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Exchange magnon-polaritons in microwave cavities

Yunshan Cao,1 Peng Yan,1 Hans Huebl,2,3,4 Sebastian T. B. Goennenwein,2,3,4 and Gerrit E. W. Bauer5,1

1Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
2Walther-Meißner-Institute, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany

3Nanosystems Initiative Munich, D-80799 München, Germany
4Physik-Department, Technische Universität München, D-85748 Garching, Germany

5Institute for Materials Research and WPI-AIMR, Tohoku University, Sendai 980-8577, Japan
(Received 18 December 2014; revised manuscript received 10 March 2015; published 24 March 2015)

We formulate a scattering theory to study magnetic films in microwave cavities beyond the independent-spin
and rotating-wave approximations of the Tavis-Cummings model. We demonstrate that strong coupling can be
realized not only for the ferromagnetic resonance mode, but also for spin-wave resonances; the coupling strengths
are mode dependent and decrease with increasing mode index. The strong-coupling regime can also be accessed
electrically by spin pumping into a metal contact.
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I. INTRODUCTION

Strong light-matter interaction is a central subject in
quantum information and communication science and tech-
nology. Hybrid systems consisting of resonantly coupled spin
ensembles and microwaves have received much attention
recently [1–3]. In magnetic materials, spins are coupled by
the exchange interactions into ordered states. The collective
elementary excitations of the spin system are spin waves
or magnons. Arguably the most important experimental
technique is the microwave spectroscopy of the magnetic
order parameter called ferromagnetic resonance (FMR) and/or
spin-wave resonance (SWR) [4], which is usually used to study
magnetism in the weak-coupling limit. In the strong-coupling
limit, the hybridized states of the magnetic order parameter
with electromagnetic waves are magnon-polaritons [5,6].
They can be observed only when the viscous damping of
the magnetization dynamics as parameterized by the Gilbert
constant is sufficiently weak. Of special interest from a
materials perspective is yttrium iron garnet (YIG) [7,8],
a ferrimagnetic insulator. YIG is advantageous due to (i)
an extremely low dissipation, with Gilbert damping factor
α down to ∼10−5 [9], and (ii) a large spin density 2 ×
1022 cm−3 [10], much higher than that in paramagnetic materi-
als with ∼1015 –1018 cm−3 [11,12]. Therefore, strong coupling
is much easier to achieve using YIG, in either broadband
coplanar waveguides (CPWs) [13–15] or metallic microwave
cavities [16–18].

The conventional description for the coherent interaction
between spins and photons is based on the Tavis-Cummings
(TC) model [19], where the effective coupling strength geff =√

Ngs of a single magnon (N spins) to a single photon is
enhanced by

√
N as compared to the coupling gs to a single

spin. A standard input-output formalism in the low photon
number limit [20,21] provides the transmission amplitude of
microwaves from the input to the output port of the microwave
resonator [sketched in Fig. 1(a)],

S21 = κe

i(ω − ωc) − (κe + κi) + �(ω)
, (1)

where ωc and κe,i are, respectively, the resonance frequency
and external/intrinsic loss rate of the microwave resonator

(total damping rate κc = κe + κi). The self-energy caused
by the magnon-photon coupling reads �(ω) = g2

eff/[i(ω −
ωFMR) − κs], with FMR frequency ωFMR and magnetic relax-
ation rate κs. When geff > κs,c, the strong-coupling regime is
achieved and explained well by the TC model [11–19]. How-
ever, the TC model based on monochrome mode interaction
and the rotating-wave approximation (RWA) fails to describe
the ultrastrong-coupling (USC) regime and multimode behav-
ior. Although the TC model can, in principle, be repaired to
cover the USC regime [22], the cited experiments investi-
gated ferromagnetic samples of different shapes exposed to
microwaves in different geometries, which is beyond a generic
TC model. In this paper, we present a first-principles theory
that supersedes the TC model in treating ferromagnetic objects
coherently interacting with microwaves.

Huebl et al. [13] demonstrated strong coupling of a YIG
film in a superconducting CPW in terms of an anticrossing in
the microwave transmission spectrum when the FMR matches
the CPW frequency. A series of anticrossings for thicker YIG
samples indicative of spin-wave excitations are reported in
YIG-film split rings [14,15]. Tabuchi et al. [16] studied the
strong-coupling regime for YIG spheres in a three-dimensional
(3D) cavity system down to low temperatures and subsequently
coupled the magnon to a qubit via the microwave cavity mode.
Characteristic phenomena associated with distinct parameter
regimes, such as magnetically induced transparency (κs <

geff < κc) and Purcell effect (κc < geff < κs), and even the
USC regime beyond the RWA, were observed by Zhang
et al. [17]. Goryachev et al. [18] reported strong coupling
between multiple magnon modes and a dark cavity mode for
submillimeter-size YIG spheres in 3D reentrant cavities, as
well as a high cooperativity of >105 by USC to a bright cavity
mode.

Strongly hybridized magnon-polaritons as observed in the
above experiments cannot be described in terms of a single
magnon-photon coupling process. In the present work, we
formulate the coupling of a magnetic film to microwaves in
a cavity by means of the scattering approach. Our method
is valid for the full parameter range spanning the weak- to
strong-, even ultrastrong-, coupling limits. We obtain a general
transmission formula that reduces to the TC model in the
appropriate limits. To this end, we solve the coupled Maxwell’s
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FIG. 1. (Color online) Magnetic film in a planar microwave cavity.

and Landau-Lifshitz-Gilbert (LLG) equations without making
the conventional magnetostatic approximation. We may then
compute microwave absorption and transmission spectra that
can be characterized by multimode strong coupling with mode-
dependent coupling strengths. Furthermore, we consider the
electric detection of the strong-coupling regime through the
spin pumping [23] technique as measured in a Pt contact by
the inverse spin Hall effect (ISHE) [24,25].

This paper is organized as follows: In Sec. II, we model
the cavity and derive the equations of motion for coupled
magnons and photons. Section III gives the formulation of the
scattering theory and the main results of the magnon-photon
strong coupling in both paramagnets and ferromagnets. An
electric detection of the strong coupling is also proposed via
spin pumping and inverse spin Hall effects. Conclusions are
drawn in Sec. IV.

II. MODEL

The weak- to strong-coupling transition can best be
studied in a simple configuration as shown in Fig. 1(a).
The calculations for general configurations will be reported
elsewhere. The magnetic film lies in the y-z plane between
the cavity defining mirrors. The equilibrium magnetization
points into the z direction by crystal anisotropy, dipolar, and
external magnetic fields. The incident microwave propagates
along x with the rf magnetic field linearly polarized along
y. The cavity walls are modeled by the permeability μ(x) =
μ0[1 + 2�δ(x) + 2�δ(x − L)], where L is the cavity width
and � models the wall opacity. In the absence of sources, the
microwaves satisfy the Maxwell’s equation in frequency space,

∂2
x h(x) + μ(x)

μ0
q2h(x) = 0, (2)

where q = ω/c, with vacuum speed of light c = 1/
√

ε0μ0,
and ε0,μ0 are the vacuum permittivity and permeability,
respectively.

Inside the magnetic film, we consider small-amplitude
spatiotemporal magnetizations M = Msẑ + m, where Ms is

the saturation magnetization and m is driven by the rf magnetic
field h, according to the Maxwell’s equation

(∇2 + k2
ε

)
h(x) = ∇[∇ · h(x)] − k2

ε m(x), (3)

where ε is the permittivity of the magnet, k2
ε ≡ εμ0ω

2 = ηq2,
and dielectric constant η = ε/ε0. M is governed by the LLG
equation,

∂tM = −γμ0M × Heff + α

Ms
M × ∂tM, (4)

where γ and α are the gyromagnetic ratio and Gilbert damping
constant, respectively. The effective magnetic field, Heff =
Hẑ + Hex + h, consists of external, exchange, and rf magnetic
fields, where the exchange field Hex = J∇2m with exchange
constant J . For wave vector k = kx̂, the coupled Eqs. (3)
and (4) become

(
(1 + uk)k2

ε −ivkk
2
ε

ivkk
2
ε (1 + uk)k2

ε − k2

) (
hx

hy

)
= 0, (5)

with ωM = γμ0Ms, ωH = γμ0H, ωk = ωH + JωMk2 − iαω,
and

uk = ωkωM

ω2
k − ω2

, vk = ωωM

ω2
k − ω2

. (6)

The secular equation of Eq. (5) gives the dispersion relation
for the coupled microwave and spin-wave modes or magnon-
polaritons [26–28],

(1 + uk)k2 = [
(1 + uk)2 − v2

k

]
k2
ε . (7)

III. RESULTS

A. Paramagnet ( J = 0)

We first consider the simplest case of a paramagnet with
uncoupled spins (J = 0), which is equivalent to the macrospin
model for unpinned ferromagnetic order. uk = u, vk = v are
k independent and k = kε

√
1 + u − v2/(1 + u) for a given

frequency ω. hx = −mx is the dipolar field. The susceptibility
χ = ∂my/∂hy resonates at ωFMR =

√
ωH(ωH + ωM) with

linewidth 
ωFMR � α(2ωH + ωM). Rewriting the hy(x,t) =
ψ(x)e−iωt , the potentials ψ(x) in the five separated regimes
marked in Fig. 1(b) read

ψ1(x) = eiqx + Fe−iqx, ψ2(x) = a1e
iqx + a2e

−iqx, (8a)

ψ3(x) = b1e
ikx + b2e

−ikx, ψ4(x) = c1e
iqx + c2e

−iqx, (8b)

ψ5(x) = Seiqx. (8c)

The coefficients {S,F,a1,a2,b1,b2,c1,c2} are determined by
the electromagnetic boundary conditions of continuity and flux
conservation at each interface. The transmission coefficient is

S = (1 − β2)t2
c ei(k−q)d

(1 − βrceiφ)2 − e2ikd (β − rceiφ)2
, (9)

where φ = q(L − d), β = (ηq − k)/(ηq + k), introducing the
scattering coefficients of an isolated cavity wall tc = i/(i +
q�) and rc = −q�/(i + q�). We first inspect the resonant
cavity modes identified by the maxima of the transmission
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FIG. 2. (Color online) (a) Hybridized cavity eigenmodes [solu-
tions of Eq. (10)] in the presence of a nonmagnetic load as a function
of loading rate with dielectric constant η = 15. Transmission spectra
as a function of magnetic field and frequency for two different
magnetic films with parameters (b) d = 5 μm and (c) d = 1 mm.
(d) Thickness dependence of coupling strength for the third and
fourth modes. In the calculations, the length of the cavity L = 46
mm, cavity opacity �/L = 2, except for 0.4 used in (c) to demonstrate
the USC with enough resolution, Gilbert damping α = 3 × 10−4, and
exchange constant J = 0 (paramagnetic limit).

probability |S|2 for nonmagnetic loads at

(1 + |rc|2)β sin(kd) = |rc|[β2 sin(kd − φ∗)+ sin(kd+φ∗)],
(10)

where φ∗ = φ + Arg(rc). For d = 0, we recover the resonance
condition of an empty cavity: φ∗

n = (n + 1)π , with mode
index n = 1,2, . . .. It follows from Eqs. (7) and (10) that the
resonance frequencies ωc,n depend on both loading fraction
d/L and dielectric constant η. The cavity-mode frequencies
for a nonmagnetic load are shown in Fig. 2(a). Odd modes
ωc,2j−1 have nodes of the electric field at the sample position
and depend only weakly on the film thickness, in contrast to
the even modes ωc,2j with antinodes that lead to redshifts.
The anticrossings of the cavity modes indicate hybridization
induced by the dielectric load that modulates its intrinsic
properties. The mode shifting due to the dielectric loading
predicted here is absent in the TC model. To avoid this
complication, we focus our discussions on the nearly empty
cavity regime with loading rates d/L < 5% and on odd-cavity
modes.

In the limit of long wavelength, i.e., k � 1/d, only the
leading term up to order k2 contributes. The transmission
coefficient then reduces to

Sn = κc,n

i(ω − ωc,n) − κc,n − ig2
n(ω − ωFMR + iκs,n)−1

, (11)

where κc,n � c3/[2(L − d)ω2
c,n�

2] is the loss rate of the loaded

cavity, and κs,n � (α/2)
√
ω2

M + 4ω2
c,n is that of the magnetic

film to the leading order in the Gilbert damping α.

The effective coupling strengths gn depend on the parity of
the cavity modes, i.e., the odd-mode coupling scales as

√
d,

g2
2j−1 = dωM(ωM + ωH)

2(L − d)
cos2

φ∗
2j−1

2
, (12a)

while for even modes, higher-order corrections have to be
included:

g2
2j =dωM(ωM + ωH)

2(L − d)
cos2

φ∗
2j

2

×
∣∣∣∣1 − dηq2j tan

φ∗
2j

2
+ [dηq2j tan(φ∗

2j /2)]2

6

∣∣∣∣, (12b)

where φ∗
n is the phase at resonance frequency ωc,n. Both

odd and even modes can be tuned by the total number of
spins ∝ d and by the dielectric constant η. Anticrossings
between magnetic and cavity modes occur at ωFMR = ωc,n

or μ0Hres,n = (−ωM +
√

ω2
M + 4ω2

c,n )/(2γ ). When not stated
otherwise, we use the parameters for YIG, with η = 15 [29],
γ /(2π ) = 28 GHz/T, and μ0Ms = 175 mT [30], while re-
ported α’s range from ∼10−5 –10−3 [9,31,32]. The resonance
frequency ωc and loss rate κc of the cavity is governed by its
width L and opacity �. We choose L = 46 mm to be much
larger than the film thickness d and the n = 3 cavity mode
(around 10 GHz) as well as a κc,3 of the order of MHz, both
of which can be tuned by �.

The transmission spectrum in the paramagnetic limit
J = 0 is shown for a thin film with d = 5 μm (d/L =
0.01%) in Fig. 2(b). At the resonant photon frequency
ωc,3 = 9.84 GHz, a coupling strength of g3 = 57.77 MHz is
extracted from the anticrossing, where g3 is much larger than
both κc,3 = 1.44 MHz and κs,3 = 3.04 MHz, which implies
strong coupling for a quasi-1D model assuming homogeneous
crossing section. However, when d = 1 mm (d/L = 2.17%)
in Fig. 2(c), an additional anticrossing resonance at ωc,4 =
11.27 GHz is observed with coupling strength g4 = 0.43 GHz.
The main resonance for ωc,3 = 10.03 GHz has a coupling
strength g3 = 0.83 GHz, corresponding to a cooperativity
C = g2

3/(κcκs) = 15072 at loss rates κc,3 = 34.71 MHz and
κs,3 = 3.10 MHz, thereby approaching the USC regime of
gn � 0.1ωc,n. The coupling can also go into the magnetically
induced transparency and Purcell effect regimes [17] by tuning
the parameters (not shown here).

The coupling strengths increase with
√

d, as shown in
Fig. 2(d), where the red circles and blue squares are extracted
from numerical results for the full model calculations of
Eq. (9), and the solid lines are the analytical Eqs. 12(a)
and 12(b) without any fitting parameter. In the paramagnetic
limit, the full model converges to Eq. (1) when kd � 1. The
formula for gn begins to deviate when kd � 1, where film
thickness d � c/(

√
ηω) = 1.3 mm for ω/2π = 10 GHz, as

shown in Fig. 2(d). Finite temperature can significantly reduce
the spin polarization of paramagnets, while ferromagnets are
much more robust.

B. Ferromagnet ( J > 0)

Now we consider finite exchange coupling, i.e., J > 0.
Equation (7) then has three solutions for a given frequency
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and ψ3(x) is modified as

ψ3(x) =
3∑

j=1

(b1,j e
ikj x + b2,j e

−ikj x). (13)

The magnetization dynamics now becomes sensitive to
the surface boundary conditions. Kittel [33] has shown that
pinning of the magnetization at the surface is required for
SWR (the absorption of spatially homogeneous microwaves
by higher-order spin waves), and the symmetrically pinned
boundaries merely render odd modes observable. Here we
adopt boundary conditions m[(L ± d)/2] = 0, which can be
justified by sufficiently strong surface anisotropies [34,35].
The standing spin-wave frequencies are ω

(p)
SWR =√

[ωH + 2JωM(pπ/d)2][ωM + ωH + 2JωM(pπ/d)2],
where p ∈ N0. In the following, we consider magnetic film
thicknesses in the range ∼0.1–5.0 μm. Naively, exchange
effects are appreciable when the magnetic film thickness
is comparable with the exchange length, λex � 17 nm for
YIG, but they play a significant role in the spectra of much
thicker samples. For high-quality magnetization dynamics
corresponding to a Gilbert damping α = 10−5, the strong
coupling of the odd spin-wave modes becomes evident
from the transmission spectrum for d = 1 μm � λex. In
Fig. 3(a), anticrossings occur at ω

(p)
SWR with odd p that are

marked by red dashed lines at the SWR magnetic fields

μ0H
(p)
res � [−ωM − 2JωM(pπ/d)2 +

√
ω2

M + 4ω2
c,3]/(2γ ).

The satellite anticrossings are absent in the TC model.
In Fig. 3(b), for d = 5 μm, the anticrossing resonances

of the lower spin-wave modes condensate to the FMR
splitting area. The coupling strengths decrease with increasing
mode number, as shown in Fig. 3(c). The magnon-photon
coupling for the main p = 1 mode is proportional to the
total magnetization, i.e., the coupling strength for spin waves
g(p) ∝ √

d/p for pinned surface magnetizations, as shown in
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FIG. 3. (Color online) (a),(b) Transmission for d = 1 μm and
d = 5 μm; (c),(d) mode-dependent coupling strengths. In the calcu-
lations, we used cavity opacity �/L = 2, Gilbert damping α = 10−5,
and ferromagnetic exchange constant J = 3 × 10−16 m2 [8].

Fig. 3(d). For very thick films, i.e., d > 2 μm, the spin-wave
modes start to overlap and are difficult to distinguish. This
collapse heralds the transition to the paramagnetic macrospin
model in spite of the surface pinning. The lowest spin-wave
mode is always dominant with

√
d scaling that is not affected

by the transition, as shown in the inset of Fig. 3(d).

C. Spin pumping

Spin pumping detected by the ISHE is a useful electrical
technique to study magnetization dynamics [24]. We consider
an ultrathin Pt film attached to the edge of the YIG slab,
as in Fig. 1(a). We assume free boundary conditions at the
edges y = 0. The magnetization dynamics at the interface
then injects a spin current into the Pt film that generates a
Hall voltage VISHE = DISHEj

sp
s over the Pt wire, with DISHE ≡

(2e/�)θξ (d/σdy) tanh(dy/2ξ ). We illustrate strong coupling
in the VISHE spectrum here for the paramagnetic (unpinned
macrospin) limit J = 0. The pumped spin current can be
written as

j sp
s = �g

↑↓
r ω

4πdM2
s

Im

[(
u − v2

1 + u

)
iv∗

1 + u∗

] ∫ L+d
2

L−d
2

dx|ψ3(x)|2.
(14)

We assume that the Pt wire has width dy = 10 nm, con-
ductivity σ = 107 (m · �)−1, spin mixing conductance g

↑↓
r =

1019 m−2, spin Hall angle θ = 0.11, and spin diffusion length
ξ = 1.5 nm [36]. The spin backflow contributes a minor
correction that we disregard since ξ � dy . The amplitude
of the rf magnetic field is chosen as μ0h0 = 10 μT. The
microwave power absorption is obtained by integrating the
Poynting vector over the sample:

Pabs = μ0dydzω

2
Im

(
u − v2

1 + u

) ∫ L+d
2

L−d
2

dx|ψ3(x)|2. (15)

By substituting u and v [see Eq. (6)], we find that j
sp
s /Pabs ∝

ωM(ωM + ωH)/α[ω2 + (ωM + ωH)2] is almost a constant near
the resonance, which proves that spin pumping is a reliable
measure of the microwave absorption. VISHE as a function
of rf frequency and magnetic field is shown in Fig. 4 for
d = 5 μm. In the present symmetric configuration, there are
no surface states that interact with the Pt contact [24,37]. The
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FIG. 4. (Color online) Inverse spin Hall voltage spectrum. For a
cavity �/L = 2, Gilbert damping α = 2 × 10−3, and J = 0 (param-
agnetic limit).
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calculations in the presence of exchange (not shown) support
our conclusions.

IV. CONCLUSIONS

To summarize, we develop a scattering theory to study
exchange magnon-polaritons, i.e., the hybridized magne-
tization and microwave dynamics, beyond the paramag-
netic/macrospin and RWA that are implicit in the TC model.
Our method and scattering coefficient given by Eq. (9) are
valid for the full parameter range spanning the weak- to strong-
coupling limits. The conventional input-output formula given
by Eq. (1) is valid for odd-cavity modes and only to leading
order in the film thickness d, otherwise the cavity properties
are strongly modified by the load. The exchange interaction
between spins leads to strong coupling not only for the FMR
mode but also for standing spin waves. The magnon-photon
coupling strength depends on both the materials parameters
and the spin-wave mode index, e.g., decrease with increasing
mode number. We confirm the transition from weak coupling,
to strong coupling, to magnetically induced transparency,

and to ultrastrong-coupling regimes. Spin pumping from
magnon-polaritons into metallic thin-film contacts shows
pronounced anticrossing spectra, which allows electric readout
of magnon-photon states. We believe that our results will
help to understand and engineer the coherent hybridization
of ferromagnetic and superconducting order parameters in
microwave cavities [16].
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