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A METHOD OF COMPUTATION OF. UNSTEADY WAVE-DRIVEN COASTAL CURRENTS;

TEST—-CASES

1. Introduction

In [12] a method is described of the computation of unsteady wave driven coas-
tal currents. The objectives of this method, which is called RIPCEL, are also

described in [12] and will be mentioned only briefly here:

a. the investigation of the instability and non—linear phenomena in longshore
currents
b. the study of the importance of various processes in the surfzone

c. a validity check on simpler models.

After the construction of the model it seemed useful first to investigate the
model results for various well-known situations. The results of this investi-

gation are presented in this report. The phenomena which are studied are:

a. wave set-up

b. longshore currents

c. circulation currents near the shore
d. currents around breakwaters

e. currents in a closed basin

In a few situations also the transformation procedure of the numerical grid
has been tested. Where possible a comparison with the analytical solution has
been made. It may be pointed out that instead of optimizing the accuracy of
the numerical results it was thought preferable to increase the number of dif-
ferent classes of problems. An investigation in depth can be carried out at a

later stage.

The present investigation is part of a research programme ''Coastal Investiga-

tions" sponsored by the Ministry of Transport and Public Works - Rijkswaterstaat,
in which the Delft Hydraulics Laboratory and the Delft University of Technology

participate.

The author, dr. H.G. Wind, acknowledges many helpful and stimulating discussions

with Prof. dr. C.B. Vreugdenhil and the programming efforts of Mr. C. ten Napel.



2, Wave set—up
2.1 Description of the problem

The variation in mean water level caused by shoaling and breaking of waves
has been explained by theory and confirmed qualitatively by experiments.

In the present case regular waves, normally incidentto a plane sloping beach
will be considered. Details about the geometry and wave conditions are pre-

sented in Table 1.

2.2 Analytical solution

The definition of the various variables is shown below.

mean surface

undisturbed surtface

actual surface

In most problems presented in this report the shoreline is straight and

parallel to the x-—axis.

In Appendix A of this report the complete equations are presented. For the

problem under consideration the equation for the y-momentum reduces to

98, T
E_Xay tg@+0D)5e=0 (2.1)

The definition of Sy is also given in Appendix A. The solution for this
equation is known in the case of a wave field determined on the basis of the

following definition of the breaker index
Y = H/(d + T) (2.2)

However, £ is initially unknown in the present problem and hence (2.1) is sol-



ved analytically by using as a definition of the breaker index
v = H/d.

The boundary condition in deep water is C = 0. The result of this computation

is presented in Figure | as the analytical solution.

2.3 Numerical solution

The boundary condition near the shoreline is formed by a perfect reflecting
boundary at a still waterdepth of 0.10 m. The position of this

boundary has been chosen so that during the calculations the mean water
depth at that point is always positive. For the construction of the seaward
boundary great care has been taken to avoid reflections of this boundary.
In this case the procedure proposed by Gustafsson and Sundstrom was followed.
For details see [ 4 ]. For the boundary conditions of the sides normal to the
shoreline periodicity has been assumed i.e, the velocity field repeats

itself along the shore.

For the definition of the water depth at the seaward boundary, the wave set-
down has also tc be taken into account, In the present tests the following
procedure has been followed. The wave conditions have been obtained using

the still-water depth. The set-down at the seaward boundary has been calcula-
ted using the linear wave theory and assuming £ =0 at infinity. For the cal-
culations of the wave set—up the still-water depth has been reduced with the

set—down calculated at the seaward boundary.

Details of the finite difference grid are presented in Table 2, The mean
water level due to shoaling and breaking of the waves is presented as the

numerical solution in Figure 1.
2.4 Discussion

Inherent to the approach is that the set-down at the seaward boundary is
equal for both methods, Progressing in shoreward direction, small differences
between both methods appear, Near the shoreline the numerical solution is
marginally, but consistently lower than the analytical solution. It is

thought that this is caused by numerical inaccuracies. In general the agree-



ment between the analytical and the numerical solution is satisfactory. Time
functions of the onshore-offshore velocity for three points are presented in
Figure 2. The first point is located 10 m offshore, the second point is found
at the breaker line, while the last point is positioned at the seaward boun-
dary 100 m offshore. The initial wave generated by the sudden application of
the gradients in the radiation stress can be seen clearly. Inside the
breaker zone this causes a flow in onshore direction, while near the seaward
boundary the flow is directed in offshore direction. After the reflection of
the initial wave against the beach the wave runs out of the system. The re-
flection of the wave against the seaward boundary can hardly be noticed from
Figure 2. This means that the proposed conditions indeed yield a weakly re-

flecting boundary.



35 Longshore current

3.1 Description of the problem

The examples of wave driven longshore currents treated in this chapter are
restricted to regular waves, obliquely incident to an infinite long plane

beach.

3.2 Analytical solution

Longuet Higgins (1970) has given the analytical solution of the problem men-
tioned above. The solution is summarized in Appendix B. An important parameter
in this solution is the factor P. This factor P represents the ratio between
the coefficient of the dimensionless lateral mixing term and the coefficient

of the dimensionless bottom friction term:

P=(TmN)/(y.C) (3.1)
m = combined slope of the beach and mean water level (%§-+ %%

N = viscosity coefficient (0.01)

C = bottom friction coefficient (0.01)

Y = breaker index (H/ (d+0))

For m equals 0.025 and a breaker index of 0.8 the resulting value for

P is 0.098.

In Figures 3 and 4 the analytical longshore current profile is shown respec-—
tively for non-viscous flow (N = 0) and for viscous flow (N = 0.01). The boun-
dary condition at the shoreline and at the seaward boundary is v = O.

If it is assumed that the boundary layer develops within one grid spacing

from the shoreline, the free slip condition can be applied:

= (®/h) * 2 (p/h) = 0 (3.2)

The analytical solution for the wave driven longshore current, using the free
slip condition and similar approximations as in Longuet Higgins (1970), has

been derived in Appendix B. The resulting velocity profile is shown in Figure
5. The similarity between Figures 4 and 5 is striking. This implies that the

choice of boundary condition has in this case only a local effect.



3.3 Numerical solution

Information about the grid is given in Table 2. In this example use has been
made of the grid transformation procedure. The grid spacing increases in
offshore direction. In this way the grid points are concentrated in the in-

teresting area.

In Figures 3 and 5 the numerical solutions are shown for the wave driven long-—
shore current at T = 200 s and T = 800 s. In Figure 3 the fluid flow is non-—
viscous (N = 0), while in Figure 5 the viscosity constant N = 0.01. The resul-
ting value for P is P = 0.098. The boundary condition in both cases is the
free slip condition (3.2). In Figure 4 the wave driven longshore current is
presented for P = 0.098 and the boundary condition v = 0 at the most shore-

ward grid point.

The time function of the current velocity at the breakerline for P = 0 and
P = 0.098 is shown in Figure 7. From this Figure it is clear that after

T

800 s the velocity is almost constant.and only minor changes are to be

expected with the increase in time.

3.4 MNiscussion

The difference between the numerical and analytical solution in Figures 4
and 5 is smaller than 67%. In Figure 3 the agreement between both methods is
better except for the velocity at the breakerline. The velocity at the brea-
kerline is reduced because of the smoothing of the infinite velocity gradient

at the breakerline. In general the agreement is satisfactory.

A difference between the analytical model and the numerical model concerns

the position of the boundaries. In the analytical model the shoreward boundary

is located at the mean water line, while in the numerical model this boundary

is positioned at a distance from the shore of about 0.05 times the width of

the breaker zone (Y/YB = 0.05). The seaward boundary in the analytical model

is at infinity, whereas this distance in the numerical model is restricted to

two to four times the width of the breakerzone (see Table 1). The effect of

the position of the boundaries on the velocity profile has been investigated

using the analytical solution that is given in Appendix B. The result of this ana-
lysis is shown in Figure 6. In the graph on the top of Figure 6 the shoreline is posi-

tioned at the mean water line, while the position of the seaward boundary has



been varied between Y/YB = 1.] and Y/YB = 2.7. For each position of the sea-
ward boundary the dimensionless longshore current velocity has been calcula-

ted, using the analytical solution in Appendix B in the following points

V0.1/V0 = velocity at Y/YB = 0.1

V0.6/V0 = velocity at Y/YB = 0.6

VB/VO = velocity at the breaker line
Vsea/V0O = velocity at the seaward boundary

This information is shown in Figure 6. To this Figure also the dimensionless
velocities have been added with the position of the seaward boundary at

Y/YB = w. From the graph at the top of Figure 6 can be seen, that if ‘the seaward
boundary is located at a distance from the shore of at least 1.5 to 2 times

the width of the breaker zone, the velocity profile inside the breaker zone

is not influenced by the position of the seaward boundary. For a proper re-
presentation of the velocity at the seaward boundary this distance may even
increase to 3 times the width of the breaker zone.

In the graph at the bottom of Figure 6 the effect of the position of the shore-
ward boundary on the velocity profile has been investigated. The seaward
boundary has been located at infinity. For a variation of the shoreward boun-
dary at distances between Y/YB = 0.05 and Y/YB = 0.25 the dimensionless velo-
cities have been calculated at the following points, using the analytical solu-

tion in Appendix B.

V-Boundary/V0
V0.6/V0
VB/VO

velocity at the shoreward boundary

velocity at Y/YB = 0.6

velocity at the breaker line

To Figure 6 also the dimensionless velocities have been added, with the shore-
ward boundary positioned at the mean water line. The conclusion that can be drawn
from Figure 6 is that the position of the shoreward boundary only influences the
dimensionless velocity at the shoreward boundary. The peak velocity at Y/YB =

0.6 is not influenced by the position of the shoreward boundary.

The conclusion of this analysis is, that the differences between the analytic-

al and numerical peak velocities in Figures 3 through 5 are not caused by the

differences in the position of the boundaries in both approaches.

For certain practical conditions it is sometimes proposed to neglect terms



which are much smaller than other terms in the equation. According to the
P-value of 0.098 the viscosity term is indeed much smaller than the bottom
friction term. However, the longshore current profile is a good example of
what the effects are on the shape of the profile when the highest order terms

in the equations are neglected, even if these terms are relatively small.



4. Circulation currents

4.1 Description of the problem

The momentum equations for the circulation currents are restricted to

motions in the horizontal plane, because of the averaging over the depth.

A well known problem is that of circulation currents resulting from a per-
turbation of the set—up generated by normal incident waves. Attempts to
solve this problem have been made by Hino (1974), Le Blond and Tang (1974)
and Miller (1977). Although RIPCEL in principle is well suited to tackle

this type of problem, the present study will be restricted to forced circu-
lations. This type of circulations is induced by a longshore variation in
wave height. Such a variation can be caused by a combination of an oblique
incident wave fieldwith a wave field reflected from e.g. a structure (Liu and

Mei, 1974) or by a combination of two incident wave fields (Dalrymple, 1975).

4.2 Analytical solution

An analytical solution of the forced circulation currents is given by Bowen
(1969). He assumes in the breakerzone a normal incident wave field with the

following wave height distribution:

H=1vymy (1 + & cos \x) £ << 1 (4.1)
= perturbation parameter
= 21/L
o
L = wave length of the perturbation

In the analytical solution the bottom—friction is defined as:

1

E (rbx,rby) = C(U,V) (4‘2)
where
c = 0.01.

The breaker index Y equals

Y = H/(d + T) (4.3)
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The longshore variation of the bottom topography is such that Yy = constant.

The solution given by Bowen (1969) can inside the breaker zone be written as

% ]
u = — gif Ax [P s sinh s + 22 2s.(cosh s-l)] (4.4)
(h+2) cht -
v =~ — cO0S AX [P(s cosh s = sinh s) +
(h+z)
Bm2 2 .
+ {2 - g% + 25 sinh s - 2 cosh s} (4.5)
C}\k A

and outside the breaker zone:

A

1= — « Bin Ax . Q.s g (4.6)
(h+z)

v = - — cos AX Q(s+1)emS ' (4.7)
(h+z)

where:

s = 21ry/L0 (4.8)

The coefficients P and Q have to be determined in such a way that the basic

stream function of (4.6) through (4.7) and its derivative normal to the breaker-—
line ?k are continuous. For the conditions mentioned in the Tables | and 2

the analytical solution is shown in Figure 8. In this solution the no-slip
condition (u=0) has been assumed at the shoreline. In the numerical solution

for viscous flow the free-slip condition (3.2) applies.

An analytical approximation of the velocity field outside the breaker zone can
be obtained if Yy P éLO. In that case the hyperbolic functions reduce to sim-—
ple exponential functions and the following velocity field outside the breaker

zone results.

28 (s, =s)

w=- g BT E (g e 7 sin ix (4.9)
2 2 (8, -2)(8+1) (s,-8)

v = -é By om 5 . | ‘ e b cos AX (4.10)
C.A s

For the analysis of the momentum equations a reference velocity 1s required.
A possible choice is the outflow velocity v at the centre of the rip current

at the breakerline:
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e v? m? £ (Sb—Z)(S+1)

m
C.A ' s

(4.11)

v =

2
8

Inside the breaker zone the condition y %LO is not always satisfied and
therefore a similar approximation as in (4.9) and (4.10) cannot be obtained

there.

4,3 Numerical solution

Bowen (1969) has assumed that the shallow water approximations of the linear
wave theory apply inside the breaker zone. In the present example a breaker height
of 1.10 m and a perturbation £ = 0.1 has been assumed. The longshore wave
length of the perturbation is L, = 200 m. This wave field has been matched
with a wave field outside the breaker zone using a long wave (T = 25 s). Such

a long wave period has been assumed, because it was initially expected that

the longshore variation in mean water level at the seaward boundary caused

by the longshore variation in wave height had to be minimized because this
could be a possible source of numerical problems. Later this appeared not to

be so. Only for the calculation of the circulation cells as presented

in Figure 9 the bottom friction defined by Bowen has been used with ¢ = 0.01.
For the remaining cases the approximation of Longuet Higgins (1970) have been
applied (see also [12]).

The effect of the longshore variation in bottom topography on the current

field has been neglected. This is in agreement with the solution of Bowen
(1969).

In the analytical solution two symmetrical cells are given. The numerical solu-
tion results in two symmetrical cells as well. However, in order to reduce the
computation time only one cell bordered by two side walls has been computed.

Along these side walls the same conditions apply as along the shoreline. De-

tails of the grid size, time step etc. are given in Table 2.

The following calculations have been carried out.
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Figure bottom viscosity convective comments
no. friction| factor N terms
8 yes 0 no
9 yes 0 no analytical solution
10 ves 0.01 no Re = 0
11 ves 0 ves Re = =
12 yes 0.01 yves Re = 3
13 no 0.01 yes Re = 3
14 no 0.01 ves Re = 9
increased driving force
15 no 0.0033 ves Re = 9
original driving force
16 yes 0 yes curved shoreline

The Reynolds number is defined in Paragraph 4.4.

4.4 Discussion

In Figures 8 and 9 the analytical solution and the numerical representation
of the Bowen cells are presented. At first sight the agreement is fair.

A closer look however reveals that the difference in boundary condition near
the shoreline is hindering a more quantitative comparison in that area. For a
check on the accuracy of RIPCEL this type of calculation should be repeated
at a later stage of this research, but with a no-slip condition at the shore-
line. In Figure 10 the same configuration is presented but now viscosity has
been added, with N = 0.01. In Figure 11 the effect is shown of including the
convective terms instead. In Figure 12 the combined effect of all terms e.g.
bottom friction, lateral mixing and convective terms can be seen. A compari-
son of Figures 9 through 12 learns that the differences are rather small.
This point becomes clear if the momentum equations are made dimensionless by
a reference velocity UO and a length Lo' From these dimensionless equations
parameters can be obtained which express the relative importance of the va-

rious terms

. U
convective term 0
Re = viscous term 3 I .1 (4.12)
m* g% L* K
(o]
_ viscous term _ 7T mN 19

bottom friction term Y e
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The parameter P has been derived by Longuet Higgins (1970) in his study on
longshore currents. The product of Re and P gives the importance of the con-
vective term relative to the bottom friction term.

The reference velocity 0, will be chosen to be the velocity in the centre of

the rip current in a Bowen cell (4.11). For the reference length L_ the long-

shore wavelength of the perturbation has been chosen.

For the present conditions these assumptions lead to a Reynolds number of 3

and a value of P = 0.1. From the value of P it follows that the viscosity

terms are ten times smaller than the bottom friction terms. From the Reynolds
number it follows that the convective terms are more important than the vis-—
cosity terms, but from the product of Re and P it can be seen that these terms
are still small relative to the bottom friction terms. This implies that the
present condition to a large extent is dominated by bottom friction and that
indeed the differences between the Figures 9 through 12 ought to be small.

One point in which the Figures 9 and 10 differ from the Figures 11 and 12 is that
inthe latter two Figures there appears to be a shift to the right of the centre
of the cell. This mechanism has been pointed out by Arthur (1962). He has
shown that conservation of vorticity along a streamline leads to a narrowing

of the streamline pattern of a current flowing into deeper water.

In Figure 13 the bottom friction has been made zero. Both convective terms
and lateral mixing are active. The driving forces remaining the same, this
obviously must lead to an increase in velocity. The vorticity remaining the
same (as in Figure 12) no further shift of the centre of the cell is obser-

ved. This is as one would expect from the argument mentioned above.

There are two ways of changing the Reynolds number: the first one by changing
the viscosity coefficient N and the second by changing the driving forces.
Bowen (1969) used the latter approach. This implies for the present case a
change in vorticity and, from the conservation of vorticity, a change in the
position of the centre of the cell. This would mean that the suggestion by
Bowen that the shape of the cell is a function of the Reynolds number is not
quite true. The changes in the cells as presented by Bowen are caused by the

change in the input vorticity.

To illustrate this point two types of calculations have been made. In the first

calculation the perturbation £ of the longshore variation in wave height is
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increased by a factor of 3. This implies an increase in driving force by a fac-
tor of 9. The result is shown in Figure 14. Except the increase in the veloci-
ty by roughly a factor of 3, it can clearly be seen that the cell centre in Fi-
gure 14 has moved to the right relative to the position in Figure 13 (Re = 3).
However, in Figure 15 the Reynolds number has been raised by reducing the co-
efficient N for lateral frictiom by a factor of 3. In Figure 15 can be seen

that this Re = 9 case is almost indistinghuishable from the Re = 3 case (Fi-
gure 13). This confirms, that the viscosity effect is small relative to the
convective effect (high Reynolds number).

This calculation is also a demonstration of the point that for the present cases

the degree by which the distance between the streamlines are reduced depends on

the vorticity and not on the Reynolds number.

At first sight also a different conclusion could be drawn from a comparison

of the Figures 13 and 15. This conclusion is that in fact the numerical vis-—
cosity is much larger than the physical viscosity. This implies that in that
case the real Reynolds numbers in Figures 13 and 15 are in the order of 0.3 or
even smaller. It must be borne in mind that a flow with low Reynolds number (Re=
0.1) is dominated by viscous effects, while flows with a high Reynolds number
are dominated by convective effects. For a stationary flow in a given geome-

try the drag of a viscous flow changes linearly with the velocity, while the
inertia of the convective flow changes with the square of the velocity. From

the flow field in Figure 15 compared with the flow field in Figure 13 it is
clear that the change of the driving force by a factor of 9 only resulted in

a change in velocity by a factor of 3. This shows that the present flows are
dominated by convective effects and not by viscous effects. This implies that the
numerical viscosity is at most of the same order of magnitude as the physic-—

al viscosity.

In Figure 16 an example is given of an application with a curved shoreline.
The grid and the equations are generated by taking into account the transform-—
ation functions. A comparison between Figures 11 and 16 shows that the flow
field has only changed marginally. At a later stage of the research the trans-—

formation procedures will be further investigated.

For this example also the solution speed of the programme has been checked.
It appears that RIPCEL takes 1 computer second on a Cyber 175 to treat 175

points. This is somewhat slow relative to comparable programmes.
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5. Currents around breakwaters and in basins

5.1 Description of the problem

The study of the importance of various processes in e.g. currents around
breakwaters and in basins is one of the objectives of the development of
RIPCEL. This chapter will be restricted to cases which will clearly reveal
probable problem areas. This will be the case for currents in which viscous
damping 1is absent.

Furthermore a very simple wave field will be used, namely it is assumed that
the oblique incident wave field (30°) runs through the breakwaters, i.e.
diffraction effects will be neglected. This point can be improved at a later
stage by use of existing refraction-diffraction programmes, without changing
RIPCEL essentially. Bottom friction and lateral mixing are modelled as pro-
posed by Longuet Higgins (1970) in case of longshore currents. The geometry
is a gently sloping plane beach (1:40) with a breakwater extending to 70 m or
200m offshore.This last case essentially represents a closed wave basin. The
distance between the breakwaters is 100 m. Further details about the geome-

try and the wave field are given in Table 1.

5.2 Numerical solution

Information about the grid can be found either in Figures 17 and 18 or in
Table 2.

The boundary conditions are the same as for the circulation cells, except

for the breakwaters. In principle the breakwater is impermeable to currents.
As a boundary condition it has been assumed that the velocity normal to the
breakwater is zero. Along the boundary, seaward of the breakwater, initially
periodic boundary conditions were assumed. However, this led to a solution in
which the offshore transport q became zero at the head of the breakwaters.
This caused an undulating velocity profile along the breakwaters. After some
experiments the following rough solution has been adopted. At the head of the
breakwater it is assumed that p and q are different at both sides of the
breakwaters, but h is periodic. At the first shoreward point all three compo-
nents differ on both sides of the breakwater. At the first seaward point of
the head of the breakwaters q and h are periodic, but p is free. At the second
seaward point all three components are periodic. This solution appeared to

yield reasonable, but not optimal results.
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The requirements for stability and accuracy of the numerical scheme are pre-
sented in [12]. A few of these requirements are recalled here. First of all

the stability of the implicit scheme is guaranteed if

1
0> }

The second condition is that the cell Reynolds number must be smaller than 2

in areas of strong velocity gradients

RAX = U.Ax/e < 2

This number determines the grid spacing.

An estimate of the numerical viscosity is (see [12])

£ & (@ =

num ) . At . gh (5.1)

B—

This numerical viscosity must be compared with a first estimate of the physi-

cal viscosity made by Longuet Higgins (1970)

¥
= 2 2
Ephys N .g?h*/m (5.2)

where m is the bottom slope and N is a constant. The condition that A <<

Ephys everywhere in the field leads to constraints on © and on At. On the one
hand it was found that increasing the time step in the steady state indeed
caused an increase in the numerical viscosity which could be seen from a reduc-
tion in the velocities.

On the other hand it was found that in some cases spatial oscillations occur-—

red when the cell Reynolds number became too high. In principle the accuracy

and stability must be further investigated in a later stage.

For the present conditions a time stepof 4 s and O = 0.7 have been chosen. Af-
ter 100 s calculations have been terminated. Although the stationary solution

may not completely have been obtained, the specific features of the solutions

will be clear. The results are presented in Figures 17 and 18.

5.3 Discussion

At first sight there may appear to be some similarity between the circulation
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cells in Figures 17 and 18 and the cells in Figures 8 through 16. The cells in
Figures 17 and 18 however, are generated by oblique incident waves, i.e. by the term
asxy/Sy whereas the cells in Figures 8 through 16 are generated by BSXX/BX and
the longshore gradient in set-up caused by longshore gradient in BSyy/By.
Looking from the breakerline in shoreward direction it can be seen that in
case of oblique incident waves (Figure 18) the longshore velocity reduces much
faster than in case of longshore variation in wave height (Figure 9). Near the
shoreline the direction of the velocity even changes of sign. It is thought
that part of this velocity is caused by a change in mean water level, which

in its turn is induced by the deceleration of the longshore current by the
breakwater. In Figures 8 through 16 this effect does not show up because if
such a return current would build up, this current would be strongly counter-

acted by the high velocities in the nearshore area.

A comparison of the velocityfields around the breakerline in Figures 17 and
18 shows that differences are almost indistinguishable. This means that the
present example the modelling procedure of the head of the breakwater does

not influence this part of the velocity field.

From the head of the breakwater in seaward direction in Figure 17 the

increasing periodicity in p and q may be noted clearly.

In order to be able to judge whether the results of RIPCEL are realistic a
comparison with laboratory or prototype data is required. In that case the
wave field in RIPCEL must include effects of the breakwaters, the set-up and

possibly currents. This has not been done yet.



_]8_

6. Conclusions and recommendations

The agreement between the analytical and numerical solution of the wave set-
up and longshore current velocity profile is satisfactory. Qualitatively the
numerical solution of the circulation current is comparable with the analy-
tical solution. A closer comparison is not possible because of differences in

boundary conditions.

The seaward boundary acts as a weakly reflecting boundary (Figure 2). Differ-
ences between the no-slip and free-slip condition along the shoreline dis-
appear after a relative short distance from the shore (Figure 6). The effect
of the position of the boundaries on the longshore current profile is margi-
nal as long as the shoreward boundary is within 0.1 YB from the shore and the

seaward boundary is located at 2YB from the shore (Figure 6).

For a proper choice of At, © and grid spacing a further investigation into the
magnitude of the numerical viscosity and the effect of the cell Reynolds num-
ber must be carried out. After concluding this research the model can be used
to study the stability of the set-up and the generation of rip currents. This

topic is important for the reproduction of wave driven longshore currents.

The velocity distribution along the boundaries (Figure 17) may not be inde-
pendent of the way in which the head of the breakwater is modelled. In

case of a detailed investigation of the current pattern around the head of

the breakwater this point must be clarified, A comparison of Figures 17 and

18 shows that the velocity field shoreward of the breakerline is not influenced

by the way in which the head of the breakwater is modelled.

A comparison with laboratory and/or field data is required in order to check

the validity of the model.
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wave amplitude

frictional coefficient
undisturbed water depth
potential energy per unit area
acceleration due to gravity
water depth

wave height

wave number

length of region

beach slope

shoaling coefficient

coefficient in eddy viscosity

volume transports per unit width in x and y direction

viscosity—-friction ratio
frictional parameter
Reynolds number

cell Reynolds number
radiation stress

time

wave period

velocity components
horizontal coordinates
vertical coordinate

bottom level

breaking index
time step
mesh-widths

eddy viscosity

water level variation due to waves

weighing coefficient in difference scheme

21 /wave length of perturbation

water level relative to undisturbed level

fluid density

components of bottom shear stress

components of surface shear stress
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components of stresses in vertical planes

direction of wave propagation

Nm
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APPENDIX A BRIEF DESCRIPTION OF THE MODEL

The equations of the mathematical model for unsteady wave driven coastal cur-

rents averaged over depth and wave period are presented and discussed in [12].

Here only a summary will be given. The continuity equation and the two momen-

tum equations are:

9q _
e TtV (A.1)
a9z
Bp ) 2 d oh b
5 * A (PT/h) o+ 3y (pa/h) + gh G + 5—) +
| 3. ¥ | @b BT
- + + — (—— + ——X) - = + P2
Tsx/‘o Tbx/p p ( ox oy ) p ( 0x dy ¥ = (s2)
dz
9q 0 ) 2 oh b
5t ¥ 3% (PA/B) + 5o (@/h) +gh (G2 + 7)) - T /ot
| BSXy BSyy 1 Bthy ah"fyy
+ = (= + L) - = =
* TPt o g 5y ? B Cmx FEp? 0 (A.3)
where:
h = mean water depth m
P,q = volume transport in x—- and y-direction m?/s
g = acceleration due to gravity ms
Zy = bottom level above reference level m
s = shear stress at the surface N/m?
- 2
TbX,Tby = bottom shear stress N/m
p = fluid density kg/m3
S, etc = components of the radiation stress N/m?
T,, €tc = compoments of the effective stress N/m?
For the wave field the linear wave approximations have been used. For a slowly
varying wave field the resulting radiation stresses are (Longuet Higgins 1964):
Se = B (n cos?p + n-} (A.4)
Sxy = E n singp cosy (A.5)
S = E (n sin?p + n-1) (A.6)

yy




A2
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where E = E—ngZ (A.7)
H = local wave height

@ = angle between direction of wave propagation and x—axis

n = J + kh/(sinh 2kh)

Inside the breaker zone the wave height is determined by the breaker index vy

v = H/d

where d is the still water depth. It is also possible to restart the programme
after changing the wave field according to the calculated mean water level.

In this report this procedure has not been applied.

For the definition of the horizontal momentum exchange care has been taken of
the fact that this definition must not depend on the choice of the coordinate

system. The following definitions have been chosen (see [12])

d

T /0 = € (B/h) - 5= (a/h)} (4.8)
v fp =& {2 (p/h) + = (¢/B)] (4.9)
Xy oy ox '
T Jp=¢ {5 (a/h) - 2= (p/h)} (A.10)
A T ox P '

For the value of € various approximations can be used.

The bottom shear stresses Troa and Tby are linear in terms of the mean flow p,q.

% Uit By = %(p,q) (A.11)

where r is a dimensional frictional coefficient equivalent to cf|u Also

orbl'
for r different expressions can be applied. In this report the definition of

Bowen (1969) has been used in Figures 8 and 9. To the remaining cases the de-
finition of Longuet Higgins (1970) has been applied. In future research also

definitions of r will be used, such as the inherent anisotropy of r in the

definition of Longuet Higgins and the work of Jonsson.



APPENDIX B LONGSHORE CURRENTS

Longuet Higgins (1970) has derived a longshore current distribution for
oblique incident waves on a plane beach. In order to obtain a tractable

problem he introduced the following assumptions:

shallow water approximation of the linear wave theory

a
b bottom friction can be described by

Lt - (ve/eh) 2.0y /m (B.1)

¢ lateral mixing coefficient € can be written as:

Bl

e=N |yl (gh) (B.2)

Furthermore the momentum balance parallel to the shoreline (see (A.2)) is made
dimensionless by means of the parameter YB, the width of the breaker zone, and
Uo’ the current velocity at the breaker line when lateral mixing is absent:

I
U, = (5.m.. (ghB)z.m.sin¢h)/(l6C) (B.3)

The indices B are referring to the value of the parameters at the breaker line.

The resulting equations are:

5 1 3
P G g -y ey <0 0<y<i (B.4)
P _Q.( Vo By _ o =0 ] <y < (B.5)
Y Yy o 3y y .u = y .
u = U/U0 (B.6)
y = Y/YB {B.7)
P = (m.m.N)/(Y.C) (B.8)

The factor P represents the ratio between the coefficient of the dimensionless
lateral mixing term and the coefficient of the dimensionless bottom friction

term.



B.2

The solution of Bl and B2 except for P = 0.4 is

o= e § & 0<y<1 (B.9)
u = B2y 2 1<y<oa (B.10)
Pl = =-3/4 + (9/16 + ]/P)% (B.11)
P2 = =-3/4 + (9/16 + I/P)% (B.12)
A = 1/(1-5P/2) (B.13)
Bl = A(P2-1)/(P1-P2) (B.14)
B2 = A(P1-1)/(P1-P2) (B.15)

This solution satisfies the boundary condition U=0 both at the shoreline and in

infinity.

However, in the computer programme RIPCEL the boundary conditions are in case

of non-zero viscosity:

ou _ _ _
5= 0 Y = Yshore YVsea (B.16)

in which y and y are the dimensionless distances of the first grid
shore sea

point near the shoreline and the position of the seaward boundary respectively.

A solution of B4 in this case 1is

u= Ay + ByP1 + CyP2 @ sy ] (B.17)

The term Ay is a particular integral of B4, of which

1/(1-5P/2) (B.18)

B>
il

A solution of B5 is
u = DyPl + Esz 1 <y <o (B.19)

Continuity of both velocity and velocity gradient at the breaker line yields

from 817 and B19



B.3

A+B+C=D+E (B.20)

A+ BP1 + CP2 = DP1 + EP2 (B.21)

The free-slip condition near the shore and at the seaward boundary yields the

following equations

P]—l P2—1
Ak BPl Yshore CPZ Yshore ~ 0 (22
P -1 P -1
1 2 =0 (B.23)
DPI Vsea * EPZ Ysea

From the equations (B.20) through (B.23) the constants B through E have to be

determined.






