and maximising vehicle efficiency.

» Impact resistance: The suspension system is designed to absorb impacts and prevent collision-
related damage to the vehicle and its occupants. This is essential for ensuring passenger safety
and minimising injury risk in the event of an accident.

The design of the suspension is such that it allows for sufficient travel to accommodate both static
and dynamic load variations. The relative displacement between the body and the various suspension
parts is what we mean when we talk about suspension. In addition to this, the suspension needs to
make sure that there is very little roll and pitch acceleration when the vehicle is being manoeuvred.
Variations in the normal force exerted by the tyre can be used to characterize the wheel-road contact.
There is a non-linear relationship between the maximum longitudinal and lateral tyre forces, also known
as the maximum braking forces, and the normal force that is exerted by the tyre. As a result of this
non-linear relationship, optimal handling performance can be accomplished with only slight variations
in the normal force exerted by the tire. The transmission of road disturbances to the body of the vehicle
is what's meant to be meant by the term “"road isolation.” Road isolation and, consequently, ride comfort
are both improved when the transmissibility of the surface is reduced. Because maintaining contact
with the road and minimizing road noise are mutually exclusive goals, the design of the suspension
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system must incorporate a compromise between the two.

Dependent and independent suspension systems are the two categories that can be used to de-
scribe suspension setups. The dependent suspension system features a solid axle that runs the length
of the frame and is supported by two separate springs. It makes it possible for the wheels on the left
side as well as the right side to be connected to one another and to work together as a unit. Off-roading
and applications that require high load handling are typical places to find vehicles equipped with this
type of suspension. Leaf springs, Panhard rods, Watt’s linkages, and other similar mechanisms are all
examples of dependent suspensions.

Each wheel in an independent suspension system responds differently to the conditions of the road.
This means that a bump on one side of the vehicle does not cause a reaction on the other side of the
vehicle. When greater ride comfort and handling performance are required, these suspensions are the
ones that are used. There are many different kinds of independent suspensions, such as the MacPher-
son strut, the multi-link suspension, the double wishbone suspension, and so on.

The three types of suspension systems—passive, semi-active, and active—are categorized accord-
ing to the amount of control they provide over the vehicle’s suspension. A mechanical spring and a
passive damper are utilized in a passive suspension system, which ultimately results in the spring stiff-
ness and damping characteristics remaining constant. By doing so, a satisfactory balance is achieved
between the ride comfort and the handling of the vehicle. In practice, the passive suspension system
performs the function of an open-loop control system. Only under certain conditions is it intended to
perform at its highest level, which was the primary motivation behind its design. The passive suspen-
sion system is rigid and does not offer any degree of adjustability.

In semi-active systems, it is possible to exert control over one or more of the coefficients. In most
cases, this is accomplished by utilizing a hydraulic damper system that is equipped with control valves
that, depending on the suspension velocity, can adjust the damping coefficient of the suspension sys-
tem. The passive system has already seen a significant improvement as a result of this, and it is now
possible to tune it to obtain nearly optimal performance characteristics. The fact that the force gener-
ated by the actuator, which in most cases is a damper with variable force-velocity characteristics, is
contingent on the direction in which the relative motion is taking place is the primary characteristic of
semi-active systems[1]. This is considered a limitation because this suspension type cannot control
the vehicle’s ride height, roll, or pitch angle[2].

When a vehicle is equipped with an active suspension system, the suspension can be controlled
by monitoring the state of the vehicle and applying an appropriate external force in order to achieve
the highest possible level of driving performance. This system gathers data from a wide variety of
required sensors, which results in an increase in both the system’s power requirements and its overall
cost. Between the unsprung mass and the sprung mass are some controllable actuators that have
been installed. In this case, the force produced by the actuator does not depend in any way on the
direction in which the relative motion is acting. This advantage controls the ride height in addition
to compensating for the roll, pitch, and heave motions that the vehicle body experiences [2]. The
suspension control module will individually adjust the damping forces for each wheel based on the
information that it receives from the acceleration and suspension displacement sensors[3]. Figure 1.1
shows the damping capabilities of various suspension systems.
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Figure 1.1: Force - velocity and force-displacement characteristics for passive, semi-active and active suspension systems.
Coloured areas indicate the operation domain.

Despite the enhanced control capabilities offered by active suspension, it is accompanied by sub-
stantial energy consumption and remains expensive for widespread commercialization and implemen-
tation in economy class vehicles [4]. However, it is worth noting that certain suspension actuators have
the capability to recover energy from road oscillations, thereby enhancing the overall energy efficiency
of the system [5].

Controlled suspensions employ input data derived from acceleration sensors positioned on the sus-
pension module as well as suspension displacement sensors located between the vehicle body and
the lower control arms of the suspension system. In certain instances, supplementary acceleration
sensors may also be positioned on the unsprung mass. Control systems often incorporate various
additional inputs, including but not limited to steering wheel angle, vehicle speed, brake pressure, and
other relevant factors.

The concept of ride comfort is commonly employed within the automotive sector to denote the
subjective perception of passengers with regard to the level of smoothness and overall excellence of
a vehicle’s ride. The attainment of optimal ride comfort entails the reduction of the adverse effects
caused by road irregularities and disturbances on the individuals within the vehicle, thereby facilitating
an enjoyable and driving encounter.

Nevertheless, it should be noted that not all vibrations and motions experienced by the driver of a
vehicle are directly perceptible. The driver’s perception is limited to the motion and vibrations of the
vehicle’s body, specifically its sprung mass. When evaluating the perceived comfort of a vehicle, the
primary aspect to consider is the vibrations caused by the sprung mass. This serves as a fundamen-
tal measure of vibrations, in order to assess comfort. The analysis of these accelerations will provide
valuable insights into the behaviour of the sprung mass when subjected to various road inputs.

In active suspension, controllable actuators are installed between the unsprung and sprung masses.
Further, acceleration sensors are placed on the sprung mass, and suspension displacement sensors
are installed in the vehicle. Using these sensor data, the suspension control module individually adapts
the damping forces for each wheel [3].

With the automotive industry increasingly advancing towards automated driving, sensors have be-
come crucial components as they provide the data required to perceive the environment and vehicle
state estimation [6]. However, incorporating sensors into suspension introduces complexity to the
system and increases the vehicle’s mass, production, and maintenance costs. Further, there are un-
measurable or complex quantities, which make sensing more difficult. With the increased number of
parameters required to be measured, the virtual sensing of parameters becomes essential.

Virtual sensing takes signals from other physical sensors on board and combines them to get a
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rough idea of the system’s state and make virtual signals with values that have not been measured
[7]. Even though virtual sensing implementation requires additional development costs, it will reduce
repetitive maintenance intervals and costs [7]. Further, the possibility of diagnosing and predicting the
system’s state in advance also emerges [8]. Also, it helps in the interpretation of data and establishing
unknown relationships between control variables. Virtual sensing is intensively used for automotive
applications, for example, for passenger thermal comfort, the tire pressure monitoring system, power-
train applications, sprung mass state estimation, and others [9]. Virtual sensors can be classified into
model-based and data-driven based on the method of sensor development.

In model-based virtual sensing, connections between inputs and outputs are described by mathe-
matical equations, which make up a model [10]. Often, Kalman filters with vehicle models to update
estimations are used [11]. The main advantages of model-based virtual sensing are predictability,
explainability, and low experimental data requirements. A higher accuracy of prediction demands a
more accurate model, which in turn demands a higher complexity model and higher computational ca-
pabilities. Hence, creating a model-based virtual sensor based on physical properties requires high
competencies and skills. However, there are not many established unsprung mass velocity estimation
models, and hence, developing a model-based virtual sensor will be hard.

Data-driven virtual sensing typically involves making use of machine learning techniques or statis-
tical methods in order to analyse large amounts of data in order to extract patterns, relationships, or
trends. This data can be gathered from sensors, simulations, experiments, or any number of other
sources, and it can include a wide variety of types of data, including multivariate data, spatial data, or
time series data. After that, the information is put to use in order to train a model of virtual sensing that
has the ability to predict or estimate the behaviour of the system that is of interest.

One of the primary benefits of data-driven virtual sensing is that it can provide accurate predictions
or estimates even when the underlying physical or virtual system is complicated, poorly understood,
or difficult to measure directly. This is one of the most significant advantages of data-driven virtual
sensing. It is also useful in circumstances in which the use of physical sensors would be prohibitively
expensive or difficult to implement, or simply impossible due to concerns regarding public health or
the environment. In addition, data-driven virtual sensing enables decision-making that is founded on
real-time data and can be used for real-time monitoring, control, or optimisation of systems.

However, there are some restrictions associated with data-driven virtual sensing. Training the model
requires a significant amount of data, and the accuracy and dependability of the virtual sensing model
are susceptible to being affected by the quality and representativeness of the data that is used. The
interpretability of the virtual sensing model may also be a challenge, as data-driven models may not
provide explicit physical insights or explanations for their predictions. This could be a problem because
data-driven models are becoming increasingly common. In addition, data-driven virtual sensing mod-
els are not appropriate for all kinds of systems. The availability and quality of data, in addition to the
specific requirements of the system being modelled, all play a role in determining whether or not these
models are applicable.

Viehweger et al. (2020) estimated tire forces using neural network-based virtual sensing [12]. Sa-
banovi€ et al. (2021) proved that NN-based VS could be used to estimate UM vertical velocity for a
vehicle with passive suspension [13]. Further, Kojis et al. presented a technique to estimate unsprung
mass vertical velocity in real-time using a neural network-based virtual sensor [14]. They presented a
comparison between comfort metric RMS estimated for running with the same comfort algorithm (Sky-
hook algorithm) while using unsprung mass vertical velocities data from simulation and a virtual sensor.

Overall, data-driven virtual sensing is a powerful and flexible approach that leverages the power
of data and machine learning to estimate or predict the behaviour of systems, even in the absence
of explicit physical equations or measurements. This allows the approach to be used to estimate or
predict the behaviour of systems in a variety of different contexts. It has a diverse range of applications
across a variety of fields and is still a dynamic area of research and development.
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1.2. Problem definition

The term "unsprung mass velocity” refers to the vertical velocity of a vehicle’s parts not supported by
the suspension system. These parts, which typically consist of the wheels, axles, and any other compo-
nents that are directly connected to the suspension system, are subjected to vertical motion whenever
the vehicle travels over bumps or obstacles, as well as over uneven road surfaces. The unsprung
mass velocity is a crucial parameter in vehicle dynamics because of the direct influence it has on a
vehicle’s ride comfort, its ability to handle corners, and its overall stability. Alterations in the velocity of
the unsprung mass can have an effect on the contact between the road surface and the tyres, which
in turn can have an effect on the tyre grip, traction, and the dynamic behaviour of the vehicle.

The ability to predict outcomes, the capability to explain results, and the low amount of data that
is required are the primary benefits of model-based virtual sensing. However, a high level of model
accuracy necessitates both a complex model and a high level of computational capability. Additionally,
there are not many well-established models for estimating the unsprung mass velocity, which makes it
difficult to create one.

This research aims to reduce the complexity of system to measure unsprung mass velocity through
development of virtual sensor. Further, the impact of such a sensor on ride comfort, is to be evaluated
which can be done by integrating the sensor with a suspension controller. Based on this background,
the goal can be formulated as follows:

” Evaluation of ride comfort by data-driven virtual sensing of unsprung mass vertical velocity.”

The following sub-goals can be extracted from the goal:

» Development of a virtual sensor to estimate unsprung mass velocity using neural networks.
» Development of suspension controller using the virtual sensor for control of ride quality.
 Evaluation of the developed model for ride comfort performance.

1.3. Report outline

The report is structured as follows: Chapter 2 will explain the developed virtual sensor for unsprung
mass velocity estimation and evaluates its performance.Chapter 3 will explain the suspension control
methods and the proposed control approach. Chapter 4 evaluates the full vehicle performance with
incorporation of the virtual sensor with the controller. Finally, chapter 5 will discuss the results shown
in the previous chapters after which it is possible to draw final conclusions on this research, as well as
allowing to suggest subjects for further research.



Data-driven virtual sensor for
unsprung mass velocity estimation

This chapter will provide a comprehensive analysis and explanation of the development and evaluation
of a data-driven unsprung mass vertical velocity estimator. Further, it will assess the design choices
and effect of related parameters on the developed model.

Data-driven virtual sensing of unsprung mass velocity means estimating or predicting the unsprung
mass velocity by using data-driven models or algorithms. This method does not rely on taking direct
measurements from physical sensors. This can be especially helpful when it is hard to use conven-
tional physical sensors to measure the velocity of an unsprung mass, difficult to install, or sensors
simply being unavailable. In this section, a neural network model is developed to estimate unsprung
mass velocity using simulation-based dataset covering various scenarios. The developed virtual sensor
was evaluated using a variety of different metrics that are considered to be industry standard. Further,
the results are also plotted in time-series to have better understanding of the results from the model.
In addition, the design decisions that were made for the creation of the model are analysed by looking
into the effects of a number of different influencing parameters.

2.1. Dataset

The high-fidelity SUV model was used on the IPG CarMaker simulation platform, which was used to
generate the dataset. IPG CarMaker is a software application that is developed specifically for the pur-
pose of testing passenger cars and other light-duty vehicles. It makes use of a comprehensive vehicle
model in addition to a multi-body system for the suspension of each individual wheel. It uses the TNO
Delft Tyre, also known as the Magic Formula Swift tyre model for the tyre forces to generate realistic
tyre forces. The parameters for mass-inertia, suspension kinematics, and compliance have been used
to parameterize the model. Validation of the Delft-tire model was accomplished through testing on test
benches. The vehicle model parameters used for the simulation is listed in Table 2.1.
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Parameter Value
Vehicle overall mass (kg) 1963.3
Wheelbase (m) 2.662

CoG distance to front axle (m) | 1.093
CoG distance to rear axle (m) | 1.569
Front spring stiffness (N/m) 25000
Rear spring stiffness (N/m) 30000
Front damping (Ns/m) 2500
Rear damping (Ns/m) 3000

Table 2.1: Simulation vehicle parameters
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Figure 2.1: SUV dynamic model

The dataset includes the vehicle being driven at a variety of road profile parameters as well as at a
range of driving speeds. Different profiles were selected so as to assess the acceleration levels. The
first type of road that was used for simulations is the one that has parallel corrugations running the
entire length of the test track. These ridges have a height of 25 millimetres and are evenly spaced with

regard to the direction of the longitudinal axis. The height map of the digital road profile of the parallel
corrugations are shown in Figure 2.2.
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Figure 2.2: Height map of the 'Parallel corrugations’ road used for full vehicle simulation

The angled corrugations road profile was the second one that was utilised. In this road profile, the
corrugations are not entirely perpendicular to the longitudinal driving direction. Instead, the corrugations
are angled by a varying angle along the length of the road in order to increase the amount of roll that is
induced by the road displacements. The height map of the digital road profile of the angled corrugations
are shown in Figure 2.3.

Figure 2.3: Height map of the ’Angled corrugations’ road used for full vehicle simulation

The third road that is used for simulations is a road that is completely covered in cleats all the way
along the test track. These cleats have the same amount of space between them along the longitudinal
axis. The ’Fatigue’ road is the final road profile that was used for the simulation. This road has been
designed to accelerate the fatigue life of the suspension by performing repeatable and comparative
suspension tests under simulated conditions. The continuous roughness of the road results in extreme
vibrations in the vehicle. Fatigue road profiles are artificially created road surfaces that are designed
to replicate the repetitive loading and unloading cycles experienced by vehicles on real roads. These
repetitive loading and unloading cycles can cause passengers to become fatigued and uncomfortable.
Engineers can study the effects of road roughness on ride comfort, performance, and durability of vehi-



2.1. Dataset 9

cles and transportation systems when those systems are subjected to fatigue road profiles. This allows
them to develop strategies to improve vehicle or system performance under conditions that are more
representative of real-world driving. The height map of the digital road profile of the fatigue are shown
in Figure 2.4.

X [m]

Figure 2.4: Height map of the 'Fatigue’ road used for full vehicle simulation

Data was gathered on each of the road profiles at three distinct vehicle speeds: 10 km/h, 20 km/h,
and 25 km/h. For the purpose of data collection, a sampling frequency of 100 Hz is utilised. The amount
of time spent collecting data was restricted to a maximum of 30 seconds. Because of the restrictions
imposed by the length of the road, the length of the dataset was cut to less than 30 seconds at higher
speeds. In order to get rid of the flat road surface that would otherwise lead to the desired profile, the
first ten seconds of each set of data are omitted. After that, the dataset is combined into a single matrix
using a process called concatenation. After that, the dataset is shuffled around in a non-systematic
manner, and it is then divided into three distinct sections: training, validation, and testing in the ratio
of 0.6 to 0.2 to 0.2. The dataset that has been partitioned is then introduced into the network so that it
can be used for their purposes in the appropriate manner.

Test name Vehicle speeds (km/h) | Time of data collection (s)
10 30
Parallel corrugations 20 24.48
25 24.2
10 30
Angled corrugations 20 30
25 24.42
10 30
Cleats 20 30
25 29.62
10 30
Fatigue road 20 21.15
25 17.53

Table 2.2: Dataset description for the virtual sensor model development

There are a total of 12 parameters that serve as inputs for the dataset. These include the angle
and rate of the driver’s steering, the acceleration of the sprung mass in the z direction, the roll angle
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and rate of the vehicle, the pitch angle and rate of the vehicle, and the angular velocity of each of the
four wheels. Roll angle, also called roll angle of inclination or just roll, is the angle by which the body
or chassis of a vehicle moves from its normal horizontal position. This angle is measured in degrees.
Roll rate, on the other hand, is the speed or angle of rotation of a vehicle’s body or chassis around its
longitudinal axis, measured in degrees per unit of time. Pitch angle and pitch rate on the other hand
refers to the angle and rate of rotation of vehicle body or chassis around its lateral axis. These param-
eters are are commonly measured in the industry. In order to facilitate the development of the model,
it is assumed during the analysis phase that the roll and pitch parameters are easily accessible. The
vertical velocities of the unsprung mass of all the four wheels were used as an output.

2.2. Neural-network model

A fully connected network, also called a dense layer or fully connected layer, is a type of layer in neural
networks that is often used to process data with fixed input dimensions. It is the traditional type of layer
used in many types of neural network architectures, such as feed-forward neural networks, multi-layer
perceptrons (MLPs), and convolutional neural networks (CNNs).

In a fully connected layer, each neuron (or node) is connected to every other neuron in the layer
above and the layer below it. This makes a graph with all connections. Each connection has a weight
parameter, which is learned during training, and a bias term, which isn’t always used. The output of
a fully connected layer is calculated by taking a weighted sum of the inputs from the previous layer,
running it through an activation function, and then sending the result to the next layer.

The fully connected layer is in charge of figuring out how the features in the input data are related to
each other in complex, nonlinear ways. It changes the input data globally, which lets the network learn
complex patterns and representations from the data. The number of neurons in the fully connected
layer controls how many dimensions the output has, and the activation function makes the model non-
linear.

The model of a neural network for a virtual sensor that has been proposed can take in data in
the form of a two-dimensional matrix, with the first dimension representing the sample and the second
representing the number of signals. The matrix is fed into the fully connected network that was designed
for that purpose. The summary of the proposed network is shown in Figure 2.5. The unsprung mass
velocities of individual corner modules can be predicted with the help of four different networks like
this one: FL, FR, RL and RR. Various network models with fewer layers were first tried in order to
obtain the required estimation performance. The suggested network, however, was the most ideal and
straightforward for the necessary estimating purpose.

Fully convolution network based virtual sensor model
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Figure 2.5: Structure of the neural-network based virtual sensor
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Name Type Number of neurons
input layer .
12 features with 'zscore’ normalization Feature input 12
fc1
fully connected layer with 256 neurons Fully connected 256
relul
ReLU layer RelU 256
fc2 Fully connected 128
fully connected layer with 128 neurons y
relu2
ReLU layer RelU 128
fc3 Fully connected 1
fully connected layer with 1 neuron y
output layer Regression output 1
regression output with mean squared error optimization 9 P

Table 2.3: Summary of the proposed network

The input layer of the neural network has 12 input features, and z-score normalisation is applied
to the input data. The job of the input layer is to turn the raw data into a format that the next layers
of the network can understand and use. Z-score normalization, which is also known as standardiza-
tion, is a technique that is commonly used in the preprocessing of data. Its purpose is to scale the
features of a dataset so that they have a mean value of zero and a variance of one. This, in turn, helps
to eliminate scale differences, reduces sensitivity to outliers, and supports convergence in optimisation.

The input layer is followed by a fully connected layer of the neural network containing 512 output
neurons. Rectified linear unit (ReLU) layer of the neural network is used as an activation function.
Rectified Linear Unit is an activation function that is often used in neural networks. It is a simple,
piecewise linear function that adds non-linearity to the model and lets neural networks learn complex
nonlinear relationships in the data.

The RelLU activation function is described in math as follows:

f(z) = maz(0,x) (2.1)

where x is what the function is given and f(x) is the output. In other words, ReLU gives back the
input value if it is positive (greater than zero) and zero if it is negative (less than zero).

The second fully connected layer contains 256 output neurons. This layer also uses RelLU as ac-
tivation function. The third fully connected layer contains 128 output neurons which again uses ReLU
as activation function. The fourth fully connected layer of the neural network has 1 output neuron. The
results of this network is fed into a regression output layer that performs regression (i.e., prediction of
continuous values). Because of this, the network generates real-valued outputs, which are an estima-
tion of probably output signals. The output is a vector consisting of an estimated value of the relative
vertical velocity of the unsprung mass for one of the four suspension quarters (FL, FR, RL, and RR).
This was done because the network performed better when used individually in comparison to when it
was used as part of a single network that estimated all four parameters

The optimisation algorithm revises the model weights in accordance with the rate of learning. A
higher initial learning rate could potentially accelerate initial convergence, but it would also cause the
optimisation algorithm to overshoot the optimal weights. Convergence may be slowed down by lower
initial learning rates, but the resulting weights will be more accurate over time. The results of perfor-
mance evaluations carried out using a variety of learning rates led to the selection of an initial learning
rate of 0.002. In addition, the learning rate scheduling strategy was utilised while the training was being
conducted. This suggests that the learning rate will be updated at particular epochs in accordance with
the rules that have been predefined. In order to achieve the best possible performance, the learning
rate was reduced by a factor of 0.5 every 25 epochs. During the training session, this was done to
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achieve better convergence while also minimising overshooting and oscillation.

Over-fitting is a phenomenon that occurs when a model learns to perform well on the training data
but does not generalise well to data that it has not seen before. Regularisation is a technique that is
used in machine learning and statistical modelling to prevent overfitting. During the training process,
regularisation techniques add additional constraints or penalties to the model in order to prevent it from
becoming overly complex and from fitting the training data to a greater extent than it should. The ob-
jective function of the model is penalised by L2 regularisation in the amount that is proportional to the
squared values of the model’s weights. This results in models having smaller weights all around, which
effectively reduces the impact of individual weights and also reduces the model’'s sensitivity to small
changes in the input data. The L2 regularisation was set to have a strength of 1E-7 based on various
trails performed for network optimization.

In a neural network, the number of epochs is how many times the entire training dataset is run
through the network during the training process. Each epoch has a forward pass, a backward pass,
and possibly an evaluation step, where the model’s performance is measured on a validation or test
dataset. The number of epochs in a neural network depends on a number of things, such as how hard
the problem is, how big the dataset is, how the model is built, and what optimisation algorithm is being
used. The maximum number of epochs was set to 100.

2.3. Results and analysis

In this section, accuracy of developed virtual sensor is presented. First the performance metrics used
for evaluation is discussed after which the results of the model is presented. Further, the effect of
various parameters are evaluated in order to support the design choices.

2.3.1. Performance metrics

It is essential to select suitable evaluation metrics according to the particular problem at hand and the
goals of the neural network model, and it is equally essential to interpret the results within the context
of the problem domain. Both of these steps must be carried out in a timely manner.There are a few dif-
ferent performance evaluation metrics that are commonly used for regression models. These metrics
provide insights into the generalisation ability and accuracy of the models.

Root mean squared error(RMSE)

The root mean squared error, or RMSE is the square root of the average of the squared differences
between the predicted and actual values. It gives the average error value in the same units as the
target variable. It is a common way to measure how well regression neural network models work, with
lower values showing better performance. The maximum RMSE value indicates the greatest deviation
between actual and predicted values in the data set. This value is significant because it indicates the
model’s maximum allowable error. The minimum RMSE value indicates the smallest deviation between
actual and predicted values in the data set. This value is significant because it indicates the smallest
error the model is capable of making.

RMSE = J

* Vqeri = Unsprung mass velocity in vertical direction of the ith sample, [m/s]

* Vuirs = Unsprung mass velocity in vertical direction estimated by the virtual sensor of the ith sam-
ple, [m/s]

3=

Z (Uacti - vviri)Q (22)
i=1

where,
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R-squared (R?)
R squared, also known as the coefficient of determination, is a statistical measure that can be utilised
to evaluate how well a regression model fits the data. It shows what percentage of the variation in the
dependent variable can be attributed to the independent variable (or variables) in the regression model.
It ranges from O to 1, with higher values indicating better model performance. A value of 1 indicates
that the model explains all the variation in the target variable, while a value of 0 indicates that the model
explains none of the variation.
R2 —1_ ?zl(vacti - vviri)Q
Z;L:l(vacti - 'Ugct)z

(2.3)
where,

* Vqeri = Unsprung mass velocity in vertical direction of the ith sample, [m/s]

* V,irs = Unsprung mass velocity in vertical direction estimated by the virtual sensor of the ith sam-
ple, [m/s]

* vg¢ = Mean value of unsprung mass velocity in vertical direction, [m/s]

Mean absolute error(MAE)

The mean absolute error (MAE) is a statistical metric that measures the average absolute difference
between predicted values and actual values in a set of data points. In other words, it compares the
actual values to the predicted values. It is frequently applied in the context of evaluating the precision
or effectiveness of a predictive model. Without taking into consideration which way the errors are going,
the mean absolute error (MAE) is a measure of the typical magnitude of the errors produced by a model,
with lower values showing better performance.

1 n
Mean Absolute Error = = " [vacti — vuiri (2.4)
n i=1

where,

* Vqeri = Unsprung mass velocity in vertical direction of the ith sample, [m/s]

* V,irs = Unsprung mass velocity in vertical direction estimated by the virtual sensor of the ith sam-
ple, [m/s]
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2.3.2. Results

The validation root mean squared error (RMSE), the testing RMSE, the R? value, and the mean absolute
error are the key performance indicators that are utilised when evaluating the developed model. These
values are determined for every wheel individually. The RMSE values for the testing dataset can be
found in the Table 2.4. Both the root mean square error and the mean absolute error have the same
units as the velocity that was measured. When it comes to predicting unsprung mass velocity, the newly
developed virtual sensor has an error rate of 0.08 m/s on average. The R-squared value and the mean
absolute error values are both quite satisfactory.

Unsprung mass velocity Front left | Front right | Rear left | Rear right
Validation RMSE(m/s) 0.093 0.083 0.067 0.07
Te25ting RMSE(m/s) 0.087 0.081 0.068 0.067
R 0.957 0.97 0.978 0.982
Mean Absolute Error(m/s) 0.062 0.056 0.047 0.047
Table 2.4: Results of virtual sensor
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Figure 2.6: Virtual sensor performance for the front wheels
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Figure 2.7: Virtual sensor performance for the rear wheels

The time-series virtual sensor performance for unsprung mass velocity estimations are plotted in
Figure 2.6 and Figure 2.7. The plots demonstrate that the newly developed sensor estimates the pa-
rameter with a degree of accuracy that is quite comparable to that of the true values of estimation.
Because the curves of actual data and those predicted by virtual sensor are so similar to one another,
the accumulated numerical results from the virtual sensor are considered to be satisfactory.
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2.3.3. Effect of parameters

In this section, the design choices are evaluated by investigating the effects of various parameters on
the virtual sensor performance. The various parameters that are investigated are wheel steer angles
against driver steering input, yaw against pitch and roll and the effect of acceleration values in other
axes.

Wheel steer angles vs driver steering inputs

It is typically simpler to measure the steering inputs made by the driver than it is to measure the angles
at which the wheels are turned. This is due to the fact that the driver’s steering input can be easily
measured with a steering wheel position sensor, which detects the angle and direction of the steering
wheel as it is turned by the driver. This allows for the driver’s steering input to be accurately measured.
On the other hand, determining the angles of the wheels’ steer requires a significantly more involved
method. For this reason, it is customarily necessary to make use of sensors, such as wheel speed sen-
sors, which can determine the speed and the direction in which the wheels are turning as they rotate.
The signals from these sensors must then be processed to calculate the steer angle for each wheel.
This makes driver steering inputs much more suitable for considering it as an input for the model as it
is easier to measure.

The performance of the virtual sensor is evaluated taking into account the individual wheel steer
angles, and then taking into account the driver’s steering wheel angle and rate. In the first trial, the
model is tested with the wheel steer angles as an input. In the subsequent trials, the model is tested by
substituting the steering wheel angle and velocity for the steer angles. The performance of the virtual
sensor is reported in Figure 2.8 and Table 2.5.
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Figure 2.8: Effect of Wheel steer angle and driver steering inputs for training the model on unsprung mass vertical velocity.

Unsprung mass velocity FL RMSE R? MAE
Validation | Testing
Wheel steer angles 0.1656 0.1531 | 0.8649 | 0.1024
Driver steering wheel angle 0.1960 0.1930 | 0.7900 | 0.1294
Driver steering velocity 0.2017 0.2025 | 0.7517 | 0.1395
Steering wheel angle + velocity 0.1610 0.1595 | 0.8512 | 0.1013

Table 2.5: Virtual sensor performance of wheel steer angle against driver steering inputs

The model performance deteriorates with replacing the wheel steer angles with steering wheel an-
gle. This trend is also seen with steering wheel velocity as well. However, the model performance is
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more or less similar when a combination of steering wheel angle and velocity is used. This makes the
combination of driver steering inputs a more appropriate choice for modelling inputs, as it is easier to
measure and has performance comparable to that of wheel steer angles.

Yaw, pitch and roll

In three-dimensional space, yaw, pitch, and roll are terms used to describe the orientation of an object.
Yaw is the rotation around the vertical axis, whereas pitch and roll refer to rotations around the lateral
and longitudinal axes, respectively. The three angles are interdependent, meaning that a change in one
angle will affect the other two. Depending on the application, different sensors can be used to measure
yaw, pitch, and roll angles. Using an inertial measurement unit (IMU) consisting of three accelerom-
eters and three gyroscopes is a common method. The accelerometers measure the acceleration in
each direction, whereas the gyroscopes measure the rate of rotation about each axis.

The performance of the virtual sensor is evaluated taking into account the pitch, roll and yaw angles
and rates individually and then taking into account the combinations between them. The performance
of the virtual sensor is reported in Figure 2.9 and Table 2.6.
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Figure 2.9: Effect of yaw, pitch and roll on testing RMS error.
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Unsprung mass velocity front left RMSE(m/s) R? Mean absolute error
Validation | Testing

Pitch angle 0.1140 0.1166 | 0.9207 0.0757
Pitch rate 0.1154 0.1140 | 0.9258 0.0761
Pitch angle + rate 0.0840 0.0850 | 0.9550 0.0565
Roll angle 0.1200 0.1180 | 0.9200 0.0800
Roll rate 0.1170 0.1099 | 0.9229 0.0716
Roll angle + rate 0.0800 0.0859 | 0.9595 0.0577
Yaw angle 0.1361 0.1399 | 0.8851 0.0942
Yaw rate 0.1199 0.1218 | 0.9100 0.0810
Yaw angle + rate 0.1035 0.1014 | 0.9405 0.0681
(Pitch + roll) angle 0.0970 0.0983 | 0.9480 0.0663
(Pitch + roll) rate 0.0780 0.0889 | 0.9533 0.0648
(Pitch + roll) angle + rate 0.05 0.0535 | 0.9844 0.036

Table 2.6: Virtual sensor performance: Effect of pitch, roll and yaw

When the pitch and roll angles, as well as their rates, are taken into consideration, the performance
of the model is significantly better than before. Pitch and roll, in comparison to yaw, appear to have
a greater influence on performance when the various scenarios and speeds are taken into considera-
tion. However, their effects might have to be re-investigated when considering different scenarios and
velocities of the vehicle.

Sprung mass acceleration values in X and Y directions

The term "sprung mass acceleration” refers to the acceleration of the portion of a vehicle supported
by the suspension system (’sprung” mass) relative to the ground. When a vehicle is in motion, it en-
counters various forces that accelerate its components. The forces acting on the sprung mass include
the force of the engine propelling the vehicle forward, as well as forces generated by braking, turning,
and road imperfections. These forces accelerate the sprung mass in different directions. Longitudinal
sprung mass acceleration(X) refers to the acceleration of the vehicle along the direction of travel. This
acceleration is important because it influences the vehicle’s acceleration and braking performance. Lat-
eral sprung mass acceleration refers to the vehicle’s acceleration perpendicular to its direction of travel.
This acceleration is significant because it influences the handling and stability of the vehicle during cor-
nering. Vertical sprung mass acceleration is the acceleration of a vehicle along its vertical axis. This
acceleration is significant as it influences the ride comfort and suspension system performance of the
vehicle.

The effect of these factors depends on the vehicle’s speed, the defined manoeuvre, and numerous
other variables. To determine their significance, the developed model is evaluated by comparing its
performance when trained with acceleration values along all axes to its performance when trained with
acceleration values along only the Z-axis. A sinusoidal manoeuvre of 15 deg amplitude and 0.5 Hz
frequency is defined to intensify the effect of X and Y axes. Data was gathered on one of the road
profiles (parallel corrugations) at three distinct vehicle speeds: 10 km/h, 20 km/h, and 25 km/h. For
the purpose of data collection, a sampling frequency of 100 Hz is utilised. The amount of time spent
collecting data was restricted to a maximum of 30 seconds. Because of the restrictions imposed by the
length of the road, the length of the dataset was cut to less than 30 seconds at higher speeds.
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Figure 2.10: Virtual sensor time-series performance for sinusoidal input considering different sprung mass acceleration axes
for training the model

Unsprung mass velocity front left RMSE(m/s) R? Mean absolute error(m/s)
Validation | Testing
Acceleration Z-only 0.0530 0.0658 | 0.9824 0.0393
Acceleration all axes 0.0501 0.0555 | 0.9870 0.0294

Table 2.7: Virtual sensor performance for sinusoidal input considering different axes of sprung mass acceleration for training
the model

The performance of the virtual sensor is evaluated by first training it with acceleration along Z-axis
followed by training it with all axes. The performance of the virtual sensor is reported in Table 2.7 and
Figure 2.10.

There is not much of a difference in the performance of the virtual sensor between including only
the Z-axis and including all axes. However, when considering the selected manoeuvres, it is possible
to ignore the effect that the X and Y axes have on the outcome of the scenario. However, their effects
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might need to be reexamined in light of the fact that there are a variety of potential manoeuvres and
speeds at which the vehicle could be moving.

2.4. Discussion

The simulation results show that the virtual sensor that was made can accurately estimate the vertical
speed of the unsprung mass in the situations that were looked at during both the testing and validation
phases. This observation can be further substantiated by examining the plotted time series, which re-
veal a close resemblance between the estimated values and the actual unsprung mass velocity values.

Furthermore, the design decisions for the virtual sensor are justified through the evaluation of the
developed model under various scenarios. Initially, the developed model is assessed across various
forms of steering inputs. The model demonstrates comparable estimations between wheel steer angles
and a combination of driver steering wheel angle and velocity. However, the latter option is preferred
for the model due to the relative ease of measuring driver inputs compared to measuring wheel steer
angles.

Subsequently, an assessment is conducted to examine the impact of roll, pitch, and yaw on the
virtual sensor model that has been developed. The simulations demonstrate that the combination of
pitch and roll yields better estimation performance. Lastly, the model is tested to see how it changes
performance when different directions of sprung mass velocity are taken into account when training
the model. The simulations show that the X and Y axes do not have much of an effect on how well the
virtual sensor estimation works in the situations that were looked at.



Suspension controller

This chapter will provide an explanation of the suspension control methods. Further, it will provide an
overview of the control approach proposed against a standard reference which is used in this analysis.

Suspension control aims at maintaining/improving the required vehicle performance by controlling
the suspension parameters. This control can be either model-based or data-driven. Model-based
control methods include Skyhook, Groundhook, and hybrid strategies. Data-driven control methods
include methodologies. Data-driven suspension control includes approaches such as fuzzy logic, ar-
tificial neural networks and modern approaches which use preview-based and learning-based methods.

In the examined controller models, there is distinction between model-based and data-driven con-
trol approaches. Even though a data-driven approach provides a good opportunity, the requirement
of data for training the controller makes it dependent on model-based approaches. Since the principal
requirement of the thesis is to reduce the vertical oscillations of the vehicle body, a skyhook controller is
the best option. Skyhook control is easy to implement with information from a few sensors representing
the vehicle state [15].

3.1. Skyhook control

The skyhook control strategy was developed primarily to improve the ride comfort performance of the
vehicle. This is performed by minimizing the unsprung mass oscillations. In order to do that, the model
introduces an imaginary damper that is connected to the sprung mass and a fixed point in the vertical
space. The connection of the damper in such a way produces an additional force on the sprung mass
negatively proportional to its velocity.

However, practically it is not possible to have a fixed point in space to have the skyhook damper

connected. This is overcome by adding additional damping to emulate the imaginary force that would
be generated by the Skyhook damper.

21
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Figure 3.1: Skyhook model

Ideal system dynamics of skyhook control

msZs = ds(Zy — Zs) + ks (20 — 2s) — Fopy 3.1)
muzu = _ds(z'u - Zs) - ks(zu - Zs) + kt(zR - Zu) (32)
Fsky - dskyz.s (33)

Various suspension control methods are used along with Skyhook control. Some of them include:

2-State control The 2-state control approach uses a switching damper that switches between a max-
imum and minimum damping ratio based on sprung and unsprung mass velocities.

_ dmam |f Z's (Zs - Zu) > 0

ds = {dmm otherwise (3.4)

The benefit of this system is that its control output is extremely simply designed. Since the method

only outputs the minimal or maximal damping ratio, the controller itself can be relatively simple. This

has the benefit of being fast and responsive. It does not, however, approach the behaviour of an ideal
Skyhook optimally.

Linear control The 2-state control can be improved by increasing the amount of control by adjusting
the damping ratio of the variable damper. This way the system closely resembles the behaviour of the
ideal Skyhook as the resulting force is now not only dependent on the suspension velocity but is also
controlled by the varying damping ratio.

Zs—2u)

. (3.5)
dmin otherwise

d - {Satashd1rLaw(Z'5(Z.7.L)+(1Otsh,)d;nu,l-z.s if Z-S(Z.S _ Zu) <0
s =

The parameter «a, is the tuning parameter of the control model. It behaves like 2 state control when
the tuning parameter is 1.
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Acceleration-driven damper control This control technique uses acceleration of sprung masses
instead of velocities in the 2-State control technique.

N dmar 1 Z(Fs = 20) > 0
ds = {dmm otherwise (3.6)

This form of control can be achieved with exactly the same sensors and actuation knowledge as
the regular 2-state control. Usually, the signal of an accelerometer is used to determine the velocity
by integration. In this case, the direct signal of the accelerometer can be used for the switching law.
This alteration is therefore incredibly easy to implement for the Skyhook systems while it promises a
significant improvement in comfort.

3.2. Control approach

The reference control approach employed in this study involves utilising a predetermined passive sus-
pension system to determine the vehicle damping. Additionally, the estimation of sprung mass accel-
erations is achieved by subjecting the vehicle to different road profiles and velocities.

Vehicle
sensors
Linear Sprung
»  skyhook » mass vertical
controller velocity
| virtual sensor
Figure 3.2: Proposed control approach
Passive Sprung
» suspension » mass vertical
model velocity

Vehicle model

Figure 3.3: Reference control approach

The control system under consideration involves the utilisation of a linear skyhook controller, which
is implemented within the Simulink software environment. The virtual sensor model that has been de-
veloped is exported to Simulink and subsequently integrated with the controller. The controller under
consideration obtains input data from the IPG CarMaker software. The virtual sensor model incorpo-
rates various input parameters derived from real-time data obtained from the IPG CarMaker. These
parameters encompass the steering angle and rate of the driver, the z-directional acceleration of the
sprung mass, the roll angle and rate of the vehicle, the pitch angle and rate of the vehicle, and the
angular velocity of each of the four wheels. The virtual sensor model subsequently computes and pro-
vides an estimate of unsprung mass velocity, which is subsequently inputted into the skyhook controller.
Subsequently, the controller proceeds to assess the control force, which possesses the capability to
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fluctuate within a pre-established range, and subsequently transmits this information back to the simu-
lation.

The proposed controller is implemented in Simulink in accordance with Figure 3.2. The linear sky-
hook controller is developed individually for all four wheels and integrated with the corresponding un-
sprung mass vertical velocity sensors. The virtual sensor receives the vehicle data required from the
IPG carmaker directly and estimates the unsprung mass vertical velocity. This estimation is then fed
into the controller as an input to calculate the control force required as per Equation 3.5. The tun-
ing parameters i.e. a,, and the damping properties d,,.. and d,,;, are adjusted to achieve optimal
suspension performance for each of the road conditions and velocities.



Full vehicle simulation results

This section aims to present a thorough analysis and discussion of the simulation results derived from
the comprehensive full vehicle simulations. Both simulation configurations will be subjected to testing,
wherein each road profile will be employed in simulations conducted at different velocities. The road
profiles encompass both parallel and angled corrugations, as well as cleat and fatigue surfaces. The
velocities consist of three values: 10 km/h, 20 km/h, and 25 km/h. The scenario involves the car being
driven in a straight line with constant speed and no steering or brake application. The evaluation time
of the simulation is 20 seconds.

Test name Speeds in km/h | Evaluation time in seconds
Parallel corrugations
- 10
Angled corrugations
20 20
Cleats o5
Fatigue

Table 4.1: Testing scenarios for ride comfort evaluation of the control systems

In order to assess the performance metrics related to ride comfort, measurements of vertical accel-
erations at the centre of gravity of the vehicle body will be obtained. The maximum values are also
recorded and presented. Additionally, an analysis was conducted on the time series and frequency
response of the vertical velocity of the output sprung mass.

4.1. Simulation results parallel corrugations

The initial series of simulations is conducted for the parallel corrugated road profile. The numerical
simulations are presented in Table 4.2, which provides a comparison of the outcomes obtained from
both the reference passive system and the proposed skyhook system. The time and frequency domain
comparisons to the passive model are illustrated in Figure 4.1 and Figure 4.2 respectively.

Parallel %
. Reference system Proposed system

corrugations change
Speed Min a, Max a, RMS Min a, Max a, RMS in RMS

(km/h) (m/s?) (m/s?) a.(m/s?) (m/s?) (m/s?) a.(m/s?) a,
10 -4.647 3.965 1.509 -4.218 3.619 1.424 -5.632
20 -5.575 6.986 1.637 -3.971 4.476 1.366 -16.534
25 -5.558 5.690 1.395 -4.872 5.250 1.216 -12.866

Table 4.2: Comparison of reference and proposed system suspension performance in parallel corrugations.

25
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The simulations demonstrate a significant improvement in performance across all velocities. The
proposed system exhibits enhancements in both the root mean squared and peak values across all
velocities. When comparing to the other velocities, the enhancement observed at a speed of 10 km/h
exhibits a slightly lower magnitude.
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Figure 4.1: Time domain plot of sprung mass vertical accelerations at parallel corrugations

Similar inference can be drawn when observing the time-domain plots of the systems. The proposed
system shows better control of sprung mass accelerations when compared to the reference system at
all speeds. In the frequency domain, we can observe that the resonant peak values are lower in the
proposed system at all velocities across the frequency spectrum.
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Figure 4.2: Frequency response plot of sprung mass vertical accelerations at parallel corrugations

4.2. Simulation results angled corrugations

The next series of simulations is conducted for the angled corrugated road profile. The numerical
simulations are presented in Table 4.3, which provides a comparison of the outcomes obtained from
both the reference passive system and the proposed skyhook system. The time and frequency domain
comparisons to the passive model are illustrated in Figure 4.3 and Figure 4.4 respectively.

Ang qu Reference system Proposed system %
corrugations change
Speed Min a, Max a, RMS Min a, Max a, RMS in RMS
(km/h) (m/s?) (m/s?) a.(m/s?) (m/s?) (m/s?) a.(m/s?) a,
10 -4.169 3.607 1.136 -3.886 3.494 1.110 -2.306
20 -6.168 5.578 1.587 -5.081 5.608 1.195 -24.702
25 -5.956 5.655 1.217 -5.186 5.787 1.130 -7.149

Table 4.3: Comparison of reference and proposed system suspension performance in angled corrugations.

The simulations demonstrate a significant enhancement in performance across all velocities. The
proposed system exhibits enhancements in both the root mean squared and peak values in almost
across all velocities. When comparing to the other velocities, the enhancement observed at a speed
of 10 km/h exhibits a slightly lower magnitude. The peak value in the positive side of the proposed
system at 20 km/h and 25 km/h does not show improvement when compared to the reference system.
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mass vertical accelerations at angled corrugations

The proposed system shows slightly better control of sprung mass accelerations when compared
to the reference system at all speeds. In the frequency domain, we can observe that the peak values
are lower in the proposed system at velocities 10 km/h and 20 km/h across the frequency spectrum. At
25 km/h, at lower frequencies, the proposed system show better control, however at above 3.5 Hz, the
proposed system performance deteriorates. Nevertheless, these frequencies do not hold substantial
significance when it comes to evaluating ride comfort.
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4.3. Simulation results cleats

The next series of simulations is conducted for the cleats road profile. The numerical simulations are
presented in Table 4.4, which provides a comparison of the outcomes obtained from both the reference
passive system and the proposed skyhook system. The time and frequency domain comparisons to
the passive model are illustrated in Figure 4.5 and Figure 4.6 respectively.

Figure 4.4: Frequency response plot of sprung mass vertical accelerations at angled corrugations

Cleats Reference system Proposed system %
change
Speed Min a, Max a, RMS Min a, Max a, RMS in RMS
(km/h) (m/s?) (m/s?) a.(m/s?) (m/s?) (m/s?) a.(m/s?) a,
10 -3.974 7.018 1.155 -3.867 4.797 1.070 -7.335
20 -7.071 10.219 1.725 -7.508 9.857 1.573 -8.797
25 -6.243 6.557 1.497 -5.709 6.317 1.447 -3.359

Table 4.4: Comparison of reference and proposed system suspension performance in cleats.

The simulations demonstrate a significant enhancement in performance across all velocities. The
proposed system exhibits enhancements in both the root mean squared and peak values in almost
across all velocities. When comparing to the other velocities, the enhancement observed at a speed
of 25 km/h exhibits a slightly lower magnitude.
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Figure 4.5: Time domain plot of sprung mass vertical accelerations at cleats

The proposed system shows slightly better control of sprung mass accelerations when compared
to the reference system at all speeds. In the frequency domain, we can observe that the peak values
are lower in the proposed system at 10 km/h . At 20 km/h and 25 km/h, at lower frequencies, the pro-
posed system show better control, however at higher frequencies, the proposed system performance
deteriorates. Nevertheless, these frequencies do not hold substantial significance when it comes to
evaluating ride comfort.
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Figure 4.6: Frequency response plot of sprung mass vertical accelerations at cleats

4.4. Simulation results fatigue surface

The final series of simulations is conducted for the fatigue surface. The numerical simulations are
presented in Table 4.5, which provides a comparison of the outcomes obtained from both the reference
passive system and the proposed skyhook system. The time and frequency domain comparisons to
the passive model are illustrated in Figure 4.7 and Figure 4.8 respectively.

Fatigue Reference system Proposed system %
surface change
Speed Min a, Max a, RMS Min a, Max a, RMS in RMS
(km/h) (m/s?) (m/s?) a.(m/s?) (m/s?) (m/s?) a.(m/s?) a,
10 -4.211 4.322 0.980 -3.894 4.083 0.893 -8.878
20 -5.233 5.825 1.732 -4.717 5.147 1.583 -8.615
25 -5.311 6.019 1.694 -5.146 6.333 1.566 -7.528

Table 4.5: Comparison of reference and proposed system suspension performance in fatigue surface.

The simulations demonstrate a significant enhancement in performance across all velocities. The
proposed system exhibits enhancements in both the root mean squared and peak values in almost
across all velocities. The peak value in the positive side of the proposed system at 25 km/h show
slightly higher values when compared to the reference system.
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Figure 4.7: Time domain plot of sprung mass vertical accelerations at fatigue surface
The proposed system shows slightly better control of sprung mass accelerations when compared

to the reference system at all speeds. In the frequency domain, we can observe that the peak values
are lower in the proposed system at all velocities across the frequency spectrum.
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Figure 4.8: Frequency response plot of sprung mass vertical accelerations at fatigue surface

4.5. Discussion

The study examined the effects of utilising neural network-based data-driven virtual sensors on the
comfort metric root mean square (RMS) of vertical acceleration of the sprung mass. Specifically, the
analysis focused on the implementation of these virtual sensors in conjunction with a linear Skyhook
control algorithm. The resulting measurements were then compared to data obtained from a passive
suspension model. In addition to assessing the metrics, the analysis also includes an evaluation of the
time series and frequency response of the vertical accelerations of the sprung mass.

The developed virtual sensor shows improvement in the sprung mass acceleration metric at the sce-
narios considered. The scenarios include various extreme road surfaces such as angled and parallel
corrugations, cleats and fatigue surfaces along with three different speeds (10 km/h, 20 km/h and 25
km/h). No investigation is done at higher speeds as safe driving cannot be ensured by moving faster in
the selected scenarios.The virtual sensor developed in this study demonstrates improvements in both
the peak-to-peak magnitude values and the resonant peaks observed in the frequency domain.



Conclusions

The goal of this research is the evaluation of ride comfort by data-driven virtual sensing of unsprung
mass vertical velocity. A neural network based virtual sensor is developed for this purpose to estimate
the unsprung mass vertical velocity. The virtual sensor is then evaluated for its estimation performance
and its robustness to different input parameters. This model is then integrated with a linear skyhook
suspension controller. The proposed controller is then assessed in comparison to a reference passive
suspension system for ride comfort performance. The evaluation is conducted under different velocities
and types of road conditions. In this final chapter, the conclusions and recommendations are presented.

5.1. Conclusions

» The vertical velocity estimator for the unsprung mass that has been developed demonstrates a
high level of accuracy in estimating values for the specific scenarios being examined. The aver-
age RMS error of estimation of unsprung mass velocity was around 0.075 m/s while the coefficient
of determination(R?) was around 0.98.

» The unsprung mass vertical velocity estimator that has been developed demonstrates robustness
to the chosen input parameters during its development for the examined scenarios.

* The comprehensive vehicle simulations conducted on the proposed system demonstrate en-
hancements in both the root mean square (RMS) and peak values of the accelerations expe-
rienced by the sprung mass across nearly all the analysed scenarios. The reduction in RMS
values is approximately 11 percent in parallel and angled corrugations, whereas in cleats and
fatigue surface, the improvement is approximately 7 percent. The degree of improvement is con-
tingent upon the longitudinal velocity of the vehicle.

» The time series of the proposed system also echoes the improvement seen in the metrics. Fur-
ther, the frequency response of the sprung mass accelerations also show a decrease in peak
values for the proposed system.

5.2. Recommendations

The proposed method has further potential to improve the ride comfort performance of an automobile.
Further research is necessary in order to more comprehensively understand the potential of the virtual
sensing approach. The following are the recommendations to further advance this research:

* The unsprung mass velocity estimator can be enhanced by incorporating additional scenarios,
thereby increasing its robustness. At present, it is assumed that the vehicle is driven in a straight
line at a constant velocity, and the incorporation of vehicle steering, braking and acceleration is
not taken into account in the development of the model.

34
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» The virtual sensor estimator currently considers extreme road surfaces and lower speeds for its
development. Incorporation of additional surfaces and higher speeds will make the model more
robust and more realistic.

» The controller currently uses a linear skyhook controller and assumes that the suspension damp-
ing properties can be altered with different velocities. Additional control methods such as sliding
mode control, model predictive control etc. should be investigated along with the developed vir-
tual sensor for its effect on ride comfort performance.

+ Studies show that ride comfort cannot be completely described by objective metrics [16]. Sub-
jective assessments should be carried out for the proposed methodology to further assess the
practical impact of the developed method.
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