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Abstract

Since the pre-industrial era, methane has contributed as much as 0.5∘C to global warming. With a
global warming potential of 28-34 times that of CO2 over 100 years, and with 80 times the warming
power of CO2 in the first 20 years, methane has a large impact on climate change. Measurements
from the satellite instrument TROPOMI help inform on the global atmospheric content of methane.
We frequently observe methane plumes in TROPOMI data. These plumes come from super-emitters,
and those provide a significant but uncertain contribution to global methane emissions, and they are
relatively easy tomitigate. The TROPOMI automated plume detection algorithmmakes plume detection
and emission quantification possible around theworld, which is infeasible without automation. However,
the current TROPOMI plume emission quantification algorithm makes use of mass balance methods
to estimate the methane emissions of point sources. These approaches provide reasonable but highly
uncertain estimates. Hence, in this thesis, we aim to improve the accuracy of the automated emission
quantification algorithm with the help of more sophisticated techniques based on atmospheric transport
models.

First, this study analysedmass balancemethods by quantifying emissions from synthetic plumes having
known emission rates. Synthetic plumes were generated using the WRF and FLEXPART atmospheric
transport models. A classification algorithm was developed to segregate synthetic plumes into different
categories based on their geometries to determine challenging plume emission quantification scenarios
for the mass balance methods. We found that mass balance methods produce uncertain emission
estimates due to several inherent limitations like missing plume pixels, performance under low wind
speed conditions, and no utilisation of three-dimensional wind speeds. Next, the atmospheric transport
model based plume scaling approach was analysed by quantifying emissions from synthetic plumes.
This analysis revealed that the plume scaling approach could overcome several inherent limitations
of the mass balance methods and reduce the uncertainty of plume emission quantification by nearly
10%. Finally, the plume scaling approach was applied to TROPOMI plumes. The FLEXPART model
was observed to be most suitable for replicating TROPOMI plumes. With the help of results obtained
from this research, a decision tree algorithm was developed. This decision tree can choose the most
suitable plume emission quantification method between the mass balance methods and the plume
scaling approach for a given TROPOMI plume, maintaining a balance between ease of use of the
mass balance methods and accuracy of the plume scaling approach.

Key Points
• Mass balance methods are uncertain due to several inherent limitations that include missing
plume pixels, performance under low wind speed conditions, and a too simplified way of ac-
counting for the transport of particles by using wind at one location at one moment in time.

• Atmospheric transport model based plume scaling approach can overcome several limitations of
mass balance methods in order to improve emission quantification of TROPOMI plumes.

• Mass balance methods and atmospheric transport model based plume emission quantification
approach can be used in a balanced way to improve emission quantification of TROPOMI plumes.

Keywords
Methane, CH4, TROPOMI, Plume emission quantification, Mass balance methods, Atmospheric
transport models, FLEXPART, WRF-CHEM, Plume scaling approach
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Nomenclature

Physics Constants

𝑀CH4 molecular weight of methane 16.043 × 10−3 kgmol−1

𝑀air mean molecular weight of air 28.96 × 10−3 kgmol−1

𝑝0 pressure at sea level 1013 × 102 Pa
Other Symbols

𝛼1, 𝛼2 coefficients of parametric wind speed equation for IME from the LES model

𝛼3, 𝛼4 coefficients of parametric wind speed equation for IME from the WRF model

𝛽 coefficient of parametric wind speed equation for CSF

ΔΩ total vertical column mass

ΔΩair weight of column of dry air

Δ𝑋 enhancement in dry-air mole fraction of methane

𝜂 vertical coordinate

𝑥̂ optimized emission values

v velocity vector

𝜌𝑖 concentration in terms of mass density

𝜎 pressure coordinate

𝜏 residence time of methane

CO2 carbon dioxide

T1,T2,T3,T4 threshold values

XCH4model,i model outputted methane dry air mole fraction

XCH4prior,i prior profile of methane vertical column

XCH4total column column-averaged methane dry air mole fraction

𝜃 solar zenith angle

𝜃𝑟 satellite viewing angle

𝐴𝑗 area of pixel j

𝐴𝑐𝑜𝑙,𝑖 averaging kernel

𝐹𝑖 mass flux

𝐼𝑀𝐸 integrated mass enhancement

𝐾 Jacobian matrix

𝑘 vertical level

𝐿 length or extent of plume

𝑝𝑘 pressure at vertical level 𝑘
𝑝𝑠 pressure at the surface
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viii Nomenclature

𝑝𝑡𝑜𝑝 pressure at topmost vertical level

𝑄 emission rate

𝑄𝑆 known emission rate of synthetic plume

𝑄𝑇 unknown emission rate of TROPOMI plume

𝑆𝐴 prior covariance matrix

𝑆𝑜 error covariance matrix

𝑡 time

𝑈(𝑥, 𝑦) wind speed at location (𝑥, 𝑦)
𝑈eff effective wind speed

𝑈10 10 [m] wind speed

𝑉air,dry dry air column

𝑋 measured dry-air mole fraction of methane

𝑥𝑎 prior emission rate

𝑋𝑏 background dry-air mole fraction of methane

𝑋𝑆 mass enhancements in synthetic plume

𝑋𝑇 mass enhancements in TROPOMI

𝑧𝑠 local terrain elevation

𝑢 velocity along x-direction

𝑣 velocity along y-direction

𝑤 velocity along z-direction



Abbreviations

CAMS Copernicus Atmosphere Monitoring Service

CFL Courant-Friedrichs-Lewy

CSF Cross Sectional Flux

ECMWF European Centre for Medium-Range Weather Forecasts

EPA United States Environmental Protection Agency

ESA European Space Agency

FLEXPART FLEXible PARTicle dispersion model

GFS Global Forecast System

GOSAT Greenhouse Gases Observing Satellite

GWP Global Warming Potential

IME Integrated Mass Enhancement

IPCC Intergovernmental Panel on Climate Change

JAXA Japanese Space Agency

KNMI Royal Netherlands Meteorological Institute

LES Large Eddy Simulation

LPDM Lagrangian Particle Dispersion Model

NCEP National Centers for Environmental Prediction

NIR Near Infrared

NOAA National Oceanic and Atmospheric Administration

NSO Netherlands Space Office

OMI Ozone Monitoring Instrument

PBL Planetary Boundary Layer

RMSE Root Mean Square Error

S5P Sentinel-5 Precursor

SCIAMACHY SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY

SRON Netherlands Institute for Space Research

SWIR Shortwave Infrared

TIR Thermal Infrared

TROPOMI TROPOspheric Monitoring Instrument

UNFCCC United Nations Framework Convention on Climate Change

UVNS Ultraviolet Near-infrared Shortwave-infrared

VIIRS Visible Infrared Imaging Radiometer Suite

WRF Weather Research and Forecasting Model
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1
Introduction

According to the IPCC report, methane levels in the atmosphere today are higher than at any time in
the past 800,000 years [2]. Since the pre-industrial era, methane has contributed to global warming as
much as 0.5∘C and is the second-largest contributor after CO2. Methane also has a shorter atmospheric
lifetime (12 years [3]) than CO2 (∼100 years [3]); hence, reducing the methane concentrations in the
atmosphere can provide short-term benefits in the global climate situation and it can be done at low
cost [4].

Anthropogenic methane emissions contribute almost 60% to the global methane emissions [5]. Anthro-
pogenic emissions occur from a variety of sources like oil and gas infrastructures, coal mines, land-
fills, agricultural activities, wastewater treatment, and some industrial processes [6]. Anthropogenic
methane emissions can be regulated, and this gives an opportunity to mitigate a large part of the
methane emissions. Mitigation of methane emissions requires accurate identification of emission loca-
tions and quantification of emission rates.

Satellites provide a way to collect high-level details over remote areas, which is difficult to achieve using
any other method. Spectral data collected by satellite instruments like SCIAMACHY, OMI, TROPOMI,
etc., have been used to detect atmospheric methane. In this study, we use the spectral data collected
by the TROPOMI satellite instrument to trace atmospheric methane. TROPOMI has a daily global
coverage and a spatial resolution of roughly 7 [km] x 5.5 [km]. Frequently, methane plumes can be
seen in the TROPOMI images. Their first quantification estimates are usually obtained using simple
mass balance approaches. The mass balance methods tend to be uncertain since they do not account
for the three-dimensional transport of gas particles. Hence, there is a need for a more sophisticated
quantification approach that could account for particle transport. To fill this research gap and improve
the TROPOMI plume emission quantification algorithm, we plan to use the atmospheric transport mod-
els.

Atmospheric transport models account for the three-dimensional transport of the particles (or air parcels).
There are two distinct categories of atmospheric transport models: Eulerian and Lagrangian. These are
based on the frame of reference used for solving the transport equations. An Eulerian transport model
uses a frame of reference fixed to the computational grid, whereas the Lagrangian transport model
uses a frame of reference fixed to the transported particles. In this research, we use the WRF-CHEM
model based on the Eulerian frame of reference and the FLEXPART model based on the Lagrangian
frame of reference.

The entire research timeline is divided into four phases. The first phase focuses on analysing mass
balance methods and identifying their limitations. To achieve this, we apply mass balance methods to
the synthetic plumes with known emission rates generated by atmospheric transport models. This pro-
vides some benchmark results for later comparisons. The second and third phases involve quantifying
synthetic plumes with atmospheric transport models and evaluating the quantification uncertainties.
For quantifying plumes using atmospheric transport models, the plume scaling approach is considered
in this study. Effects of using different meteorological data, different physics settings (planetary bound-
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ary layer schemes), and different atmospheric transport models on the results of the plume scaling
approach are investigated. Quantification results from the plume scaling approach are compared to
mass balance methods to see whether plume emission quantification is improved or not. The final
phase involves testing the plume scaling approach on real TROPOMI plumes. Based on the results
from all four phases, a decision tree algorithm is proposed that selects the most suitable plume emis-
sion quantification method for a given TROPOMI plume. Finally, this study discusses the possibility
of integrating an atmospheric transport model based plume emission quantification approach with the
TROPOMI automated plume detection algorithm.

The structure of the thesis report is presented in Figure 1.1. This study starts with gathering the theo-
retical background required for this research which is presented in Chapter 2. A detailed research plan
describing four phases of this study is presented in Chapter 3. In the first three phases of this study,
we analyse mass balance methods and the plume scaling approach by quantifying synthetic plumes.
The setup used for generating synthetic plumes is described in Chapter 4. Setups of plume emission
quantification methods considered in this study are explained in Chapter 5. Some pre-analysis steps
are required before assessing the plume emission quantification methods. These pre-analysis steps
are described in Chapter 6. In the final phase, we test the plume emission quantification approaches
on real TROPOMI plumes. Results obtained from all four phases of this study are provided in Chapter
7. Finally, conclusions and future recommendations from this study are discussed in chapters 8 and 9,
respectively.

Figure 1.1: Structure of the thesis report. This report is divided into three major parts: theoretical background, plume
emission quantification setup, and results and discussion. Theoretical background is provided in Chapter 2. Plume
emission quantification setup is explained in Chapter 4 andChapter 5. Analysis, and results and discussion are presented
in Chapter 6 and Chapter 7, respectively.



2
Theoretical background

2.1. Global atmospheric methane concentrations
Figure 2.1 shows global monthly averaged atmospheric methane concentrations from the year 1983 to
the year 2022. It can be seen that the methane concentrations in the atmosphere have risen over the
past 30 years. The rise in the methane concentrations slowed down from the period 1999 to 2006, but
thereafter, the concentrations rapidly increased.

Compared to carbon dioxide, methane can trap more amount of energy, and it has a shorter lifetime [2].
Therefore, methane has a global warming potential (GWP) of 28-36 over 100 years [2], which means
methane can absorb 28-36 times more energy than carbon dioxide over a scale of nearly 100 years.
Please note that methane’s global warming potential accounts for indirect effects, such as methane’s
reaction with chemicals in the atmosphere to form ozone, an important greenhouse gas.

Figure 2.1: The graph represents the NOAA time-series of global monthly averaged atmospheric methane dry air mole
fractions (in bold black line) from the year 1983 to the year 2022 [7]. NOAA has measured methane concentrations since
1983 at multiple air sampling sites distributed globally [8]. Methane concentrations are reported in terms of dry air mole
fraction. The dry air mole fraction is the ratio of the number of methane molecules to the total number of molecules in
the sample. The dry air mole fraction is given in units nmol/mol or particles per billion (ppb). Red dots represent globally
and monthly averaged methane concentration values in the middle of each month. The bold black line represents the
twelve-month mean without the effects of the average seasonal cycle. (Accessed: 19-03-2022)

The Paris agreement aims to limit the global temperature rise to well below 2°C compared to pre-
industrial levels by 2050. According to an IPCC special report on the impacts of global warming pub-
lished in 2018, the global temperature rise touched the 1°C mark in 2017. If this trend continues, the

3



4 2. Theoretical background

1.5°C mark will be reached by 2040 [9]. Following the discussions presented in the previous and this
paragraph, it is crucial to mitigate the atmospheric methane concentrations.

2.2. Sources of methane
Methane is emitted by various sources and broken down by various sinks. The most prominent sources
of methane include agriculture, wetlands, fossil fuel production and use, biomass and biofuel burning
and waste management, and other natural sources [10]. Some prominent methane sinks are atmo-
spheric chemical reactions, and soil uptake [10]. The breakdown of the methane sources and sinks
can be seen in Figure 2.2.

Figure 2.2: Global methane budget 2008-2017 depicting prominent methane sources and sinks [11]. Methane sources
include fossil fuel production and use, agriculture and waste, biomass and biofuel burning, and wetlands. Methane sinks
include chemical reactions in the atmosphere and uptake by soil. Methane sources are categorised into anthropogenic
and natural sources. In the figure, anthropogenic methane sources are represented in red colour, and natural methane
sources are represented in green colour. (Accessed: 19-03-2022)

The following subsections focus on emissions from the most prominent sources of methane. Sinks of
atmospheric methane remain out of scope for this study and are not included in the following subsec-
tions.

2.2.1. Agriculture
The agricultural sector releases a large amount of methane into the atmosphere [12, 13, 14]. Methane
is produced in agriculture by rice cultivation, ruminant livestock, manure management, and residue
burning [15].

Methane is produced in rice cultivations due to the flooded soil, which creates a favourable environment
for the anaerobic (oxygen-deprived) decomposition of organic matter. In ruminant livestock, methane is
mostly produced by the micro-bacterial fermentation of food inside their stomach. Methane production
from animal manures is also an enteric fermentation process, which happens mostly when the manures
are stored. Incomplete combustion of residual biomass also produces methane, but compared to other
agriculture sources, it is small in quantity [16].

Agriculture is the largest anthropogenic methane emission source. Only the ruminant livestock emis-
sions account for approximately one-third of anthropogenic methane emissions. Due to the population
growth, economic developments, change in eating habits, and rise in food demands, methane emis-
sions from the agricultural sector have seen an unprecedented rise [2]. With the global population
approaching 10 billion by 2050, it is expected that food demands will increase by 70 per cent [17].
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There are ample opportunities available for mitigating methane emissions from the agricultural sec-
tor. Methane emissions from rice production can be reduced by changing fertilizer practices, residue
management, keeping the soil dry in the off-rice season, and avoiding waterlogging [16]. Methane
emissions from Ruminant livestock can be reduced by improving feeding practices, using dietary ad-
ditives, and longer-term management changes [16]. Methane emissions from manure can be reduced
by cooling and closing the storage tanks and by capturing the produced methane [16].

2.2.2. Waste
Methane emissions from waste largely occur from the oxygen-deprived decomposition of organic ma-
terial at the solid waste disposal sites and wastewater handling plants [18]. The time needed for the
decomposition of organic material depends on the conditions at the waste site. It can take less than a
year or more than 100 years.

Methane emissions from waste are classified under anthropogenic emissions. Methane emissions
from solid waste disposal in industrialized countries are showing a decreasing trend. On the other
hand, methane emissions in developing countries are expected to rise due to the increase in land-
fill management practices and improved economy [19]. Good landfill management (often lacking in
developing countries) can reduce methane emissions by a lot.

Municipal and industrial waste statistics have improved over the past decade in many countries. How-
ever, precisely monitoring and quantifying the methane emissions is challenging due to the dynamic
nature of the waste disposal sites and changing waste management practices [20]. Scientists are
working to fill the missing piece of knowledge about the dynamics of waste disposal sites.

2.2.3. Fossil fuel production and use
The fossil fuel sector is one of the major sources of methane emissions, accounting for nearly 40%
of anthropogenic methane emissions worldwide. Methane emissions from fossil fuels occur during
extraction of oil, natural gas and coal, but, depending on the fuel type, also during transport and usage
[21].

Natural gas is mainly methane. During the extraction of oil, natural gas, and coal, methane is released
due to fugitive emissions and leakages in the equipment [21]. Methane is released in the transportation
of natural gas due to leakages in the compressor, pipelines, and storage sites [21]. During the use of
natural gas, methane is emitted due to incomplete combustion [21]. Several abandoned wells of oil,
natural gas, and coal emit methane because of improper sealing [21].

Strong economic growth in developing countries like India and China and an increase in the population
are causing a substantial increase in energy demands [22]. At least till 2030, fossil fuels will remain
the most important energy source, and their use is expected to grow [23].

It is estimated that nearly 70 per cent of the current emissions from oil and gas facilities are technically
feasible to prevent. Around 45 per cent of the emissions could bemitigated at no extra cost by capturing
the leaking gas because the cost of captured gas is higher than the cost of the measures taken. The
percentage of captured gas is expected to rise in the future due to the increasing prices of fossil fuels.
Therefore, limiting methane emissions from the oil and gas sectors can be cost-effective [4].

2.2.4. Biomass and biofuel burning
Biomass and biofuel burning is a small but significant source of atmospheric methane. Methane can
be emitted due to incomplete combustion of woodlands, agricultural waste, and savanna [24]. Biomass
and biofuel burning involves natural (e.g. lightning-induced) burning and anthropogenic periodic burn-
ing of woodlands and grassland to create land for agriculture and other activities.

Under ideal circumstances of complete combustion, biomass and biofuel burning produces CO2 and
water, but, in reality, biomass and biofuel burning happens with incomplete combustion [24]. Incom-
plete combustion of biomass and biofuel produces other carbon species, and one of them is methane
[24].

Natural fires cause large biomass burning events, but anthropogenic biomass burning accounts for
nearly 90% of the vegetation burned [25]. In the last 100 years, biomass and biofuel burning events
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have increased on a global scale. It is predicted that rising atmospheric temperatures due to global
warming will lead to an increase in biomass burning events [25].

Biomass burning happens in an uncontrolled way. To reduce the methane emissions from this source,
the burning needs to be reduced. Some of the biomass burnings are required to retain the savanna and
create agricultural lands. Currently, research work is going on to predict and detect biomass burning
events.

2.2.5. Wetlands
Wetlands contribute to the Earth’s natural water management processes. Wetlands contain a complex
system of aquatic life, plants and soil that help in water cleansing. Wetlands are the largest natural and
biogenic source of methane emissions contributing up to one-third of the total natural and anthropogenic
methane emissions [26].

Methane is produced due to the anaerobic decomposition of plants and other organic matter by the
soil microbes. In wetlands, the release of methane takes place through three known mechanisms:
diffusion [27], aerenchyma [27], and ebullition [28]. Through diffusion, methane is transported through
water bodies and soil to the atmosphere. Aerenchyma refers to the process of transport of gases
through tubes in the tissues of a particular kind of plant. Ebullition is the release of large entrapped
bubbles of methane into the atmosphere.

Wetlands are ecosystems that are very sensitive to climate change [29]. Wetlands can be affected by in-
creased temperatures, storms, floods, precipitation, and droughts [29]. Moreover, due to the population
growth and increase in economic developments, wetlands are converted into lands for infrastructure
developments [30].

Understanding the circumstances under which methane is released from wetlands could give solutions
to mitigate methane emissions from wetlands [30]. Due to the large area covered by wetlands, they
are challenging to study. The biological distribution of methane-generating microbe communities in
the wetlands and the metabolic processes that drive the generation of methane at the scale of the
ecosystem are poorly known due to the lack of observational information [31]. Climate change also
affects wetland methane emissions, but due to a lack of information and uncertainties, it is difficult to
determine how the wetlands respond to the changing climate [29].

2.3. Detection and control of atmospheric methane
Anthropogenic methane sources contribute to almost 60% of the global methane emissions [5], which
makes them a good target for mitigation. Anthropogenic methane sources like fossil fuel infrastructure
and waste management facilities show room for cost-effective mitigation [4], as described in the Sub-
sections 2.2.2 and 2.2.3. Therefore, this study will mainly refer to methane emissions from fossil fuel
facilities and waste management.

To detect atmospheric concentrations of methane, there are many different approaches. These ap-
proaches aremainly distinguished into two categories: bottom-up approaches and top-down approaches.
In general, bottom-up approaches involve the use of emission factors and production information from
the methane emission sites. Top-down approaches rely heavily on the atmospheric information of
methane concentrations, and they contain atmospheric transport.

To mitigate methane emissions from anthropogenic sources, two key parameters are required. These
parameters are the location of emission and emission rate. In general, emission inventories could give
information about the locations and under what circumstances most of the methane is emitted from
the fossil fuel facilities and waste management. Using the bottom-up emission information, sometimes
maps are created that provide a spatial representation of methane emissions [32]. These maps help
monitor greenhouse gas emissions, and their data could inform on the expected locations of emis-
sions.

There are several gaps in the bottom-up emission estimates. Under the United Nations Framework
Convention on Climate Change (UNFCCC), some nations report sector-wise methane emissions. Most
nations only provide an overall number for methane emissions for the entire nation, and sector-wise
disaggregation of this data induces uncertainties [32]. In some cases, the bottom-up emission infor-
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mation might not be recorded [32]. For example, in Algeria, not a lot of bottom-up methane emission
measurements are available. There are some cases where the information is recorded but might be
restricted to use. In addition, direct measurements are difficult at the locations where some oil and gas
facilities are. With the limited and uncertain bottom-up information, it is difficult to get an integrated
picture of methane emissions. Therefore, there is a need for independent constraints from a different
approach. Top-down measurements using satellite instruments can be used to place some indepen-
dent constraints and overcome many limitations of the challenging in-situ measurements.

Large anthropogenic methane emissions are frequently spotted in the measurements of satellite instru-
ments. These emissions often originate from a large number of point sources (Box 2.1) spread around
the surface of Earth [33].

Box 2.1: Point source

A methane point source is a single identifiable source of methane emission with a very less
or negligible area on the Earth’s surface. Large methane emissions from point sources are
often observed in satellite measurements. Methane emissions from fossil fuel facilities and
waste management are often considered point source emissions.

Quantification of methane emissions from point sources can help in identifying and improving the under-
standing of methane sources. Currently, there are some challenges in accurately quantifying methane
emissions seen in satellite instrument measurements. Specifications of these challenges are discussed
in the following sections.

2.4. Measuring atmosphericmethane concentrations fromspace
Some part of the solar radiation hitting the Earth’s surface is reflected in the atmosphere. This reflected
radiation is called solar backscatter. Earth’s surface also emits radiation. Certain gases absorb infrared
radiation from the solar spectrum (incoming and backscattered radiation) and the Earth emission spec-
trum. These gases are known as greenhouse gases. Methane is a greenhouse gas, and it absorbs
some wavelengths of infrared radiation.

Figure 2.3 represents optical depth of methane (red line) against several wavelengths. Optical depth
describes the amount of light absorbed when it travels through an absorbing medium. Atmospheric
methane absorbs radiation belonging to shortwave infrared (SWIR) wavelengths 1.65 [µm] and 2.3
[µm], and thermal infrared (TIR, not represented in the Figure 2.3) wavelength 8 [µm] [34]. This ab-
sorption feature of methane is used in the measurements done by satellite instruments [35].

Figure 2.3: This figure represents optical depth of various gases for different wavelengths. The spectral resolution of
this data is 0.1 nm. Optical depth for methane is marked by red line. Optical depth is unit less, wavelength is given in
nm. This experiment was performed when the surface concentration of methane was 1.9 ppm. [34]

Figure 2.4 shows shortwave infrared and thermal infrared radiations’ sensitivities to methane as a func-
tion of atmospheric pressure for a typical satellite instrument. Methane emissions from sources like
fossil fuel facilities and waste management reside mostly in the troposphere; hence uniform satellite
instrument sensitivity in the troposphere is desirable. From Figure 2.4, shortwave infrared measure-
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ments are uniformly sensitive to methane in the troposphere; hence, shortwave infrared radiations are
more suitable for measuring methane in the troposphere.

Figure 2.4: Shortwave infrared and thermal infrared sensitivities to methane for a typical satellite instrument as a function
of atmospheric pressure [34]. The blue line shows sensitivity with respect to shortwave infrared radiation. The green
line shows sensitivity with respect to thermal infrared radiation. The sensitivities are adapted from [36].

Figure 2.5 shows the solar radiation and Earth radiation spectrum. It can be noticed that the shortwave
infrared wavelengths absorbed by methane (1.65 [µm] and 2.3 [µm]) are predominantly present in the
solar spectrum. Therefore, for further discussions, we will focus on solar radiation.

Figure 2.5: This figure shows spectrum of solar radiation intercepted by Earth (in red curve), and Earth’s emission
spectrum (in blue curve). Both the spectra are plotted against wavelength in a log scale. Please note that solar spectrum
is relatively more powerful than Earth’s emission spectrum, but for representation purpose, solar spectrum has been
simplified.

Figure 2.6 shows a typical configuration of a satellite measuring shortwave infrared radiation in so-
lar backscatter. Measured spectral data contain information about how much radiation in SWIR is
absorbed in the atmosphere. The measured spectral data can change with the viewing geometry.
Viewing geometry is defined by the solar zenith angle 𝜃 and satellite viewing angle 𝜃𝑟 (Figure 2.6). The
measured spectral data is fitted to a model to derive the total vertical column density of methane [37].
This model takes care of the satellite viewing geometry. The unit of retrieved vertical column density is
[molecules/cm2].

Satellite instruments that measure solar backscatter require the surface to be reflective. Therefore, the
measurements are largely limited to land. Clouds reflect the solar radiation back to space. This pre-
vents the methane below the cloud from getting detected. Therefore, cloudless scenes are preferable
for measuring atmospheric methane concentrations. There are various satellite instruments that are
used for measuring atmospheric methane concentrations using SWIR information. Some of the most
prominent satellite instruments used for measuring atmospheric methane are SCIAMACHY, GOSAT,
and TROPOMI. In this study, we are using the TROPOMI instrument for measuring atmosphericmethane.
The following text gives some details about SCIAMACHY, GOSAT, and TROPOMI.

SCIAMACHY
SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) aboard
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Figure 2.6: Satellite configuration for methane observations in the SWIR band. 𝜃 is the incidence angle of solar radiation
at the Earth’s surface. 𝜃𝑟 is the satellite observation angle. Angles 𝜃 and 𝜃𝑟 describe satellite viewing geometry. Solar
backscatter is the radiation reflected and radiated by the Earth’s surface which is later detected by the satellite instrument.

the ENVISAT satellite was launched in March 2002. It had a spatial resolution of 30 [km] × 60 [km],
and required 6 days time for global coverage [37]. The fraction of successful methane concentration
retrievals from SCIAMACHY was said to be around 9%, largely due to cloud cover limitations [38].
SCIAMACHY was originally designed to operate at the 2300 [nm] SWIR band, but due to the formation
of an ice layer on the detector, the 1650 [nm] SWIR band was used. SCIAMACHY detected radiation
in the spectral band range 1630 [nm] - 1670 [nm] with spectral resolution of 1.4 [nm] [37].

GOSAT
GOSAT (Greenhouse Gases Observing Satellite) was developed by JAXA (Japanese space agency)
and was launched in January 2009. It has a spatial resolution of 10 [km] × 10 [km], and requires 3
days time for global coverage [39]. Measurements collected by GOSAT are sparse. GOSAT’s fraction
of successful methane concentration retrieval is nearly 17%, largely due to cloud cover limitations [40].
GOSAT uses a 1650 [nm] SWIR band for methane concentration retrieval. Range of this spectral band
is 1630 [nm] - 1700 [nm] with spectral resolution of 0.06 [nm] [39].

TROPOMI
TROPOMI (TROPOspheric Monitoring Instrument) was developed by European Space Agency (ESA)
in collaboration with Netherlands Institute for Space Research (SRON), Royal Netherlands Meteorolog-
ical Institute (KNMI), Netherlands Space Office (NSO), and other institutes. It was launched in October
2017. TROPOMI has a spatial resolution of approximately 7 [km] × 7 [km] [41], and has a daily global
coverage. TROPOMI can measure SWIR wavelengths from 2305 [nm] to 2385 [nm] with a spectral
resolution of 0.25 [nm] [41].

SCIAMACHY and GOSAT were launched almost a decade earlier and have coarser spatial resolution
and lower temporal coverage compared to TROPOMI. TROPOMI’s higher spatial resolution can give
better information about the spatial distribution of methane. Cloudy scenes are a big challenge for
the SCIAMACHY, GOSAT and TROPOMI instruments. TROPOMI is somewhat better able to identify
cloudy scenes using measurements from the VIIRS instrument [42].

SCIAMACHY and GOSAT operate at 1650 [nm] SWIR band, and TROPOMI operates at 2300 [nm]
SWIR band. From Figure 2.3, it can be noticed that the 2300 [nm] absorption band is more powerful
than the 1650 [nm] absorption band. Hence, the 2300 [nm] absorption band can give us better quality
measurements.

Due to daily global coverage, exclusion of cloudy scenes using VIIRS, and use of a stronger absorption
band in SWIR, TROPOMI is suitable for measuring global methane concentrations. There are other
satellite instruments with a better spatial resolution than TROPOMI. Most of them are used in a targeted
mode, which means they are pointed to observe some specific targets. Hence, most of the satellite
instruments with better spatial resolution than TROPOMI lack daily global coverage and can also have
issues with the signal-to-noise ratio [34].
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2.5. Atmosphericmethane concentration retrieval using TROPOMI
In the previous section, three satellite instruments were discussed: SCIAMACHY,GOSAT, and TROPOMI.
TROPOMI instrument has been developed more recently, and it is suitable to monitor global methane
emissions due to its daily global coverage and exclusion of cloudy scenes. This section discusses how
TROPOMI collects information in orbit, what spectral information is captured by TROPOMI, and how
that spectral information is converted to atmospheric methane concentrations.

TROPOMI instrument studies several chemical species, including methane, in the troposphere. The
orbital path of TROPOMI is represented in Figure 2.7. TROPOMI is carried by Sentinel-5 Precursor (S-5
P) satellite. S-5 P follows a sun-synchronous orbit, with a mean overpass local time at 13:30.

TROPOMI operates in a push-broom configuration. In this configuration, a line of sensors simultane-
ously captures radiation over a strip of land. The land covered by this line of sensors is approximately
2600 [km] wide. Each sensor in the line of sensors captures a subdivision of a 2600 [km] wide strip.
TROPOMI covers approximately 7 [km] along the flight direction in a 1-second flight. So, the dimen-
sions of the land strip covered by a 1-second flight are approximately 2600 [km] × 7 [km]. After this 1
second flight, TROPOMI moves ahead, and measurements over a new strip of land are taken.

Figure 2.7: TROPOMI measurement push-broom configuration. Red curves indicate the swath covered by TROPOMI.
In push-broom configuration, a line of sensors arranged perpendicular to the direction of the flight path is used. This
line of sensors captures the information in the strip marked by a green rectangle on the surface of the earth. Each
sensor along this line records a subdivision of this green strip. The spatial dimension of this green strip for TROPOMI is
approximately 2600 [km] × 7 [km].

TROPOMI contains a nadir viewing grating UVNS spectrometer [42]. Nadir is the point/area on the
Earth’s surface that is directly below the satellite instrument. UVNS is the abbreviation for ultraviolet
(UV), near-infrared (N), and short wave infrared (S) bands. Figure 2.8 represents the TROPOMI detec-
tor bandwidths (in white regions). TROPOMI’s ultraviolet and visible region includes wavelengths from
270 [nm] to 500 [nm]. TROPOMI’s near-infrared region covers the wavelengths between 675 [nm] to
775 [nm], and TROPOMI’s short wave infrared region includes the wavelengths between 2305 [nm] to
2385 [nm].

Measured spectral data is fitted to a model to derive the total vertical column density of methane [37].
This model takes care of the satellite viewing geometry because the measured spectral data is sensi-
tive to the viewing geometry. This model also takes care of variations in surface albedo and aerosol
optical depth. The unit of retrieved total vertical column density is [molecules/cm2]. The vertical column
density of methane is sensitive to changes in topography, weather, and surface pressure. To remove
this dependence, vertical column density is converted to a dry air column average mole fraction. Dry
air column average mole fraction is not dependent on changes in pressure, and humidity [34]. The
conversion is done by dividing the vertical column density of methane by the vertical column density of
dry air.
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Figure 2.8: Regions in the light spectrum detected by the TROPOMI instrument (marked by transparent white vertical
strips). TROPOMI can detect three regions in this spectrum: UV and visible, near-infrared (NIR), and shortwave infrared
(SWIR). SWIR band is used for atmospheric methane concentration measurements.

Figure 2.9: This figure shows an example of methane concentrations retrieved by TROPOMI. Colorbar shows dry air
mole fraction of methane in [ppb]. the x-axis represents longitude, and the y-axis represents latitude. Longitude and
latitude are given in degrees. Black arrows indicate wind direction. The lengths of black arrows indicate wind speed.
The wind data was retrieved from GEOS-FP 10 [m] wind fields.

Figure 2.9 shows an example of dry air mole fraction of methane retrieved by TROPOMI at a particular
location. Pixels in Figure 2.9 contain information about mean vertical methane concentrations. In
this figure, pixels with high concentrations align nicely with the wind direction. In this case, the highly
enhanced pixels indicate a methane plume (Box 2.2).

Box 2.2: Methane plume

A methane plume is a cloud of methane often originating from a point source. In most
cases, methane plumes are distinctly identifiable in TROPOMI images due to their features.
These features include clusters of pixels having large concentrations compared to surround-
ing/background pixels and orientation along the wind direction.

Accidental leakages in the fossil fuel infrastructure from even a single-point failure can release an
extremely large quantity of methane into the atmosphere [43]. Large methane emissions from point
sources like fossil fuel infrastructure and waste (Chapter 2.1) frequently form plumes. Accidental
methane emission events occurring from fossil fuel infrastructure are often not quantified and remain
unreported to bottom-up inventories. The company involved in the accidental emission of methane
is not held accountable, and this is especially the case when the emission locations happen to be
in remote areas [43]. Satellite instruments with daily global coverage like TROPOMI can be used
to measure atmospheric methane in remote areas and have a higher chance of detecting accidental
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methane emissions from fossil fuel infrastructure as well as methane emissions from waste manage-
ment. Plumes observed in TROPOMI measurements can be used to estimate methane emission rate
from point sources. Hence, the TROPOMI instrument can be used to put independent constraints on
emission measurements that are difficult to do using bottom-up methods.

Methane plumes are often sighted in the TROPOMI images. TROPOMI has a daily global coverage,
and manually identifying methane plumes in TROPOMI images can be cumbersome work. To auto-
mate the process of plume detection in the TROPOMI images, an automated algorithm was developed
by Schuit [44]. The following subsection discusses the TROPOMI automated plume detection algo-
rithm.

2.5.1. TROPOMI automated plume detection algorithm
According to a study performed by Schuit [44], a machine learning model was deemed to be suitable
for detecting methane plumes in the TROPOMI data. This algorithm provided a way to make the
operation of methane plume detection autonomous with acceptable accuracy. This study looked at the
consequences of using a binary classification approach. This approach showed that the plumes with
low source emission rates are harder to distinguish from the noise. The binary classification approach
was termed to be the most suitable approach, while it may lead to erroneous predictions for the difficult
classification scenarios.

TROPOMI measurements may contain artefacts (Box 2.3) due to ground features, surface albedo,
aerosols, etc. This problem was also encountered in the study of the autonomous plume detection
algorithm, which decreased the performance of the algorithm.

Box 2.3: Artefact

Artefacts can come from surface albedo variations or from aerosols. They can show up as
methane enhancements while actually there is no methane there. The TROPOMI retrieval
algorithm partly addresses this but is not able to fully resolve the problem. The following text
explains artefacts from surface albedo variations and aerosols.

Surface albedo is the fraction of sunlight reflected back to space by the surface of Earth.
Variations on the surface of Earth-like changes in terrain (from desert to rocky) and vegetation
can affect the surface albedo. Hence, surface albedo is not uniform over the surface of Earth.
Variations in surface albedo can distort the methane concentration measurements taken by
the TROPOMI instrument, which collects solar backscatter.

Aerosols are the suspended fine solid particles or droplets of liquids in the atmosphere.
Aerosols introduce uncertainties in the light path due to the scattering of light. Also, large
aerosols like dust particles can block the solar backscattered radiations. Hence the pres-
ence of aerosols affects the satellite measurements of methane.

To get rid of artefacts, an automated feature engineering algorithm was developed by Schuit [44]. The
TROPOMI automated plume detection algorithm is now being used for global monitoring of methane
plumes. Several additions were made to this algorithm since its development with the use of a larger
training dataset which improves the detection accuracy of the algorithm in challenging scenarios.

Quantification of plumes identified in TROPOMI images is essential to get an estimate of the emission
rate of the source. Quantification methods based on simple mass balance are used in the automated al-
gorithm to quantify emissions corresponding to each plume. The following section discusses TROPOMI
plume emission quantification based on simple mass-balance methods.

2.6. Plume emission quantificationmethods usedwith the TROPOMI
automated plume detection algorithm

As explained in section 2.4, satellite instruments measure the vertical column density of atmospheric
methane using solar backscattered radiation in the shortwave infrared (SWIR) region. These mea-
surements are converted to a dry air mole fraction [ppb] to make them independent of pressure and
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humidity. The dry air mole fraction of methane [ppb] can be converted to the total vertical column mass
of methane using the following expression.

ΔΩ =
𝑀CH4
𝑀air

ΩairΔ𝑋 (2.1)

In the eq. (2.1), ΔΩ is the total vertical column mass or vertical column mass enhancement in [kg/m2],
𝑀CH4 is the molar mass of methane in [kg/mol], 𝑀air is the molar mass of dry air in [kg/mol], Ωair is the
weight of column of dry air in [kg/m2], and Δ𝑋 is the measured dry air mole fraction of methane in [ppb]
minus the background dry air mole fraction of methane (X-X𝑏).

The emission rate of methane can be obtained usingmass conservation ormass balance principle. Cur-
rently, TROPOMI automated plume detection algorithm uses the following mass balance approaches:
Integrated Mass Enhancement (IME) method and Cross-Sectional Flux (CSF) method [33]. The fol-
lowing sections explain IME and CSF TROPOMI plume emission quantification methods.

2.6.1. Integrated Mass Enhancement (IME) method
IME was given by Frankenberg et al. [45] and is used in the TROPOMI automated plume detection
algorithm to quantify plumes. First, the total mass is calculated by integrating the mass of all the source
pixels (Box 2.4). The obtained total mass is also called Integrated Mass Enhancement, hence the name
of this method.

𝐼𝑀𝐸 =
𝑁

∑
𝑗=1
ΔΩ𝑗𝐴𝑗 (2.2)

In the above equation, ΔΩ𝑗 is the total vertical column mass of pixel number 𝑗 in [kg/m2], and 𝐴𝑗 is the
area of pixel number 𝑗 in [m2].

Box 2.4: Source pixels

Source pixels are the pixels which are part of the plume. These pixels are distinguishable from
other pixels due to their high concentration values. In ideal situations, source pixels can be
separated from the rest of the pixels. The remaining pixels are categorised as background
pixels. In real TROPOMI images, separating source pixels is challenging due to missing
pixels or noise in the image. Different methods are available to separate the source pixels
from the background pixels.

Later, the total mass is divided by the residence time of a plume to obtain the source emission rate.
The empirical relation between the Integrated Mass Enhancement (IME) and the source emission rate
is shown below.

𝑄 = 𝐼𝑀𝐸
𝜏 (2.3)

In the eq. (2.3), 𝜏 is the residence time of methane plume. The residence time of methane is the time
for which methane is travelled in the atmosphere after it is released from the source. The residence
time can be approximated by the distance travelled by the plume (characterised by the plume length)
divided by the effective wind speed.

𝜏 = 𝐿
𝑈eff

(2.4)

In the above equation, 𝐿 is the length or extent of plume in [m] and 𝑈eff is the effective wind speed in
[m/s]. Varon et al. [33] calculated the plume extent 𝐿 by masking the plume and taking the square root
of the plume mask (√𝐴𝑚). A different approach can also be applied to calculate plume extent.
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The effective wind speed can be calculated with various empirical formulations. Varon et al. [33] use
empirical relation based on Large Eddy Simulation (LES) results. This empirical expression is given in
the following equation.

𝑈eff = 𝛼1 log𝑈10 + 𝛼2 (2.5)

In eq. (2.5), 𝛼1 and 𝛼2 are the regression coefficients given by the range 0.9-1.1 and a value of 0.6
[m/s], respectively, and 𝑈10 is the wind speed measured 10 [m] above the surface [33]. This setup is
valid for images with pixel resolution of 50×50 [m2].

For TROPOMI images, a study done at SRON found a linear empirical relation between 𝑈𝑒𝑓𝑓 and 𝑈10.
This empirical relation is shown in the following equation.

𝑈eff = 𝛼3𝑈10 + 𝛼4 (2.6)

In eq. (2.6), 𝛼3 and 𝛼4 are 0.444 and 0.278, respectively. The empirical relations described in this
section are case-specific and might not hold true for a different setup or different satellite instrument.
Empirical relations presented in this section are simple, which means there is an option to derive em-
pirical relations for a different setup.

2.6.2. Cross-Sectional Flux (CSF) method
In the CSFmethod, plume emission quantification is done by calculating flux through the cross-section(s)
of the plume (orthogonal to the downwind direction). A flux, in this case, is the flow of mass through
a reference geometry. The source rate is equal to the integration of the product of wind speed 𝑈 and
the column enhancements over a cross-section perpendicular to the downwind direction of the plume.
Here downwind direction of the plume refers to the plume direction or plume orientation and not the wind
direction, as the wind direction might not always be the same as the plume direction due to reasons
mentioned later in this chapter. The following equation shows this relationship.

𝑄 = ∫
+∞

−∞
𝑈(𝑥, 𝑦)ΔΩ(𝑥, 𝑦) d𝑦 (2.7)

In the above equation, ΔΩ(𝑥, 𝑦) is the total vertical column mass of pixel located downwind at a distance
𝑥 from the source and 𝑦 along the cross-section line. 𝑈(𝑥, 𝑦) is the wind speed at the location 𝑥
downwind and 𝑦 along the cross-section line. Pixels along cross-section lines are selected based
on threshold criteria. Usually, this criterion is based on a multiple of standard deviation values (for
example, 1.8𝜎, 𝜎 is the standard deviation).
The integration is approximate by summation of the product of effective velocity (𝑈𝑒𝑓𝑓) and column
enhancements over a cross-section, as shown in the following equation. In practice, the source rate is
computed for multiple cross-sections, and later an average is taken.

𝑄 =∑ΔΩ(𝑥, 𝑦)𝑈eff d𝑦 (2.8)

The effective wind speed can be calculated by various empirical relations. Varon et al. [33] found the
regression coefficient 𝛽 used in equation 2.9 to be in the range 1.3-1.5. Similar to IME, the empirical
relations described in this section might vary for a different satellite instrument.

𝑈𝑒𝑓𝑓 = 𝛽𝑈10 (2.9)

The IME and CSF source rate quantification methods produced promising results for the GHGsat mea-
surements [33], but there are several limitations to using IME and CSF methods. These limitations can
be divided into solvable limitations and non-solvable limitations. The following paragraphs discuss the
solvable limitations of the mass balance methods.
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Figure 2.10: This figure illustrates the CSF method. The green box starts from the source location and is oriented in the
downwind direction. Cross-section lines are marked in cyan colour. 𝑥 axis is oriented along the downwind direction, and
𝑦 axis is oriented along the cross-section lines. Description for the TROPOMI image in the background can be seen in
Figure 2.9.

Parametric coefficients in the effective wind speed equation are not universal and dependent on a
particular setup. This means parametric coefficients need to be re-calibrated for a new setup. Similarly,
limitations linked to the use of uniform effective wind speed over the plume, plume mask, calculation of
plume extent and more can be resolved by developing some advanced IME and CSF methods. On the
other hand, some limitations of the mass balance methods are inherent and cannot be fixed. These
non-fixable limitations are discussed in the following paragraph.

The inherent limitations of mass balance methods include missing plume pixels, non-characterisation
of wind speed in the vertical direction, low wind speed conditions and more. This paragraph discusses
some of the inherent limitations of the mass balance methods. TROPOMI images might have missing
pixels due to cloud coverage or noise due to various factors. Missing or noisy pixel information causes
an underestimation or overestimation of plume mass that affects the mass balance quantification and
makes the estimates uncertain. The wind velocity 𝑈(𝑥, 𝑦) is not characterised due to the non-inclusion
of variation of velocity in the vertical direction. The mass balance methods tend to perform poorly in
low wind speed conditions [33].

Due to the fact that the inherent limitations of simple mass balance methods cannot be fixed, there will
always be some uncertainty associated with the mass balance methods. Therefore, there is a need for
some physics-informed approach that could overcome most of the inherent limitations of simple mass
balancemethods. Atmospheric transport models can account for three-dimensional particle transport in
the atmosphere and can be used to reconstruct methane plumes. Therefore, in this study, we are trying
to improve TROPOMI plume emission quantification with the help of atmospheric transport models.
The following sections discuss atmospheric transport models used in this study and the generation
and quantification of the TROPOMI plumes using atmospheric transport models.

2.7. Atmospheric transport models
The TROPOMI automated plume detection algorithm often captures plumes originating from point
sources such as fossil fuel infrastructure and waste management. The automated detection algo-
rithm currently uses the IME and CSF mass balance methods to quantify the detected plumes. The
mass balance methods tend to produce uncertain plume emission quantifications due to several lim-
itations. Hence, there is a need for a robust method that overcomes most of the inherent limitations
of the mass balance methods. In this study, we exploit atmospheric transport models to improve the
TROPOMI plume emission quantification in the automated detection algorithm. This section gives a
brief overview of atmospheric transport models before discussing how the TROPOMI plumes can be
quantified with the atmospheric transport models.

The origin of atmospheric transport models dates back to the early twentieth century. The earliest mod-
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els were based on simplified chemistry and transport. One of the main objectives of developing these
models was to predict climate change. Compared to the models present today, models in the early-
mid twentieth century could not sample all the possible intricacies of a complex atmospheric system.
Therefore, they were very uncertain in their predictions. This gave rise to the need for the development
of more reliable and robust models. In 1914, Bjerknes proposed to use physics-based deterministic
models for weather forecasting [46]. The physics-based models involve complex equations that can-
not be solved analytically; hence models based on numerical methods were developed. This laid the
foundation for the development of atmospheric transport models.

The atmospheric transport models are categorised into the Eulerian models and the Lagrangian models
based on the approach used for particle transport. The Eulerian transport model uses a frame of
reference fixed to the computational grid, whereas the Lagrangian transport model uses a frame of
reference fixed to the transported particles. The following sections provide some ideas about how
particle transport takes place in the Eulerian and Lagrangian approaches.

2.7.1. The Eulerian approach
In the Eulerian approach, a fixed computational grid is used for performing numerical calculations.
Figure 2.11 shows flow passing through a fixed computational grid cell centred at (x,y,z). In Figure
2.11, 𝐹𝑖 [kg m−2 s−1] is the mass flux of the species passing through walls of 𝑖th cell. Here, flux is
defined as the rate of mass passing across a given area.

In the Eulerian model environment, several different processes are involved. These processes are
taken care of by the transport and local terms. Equation 2.10 represents the sum of transport and local
terms used for describing different processes in the Eulerian framework.

𝜕𝜌𝑖
𝜕𝑡 = [

𝜕𝜌𝑖
𝜕𝑡 ]advection

+ [𝜕𝜌𝑖𝜕𝑡 ]turbulent mixing
+ [𝜕𝜌𝑖𝜕𝑡 ]convection

+ [𝜕𝜌𝑖𝜕𝑡 ]scavenging

+ [𝜕𝜌𝑖𝜕𝑡 ]chemistry
+ [𝜕𝜌𝑖𝜕𝑡 ]emissions

+ [𝜕𝜌𝑖𝜕𝑡 ]dry deposition

(2.10)

In the above equation, 𝜌𝑖 is the concentration measured in terms of mass density [kg m−3], and 𝑡 is
time [s]. The mass flux 𝐹𝑖 can be written as the product of mass density 𝜌𝑖 and averaged velocity vector
v.

𝐹𝑖 = 𝜌𝑖v (2.11)

In equation 2.10, the advection term, the turbulent mixing term, and the convection term are mainly
responsible for particle transport and hence called transport terms. We are using the atmospheric
transport model for particle transport; hence we are considering the transport terms. Apart from the
transport terms, the chemistry term is considered in this study to account for several atmospheric re-
actions. The rest of the terms are local terms and do not contribute to particle transport. The following
text discusses the transport terms used in this study.

Advection is the transport of species by the wind on a model scale. A model scale depends on the size
of the computational grid used in the Eulerian model. The change of mass concentration in a grid cell
per unit time is given by the difference of flow rate into the grid cell and flow rate out of the grid cell per
unit volume of the grid cell. The flow rate is obtained by multiplying flux with the area through which
flux is passing. The following equation describes the temporal change in mass concentration due to
advection in the 𝑥 direction.

[𝜕𝜌𝑖𝜕𝑡 ]advection,𝑥
= [𝐹𝑥𝑖 (𝑥 − 𝑑𝑥/2) − 𝐹𝑥𝑖 (𝑥 + 𝑑𝑥/2)] 𝑑𝑦 𝑑𝑧

𝑑𝑥 𝑑𝑦 𝑑𝑧 = −𝜕𝐹
𝑥
𝑖

𝜕𝑥 = −𝜕(𝜌𝑖𝑢)𝜕𝑥 (2.12)

Similarly, temporal changes in mass concentrations in the y and z directions can be obtained using the
above equation.
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Figure 2.11: Eulerian framework depicting flow (green dotted lines) going through a grid cell with volume 𝑑𝑉 and the split
of the flux 𝐹𝑖 in 3 dimensions (red arrows). The dimensions of this grid cell are dx, dy, and dz. The orientation of the 𝑥
axis is from left to right, the orientation of the 𝑦 axis is from bottom to top, and the orientation of the 𝑧 axis is from out of
the page to into the page.

Adding the components along 𝑥, 𝑦, and 𝑧 directions, we get the final form of the advection term.

[𝜕𝜌𝑖𝜕𝑡 ]advection = −
𝜕𝐹𝑥𝑖
𝜕𝑥 − 𝜕𝐹

𝑦
𝑖

𝜕𝑦 − 𝜕𝐹
𝑧
𝑖

𝜕𝑧 = −𝜕(𝜌𝑖𝑢)𝜕𝑥 − 𝜕(𝜌𝑖𝑣)𝜕𝑦 − 𝜕(𝜌𝑖𝑤)𝜕𝑧 (2.13)

It can be noticed that equation 2.13 makes use of wind velocity components in three dimensions (u,v,w).
Hence, the Eulerian model uses three-dimensional wind velocity information, unlike the simple mass
balance approaches seen in the previous chapter.

The advection term takes care of the model level scales that can be resolved by the size of the compu-
tational grid. A typical Eulerian model computational grid has a resolution of 100 - 101 [km]. Scales in
the atmospheric boundary layer are considered to be small and can often not be resolved by the com-
putational grid [47]. Small scales which can not be resolved by the computational grid are often termed
turbulent scales (Box 2.5). The atmospheric boundary layer is typically 1-2 [km] in height (Figure 2.12),
and the size of the turbulent scales inside the atmospheric boundary layer ranges from 10−2 to 100
[km] [48]. These fluctuating scales have zero value for the time ensemble mean. However, turbulent
scales’ contribution to the transport of species is often high [47]. Generally, transport models apply
parametric turbulent mixing in the boundary layer of the planet to take care of the small scales.

Box 2.5: Turbulence

Turbulence is characterised by chaotic changes in the motion of the fluid. Some complex
terms present in physics-based transport equations are related to turbulence. These complex
terms cannot be solved analytically and are linked to small scales. Therefore, numerical
models often parameterise complex turbulence terms.

Turbulent mixing is mainly responsible for the vertical transport of the species in the planetary boundary
layer [47]. Moreover, the turbulent mixing term stabilises the numerical simulation [50]. On the other
hand, the convection term takes care of the vertical transport outside the planetary boundary layer. For
small-scale models, the convection term is based on the advection principle. For large-scale models,
the convective term is parameterised.
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Figure 2.12: This figure shows the atmospheric boundary layer (region below the red dotted line). The upper boundary
of the troposphere is marked by a blue dotted line. The white vertical arrow indicates height from the surface of the earth.
Please note that the figure is not drawn to scale. [49]

This section provided an overview of the principle behind the Eulerianmodels. The Eulerianmodels use
a fixed computational grid for performing numerical calculations. There is another category of models
that traces the particles to compute their atmospheric concentrations. These models are termed the
Lagrangian models. The following section provides an overview of the principle behind the Lagrangian
models.

2.7.2. The Lagrangian approach
In the Lagrangian model, chemical concentrations are obtained by following the trajectory of particles
displaced by air motions [47]. There are different types of Lagrangian models: a model that tracks a
single particle displaced by the mean velocity with neglected turbulence, a model that tracks multiple
particles confined in a box, a model with Gaussian puff describing turbulent dispersion, and a particle
dispersion model (LPDM) with turbulence generated by a stochastic process.

The LPDMs simulate particle transport with advection and turbulent diffusion. The advection and turbu-
lent diffusion terms in LPDM are based on sophisticated parametric stochastic equations [51]. LPDMs
have the ability to naturally deal with turbulent diffusion, unlike the other Lagrangian models [51]. Due
to their several benefits, most atmospheric models use LPDM to simulate the Lagrangian particle trans-
port.

Most of the Lagrangian models, including LPDM, can simulate particle transport in forward or backward
mode. In the forward mode, particles are released from one or more source locations, and their trans-
port takes place using fluid motions in the model domain (refer to Figure 2.13). In the backward mode,
particles released at a receptor are used to find influences of upwind locations at the receptor point
(refer to Figure 2.13). The backward simulation mode can potentially help in locating upwind source
regions from atmospheric measurements, in contrast to the forward mode, which might require many
simulations to locate the source.

2.7.3. Advantages and disadvantages of the Lagrangian approach over the Eu-
lerian approach

Advantages and disadvantages of using the Lagrangian framework over the Eulerian framework can
be divided into two categories: advantages and disadvantages associated with the models’ setup and
advantages and disadvantages associated with working of the models.

Some advantages of using the Lagrangian model over the Eulerian model related to the setup are
discussed in this paragraph. In the Lagrangian model, since there is no computational grid, the time
step is not limited by the Courant–Friedrichs–Lewy (CFL) condition. On the other hand, the time step in
the Eulerian model is restricted due to the CFL condition. The CFL condition is the relation between the
time step, grid cell size, and velocity, which is often used to check the stability of a numerical system.
Due to the reasons mentioned above, large time steps can be used in the Lagrangian model, which can
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Figure 2.13: This figure illustrates the forward and backward Lagrangian models. Black circles represent particles used
for the backward Lagrangian model run, and grey boxes represent particles used in forward Lagrangian model run. In the
forward Lagrangian model run, particles move from the source to the receptor, and in the backward Lagrangian model
run particles move from the receptor to the source. [47]

reduce the computational time. In the Lagrangian model, resolution in the area of interest can easily
be increased by increasing the number of particles. On the other hand, to increase the resolution in the
Eulerian model, the size of the grid cell needs to be reduced, which increases computational costs for
the Eulerian model. In the Lagrangian model, particle trajectories are independent; hence performing
parallel computation is easier on the Lagrangian model. On the other hand, in the Eulerian model, grid
cells are not independent, and it makes parallel computation challenging.

Some disadvantages of using the Lagrangian model over the Eulerian model related to the setup are
discussed in this paragraph. The Lagrangian model offers non-uniform coverage of the 3-dimensional
domain; hence there might be some unsampled regions in the domain. On the other hand, the Eulerian
model performs calculations over a uniformly distributed 3-dimensional grid over the computational
domain; hence there are no unsampled regions in the computational domain.

Some advantages of using the Lagrangian model over the Eulerian model related to the working of the
model are discussed in this paragraph. In the Lagrangian framework, there is no numerical diffusion;
hence the sharp gradients in tracer concentrations are preserved. Numerical diffusion is the numerical
error that originates due to the first-order approximation of a spatial partial derivative. Since no spatial
computational grid is used in the Lagrangian model, there is no numerical diffusion. Numerical diffusion
causes the reduction of sharp peaks or edges. Hence, a sharp drop in concentration values between
grid cells might not be preserved in the Eulerian model.

Some disadvantages of using the Lagrangian model over the Eulerian model related to the working
of the model are discussed in this paragraph. The Lagrangian model generates small-scale features
due to insufficient particle mixing. These small-scale features are usually dissipated in the atmosphere
due to turbulent mixing but are present in the Lagrangian model’s results, whereas these unwanted
small-scale features are not present in the Eulerian modelś results. The Lagrangian model tends to
neglect the non-linearities present in the transport process, which are to some extent preserved by the
Eulerian model [47].

This study exploits both the Eulerian and Lagrangian frameworks for TROPOMI plume emission quan-
tification. Both the frameworks have some positive points and negative points, and this study will
check and compare the ability of the Eulerian and Lagrangian frameworks to quantify the TROPOMI
plumes.
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2.8. WRF-CHEM and FLEXPART
In the previous section, two distinct frameworks of atmospheric transport models were discussed.
There are various computational tools or software available that can simulate particle transport using
the Eulerian as well as the Lagrangian model. At SRON, the Weather Research Forecast model cou-
pled with chemistry (WRF-CHEM) is used for simulating the Eulerian particle transport. For simulating
the Lagrangian particle transport, the FLEXible PARTicle (FLEXPART) model is chosen in this study.
The FLEXPART model was selected due to the availability of literature and its ability to simulate using
the LPDM. The following subsections provide a short overview of the WRF-CHEM and FLEXPART
models.

2.8.1. Short overview of the WRF-CHEM model
The Weather Research and Forecasting model (WRF) [52] is an open-source Eulerian atmospheric
modelling system used for numerical weather prediction and research related to it. The WRF model
has been employed for research at universities, and government laboratories and commercial appli-
cations by industries [53]. The WRF model is written in Fortran language and can be built in any
UNIX-based operating system using any Fortran compiler, and this model can also be operated in a
parallel computing framework [53].

In this study, the atmospheric transport simulations are performed on a system having a WRF model
integrated with a chemistry package (WRF-CHEM). WRF-CHEM is an inline chemistry solver coupled
with the dynamical solver of WRF. Henceforth, the WRF-CHEM model will be referred to as WRF in
this report.

Running atmospheric simulations with WRF consists of three phases: preprocessing, configuration,
and model run. A WRF preprocessing system was designed for preprocessing the meteorological data
(ECMWF [54], and NCEP [55]) (Box 2.6), which is supplied to the dynamical solver (used in the third
phase) of WRF. The second phase deals with the configurations of the model domain, supplying the
input data, and providing the initial conditions. The third phase deals with running the forecast model
using a dynamical solver.

Box 2.6: Meteorological data

WRF-CHEM and FLEXPART use meteorological wind data as input since they are offline
models. Offline models use the archived output from a separate meteorological model. The
wind field can be either in a GRiB or GRiB2 format. We are acquiring the wind fields from
the ECMWF [54] and GFS (NCEP) [55] numerical weather prediction database because of
their compatibility with both the WRF and FLEXPART models. The meteorological grid is
distributed over latitude, longitude and the model levels (heights). The meteorological data
often needs to be preprocessed before using it with the atmospheric transport models.

The WRF solver uses various formulations for turbulent mixing. As seen previously, turbulent mixing
is related to vertical mixing in the planetary boundary layer. In WRF, vertical mixing is considered
dominant in the boundary layer and is parametrised with the help of planetary boundary layer (PBL)
physics. Various PBL schemes are listed in the WRF user manual [56]. The WRF model supports
multiprocessing for parallel simulations. The WRF model can output the grid concentrations and some
meteorological variables in the NetCDF format. This NetCDF file is used later in the postprocessing
routine.

2.8.2. Short overview of the FLEXPART model
The FLEXible PARTicle model, abbreviated as FLEXPART, is a tool used for atmospheric transport
modelling and analysis using the stochastic version of the Lagrangian approach or LPDM. It originated
almost ten years ago to simulate the long-range dispersion of pollution particles from a point source.
This model calculates the trajectories of the particle parcels to analyse atmospheric transport and dif-
fusion of tracer gases like methane.

The first version of the FLEXPART was developed by Eckhardt and Stohl in the 2000s. The second ver-
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sion of FLEXPART was validated with the data from three tracer experiments conducted by Stohl [57].
The next versions of FLEXPART saw the addition of convective schemes and boundary layer paramet-
ric schemes. The capabilities of FLEXPART have been validated with various air pollution transport
studies [58], [59], and [60]. FLEXPART is based on Fortran 95 language and can work on the compilers
like gnu, Absoft and Portland Group. FLEXPART can model the particle trajectories in a forward and
backward manner. FLEXPART also supports multiprocessing for parallel simulations.

Similar to the WRF model, a FLEXPART model run consists of three phases. The FLEXPART model
uses a preprocessing routine to check the meteorological data, and this preprocessing routine com-
putes vertical velocities if they are not present in the meteorological data. Then, the FLEXPART model
reads the input settings from a directory, which contains several command files. These command files
have settings that define the FLEXPART solver run. A more detailed description of these command
files can be seen in the FLEXPART used guide document [61].

FLEXPART uses a parametric model for simulating the atmospheric boundary layer. This parametric
model calculates the velocities in the unit [m/s] and not in the 𝜂 coordinate (Box 2.7). Therefore, to avoid
the complexity of transforming the coordinates every time step, the coordinate data is linearly interpo-
lated from the ECMWF model levels to the Cartesian terrain-following system [61]. Hence, the vertical
coordinate system present in the FLEXPART output is a Cartesian terrain-following system.

Box 2.7: Eta coordinate

Messinger, in 1984 introduced a vertical coordinate for taking care of the mountains and
altitude variations on the land [62]. Meteorological data required for theWRF and FLEXPART
models are usually distributed in the 𝜂 vertical coordinate. This coordinate is called the 𝜂
coordinate and is represented in the following equation.

𝜂 = 𝜎
𝑝𝑟𝑒𝑓(𝑧𝑠) − 𝑝𝑡𝑜𝑝
𝑝𝑟𝑒𝑓(0) − 𝑝𝑡𝑜𝑝

(2.14)

In eq. (2.14), the term 𝜎 is calculated with the help of the following equation.

𝜎 =
𝑝 − 𝑝𝑡𝑜𝑝
𝑝𝑠 − 𝑝𝑡𝑜𝑝

(2.15)

In eq. (2.14) and eq. (2.15), 𝑧𝑠 is the local terrain elevation, 𝑧 is the geometrical height, 𝑝 is
the pressure at a particular vertical level, 𝑝𝑠 is the pressure at the surface, 𝑝𝑡𝑜𝑝 is the pressure
at the topmost vertical level, 𝑝𝑟𝑒𝑓(𝑧𝑠) is the reference pressure, and 𝑝𝑟𝑒𝑓(0) = 0.
Meteorological data fields are often available in the eta coordinate system.

The FLEXPART model outputs the grid concentrations of the particles over a uniform grid defined in
the input settings. This file is by default in binary format. Users can define the units of the output (mass
[kg] or mixing ratio [pptv]) by adjusting the input settings. The FLEXPART model can also output in
NetCDF format, which is more desirable for this study.

2.9. Generating plumes using atmospheric transport models
Atmospheric transport models use physics-informed equations and account for the three-dimensional
transport of chemical species, which was lacking in the simple mass balance methods. We use this
ability of atmospheric transport models to improve the TROPOMI plume emission quantification algo-
rithm. We can generate synthetic plumes using atmospheric transport models. These synthetic plumes
can be matched with the TROPOMI plumes. If a synthetic plume agrees well with the TROPOMI plume,
we can estimate the emission rate of the TROPOMI plume based on that synthetic plume. The pre-
vious sentences briefly explained the process of quantifying emissions from TROPOMI plumes with
atmospheric transport models, but before going into details of how this quantification process works,
a methodology to generate synthetic plumes using atmospheric transport models is discussed in this
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section.

We are focusing on methane emissions from point sources like fossil fuel infrastructure and waste
management. Both the WRF and FLEXPART models can simulate methane emissions from a point
source. For generating plumes in the WRF and FLEXPART models, the location and emission rate
of a persistent point source of methane can be provided. After the simulation is complete, the dry
air mole fraction of methane and some other meteorological parameters are stored in an output file.
Please note that the FLEXPART model does not use the computational grid for simulation, but the
outputs are stored in a three-dimensional grid. Methane dry air mole fraction outputs from the WRF
and FLEXPART models span over the longitude, latitude, and vertical coordinates. The FLEXPART
model internally converts the hybrid sigma pressure vertical coordinates (Box 2.8) to the height over
sea level in metres and uses this coordinate system for boundary-layer parametrisation. Hence, the
outputs obtained from the FLEXPART model follow an altitude [m] based vertical coordinate system.
On the other hand, the WRF model gives the output in the hybrid sigma pressure coordinates.

Box 2.8: Hybrid sigma-pressure vertical coordinate system

Atmospheric transport models often use a hybrid sigma-pressure coordinate system. The
pressure at vertical level 𝑘 is called 𝑝𝑘 and is calculated using the following equation.

𝑝𝑘 = 𝐴𝑘𝑝0 + 𝐵𝑘𝑝𝑠 (2.16)

In eq. (2.16), coefficients 𝐴𝑘 and 𝐵𝑘 are dependent on the vertical level 𝑘, and the term 𝑝0 is
the pressure at the sea level (1013 hPa).

Since the hybrid sigma pressure coordinate system is more suitable for postprocessing, the FLEXPART
output is mapped to a hybrid sigma pressure coordinate system using a separate routine.

The postprocessing involves the conversion of three-dimensional methane dry air mole fraction output
data to a TROPOMI-like image. This can be done with the help of an algorithm known as the resampling
algorithm. First, latitude-longitude distributed data in each vertical level is interpolated to match the
TROPOMI pixel resolution. For this interpolation, the resampling algorithm uses an actual TROPOMI
image to get the location, size and orientation of the pixels. Next, the model output vertical levels
are interpolated to the TROPOMI vertical levels. There are, in total, 12 vertical levels retrieved in the
TROPOMI measurements. Please note that despite retrieving 12 vertical levels in the measurement,
TROPOMI virtually has no methane vertical profile information in the measurement [63]. Therefore,
the TROPOMI methane data is given as a column-averaged dry-air mole fraction of methane or a
2-dimensional image (refer to Section 2.5).

In the next step, information from the vertical levels is converted to column-averaged dry-air mole
fraction of methane. The relation between vertical distribution of methane (XCH4model,i) and column-
averaged dry-air mole fraction of methane (XCH4total column) can be given by the following equation.

XCH4total column =
𝑛

∑
𝑖=1
(𝐴𝑐𝑜𝑙,𝑖XCH4model,i + (1 − 𝐴𝑐𝑜𝑙,𝑖)XCH4prior,i) /𝑉air,dry (2.17)

In the above equation, 𝑖 represents a number of a vertical level, and 𝐴𝑐𝑜𝑙,𝑖 is an averaging kernel. The
averaging kernel describes the sensitivity of retrieved methane information from a column to changes
to the methane profile in the column (Figure 2.4). The term (XCH4prior,i) describes the prior profile of
methane in the vertical column. The term (𝑉air,dry) is the dry air column. The TROPOMI measurement
files usually contain information about the prior methane profile in columns, the averaging kernel for
the columns, and the amount of dry air in columns. The value of (XCH4total column) is obtained for all
the TROPOMI pixels distributed in latitude-longitude. Therefore, the quality of the results after this step
depends on the coverage of pixels in the TROPOMI image. Finally, a TROPOMI-like image with a
synthetic plume is constructed.
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Synthetic plumes generated by the atmospheric transport models can be used to reconstruct and quan-
tify the TROPOMI plumes. A detailed description of TROPOMI plume emission quantification using
atmospheric transport models is provided in the next section.

2.10. Quantifying emissions fromplumes using atmospheric trans-
port models

In the situations where the TROPOMI coverage is bad, mass balance methods perform poorly, but
synthetic plumes generated by atmospheric transport models can help quantify the TROPOMI plumes.
In 2018, a published study revealed extreme methane leakage from a natural gas well blowout (uncon-
trolled release of gas) event in Ohio, USA [43]. This study used theWRFmodel to perform atmospheric
transport of methane released from the blowout site. The WRF simulations were performed closest to
the TROPOMI overpass time, sampled at TROPOMI pixels, and later scaled to match the TROPOMI
measured methane enhancements. The WRF results showed similar plume enhancements as seen in
the TROPOMI image.

Figure 2.14: This figure represents a comparison of the WRF synthetic plume with the TROPOMI observed methane
emissions from the Ohio natural gas well blowout site [43]. Image (A) shows the column-averaged mixing ratios of
methane near the TROPOMI overpass time simulated with the WRF model. In the image (A), a synthetic plume can be
seen. Image (B) shows the WRF results sampled at TROPOMI pixels. In the image (B), the rectangle in the south region
(upwind direction from blowout site) of the blowout site contains the background pixels. Background pixels are used to
determine excess enhancements in the plume pixels compared to the surroundings. Pixels used from the background
region are marked with plus symbols. The red box in the downwind direction from the blowout site marks the pixels
closest to the blowout site. The pixels used for the emission quantification are marked with cross symbols. Image (C)
represents the measurements taken by the TROPOMI instrument over the blowout site. In the image (C), the pixels used
for the emission quantification are marked with crosses.

The emission rate of the TROPOMI plume is quantified bymatching the synthetic plume to the TROPOMI
observations. The scaling used for this purpose is given in the following equation.

𝑄𝑇 = 𝑄𝑆 ×
𝑋𝑇
𝑋𝑆

(2.18)

In the above equation, 𝑋𝑇 represents the methane enhancements seen in the TROPOMI image, and
𝑋𝑆 represents the methane enhancements seen in the synthetic plume image. 𝑋𝑆 was calculated by
adding methane enhancements due to blowout, EPA emissions, and boundary conditions. EPA is the
national anthropogenic emissions gridded inventory of the United States. The EPA emissions were
added to account for the emissions not related to the blowout. The boundary conditions took care of
the methane transported from outside the computational domain. Only the pixels close to the blowout
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site were considered for quantification to minimise the uncertainty present in theWRF simulated results.
The terms 𝑋𝑆 and 𝑋𝑇 were obtained after subtracting background pixel enhancements from the blowout
pixel enhancements.

In another study published in 2021, methane emissions from a natural gas blowout that happened on
30 August 2019 near Louisiana, USA, were quantified with the help of the WRF simulations [64]. In
this study, emissions were estimated by the analytical solution of the Bayesian inverse problem. The
following equation represents an analytical solution to the Bayesian inverse problem.

𝑥̂ = xA + SAK𝑇(KSAK𝑇 + So)−1(y−KxA) (2.19)

In the above equation, 𝑥̂ gives us independent contributions of optimised emission values from the
blowout, EPA inventories, and boundary and initial conditions from CAMS (Copernicus Atmosphere
Monitoring Service). xA is the prior, and it is taken as the mean of reported emission rates from the
blowout. K is the Jacobin matrix constructed by running perturbation simulations for each contribution
in 𝑥̂. SA is the prior error covariance matrix, and it is obtained by using error contributions from blowout
emissions, emission inventories, and boundary conditions. y contains TROPOMI measurements. So
is the error covariance matrix for observations, and it computes the error by calculating the standard
deviation of the difference between the prior model and the observations.

In the previous paragraphs, two approaches used for quantifying the TROPOMI plumes using the WRF
synthetic plumes were discussed. The first approach uses linear scaling to scale the synthetic plumes
to match them to the TROPOMI plumes. The scaling parameter is based on the enhancements in
the TROPOMI image and the enhancements in the synthetic plume image. The enhancements are
calculated by taking an average dry air mole fraction of methane over the plume, which is equivalent to
calculating integrated mass enhancement (IME) over the plume. The second approach uses the ana-
lytical solution to the Bayesian inverse problem. The analytical solution used in the second approach
minimises the error between the TROPOMI enhancements and the synthetic plume enhancements,
similar to minimising the root mean square error to reach an optimal solution.

The previous paragraphs described TROPOMI plume emission quantification using synthetic plumes
generated by the WRF model. The FLEXPART model can generate synthetic plumes in forward run
mode, which can be utilised for plume emission quantification. The FLEXPART model can also run
in the backward mode, which gives us another option for plume emission quantification. The follow-
ing paragraph describes how the backward run of the FLEXPART model can be used to quantify the
plumes.

In backward mode, the FLEXPART model simulates particle transport from the receptor to the source
(refer to Figure 2.13). In the FLEXPART backward run, a unit dry air mole fraction of species can
be provided at the receptor as an input. After the backward run is complete, we get a relationship
between sources and receptors in the form of a matrix [65]. The obtained relationship tells us emission
contribution from each source to achieve a unit dry air mole fraction of methane at the receptor. The
sources can be distributed over a three-dimensional grid or a surface grid. The surface grid is more
suitable for this study since methane emissions from fossil fuel infrastructure and waste management
occur near the surface. Since the relationship is linear, we can scale the emission rate at the sources
to match the methane dry air mole fraction measured at the receptor [66]. In this study, we can try to
match the methane dry air mole fractions observed in the TROPOMI image. We get a 2-dimensional
image from TROPOMI, but we need coordinates of the receptor in terms of latitude, longitude and
vertical levels. TROPOMI does not reveal the methane distribution in the vertical columns. Hence, we
need to derive the vertical distribution of methane from the TROPOMI image.

The plume scaling method described in the Ohio blowout study is less mathematically intensive and
much easier to set up than the Bayesian inverse solution method used in the Louisiana blowout study
and the backward Lagrangian model method described in the previous paragraph. We aim to compare
the plume emission quantification results of the atmospheric transport models to the mass balance
methods and see whether the atmospheric transport model-based plume emission quantification ap-
proach overcomes some of the mass balance methods’ inherent limitations.
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Research Plan

The following research questions and objectives are formulated for this Master thesis project:

3.1. Research Question(s)
The most important research question for this thesis is:

How can Eulerian and Lagrangian atmospheric transport models be used to improve the
emission quantification of methane plumes detected by the TROPOMI automated plume
detection algorithm?

The following sub-questions will help in answering the main research question:

3.1.1. Analysis of mass balance methods (Phase I):
The leading research question for this part is: How well can emissions be quantified through mass-
balance methods?

Sub-questions:

In the mass balance approach, how is the emission estimate affected by the input parameters (plume
mask filtering criteria, effective wind speed)?

Under which (meteorological) conditions do a mass balance approach performs best, or worst?

What are the limitations of using the mass balance approach for plume emission quantification?

3.1.2. Internal analysis of the WRF and FLEXPART models (Phase II):
The leading research question for this part is: How well can the (known) emissions of a simulated plume
be quantified based on an independent simulation with the same model but with different settings (e.g.
transport parametrisations and source location)?

Sub-questions:

How sensitive are the plumes produced by atmospheric transport models to the input parameters?

What are the computational costs of using atmospheric transport models for simulations?

What (meteorological) parameters are predictors for the uncertainty of each method?

3.1.3. Cross-validation of the WRF and FLEXPART models (Phase III):
Phase III is similar to phase II and has the same research questions, except that the emissions of a
simulated plume are quantified with a different transport model.
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3.1.4. Implementation on the TROPOMI cases (Phase IV):
The leading research question for this part is: Which emission quantification algorithm performs better
when implemented on actual TROPOMI data?

Sub-questions:

Which model is best able to reproduce the plumes seen in TROPOMI data?

Based on our findings from all four phases, what does it mean for the potential implementation to the
TROPOMI automated plume detection algorithm?

3.2. Approach
This section describes an approach to answer the research questions given in Section 3.1. A flowchart
illustrating the proposed research approach is given in Figure 3.1. This figure shows three blocks titled
Phase I, Phase II & III and Phase IV. Phase I is dedicated to testing mass balance approaches on the
simulated synthetic plumes. Phase II & III are dedicated to testing and (cross) validating atmospheric
transport models, and Phase IV will be used for applying WRF and FLEXPART on TROPOMI plumes.
Based on the transport models based approach, wewill provide an outlook on the implementation on the
operational algorithms. The following subsections will discuss plans for the four phases in detail.

Figure 3.1: Flow diagram depicting the research approach

3.2.1. Phase I: Analysis of mass balance methods
The first phase focuses on setting up the WRF and FLEXPART models for generating synthetic plumes
and using the mass balance approach for their quantification. The WRF model was chosen for this re-
search following the suggestions from the researchers at SRONwho have experience with it in the past.
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By providing relevant input data to the researcher operating WRF, synthetic plumes will be obtained
with time-forward simulations. The FLEXPART model was selected for this research due to its simplic-
ity and availability of instruction material. Particle dispersion simulations in a time-forward manner will
be performed in the FLEXPART model to obtain synthetic plumes.

Later, mass balance approacheswill be applied to theWRF and FLEXPART-generated synthetic plumes
for quantifying emission rates. The outcome from Integrated Mass Enhancement (IME) method (a sim-
ple mass balance approach) is dependent on filtering criteria (plume mask). Moreover, outcomes from
the IME and Cross-sectional Flux (CSF) are dependent on an empirical relation used for computing
effective wind speed. Currently, the empirical relation for effective wind speed is based on a high-
resolution LES model, which does not hold well for low-resolution TROPOMI data. Hence, by varying
the filtering criteria and the empirical relation, we will obtain uncertainties related to the mass balance
approaches. The purpose of this exercise is to 1) validate the implemented mass balance approaches
and 2) observe the limitations of using mass balance approaches.

3.2.2. Phase II: Internal analysis of the WRF and FLEXPART models
The second phase will deal with analysing the WRF model and FLEXPART model internally. To be
more specific, the WRF model will be used to generate a target (synthetic) plume for an independent
WRF model simulation (with a different set of inputs). Based on the best match between the target
plume and plume obtained from an independent WRF run, the emission rate of the source will be
determined. Since the emission rate of the synthetic plume is known, the emission rate we determine
from the simulation can be compared to the true emission rate for obtaining the first error estimate.
Similar operations will be performed for the FLEXPART model.

Currently, we are considering only the parameterised boundary layer and wind field data as important
input parameters that can be varied. In later stages, more input parametersmight be considered. A sen-
sitivity study based on variations in the input parameters will be performed on the WRF and FLEXPART
models. Sensitivity analysis will be one of the ways to quantify uncertainties in WRF and FLEXPART
models. For comparing the results obtained from WRF and Lagrangian models, the following metrics
will be used:

Comparative study based on plume shape
The simulated plume and target plume will be compared based on visual cues like alignment, size and
enhancements in the pixels. A more sophisticated method involving cross-correlation can also be ap-
plied to find the best match.

Comparative study based on uncertainties in the outcomes
As mentioned previously, predictions from the WRF-CHEM model depend on parametrised boundary
layer (empirical model) and meteorological data (4-dimensional wind field). Boundary layer parame-
ters affect the calculation of vertical wind velocity, which, in turn, has a larger influence on the outcome
of the WRF-CHEM model. Also, using different meteorological data (ERA5 instead of GEOSFP) or
sampling the data by considering a different time affects the results. These factors will be used while
quantifying uncertainties in the WRF-CHEM model. Similar to WRF-CHEM, FLEXPART also requires
parametrised boundary layer equations and meteorological data. Hence, the uncertainty quantifica-
tion methods used for the WRF-CHEM will be implemented for FLEXPART too. Additionally, FLEX-
PART can perform forward as well as backward particle trajectory simulations. The effects of these
approaches on the predictions will also be studied.

Comparative study based on the computational efficiency of models
In this study, the WRF and FLEXPART methods will be compared based on the computation require-
ments. Large computational requirements are undesirable, and if needed, suitable approximations will
be made to reduce the computational cost. Plans for the third and the fourth phases will depend on
the results from the first and second phases (what uncertainty quantification metrics could be relevant
in this study, what input parameters play a larger role in the sensitivity of the results, etc.) hence, they
are made flexible for now.
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3.2.3. Phase III: Cross-validation of the WRF and FLEXPART models
This phase is dedicated to performing cross-validations of the WRF and FLEXPART models. Here,
the synthetic plume from the FLEXPART model will be used as a target plume for the WRF simulation
and vice versa. Comparison metrics mentioned in the previous phase will be used for comparing the
performance of the models (if the internal analysis phase gives us new error metrics for predicting
uncertainties, we will also include them in this phase).

3.2.4. Phase IV: Applying the atmospheric transport model-based quantification
approach to the TROPOMI plumes

In the final phase of the thesis, the WRF and FLEXPART models will be applied to real TROPOMI
plumes. The performance of these models will be compared based on how well these models will be
able to reproduce the TROPOMI plumes and other error metrics discussed in the previous parts.
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Synthetic plumes

In Section 2.6, we mentioned that mass balance methods are currently used for emission quantification
of plumes detected by the TROPOMI automated plume detection algorithm. Mass balance methods
provide emission quantifications with relatively large uncertainties. Our goal is to improve plume emis-
sion quantification using atmospheric transport models. For this purpose, we first analysemass balance
methods to determine their limitations. Later, we analyse plume emission quantification using atmo-
spheric transport models and see whether they can overcome some of the limitations of mass balance
methods to improve plume emission quantification.

To analyse a particular plume emission quantification approach, we need multiple plumes with known
emission locations and emission rates. The TROPOMI automated plume detection algorithm frequently
captures methane plumes over the globe, but we often do not know those plumes’ actual emission loca-
tions and emission rates. Atmospheric transport models can simulate atmospheric particle transport,
and hence they can be used to generate plumes. We can transform atmospheric transport model
outputs into TROPOMI-like plumes, and they can be used to analyse plume emission quantification
approaches. Furthermore, atmospheric transport models give us flexibility in selecting emission loca-
tions and emission rates of plumes. It allows us to study how different regions or plumes with different
emission rates affect plume emission quantification. Therefore, we use atmospheric transport models
to generate multiple plumes required to analyse plume emission quantification methods.

We use the WRF and FLEXPART atmospheric transport models to generate plumes. The WRF model
uses an Eulerian frame of reference to simulate particle transport, and the FLEXPART model uses a
Lagrangian frame of reference to simulate particle transport (Section 2.7). We call the plumes gener-
ated by atmospheric transport models synthetic plumes in this study. This chapter discusses the setup
used to generate synthetic plumes using atmospheric transport models, which will be used in Chapter
5 to assess how well the different emission quantification methods are performing.

4.1. General settings of atmospheric transport models
One component of this research is to analyse how different meteorological data fields, different physics
settings (planetary boundary layer schemes) in atmospheric transport models, and using different at-
mospheric transport models affect the generated synthetic plumes (Chapter 3). This section mainly fo-
cuses on these settings of atmospheric transport models. In Figure 4.1, we present a general flowchart
that illustrates the generation of synthetic plumes using theWRF and FLEXPART atmospheric transport
models.

FLEXPART is an offline atmospheric transport model, and it requires pre-processed meteorological
data. In contrast, WRF is an online model that uses pre-processed meteorological data as boundary
conditions, but the meteorological model takes care of the transport within the domain. Both the WRF
and FLEXPART models require pre-processed meteorological data to carry out particle transport sim-
ulations. Raw meteorological data might lack vertical wind velocities. Hence, the raw meteorological
data often needs to be prepossessed to compute the vertical velocities before it is supplied to a model.
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For theWRFmodel, we use NCEPmeteorological fields [55] with 6-hour temporal resolution, 21 vertical
levels, and 1° × 1° horizontal spatial resolution. For the FLEXPART model, we use the previously men-
tioned NCEP meteorological fields as well as ECMWF meteorological fields [54] with 1-hour temporal
resolution, 138 vertical levels, and 1° × 1° horizontal spatial resolution. The selection of NCEP and/or
ECMWF meteorological fields were largely based on availability and compatibility with the atmospheric
transport models.

Figure 4.1: General setup of an atmospheric transport model to generate synthetic plumes. This figure depicts three
stages involved in a typical atmospheric transport model simulation (on the left-hand side of the dotted line) which are a)
pre-processing of meteorological data b) setting input parameters, and c) running the transport model. The right-hand
side of this figure shows a post-processing step after the model solver run is complete.

The way meteorological data is used in the WRF and FLEXPART models is different. The WRF model
computes its own wind fields, which are nudged to the pre-processed meteorological data at the outer
domain boundaries, whereas the FLEXPART model makes use of meteorological wind speeds directly
to carry out particle transport. Hence, we expect that using different meteorological data; we get syn-
thetic plumes that are different. Apart from pre-processed meteorological data, both the atmospheric
transport models require several input settings. Some input settings are very crucial for this study and
are common for both the WRF and FLEXPART models. These input settings are described in the
following paragraphs.

One common setting for both models is the definition of the computational domain. The WRF model
transports particles in an Eulerian frame of reference, and it requires a computational grid to perform
calculations at every time step. For WRF, we define an inner domain with a grid having finer resolution
(0.03°) than a typical TROPOMI pixel resolution (0.05°) and surround it with two outer grids with coarser
resolutions. We kept the resolution of the (inner) grids finer than a typical TROPOMI pixel resolution
since we later transform the atmospheric transport model outputs to create a TROPOMI-like image,
and this involves interpolations of the outputs. On the other hand, for the FLEXPART model, we re-
quire a computational grid only at the last time step to distribute output methane concentrations, and
the resolution of the computational grid does not affect particle transport simulations. We keep the hor-
izontal resolution of the FLEXPART grid finer (0.02°) than a typical TROPOMI pixel resolution (0.05°).
Examples of the WRF inner domain and the FLEXPART domain are provided in Figure 4.3.

Next, we define emissions in the WRF and FLEXPART models to generate synthetic plumes. In the
WRF model, we define persistently emitting point sources with emission rates of 7.23 [t/hr], and in
the FLEXPART model, we define persistently emitting point sources with emission rates of 40 [t/hr].
We assume emissions from point sources in atmospheric transport models are scalable, and this is
generally true if the problem does not include chemical reactions in the atmosphere; hence output
concentrations of methane can be multiplied with some constant value to scale the input emission rate.
Scaling of emissions from point sources is necessary to obtain synthetic plumes with varying emission
rates, which will be required for the analysis of the mass balance methods.

A common physics setting required for both the transport models is the planetary boundary layer pa-
rameterisation scheme. We consider parametric boundary layer setting important for the atmospheric
transport models since it has a strong influence on the vertical transport of air parcels, which can
affect the plume geometries. We select two separate planetary boundary layer (PBL) schemes in
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the WRF model that are most easily available: the Yonsei University Scheme (YSU) and the Mellor-
Yamada-Janjic Scheme (MYJ). Similarly, we select two separate planetary boundary layer schemes
in the FLEXPART model that are available: the Gaussian turbulence parametrisation and the Skewed
turbulence parametrisation. The PBL schemes in the WRF model are different from the PBL schemes
in the FLEXPART model since the same schemes are not available in both models.

After the input settings are defined, atmospheric transport model simulations can be performed to gen-
erate synthetic plumes. The outputs from atmospheric transport models contain methane concentra-
tions distributed over a three-dimensional grid. We post-process the three-dimensional methane con-
centration outputs using an algorithm to obtain two-dimensional TROPOMI-like images. The algorithm
used for this purpose is called the resampling algorithm. The resampling algorithm was discussed in
Section 2.9, and it is used to convert the methane concentrations distributed over multiple vertical atmo-
spheric levels to an image having TROPOMI-like pixels. In the next section, we compare TROPOMI-like
images containing synthetic plumes generated with the WRF and FLEXPART atmospheric transport
models to an actual TROPOMI image with a plume.

4.2. Comparison between TROPOMI plume and synthetic plume
Figure 4.2 shows an actual TROPOMI image on the left side, a resampled synthetic plume image gen-
erated by the WRF-CHEM model in the middle, and a resampled synthetic plume image generated by
the FLEXPART model on the right side. When we compare a TROPOMI plume to synthetic plumes
generated with atmospheric transport models, several differences can be noticed. A major difference
is the presence of noise. TROPOMI measurements are affected by instrumental noise, artefacts, cor-
related noise, presence of stripes in the data, and proximity to bad coverage region (costs and cloud
edges) (Box 4.1). The presence of noise in TROPOMI images affects the selection of plume pixels,
and plumes having low emission rates might be challenging to identify within the noise. We want to
replicate details seen in the TROPOMI images in synthetic plume images. However, it is challenging
to replicate the noise present in TROPOMI images to synthetic plume images because there is not any
definite pattern of that noise. We can partially account for TROPOMI noise by adding Gaussian noise
to synthetic plume images. We do this in the analysis of mass balance methods.

Box 4.1: TROPOMI noise

This figure shows a typical TROPOMI im-
age containing measurements taken on
2020-09-26. Some noise can be seen in
the figure. The presence of noise affects
the measurements in the TROPOMI pixels,
which makes plume masking challenging and
adds uncertainty to the emission estimates.
Noise in the TROPOMI images can be found
using visual information like random ups
and downs in the methane concentration
values around the mean concentration value,
similarity to ground artefacts, and correlation
with aerosols or albedo etc.

Fluctuations in the temperature of detectors used on the TROPOMI instrument can also intro-
duce noise in the measurements, which is a part of the instrumental noise. It was also seen
that a detector could give faulty readings, which introduces stripes in the data, which can
also be seen in the image given in this box. A de-striping algorithm was developed at SRON
to take care of stripes present in the data. The presence of clouds affects the readings, and
pixels that fall over clouds are often missing from the data. Similarly, retrieving data over
water bodies is difficult because there is very less solar backscatter, and those pixels are
also missing from the data. Pixels that fall at the edge of clouds or water bodies might not be
removed, and those pixels will have some influence due to clouds or water bodies. Usually,
we see that pixels in the proximity of bad coverage regions (coasts and cloud edges) have
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very low methane concentration values.

Figure 4.2: This figure shows A) an example of a TROPOMI plume image for measurements taken on 03-01-2020. Pixels
of this image contain dry air mole fraction of methane. There are some white/transparent pixels in this image which indicate
the non-availability of TROPOMI measurements due to cloud coverage. B) An example of a TROPOMI sampled synthetic
plume generated with the WRF atmospheric transport model with an emission rate of 7.23 [t/hr]. Pixels in this image represent
enhancement in the dry-air mole fraction of methane with respect to the background dry-air mole fraction of methane. C) An
example of TROPOMI sampled synthetic plume generated with the FLEXPART atmospheric transport model with emission rate
7.23 [t/hr]. Similar to WRF synthetic plume image, pixels represent enhancement in dry-air mole fraction of methane. The black
cross markers indicate the emission locations. Missing pixels in all the images are the same, this is due to the resampling
algorithm.

The previous sections discussed how we obtain TROPOMI-like (synthetic) plumes using the WRF-
CHEM and FLEXPART models. The resampling algorithm projects the outputs obtained from at-
mospheric transport models to TROPOMI pixels using the sizes, locations and orientations of those
TROPOMI pixels, and this involves interpolation. Some TROPOMI images might have missing pixels
due to cloud coverage, and the TROPOMI-like images produced by the resampling algorithm also have
the same missing pixels. Hence, the locations and days on which synthetic plumes are generated are
constrained by the coverage (available pixels) in TROPOMI measurements. If TROPOMI coverage
is very bad (a large number of missing pixels in TROPOMI measurements), TROPOMI-like images
generated by the resampling algorithm will also show bad coverage. Keeping this in mind, we select
several locations and days having good TROPOMI coverage for simulating synthetic plumes.
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4.3. Selection of locations and days for synthetic plumes
We notice frequent methane plumes in TROPOMI measurements over Algeria and over a region near
Johannesburg in South Africa which contains a SASOL plant. The latter will be referred to as the Sasol
region in this report. From manual investigation, we found that coverage of TROPOMI over the afore-
mentioned regions is good. Hence, in this study, we pick a region in Algeria and a region near Sasol to
generate synthetic plumes. The average elevation of land in the Algeria region is 1200 [m], whereas
the average elevation of land in the Sasol region is 1700 [m]. Furthermore, the Sasol region sees more
rain than the Algeria region, and the weather patterns of these regions are different. Generating syn-
thetic plumes over these two regions may help to understand the effects of different surface elevations
and weather synoptic on synthetic plumes and on their emission quantification.

Figure 4.3 shows the WRF and FLEXPART domains over Algeria and Sasol. We pick several emission
sites inside these domains and perform separate methane release simulations from each site to gener-
ate separate synthetic plumes. Days for simulations are selected based on days with good TROPOMI
coverage (> 75%) over the domains. From the atmospheric transport model simulations, we obtain an
inventory of synthetic plumes for multiple days in 2020. This inventory is later used for analysing plume
emission quantification methods.

Figure 4.3: Square computational domains defined for theWRF and FLEXPARTmodels over Algeria and around SASOL
represented over a satellite image (folium map). The red box over Algeria shows the inner domain defined for the WRF
model. The top left coordinates (longitude, latitude) of the red box are (4.86°, 32.92°), and the bottom right coordinates
of the red box are (7.67°, 30.53°). Please note that we use the WRF model to simulate synthetic plumes over Algeria
only. The blue boxes over Algeria and around SASOL show FLEXPART domains. For Algeria, the top-left coordinates
of the blue box are (4.15°, 33.7°), and the bottom right coordinates of the blue box are (8.15°, 29.7°). For Sasol, the
top-left coordinates of the blue box are (27°, -24.5°), and the bottom right coordinates of the blue box are (31°, -28.5°).
The Blue location markers in zoomed-in pictures indicate several plume emission sites used in the models. Please note
that these emission sites are just for representation purposes and do not include all the emission sites considered for this
study. A detailed list of emission sites used for generating synthetic plumes is provided in appendix A.2. Coordinates
mentioned with the markers represent the longitude and latitude of a particular location in degrees.

In phase I of this study (phases of this study are described in Section 3), we aim to investigate the
limitations of mass balance methods by quantifying synthetic plumes generated by the setup described
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in this section. For phase I, we consider eight days in 2020 and nine emission sites over the Algeria re-
gion, eight days (different than what we considered for Algeria) and nine emission sites over the Sasol
region for generating synthetic plumes. Later, in phases II and III, we analyse how atmospheric trans-
port models can overcome the limitations of mass balance methods in plume emission quantification.
For phases II and III, we extend the synthetic plume data by considering nearly 200 days (or TROPOMI
orbits) over 2020. Please note that for phases II and III, we relaxed the TROPOMI coverage threshold
to 30%, which was 75% in phase I. We present the setup of themass balancemethods and atmospheric
transport model based plume emission quantification approach in the following chapter.



5
Plume emission quantification methods

In the previous chapter, we discussed the setup used to generate synthetic plumes using atmospheric
transport models. An assessment of the quality of mass balance methods and atmospheric transport
model based plume emission quantification approaches will now be done by quantifying the emission for
the various synthetic plumes. This chapter discusses how we apply the different emission quantification
methods to synthetic plumes.

5.1. Plume emission quantification usingmass balancemethods
The TROPOMI automated plume detection algorithm uses the Integrated Mass Enhancement (IME)
and the Cross-Sectional Flux (CSF) method to quantify emissions of methane plumes (see Section
2.6). The IME and CSF methods use the mass conservation principle in 2-dimensions to quantify
emissions of plumes. This can be done in different ways, which results in different implementations
of the IME and CSF methods. In this study, we consider four implementations of the IME method
and two implementations of the CSF method. These implementations are described in the following
subsection.

5.1.1. Various implementations of IME and CSF methods
One way to isolate plume pixels from the background pixels is to determine the standard deviation
in the methane values across the studied domain. All data below the mean plus some multiple of
standard deviation are considered part of the background. A study by Schuit [44] found that filtering
values below mean plus 1.8 times standard deviation worked well for TROPOMI methane plumes.
TROPOMI images contain noise (Box 4.1), and if we use only a standard deviation filter, there is a
chance we might consider the out-lying high-value pixels (that are not part of the plume) as part of the
plume. To overcome this problem and put more constraints on the selection of plume pixels, several
implementations of mass balance methods based on the selection of plume pixels are developed at
SRON. In this analysis, we consider four implementations of the IME method and two implementations
of the CSF method. The four implementations of the IME method are: IME plume dilation method, IME
plume box method, IME rotated plume box method and IME plume circle method. Two implementations
of the CSF method are the CSF method without rotation and the CSF method with rotation. With
different implementations of the IME and CSF methods, we can study the effects of applying different
plumemasks (selection of plume pixels) on mass balance method estimates. The following paragraphs
provide brief details about these implementations.

IME plume dilation method
To consider only the pixels connected to the plume and not the out-lying high-value pixels, the plume
dilation method was developed. This method uses an iterative method to mask the pixels. Initially, all
the pixels are left out of the mask. In the first iteration, a mask is dilated in the outward direction by one
pixel from the highest methane column value. In the newly dilated part of the mask, if the value of a
pixel is below a certain threshold standard deviation, then that pixel is kept out of the mask. Only the

35



36 5. Plume emission quantification methods

pixels in the dilated part of the mask having values that are above the threshold are considered part of
the plume. This process is repeated till convergence is reached, or a maximum number of iterations is
met. Iterations of IME plume dilation method are illustrated in Figure 5.1.

1 iteration

5 iterations 25 iterations

Figure 5.1: Illustrations of IME plume dilation method on a FLEXPART generated and TROPOMI-resampled plume image.
The top image shows plume mask after 1 iteration of plume dilation algorithm, the bottom left image shows plume mask after
5 iterations of plume dilation algorithm, and the bottom right image shows plume mask after 25 iterations of plume dilation
algorithm. Colorbar shows excess dry-air mole fraction of methane in [ppb]. The black cross is the plume source location. The
black arrow indicates wind direction at plume source location, and length of the arrow indicates 10 [m] wind speed at the plume
source location obtained from the NCEP meteorological data. Background pixels are made semi-transparent to highlight plume
pixels. An orange box in the upwind direction of the source location is used for calculating background dry-air mole fraction of
methane, which is required in plume emission quantification process.

IME plume box method
IME plume box method is illustrated in Figure 5.2. In this method, an area is defined with the help
of a box that starts at the plume source location and is oriented in a downwind direction from the
source location. Pixels that fall inside the box and have values higher than a certain threshold standard
deviation value are considered part of the plume.
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Figure 5.2: This figure illustrates IME plume box method. The blue box in this figure indicates a region from which plume
pixels are picked. The blue box is aligned with the wind direction. All pixels outside the blue box are considered non-
plume/background pixels. Similar to plume dilation method, orange box indicates region from which background pixels
are picked, black arrow indicates wind speed and direction, and black cross indicates plume source location.

IME rotated plume box method
The IME plume box method is limited by the applicability of the wind-direction at the source location
across the full plume. Therefore the IME rotated plume box method aligns the box towards highly
enhanced plume pixels. IME rotated plume box method is illustrated in Figure 5.3.

Figure 5.3: This figure illustrates IME rotated plume box method. The description of this figure is the same as what we
described for IME plume box method in Figure 5.2.

IME plume circle method
Plumesmight have curved geometries, and using a plume boxmight be limiting for those cases. Hence,
the IME plume circle method was developed. IME plume circle method is illustrated in Figure 5.4. In
this method, instead of a box, a circle is drawn around the source location of a plume. All pixels that
have values higher than a standard deviation threshold inside the circle are considered part of the
plume. The rest of the pixels are masked and not considered part of the plume.
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Figure 5.4: This figure illustrates IME plume circle method. Blue circle in this figure indicates a region that contains
plume pixels. All pixels outside the blue circle are considered non-plume/background pixels. Similar to plume dilation
method, orange box indicates region from which background pixels are picked, black arrow indicates wind speed and
direction, and black cross indicates plume source location.

CSF method without rotation
CSF method without rotation is illustrated in Figure 5.5. In this method, transect lines are oriented
perpendicular to the source location wind direction. The first transect line near the source/emission
location is not considered in the quantification process. Only the transect lines that fall over pixels with
values higher than a certain standard deviation threshold and having more than 70% of their lengths
falling over pixels are considered for plume emission quantification.

Figure 5.5: This figure illustrates CSF method without rotation. The red box indicates region from which plume pixels
are selected. White transect lines are oriented perpendicular to the wind direction at the plume source. The orange box
in the upwind direction of plume source indicates background box, which also has transect lines. Similar to the plume
box method, the black cross indicates plume source location, and the black arrow indicates wind direction and speed
at the plume source location. For illustration purposes, only 5 transect lines are shown, in practice, we are using 20-25
transect lines since we noticed convergence in quantification results with those values.

CSF method with rotation
CSF method with rotation is illustrated in Figure 5.6. The principle behind this method is similar to the
principle of the CSF method without rotation, with the only difference being that the transect line box is
now rotated such that it aligns with the plume instead of the source location wind direction.
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Figure 5.6: This figure illustrates CSF method with rotation. Rest of the description of this figure is similar to Figure 5.5.

We use the previously mentioned implementations of mass balance methods to quantify synthetic
plumes. Mass balance methods require some inputs before performing plume emission quantification.
These inputs and a general setup of mass balance methods are described in the following subsec-
tion.

5.1.2. Setup of mass balance methods
We aim to determine several limitations of mass balance methods by quantifying multiple synthetic
plumes. Figure 5.7 shows a flowchart for synthetic plume emission quantification using mass balance
methods. The flowchart is divided into three parts: inputs, application of mass balance methods, and
outputs. The obtained outputs are later analysed to determine the limitations of mass balance methods.
Main inputs required for mass balance methods include TROPOMI sampled synthetic plume, plume
source location, satellite-specific parameters or values used in the settings of mass balance methods,
and 10 [m] wind field data. These inputs are explained in the following paragraphs.

Figure 5.7: This figure shows a flowchart for quantifying synthetic plumes’ emissions using implementations of mass
balance methods. This flowchart is divided into three parts separated by dotted lines, and those three parts correspond
to: inputs, application of mass balance methods, and outputs. This setup outputs the emission rate estimate of synthetic
plumes obtained from the different implementations of the mass balance methods.
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TROPOMI resampled synthetic plume
(a) TROPOMI image

(b) FLEXPART synthetic plume (c) FLEXPART plume + 2 [ppb] Gaussian noise

Figure 5.8: This figure shows (a) Methane total column concentrations as observed by TROPOMI over an area in Algeria on
2020-01-03, (b) Corresponding methane total column enhancements as simulated by the FLEXPART model, and (c) as in (b)
but including 2 [ppb] Gaussian noise.

We obtain a three-dimensional distribution of methane from atmospheric transport model simulations.
This output is resampled to match TROPOMI observations. In Figure 5.8, we can see an actual
TROPOMI image at the top and a TROPOMI-resampled synthetic plume image on the bottom left
side. It can be noticed that the TROPOMI observations contain noise. Some factors that can poten-
tially affect measurements in TROPOMI pixels are artefacts, correlated noise, random noise, stripes in
data, and proximity to bad coverage regions (Box 4.1). A typical resampled FLEXPART output (Figure
5.8) does not include TROPOMI noise effects. We partially account for uncertainty due to TROPOMI
noise by adding Gaussian noise in resampled synthetic plume images. Although adding Gaussian
noise can not replicate all the effects of the TROPOMI noise, it is the best we can do at this point. A
resampled synthetic plume image with Gaussian noise can be seen on the bottom right side in Figure
5.8.

To know how much Gaussian noise should be added to resampled synthetic plume images, we tried
to estimate the amount of noise present in TROPOMI images. We chose several TROPOMI plume
cases and filtered out plume pixels using a standard deviation filter. Then, we computed the standard
deviation of values in the remaining pixels to estimate the noise. From several TROPOMI scenes, we
could obtain a noise estimate of 6.2 ± 2.4 [ppb]. Therefore, we decide to add Gaussian noise of 5 [ppb]
to synthetic plumes.

Plume source location
Most of the implementations of IME and CSF mass balance methods require source locations of the
plumes. We often do not know the accurate source location of TROPOMI plumes, and we have to rely
on estimated source locations in the plume emission quantification process. Estimated source locations
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add uncertainty to the quantification results. We try to account for this uncertainty by randomly sampling
multiple locations around the known source location of a synthetic plume. We sample source locations
inside a region defined by a circle of radius 0.1° (the approximate size of a TROPOMI pixel) centred at
the actual source location of the synthetic plume (Figure 5.9). Choosing the radius of the circle equal to
the approximate size of a TROPOMI pixel might not completely account for the uncertainty due to the
selection of source location, but it can give us a first-order estimate of the uncertainty. We found that
around 50 random samples are enough to cover the circular region uniformly and to reach convergence
in mass balance quantification results.

Figure 5.9: This figure shows a zoomed-in part of a FLEXPART generated synthetic plume with an actual plume source
location in red marker, and randomly picked plume source location in the vicinity of actual plume source location in cyan
marker. The vicinity is defined by a red circle of radius equal to 0.1 degrees (approximate TROPOMI pixel size).

Satellite specific values
Measurements from different satellite instruments might have different resolutions. IME and CSF mass
balance methods use several parameters that are dependent on the resolution of pixels and hence are
specific to a particular satellite instrument. In this study, we use measurements taken by the TROPOMI
satellite instrument, and hence we need to set some parameters that are linked to the resolution of the
TROPOMI instrument. The satellite specific parameters include parametric coefficients to calculate ef-
fective wind velocity (Section 2.6), threshold for plumemask, and dimensions of plume box/ dimensions
of plume circle/ number of transect lines/ number of iterations for dilation.

Effective wind velocity is used to describe wind speed over plume (see Section 2.6), and it was men-
tioned that coefficients for effective wind speed equation are different for IME and CSF methods. A
past study done at SRON found a linear relationship (equation 5.1) between 10 [m] wind data 𝑈10 and
effective wind velocity 𝑈𝑒𝑓𝑓. In the past study, a calibration process was performed to obtain coeffi-
cients of the linear relation, which involved the use of model-simulated plumes and meteorological wind
speeds. For the IME method, 𝛼1 was found to be 0.444, and 𝛼2 was found to be 0.278. For the CSF
method, 𝛼1 was found to be 1, and 𝛼2 was found to be 0. We check whether these coefficients are
suitable for this study by performing recalibration using the model-simulated plume data we generated
for this study.

𝑈𝑒𝑓𝑓 = 𝛼1𝑈10 + 𝛼2 (5.1)

We set some threshold to isolate plume pixels from non-plume or background pixels. A study done by
Schuit [44] found that a threshold of mean plus 1.8 times the standard deviation to separate plume pixels
with the background pixels works well for the TROPOMI images. We are using the same threshold in
our study.

We set some parameters that define the dimensions of the plume box/ plume circle, number of transect
lines for the CSF method, maximum number of iterations for the IME plume dilation method, etc. All
these parameters and their values that were found to be suitable for this study are summarised in Table
5.1.
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Table 5.1: TROPOMI instrument specific parameters used in the mass balance methods for quantifying synthetic plumes. Please
note that these settings were determined from manual observations.

Parameter name Value Unit

Maximum number of iterations for dilation1 25 -
Plume box length2,3,5,6 1 degree
Plume box width2,3,5,6 0.5 degree
Background box length2,3,5,6 0.4 degree
Background box width2,3,5,6 0.4 degree
Plume circle radius4 1 degree
Number of transect lines for CSF5,6 20 -
Minimum coverage fraction for transect line5,6 0.7 -

Methods corresponding to superscripts:
1: IME plume dilation method 4: IME plume circle method
2: IME plume box method 5: CSF without rotation method
3: IME rotated plume box method 6: CSF with rotation method

wind field data
10 [m] wind field data contain horizontal velocity components (U, V) at 10 [m] height from the surface.
We use ECMWF and NCEPmeteorological datasets to generate synthetic plumes. 10 [m] wind speeds
from the same two datasets are used to obtain effective wind speeds.

5.2. Plume emission quantification using atmospheric transportmod-
els

Section 2.10 discussed several atmospheric transport model based plume emission quantification
methods, which include: the plume scaling approach used in a study performed to quantify emissions
from a gas well blowout event that happened in Ohio [43], the Bayesian inverse solution approach
used in a study performed to quantify emissions from a natural gas well blowout event that happened in
Louisiana [64] and backward Lagrangian model simulation approach. The plume scaling approach was
found to be less complex, easier to set up, and closer to the previously used mass balance approaches.
Hence, we consider the plume scaling approach in this study. The following subsection discusses the
setup used for quantifying emissions from plumes using the plume scaling approach.

5.2.1. Setup of plume emission quantification with atmospheric transport mod-
els

Figure 5.10: This figure shows a flowchart of plume emission quantification using atmospheric transport model based
plume scaling approach. On the left side of the dotted line, inputs are mentioned. The plume scaling approach requires
a plume to be quantified and a synthetic plume generated for the same day and location. IMEs of both plumes are
calculated and are used to scale the known emission rate of the synthetic plume to estimate the emission rate of the
other plume.
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Figure 5.10 shows a simple flowchart of how the plume scaling approach works. In the plume scaling
approach, we use a plume generated with an atmospheric transport model having a known emission
rate to quantify another plume. This other plume could be a TROPOMI plume or a synthetic plume
generated with different settings of an atmospheric transport model. In Section 2.10, it was discussed
that the plume scaling approach involves a calculation of integrated mass enhancement (IME) for the
plume that is being quantified as well as for the plume that is used to quantify another plume. The ratio
of integrated mass enhancements of both plumes is later used to scale the known emission rate of a
plume to estimate the emission rate of another plume.

There are different ways of applying the plume scaling approach based on how we obtain IMEs of
plumes. We can obtain IME by using all pixels inside the plume mask, or we can obtain IME by con-
sidering only the common pixels between both plumes. The approach where a common part between
plumes is used to obtain IME is quite similar to the one used in a study performed to quantify gas well
blowout emissions in Ohio [43]. The Ohio study considered all the TROPOMI plume pixels that were
part of the synthetic plumes mask, so only the synthetic plume mask was needed. In our common pixel
approach, we consider overlapping pixels between two plume masks, and we discard the rest of the
pixels; hence our common pixel approach varies slightly from the Ohio study approach. In Figure 5.11,
the top two images show a case where all pixels inside plume masks are considered for calculating
IME, whereas the bottom two images show a case where only the common part between two plume
masks is considered for calculating IME. In our study, we compare both variations of the plume scaling
approach.

Figure 5.11: This figure illustrates two variations of the plume scaling approach. The two plumes at the top show a variation of
the plume scaling approach where all plume pixels are considered for IME calculation, and the two plumes at the bottom show a
variation of the plume scaling approach where only the common pixels between two plumes are considered for IME calculation.
All the plumes shown here are generated with the FLEXPART model over the Algeria region. Please note that plumes used for
illustrating variations of the plume scaling approach are generated with different meteorological data. The black cross indicates
the source location of synthetic plumes. The colorbar shows the dry-air mole fraction of methane in [ppb].

The emission rates of our synthetic plumes are known. If we try to quantify a synthetic plume with
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another synthetic plume having the same emission rate, under ideal circumstances, ratio of their IMEs
should be equal to 1. The use of different settings of atmospheric transport models can influence the
shape, size, and orientation of plumes. Plume images have missing pixels, and plumes with different
geometry might not have the same missing pixels, and hence they might have different IME values.
Due to these reasons and more, the IME ratio deviates from unity, and by studying this deviation,
we investigate uncertainties in the plume scaling approach due to different settings of atmospheric
transport models.



6
Pre-analysis steps

Several methods used for emission quantification of TROPOMI plumes were discussed in Chapter 5.
Before analysing these quantification methods, we had to perform several pre-analysis steps. These
pre-analysis steps are discussed in this chapter.

6.1. Pre-analysis steps for mass balance methods
Different TROPOMI plumes have different shapes, sizes, and orientations depending on meteoro-
logical conditions, or they might lack coverage due to the presence of clouds or aerosol effects etc.
Mass balance methods are constrained by geometries (due to plume masking) and coverage of pixels
over plumes, and hence mass balance methods might not perform uniformly well for different types
of plumes. Classifying plumes according to their geometrical features or coverage might help us in
identifying challenging cases for the mass balance methods. Therefore, before we quantify synthetic
plumes using mass balance methods, we segregate plumes into different categories.

We segregate synthetic plumes into four categories. These include three categories based on plume
geometries and coverage where according to our past observations, mass balance methods might not
perform well and a category that contains standard or normal plume cases. The first category is blob-
like plumes. Blob-like plumes do not really show a clear plume-like structure but are relatively localised
enhancements. They often occur due to low wind speed conditions where pollution accumulates. In the
past, we have observed several cases of mass balance methods not performing well in low wind speed
conditions. The next category is curved plumes. Curved plumes are a result of large variations in the
wind speed directions with respect to time or place. Some implementations of mass balance methods
considered in this study use a plume box to identify plume pixels. Plumes with curved geometries might
be challenging to quantify for several implementations of mass balance methods. Furthermore, overly
curved plumes might have overlapping regions, and mass balance methods are not suitable to quantify
plumes having overlapping regions. This is because mass balance methods assume 2-dimensional
mass conservation, and the overlapping regions disturb the mass conservation. The next category
is related to plumes with bad coverage. Pixels in the TROPOMI images are sometimes missing due
to the presence of clouds or other factors, and since we are resampling synthetic plume pixels to
TROPOMI pixels, we are missing the same pixels in synthetic plume images. We tried to choose
days for generating synthetic plumes where we had good TROPOMI coverage, but a plume might
coincidentally lie in regions where a lot of pixels are missing. A large number of missing plume pixels
might lead to uncertainties in the mass balance quantification of plumes since these methods are based
on adding up the total plume mass, which does not work if parts are missing. Plumes which do not
belong to the blob-like, curved or bad coverage plume categories are classified as normal plumes in
this study. Figure 6.1 shows examples of plumes belonging to each of the four categories.
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Blob-like plume Curved plume

Plume with bad coverage Normal plume

Figure 6.1: Examples of plumes belonging to different categories (from top left to bottom right): 1) blob-like plume (gener-
ated over the SASOL region on 18-05-2020), 2) curved plume (generated over the SASOL region on 18-05-2020), 3) bad
coverage plume (generated over the SASOL region on 21-04-2020), 4) normal plume (generated over the Algeria region
on 03-01-2020). All plumes are generated with the FLEXPART model and resampled to match TROPOMI pixel resolution.
Please note that these images contain the same missing pixels as the TROPOMI measurements. The black cross marker
in the images indicates plume source location.

Manually segregating a large number of synthetic plumes into different categories is a time-consuming
process, and to solve this problem, we developed a plume classification algorithm. This algorithm will
also be useful later for the analysis of atmospheric transport model based plume emission quantifica-
tion approaches. This classification algorithm is based on a decision tree classifier that uses several
metrics based on geometrical features and coverage information of plumes to identify which category a
particular plume belongs to. To extract geometrical features from plumes, we use two metrics: distance
between extreme ends of a plume and overall length of a plume. A schematic depicting the geometrical
features of a plume is shown in Figure 6.2.

To extract the geometrical features from plumes, we developed an algorithm called the plume tracer
algorithm. For a given image with a plume, the plume tracer algorithm highlights plume pixels using
a threshold of mean plus 1.8 times the standard deviation of all pixels. The plume tracer algorithm
then detects extreme points of the identified plume and calculates the distance between those points
in degrees. Next, the plume tracer algorithm fits a spline through highly enhanced pixels between the
extreme points of a plume. The total length of this spline gives the total length of a plume in degrees. An
example of a plume traced by the plume tracer algorithm is given in Figure 6.2. Extracted geometrical
features by the plume tracer algorithm are used in the plume classification algorithm. We noticed that
the plume tracer algorithm performs well for complex plume geometries and even if some plume pixels
are missing. Plumes with overly curved geometries might be challenging. Some parameters for spline
fitting in the plume tracer algorithm are decided based on a manual investigation; fine-tuning these
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parameters might improve the plume tracer algorithm.

Figure 6.2: On the left side of this figure we show a schematic image of a plume in form of an arrow inside a region defined by
blue boundary. In this image, green line depicts distance between extreme ends of plume in degrees. Red arrow depicts overall
length of plume in degrees. Distance between extreme ends of plume, and overall length of plume are some of the metrics used
in the classification algorithm. On the right side of this figure we show an example of plume traced by the plume tracer algorithm.
This algorithm gives us distance between extreme ends of a plume (marked by green arrow by the algorithm) and total length of
a plume (marked by red arrow by the algorithm) in degrees.

Figure 6.3: This figure shows a decision tree classifier used in this study to classify synthetic plumes. Plumes are classified
into four categories: plumes with bad coverage, blob-like plumes, curved plumes, and normal plumes. This decision tree
uses several threshold parameters T1, T2, T3, and T4 in the process of segregating the plumes. The parameter T1 is the
threshold percentage of coverage below which a plume is classified as a bad coverage plume. The parameters T2, T3,
and T4 are the threshold number of plume pixels, threshold ratio between total length and distance, and threshold wind
speed for identifying blob-like plumes. Parameter T3 is again used for identifying curved plumes.
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The flowchart of the plume classification algorithm is shown in Figure 6.3. The plume classification algo-
rithmmakes use of several metrics to segregate plumes. These metrics include coverage or availability
of pixels near plume region, number of pixels that belong to a plume, a ratio of the distance between
extreme ends of plume and overall length of a plume, and wind speed at plume source location. The
following paragraphs discuss how each metric is used in identifying the class of plumes.

Identification of plumes with bad coverage is made by calculating the percentage of available pixels in
the quadrant of an image where the maximum portion of the plume lies. If the percentage of available
pixels is lower than a certain threshold (T1), then that plume image is classified under the bad coverage
category.

Blob-like plumes are identified by checking three conditions. The first condition checks if the number
of plume pixels is smaller than a certain threshold number (T2) since blob-like plumes are short and
usually have less number of pixels. The second condition checks if the ratio between the overall length
of the plume (red line in Figure 6.2) and the distance between extreme points of the plume (green line
in Figure 6.2) is smaller than a certain threshold (T3) since, for very short plumes, length of plume
and distance between extreme points of plume is nearly equal. This condition was added to avoid
classifying curved plumes as blob-like plumes. The third condition checks if the wind speed is below a
certain value (T4) since blob-like plumes are often formed due to low wind speed conditions.

Curved plumes are separated from the remaining plumes by checking if the ratio between length
of plume and the distance between extreme points of plume is bigger than a certain threshold. Fi-
nally, plumes that do not satisfy any of the previously mentioned conditions are classified as normal
plumes.

The previous paragraphs mentioned that we use some threshold parameters in the plume classification
algorithm. We obtain values of those threshold parameters using an iterative optimisation process. This
iterative process uses an optimisation algorithm that tries to obtain the best set of threshold parameters
in order to maximise classification accuracy. We use 54 synthetic plumes generated over the Algeria
region using ECMWF meteorological data for optimising the threshold parameters. We manually label
each plume in the training data and use those labels to compute the classification accuracy of the
algorithm. We calculate classification accuracy using three metrics: true positives (TP), false positives
(FP), and false negatives (FN) (Box 6.1). For maximum classification accuracy, we try to maximise the
mean of true positives for all categories and minimise the mean of false positives and false negatives
for all categories. The optimisation process stops once a maximum classification accuracy is reached.
The optimisation algorithm could achieve 85.33% classification accuracy.

Box 6.1: Metrics used for calculating classification accuracy

In this study, we use true positives (TP), false positives (FP), and false negatives (FN) to
calculate the classification accuracy of the plume classification algorithm. True positive is
the case when the classification algorithm correctly predicts positive class of plume. An
example of a true positive result is: algorithm predicts a manually labelled normal plume as a
normal plume. False positive is the case when the classification algorithm incorrectly predicts
positive class of plume. An example of a false positive result is: algorithm predicts a blob-
like plume as a normal plume. False negative is the case when the classification algorithm
incorrectly predicts negative class of plume. An example of a false negative is: algorithm
predicts a normal plume as a blob-like plume. We also use true positive rate to analyse the
classification results. The true positive rate is the ratio of true positive and the addition of true
positive and false negative. Having a good true positive rate indicates the accuracy of the
classification algorithm in correctly identifying the class or category of plumes.

The threshold parameters obtained after completing the optimisation process are listed in Table 6.1.
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Table 6.1: This table presents the threshold parameters obtained after optimization process is complete. Threshold parameter T1
is used for identifying bad coverage plumes. Threshold parameters T2, T3, and T4 are used for identifying the blob-like plumes.
Threshold parameter T3 is again used for identifying curved plumes.

Parameter Value Description

T1 < 70% Threshold percentage coverage
T2 < 8 Threshold number of pixels
T3 > 1.12 Threshold ratio between total length and distance
T4 < 1.95 [m/s] Threshold wind speed

We test the threshold parameters mentioned in Table 6.1 on several synthetic plumes. Some repre-
sentative cases of manually classified plumes were presented in Figure 6.1. Results of classification
algorithm for the cases mentioned in Figure 6.1 are presented in Figure 6.4. For these cases, the clas-
sification algorithm works well, but there are also some cases where this algorithm does not perform
well. We summarise the results of the classification algorithm applied on plumes generated over a
different region or with different meteorological data in Table 6.2.

Figure 6.4: Results from plume classification algorithm for examples mentioned in Figure 6.1 (from top left to bottom right):
1) blob-like plumes, 2) curved plumes, 3) bad coverage plumes, 4) normal plumes. All the plumes are generated with the
FLEXPART model and resampled to match the TROPOMI pixel resolution. The red and green arrows in the images are
used for extracting plume geometrical features.
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Table 6.2: Classification results for various sets of plumes based on the threshold parameters obtained using 75% Algeria-
ECMWF synthetic plumes. In this table, results are shown for the following categories of plumes: blob-like plumes, curved
plumes, plumes with bad coverage, and normal plumes. Three metrics are presented for each category of plume: true positives
(TP), false positives (FP), and false negatives (FN).

Plume specifications Blob-like Curved Bad coverage Normal

Location - meteo data TP | FP | FN TP | FP | FN TP | FP | FN TP | FP | FN

Algeria - ECMWF (remaining 25%) 1 | 0 | 0 2 | 1 | 0 0 | 0 | 0 14 | 0 | 1
Algeria - NCEP 1 | 0 | 2 11 | 1 | 5 9 | 0 | 0 43 | 7 | 1
Sasol - ECMWF 3 | 1 | 1 16 | 7 | 4 9 | 0 | 6 32 | 5 | 1
Sasol - NCEP 0 | 0 | 1 10 | 10 | 6 9 | 0 | 4 35 | 7 | 7
Total 5 | 1 | 4 39 | 19 | 15 27 | 0 | 10 124 | 19 | 10

Normal plumes account for almost 57% of the tested synthetic plumes, and the classification algorithm
could identify them with a 93% true positive rate. The number of false positive cases is also crucial to
assess the performance of the classification algorithm since we do not want to include falsely labelled
plumes in any category. For normal plumes, the percentage of false positive cases was nearly 15%.
The classification algorithm might have some challenges in identifying blob-like plumes, and we get a
low true positive rate, but the results for blob-like plumes had very few false positives. Curved plumes
and plumes with bad coverage were classified with nearly 75% true positive rates. For the curved
plumes category, we see a high number of false positives. For plumes with a bad coverage category,
the classification algorithm identified no false positives.

The classification algorithm can be improved in the future with the help of more advanced metrics, es-
pecially to increase the true positive rate for classifying blob-like plumes and to reduce false positives
in the curved plumes category. After the classification of synthetic plumes is done, we quantify emis-
sions of plumes in each category using various implementations of mass balance methods described
in Section 5.1. The emission quantification results are analysed in Chapter 7.

Some pre-analysis steps are required before assessing the atmospheric transport model based plume
scaling approach. These pre-analysis steps are discussed in the following section.

6.2. Pre-analysis steps for atmospheric transportmodel based plume
emission quantification

As mentioned in Section 5.2.1, the plume scaling approach uses the ratio of integrated mass enhance-
ments (IMEs) to scale the known emission rate of a synthetic plume to estimate the emission rate of
another plume. Using only the IME ratio as a plume scaling factor is limiting since it does not account
for the length or diffusion of plumes. Two plumes might not have the same atmospheric transport times.
Plumes that are emitted and transported for longer times have higher IME values, lengths, and diffu-
sion than the plumes that are emitted and transported for shorter times. In this study, we account for
different atmospheric transport times of plumes by incorporating parametric plume length (L) in the cal-
culation of the scaling factor. The new scaling factor is (IME1/L1)/(IME2/L2), where 1 and 2 refer to the
plume to be quantified and the plume used for quantifying another plume, respectively. The parametric
plume length can be calculated by taking the square root of the total area occupied by the plume pixels.
This definition of the parametric plume length was originally used with the IME mass balance method
to account for the extent of the plume.

In this analysis, we generate synthetic plumes with the same emission rates. As mentioned previously,
under ideal circumstances, the IME/L ratio for these two synthetic plumes is unity. In practice, missing
pixels and different geometries of plumes affect the IME/L values, and hence the IME/L ratio deviates
from unity. Investigation of this deviation in the IME/L ratio can tell us about uncertainties related to the
plume scaling approach. In Figure 6.5, several cases with IME/L ratios close to unity are highlighted.
In the first two cases, both the plume have different geometries but have very few missing pixels, and
for these cases, the plume scaling approach works well.
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Case I - (a) Case I - (b)

Case II - (a) Case II - (b)

Case III - (a) Case III - (b)

Case IV - (a) Case IV - (b)

Figure 6.5: This figure shows several representative cases where the plume scaling approach works well. The plume scaling
approach is said to be working well if the ratio of IME/L of two plumes is close to 1. The IME/L ratio for cases I, II, III, and IV,
are 0.97, 1.06, 1.08, and 1.10, respectively. For a particular case, the left side image (having (a) in the title) contains TROPOMI
resampled plume generated with FLEXPART using ECMWF meteorological data, and the right side image ((having (b) in the
title)) contains TROPOMI resampled plumes generated with FLEXPART using NCEP meteorological data. Black cross markers
indicate plume source locations.
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In the third case of Figure 6.5, both the plumes have similar geometry, similar orientations and similar
missing pixels, and here the plume scaling approach works well. Furthermore, there can be some
cases where the plumes might have different orientations and different missing pixels, but for those
cases, the plume scaling approach might coincidentally work well, as shown in the fourth case.

Figure 6.6: This figure shows resampled synthetic plumes generated using FLEXPART and WRF models for 29-08-2020 using
different meteorological datasets (NCEP/ECMWF) with different planetary boundary layer schemes (pbl1/pbl2). The planetary
boundary layer schemes used with the FLEXPART model are different than the planetary boundary layer schemes used with the
WRF model.

The accuracy of the plume scaling approach relies on the similarity between two plumes, especially if
there are several missing plume pixels. If both plumes show similar diffusion, orientations, and shapes
such that both the plumes are missing almost the same pixels, we can still estimate the emission rate
of a plume with good accuracy using the scaling approach. This is an advantage we get by using the
plume scaling approach over mass balance methods.
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In practice, if we want to quantify an actual TROPOMI plume using a synthetic plume with the plume
scaling approach with reasonable accuracy, we need both the plumes to be similar to each other.
Getting a synthetic plume that exactly matches the TROPOMI plume is challenging due to several
uncertainties in meteorological conditions or atmospheric transport model physics. This can also be
observed when we simulate two synthetic plumes using different meteorological data, different atmo-
spheric models, or with a different physics setting (planetary boundary layer scheme) (Figure 6.6 and
Figure 6.7). Sometimes using more options of planetary boundary layer schemes helps in getting a
plume that matches well to the plume to be quantified.

Figure 6.7: This figure shows the difference between two synthetic plumes having same emission rates generated over the same
location and on the same day. One of the two synthetic plumes is generated using the FLEXPART-NCEP-pbl1 setup and the
other synthetic plume belongs to one of the other settings mentioned in Figure 6.6.
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Case I - (a) Case I - (b)

Case II - (a) Case II - (b)

Case III - (a) Case III - (b)

Case IV - (a) Case IV - (b)

Figure 6.8: This figure shows four representative challenging cases for the plume scaling approach. For a particular case, the left
side image (having (a) in the title) contains TROPOMI resampled plume generated with FLEXPART using ECMWFmeteorological
data, and the right side image ((having (b) in the title)) contains TROPOMI resampled plumes generated with FLEXPART using
NCEP meteorological data. Case I contains plumes with very different lengths, and the IME/L ratio is 2.09. Case II contains
plumes with a lot of missing pixels, and the IME/L ratio for this case is 1.73. Case III contains plumes having very different
orientations, and the left plume falls in the bad coverage region. IME/L ratio for this case is 1.97. Case IV contains plumes with
very different diffusions, which makes it difficult to find an optimum plume mask. IME/L ratio for this case is 1.57.
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Since the application of the plume scaling approach to cases where plumes are very different from
each other has a high tendency to produce poor results, we need to set some constraints to allow only
the cases where plumes are not very different from each other. Hence, we perform some pre-analysis
steps to identify and filter challenging cases for the plume scaling approach. For this purpose, we first
manually investigate several cases where the ratio of IME/L largely deviates from unity. Somemanually
identified challenging scenarios are shown in Figure 6.8.

The first challenging scenario is when the length or diffusion/ width of plumes are very different. Missing
pixels over short plumes have a larger impact on the IME/L of a plume than missing pixels over a
large plume. Obtaining an optimum plume mask for plumes with large diffusion is challenging. The
second challenging scenario is when the orientations of plumes are very different. Because different
orientations can cause plumes to have different missing pixels, which changes the IME/L of plumes,
and hence the ratio deviates from unity. The third challenging scenario is when a lot of plume pixels
are missing.

To identify and filter the previously mentioned challenging scenarios from a large number of plumes in
an automated way, we developed a filtering algorithm. This algorithm uses several metrics to identify
plumes with a significant difference in sizes and orientations as well as a large number of missing
pixels over plumes. To identify cases where plume length and diffusion are very different, we take a
ratio of parametric lengths of plumes. Parametric plume length can be calculated by taking the square
root of the area occupied by all pixels inside the plume mask. Parametric plume lengths can partially
account for the length of plume and diffusion of plume. If the ratio is above or below a particular
threshold, we label that case as plumes with a large difference in sizes. To determine cases where
the orientations of plumes are very different, we calculate the distance between plume centres. The
plume centre is a middle point of a plume tracer passing through a plume (plume tracer algorithm
is described in Section 6.1). If the distance between two plume centres is greater than a particular
threshold, we label that case as plumes with a large difference in orientation. Finally, we label plumes
with a certain percentage of missing pixels as ’plumes with bad coverage’. Please note that here we
calculate the percentage of missing pixels over a plume, whereas, in the pre-analysis of mass balance
methods, we calculated the percentage of missing pixels in a quadrant of an image where the plume
lies. Calculating missing pixels over a plume is more accurate than calculating missing pixels in a region
of an image, but we could not use this new way of calculating missing pixels in the pre-analysis steps
of mass balance methods due to time constraints. For further analysis, we calculate missing pixels
over plume using the newly developed method. While calculating the percentage of missing pixels,
we give more weight to the pixels near the plume source since synthetic plumes have pixels with
high concentrations near the plume source and missing those pixels can largely impact the calculated
integrated mass. With TROPOMI plume images, the pixels with the highest enhancements might not
lie near the plume source; in those cases, the plume filtering algorithm can be modified accordingly.
The threshold parameters used for identifying challenging cases are mentioned in Table 6.3.

The plume filtering algorithm is not very stringent, and it allows for variation in the geometry of plumes
up to a certain extent. There is a trade-off between the accuracy of the plume scaling approach and
the number of plumes that can be considered to quantify with the plume scaling approach.

Table 6.3: Threshold parameters used for identifying challenging cases for the atmospheric transport model based plume scaling
approach. These parameters were fixed from manual investigation of several challenging cases for plume scaling approach.

Parameter description Value

Threshold for size ratio between two plumes > 0.7, < 1.5
Threshold for distance between plume centres < 0.9°

Threshold for coverage over plume > 30%

We filter out the challenging cases using an algorithm that uses threshold parameters mentioned in
Table 6.3. The filtering removes almost 50% of the synthetic plumes. The remaining plumes are
quantified using the plume scaling approach, and the results are discussed in the next chapter.





7
Results and discussion

We used atmospheric transport models to generate a large number of synthetic plumes over different
regions and different dates. In this chapter, we will estimate the emissions of these synthetic plumes
A) using mass balance methods and identify their limitations, and B) with atmospheric transport model
based plume scaling approach and see if it improves the plume emission quantification. We also
investigate how different settings of atmospheric transport models affect synthetic plumes and later
find which of these settings are most suitable to replicate TROPOMI plumes to get emissions. Finally,
we discuss how atmospheric transport models can be used to improve TROPOMI plume emission
quantification, and we give an idea about the integration of atmospheric transport based plume emission
quantification method with the TROPOMI automated plume detection algorithm.

7.1. Assessment of mass balance methods
Mass balance methods need several input settings to quantify plumes (Section 5.7). These input set-
tings include several parametric coefficients that are specific to a particular satellite instrument. The
settings we use in this study belong to the TROPOMI satellite instrument. Some fine-tuning of these
input settings can help in achieving better plume emission quantification results. Hence, we first try to
identify if there is any scope for improving the settings of mass balance methods. For this purpose, we
examine bias in the results. The presence of highly positive or negative bias can give an indication that
the settings of mass balance methods can be changed to improve the plume emission quantification
results. Bias is obtained by calculating the difference between mass balance calculated emission rates
and actual emission rates. We plot the bias for six implementations of mass balance methods (4 for
IME and 2 for CSF), each applied to the four categories of plumes (blob-like, curved, bad coverage,
and normal plumes). For all the plumes in a particular category quantified with a particular variation of
the mass balance method, bias is presented in the form of a boxplot in Figure 7.1. Please note that we
use pre-calibrated settings of mass balance methods in Figure 7.1.

Figure 7.1 shows the biases for all plumes generated with ECMWF meteorological data over the Sasol
region. This result is representative for the biases we find for all generated plumes (Appendix A.4).
Normal plumes are the best-case scenario to quantify for mass balance methods, and they comprise
almost 57% of the total plumes. Hence, we initially look at the normal plumes category in order to
investigate the bias due to 𝑈𝑒𝑓𝑓 calibration.

To correct for any small amount of bias and to double-check if the settings of mass balance methods are
appropriate, we perform recalibration of parametric coefficients used in the IME and CSF effective wind
speed equations (Section 2.6). The recalibration process involves plotting a regression curve between
10 [m] wind speeds and the effective wind speed needed for achieving actual emission rates of plumes.
To calculate the effective wind speed needed to achieve the actual emission rate, we perform mass
balance plume emission quantification of synthetic plumes with a unit effective wind speed to obtain
the emission rate per unit effective wind speed. Next, we take the ratio between the actual emission
rate of the synthetic plume and the calculated emission rate per unit effective wind speed. This ratio

57
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Figure 7.1: Box plots containing the bias corresponding to mass balance quantification of plumes with known emission
rate of 27 [t/hr] generated over Sasol region using the ECMWF meteorological data. Each box plot represents biases
calculated for plumes belonging to a particular class of plumes. We are quantifying plumes using 4 implementations of
IME method and 2 implementations of CSF method. For each box plot, median of data is represented by a black bold line,
mean of data is represented by a green triangle, box contains data between 25th percentile and 75th percentile which is
also called interquartile range, and whiskers are placed at 1.5 times interquartile range from the ends of box.

gives us the effective wind speed required to achieve the actual emission rates of plumes.

For the recalibration process, we use a linear relationship between effective wind speed and 10 [m]
wind velocity at the source location of plumes. Coefficients of this linear relation are obtained by fitting
a line through several data points corresponding to synthetic plumes belonging to the normal plume
category. We noticed several outliers while performing recalibration. To get rid of these outliers, we
use a median filter. This median filter uses median difference, which is the median of the difference
between data value and the median of data. We remove data points that are above or below 2.2 times
the median difference from the median of data. The linear regression fits for four implementations of the
IME mass balance method, and two implementations of the CSF mass balance method are provided
in Figure 7.2.

The previously used parametric coefficients for IME parametric wind speed equation were [0.444,0.278],
and for CSF parametric wind speed equation were [1,0]. After the recalibration process, new paramet-
ric coefficients for IME and CSF methods are [0.457, 0.467] and [1.144, 0.146], respectively. These
coefficients are taken from the plots that show the least RMSE in the regression fit. The newly obtained
parametric coefficients seem close but higher than the ones used in the model before the recalibration
process. We suspect these higher values might be due to the difference in the diffusion of synthetic
plumes used in the previous and this calibration processes or results are biased due to median filtering.
Since the newly obtained coefficients are close to the previously used coefficients, and our synthetic
plume dataset to obtain new parametric coefficients was limited to make any conclusive remarks on
parametric coefficients, we chose to use the previously used parametric coefficients for the further
analysis of mass balance methods.

In the next step, we investigate uncertainties in mass balance method based plume emission quan-
tification. For this purpose, we plot root mean square errors (RMSE) of plume emission quantification
results of mass balance methods. Similar to the bias plots, we present RMSE results as box plots
belonging to a particular variation of the mass balance method and to a particular category of plume for
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Figure 7.2: Recalibration results for four implementations of the IME mass balance method and two implementations of
the CSFmass balance method. Recalibration is performed by plotting a linear regression curve between the effective wind
speed needed to achieve the actual emission rate and wind speeds at [10m]. The recalibration plots consider synthetic
plumes generated over Algeria and Sasol using ECMWF as well as NCEP meteorological data. The transparent colour
regions in the plots represent a 99% confidence interval. Each dot in a plot represents a synthetic plume belonging to the
normal plume category. Linear fit coefficients and root mean square error values are provided inside the legend boxes for
each plot.

all the plumes generated over the Sasol region using ECMWF meteorological data as a representative
case (Figure 7.3). A similar trend can be seen in the RMSE plots corresponding to plumes generated
over different regions or with different meteorological data (appendix A.4.2).

From the RMSE plot, all implementations of mass balance methods show systematically high uncer-
tainty in quantifying blob-like plumes. We initially expected mass balance methods to show high uncer-
tainty towards curved plumes, but the performance for curved plumes looks similar to normal plumes.
For bad coverage plumes, there is a consistently large gap between the median line (black line in the
box plots) and mean triangle (green triangle in the box plots). This indicates that quantification of the
plume with bad coverage creates more outliers than plumes from any other category.

Next, we examine how uncertainties in the plume emission quantification estimates of mass balance
methods vary with emission rates of plumes. It was mentioned that we scale emission rates of synthetic
plumes by multiplying atmospheric transport model output concentrations with some scalar value. Us-
ing this process, we obtain synthetic plumes with emission rates varying from 1 [t/hr] to 40 [t/hr]. To
give more insights into these emission rates, methane released by all the oil and gas facilities in the
UK is around 23 [t/hr] [67]. So, a 40 [t/hr] emission rate plume is very large. We add 5 [ppb] Gaussian
noise to these synthetic plumes posterior to scaling their emission rates. Figure 7.4 shows relative un-
certainty versus actual emission rates of synthetic plumes. Relative uncertainty is obtained by dividing
the median value of RMSE by the actual emission rate and converting it to a percentage. Figure 7.4
shows that CSF method has a systematically higher uncertainty compared to the IME method. Fur-
thermore, with decreasing emission rates of the plumes, the relative uncertainty increases, since noise
present in pixels starts to dominate. Among all implementations of the IME method, the IME plume
dilation method produced the most uncertain plume emission quantification results, and uncertainty re-
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sults from other IME implementations were close to each other except at low emission rates, where the
IME plume circle method performed poorly. There is not any noticeable difference between different
implementations of the CSF method when we compare the uncertainties.

Figure 7.3: This figure shows several box plots for RMSE corresponding to mass balance quantification of plumes with
known emission rates of 27 [t/hr] generated over Sasol region using the ECMWFmeteorological data. Rest of the descrip-
tion of this plot is similar to the bias plot shown in Figure 7.1.

Figure 7.4: This figure shows variation in the percentage of RMSE (RMSE divided by actual emission rate times 100) with
respect to the actual emission rate for different classes of plumes. This result is obtained by considering plumes belonging
to the normal plume category generated over the Sasol region using the ECMWF meteorological data. Please note that
for better representation of results, the y-axis is made logarithmic.

We try to make synthetic plumes as close as possible to TROPOMI plumes, but there are still some
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gaps like noise in TROPOMI images. Noise in TROPOMI image affects the masking of plume pixels
which affects plume emission quantification. The results we present in this section do not account
for these gaps and hence are not sufficient to give concrete remarks on TROPOMI plume emission
quantification using mass balance methods. These results are obtained with the main focus of creating
benchmarks for the later part of this study. From these benchmarks, we identified several limitations of
mass balance methods. These limitations are divided into limitations that can be solved and limitations
that cannot be solved. The following paragraph discusses limitations of mass balance methods that
can be solved.

Mass balancemethodsmentioned in this study use several satellite-specific parameters. These satellite-
specific parameters include parametric coefficients used in the effective wind speed equation and plume
mask filtering criteria. There might be some systematic bias in mass balance quantification due to the
use of parameters that were tuned for using a different setup for a different study. This bias can partially
be fixed with the recalibration of parametric coefficients in effective wind speed equations. Furthermore,
mass balancemethods considered in this study use uniform effective wind speed over the plume. Some
advanced methods can be developed in the future that accounts for time history or vertical variation of
wind velocities, but the development of these advanced methods remains out of scope for this study.
Another limiting factor for the mass balance method is the plume mask setting for the IME method.
Applying plume masks to synthetic plumes having a low emission rate with 5 ppb Gaussian noise is
challenging, and for TROPOMI plumes, it is even more difficult.

The previous paragraph discussed some limitations of mass balance methods that can be solved by
recalibration process or by developing some advanced IME and CSF methods. Mass balance meth-
ods have several inherent limitations which can not be solved. Inherent limitations of mass balance
methods include missing plume pixels, performance under low wind speed conditions, and a too sim-
plified way of accounting for the transport of particles by using wind at one location at one moment in
time. TROPOMI images have missing pixels due to cloud coverage, aerosol effects, etc. Mass balance
methods calculate the total mass over a plume, and if some part of the plume is missing, the emission
estimates will not be accurate. From the results obtained in this section, plumes having bad coverage
produced higher outliers than other categories of plumes. Furthermore, blob-like plumes, which often
occur due to low wind speed conditions, are challenging to quantify for mass balance methods. Mass
balance methods cannot utilise three-dimensional wind speeds in the plume emission quantification
process. We aim to overcome some of the previously mentioned inherent limitations of mass balance
methods using atmospheric transport models. In the next section, we present our analysis of the quan-
tification of synthetic plumes with atmospheric transport model based plume emission quantification
approaches.

7.2. Assessment of plume emission quantificationwith atmospheric
transport models

The automated plume detection algorithm frequently identifies methane plumes in TROPOMI measure-
ments. To improve the emission quantification of these plumes, we aim to use atmospheric transport
models. The atmospheric transport model based plume scaling approach is less complex to imple-
ment for multiple plumes compared to other methods discussed in Section 5.2.1. In the plume scaling
approach, we quantify a plume by scaling the known emission rate of a separate synthetic plume gener-
ated at the same location and time as the plume to be quantified. In the previous section, we quantified
synthetic plumes using mass balance methods and created some benchmark results. In order to im-
prove plume emission quantification, the plume scaling approach needs to perform better than the
benchmark results of mass balance methods. Since synthetic plumes are used in the plume scaling
approach, uncertainties of the plume scaling approach are linked to the settings of atmospheric trans-
port models. To investigate these uncertainties, we investigate the effects of different meteorological
datasets, different model physics, and different transport models on synthetic plumes.

It was observed that different settings of atmospheric transport models could produce plumes with
different geometrical features (Figure 6.6). Since there are missing pixels, the difference in shape/-
size/orientation of plumes can lead to uncertainties in emission estimates given by the plume scaling
approach. We analyse uncertainties related to the plume scaling approach by quantifying synthetic
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plumes using other synthetic plumes generated with a different meteorological dataset or a different
planetary boundary layer scheme, or a different atmospheric transport model. Figure 7.5 shows uncer-
tainties in the plume scaling approach. Uncertainty for plumes generated with the different meteorolog-
ical datasets (27.7%) is comparable to the uncertainty due to different atmospheric transport models
(27.9%). Using different planetary boundary layer schemes in the WRF model has a higher impact
on the IME of plumes (21.6%) than using different planetary boundary layer schemes in the FLEX-
PART model (4.5%). Please note that the planetary boundary layer schemes we considered for the
FLEXPART model are different from the planetary boundary layer schemes considered for the WRF
model.

Figure 7.5: This figure shows box plots for IME/L ratios for two plumes generated with: 1) different meteorological datasets
in FLEXPART, 2) different pbl schemes in FLEXPART, 3) different atmospheric transport models, and 4) different pbl
schemes inWRF. Boxplot belonging to plumes generated with different atmospheric transport models show some negative
bias. This bias might be due to non-optimal plume masking of FLEXPART and WRF plumes having different diffusion.

Figure 7.6: This figure shows box plots of IME/L ratios computed by considering only the common pixels between two
plumes instead all the pixels over plume. Rest of the description of this plot is the same as the plot shown in Figure 7.5

We described a variation of plume scaling approach in Section 5.2. This variation belongs to a study
performed to estimate emissions from a well blowout event that happened in Ohio [43] with the help of
TROPOMI measurements. In this variation, we consider common pixels between two plumes (Figure
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5.11) instead of all plume pixels. Figure 7.6 shows results from plume scaling approach that considers
common plume pixels. Boxplots in this figure show higher uncertainty (62.7%, 30.8%, 30.8%) than
boxplots in Figure 7.5 (27.7%, 27.9%, 21.6%). Using only the common part between two plumes to
calculate IME/L is more limiting, and it puts a stricter requirement on the similarity between two plumes
compared to the variation where all plume pixels are considered in plume emission quantification. If the
diffusions of plumes are different or if plumes are slightly dissimilar, the plume scaling approach with
common plume pixels performs poorly. Hence, for further analysis, we use the plume scaling approach
that considers all plume pixels inside the plume mask.

7.2.1. Comparison between mass balance method and atmospheric transport
model based plume emission quantification approach

Figure 7.7 shows the IME method estimates for synthetic plumes which were considered in the previ-
ous subsection (Figure 7.5) as a representative result from the mass balance methods. To compare
the uncertainties of mass balance methods and atmospheric transport models, we compare interquar-
tile ranges. Interquartile ranges can give an idea about the spread of plume emission quantification
estimates, so a smaller interquartile range is better. Values of interquartile ranges for various plume
emission quantification methods are listed in Table 7.1 and visualised in Figure 7.8. From these in-
terquartile ranges, the plume scaling approach with all plume pixels can be seen producing consistently
less uncertain results than the mass balance method. The idea behind using atmospheric transport
models to improve plume emission quantification is that if IME quantifications of the two plumes are
wrong in a similar way, we can still estimate the emission rate of a plume using the known emission rate
of another plume with reasonable accuracy. From this and the previous subsection, the atmospheric
transport model based plume scaling approach with all plume pixels can be seen producing results with
less uncertainty (approximately 10% less) and less bias than mass balance methods.

Figure 7.7: Ratio of mass balance calculated emission rates (𝑄𝑐𝑎𝑙𝑐) with true emission rates (𝑄𝑎𝑐𝑡𝑢𝑎𝑙) for four types of
synthetic plumes: FLEXPART synthetic plumes generated using ECMWF meteo data and pbl scheme 1, FLEXPART
synthetic plumes generated using NCEP meteo data and pbl scheme 1, WRF synthetic plumes generated with NCEP
meteo data and pbl scheme 1, and WRF synthetic plume generated with NCEP meteo data and pbl scheme 2. Please
note that there is a negative bias in the results since we consider synthetic plume images having missing pixels between
0%-70%.
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Table 7.1: This table presents interquartile ranges (IQR) of box plots presented in the analysis of atmospheric transport models
(Figure 7.5 and 7.6), and mass balance methods (Figure 7.7) for same set of plumes. Please note that pbl1 and pbl2 schemes
mentioned with the FLEXPART model are different than the one mentioned with the WRF model. The results given in this table
are visualised in Figure 7.1.

Case Plume Quantified with IQR

A) FLEXPART-ECMWF-pbl1 FLEXPART-ECMWF-pbl2 (Δpbl-FLEX, all pixels) 0.043
FLEXPART-NCEP-pbl1 (Δmeteo, all pixels) 0.277
FLEXPART-ECMWF-pbl2 (Δpbl-FLEX, common pixels) 0.042
FLEXPART-NCEP-pbl1 (Δmeteo, common pixels) 0.627
Mass balance 0.533

B) FLEXPART-NCEP-pbl1 FLEXPART-NCEP-pbl2 (Δpbl-FLEX, all pixels) 0.045
WRF-NCEP-pbl1 (ΔATM, all pixels) 0.279
FLEXPART-NCEP-pbl2 (Δpbl-FLEX, common pixels) 0.041
WRF-NCEP-pbl1 (ΔATM, common pixels) 0.308
Mass balance 0.353

C) WRF-NCEP-pbl1 WRF-NCEP-pbl2 (Δpbl-WRF, all pixels) 0.216
WRF-NCEP-pbl2 (Δpbl-WRF, common pixels) 0.308
Mass balance 0.396

Figure 7.8: This figure shows interquartile ranges of boxplots for different cases listed in Table 7.1. Interquartile range
for a particular plume scaling approach is the gap between 25th percentile and 75th percentile of boxplot containing
𝑄𝑐𝑎𝑙𝑐/𝑄𝑎𝑐𝑡𝑢𝑎𝑙 values.

In the analysis of mass balance methods (Section 7.1), we segregated plumes into different categories
based on their geometries and checked how mass balance methods perform for each category. From
that analysis, we found that quantifying blob-like plumes and plumes with missing pixels/ bad coverage
using mass balance methods was challenging. We now apply the plume scaling approach to synthetic
plumes segregated into different categories. Figure 7.9 shows a side-to-side comparison between
performance of plume scaling approach and mass balance methods. Performance is calculated by
measuring deviation of (𝑄𝑐𝑎𝑙𝑐/𝑄𝑎𝑐𝑡𝑢𝑎𝑙) from unity (equation 7.1), where 𝑄𝑐𝑎𝑙𝑐 is the calculated emis-
sion rate and 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 is the known emission rate. The smaller the deviation from unity, the better the
performance. The plume scaling approach can be seen performing better for blob-like plumes, plumes
with bad coverage, and normal plumes compared to the mass balance method.

performance = 1 − abs(1 − 𝑄𝑐𝑎𝑙𝑐
𝑄𝑎𝑐𝑡𝑢𝑎𝑙

) (7.1)
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Figure 7.9: Comparison between the performance of plume scaling approach and mass balance method. Performance
is calculated by measuring the deviation of 𝑄𝑐𝑎𝑙𝑐/𝑄𝑎𝑐𝑡𝑢𝑎𝑙 from unity. 𝑄𝑐𝑎𝑙𝑐 is the calculated emission rate, and 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 is
the actual emission rate of a synthetic plume. The threshold for bad coverage plumes is set as 40% coverage (missing
pixels in the quadrant of a scene where plume lies, not missing pixels over plume), which is different than the threshold
mentioned in Table 6.3. The rest of the thresholds are kept the same.

Missing pixels over plume is a limiting factor for the mass balance method. We compare the perfor-
mance of the plume scaling approach and mass balance method for synthetic plumes having a different
number of missing pixels (Figure 7.10).

Figure 7.10: Variation in performance of plume scaling approach and mass balance method versus percentage of missing
pixels over the plume. Each point represents a synthetic plume. Performance of the mass balance method and the plume
scaling approach is calculated by measuring the deviation of 𝑄𝑐𝑎𝑙𝑐/𝑄𝑎𝑐𝑡𝑢𝑎𝑙 from unity. 𝑄𝑐𝑎𝑙𝑐/𝑄𝑎𝑐𝑡𝑢𝑎𝑙 ratio of 1 is the best
performing case, and its deviation from 1 means degradation in performance. The Blue and red lines shown in this plot
are linear curve fit through all the data points corresponding to that colour. The transparent colour regions in the plots
represent a 99% confidence interval.
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The performance of mass balancemethods drops faster than the plume scaling approach for increasing
percentage of missing plume pixels; for, e.g., at 0%missing pixels, the performance of the plume scaling
approach is approximately 10% better than the mass balance method, and the difference increases to
approximately 25% at 80% missing pixels. As expected, this result implies that the added value of the
use of a transport model increases for plumes which are missing more pixels.

In this section, we compared the performance of the plume scaling approach to the performance of the
mass balance method by quantifying synthetic plumes (Figure 7.9). It was found that the plume scaling
approach can overcome several inherent limitations of mass balance methods like poor performance
for blob-like plumes due to low wind speeds and missing plume pixels.

7.2.2. Performance indicators for plume scaling approach
Our aim is to know how well atmospheric transport models can represent TROPOMI plumes. We do
not know the actual emission rates of TROPOMI plumes, and hence we cannot use the previously used
method to calculate performance. We need some metrics that can be used as performance indicators
for the plume scaling approach to be used in cases where the actual emission rates of plumes are
unknown. In the previous sections, we discussed the plume scaling approach performing better for
cases where plumes had similar geometries and orientations (Figure 6.5). We can use synthetic plume
data and measure the similarity between two plumes and see how it correlates with the performance
of the plume scaling approach. To quantify the similarity between a synthetic plume and a TROPOMI
plume, we use two metrics. The first metric is the overlap between plume masks of TROPOMI plumes
and synthetic plumes. The secondmetric is the correlation between two plumes. To obtain similarity, we
calculate an average of overlap and correlation ((overlap + correlation)/2). Please note that correlation
can range between -1 and 1, and in this analysis, we rescale the correlation values to fit between 0 and
1 using the equation (1+correlation)/2. Next, we plot similarity between two plumes versus performance
(equation 7.1) of plume scaling approach (Figure 7.11).

Figure 7.11: Variation in performance of plume scaling approach versus similarity between plumes. Each point repre-
sents a synthetic plume quantified using another synthetic plume. The similarity is calculated by averaging overlap and
correlation between two synthetic plumes. Performance of the plume scaling approach is calculated by measuring the
deviation of 𝑄𝑐𝑎𝑙𝑐/𝑄𝑎𝑐𝑡𝑢𝑎𝑙 from unity. The blue line is a linear curve fit through all the data points. This fit indicates that
the performance of the plume scaling approach increases with an increasing similarity between two synthetic plumes. The
transparent colour region in the plot represents a 99% confidence interval.

From Figure 7.11, we can see that performance for simulations with similar plumes is always good,
while performance for simulations with dissimilar plumes is sometimes good, sometimes bad. Hence,
the performance of the plume scaling approach on average increases with the similarity between two
synthetic plumes. Hence, we use similarity as a proxy from performance for the plume scaling ap-
proach where actual emission rates of plumes are unknown. In the following section, we test the plume
scaling approach on TROPOMI plumes, and we use similarity as a performance indicator to gauge the
performance of the plume scaling approach.
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7.3. Quantification of TROPOMI plumes
Our objective is to investigate how well TROPOMI plumes can be quantified using atmospheric trans-
port models using the plume scaling approach. The plume scaling approach requires synthetic plumes
generated by atmospheric transport models. We consider synthetic plumes generated with the fol-
lowing settings of atmospheric transport models to quantify TROPOMI plumes: FLEXPART-ECMWF-
pbl1, FLEXPART-NCEP-pbl1, WRF-NCEP-pbl1, and WRF-NCEP-pbl2. We excluded FLEXPART-
ECMWF/NCEP-pbl2 settings since it has been found that these plumes are almost identical to FLEXPART-
ECMWF/NCEP-pbl1 generated plumes (Figure 6.6).

For this analysis, we considered 50 TROPOMI plumes observed over the Algeria region in 2020. Emis-
sion locations of these TROPOMI plumes were roughly known from earlier studies at SRON, but in prac-
tice, when the TROPOMI automated plume detection algorithm detects a plume, we often do not know
their actual emission locations. Hence, a source localisation method might be required for TROPOMI
plumes. For TROPOMI plumes, due to the presence of noise, getting good similarity with a synthetic
plume is challenging. However, we expect the trend of similarity and performance (Figure 7.11) to be
similar for TROPOMI plume cases. To compare different settings of atmospheric transport models for
their ability to replicate TROPOMI plumes, we compare the similarity values. Figure 7.12 presents this
comparison.

Figure 7.12: Similarity values between synthetic plumes and TROPOMI plumes. The first four boxplots correspond to four
different settings of atmospheric transport models. The next two boxplots correspond to FLEXPART andWRF atmospheric
transport models and are supersets of first-second and third-fourth boxplots, respectively. The final boxplot is the superset
of the first four boxplots.

FromFigure 7.12, the FLEXPART generated synthetic plumes show slightly better similarity to TROPOMI
plumes compared to the WRF generated synthetic plumes, but it is not very significant. Hence, we also
compare the computational costs of generating synthetic plumes with different atmospheric transport
models. The computational costs required for the WRF model are 1-2 orders of magnitude higher than
the FLEXPART model. Based on the similarity metric and the computational costs, we consider the
FLEXPART model more suitable to replicate the TROPOMI plumes.

TROPOMI plume emission quantification using the plume scaling approach requires synthetic plumes,
and generating synthetic plumes increases the complexity of the setup, whereas implementing a mass
balance method for plume emission quantification is much easier, but it comes at the cost of accuracy.
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We couldmake use of themass balancemethod to quantify TROPOMI plume cases where they perform
similarly to the plume scaling approach. We found that blob-like plumes (plumes with short length) and
plume images with a large number of missing pixels are challenging to quantify for the mass balance
method (Figure 7.3). We see if plumes having large lengths and plumes with fewer missing pixels
can be quantified with reasonable accuracy with the mass balance method. The performance of the
mass balance method for plumes with few missing pixels is close to the atmospheric transport model
approach (Figure 7.10). Plumes with larger lengths are often classified as normal plumes, and these
cases can be quantified with the mass balance method with reasonable accuracy (Figure 7.3). Hence,
we can quantify TROPOMI plumes that have few missing pixels or that are lengthier than a certain
threshold using the mass balance method, and in doing so, we will not lose a lot of accuracy and save
some computational complexities. On the other hand, TROPOMI plumes that have large missing pixels
or shorter lengths can be quantified well with the plume scaling approach. To automate the selection
between the mass balance method and the plume scaling approach, we developed a decision tree
algorithm (Figure 7.13).

Figure 7.13: Flowchart for decision tree which decides best suitable plume emission quantification model for a given
TROPOMI plume. This decision tree algorithm uses three threshold parameters: T1, T2 and T3. T1 is the threshold for the
length of a plume, T2 is the threshold for the percentage of missing plume pixels, and T3 is the threshold for the similarity
between two plumes.

TROPOMI plumes that are longer than a certain threshold (T1) or have missing pixels below a certain
threshold (T3) are quantified with the mass balance method. TROPOMI plumes that do not satisfy
these conditions are quantified using the plume scaling approach. In the decision tree algorithm, for
the plume scaling approach, we had to find the most suitable atmospheric transport model setup for
generating synthetic plumes to quantify TROPOMI plumes. We investigated four different settings of
atmospheric transport models in this section. It was found that with the FLEXPART model, we can get
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a slightly better similarity to the TROPOMI plumes. Furthermore, the WRF model takes around 3200
hours to simulate plumes for an entire year, and the FLEXPART model takes close to 100 hours to
simulate plumes over an entire year. Due to slightly better similarity with TROPOMI plumes and less
computational expense, the FLEXPART model seems more suitable to quantify TROPOMI plumes.
With the FLEXPART model, we have a choice of using either the ECMWF meteorological data or the
NCEP meteorological data. From Figure 7.12, performance of FLEXPART-ECMWF-pbl1 setup was
close to the performance of FLEXPART-NCEP-pbl1 setup. Instead of choosing any one setup prior
to generating synthetic plumes, we decided to take a posterior choice. With this choice, we select
either FLEXPART-ECMWF or FLEXPART-NCEP synthetic plume based on the highest similarity to the
TROPOMI plume. If the similarity value is below a certain threshold, we go back to the mass balance
method for emission quantification.

We illustrate how the decision tree algorithm works and what are the impacts of decisions made by
the decision tree on TROPOMI plume emission quantification. For this purpose, we quantify emissions
from the TROPOMI plumes using the mass balance method and the plume scaling approach that uses
the FLEXPART model and two different meteorological datasets. The plume emission quantification
results are given in Figure 7.14.

Figure 7.14: Emissions of 50 TROPOMI plumes observed over Algeria in 2020 quantified using 1) the IME mass balance
method, 2) the plume scaling approach that uses FLEXPART-ECMWF synthetic plumes, and 3) the plume scaling ap-
proach that uses FLEXPART-NCEP synthetic plumes. Please note that the x-axis is not linear. Some quantifications are
missing from the plot due to very bad TROPOMI coverage.

We use Figure 7.14 to determine how sensitive the TROPOMI plume emission quantifications are to
the threshold parameters T1 and T2 used in the decision tree algorithm. The results from this sensitivity
analysis are presented in Figure 7.15 and Figure 7.16. The difference between the emission rates ob-
tained by the plume scaling approach and the mass balance method increases with increasing missing
pixels and decreasing plume length. We do not know the actual emission rates of TROPOMI plumes.
Still, based on our synthetic plume study in phases II and III, the plume scaling approach should give
emission estimates closer to the truth than the mass balance method. If we keep the threshold of miss-
ing plume pixels too low or the threshold for plume length too high, it will increase the computational
cost since we will use the plume scaling approach on many TROPOMI plumes. Hence, we need to
select suitable threshold parameters in the decision tree algorithm to improve the emission estimates
and, at the same time, keep the computational expenses low.
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Figure 7.15: Difference between emission rates calculated by the atmospheric transport model based plume scaling
approach and the mass balance method versus the threshold for missing plume pixels (sensitivity study). The blue cross
markers indicate the percentage of plumes above the threshold for missing plume pixels. Emissions of all the TROPOMI
plumes above the threshold are quantified with the plume scaling approach. Each boxplot represents the spread of the
difference between 𝑄𝐴𝑇𝑀 and 𝑄𝑀𝐵. The black horizontal lines in the boxplots represent median values, and the green
triangles represent mean values.

Figure 7.16: Difference between emission rates calculated by the atmospheric transport model based plume scaling
approach and the mass balance method versus the threshold for plume length (sensitivity study). The blue cross markers
indicate the percentage of plumes below the threshold for plume length. Emissions of all the TROPOMI plumes below the
threshold are quantified with the plume scaling approach. Each boxplot represents the spread of the difference between
𝑄𝐴𝑇𝑀 and 𝑄𝑀𝐵. The black horizontal lines in the boxplots represent median values, and the green triangles represent
mean values.
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We now give an example of how the TROPOMI plume emission quantification is affected by making
a certain choice of threshold parameters used in the decision tree algorithm. The threshold parame-
ters used for this example are mentioned in Table 7.2. The decision tree algorithm selects the mass
balance method for quantifying emissions from TROPOMI plumes that are longer than 1.5° or have
less than 30% missing pixels (around 60% TROPOMI plumes). The mass balance method performed
similarly to the plume scaling method for those plumes. Also, the mass balance methods are easier to
implement and computationally faster (approximately one order of magnitude) than the plume scaling
approach.

On the other hand, if the TROPOMI plumes are shorter than 1.5° and have more than 30% missing
pixels, the performance of the mass balance method can drop by 10-20%, but the performance of
the plume scaling approach does not drop by a lot. Hence, with the decision tree algorithm, we can
improve the emission quantification performance by 10-20% for the cases that are challenging for the
mass balance methods. For the rest of the cases, we do not use the plume scaling approach, which
saves computational time by one order of magnitude.

Table 7.2: This table presents the threshold parameters used for an example showcasing working of the decision tree algorithm.

Parameter Description Value

T1 Threshold for plume length 1.5°

T2 Threshold for percentage of missing plume pixels 30%
T3 Threshold for similarity between plumes 30%

From the previous example, we showcased the trade-off between ease of use and accuracy while
choosing between the mass balance method and plume scaling approach in the decision tree algo-
rithm. This project is targeted to explore atmospheric transport model based plume emission quan-
tification in order to improve the plume emission quantification routine of the TROPOMI automated
plume detection algorithm. We have developed a decision tree which selects the most suitable plume
emission quantification approach between the mass balance method and plume scaling method for a
given TROPOMI plume. Integration of the decision tree in the TROPOMI automated plume detection
algorithm pipeline might give us some advantages, but it also comes with several challenges. With
the plume scaling approach, we can reduce uncertainty and bias in plume emission quantification es-
timates for the cases that are challenging for the mass balance method. We established that plumes
with short lengths (blob-like plumes) and plumes having missing pixels are challenging to quantify for
the mass balance method. Though blob-like plumes are not very common (Table 6.2), plumes with
missing pixels are frequently observed (around 40% of TROPOMI plumes considered in this analysis
had missing pixels above 30%) and are still a major limiting factor for the mass balance method. These
plumes can be quantified well with the plume scaling approach. On the other hand, atmospheric trans-
port models used for generating synthetic plumes require meteorological data that often needs to be
obtained from external sources, which is time-consuming. There is a possibility that plumes generated
for the plume scaling approach might not match well with the TROPOMI plumes, and in that case, we
need to go back to the mass balance method for plume emission quantification. It is still challenging
to make any prior decision on which settings of the atmospheric transport model are most suitable to
reproduce a TROPOMI plume. There are also some common challenges for the mass balance method
and plume scaling approach. Both plume emission quantification methods require the source location
of plumes. TROPOMI automated plume detection algorithm can give an estimated source location,
but it is often not precise, which makes plume emission quantifications uncertain. Furthermore, both
plume emission quantification methods rely on plume mask settings. Masking TROPOMI plume pixels
is challenging due to noise, and this affects the emission quantification of plumes.

If the decision tree algorithm is successfully integrated with the TROPOMI automated plume detec-
tion algorithm, we can get a better idea about the impact of methane sources around the globe due
to improved emission estimates. Only improving the quantification of methane emissions from super-
emitters around the globe is not sufficient to reduce anthropogenic methane emissions, but it can pos-
itively benefit the process of methane emission regulation by putting better independent constraints on
emissions.
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Conclusion

The main research question of this thesis, as outlined in Chapter 3 is:

How can Eulerian and Lagrangian atmospheric transport models be used to
improve theemissionquantificationofmethaneplumesdetectedby theTROPOMI
automated plume detection algorithm?

From this research work, it can be concluded that atmospheric transport models can be used to over-
come several inherent limitations of the mass balance methods and reduce the uncertainty of plume
emission quantification by nearly 10%. There is a trade-off between ease of use and accuracy when
using mass balance methods and atmospheric transport models to quantify emissions from TROPOMI
plumes. An optimumway for quantifying emissions from TROPOMI plumes while maintaining a balance
between ease of use and accuracy was described by this study in the form of a decision tree algorithm.
The main research objective of this study has been met. In the following paragraphs, we answer the
leading research questions and sub-questions associated with all four phases of this study.

The literature study performed for this research highlighted that anthropogenic methane emissions
from fossil fuel facilities and waste management could be reduced in a cost-effective way. Global
bottom-up emission inventories provide uncertain information about methane emissions from fossil
fuel facilities and waste management, and top-down measurements using satellite remote sensing
can be used to place independent constraints and derive an integrated picture of methane emissions.
Methane plumes are frequently observed in the TROPOMI data, and to feasibly identify plumes in that
daily global data, an automated plume detection algorithm was developed. The TROPOMI automated
plume detection algorithm uses mass balance methods. However, mass balance methods provide
emissions with relatively large uncertainties. Atmospheric transport models can be used to overcome
some limitations of mass balance methods and improve the TROPOMI plume emission quantification.
Atmospheric transport models are categorized into the Eulerian and Lagrangian models. We consider
the WRF and FLEXPART models to simulate particle transport in the Eulerian and Lagrangian frames
of reference, respectively. We can generate synthetic plumes using the WRF-CHEM and FLEXPART
models, which allows us to simulate TROPOMI plumes. It was found that the atmospheric transport
models based plume scaling approach is relatively less complex and easier to set up compared to
other atmospheric transport models based approaches. The plume scaling approach is also closer to
the mass balance approaches, and hence plume scaling approach is considered in this study.

To assess the plume emission quantification approaches, an inventory of TROPOMI-like synthetic
plumes with known emission rates and emission locations was generated using the atmospheric trans-
port models. However, replicating details like noise seen in TROPOMI images to synthetic plume
images was challenging. TROPOMI noise was partially taken care of by introducing Gaussian noise in
synthetic plume images.

We classified synthetic plumes according to their geometrical features and coverage to identify chal-
lenging cases for mass balance methods. Four categories were found suitable for the classification of
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synthetic plumes: normal plumes, curved plumes, plumes with bad coverage, and blob-like plumes. A
decision tree classifier was developed that used geometrical features of plumes and regional missing
pixel information to classify plumes. The plume tracer algorithm was used to extract geometrical fea-
tures from plumes, which worked for complex plume cases and even for plumes having several missing
pixels. Most of the classified plumes belonged to normal plumes, while blob-like plumes occurred the
least frequently. The classification algorithm classified normal plumes, curved plumes, plumes with
bad coverage, and blob-like plumes with true positive rates of 93%, 75%, 75%, and 56%, respec-
tively.

Mass balance methods might require tuning of settings before quantifying plumes to reduce biases
present in the results. To fix this bias, recalibration of parametric coefficients used in effective wind
speed can be performed. Plume mask settings also affect mass balance estimates. Four implementa-
tions of the IMEmethod and two implementations of the CSFmethod were investigated in this research.
Each variation had a different way of selecting/masking plume pixels. IME plume dilation method pro-
duced the most uncertain results among different implementations of the IME method since missing
pixels in plumes posed a challenge for the IME plume dilation method. Plumes having higher emission
rates (> 15 [t/hr]) were easier to mask than plumes with low emission rates (< 15 [t/hr]) for background
noise of 5 [ppb]. Blob-like plumes and plumes with missing pixels are challenging to quantify with mass
balance methods. Limitations of mass balance methods can be divided into limitations that can be
addressed and limitations that cannot be solved. Limitations due to parametric coefficients in effective
wind speed equation can be solved using recalibration, and limitations due to plume mask and uni-
form effective wind speed can be solved by developing advanced IME and CSF methods. Limitations
of mass balance methods that cannot be solved include inherent limitations due to low wind speed
conditions, missing plume pixels, and no inclusion of three-dimensional particle transport.

The plume scaling approach was exploited to overcome some inherent limitations of mass balance
methods. The plume scaling approach uses synthetic plumes to quantify other plumes. However, two
plumes generated with different settings of atmospheric transport models are often not the same. This
can be observed when we simulate plumes using different meteorological datasets, planetary boundary
layer schemes, or different atmospheric transport models. The shapes and orientation of plumes are
highly sensitive to meteorological datasets used for generating them. Plumes are less sensitive to
changes in planetary boundary layer schemes in the FLEXPART model than planetary boundary layer
schemes in the WRF model due to the way meteorological data is used with these models. Using
different atmospheric transport models affects the diffusion of plumes, but it often does not affect their
orientation.

Synthetic plumes generated by the WRF (Eulerian) model for an entire year took close to 3200 hours.
In contrast, the FLEXPART (Lagrangian) model took close to 100 hours, which is one magnitude less
than the WRF model.

A manual investigation was performed to identify several challenging cases for the plume scaling ap-
proach. The plume scaling approach can work well if two plumes have similar geometry (size, shape,
orientation, diffusion) and missing pixels. Filtering the challenging cases using a filtering algorithm
removed almost 50% of plumes, but the filtering criteria can be relaxed in exchange for accuracy of
plume emission quantification. Quantification of remaining plumes using the plume scaling approach
produced results that were nearly 10% less uncertain than mass balance estimates. The plume scaling
approach performed 10% better than mass balance methods in quantifying blob-like plumes, plumes
with bad coverage and normal plumes. We investigated another variation of the plume scaling ap-
proach where only common pixels between two plumes were considered in quantification instead of
all plume pixels; this variation puts stringent constraints on the similarity between two plumes, which
produced more uncertain results than the variation that considered all plume pixels.

Actual emission rates of TROPOMI plumes are often unknown, and some metrics to gauge the per-
formance of the plume scaling approach had to be developed. It was found that similarity (obtained
by averaging the percentage of overlap and correlation between plumes) can be used as a proxy for
the performance of the plume scaling approach. Plumes generated with the FLEXPART model had
slightly better similarity (approximately 5% better) to TROPOMI plumes than those generated with the
WRF model, and the FLEXPART model is approximately one order of magnitude faster than the WRF
model; hence the FLEXPART model is more suitable for replicating TROPOMI plumes.
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We developed a decision tree algorithm that selects the most suitable method to quantify a given
TROPOMI plume. This decision tree chooses between themass balancemethod and the plume scaling
approach based on the length of the TROPOMI plume or missing pixels in the TROPOMI plume. With
the decision tree algorithm, we can target the plume scaling approach to quantify emissions from the
plumes that are challenging for the mass balance methods and improve the estimates by nearly 10%.
Integration of the decision tree algorithm to the automated plume detection algorithm can be challenging
due to the complexities of atmospheric transport models.





9
Recommendations for future research

Accounting for noise seen in TROPOMI images is challenging, and we only partially accounted for
randomly distributed noise in TROPOMI images by artificially adding Gaussian distributed noise in
synthetic plume images. In the future, sampled noise from the parts of real TROPOMI images that
do not belong to the TROPOMI as well as synthetic plume masks can be superimposed on synthetic
plume images, and by doing this, we might better account for real TROPOMI noise.

We used synthetic plumes generated over Algeria and Sasol regions in 2020 to investigate the effects
of different regions on mass balance plume emission quantification. This analysis is limited due to the
use of only two regions. In the future, more regions can be included in this analysis to investigate
any effects of meteorological conditions, weather synoptic, etc., on mass balance plume emission
quantification.

We considered several variations of IME and CSF in the analysis of mass balance methods. There are
some more sophisticated variations of IME and CSF mass balance methods, like the one which uses
the plume tracer algorithm to trace plumes and draws a plume box around them. These variations can
be analysed in the future to extend the analysis of mass balance methods.

To identify plume pixels, we used plume mask filtering criteria of mean plus 1.8 times the standard
deviation of all pixels. This criterion is not sufficient to find an optimum mask for plumes that have
different diffusions, which adds uncertainty to plume emission quantification results. Hence, some
advanced methods can be developed in the future to find optimum plume masks for differently diffused
plumes. One way to mask the plumes would be to use the plume tracer algorithm to track the plume
and then dilate the plume mask from the plume tracer line outwards to capture plume pixels.

Although mass balance methods have several limitations, we still include them in the decision tree
algorithm due to their feasibility, speed, and reasonable accuracy in quantifying lengthy plumes with few
missing pixels. In the settings of mass balance methods, we used an effective wind speed equation that
considered uniform wind speed for plume. Uniform effective wind speed does not account for variations
in wind speed direction or magnitude over time or space and can produce uncertain mass balance
plume emission quantification results. In the future, some advanced methods can be developed that
can account for variations in wind speed by considering time history and spatial distribution of wind
speeds. Moreover, developing this method takes mass balance methods closer to the atmospheric
transport models.

This study analysed the atmospheric transport model based plume scaling approach. We chose the
plume scaling approach due to its feasibility of implementation on a large number of plumes. Another
plume emission quantification method described by a study performed to investigate methane emis-
sions from well blowout in Louisiana [64] is more sophisticated than the plume scaling approach. The
Louisiana well blowout study method optimises concentrations in synthetic plumes to account for the
emission rate of TROPOMI plume, and it is most likely to produce better results than the plume scaling
approach. In the future, there is an opportunity to analyse the plume emission quantification method
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described in the Louisianan well blowout study and compare its performance to the plume scaling ap-
proach.

Backward trajectory simulations using the Lagrangian transport model can also be used to quantify
TROPOMI plumes. In backward trajectory simulations, TROPOMI plume pixels become the starting
point of the simulation. Backward trajectory simulations might perform better than forward trajectory
simulations since we can better account for concentrations seen in the TROPOMI pixels, and we do
not rely on the similarity between two plumes. Due to the time limitations of this project, this direction
was not explored. In the future, there is an opportunity to analyse plume emission quantification using
backward trajectory simulations.

We considered 50 TROPOMI plumes observed over the Algeria region in 2020 to test the performance
of the plume scaling approach and generate a decision tree algorithm which selects the best setup
to quantify TROPOMI plumes. Our TROPOMI plume dataset was statistically limiting to derive any
general conclusions on the efficacy of the plume scaling approach. In the future, the TROPOMI plume
dataset might be expanded to obtain more statistically robust results, which might help in expanding
and improving the decision tree algorithm. Furthermore, we considered TROPOMI plumes that had
known approximate emission locations. When TROPOMI automated plume detection algorithm detects
a plume, its emission location is often not exactly known. A source localisation method based on
Lagrangian backward trajectory simulations can be developed in the future to help with estimating the
source locations of TROPOMI plumes.
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A
Appendix

A.1. flex extract settings to retrieve meteorological data
Table A.1: Typical flex extract file settings used in this study to retrieve the ECMWF meteorological data.

Option Value Description

DAY1 20200101 Start date to fetch
DAY2 20200102 End date to fetch
DATE_CHUNK 1 Chunk of days to be fetched together
JOB_CHUNK 1 Number of jobs to be done together
DTIME 1 Time resolution
TYPE AN AN .. Analysis or forecast
TIME 00 01 .. Time declaration
STEP 00 00 .. Intermediate time steps
ACCTYPE FC Field type
ACCTIME 06/18 Forecast starting time
ACCMAXSTEP 12 Maximum forecast step
M_GRID 1000 Grid resolution*1000
M_LEFT -170000 Left grid boundary
M_LOWER -80000 Lower grid boundary
M_UPPER 80000 Upper grid boundary
M_RIGHT 170000 Right grid boundary
M_LEVELIST 1/to/137 Vertical hybrid sigma pressure levels
M_GAUSS 0 To retrieve divergence of wind field
M_ETA 1 To retrieve horizontal wind fields etadot
M_FORMAT GRIB2 Format of the meteo data
M_ADDPAR /186/187/188/235/139/39 Additional parameters to be retrieved
INPUTDIR wind_data/2020_01_01_ECMWF_highres Input directory
OUTPUTDIR wind_data/2020_01_01_ECMWF_highres Output directory
PREFIX EA Prefix for the output meteo files
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A.2. Locations and TROPOMI orbits used for generating synthetic
plume

A.2.1. Analysis of mass balance methods

Table A.2: Emission locations of synthetic plumes over Al-
geria that are used for the analysis of mass balance meth-
ods. Please note that multiple plumes are generated over
these regions for the year 2020.

Region Lat Lon

Algeria 5.15 30.7
Algeria 6.15 30.7
Algeria 7.15 30.7
Algeria 5.15 31.7
Algeria 6.15 31.7
Algeria 7.15 31.7
Algeria 5.15 32.7
Algeria 6.15 32.7
Algeria 7.15 32.7

Table A.3: Emission locations of synthetic plumes over
Sasol that are used for the analysis of mass balancemeth-
ods. Please note that multiple plumes are generated over
these regions for the year 2020.

Region Lat Lon

Sasol 28 -27.5
Sasol 29 -27.5
Sasol 30 -27.5
Sasol 28 -26.5
Sasol 29 -26.5
Sasol 30 -26.5
Sasol 28 -25.5
Sasol 29 -25.5
Sasol 30 -25.5

Table A.4: TROPOMI orbits used for generating synthetic
plumes over Algeria for the analysis of mass balance
methods.

Year Month Date Orbit

2020 1 3 11522
2020 1 4 11536
2020 1 5 11550
2020 1 28 11876
2020 1 29 11891
2020 1 30 11905
2020 1 31 11919
2020 2 1 11933
2020 2 2 11947
2020 1 8 11593
2020 12 23 16558
2020 12 26 16601

Table A.5: TROPOMI orbits used for generating synthetic
plumes over Sasol for the analysis of mass balance meth-
ods.

Year Month Date Orbit

2020 4 21 13068
2020 5 3 13238
2020 5 12 13366
2020 5 18 13451
2020 5 23 13522
2020 5 28 13593
2020 6 2 13664
2020 6 3 13678
2020 6 4 13692

A.2.2. Analysis of atmospheric transport models
Table A.6: Emission locations of synthetic plumes over Sasol that are used for the analysis of atmospheric transport model based
plume emission quantification approach. Please note that multiple plumes are generated over these regions for the year 2020.

Region Lat Lon

Algeria 6.1810 31.7541
Algeria 5.9651 31.6163
Algeria 5.9921 31.7771
Algeria 5.9651 31.7312
Algeria 5.9381 31.7541
Algeria 6.1810 31.8688
Algeria 5.9651 31.1556
Algeria 5.9111 31.6623
Algeria 5.9111 31.7541
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TROPOMI orbits: 11493, 11508, 11522, 11536, 11550, 11564, 11578, 11593, 11749, 11763, 11777,
11791, 11805, 11820, 11848, 11862, 11876, 11891, 11905, 11919, 11933, 11947, 11962, 11976, 11990,
12004, 12018, 12047, 12075, 12118, 12132, 12146, 12160, 12174, 12189, 12203, 12217, 12231,
12245, 12259, 12288, 12302, 12316, 12330, 12345, 12359, 12387, 12416, 12430, 12444, 12458,
12472, 12486, 12501, 12515, 12529, 12643, 12671, 12699, 12728, 12756, 12770, 12784, 12799,
12813, 12827, 12841, 12855, 12884, 12997, 13011, 13068, 13111, 13139, 13153, 13182, 13196,
13224, 13238, 13253, 13267, 13338, 13352, 13451, 13465, 13480, 13494, 13508, 13579, 13593,
13636, 13664, 13692, 13707, 13735, 13820, 13834, 13848, 13863, 13877, 13919, 13934, 13948,
13962, 13976, 13990, 14019, 14033, 14075, 14090, 14104, 14132, 14146, 14175, 14203, 14217,
14232, 14246, 14260, 14288, 14345, 14359, 14373, 14388, 14402, 14444, 14459, 14473, 14487,
14501, 14529, 14544, 14558, 14572, 14586, 14600, 14615, 14629, 14643, 14657, 14671, 14686,
14700, 14714, 14728, 14742, 14756, 14771, 14785, 14799, 14813, 14827, 14842, 14856, 14870,
14884, 14898, 14913, 14927, 14984, 14998, 15012, 15026, 15040, 15054, 15097, 15125, 15154,
15182, 15196, 15210, 15225, 15239, 15281, 15296, 15310, 15324, 15338, 15352, 15452, 15466,
15480, 15494, 15508, 15523, 15537, 15551, 15579, 15594, 15608, 15622, 15636, 15650, 15664,
15679, 15693, 15721, 15735

A.3. Sanity check on FLEXPART outputs
We performed a sanity check on the output of FLEXPART. In this check, we calculated the total amount
of methane mass present in the output grid after each time step of FLEXPARTmodel run and compared
it to the given emission rate. In order to calculate the total amount of methane present in the output
grid, we used the following equations.

If the output is in [pptv]

Ω𝐶𝐻4 =
𝑚

∑
𝑗=1

𝑛

∑
𝑖=1
(𝑋𝐶𝐻4[𝑝𝑝𝑡𝑣]𝑖 ∗ 𝑑𝑝𝑖 ∗ 𝐴𝑗 ∗

𝑀𝐶𝐻4
𝑔 ∗ 𝑀𝑎𝑖𝑟

) (A.1)

If the output is in [ng/m3]

Ω𝐶𝐻4 =
𝑚

∑
𝑗=1

𝑛

∑
𝑖=1
(𝑋𝐶𝐻4[𝑛𝑔/𝑚3]𝑖 ∗ 𝑑ℎ𝑖 ∗ 𝐴𝑗) (A.2)

where: 𝑖 = certain vertical level
𝑛 = highest vertical level
𝑗 = certain horizontal grid point
𝑚 = last horizontal grid point
𝑀𝐶𝐻4 = Molar mass of methane
𝑀𝑎𝑖𝑟 = Molar mass of air
𝑔 = gravitational acceleration constant
𝑋𝐶𝐻4𝑖 = methane concentration or dry-air mole fraction
𝑑𝑝𝑖 = pressure difference between vertical levels 𝑖 and 𝑖 − 1
𝑑ℎ𝑖 = height difference between vertical levels 𝑖 and 𝑖 − 1
Ω𝐶𝐻4 = total mass of methane

Figure A.1 shows total amount of methane present in the output grid for plumes generated using
ECMWF and NCEP meteorological data at several time steps. It can be seen that till 20 hours ECMWF
and NCEP results were in agreement with the emission rate line. After that time step, ECMWFmethane
plume starts to go outside the computational domain, and hence there is a dip in the total amount of
methane. After this dip, the ECMWF plume attains equilibrium where the amount of methane entering
the domain is equal to the amount of methane removed from the domain. For the NCEP methane
plumes, a dip in total mass can be observed around 50 hours, where it seems like a large chunk of
NCEP methane plume starts going outside the computational domain. The NCEP plume does not
attain equilibrium till 60 hours.
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The analysis presented in the previous paragraph indicates that the output grid concentrations of FLEX-
PART agrees well with the input emission rate.

Figure A.1: This figure shows the calculated total mass of methane inside the three dimensional output grid obtained
from the FLEXPART model at several time steps. Curves corresponding to plumes generated with two different meteo-
rological datasets are presented in this figure. The blue curve corresponds to the ECMWF plume, and the orange curve
corresponds to the NCEP plume. For comparison with the emission rate provided as input to the model, a black dotted
line is given in the figure.

Figure A.2: This figure shows pressure weighted vertical average of three dimensional methane concentrations obtained from
the FLEXPART model run that used ECMWF meteorological data. Results after 15, 18, and 21 hours are shown in this image.
Around 18 hours, the plume starts going outside the computational domain, which can be seen in form of a dip in ECMWF curve
shown in Figure A.1. Please note that this is not a TROPOMI resampled plume and these results are just used for verification of
the FLEXPART model outputs.
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Figure A.3: This figure shows pressure weighted vertical average of three dimensional methane concentrations obtained from
the FLEXPART model run that used NCEP meteorological data. Results after 45, 48, and 51 hours are shown in this image.
Around 48 hours, the plume starts going outside the computational domain, which can be seen in form of a dip in NCEP curve
shown in Figure A.1. Please note that this is not a TROPOMI resampled plume and these results are just used for verification of
the FLEXPART model outputs.

A.4. Phase I: analysis of mass balance methods
A.4.1. Bias plots

Figure A.4: This figure shows several box plots containing bias corresponding to mass balance quantification of plumes
with a known emission rate of 27 [t/hr] generated over Algeria region using the ECMWF meteorological data. Each box
plot represents biases calculated for plumes belonging to a particular class of plumes. Each class of plume is assigned a
colour. The colours corresponding to classes of plumes are mentioned in the box at the top of the plot. We are quantifying
plumes using four variations of the IME method and two variations of the CSF method, which are separated by vertical
dotted lines in this plot (for variations of IME and CSF methods, refer to Section 5.1). For each box plot, a median of data is
represented by a bold black line, the mean of data is represented by a green triangle, the box contains data between 25th
percentile and 75th percentile, which is also called interquartile range, and whiskers are placed at 1.5 times interquartile
range from the ends of the box.
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Figure A.5: This figure shows several box plots containing bias corresponding to mass balance quantification of plumes
with known emission rate of 27 [t/hr] generated over Algeria region using the NCEP meteorological data. Rest of the
description of this figure is same as Figure A.4.

Figure A.6: This figure shows several box plots containing bias corresponding to mass balance quantification of plumes
with known emission rate of 27 [t/hr] generated over Sasol region using the NCEP meteorological data. Rest of the
description of this figure is same as Figure A.4.
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A.4.2. RMSE plots

Figure A.7: This figure shows several box plots containing RMSE corresponding to mass balance quantification of plumes
with known emission rate of 27 [t/hr] generated over Algeria region using the ECMWF meteorological data. Rest of the
description of this figure is same as Figure A.4.

Figure A.8: This figure shows several box plots containing RMSE corresponding to mass balance quantification of plumes
with known emission rate of 27 [t/hr] generated over Algeria region using the NCEP meteorological data. Each box plot
represents biases calculated for plumes belonging to a particular class of plumes. Rest of the description of this figure is
same as Figure A.4.
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Figure A.9: This figure shows several box plots containing RMSE corresponding to mass balance quantification of plumes
with known emission rate of 27 [t/hr] generated over Sasol region using the NCEP meteorological data. Each box plot
represents biases calculated for plumes belonging to a particular class of plumes. Rest of the description of this figure is
same as Figure A.4.
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