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Abstract
The Microsoft HoloLens is a head-worn mobile augmented reality device. It allows a real-time 3D mapping of its direct 
environment and a self-localisation within the acquired 3D data. Both aspects are essential for robustly augmenting the 
local environment around the user with virtual contents and for the robust interaction of the user with virtual objects. 
Although not primarily designed as an indoor mapping device, the Microsoft HoloLens has a high potential for an efficient 
and comfortable mapping of both room-scale and building-scale indoor environments. In this paper, we provide a survey 
on the capabilities of the Microsoft HoloLens (Version 1) for the efficient 3D mapping and modelling of indoor scenes. 
More specifically, we focus on its capabilities regarding the localisation (in terms of pose estimation) within indoor envi-
ronments and the spatial mapping of indoor environments. While the Microsoft HoloLens can certainly not compete in 
providing highly accurate 3D data like laser scanners, we demonstrate that the acquired data provides sufficient accuracy 
for a subsequent standard rule-based reconstruction of a semantically enriched and topologically correct model of an indoor 
scene from the acquired data. Furthermore, we provide a discussion with respect to the robustness of standard handcrafted 
geometric features extracted from data acquired with the Microsoft HoloLens and typically used for a subsequent learning-
based semantic segmentation.

Keywords  Microsoft HoloLens · Indoor mapping · Localisation · Geometry acquisition · Scene modelling

Zusammenfassung
Effiziente 3D-Kartierung und -Modellierung von Innenraumszenen mit der Microsoft HoloLens: Ein Überblick. Die Micro-
soft HoloLens ist ein mobiles Augmented-Reality-System, das als Headset getragen wird. Sie ermöglicht eine Echtzeit-
3D-Kartierung ihrer direkten Umgebung und eine Selbstlokalisierung innerhalb der erfassten 3D-Daten. Beide Aspekte sind 
wesentlich für eine robuste Erweiterung der lokalen Umgebung des Benutzers mit virtuellen Inhalten und für die robuste 
Interaktion des Benutzers mit virtuellen Objekten. Obwohl die Microsoft HoloLens nicht primär als Indoor-Mapping-System 
konzipiert ist, bietet sie ein großes Potenzial für ein effizientes und komfortables Erfassen von Innenraumszenen sowohl auf 
der Basis von einzelnen Räumen als auch auf der Basis von ganzen Gebäuden. In diesem Beitrag wird ein Überblick über das 
Potenzial der Microsoft HoloLens (Version 1) hinsichtlich einer effizienten 3D-Kartierung und Modellierung von Innenraum-
szenen gegeben. Insbesondere liegt der Fokus auf den Fähigkeiten der HoloLens hinsichtlich der Lokalisierung (im Sinne 
einer Posenbestimmung) in Innenräumen sowie der räumlichen Abbildung von Innenraumszenen. Obwohl die Microsoft 
HoloLens sicherlich nicht mit hochgenauen Systemen wie Laserscannern zur Erfassung von 3D-Daten konkurrieren kann, 
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lässt sich zeigen, dass die erfassten Daten eine ausreichende Genauigkeit für die anschließende regelbasierte Rekonstruktion 
eines semantisch angereicherten und topologisch korrekten Modells einer Innenraumszene aus den erfassten Daten bieten. 
Darüber hinaus erfolgt eine Diskussion der Robustheit von geometrischen Standardmerkmalen, welche aus mit der Microsoft 
HoloLens erfassten Daten extrahiert und typischerweise für eine anschließende lernbasierte semantische Segmentierung 
verwendet werden.

1  Introduction

Due to the technological advancements in recent years, 
more and more sensor systems have become available for 
3D indoor mapping. Recent research particularly focused on 
the efficient 3D mapping and modelling of indoor scenes, as 
this enables a rich diversity of applications including scene 
modelling, navigation and perception assistance, and future 
use cases like telepresence. Besides 3D reconstruction based 
on RGB imagery (Remondino et al. 2017; Stathopoulou 
et al. 2019; Dai et al. 2013), RGB-D data (Zollhöfer et al. 
2018) or data acquired via mobile indoor mapping systems 
(Lehtola et al. 2017; Chen et al. 2018; Nocerino et al. 2017; 
Masiero et al. 2018), there has also been an increasing inter-
est in the use of Augmented Reality (AR) devices like the 
Microsoft HoloLens. Although not being primarily designed 
as an indoor mapping device, such devices also need to sat-
isfy certain constraints regarding indoor mapping, as they 
need to provide a robust self-localisation (in terms of pose 
estimation) and a sufficiently accurate spatial mapping to 
allow for a live augmentation of real scenes with robustly 
placed virtual contents in the field-of-view of the user. Thus, 
the Microsoft HoloLens may be used for numerous appli-
cations in entertainment, education, navigation, medicine, 
planning and product design. It may for instance be used for 
visual guidance during surgery (Gu et al. 2020; Pratt et al. 
2018), for visualisation of city models and various types of 
city data (Zhang et al. 2018) or for the visualisation of 3D 
objects embedded in the real world (Hockett and Ingleby 
2016). Furthermore, the Microsoft HoloLens could be useful 

for the in-situ visualisation of virtual contents (e.g. Building 
Information Modelling (BIM) data as shown in Fig. 1 or 
information directly derived from the acquired data) which, 
in turn, facilitates numerous applications addressing facility 
management, cultural heritage documentation or educational 
services.

To deeper analyse its potential regarding different appli-
cations, the Microsoft HoloLens has recently been evaluated 
regarding its fundamental capabilities as an AR device (Liu 
et al. 2018; Huang et al. 2018) as well as regarding the spa-
tial stability of holograms (Vassallo et al. 2017). Specifically 
addressing geometry acquisition within larger indoor envi-
ronments, further investigations focused on assessing the 
spatial accuracy of triangle meshes acquired by the Micro-
soft HoloLens in comparison to highly accurate ground truth 
data acquired with a terrestrial laser scanning (TLS) system 
(Khoshelham et al. 2019; Hübner et al. 2019). Beyond geom-
etry acquisition, performance evaluation in recent investiga-
tions also addressed the impact of the quality of acquired 3D 
data on the extraction of geometric features and thus on the 
results of semantic segmentation (Weinmann et al. 2020), 
for which both HoloLens data and TLS data were involved.

In this paper, we provide an overview on the capa-
bilities of the Microsoft HoloLens regarding its localisa-
tion within indoor environments (Hübner et  al. 2020a) 
and the spatial mapping of indoor environments (Hübner 
et al. 2019). Beyond geometry reconstruction, we provide 
a glance view on the reconstruction of models of indoor 
scenes from unstructured triangle meshes acquired with the 
Microsoft HoloLens (Hübner et al. 2020b), and we discuss 

Fig. 1   Augmented reality for indoor scenes (Hübner et al. 2018). The 
left figure shows a room model where components like tables, cabi-
nets, plug sockets and wall-mounted cameras are depicted with black 
surface elements and green wireframe, while infrastructure pipelines 

inside the walls are categorised with respect to heating pipes (red), 
water pipelines (blue) and power supply lines (yellow). The right fig-
ure shows the augmentation of the real room by the room model
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the robustness of standard handcrafted geometric features 
extracted from data acquired with the Microsoft HoloLens 
(Weinmann et al. 2020).

The paper is organised as follows. We first focus on avail-
able sensor systems that can be used for 3D indoor map-
ping and on the potential of the Microsoft HoloLens in this 
regard (Sect. 2). In particular, the mapping capabilities of 
the Microsoft HoloLens rely on a specific sensor design 
(Sect. 3). Addressing the application of the Microsoft Holo-
Lens for different use cases, we focus on capabilities of the 
Microsoft HoloLens in terms of localisation within indoor 
environments (Sect. 4) which are essential for an adequate 
spatial mapping (Sect. 5) and the subsequent use of the 
acquired geometric data for rule-based 3D indoor recon-
struction (Sect. 6) or learning-based semantic segmenta-
tion (Sect. 7). This is followed by a discussion with respect 
to capabilities regarding localisation, spatial mapping, 
reconstruction of models of indoor scenes and data-driven 
learning-based semantic segmentation (Sect. 8). Finally, we 
provide a summary and concluding remarks (Sect. 9).

2 � Sensor Systems for 3D Indoor Mapping

In surveying, Terrestrial Laser Scanning (TLS) systems are 
often used to achieve a highly accurate geometry acquisition 
representing the measured counterpart of physical object 
surfaces. This also holds for indoor environments with 
weak texture as shown in Fig. 2 for an exemplary indoor 
scene. While the quality of range measurements generally 
depends on a variety of influencing factors (Soudarissan-
ane et al. 2011; Weinmann 2016), uncertainties in the range 
measurements within an indoor scene are mainly caused by 

(1) characteristics of the observed scene (such as materi-
als, surface reflectivity, surface roughness, etc.), or (2) the 
scanning geometry (particularly in terms of the relative dis-
tance and orientation of object surfaces with respect to the 
used scanning device). To achieve high scene coverage for 
an indoor environment with several rooms, a single scan is 
not sufficient and hence multiple scans have to be acquired 
from different viewpoints. Since each scan comprises data 
represented in the local coordinate system of the terrestrial 
laser scanner, all scans need to be transformed into a com-
mon coordinate system (cf. left part of Fig. 2). This pro-
cess is referred to as point cloud registration and often done 
manually using artificial markers placed in the scene, which 
results in a laborious and time-consuming task. Taking fur-
thermore into account a desired data quality, a reasonable 
number and configuration of viewpoints may be determined 
based on different dependencies addressing range constraints 
and/or incidence angle constraints (Soudarissanane and Lin-
denbergh 2011; Soudarissanane et al. 2011).

A straightforward solution towards more efficient data 
acquisition is represented by a Mobile Laser Scanning 
(MLS) system or a Mobile Mapping System1 (MMS), since 
all acquired data are directly co-registered on-the-fly. Such 
sensor systems are meanwhile commonly used for acquir-
ing the geometry of both outdoor scenes (Paparoditis et al. 
2012; Gehrung et al. 2017; Roynard et al. 2018; Voelsen 
et al. 2021) and indoor scenes (Otero et al. 2020). Regard-
ing data acquisition within indoor scenes, different solu-
tions are conceivable such as trolley-based systems (e.g., 

Fig. 2   Visualisation of data acquired for an exemplary indoor scene 
and shown in nadir view (top row) as well as in detailed oblique view 
(bottom row) (Weinmann  et  al. 2020): TLS data acquired with a 
Leica HDS6000 (left), TLS data downsampled via a voxel-grid filter 

using a voxel size of 3 cm × 3 cm × 3 cm (center), and HoloLens data 
(right). While the registration of acquired TLS data was performed 
manually using artificial markers, the data acquired by the Microsoft 
HoloLens are directly co-registered during the acquisition stage

1  Such systems typically comprise a multi-camera system in combi-
nation with one or more multi-profile laser scanners.
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the NavVis mobile mapping system (NavVis M6 2021), the 
Viametris iMS3D mobile mapping system (IMS3D 2021) 
or the Trimble Indoor Mobile Mapping Solution (TIMMS) 
(TIMMS  Indoor  Mapping 2021)), UAV-based systems 
(Hillemann et al. 2019), backpack-based systems (Nüchter 
et al. 2015; Filgueira et al. 2016; Blaser et al. 2018) or hand-
held systems (e.g., the Leica BLK2GO, Leica BLK2GO 
2021)). However, such sensor systems still tend to be rather 
expensive like TLS systems, and some of the available sen-
sor systems may face major challenges for particular indoor 
scenes. For instance, trolley-based systems are less practi-
cable for indoor scenes with stairways, while UAV-based 
systems would typically require an expert to fly the sensor 
platform through narrow corridors and rooms. In contrast, 
backpack-based systems need to be carried by the user and 
have a significant weight, thus reducing applicability when 
focusing on the mapping of larger indoor environments.

Low-cost solutions for geometry acquisition in indoor 
scenes are given in the form of RGB-D cameras (e.g., the 
Microsoft Kinect (Dal Mutto et al. 2012; Smisek et al. 2011) 
or the Intel RealSense (Intel RealSense Technology 2021)) 
that can be used as a hand-held device when connected with 
a unit for data storage and power supply. Similar to mobile 
laser scanning systems, all data are directly co-registered 
during the acquisition stage. However, in contrast to laser 
scanning systems, RGB-D cameras are designed for simul-
taneously capturing geometric and radiometric information 
for points on a discrete, regular (and typically rectangu-
lar) raster. This can be realised with high frame rates, so 
that RGB-D cameras also allow an acquisition of dynamic 
scenes. Addressing both efficient and robust geometry acqui-
sition, KinectFusion (Izadi et al. 2011) and its improved 
variants (Nießner et al. 2013; Kähler et al. 2016; Dai et al. 
2017; Stotko et al. 2019b) are widely used. However, major 
limitations of RGB-D cameras are typically given regarding 
the accuracy of geometry acquisition, which might not meet 
the standard of indoor surveying applications. In particular, 
errors in geometry acquisition are caused by sensor noise, 
limited resolution and misalignments due to drift (Zollhöfer 
et al. 2018), which sometimes necessitates removal of spu-
rious geometry from acquired data. For a detailed survey 
on geometry acquisition with RGB-D cameras, we refer to 
the work of Zollhöfer et al. (2018), Dal Mutto et al. (2012), 
Kolb et al. (2010), and Remondino and Stoppa (2013). For 
analyses regarding the accuracy of the Microsoft Kinect 
and Microsoft Kinect v2, we refer to the work of Khoshel-
ham and Oude Elberink (2012) and Lachat et al. (2015), 
respectively.

Recent technological advancements addressing mobile 
AR devices have lead to the Microsoft HoloLens (Micro-
soft HoloLens 2021), a mobile light-weight head-worn AR 
device. This sensor system allows for live augmentation of 
real scenes with virtual contents in the field-of-view of the 

user, which can be helpful for the acquisition and analysis of 
indoor scenes in terms of an in-situ visualisation of virtual 
contents like Building Information Modelling (BIM) data or 
information directly derived from the acquired data, and thus 
guiding the user in the context of a given application (e.g., 
about where to look to achieve a complete scene coverage 
and/or sufficiently dense data representations in the form of 
point clouds or triangle meshes). Fundamental requirements 
for an efficient and robust geometry acquisition in indoor 
scenes address the localisation and the mapping capabili-
ties of the device, both with a reasonable accuracy. In this 
regard, the Microsoft HoloLens provides the capability to 
map its direct environment in real-time in the form of trian-
gle meshes and to simultaneously localise itself within the 
acquired meshes. Knowledge about the geometric structure 
of the local surrounding and the viewpoint of the device with 
respect to the geometric structure, in turn, allows for a robust 
placement of virtual content and enables a realistic interac-
tion with holograms augmenting the real world.

3 � The Microsoft HoloLens

The Microsoft HoloLens is a mobile head-worn AR device. 
To allow for an efficient and robust geometry acquisition 
in indoor scenes, it is equipped with a variety of sensors. 
On the one hand, the self-localisation of the device relies 
on a robust tracking system involving four grey-scale track-
ing cameras, where two are oriented to the front in a stereo 
configuration with large overlap, while the other two are 
oriented to the left and right with nearly no overlap to the 
center pair. On the other hand, the 3D mapping of the local 
surrounding is achieved with a time-of-flight camera provid-
ing pixel-wise range measurements. In this regard, range 
images can be queried in two different modes. One mode 
addresses the range from 0 to 0.8 m (“short throw” mode) 
and is mostly used for hand gesture recognition, which is 
for instance important for the interaction of the user with 
holograms. The other mode addresses the range from 0.8 m 
to about 3.5 m (“long throw” mode) and is mostly used for 
geometry acquisition regarding the given indoor scene. 
Furthermore, a video camera is used for recording videos 
and imagery, in which the physical environment can be aug-
mented with virtual contents. The respective field-of-view 
of the involved sensors is illustrated in Fig. 3. For further 
details, we refer to the work of Hübner et al. (2020a).

4 � Localisation Within Indoor Environments

The constraints regarding the self-localisation capabilities 
of the Microsoft HoloLens are twofold. On the one hand, 
the device needs to be able to accurately localise itself to 
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later allow for augmenting indoor environments with virtual 
room-scale model data with a spatial accuracy of few centi-
metres. On the other hand, the localisation needs to be robust 
to allow for aggregating all acquired 3D data in a common 
coordinate system without significant drift. Consequently, 
it seems feasible to have a room-scale indoor environment 
equipped with a motion capture system to allow for quan-
titative evaluation against a reference trajectory (Sect. 4.1), 
while a larger (e.g., building-scale) indoor environment 
seems appropriate for qualitative evaluation in terms of self-
induced drift effects (Sect. 4.2).

4.1 � Quantitative Evaluation for a Room‑Scale 
Scenario

To obtain a highly accurate ground truth trajectory, we 
installed the optical motion capture system OptiTrack Prime 
17W (OptiTrack 2020) with eight tracking cameras in a 
laboratory with a size of approximately 8 m × 5 m × 3 m. 
Furthermore, we equipped the Microsoft HoloLens with a 
rigid body consisting of five retro-reflecting sphere markers 
that can easily be tracked by the motion capture system. This 
allows us to evaluate the performance in terms of localisa-
tion for trajectories estimated by the Microsoft HoloLens 
which is moved by the user within the laboratory.

The spatial offset between the local coordinate system 
defined by the rigid body and the local coordinate system of 
the HoloLens is determined via the use of a calibration pro-
cedure. The latter relies on the use of a checkerboard pattern 
observed by the RGB camera of the HoloLens in a static set-
ting. More specifically, the relative pose of the RGB camera 
of the HoloLens with respect to the local coordinate system 
of the checkerboard is determined via the Perspective-n-
Point (PnP) algorithm (Gao et al. 2003), while the relative 
pose of the RGB camera with respect to the local coordinate 
system of the HoloLens is acquired from the Windows 10 

SDK. Furthermore, the relative pose between the rigid body 
and the checkerboard pattern is derived using a tachymeter 
of type Leica TS06, i.e., the relative poses of the rigid body 
and the checkerboard with respect to the local coordinate 
system of the tachymeter are determined via manual meas-
urements of the locations of the sphere targets of the rigid 
body and the corners of the checkerboard pattern, respec-
tively. From these poses, the spatial offset between the local 
coordinate system defined by the rigid body and the local 
coordinate system of the HoloLens may be determined. For 
more details on the calibration procedure, we refer to  Hüb-
ner et al. (2020a). To assess the stability of the spatial offset, 
the distances between the sphere targets were determined 
with the optical motion capture system before and after a 
series of measurements conducted within several days, 
whereby the difference in distance was characterised by a 
mean of 0.74 mm and a standard deviation of 0.49 mm.

For performance evaluation regarding the self-localisa-
tion capabilities of the Microsoft HoloLens, standard evalua-
tion metrics are represented by the Absolute Trajectory Error 
(ATE) and the Relative Pose Error (RPE) (Sturm et al. 2012) 
when comparing estimated trajectories against ground truth 
trajectories. Here, the ATE represents an aggregated meas-
ure for tracking quality over a complete trajectory, while 
the RPE represents a measure accounting for the relative 
drift between an estimated trajectory and the corresponding 
ground truth trajectory. For an exemplary movement, the 
estimated trajectory reveals a mean ATE of about 2 cm and 
a mean RPE value of about 2 cm in position and about 2◦ in 
orientation, as shown in the right part of Fig. 4, whereas the 
aggregated 3D data are shown in the left part.

4.2 � Qualitative Evaluation for a Building‑Scale 
Scenario

We also qualitatively investigated the influence of drift on 
large-scale trajectories through long corridors typically 
encountered in large building complexes. To this aim, we 
focused on the scene depicted in Fig. 5. The user wearing the 
Microsoft HoloLens started in the basement, walked through 
the building and used Staircase 1 to get to the ground floor 
and Staircase 2 to get to the basement again. The total trajec-
tory ended in the same room where it started from, yet the 
room was re-entered through a different door.

Here, the reference coordinate system of the HoloLens 
is defined by the conditions when starting the app, (i.e., the 
origin and orientation of the coordinate system are defined 
via the pose of the device given when starting the app). 
For an absolute referencing, e.g., with respect to an exist-
ing building model, there is a transformation afterwards 
which is determined via manually selected tie points and 
ICP-based refinement. For our scenario, the estimated tra-
jectory and the aggregated 3D data in the form of a triangle 

Fig. 3   Overlay of data acquired by the different sensors of the Micro-
soft HoloLens (Hübner et al. 2020a)
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mesh are illustrated in Fig. 6. The estimated trajectory has a 
total length of 287 m, and the accumulated positional error 
caused by drift is given by 2.39 m when re-entering the 
room. After re-entering the room, loop closure is detected by 
the Microsoft HoloLens and drift-induced errors in position 
can be corrected for. The corresponding correction of trian-
gle meshes is however not provided as built-in component.

5 � Spatial Mapping of Indoor Environments

The accuracy of geometry acquisition with the Microsoft 
HoloLens (cf. “long throw” mode) depends on different fac-
tors. In this regard, the accuracy and stability of range meas-
urements are of particular interest (Sect. 5.1). Furthermore, 
the accuracy and stability of a 3D mapping of whole indoor 
environments need to be taken into account (Sect. 5.2).

5.1 � Accuracy and Stability of Range Measurements

To analyse the accuracy and stability of range measure-
ments, we used a completely cooled-down Microsoft Holo-
Lens to observe a white and planar wall. The sensor system 
was placed with a distance of about 1 m to the wall and with 

an orientation almost perpendicular to the wall. Data were 
recorded for 100 minutes, whereby the HoloLens app used 
for data acquisition (HoloLensForCV 2021) was shortly 
switched off each 25 min in order to avoid the automatic 
shutdown after 30 min. The automatic shutdown to sleep 
mode is triggered when the HoloLens is not moved in the 
meantime, which was exactly the case in this endurance test.

We analysed the temporal variation of the resulting range 
data relative to the first frame, which is shown in Fig. 7. 
Here, we may conclude that a warm-up of more than 60 min 
is required to achieve stable range measurements. For more 
details as well as further analyses of effects arising from 
different distances and different incidence angles, we refer 
to the work of Hübner et al. (2020a).

5.2 � Accuracy and Stability of 3D Indoor Mapping

Besides evaluating the accuracy of measurements from a 
single viewpoint, it is important to also conduct performance 
evaluation of the Microsoft HoloLens regarding the task of 
3D indoor mapping. For this purpose, we consider a specific 
indoor scene which represents an empty apartment consist-
ing of five rooms of different size and one central hallway 
as shown in Fig. 2. After a renovation phase, the geometry 

Fig. 4   Trajectory estimated by 
the Microsoft HoloLens (left) 
and Relative Pose Error (RPE) 
with respect to ground truth 
(right) (Hübner et al. 2020a): 
the colour encoding of the 
trajectory represents the acquisi-
tion time (blue: beginning of 
data acquisition; red: end of 
data acquisition)

RPE Orientation [°]

RPE Position [m]

Time [ms]

2

4

0.01

0.02

0.03

1.5 32 2.5 4 5 6 7 83.5 4.5 5.5 6.5 7.5 8.5
∙104

65 m
Start /
End

Staircase 1

Staircase 2

Fig. 5   3D mesh acquired with the Microsoft HoloLens for a building-
scale environment (left) and its projection onto the corresponding 
2D floor plan of the ground floor (right): yet, for the more complex 
scenario considered in this paper, the user wearing the Microsoft 

HoloLens started in the basement, walked through the building and 
used Staircase 1 to get to the ground floor and Staircase 2 to get to the 
basement again. The total trajectory ended in the same room where 
it started from, yet the room was re-entered through a different door
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of this apartment needed to be acquired in the scope of a 
project, before the apartment was fully equipped again.

In the scope of our work, we compare the geometric data 
acquired with the Microsoft HoloLens to the geometric 
data acquired with a TLS system of type Leica HDS6000. 
The latter has been mounted on a tripod and provides range 
measurements with survey-grade accuracy (within a few 
mm range) in a field-of-view of 360◦ × 155◦ in horizontal 
and vertical direction (i.e., the part below the laser scan-
ner is occluded by the tripod and hence discarded from the 
scan grid). Thus, the highly accurate geometry acquisition 
achieved with the TLS system can be considered as ground 
truth.

For ground truth geometry acquisition with the TLS sys-
tem, 11 scans were acquired from the positions indicated 
with a circle in the left part of Fig. 2 to obtain complete 
scene coverage. Since each scan contains data represented 
in the local coordinate system of the terrestrial laser scanner, 

the scans have to be transferred into a common coordinate 
system. For this purpose, artificial planar and spherical 
markers were placed in the apartment and used to establish 
correspondences for the subsequent determination of the 
transformation parameters (i.e., the relative pose between 
the single scans). Subsequently, the complete point cloud 
was manually cleaned in terms of removing minor artefacts 
in the scans. Furthermore, the data was thinned to an average 
point distance of 1 cm and meshed with the Poisson surface 
reconstruction algorithm (Kazhdan et al. 2006) used from 
the software MeshLab (Cignoni et al. 2008).

For geometry acquisition with the Microsoft Holo-
Lens, a user wearing the device walked through the apart-
ment and thus captured the geometry of the indoor scene 
within a few minutes. To create the triangle mesh, we 
used the commercially available SpaceCatcher HoloLens 
App (SpaceCatcher HoloLens App 2018), which allowed 
directly visualizing the triangle meshes for the user while 

Fig. 6   Trajectory estimated by the Microsoft HoloLens when walk-
ing through a building (Hübner et  al. 2020a): the trajectory has a 
length of 287  m and its colour encoding represents the acquisition 
time (blue: beginning of data acquisition; red: end of data acquisi-
tion). The trajectory within the indoor environment is given in nadir 

view, while a zoom on the room with the start and end position (small 
orange rectangle) is provided in side view (large orange rectangle) to 
highlight the drift-induced errors in position and the effect of loop 
closure (with respect to trajectory only)

Fig. 7   Warm-up behaviour 
of the time-of-flight camera 
integrated in the Microsoft  
HoloLens (Hübner et al. 2020a): 
the plot shows the stability of 
measurements over time and 
relative to the first frame
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they were recorded. A resulting exemplary mesh is vis-
ualised in the right part of Fig. 2 and contains 105,200 
vertices. To facilitate comparison, the acquired HoloLens 
meshes were aligned with the TLS ground truth mesh via 
semi-automatic point cloud registration in CloudCompare 
(CloudCompare 2018). This was achieved by means of 
manually selected tie points and subsequent fine registra-
tion based on the Iterative Closest Point (ICP) algorithm 
(Besl and McKay 1992).

For performance evaluation, we focused on two criteria: 
repeatability and accuracy. For analyses regarding repeat-
ability, the geometry of the indoor scene was acquired five 
times by the user wearing the Microsoft HoloLens (Hübner 
et al. 2019). Between consecutive acquisitions, all data on 
the device were deleted to ensure independent measure-
ments. For comparing two HoloLens meshes with each 
other, we use the Hausdorff distance (Cignoni et al. 1998) 
as evaluation metric, which indicates the distance of each 
point in one point cloud to its nearest point in the other point 
cloud. As the Hausdorff distance only allows comparing two 
point clouds or meshes with each other, we calculate it for 
each possible pair consisting of two out of the five given 
triangle meshes of the complete apartment, and finally we 
derive the mean Hausdorff distance across the 10 possible 
combinations. The mean Hausdorff distance calculated 
across all pairs of HoloLens meshes is visualised in Fig. 8. 
For most parts of the scene, the figure reveals deviations of 
a few centimetres between the compared HoloLens meshes. 
However, larger deviations are given near the ceiling, where 
some of the HoloLens meshes exhibit holes (as the ceiling 

itself was not scanned in the course of all performed acquisi-
tions). Thus, the Microsoft HoloLens performs the spatial 
mapping of indoor environments with low variation between 
independent measurements.

For analyses regarding accuracy, the acquired HoloLens 
meshes were also compared with the TLS ground truth 
(Hübner et al. 2019), where a scale factor of about 1.012 
was observed between HoloLens meshes and TLS ground 
truth. Again, we use the Hausdorff distance (Cignoni et al. 
1998) as evaluation metric for comparing two triangle 
meshes. The mean Hausdorff distance calculated across all 
pairs comprising a HoloLens mesh and the TLS ground 
truth mesh is visualised in Fig. 9. For most parts of the 
scene, the figure reveals small deviations between the Holo-
Lens meshes and the TLS ground truth. However, for some 
inner walls parallel to the doors connecting the rooms, 
larger deviations can be observed. In fact, the transition 
spaces between neighbouring rooms and the weak texture 
of the considered scene are challenging for the tracking 
component of the HoloLens device, thus also affecting the 
correctness of the spatial mapping. To assess whether the 
geometry of the rooms is accurately acquired, we extracted 
the averaged HoloLens mesh for each of the rooms and 
aligned these meshes with their TLS counterpart based on 
the same semi-automatic point cloud registration procedure 
as mentioned before. The resulting mean Hausdorff distance 
on a per-room basis is visualised in Fig. 10 and indicates 
low deviations between the HoloLens meshes and the TLS 
ground truth. 

Fig. 8   Mean Hausdorff distance 
across all possible combina-
tions for comparing two out 
of five triangle meshes of the 
complete apartment, where each 
triangle mesh has been captured 
with the Microsoft HoloLens 
(Hübner et al. 2019): nadir view 
(left) and two side views (center 
and right)

Fig. 9   Mean Hausdorff distance 
between five triangle meshes 
captured with the Microsoft 
HoloLens and the TLS ground 
truth (Hübner et al. 2019)
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6 � Reconstruction of Scene Models

Beyond the mere acquisition of the geometry of an indoor 
scene, a topic of great interest is represented by the recon-
struction of models of indoor scenes from unstructured 3D 
data in the form of either point clouds or triangle meshes. In 
this regard, the resulting structured indoor model includes 
both semantic information (e.g., with respect to ceiling, 
floor, walls, wall openings, or furniture) and information 
about topological relationships (e.g., with respect to room 
adjacency or accessibility through sufficiently large wall 
openings).

To advance from an acquired HoloLens triangle mesh to 
a structured indoor model, we make use of a voxel-based 
reconstruction approach (Hübner et al. 2020b, 2021) which 
allows a reconstruction by means of assigning both semantic 
labels and room labels to the given voxels. The approach 
thus performs both semantic segmentation, which relies on 
a cascade of rule-based procedures (for ceiling and floor 
reconstruction, voxel classification, voxel model refine-
ment regarding wall geometry and wall openings, etc.), and 
instance segmentation in terms of room partitioning. In this 
paper, we use a voxel resolution of 5 cm, but the approach 
is not restricted to this design choice (Hübner et al. 2020b, 
2021).

In the following, we consider a dataset acquired with the 
Microsoft HoloLens by a user walking through an indoor 
office environment with multiple rooms on two storeys 
including furniture. The total extent of the scene is given 
with 13 m × 21 m × 8 m. This indoor scene was selected, 
because it is much more challenging for state-of-the-art 
indoor reconstruction approaches than for instance the scene 
represented in Fig. 2 due to the more complex room layout, 
the additional furniture, the different storeys and the con-
necting staircase. Figure 11 shows an initial voxel represen-
tation, where voxels are classified with respect to their nor-
mal vector, while Fig. 12 shows the reconstructed model of 
the indoor scene and its room topology. For more technical 
details and more results, we refer to the work of Hübner et al. 
(2020b, 2021), while used datasets and implementations can 
be accessed via links provided in the work of Hübner et al. 
(2021). 

7 � Semantic Segmentation

While the reconstruction of indoor models still typically 
relies on rule-based approaches, a different avenue of 
research addresses a learning-based semantic segmenta-
tion on point level. Here, we may expect a more significant 

Fig. 10   Mean Hausdorff 
distance between five trian-
gle meshes captured with the 
Microsoft HoloLens and the 
TLS ground truth (Hübner et al. 
2019), when considering each 
room separately and register-
ing the corresponding 3D data 
against the ground truth data

Fig. 11   Voxel representation, 
where voxels are classified with 
respect to their normal vector. A 
close-up view for a room with 
furniture is depicted on the bot-
tom left part
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impact of the quality of the acquired 3D data on the behav-
iour and expressiveness of geometric features and thus the 
results of a subsequent semantic segmentation relying on 
these features.

For a scenario with few training data available, it is practi-
cable to follow the classic strategy of a point-wise extraction 
of handcrafted features and the use of these features as input 
to a standard supervised classification technique which, in 
turn, delivers a semantic labelling with respect to defined 
class labels. Since a 3D point has no spatial dimensions, 
we need to take into account its neighbouring 3D points to 
describe the local 3D structure. For this purpose, we select 
a spherical neighbourhood parameterised by the number of 
nearest neighbours, where the latter is determined locally-
adaptive and individually for each 3D point of the point 
cloud via eigenentropy-based scale selection (Weinmann 
2016). Based on these neighbourhoods, we extract a set of 
17 standard geometric features used in a diversity of applica-
tions (Weinmann et al. 2017b; Weinmann 2016; Weinmann 
et al. 2017a). Since each of these features represents one 
single property of the local neighbourhood by a single value, 
the features are rather intuitive and their behaviour can eas-
ily be interpreted. As classifier, we use a Random Forest 
(Breiman 2001) as representative of standard discriminative 
classification approaches.

For performance evaluation, we use the data acquired 
with the Microsoft HoloLens as shown in the right part 
of Fig. 2 and a downsampled version of the TLS data as 
shown in the center part of Fig. 2. Here, the downsampling 
has been achieved by applying a voxel-grid filter using a 
voxel size of 3 cm × 3 cm × 3 cm and a subsequent Poisson 
Surface Reconstruction (Kazhdan et al. 2006) resulted in a 
mesh containing 178,322 vertices. Furthermore, a ground 
truth labelling has been obtained via manual annotation 
and it addresses the three classes Ceiling, Floor and Wall, 
as these information are helpful for subsequent tasks such 
as guiding the user of an AR device during the acquisition 

regarding scene completion and densification of sparsely 
reconstructed areas. We randomly select 1000 points per 
class for training and all remaining points for performance 
evaluation. To allow reasoning about the impact of the qual-
ity of acquired 3D data on the behaviour and expressiveness 
of the considered intuitive geometric features, a visualisation 
of their behaviour across the complete mesh is provided in 
Fig. 13 for the downsampled TLS data and for the HoloLens 
data, respectively. Furthermore, the achieved classification 
results are visualised in Fig. 14. For the downsampled TLS 
dataset, this corresponds to an OA of 98.10% and F1-scores 
of 97.58%, 97.57% and 98.44% for classes Ceiling, Floor 
and Wall, respectively. For the HoloLens dataset, this cor-
responds to an OA of 93.36% and F1-scores of 90.69%, 
92.02% and 94.70% for classes Ceiling, Floor and Wall, 
respectively. For more detailed analyses, we refer to the work 
of Weinmann et al. (2020). 

8 � Discussion

So far, we mainly focused on the capabilities of the Micro-
soft HoloLens with respect to localisation and spatial map-
ping. Regarding localisation, results achieved for both room-
scale and building-scale indoor environments clearly reveal 
a robust tracking of the sensor system (Sect. 4) which is a 
prerequisite for the spatial stability of virtual objects placed 
in the scene as perceived by the user wearing the Micro-
soft HoloLens. While small drift effects are accumulated 
with the travelled distance, corrections in terms of pose 
estimation can be made via loop closure detection. Regard-
ing spatial mapping, a warm-up behaviour of the Microsoft 
HoloLens has to be taken into account (Sect. 5.1), where 
more than 60 min are recommended to achieve stable range 
measurements, which in turn are required for an accurate 
geometry acquisition. The results achieved for the spatial 
mapping of indoor scenes clearly reveal the high potential 

Fig. 12   Reconstructed model of the indoor scene (left) and recon-
structed room topology (right): the colour encoding of the recon-
structed model addresses the classes Ceiling (red), Floor (green), 

Wall (grey), Wall Opening (blue) and Interior Object (dark grey), 
while the colour encoding of the reconstructed room topology repre-
sents different rooms in different colours
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of the Microsoft HoloLens for efficient and easy-to-use map-
ping of basic indoor building geometry (Sect. 5.2). However, 
during the spatial mapping, major challenges are faced when 

the user wearing the device walks through doors and thus 
through transition spaces between neighbouring rooms. In 
such situations, the localisation is prone to errors. A further 
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Fig. 13   Visualisation of the scene, a ground truth labelling address-
ing three classes (Ceiling: red; Floor: green; Wall: white), the locally-
adaptive neighbourhood size determined via eigenentropy-based scale 
selection (Weinmann 2016), and 17 low-level geometric features 
(Weinmann 2016; Weinmann et  al. 2017b) for a downsampled ver-

sion of data acquired with a TLS system and for data acquired with 
the Microsoft HoloLens (Weinmann et al. 2020): the neighbourhood 
size addresses the locally-adaptive number of nearest neighbours 
determined via eigenentropy-based scale selection, while all features 
are scaled to the interval [0, 1]
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reason for such errors might be represented by the weakly-
textured indoor scene given for an empty apartment. In 
additional experiments for the same apartment, but fully 
equipped, localisation errors were significantly lower and 
even the thickness of the walls in the acquired data matched 
well to the ground truth (Hübner et al. 2020a). Furthermore, 
the measurement accuracy in the range of a few centime-
tres might not be sufficient to recover fine details of indoor 
scenes such as light switches, power sockets or door handles 
for empty apartments and specific lamps, houseplants or thin 
objects in general for fully equipped apartments.

Beyond geometry acquisition, we focused on the recon-
struction of models of indoor scenes from the unstructured 
3D data acquired by the Microsoft HoloLens (Sect. 6). 
Again, achieved results clearly demonstrate the potential of 
the Microsoft HoloLens, as the efficient geometry acquisi-
tion for indoor scenes provides data of sufficient quality for a 
state-of-the-art voxel-based reconstruction approach relying 
on a cascade of rule-based procedures.

However, the achieved results also reveal that we may 
expect challenges for considerations on point level. For 
instance, applications relying on a data-driven learning-
based semantic segmentation (Sect.  7) encounter error 
propagation from the measurements to subsequent process-
ing steps such as the extraction of geometric features. Such 
features are known to be sensitive to noise and measure-
ment errors (Dittrich et al. 2017). Regarding the behaviour 
and expressiveness of such geometric features for 3D data 
of different quality, the conducted comparison reveals that 
some features are more and others less affected by the lower 

quality of the data acquired with the Microsoft HoloLens. 
Furthermore, the visualisations directly allow a reasoning 
about expressive features (e.g., height, verticality, or the 
ratio of the eigenvalues of the 2D structure tensor) and less-
expressive features (e.g., radii of the local neighbourhood 
in 3D and 2D, the local point densities in 3D and 2D, or 
the sum of the eigenvalues of the 2D structure tensor) with 
respect to the considered classification task addressing three 
classes. The suitability of these features might vary for more 
complex classification tasks (e.g., addressing more classes 
with a higher similarity) or for more complex indoor scenes 
(e.g., scenes covering different storeys and/or also contain-
ing room inventory). Finally, the comparison of the classifi-
cation results achieved for both datasets reveals a decrease 
in OA of about 4.74% when using the HoloLens for data 
acquisition.

9 � Conclusions

In this paper, we provided a survey on the capabilities of 
the Microsoft HoloLens for efficient 3D indoor mapping. 
More specifically, we focused on its capabilities regarding 
the localisation within indoor environments and the spa-
tial mapping of indoor environments. Being not primarily 
designed as an indoor mapping device, but as a mobile AR 
headset instead, the capabilities of the Microsoft HoloLens 
in terms of geometry acquisition are focused on the needs of 
an AR device. Here, only the geometric structure of the local 
environment around the user needs to be consistently known 

Fig. 14   Visualisation of the 
ground truth labelling (top row) 
and the achieved classifica-
tion results (bottom row) for a 
downsampled version of data 
acquired with a TLS system 
(left) and for data acquired with 
the Microsoft HoloLens (right) 
when addressing the classes 
Ceiling (red), Floor (green) and 
Wall (white)
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so that it may be augmented with virtual contents. How-
ever, the achieved experimental results demonstrate that the 
Microsoft HoloLens has a high potential for a diversity of 
applications. As a head-worn AR device, it is easy to use for 
non-expert users and it allows an efficient and comfortable 
mapping of basic indoor building geometry. The promising 
mapping capabilities hold for both room-scale and building-
scale indoor environments, and they are mainly due to the 
interplay of a robust localisation and a spatial mapping with 
an accuracy in the range of a few centimetres, which is suf-
ficient for many subsequent tasks like the reconstruction of 
semantically enriched and topologically correct models of 
indoor scenes or the navigation of a user through an indoor 
scene.

In future work, we intend to further investigate the 
potential of the Microsoft HoloLens for the detection of 
fine-grained object categories with smaller objects that are 
typical for indoor scenes, e.g., the ones proposed in the work 
of Chang et al. (2017). Furthermore, to foster research on the 
processing of data acquired with the Microsoft HoloLens, 
we recently released several datasets of different complexity 
that can be used as benchmark datasets for semantic segmen-
tation of 3D data (Hübner et al. 2021). This complements the 
ISPRS Benchmark on Indoor Modelling (Khoshelham et al. 
2017, 2020), where the benchmark data comprise six indoor 
scenes, each captured with a different sensor (data acquisi-
tion was performed using a TLS system, a trolley-based sys-
tem, a backpack-based system and three hand-held systems). 
Based on this diversity of datasets, a comprehensive evalua-
tion of the performance of both standard and deep learning 
approaches seems desirable. Future work might also address 
automatic scene completion in terms of handling missing 
or occluded parts of an indoor scene after the acquisition 
by the user wearing the Microsoft HoloLens. This could 
be achieved in a similar way as proposed for street-based 
mobile mapping systems involving 2D range image repre-
sentations of the acquired 3D point  cloud (Biasutti et al. 
2018) or via the joint estimation of both the geometry and 
the semantics of a scene with partially incomplete object 
surfaces (Roldão et al. 2021).

Besides geometry acquisition, research might also 
address the visualisation of potential changes in an indoor 
scene. In this regard, related work focuses on the use of an 
RGB-D camera for data acquisition within an indoor scene 
and the subsequent creation of a scene model of the empty 
room, taking into account light sources, given materials and 
room geometry (Zhang et al. 2016). In addition to a realis-
tic rendering of the empty room under the same lighting 
conditions, the proposed framework allows for an editing 
of the scene in terms of adding furniture, changing material 
properties of walls, and relighting. This in turn might be 
interesting for diverse AR applications involving the Micro-
soft HoloLens for architectural purposes. Well-reconstructed 

environments with a segmentation into individual object 
entities may also serve as a key for user interaction with 
individual objects, e.g., in terms of a gesture-based control 
of a microcontroller (Schütt et al. 2019) to switch lamps on 
or off, respectively.

Furthermore, the Microsoft HoloLens may be of great 
relevance for collaborative AR scenarios (Sereno et al. 2020) 
and remote collaboration scenarios. Previous approaches on 
sharing live experiences in a certain user’s environment are 
based on real-time scene capture as well as efficient data 
streaming and VR-based visualisation for remote users 
(Stotko et al. 2019a, b) as required for efficient consulting 
or maintenance purposes that reduce the need for physi-
cal on-site presence of experts. This may be extended to 
also allow for live visualisation of the current state of the 
acquired scene to the user performing the 3D scene capture. 
Knowledge about the current state in turn would allow an 
adaptive acquisition in terms of guiding the user about where 
to look to acquire data for still missing scene parts or to 
densify data in areas of low point density (or large triangles, 
respectively). Besides an in-situ visualisation of virtual con-
tents like the progress of geometry acquisition, information 
directly derived from the acquired data, or BIM data for 
the user on-site, it might be interesting to allow remotely 
immersed users to conduct distance measurements, select 
objects or perform annotations in the acquired data similar 
to the work of Zingsheim et al. (2021) and to additionally 
stream these information to the user on-site performing data 
acquisition.
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